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Abstract 7 

As a critical component of an offshore wind turbine foundation, grouted connections are 8 

susceptible to fatigue failure under long-term loading conditions, which makes the 9 

assessment of their fatigue behaviour essential for the overall structural integrity and 10 

maintenance. Compared to costly experimental characterization and computationally 11 

expensive numerical modelling, there is a high demand for developing a fast, efficient 12 

and accurate surrogate model to predict fatigue life. This paper develops a novel hybrid 13 

Physics-Informed Neural Network (PINN) model that integrates both simplified physical 14 

constraints and hidden physical laws to predict the fatigue life of axially loaded grouted 15 

connections, where the physical knowledge is the relationship between fatigue life and 16 

fatigue-related parameters. The results show that the developed hybrid PINN model 17 

achieves superior prediction accuracy compared to the current codes of practice, the 18 

conventional Deep Neural Network (DNN) model, the PINN model integrating simplified 19 

physical constraints (S-PINN), and the PINN model integrating hidden physical laws (H-20 

PINN). To enhance the interpretability of the model, Shapley Additive Explanations 21 

(SHAP) analysis and physical consistency analysis are conducted to assess the 22 

contribution of each feature to the fatigue life and to investigate the distribution of 23 

predictions with respect to physical consistency. It’s found that the new hybrid PINN 24 

model produces predictions that exhibit a higher degree of physical consistency than the 25 

purely data-driven DNN model, demonstrating the reliability and robustness of the model. 26 
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1. Introduction 1 

Grouted connections have been widely used in offshore wind turbines construction to 2 

connect the upper structure to the foundation, as shown in the monopiles, tripod structures, 3 

and jacket structures (Fig. 1) [1-4]. The high-strength grout between steel tubes at the 4 

connections can effectively resist the cyclic loads caused by the marine environment. 5 

However, the long-term exposure to environmental loading of winds, waves, and tides 6 

makes grouted connections susceptible to issues related to fatigue crack propagation and 7 

marine-induced erosion. This study focuses on the prediction of the fatigue life of axially 8 

loaded grouted connections, providing essential insights into structural safety and 9 

operational reliability. 10 

The fatigue performance of grouted connections has been extensively investigated 11 

through both experimental tests and Finite Element Analysis (FEA). A key early 12 

contribution was made by Billington et al. [5] in 1980, who pioneered the use of tension-13 

compression cyclic loading tests to establish a logarithmic linear relationship between the 14 

stress range and the fatigue life. Boswell et al. [6] further investigated the fatigue 15 

performance of grouted connections with shear keys through a series of fatigue tests under 16 

fully reversed cyclic loading conditions and concluded that higher strength grout 17 

demonstrated inferior fatigue performance than lower strength grout. In engineering 18 

applications, over the last few decades, the compressive strength of grouting materials 19 

has improved from 10-80 MPa to 140-170 MPa [7-10], with a strength up to 210 MPa 20 
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being employed in underwater repair scenarios [9-10]. Despite these advancements, the 1 

criteria for selecting appropriate grout strength in engineering applications have not been 2 

clarified [4], and the influence of other key parameters, such as connection details and 3 

loading conditions, on fatigue performance remains insufficiently understood. 4 

To address these limitations, Chen et al. [11] tested five cylindrical grouted connections 5 

with shear keys under a constant range of cyclic bending moments and found that the 6 

specimens that could endure 2 million load cycles without significant loss of bending 7 

capacity exhibited a reduced fatigue life of 1.28 million cycles due to the welding quality 8 

of the steel structures. Schaumann et al. [12] conducted nonlinear finite element analysis 9 

on local degradation and vertical misalignments of grouted connections and demonstrated 10 

that highly flexible structures could induce grout cracking and relative sliding at the 11 

interface, which resulted in abrasion and wear, thereby reducing fatigue life. Sørensen et 12 

al. [13] and Schaumann et al. [14] studied the fatigue performance of grouted connections 13 

in both dry and wet environments. The results showed that the interface slippage and 14 

grout degradation in the submerged environment accelerated the structural performance 15 

deterioration. The wear rate can be 2-18 times higher than that of grouted connections in 16 

the dry environment [15]. Johansen et al. [16] investigated the cyclic capacity of axially 17 

loaded grouted connections and found that the cyclic capacity was significantly lower 18 

than the static strength, and that the axial load level was a key factor influencing the 19 

fatigue performance of the structure. The design codes DNV-ST-0126 [17] and ISO 19902 20 

[18] provide three-segment and single-segment logarithmic S-N curves, respectively, 21 
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under pulsating and alternating loading conditions. Although the influence of the fatigue 1 

limit is not considered, these codes offer essential guidance for the fatigue design of 2 

grouted connections.  3 

It may be concluded that previous tests in the literature were conducted as independent 4 

evaluations, with limited experimental data and large variations in choosing design 5 

parameters [19-20]. However, carrying out full-scale experiments are costly, time-6 

consuming and it is difficult to simulate realistic environmental and loading conditions. 7 

Empirical formulas and FEA are unable to fully account for the nonlinear behaviour of 8 

the structures under complex loading conditions [21-22]. Given these limitations, 9 

machine learning approaches offer promising alternatives for fatigue performance 10 

evaluation, leveraging existing datasets from experimental and numerical sources. 11 

Machine learning technology has demonstrated strong capability in extracting nonlinear 12 

relationships between input features and output features across different subject domains 13 

[23-25]. Among these applications, fatigue prediction has emerged as a promising area of 14 

research. Liu et al. [26] proposed a modified parameter-optimized support vector machine 15 

(SVM) model to predict the fatigue life of vibration isolation rubbers, which 16 

outperformed the back propagation neural network (BPNN) regression model with high 17 

efficiency and greater accuracy. Wang et al. [27] developed a novel machine learning 18 

approach by combining the Gray Wolf Optimization (GWO) algorithm with the XGBoost 19 

model for the fatigue life prediction of high-strength steel wires, and demonstrated the 20 

model’s generalization capability on wire specifications that are not present in the training 21 
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set. Xiang et al. [28] investigated the fatigue property of natural rubber composites 1 

through the BPNN model and conducted sensitivity analysis to assess the varying degrees 2 

of influence of input features on the fatigue life. Considering the history-dependent 3 

phenomenon in the fatigue of materials, Jian et al. [29] established a novel Double-layer 4 

Bidirectional Long Short-Term Memory (BILSTM) neural network model, which 5 

integrates both transfer learning and attention mechanism, to predict the fatigue life of 6 

thin plate structures made of carbon fibre reinforced polymers, and the model achieved 7 

the best performance compared to the Long Short-Term Memory (LSTM) and LSTM 8 

with transfer learning models. Although machine learning methods are widely applied, 9 

they require large amounts of data for effective training and to prevent overfitting due to 10 

their purely data-driven nature [30-31]. Furthermore, such models make predictions based 11 

on a black-box mechanism with the absence of physical explanation, which may lead to 12 

physically inconsistent results [32]. 13 

PINN are advanced predictive models that incorporate physical laws with data-driven 14 

approaches [33-34]. By incorporating physical constraints as regularization terms into the 15 

loss function, PINN models have proven to be efficient in addressing key challenges in 16 

fatigue life prediction, including data scarcity and high data disparity [35-37]. Li et al. 17 

