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Abstract

As a critical component of an offshore wind turbine foundation, grouted connections are
susceptible to fatigue failure under long-term loading conditions, which makes the
assessment of their fatigue behaviour essential for the overall structural integrity and
maintenance. Compared to costly experimental characterization and computationally
expensive numerical modelling, there is a high demand for developing a fast, efficient
and accurate surrogate model to predict fatigue life. This paper develops a novel hybrid
Physics-Informed Neural Network (PINN) model that integrates both simplified physical
constraints and hidden physical laws to predict the fatigue life of axially loaded grouted
connections, where the physical knowledge is the relationship between fatigue life and
fatigue-related parameters. The results show that the developed hybrid PINN model
achieves superior prediction accuracy compared to the current codes of practice, the
conventional Deep Neural Network (DNN) model, the PINN model integrating simplified
physical constraints (S-PINN), and the PINN model integrating hidden physical laws (H-
PINN). To enhance the interpretability of the model, Shapley Additive Explanations
(SHAP) analysis and physical consistency analysis are conducted to assess the
contribution of each feature to the fatigue life and to investigate the distribution of
predictions with respect to physical consistency. It’s found that the new hybrid PINN
model produces predictions that exhibit a higher degree of physical consistency than the

purely data-driven DNN model, demonstrating the reliability and robustness of the model.



1  Keywords: Machine learning; Physics-informed neural network; Grouted connections;

2 Fatigue life; Model interpretability.
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1. Introduction

Grouted connections have been widely used in offshore wind turbines construction to
connect the upper structure to the foundation, as shown in the monopiles, tripod structures,
and jacket structures (Fig. 1) [1-4]. The high-strength grout between steel tubes at the
connections can effectively resist the cyclic loads caused by the marine environment.
However, the long-term exposure to environmental loading of winds, waves, and tides
makes grouted connections susceptible to issues related to fatigue crack propagation and
marine-induced erosion. This study focuses on the prediction of the fatigue life of axially
loaded grouted connections, providing essential insights into structural safety and

operational reliability.

The fatigue performance of grouted connections has been extensively investigated
through both experimental tests and Finite Element Analysis (FEA). A key early
contribution was made by Billington et al. [5] in 1980, who pioneered the use of tension-
compression cyclic loading tests to establish a logarithmic linear relationship between the
stress range and the fatigue life. Boswell et al. [6] further investigated the fatigue
performance of grouted connections with shear keys through a series of fatigue tests under
fully reversed cyclic loading conditions and concluded that higher strength grout
demonstrated inferior fatigue performance than lower strength grout. In engineering
applications, over the last few decades, the compressive strength of grouting materials

has improved from 10-80 MPa to 140-170 MPa [7-10], with a strength up to 210 MPa
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being employed in underwater repair scenarios [9-10]. Despite these advancements, the
criteria for selecting appropriate grout strength in engineering applications have not been
clarified [4], and the influence of other key parameters, such as connection details and

loading conditions, on fatigue performance remains insufficiently understood.

To address these limitations, Chen et al. [11] tested five cylindrical grouted connections
with shear keys under a constant range of cyclic bending moments and found that the
specimens that could endure 2 million load cycles without significant loss of bending
capacity exhibited a reduced fatigue life of 1.28 million cycles due to the welding quality
of the steel structures. Schaumann et al. [12] conducted nonlinear finite element analysis
on local degradation and vertical misalignments of grouted connections and demonstrated
that highly flexible structures could induce grout cracking and relative sliding at the
interface, which resulted in abrasion and wear, thereby reducing fatigue life. Serensen et
al. [13] and Schaumann et al. [14] studied the fatigue performance of grouted connections
in both dry and wet environments. The results showed that the interface slippage and
grout degradation in the submerged environment accelerated the structural performance
deterioration. The wear rate can be 2-18 times higher than that of grouted connections in
the dry environment [15]. Johansen et al. [16] investigated the cyclic capacity of axially
loaded grouted connections and found that the cyclic capacity was significantly lower
than the static strength, and that the axial load level was a key factor influencing the
fatigue performance of the structure. The design codes DNV-ST-0126 [17] and ISO 19902

[18] provide three-segment and single-segment logarithmic S-N curves, respectively,
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under pulsating and alternating loading conditions. Although the influence of the fatigue
limit is not considered, these codes offer essential guidance for the fatigue design of

grouted connections.