[38] reviewed the developments of physics-informed data-driven prediction methods for 18 

the Remaining Useful Life (RUL), which includes physical model and data fusion 19 

methods, stochastic degradation model based methods, and physics-informed machine 20 

learning based methods. The results showed that the physics-informed machine learning 21 



7 

 

based methods achieved the best performance in several benchmark case studies, 1 

including the bridge deck rebar corrosion datasets, the Commercial Modular Aero-2 

Propulsion System Simulation (C-MAPSS) datasets, and the lithium battery aging 3 

datasets. Liao et al. [39] proposed a path-dependent adaptive PINN model that integrated 4 

a genetic algorithm and meta-learning framework to optimize model weights. The model 5 

exhibited superior prediction performance for multiaxial fatigue life of stainless steel, 6 

with most predictions falling within the 1.5-factor error bands. Zhai et al. [40] established 7 

a coupled data/physics-driven simulation framework for accurate and efficient simulation 8 

of a three-story frame/reinforcement concrete shear-wall building. This framework 9 

leveraged the complementary strengths of both data-driven and physics-driven models 10 

and achieved a computational speed-up of more than 70 times compared to the refined 11 

Abaqus model. Dang et al. [36] studied the fatigue behaviour of laser-directed energy 12 

deposition Ti-6AI-4V using a novel prediction framework based on the PINN algorithm. 13 

The influence patterns of various fatigue-sensitive parameters were studied, showing the 14 

effectiveness and interpretability of the proposed method. Dong et al. [41] introduced a 15 

fracture mechanics-based PINN for the prediction of multi-defect materials. Owing to the 16 

incorporation of physical knowledge, a coefficient of determination exceeding 0.9 has 17 

been achieved. Hao et al. [42] developed an innovative damage physics-informed neural 18 

network for multi-mode fatigue failure assessment of Ni-based superalloys using pure-19 

loading datasets, achieving better predictive performance than purely data-driven and 20 

physics-based models. Baktheer et al. [43] proposed a physics-based machine learning 21 
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framework to predict the fatigue lifetime of high-strength concrete under non-uniform 1 

loading scenarios, offering more accurate predictions than data-driven neural network 2 

with limited training data. 3 

Despite the various applications of PINN models in fatigue prediction scenarios, their use 4 

in grouted connections remains limited due to the complex physical mechanisms and the 5 

lack of publicly available datasets. To address this research gap, a novel hybrid PINN 6 

model, which integrates both simplified physical constraints and hidden physical laws 7 

that relate fatigue life to fatigue-related parameters, is proposed in this paper to predict 8 

the fatigue life of axially loaded grouted connections. In addition, this work conducts 9 

SHAP analysis and physical consistency analysis to interpret the developed hybrid PINN 10 

model. To support the training and evaluation of the proposed model, a fatigue dataset is 11 

constructed using the data from the open literature, subjected to several data preparation 12 

processes, including Pearson correlation coefficient analysis, stratified random splitting, 13 

and data normalization. 14 

2. Dataset establishment of fatigue test on grouted connections 15 

2.1. Fatigue test data of grouted connections 16 

The configuration of the grouted connection is shown in Fig. 2, which consists of two 17 

cylindrical steel tubes of different diameters. The annular gap between the tubes is filled 18 

with a grout material. As part of the composite design, ring-shaped shear keys are installed 19 

along the opposing steel surfaces to enhance interfacial shear strength. During service, 20 
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the fatigue performance of this structure is influenced by multiple factors, including 1 

structural geometry, material properties, and loading conditions. To develop an effective 2 

fatigue life prediction model for axially loaded grouted connections, a dataset comprising 3 

70 samples is established based on the open literature [3,4,6,19,20,44,45,46]. The 4 

established dataset includes 19 input features and the target output of fatigue life. Details 5 

of each sample are listed in Table A.1 in the Appendix. The specific input features are as 6 

follows: 7 

(1) Structural geometry: The diameter of the sleeve (𝐷𝐷s); the thickness of the sleeve (𝑡𝑡s); 8 

the diameter of the pile (𝐷𝐷p); the thickness of the pile (𝑡𝑡p); the length of the grout (𝐿𝐿g); 9 

the thickness of the grout (𝑡𝑡g); the width of the shear key (𝑤𝑤); and the height-to-spacing 10 

ratio of the shear key (ℎ/𝑠𝑠). 11 

(2) Material properties: The elastic modulus of the sleeve (𝐸𝐸s); the yield strength of the 12 

sleeve (𝜎𝜎Y_s); the elastic modulus of the pile (𝐸𝐸p); the yield strength of the pile (𝜎𝜎Y_p); the 13 

ultimate compressive strength of the grout (𝑈𝑈𝑈𝑈𝑈𝑈g); the Poisson’s ratio of the grout (𝑣𝑣g); 14 

and the Poisson’s ratio of the steel (𝑣𝑣s). 15 

(3) Loading conditions: The minimum load (𝑃𝑃min); the loading frequency (𝑓𝑓); the loading 16 

environment (𝑒𝑒𝑒𝑒𝑒𝑒 ); and the ratio of the maximum load to the static interfacial shear 17 

strength (𝑃𝑃max/𝑃𝑃static). 18 

These features are selected to represent the comprehensive key variables affecting fatigue 19 

life. Among the input features, the “Loading environment” specifies whether the grouted 20 
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connection is placed above or under water, with 0 representing an above-water condition 1 

and 1 representing an underwater condition. The inclusion of this feature demonstrates 2 

the model's applicability across different operational scenarios. It should be noted that as 3 

the “loading environment” becomes more finely categorized and the dataset is further 4 

enriched, one-hot encoding may provide a more suitable and expressive representation. 5 

 

Fig. 1. Grouted connections in offshore wind turbines support structures. 



11 

 

 

Fig. 2. Configuration of grouted connections 

2.2. Dataset preprocessing 1 

Before inputting the dataset into the neural network, the preprocessing steps are applied, 2 

including correlation analysis to avoid multicollinearity among input features and 3 

improve model accuracy; reasonable dataset partitioning to enable effective model 4 

evaluation and reduce the risk of overfitting; and normalization to accelerate training 5 

convergence. 6 

The Pearson correlation coefficient is commonly used in statistics to measure the linear 7 

relationship between two variables, x and y, and it can be calculated by: 8 

( )
( ) ( )

cov ,

var var

x y
r

x y
=

⋅
 (1) 

where var(x) and var(y) are the variances of variables x and y, respectively, and cov(x, y) 9 

is their covariance. The value of r ranges from -1 to 1. If |𝑟𝑟| > 0.7, it indicates a strong 10 
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linear relationship between x and y. If |𝑟𝑟| < 0.2, the relationship is considered weak, and 1 

any value in between is considered moderate. In this study, the correlations between 18 2 

input features are calculated, since the feature, 𝑣𝑣s, is constant throughout the dataset and 3 

thus excluded from the correlation analysis. The corresponding heatmap is shown in Fig. 4 

3. 5 

 

Fig. 3. Heatmap of Pearson correlation coefficients for input features. 

After removing the redundant input features exhibiting high correlation (|𝑟𝑟| > 0.7) with 6 

the remaining features in the dataset, the number of input features is reduced to 8, which 7 
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are 𝑡𝑡g, ℎ/𝑠𝑠, 𝐸𝐸p, 𝑣𝑣s, 𝑃𝑃min, 𝑓𝑓, 𝑒𝑒𝑒𝑒𝑒𝑒, and 𝑃𝑃max/𝑃𝑃static. Since 𝐸𝐸p and 𝑣𝑣s remain nearly 1 

constant over the data, they are removed from the model to focus on the contribution of 2 

more informative features. Therefore, the constructed dataset comprises 6 input features 3 

and 1 output feature. It can be seen that the incorporation of the dimensionless parameters 4 

among the input features ℎ/𝑠𝑠  and 𝑃𝑃max/𝑃𝑃static  provides physically meaningful and 5 

scale-independent descriptors for the geometric and loading characteristics of grouted 6 

connections. These descriptors make the dataset representative of a broad range of 7 

configurations and thereby enhance the model’s generalization capability. 8 

The dataset is then split into a 60%-40% train-test ratio, which is used for small datasets 9 

to retain enough data for reliable evaluation. Since the fatigue life is highly dispersed and 10 

is widely varied ranging from a few to several million cycles, a stratified random splitting 11 

strategy is adopted to ensure that samples are evenly distributed across the fatigue life 12 

range space in both the training and testing sets: First, the data are sorted in ascending 13 

order of the fatigue life. Second, each 5 consecutive samples are formed into a group. 3 14 

samples are randomly assigned to the training set and 2 to the testing set. Fig. 4 shows 15 

the distribution of the training and testing samples across fatigue life. It can be seen that 16 

both datasets are evenly spread across the range from 100  to 107 . After sorting, the 17 

splitting bias can be reduced and the reliability of the predictive model can be enhanced. 18 

In addition, the training set is further divided into 5 folds using a similar stratified strategy 19 

for five-fold cross-validation and hyperparameter tuning. 20 
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Fig. 4. Distribution of samples across fatigue life for (a) training samples and (b) 

testing samples. 

Finally, to account for the varying scales of the input features, z-score normalization is 1 

applied to standardize the data. For the output fatigue life, a log-transformation is used to 2 

reduce the disparity, making the data more suitable for subsequent prediction. 3 

3. Machine Learning Methodology 4 

3.1. Development of DNN model 5 

Artificial Neural Network (ANN), which is a biologically inspired computational network, 6 

is a robust and promising machine learning approach in extracting nonlinear hidden 7 

relationship between input and output features and has therefore found wide applications 8 

in modeling the mechanical behaviour of materials and structures [47-49]. When a neural 9 

network consists of more than 3 layers, it is considered a DNN. In this study, a back-10 

propagation DNN regression model is constructed to predict fatigue life of axially loaded 11 

grouted connections (as shown in Fig. 5), in which the mean squared error between the 12 

logarithms of the true and predicted fatigue life (Eqs. (2)) is adopted as the loss function: 13 

( )
2

mse true pred
1

1o lg lg
n

i i

i
L ss N N

n =

= −∑  (2) 
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where n is the number of samples in a batch, 𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 is the true value of experimental 1 

fatigue life and 𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 is the predicted fatigue life.  2 

A grid search method with five-fold cross-validation is employed in the data training 3 

process to determine the optimal network structure and parameters. As demonstrated in 4 

Fig. 5, 5 hidden layers of 128 neurons each are used to map the 6-dimensional input to a 5 

single fatigue life output. The ‘Tanh’ is used as the activation function and the DNN is 6 

trained using the ADAM-Optimizer with a learning rate of 0.001 for 570 epochs and a 7 

batch size of 3. 8 

 

Fig. 5. Architecture of the proposed DNN model. 

3.2. Development of PINN model 9 

PINN is an innovative approach combining deep learning with physical constraints to 10 

solve partial differential equations. By penalizing the output that violates physical laws, 11 

the solution space is restricted to a manageable size and strong generalization capability 12 

can be achieved using scarce training data. Inspired by the observed correlation between 13 
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the load level and fatigue life (as shown in Fig. 6), where the load level is represented by 1 

𝑃𝑃max/𝑃𝑃static   in the input features and the fatigue life by 𝑁𝑁  in the output, this work 2 

develops two distinct types of PINN models that incorporate either simplified physical 3 

constraints (S-PINN) or hidden physical laws (H-PINN) as regularization terms in the 4 

loss function. Furthermore, a hybrid PINN model integrating both types of physical 5 

constraints is also investigated. 6 

 

Fig. 6. S-N curves of DNV-ST-0126 [17] and DIN EN ISO 19902[18]. 

From Fig. 6, it’s evident that the fatigue life decreases with increasing load level, and the 7 

decrease becomes more rapid at higher load levels. This trend indicates that the first-order 8 

derivative of fatigue life with respect to load level is negative, and the second-order 9 

derivative is positive, which can be expressed as: 10 

( )max static

0
/
N

P P
∂

≤
∂

 (3) 

( )
2

2
max static

0
/
N

P P
∂

≥
∂

 (4) 
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It should be noted that the fatigue life is log-transformed, and the load level is 1 

standardized using z-score normalization during data preprocessing. Accordingly, the 2 

corresponding terms in Eqs. (3)-(4) should be adjusted, and the loss function of the PINN 3 

model incorporating simplified physical constraints can be written as: 4 

total mse physicaloL ss Loss Lossω= +  (5) 

( )( )

( )( )

pred
physical

1 max static

2
pred

2
max static

lg1 max 0,
z /

lg
max 0,

z /

in

i
i

i

i

N
Loss

n P P

N

P P

=

 ∂ = +
 ∂ 

 ∂ −
 ∂ 

∑
 (6) 

where z(𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚/𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) represents the z-score normalization of the load level. 𝜔𝜔 is the 5 

weight coefficient of physical loss. When 𝜔𝜔 = 0 , the PINN degenerates into the 6 

corresponding data-driven DNN model. The max operator is employed to penalize 7 

predictions deviated from the physical constraints, with the penalty increasing as the 8 

deviation distance increases. 9 

The integration of hidden physical laws into the neural network is based on the Basquin 10 

relation, which describes the correlation between load level and fatigue life (as shown in 11 

Fig. 6), and can be expressed as: 12 

( )max staticlg / lgP P A B N= +  (7) 

where A and B are implicit constants that depend on the structural geometry, material 13 

properties and loading conditions of the grouted connections. In this study, an additional 14 

DNN model is employed to regress A and B based on the 6-dimensional input features of 15 
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each type of grouted connection. The regressed A and B are incorporated into the Basquin 1 

equation, forming the hidden physical constraint embedded in the loss function of the 2 

PINN model, which is defined as: 3 

total mse hidden physicaloL ss Loss Lossγ= +  (8) 

( )( )hidden physical max static pred
1

1 lg / lg
n

i i i i

i
Loss P P A B N

n =

= − −∑  (9) 

where 𝛾𝛾 is the weight coefficient of hidden physical loss. As 𝛾𝛾 increases, the model is 4 

increasingly penalized for violating the underlying physical law. 5 

Figs. (7)-(9) illustrate the constructed S-PINN, H-PINN and hybrid PINN models, 6 

respectively. The loss functions of the S-PINN and H-PINN models are derived from Eqs. 7 