It may be concluded that previous tests in the literature were conducted as independent
evaluations, with limited experimental data and large variations in choosing design
parameters [19-20]. However, carrying out full-scale experiments are costly, time-
consuming and it is difficult to simulate realistic environmental and loading conditions.
Empirical formulas and FEA are unable to fully account for the nonlinear behaviour of
the structures under complex loading conditions [21-22]. Given these limitations,
machine learning approaches offer promising alternatives for fatigue performance

evaluation, leveraging existing datasets from experimental and numerical sources.

Machine learning technology has demonstrated strong capability in extracting nonlinear
relationships between input features and output features across different subject domains
[23-25]. Among these applications, fatigue prediction has emerged as a promising area of
research. Liu et al. [26] proposed a modified parameter-optimized support vector machine
(SVM) model to predict the fatigue life of vibration isolation rubbers, which
outperformed the back propagation neural network (BPNN) regression model with high
efficiency and greater accuracy. Wang et al. [27] developed a novel machine learning
approach by combining the Gray Wolf Optimization (GWO) algorithm with the XGBoost
model for the fatigue life prediction of high-strength steel wires, and demonstrated the

model’s generalization capability on wire specifications that are not present in the training
5



10

11

12

13

14

15

16

17

18

19

20

21

set. Xiang et al. [28] investigated the fatigue property of natural rubber composites
through the BPNN model and conducted sensitivity analysis to assess the varying degrees
of influence of input features on the fatigue life. Considering the history-dependent
phenomenon in the fatigue of materials, Jian et al. [29] established a novel Double-layer
Bidirectional Long Short-Term Memory (BILSTM) neural network model, which
integrates both transfer learning and attention mechanism, to predict the fatigue life of
thin plate structures made of carbon fibre reinforced polymers, and the model achieved
the best performance compared to the Long Short-Term Memory (LSTM) and LSTM
with transfer learning models. Although machine learning methods are widely applied,
they require large amounts of data for effective training and to prevent overfitting due to
their purely data-driven nature [30-31]. Furthermore, such models make predictions based
on a black-box mechanism with the absence of physical explanation, which may lead to

physically inconsistent results [32].

PINN are advanced predictive models that incorporate physical laws with data-driven
approaches [33-34]. By incorporating physical constraints as regularization terms into the
loss function, PINN models have proven to be efficient in addressing key challenges in
fatigue life prediction, including data scarcity and high data disparity [35-37]. Li et al.
[38] reviewed the developments of physics-informed data-driven prediction methods for
the Remaining Useful Life (RUL), which includes physical model and data fusion
methods, stochastic degradation model based methods, and physics-informed machine

learning based methods. The results showed that the physics-informed machine learning

6
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based methods achieved the best performance in several benchmark case studies,
including the bridge deck rebar corrosion datasets, the Commercial Modular Aero-
Propulsion System Simulation (C-MAPSS) datasets, and the lithium battery aging
datasets. Liao et al. [39] proposed a path-dependent adaptive PINN model that integrated
a genetic algorithm and meta-learning framework to optimize model weights. The model
exhibited superior prediction performance for multiaxial fatigue life of stainless steel,
with most predictions falling within the 1.5-factor error bands. Zhai et al. [40] established
a coupled data/physics-driven simulation framework for accurate and efficient simulation
of a three-story frame/reinforcement concrete shear-wall building. This framework
leveraged the complementary strengths of both data-driven and physics-driven models
and achieved a computational speed-up of more than 70 times compared to the refined
Abaqus model. Dang et al. [36] studied the fatigue behaviour of laser-directed energy
deposition Ti-6AI-4V using a novel prediction framework based on the PINN algorithm.
The influence patterns of various fatigue-sensitive parameters were studied, showing the
effectiveness and interpretability of the proposed method. Dong et al. [41] introduced a
fracture mechanics-based PINN for the prediction of multi-defect materials. Owing to the
incorporation of physical knowledge, a coefficient of determination exceeding 0.9 has
been achieved. Hao et al. [42] developed an innovative damage physics-informed neural
network for multi-mode fatigue failure assessment of Ni-based superalloys using pure-
loading datasets, achieving better predictive performance than purely data-driven and