(5), (6), (8) and (9), whereas the loss function of the hybrid PINN model is expressed as: 8 

total mse physical hidden physicaloL ss Loss Loss Lossω γ= + +  (10) 

where 𝜔𝜔 is the weight coefficient of physical loss, and 𝛾𝛾 is that of the hidden physical 9 

loss. 10 

In this work, the main structures of the three types of PINN models based on different 11 

physical constraints remain consistent with the DNN model. In the training of PINN 12 

models, data loss and physical loss converge at different rates. Inappropriate weight 13 

setting may lead to a bias towards a certain loss function or cause training instability. To 14 

select the benchmark weights for the physical loss and hidden physical loss, their 15 

magnitudes are compared with that of the data loss. The weights are then set to ensure 16 

that all losses are of comparable scale. For example, if the data loss is around 1, while the 17 
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other loss is around 0.1, a weight coefficient of 10 is assigned to balance their 1 

contributions. Based on this, a further grid search with five-fold cross-validation is 2 

performed to fine-tune the benchmark weights and identify the optimal values. In this 3 

paper, the weight coefficients are set to 0.5 for the physical loss and 0.1 for the hidden 4 

physical loss across the three PINN models. The DNN used to regress the parameters, A 5 

and B, in the Basquin relation consists of 3 hidden layers of 128 neurons each, and ‘Tanh’ 6 

is used as the activation function. For more complex models, more advanced 7 

hyperparameter optimization strategies, such as random search, Bayesian optimization, 8 

and evolutionary or population-based optimization algorithms, may offer greater potential 9 

to reduce computational costs and accelerate model convergence. 10 

 

Fig. 7. Architecture of the proposed S-PINN model. 
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Fig. 8. Architecture of the proposed H-PINN model. 

 

Fig. 9. Architecture of the proposed hybrid PINN model. 

3.3. Model interpretation and evaluation 1 

The SHAP method is widely applied to interpret machine learning models. In addition to 2 

identifying the importance of each feature in the model’s prediction, SHAP analysis 3 

enables a more profound exploration of the positive or negative contribution of each 4 

feature [50]. In this work, the GradientSHAP algorithm is implemented to interpret the 5 
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developed hybrid PINN model, and the importance and contribution of each feature to 1 

the prediction of fatigue life are investigated. 2 

The Mean Square Error (MSE) and the Coefficient of Determination (𝑅𝑅2) are used as the 3 

evaluation metrics to assess the accuracy of the model's prediction, which are defined as: 4 

( )
2

true pred
1

1 lg lg
n

i i

i
MSE N N

n =

= −∑  (11) 

( )

( )

2

true pred
2 1

2

true average
1

lg lg
1

lg lg

n
i i

i
n

i

i

N N
R

N N

=

=

−
= −

−

∑

∑
 (12) 

where lg𝑁𝑁average is the average of lg𝑁𝑁true. In evaluating model performance, a larger 5 

MSE indicates that the data are widely dispersed around the mean, while a smaller 𝑅𝑅2 6 

indicates a poor fitting ability of the model. 7 

4. Fatigue life predictions and discussion 8 

4.1. Prediction results using different machine learning models 9 

In this work, the input features to the machine learning models for the grouted connections 10 

are reduced to 8 through Pearson correlation coefficient analysis by eliminating redundant 11 

features that exhibit high correlation with others in the dataset, which helps reduce 12 

multicollinearity while remaining consistent with prior physical knowledge. In this 13 

process, the 𝑡𝑡g  and ℎ/𝑠𝑠 , which govern the load transfer path and local shear failure 14 

mechanism, are retained as stress concentration regions are more influential in 15 

determining fatigue behaviour than global geometric dimensions. The 𝐸𝐸s, 𝐸𝐸p, 𝑣𝑣g, and 16 
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𝑣𝑣s are removed due to their limited variation within the dataset, as they are associated 1 

with standardized materials commonly used in engineering practice. For the removal of 2 

𝜎𝜎Y_s , 𝜎𝜎Y_p , and 𝑈𝑈𝑈𝑈𝑈𝑈g , the yield strengths primarily affect the ultimate load-bearing 3 

capacity of grouted connections, rather than contributing continuously to fatigue 4 

performance [51]. The 𝑈𝑈𝑈𝑈𝑈𝑈g shows a similar correlation with fatigue life compared to 5 

the ℎ/𝑠𝑠, with Pearson correlation coefficients of 0.55 and 0.57, respectively. Therefore, 6 

the 𝑈𝑈𝑈𝑈𝑈𝑈g is excluded to avoid redundancy. 7 

The network hyperparameters are critical for the convergence and reliability of predictive 8 

models. Considering the limited fatigue dataset for axially loaded grouted connections, 9 

the five-fold cross-validation process could exhibit instability, consequently 10 

compromising the reliability of the model training. To demonstrate the effectiveness of 11 

the selected hyperparameters, the prediction performance of the DNN model with 12 

different hidden layer neuron numbers is presented in Table 1, while the prediction 13 

performance of the hybrid PINN model under various combinations of the weight 14 

coefficients 𝜔𝜔 and 𝛾𝛾 is shown in Table 2. From the results, the models with the chosen 15 

hyperparameters perform the best. In contrast, the DNN model with a hidden layer neuron 16 

configuration of (64,128,256,128,64) yields the poorest performance, with an MSE of 17 

0.6463 and an 𝑅𝑅2 of 0.7350. For the hybrid PINN model, the combination of 𝜔𝜔 = 0.5 18 

and 𝛾𝛾 = 0.3 leads to the lowest accuracy, resulting in an MSE of 0.7197 and an 𝑅𝑅2 of 19 

0.7048. These results further validate the robustness of the selected hyperparameter 20 

settings. 21 
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Table 1: Prediction performance of the DNN model under different numbers of hidden 

layer neurons. 

Hidden layer neurons  MSE 2R  

(64,64,64,64,64)  0.5250 0.7847 

(128,128,128,128,128)  0.5013 0.7944 

(256,256,256,256,256)  0.5837 0.7606 

(64,128,256,128,64)  0.6463 0.7350 

(256,256,128,128,64)  0.5275 0.7837 

(128,128,64,64,32)  0.6093 0.7501 

Table 2: Prediction performance of the hybrid PINN model under different 

combinations of the weight coefficients. 

Value of 𝜔𝜔 Value of 𝛾𝛾 MSE 2R  

Fixed at 0.5 0.05 0.2746 0.8874 

 0.1 0.2248 0.9078 

 0.15 0.3272 0.8658 

 0.2 0.4508 0.8151 

 0.25 0.5847 0.7602 

 0.3 0.7197 0.7048 

0.35 Fixed at 0.1 0.2920 0.8802 

0.4  0.3424 0.8596 

0.45  0.3638 0.8508 
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0.55  0.2900 0.8811 

0.6  0.3520 0.8556 

0.65  0.2957 0.8787 

Fig. 10 shows the fatigue life prediction results for axially loaded grouted connections 1 

using the design codes DNV-ST-0126, DIN EN ISO 19902, and the proposed DNN, S-2 

PINN, H-PINN, and hybrid PINN models. As shown in the results, the methodologies 3 

adopted in both design codes are inadequate, with only a limited number of predictions 4 

falling within the 3-factor error bands. Moreover, the applicability of the DIN EN ISO 5 

19902 code is restricted when dealing with structures subjected to pulsating compression 6 

loads, highlighting the necessity of developing new models, including machine learning-7 

based models for more accurate fatigue life prediction. Among the proposed models, the 8 

hybrid PINN model, which incorporates both simplified physical constraints and hidden 9 

physical laws as the regularization terms, demonstrates the best prediction performance. 10 

Most of its predictions fall within the 3-factor error bands, except for 3 outliers 11 

corresponding to the structures with low fatigue life. It can be seen that the predictions of 12 

the three structures from other models fall also outside the 3-factor error bands, which 13 

can be attributed to the scarcity of training data in the low-fatigue-life range. While the 14 

hybrid PINN has reduced deviation, more training data in this range are required to 15 

improve the model. 16 

In comparison, the predicted fatigue life of the S-PINN model has 5 points outside the 3-17 

factor error bands, showing better accuracy than the purely data-driven DNN model, 18 
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which has 7 such predictions. In contrast, the H-PINN model exhibits the greatest 1 

dispersion, with 11 predictions falling outside the bands. These results indicate that 2 

incorporating the first- and second-order derivatives of fatigue life with respect to load 3 

level guides the model to converge in a more physically consistent direction. However, 4 

the lack of explicit physical formulation limits the potential to further improve accuracy. 5 

The poor predictive performance of the H-PINN model demonstrates that when explicit 6 

physical equations contain implicit parameters, such as the constants A and B in the 7 

Basquin relation which vary for different grouted connections, the use of such equations 8 

as model constraints should be complemented with additional prior physical knowledge 9 

to enhance model reliability. 10 

 

Fig. 10. Fatigue life prediction results of axially loaded grouted connections by (a) 

DNV-ST-0126; (b) DIN EN ISO 19902; (c) DNN; (d) S-PINN; (e) H-PINN; (f) 
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Hybrid PINN. 

Furthermore, the prediction performance of the proposed models is assessed by utilizing 1 

the evaluation parameters MSE and 𝑅𝑅2, which are calculated according to Eqs. (11)-(12) 2 

and is illustrated in Fig. 11. It can be evaluated that the hybrid PINN model achieves the 3 

lowest MSE of 0.2248 and the highest 𝑅𝑅2 of 0.9078, indicating that the integration of 4 

simplified physical constraints and hidden physical laws significantly enhances the 5 

model’s generalization capability. In contrast, the H-PINN model has the highest MSE of 6 

0.5413 and the lowest 𝑅𝑅2 of 0.7780, which performs worse than the conventional DNN 7 

model. This further demonstrates that the effectiveness of a PINN model depends heavily 8 

on the accuracy of the physical constraints, and inaccurate prior physical knowledge may 9 

mislead the training process and limit the model’s representational capacity. 10 

 

Fig. 11. Prediction performance of different models: (a) MSE; (b) 𝑅𝑅2. 

Fig. 12 depicts the evolution of the loss functions among the proposed models during 11 

training. It can be observed that the total loss for the H-PINN and hybrid PINN models is 12 

higher than that of the DNN and S-PINN models, which are caused by the inclusion of 13 

the Basquin relation as the hidden physical law in the loss function. Meanwhile, the DNN 14 

model exhibits the most fluctuations at around 320 epochs. This behaviour mainly results 15 
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from the increased sensitivity to noise and unstable optimization process due to the 1 

absence of physical guidance. In contrast, the incorporation of simplified physical 2 

constraints in the S-PINN model helps suppress such fluctuations. However, the use of 3 

soft inequality constraints can lead to gradient discontinuities and a weakened gradient 4 

signal, especially near the constraint boundaries, which results in the localized 5 

instabilities at around 350 and 510 epochs. Compared to the DNN and S-PINN models, 6 

the H-PINN and hybrid PINN models exhibit more stable training behaviour, 7 

demonstrating the effectiveness of incorporating the hidden physical law. The hybrid 8 

PINN model, which simultaneously incorporates simplified physical constraints and 9 

hidden physical laws as the regularization terms, achieves further improvements in 10 

prediction accuracy. 11 

 

Fig. 12. The evolution of the loss functions among different prediction models. 

To comprehensively understand the convergence and optimization behaviour of the 12 

hybrid PINN model, the evolution of its loss components is presented in Fig. 13. At the 13 
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beginning of training, the data loss decreases rapidly and subsequently stabilizes. The 1 

occurrence of oscillations arises from the need to balance the data-driven loss with the 2 

physics-based constraints during optimization. The physical loss quickly approaches zero, 3 

indicating that the corresponding soft inequality constraints is easy to satisfy. In contrast, 4 

the hidden physical loss remains within a stable range, and the regularization effect 5 

introduced by the hidden physical constraint helps prevent the data loss from overfitting 6 

to the limited training samples, thereby enhancing the generalization capability of the 7 

hybrid PINN model. 8 

 

Fig. 13. The evolution of the loss components in the hybrid PINN model. 

4.2. Interpretive analysis of the hybrid PINN model 9 

The hybrid PINN model demonstrates excellent performance in predicting fatigue life of 10 

axially loaded grouted connections. To study further the predictions of the model, 11 

interpretive analysis is conducted on the test data using SHAP analysis and physical 12 

consistency evaluation. Fig. 14 presents the SHAP summary plot illustrating the 13 
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contributions of the selected features to the predicted fatigue life. In this plot, the SHAP 1 

value represents the quantitative contribution of each feature to the model output, with 2 

positive SHAP values indicating an increase in the predicted fatigue life, whereas 3 

negative values indicate a decrease. The colour of the points reflects the feature values, 4 

with blue corresponding to lower values and red to higher values. The features are ranked 5 

from top to bottom according to their average absolute SHAP value, which represents 6 

their overall importance in the model’s predictions. It can be observed that 𝑓𝑓 and 𝑡𝑡g 7 

contribute the least to the model’s predictions, with their SHAP values largely centered 8 

around 0. However, higher values of these features could still have a directional influence 9 

on the predictions. This may be attributed to the limited variation of these two features 10 

within the dataset, which reduces their informational value and weakens their influence 11 

on the decision-making process of the model. Their influence on the model’s output is 12 

localized and occurs only when their values deviate substantially from the mean. 13 

The contributions of the remaining features are analyzed and found to be consistent with 14 

known fatigue mechanisms in grouted connections. For ℎ/𝑠𝑠 , larger height-to-spacing 15 

ratio of the shear key enhances mechanical interlocking, reduces interface slip, and delays 16 

crack initiation at the shear-key tips. These effects slow down the accumulation of fatigue 17 

damage, resulting in improved fatigue resistance. For the loading parameters, a higher 18 

𝑃𝑃min reduces loading fluctuation and slows fatigue crack propagation, whereas a higher 19 

𝑃𝑃max/𝑃𝑃static  indicates a larger cyclic loading range, which accelerates fatigue failure 20 

processes in grouted connections, such as grout cracking, grout crush, and interface slip, 21 
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thereby leading to opposite influences on the fatigue behaviour. For env, a feature value 1 

of 1 represents that the grouted connections are deployed underwater. In such conditions, 2 

cyclic hydraulic pressure can cause grout erosion, promote early cracking, and increase 3 

the relative slip at the interface, which together accelerate fatigue degradation and reduce 4 

the fatigue life. 5 

 

Fig. 14. Results of SHAP analysis for the hybrid PINN model. 