physics-based models. Baktheer et al. [43] proposed a physics-based machine learning
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framework to predict the fatigue lifetime of high-strength concrete under non-uniform
loading scenarios, offering more accurate predictions than data-driven neural network

with limited training data.

Despite the various applications of PINN models in fatigue prediction scenarios, their use
in grouted connections remains limited due to the complex physical mechanisms and the
lack of publicly available datasets. To address this research gap, a novel hybrid PINN
model, which integrates both simplified physical constraints and hidden physical laws
that relate fatigue life to fatigue-related parameters, is proposed in this paper to predict
the fatigue life of axially loaded grouted connections. In addition, this work conducts
SHAP analysis and physical consistency analysis to interpret the developed hybrid PINN
model. To support the training and evaluation of the proposed model, a fatigue dataset is
constructed using the data from the open literature, subjected to several data preparation
processes, including Pearson correlation coefficient analysis, stratified random splitting,

and data normalization.

2. Dataset establishment of fatigue test on grouted connections

2.1. Fatigue test data of grouted connections

The configuration of the grouted connection is shown in Fig. 2, which consists of two
cylindrical steel tubes of different diameters. The annular gap between the tubes is filled
with a grout material. As part of the composite design, ring-shaped shear keys are installed

along the opposing steel surfaces to enhance interfacial shear strength. During service,
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the fatigue performance of this structure is influenced by multiple factors, including
structural geometry, material properties, and loading conditions. To develop an effective
fatigue life prediction model for axially loaded grouted connections, a dataset comprising
70 samples is established based on the open literature [3,4,6,19,20,44,45,46]. The
established dataset includes 19 input features and the target output of fatigue life. Details
of each sample are listed in Table A.1 in the Appendix. The specific input features are as

follows:

(1) Structural geometry: The diameter of the sleeve (Ds); the thickness of the sleeve (t5);
the diameter of the pile (Dp); the thickness of the pile (£p); the length of the grout (Lg);
the thickness of the grout (tz); the width of the shear key (w); and the height-to-spacing

ratio of the shear key (h/s).

(2) Material properties: The elastic modulus of the sleeve (Ej); the yield strength of the
sleeve (ay s); the elastic modulus of the pile (E}); the yield strength of the pile (ay p); the
ultimate compressive strength of the grout (UCSg); the Poisson’s ratio of the grout (vg);

and the Poisson’s ratio of the steel (vs).

(3) Loading conditions: The minimum load (P, ); the loading frequency (f); the loading

environment (env); and the ratio of the maximum load to the static interfacial shear

strength (Pax/Pstatic)-

These features are selected to represent the comprehensive key variables affecting fatigue

life. Among the input features, the “Loading environment” specifies whether the grouted



connection is placed above or under water, with 0 representing an above-water condition
and 1 representing an underwater condition. The inclusion of this feature demonstrates
the model's applicability across different operational scenarios. It should be noted that as
the “loading environment” becomes more finely categorized and the dataset is further

enriched, one-hot encoding may provide a more suitable and expressive representation.

Grouted

Grouted i
connection B cction

dation piles

Grouted connection  Grouted connection  Grouted connection
for mono-pile for tripod structure  for jacket structure

Fig. 1. Grouted connections in offshore wind turbines support structures.