Fig. 15 shows the predicted first- and second-order derivatives of fatigue life with respect 6 

to load level for both the DNN and hybrid PINN models. It is evident that due to the 7 

incorporation of the physical constraints, the hybrid PINN model tends to produce 8 

physically consistent predictions on the unseen data, which in turn enhances the reliability 9 

of the model. In contrast, even though the purely data-driven DNN model is capable of 10 

achieving acceptable prediction accuracy, it produces extreme outliers that significantly 11 

violate physical constraints described in Eqs. (3)-(4), which undermines the physical 12 

robustness of the model and limits its generalization capability in unseen scenarios. 13 
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Fig. 15. Physical consistency analysis of proposed DNN and hybrid PINN models: (a) 

First-order derivative trend and (b) Second-order derivative trend of fatigue life with 

respect to load level.  

5. Conclusions 1 

A novel hybrid PINN model is developed to predict the fatigue life of axially loaded 2 

grouted connections. The model integrates both simplified physical constraints and 3 

hidden physical laws, and is based on a dataset constructed from the open literature. To 4 

further understand the mechanisms of the model, SHAP analysis and physical consistency 5 

analysis are conducted for model interpretation. Based on the prediction results, the 6 

following conclusions are made: 7 

(1) Although the DNN model can achieve acceptable prediction accuracy in estimating 8 

fatigue life of axially loaded grouted connections, it may produce predictions that severely 9 

violate physical laws. The results demonstrate that the predictive performance of purely 10 

data-driven models heavily depends on the distribution alignment between the training 11 

and the testing datasets. 12 
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(2) A novel hybrid PINN model incorporating both simplified physical constraints and 1 

hidden physical laws is developed to predict the fatigue life of axially loaded grouted 2 

connections. Guiding the learning process in a manner consistent with physical principles, 3 

the hybrid PINN model achieves the best fatigue life prediction performance among the 4 

DNN, S-PINN, and H-PINN models, with the lowest MSE of 0.2248 and the highest 𝑅𝑅2 5 

of 0.9078. 6 

(3) The SHAP analysis identifies the height-to-spacing ratio of the shear key (ℎ/𝑠𝑠) and 7 

the minimum load (𝑃𝑃min ) as the two most influential features affecting the fatigue 8 

behaviour of axially loaded grouted connections, Furthermore, the physical consistency 9 

analysis confirms that the hybrid PINN model can generate physically consistent 10 

predictions on unseen data, demonstrating the model’s reliability and generalization 11 

capability. 12 

Based on the findings of this paper, the proposed model can be extended to a dynamic 13 

prediction framework. As more data become available, the model can be updated through 14 

a warm-start fine-tuning strategy, in which the previously trained network serves as the 15 

initialization while the original architecture and physics-based loss components are 16 

retained. Furthermore, further investigations could explore more accurate and detailed 17 

fatigue prediction by incorporating different forms of physical constraints, as well as 18 

different failure modes of grouted connections, such as crack failure of grout and steel, 19 

into the model. In addition, conducting additional representative fatigue experiments will 20 

be essential to further verify the extrapolation capability of the proposed model under 21 
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previously unseen conditions. 1 

The current work is limited to fatigue prediction based on macroscopic features. 2 

Developing a cross-scale fatigue life prediction framework that integrates microscale 3 

damage evolution, mesoscale interfacial response, and macroscale fatigue behaviour is 4 

possible under the framework established in this paper and represents an important 5 

direction for future research. 6 
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Appendix 

See Table A.1.  

Table A.1: Fatigue test database for grouted connections 

Source Year 
Ds 

(mm) 
ts 

(mm) 

Dp 

(mm) 

tp 

(mm) 

Lg 

(mm) 

tg 

(mm) 
w 

(mm) 
h/s 

Es 
(GPa) 

σY_s 

(MPa) 

Ep 

(GPa) 

σY_p 

(MPa) 

UCSg 

(MPa) 
vg vs 

Pmin 
(kN) 

f env 
Pmax/ 
Pstatic 

N 

Bechtel [3] 2016 813.0 20.0 406.4 25.00 2140.0 183.50 12.0 0.0600 210 423.0 210 360.0 140.0 0.20 0.30 -1000.00 2.00 0 0.25 5890 

Bechtel [3] 2016 813.0 20.0 406.4 25.00 2140.0 183.50 12.0 0.0600 210 423.0 210 360.0 140.0 0.20 0.30 -2000.00 2.00 0 0.49 29 

Bechtel [3] 2016 813.0 20.0 610.0 25.00 2140.0 81.50 12.0 0.0600 210 423.0 210 360.0 140.0 0.20 0.30 -1000.00 2.00 0 0.16 89100 

Bechtel [3] 2016 813.0 20.0 610.0 25.00 2140.0 81.50 12.0 0.0600 210 423.0 210 360.0 140.0 0.20 0.30 -2000.00 2.00 0 0.33 602 

Bechtel [3] 2016 813.0 20.0 610.0 25.00 2140.0 81.50 12.0 0.0600 210 423.0 210 360.0 140.0 0.20 0.30 -3000.00 2.00 0 0.49 30 

Bechtel [3] 2016 813.0 20.0 406.4 25.00 2140.0 183.50 12.0 0.0600 210 423.0 210 360.0 90.0 0.18 0.30 -1000.00 2.00 0 0.27 3090 

Bechtel [3] 2016 813.0 20.0 406.4 25.00 2140.0 183.50 12.0 0.0600 210 423.0 210 360.0 90.0 0.18 0.30 -2000.00 2.00 0 0.53 14 

Bechtel [3] 2016 813.0 20.0 610.0 25.00 2140.0 81.50 12.0 0.0600 210 423.0 210 360.0 90.0 0.18 0.30 -1000.00 2.00 0 0.17 69183 

Bechtel [3] 2016 813.0 20.0 610.0 25.00 2140.0 81.50 12.0 0.0600 210 423.0 210 360.0 90.0 0.18 0.30 -2000.00 2.00 0 0.34 457 

Bechtel [3] 2016 813.0 20.0 610.0 25.00 2140.0 81.50 12.0 0.0600 210 423.0 210 360.0 90.0 0.18 0.30 -3000.00 2.00 0 0.51 20 

Bechtel [3] 2016 813.0 20.0 406.4 25.00 2140.0 183.50 12.0 0.0600 210 423.0 210 360.0 90.0 0.18 0.30 -1000.00 2.00 1 0.25 95000 

Raba [4] 2018 114.3 7.2 60.0 9.50 90.0 22.50 2.5 0.0625 210 355.0 210 355.0 90.0 0.18 0.30 0.00 10.00 1 0.50 36686 

Raba [4] 2018 114.3 7.2 60.0 9.50 90.0 22.50 2.5 0.0625 210 355.0 210 355.0 90.0 0.18 0.30 0.00 5.00 1 0.50 58011 

Raba [4] 2018 114.3 7.2 60.0 9.50 90.0 22.50 2.5 0.0625 210 355.0 210 355.0 90.0 0.18 0.30 0.00 2.00 1 0.50 137243 

Raba [4] 2018 114.3 7.2 60.0 9.50 90.0 22.50 2.5 0.0625 210 355.0 210 355.0 90.0 0.18 0.30 0.00 1.00 1 0.50 87178 

Raba [4] 2018 114.3 7.2 60.0 9.50 90.0 22.50 2.5 0.0625 210 355.0 210 355.0 90.0 0.18 0.30 0.00 0.30 1 0.50 233262 

Raba [4] 2018 114.3 7.2 60.0 9.50 90.0 22.50 2.5 0.0625 210 355.0 210 355.0 90.0 0.18 0.30 0.00 5.00 1 0.20 1113506 
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Table A.1: (continued) 

Source Year 
Ds 

(mm) 
ts 

(mm) 

Dp 

(mm) 

tp 

(mm) 

Lg 

(mm) 

tg 

(mm) 
w 

(mm) 
h/s 

Es 
(GPa) 

σY_s 

(MPa) 

Ep 

(GPa) 

σY_p 

(MPa) 

UCSg 

(MPa) 
vg vs 

Pmin 
(kN) 

f env 
Pmax/ 
Pstatic 

N 

Baba [4] 2018 114.3 7.2 60.0 9.50 90.0 22.50 2.5 0.0625 210 355.0 210 355.0 140.0 0.20 0.30 0.00 5.00 1 0.50 37279 

Raba [4] 2018 114.3 7.2 60.0 9.50 90.0 22.50 2.5 0.0625 210 355.0 210 355.0 140.0 0.20 0.30 0.00 1.00 1 0.50 95624 

Raba [4] 2018 114.3 7.2 60.0 9.50 90.0 22.50 2.5 0.0625 210 355.0 210 355.0 140.0 0.20 0.30 0.00 5.00 1 0.20 1118255 

Raba [4] 2018 114.3 7.2 60.0 9.50 90.0 22.50 2.5 0.0625 210 355.0 210 355.0 140.0 0.20 0.30 0.00 1.00 1 0.20 1325875 

Raba [4] 2018 177.8 7.2 60.0 9.50 90.0 54.25 2.5 0.0625 210 355.0 210 355.0 90.0 0.18 0.30 0.00 5.00 1 0.50 23068 

Raba [4] 2018 177.8 7.2 60.0 9.50 90.0 54.25 2.5 0.0625 210 355.0 210 355.0 140.0 0.20 0.30 0.00 5.00 1 0.50 5180 

Boswell et al. [6] 1986 366.0 5.0 324.0 10.00 325.0 16.00 3.0 0.0240 200 240.0 200 240.0 84.7 0.20 0.30 -400.00 0.75 0 0.43 12 

Boswell et al. [6] 1986 366.0 5.0 324.0 10.00 325.0 16.00 3.0 0.0240 200 240.0 200 240.0 87.1 0.20 0.30 -300.00 0.75 0 0.32 19 

Boswell et al. [6] 1986 366.0 5.0 324.0 10.00 325.0 16.00 3.0 0.0240 200 240.0 200 240.0 87.7 0.20 0.30 -500.00 0.75 0 0.53 19 

Boswell et al. [6] 1986 366.0 5.0 324.0 10.00 325.0 16.00 3.0 0.0240 200 240.0 200 240.0 94.5 0.20 0.30 -275.00 0.75 0 0.28 1035 

Boswell et al. [6] 1986 366.0 5.0 324.0 10.00 325.0 16.00 3.0 0.0240 200 240.0 200 240.0 93.6 0.20 0.30 -250.00 0.75 0 0.25 4205 

Boswell et al. [6] 1986 366.0 5.0 324.0 10.00 325.0 16.00 3.0 0.0240 200 240.0 200 240.0 75.5 0.20 0.30 -302.00 0.75 0 0.35 1026 

Lee et al. [19] 2021 267.4 6.0 190.7 6.00 760.0 32.35 8.0 0.0667 207 322.4 179 410.0 125.0 0.20 0.30 0.00 0.12 0 0.74 4800 

Lee et al. [19] 2021 267.4 6.0 190.7 6.00 760.0 32.35 8.0 0.0500 207 322.4 179 410.0 125.0 0.20 0.30 0.00 0.12 0 0.58 56300 

Lee et al. [19] 2021 267.4 6.0 190.7 6.00 760.0 32.35 8.0 0.0500 207 322.4 179 410.0 125.0 0.20 0.30 0.00 0.12 0 0.83 175 

Borgelt et al. [20] 2024 320.0 14.0 219.0 20.00 402.5 39.00 6.0 0.0500 210 355.0 210 355.0 138.9 0.20 0.30 0.00 2.00 1 0.25 228509 

Borgelt et al. [20] 2024 320.0 14.0 219.0 20.00 402.5 39.00 6.0 0.0500 210 355.0 210 355.0 138.7 0.20 0.30 0.00 2.00 1 0.22 238088 

Borgelt et al. [20] 2024 320.0 14.0 219.0 20.00 402.5 39.00 6.0 0.0500 210 355.0 210 355.0 142.4 0.20 0.30 0.00 2.00 1 0.19 681270 

Borgelt et al. [20] 2024 320.0 14.0 219.0 20.00 402.5 39.00 6.0 0.0500 210 355.0 210 355.0 143.3 0.20 0.30 0.00 2.00 1 0.20 232550 

Borgelt et al. [20] 2024 320.0 14.0 219.0 20.00 402.5 39.00 6.0 0.0500 210 355.0 210 355.0 119.3 0.20 0.30 0.00 2.00 1 0.23 489390 

Borgelt et al. [20] 2024 320.0 14.0 219.0 20.00 402.5 39.00 6.0 0.0500 210 355.0 210 355.0 128.3 0.20 0.30 0.00 2.00 1 0.20 567442 
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Table A.1: (continued) 

Source Year 
Ds 

(mm) 
ts 

(mm) 

Dp 

(mm) 

tp 

(mm) 

Lg 

(mm) 

tg 

(mm) 
w 

(mm) 
h/s 

Es 
(GPa) 

σY_s 

(MPa) 

Ep 

(GPa) 

σY_p 

(MPa) 

UCSg 

(MPa) 
vg vs 

Pmin 
(kN) 

f env 
Pmax/ 
Pstatic 

N 

Borgelt et al. [20] 2024 320.0 14.0 219.0 20.00 402.5 39.00 6.0 0.0500 210 355.0 210 355.0 134.7 0.20 0.30 0.00 2.00 1 0.27 295740 

Borgelt et al. [20] 2024 320.0 14.0 219.0 20.00 402.5 39.00 6.0 0.0500 210 355.0 210 355.0 138.4 0.20 0.30 0.00 2.00 1 0.28 233970 

Borgelt et al. [20] 2024 320.0 14.0 219.0 20.00 402.5 39.00 6.0 0.0500 210 355.0 210 355.0 116.3 0.20 0.30 0.00 2.00 1 0.31 109500 