10
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Fig. 2. Configuration of grouted connections

2.2. Dataset preprocessing

Before inputting the dataset into the neural network, the preprocessing steps are applied,
including correlation analysis to avoid multicollinearity among input features and
improve model accuracy; reasonable dataset partitioning to enable effective model
evaluation and reduce the risk of overfitting; and normalization to accelerate training

convergence.

The Pearson correlation coefficient is commonly used in statistics to measure the linear

relationship between two variables, x and y, and it can be calculated by:

L cov(x,y)
\/mr(x)-var(y) M

where var(x) and var(y) are the variances of variables x and y, respectively, and cov(x, y)

is their covariance. The value of 7 ranges from -1 to 1. If |r| > 0.7, it indicates a strong
11



1 linear relationship between x and y. If |r| < 0.2, the relationship is considered weak, and
2 any value in between is considered moderate. In this study, the correlations between 18
3 input features are calculated, since the feature, v, is constant throughout the dataset and

4  thus excluded from the correlation analysis. The corresponding heatmap is shown in Fig.
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Fig. 3. Heatmap of Pearson correlation coefficients for input features.
6  After removing the redundant input features exhibiting high correlation (|r| > 0.7) with

7  the remaining features in the dataset, the number of input features is reduced to 8, which
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are tg, h/s, Ep, Vs, Pmin, f, env, and Pyax/Pstatic- Since Ep and vs remain nearly
constant over the data, they are removed from the model to focus on the contribution of
more informative features. Therefore, the constructed dataset comprises 6 input features
and 1 output feature. It can be seen that the incorporation of the dimensionless parameters
among the input features h/s and P a.x/Pstatic provides physically meaningful and
scale-independent descriptors for the geometric and loading characteristics of grouted
connections. These descriptors make the dataset representative of a broad range of

configurations and thereby enhance the model’s generalization capability.

The dataset is then split into a 60%-40% train-test ratio, which is used for small datasets
to retain enough data for reliable evaluation. Since the fatigue life is highly dispersed and
is widely varied ranging from a few to several million cycles, a stratified random splitting
strategy is adopted to ensure that samples are evenly distributed across the fatigue life
range space in both the training and testing sets: First, the data are sorted in ascending
order of the fatigue life. Second, each 5 consecutive samples are formed into a group. 3
samples are randomly assigned to the training set and 2 to the testing set. Fig. 4 shows
the distribution of the training and testing samples across fatigue life. It can be seen that
both datasets are evenly spread across the range from 10° to 107. After sorting, the
splitting bias can be reduced and the reliability of the predictive model can be enhanced.
In addition, the training set is further divided into 5 folds using a similar stratified strategy

for five-fold cross-validation and hyperparameter tuning.

13
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Fig. 4. Distribution of samples across fatigue life for (a) training samples and (b)
testing samples.
Finally, to account for the varying scales of the input features, z-score normalization is
applied to standardize the data. For the output fatigue life, a log-transformation is used to

reduce the disparity, making the data more suitable for subsequent prediction.

3. Machine Learning Methodology

3.1. Development of DNN model

Artificial Neural Network (ANN), which is a biologically inspired computational network,
i1s a robust and promising machine learning approach in extracting nonlinear hidden
relationship between input and output features and has therefore found wide applications
in modeling the mechanical behaviour of materials and structures [47-49]. When a neural
network consists of more than 3 layers, it is considered a DNN. In this study, a back-
propagation DNN regression model is constructed to predict fatigue life of axially loaded
grouted connections (as shown in Fig. 5), in which the mean squared error between the
logarithms of the true and predicted fatigue life (Egs. (2)) is adopted as the loss function:

n 2

Loss, = lz (Ig N, ~1g i) 2)

n i

14
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where n is the number of samples in a batch, N;,,. is the true value of experimental

fatigue life and Npyeq is the predicted fatigue life.

A grid search method with five-fold cross-validation is employed in the data training
process to determine the optimal network structure and parameters. As demonstrated in
Fig. 5, 5 hidden layers of 128 neurons each are used to map the 6-dimensional input to a
single fatigue life output. The ‘Tanh’ is used as the activation function and the DNN is
trained using the ADAM-Optimizer with a learning rate of 0.001 for 570 epochs and a

batch size of 3.

Hidden layers (each with 128 neurons)
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Fig. 5. Architecture of the proposed DNN model.

3.2. Development of PINN model

PINN is an innovative approach combining deep learning with physical constraints to
solve partial differential equations. By penalizing the output that violates physical laws,
the solution space is restricted to a manageable size and strong generalization capability

can be achieved using scarce training data. Inspired by the observed correlation between

15
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the load level and fatigue life (as shown in Fig. 6), where the load level is represented by
Prax/Pstatic  1n the input features and the fatigue life by N in the output, this work
develops two distinct types of PINN models that incorporate either simplified physical
constraints (S-PINN) or hidden physical laws (H-PINN) as regularization terms in the
loss function. Furthermore, a hybrid PINN model integrating both types of physical

constraints is also investigated.

—— DNV-ST-0126(2021),pulsating
—— DNV-ST-0126(2021),alternating
08 L DIN EN SO 19902(2021)

0.6 -

Load level P, ./P.i.

02

0
10° 10t 10> 10° 10* 10° 10° 10" 10%
Fatigue life N

Fig. 6. S-N curves of DNV-ST-0126 [17] and DIN EN ISO 19902[18].
From Fig. 6, it’s evident that the fatigue life decreases with increasing load level, and the
decrease becomes more rapid at higher load levels. This trend indicates that the first-order
derivative of fatigue life with respect to load level is negative, and the second-order

derivative is positive, which can be expressed as:

ON
— <0
a (Pmax / static ) (3)
o’N
>0
82 (Pmax /f:tatic) (4)
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It should be noted that the fatigue life is log-transformed, and the load level is
standardized using z-score normalization during data preprocessing. Accordingly, the
corresponding terms in Egs. (3)-(4) should be adjusted, and the loss function of the PINN

model incorporating simplified physical constraints can be written as:

Loss, = L0SS , + @LOSS 0 (5)

total

Olg N,
a(Z(})max /I)static ))l

1 n
LoSS yyygical = - Z max| 0,
i=1

o ©)
o’ lg Nprcd

62 (Z(Pmax /])static ))l

max| 0,—

where Z(Pnax/Pstatic) represents the z-score normalization of the load level. w is the
weight coefficient of physical loss. When w = 0, the PINN degenerates into the
corresponding data-driven DNN model. The max operator is employed to penalize
predictions deviated from the physical constraints, with the penalty increasing as the

deviation distance increases.

The integration of hidden physical laws into the neural network is based on the Basquin
relation, which describes the correlation between load level and fatigue life (as shown in

Fig. 6), and can be expressed as:

Ig(P. /P

max static ) = A + B lg N (7)
where 4 and B are implicit constants that depend on the structural geometry, material

properties and loading conditions of the grouted connections. In this study, an additional

DNN model is employed to regress 4 and B based on the 6-dimensional input features of
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each type of grouted connection. The regressed 4 and B are incorporated into the Basquin
equation, forming the hidden physical constraint embedded in the loss function of the

PINN model, which is defined as:

L 0ss§ total — L OSSmse + 7/ LOSShidden physical (8)

1< i i i i
Losshidden physical = ; Z (lg (Pmax / f:tatic ) - A - B lg Npred ) (9)

i=1
where y is the weight coefficient of hidden physical loss. As ¥ increases, the model is

increasingly penalized for violating the underlying physical law.

Figs. (7)-(9) illustrate the constructed S-PINN, H-PINN and hybrid PINN models,
respectively. The loss functions of the S-PINN and H-PINN models are derived from Eqgs.