Borgelt et al. [20] 2024 320.0 14.0 219.0 20.00 402.5 39.00 6.0 0.0500 210 355.0 210 355.0 138.8 0.20 0.30 0.00 2.00 1 0.23 355980 

Borgelt et al. [20] 2024 320.0 14.0 219.0 20.00 402.5 39.00 6.0 0.0500 210 355.0 210 355.0 146.7 0.20 0.30 0.00 2.00 1 0.30 205994 

Borgelt et al. [20] 2024 320.0 14.0 219.0 20.00 402.5 39.00 6.0 0.0500 210 355.0 210 355.0 142.1 0.20 0.30 0.00 2.00 1 0.25 311680 

Borgelt et al. [20] 2024 320.0 14.0 219.0 20.00 402.5 39.00 6.0 0.0500 210 355.0 210 355.0 140.0 0.20 0.30 0.00 2.00 1 0.25 370753 

Borgelt et al. [20] 2024 320.0 14.0 219.0 20.00 402.5 39.00 6.0 0.0500 210 355.0 210 355.0 140.0 0.20 0.30 0.00 2.00 1 0.38 58137 

Borgelt et al. [20] 2024 320.0 14.0 219.0 20.00 402.5 39.00 6.0 0.0500 210 355.0 210 355.0 140.0 0.20 0.30 0.00 2.00 1 0.34 63681 

Borgelt et al. [20] 2024 320.0 14.0 219.0 20.00 402.5 39.00 6.0 0.0500 210 355.0 210 355.0 140.0 0.20 0.30 0.00 2.00 1 0.44 28661 

Borgelt et al. [20] 2024 320.0 14.0 219.0 20.00 402.5 39.00 6.0 0.0500 210 355.0 210 355.0 140.0 0.20 0.30 0.00 2.00 1 0.41 44442 

Schaumann et al. [44] 2015 144.3 8.3 60.0 8.25 90.0 22.50 2.5 0.0556 210 355.0 210 355.0 90.0 0.18 0.30 0.00 0.30 1 0.50 493120 

Schaumann et al. [44] 2015 144.3 8.3 60.0 8.25 90.0 22.50 2.5 0.0556 210 355.0 210 355.0 90.0 0.18 0.30 0.00 1.00 1 0.50 94231 

Schaumann et al. [44] 2015 144.3 8.3 60.0 8.25 90.0 22.50 2.5 0.0556 210 355.0 210 355.0 140.0 0.20 0.30 0.00 2.00 1 0.50 65325 

Schaumann et al. [44] 2015 144.3 8.3 60.0 8.25 90.0 22.50 2.5 0.0556 210 355.0 210 355.0 90.0 0.18 0.30 0.00 2.00 1 0.50 173238 

Schaumann et al. [44] 2015 144.3 8.3 60.0 8.25 90.0 22.50 2.5 0.0556 210 355.0 210 355.0 90.0 0.18 0.30 0.00 5.00 1 0.50 48266 

Schaumann et al. [44] 2015 144.3 8.3 60.0 8.25 90.0 22.50 2.5 0.0556 210 355.0 210 355.0 90.0 0.18 0.30 0.00 10.00 1 0.50 36719 

Schaumann et al. [45] 2015 144.3 8.3 60.0 8.25 90.0 22.50 2.5 0.0556 210 355.0 210 355.0 140.0 0.20 0.30 0.00 1.00 1 0.50 91716 

Schaumann et al. [45] 2015 144.3 8.3 60.0 8.25 90.0 22.50 2.5 0.0556 210 355.0 210 355.0 140.0 0.20 0.30 0.00 5.00 1 0.50 41789 

Ingebrigtsen et al. [46] 1990 406.0 12.6 353.8 13.70 714.0 13.50 4.4 0.0065 200 240.0 200 240.0 40.1 0.20 0.30 94.24 1.00 0 0.85 345699 

Ingebrigtsen et al. [46] 1990 406.0 12.8 357.0 13.30 714.0 11.70 4.4 0.0065 200 240.0 200 240.0 42.9 0.20 0.30 24.74 1.00 0 0.93 3950 
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Table A.1: (continued) 

Source Year 
Ds 

(mm) 
ts 

(mm) 

Dp 

(mm) 

tp 

(mm) 

Lg 

(mm) 

tg 

(mm) 
w 

(mm) 
h/s 

Es 
(GPa) 

σY_s 

(MPa) 

Ep 

(GPa) 

σY_p 

(MPa) 

UCSg 

(MPa) 
vg vs 

Pmin 
(kN) 

f env 
Pmax/ 
Pstatic 

N 

Ingebrigtsen et al. [46] 1990 406.5 12.8 354.0 13.90 714.0 13.45 4.2 0.0062 200 240.0 200 240.0 44.1 0.20 0.30 50.34 1.00 0 0.83 56 

Ingebrigtsen et al. [46] 1990 407.3 13.3 354.3 13.00 714.0 13.20 4.5 0.0066 200 240.0 200 240.0 43.8 0.20 0.30 -636.25 1.00 0 0.74 79 

Ingebrigtsen et al. [46] 1990 407.5 13.5 354.5 12.80 714.0 13.00 4.5 0.0066 200 240.0 200 240.0 43.1 0.20 0.30 -651.30 1.00 0 0.77 63 

Ingebrigtsen et al. [46] 1990 406.5 12.7 355.7 13.00 714.0 12.70 4.4 0.0065 200 240.0 200 240.0 43.4 0.20 0.30 -682.02 1.00 0 0.80 96 

Ingebrigtsen et al. [46] 1990 405.5 13.6 355.5 12.50 714.0 11.40 4.5 0.0066 200 240.0 200 240.0 46.1 0.20 0.30 -1151.97 1.00 0 0.85 250 

Ingebrigtsen et al. [46] 1990 406.0 13.5 356.0 13.80 714.0 11.50 4.6 0.0068 200 240.0 200 240.0 38.5 0.20 0.30 -1126.02 1.00 0 0.96 250 

Ingebrigtsen et al. [46] 1990 406.8 13.4 354.8 14.10 714.0 12.60 3.8 0.0056 200 240.0 200 240.0 42.3 0.20 0.30 -1222.98 1.00 0 0.83 96 

Ingebrigtsen et al. [46] 1990 409.1 12.9 356.1 13.40 714.0 13.60 4.5 0.0066 200 240.0 200 240.0 45.9 0.20 0.30 709.29 1.00 0 0.89 1050 

Ingebrigtsen et al. [46] 1990 408.7 13.4 356.3 14.00 714.0 12.80 4.5 0.0066 200 240.0 200 240.0 45.8 0.20 0.30 -1842.45 1.00 0 0.73 20 

Ingebrigtsen et al. [46] 1990 409.0 13.2 357.7 13.00 714.0 12.45 4.5 0.0066 200 240.0 200 240.0 46.6 0.20 0.30 -1992.72 1.00 0 0.76 5 

Ingebrigtsen et al. [46] 1990 408.8 13.2 356.9 12.40 714.0 12.75 4.5 0.0066 200 240.0 200 240.0 46.9 0.20 0.30 -1704.30 1.00 0 0.65 12 
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