(5), (6), (8) and (9), whereas the loss function of the hybrid PINN model is expressed as:

L 0SS = L OSSmse + COL 0ss physical + 7/ L Osshidden physical ( 1 0)

total

where w is the weight coefficient of physical loss, and y is that of the hidden physical

loss.

In this work, the main structures of the three types of PINN models based on different
physical constraints remain consistent with the DNN model. In the training of PINN
models, data loss and physical loss converge at different rates. Inappropriate weight
setting may lead to a bias towards a certain loss function or cause training instability. To
select the benchmark weights for the physical loss and hidden physical loss, their
magnitudes are compared with that of the data loss. The weights are then set to ensure

that all losses are of comparable scale. For example, if the data loss is around 1, while the
18
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other loss is around 0.1, a weight coefficient of 10 is assigned to balance their
contributions. Based on this, a further grid search with five-fold cross-validation is
performed to fine-tune the benchmark weights and identify the optimal values. In this
paper, the weight coefficients are set to 0.5 for the physical loss and 0.1 for the hidden
physical loss across the three PINN models. The DNN used to regress the parameters, A4
and B, in the Basquin relation consists of 3 hidden layers of 128 neurons each, and ‘Tanh’
is used as the activation function. For more complex models, more advanced
hyperparameter optimization strategies, such as random search, Bayesian optimization,
and evolutionary or population-based optimization algorithms, may offer greater potential

to reduce computational costs and accelerate model convergence.
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Fig. 7. Architecture of the proposed S-PINN model.
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Fig. 8. Architecture of the proposed H-PINN model.
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Fig. 9. Architecture of the proposed hybrid PINN model.

3.3. Model interpretation and evaluation

The SHAP method is widely applied to interpret machine learning models. In addition to
identifying the importance of each feature in the model’s prediction, SHAP analysis
enables a more profound exploration of the positive or negative contribution of each

feature [50]. In this work, the GradientSHAP algorithm is implemented to interpret the
20
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developed hybrid PINN model, and the importance and contribution of each feature to

the prediction of fatigue life are investigated.

The Mean Square Error (MSE) and the Coefficient of Determination (R?) are used as the

evaluation metrics to assess the accuracy of the model's prediction, which are defined as:

n 2

MSE:lZ(lgN;‘me ~1gN}) (11)

nio

n

> (1gN, ~lgNi, )
R =1-—= (12)

n

> (lgN, ~1gN, )

i=1

where 1gNayerage 1 the average of 1gNyye. In evaluating model performance, a larger
MSE indicates that the data are widely dispersed around the mean, while a smaller R?

indicates a poor fitting ability of the model.

4. Fatigue life predictions and discussion

4.1. Prediction results using different machine learning models

In this work, the input features to the machine learning models for the grouted connections
are reduced to 8 through Pearson correlation coefficient analysis by eliminating redundant
features that exhibit high correlation with others in the dataset, which helps reduce
multicollinearity while remaining consistent with prior physical knowledge. In this
process, the t; and h/s, which govern the load transfer path and local shear failure
mechanism, are retained as stress concentration regions are more influential in

determining fatigue behaviour than global geometric dimensions. The Es, Ep, vg, and
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vs are removed due to their limited variation within the dataset, as they are associated
with standardized materials commonly used in engineering practice. For the removal of
Oys, Oyp, and UCSg, the yield strengths primarily affect the ultimate load-bearing
capacity of grouted connections, rather than contributing continuously to fatigue
performance [S1]. The UCS; shows a similar correlation with fatigue life compared to
the h/s, with Pearson correlation coefficients of 0.55 and 0.57, respectively. Therefore,

the UCSg is excluded to avoid redundancy.

The network hyperparameters are critical for the convergence and reliability of predictive
models. Considering the limited fatigue dataset for axially loaded grouted connections,
the five-fold cross-validation process could exhibit instability, consequently
compromising the reliability of the model training. To demonstrate the effectiveness of
the selected hyperparameters, the prediction performance of the DNN model with
different hidden layer neuron numbers is presented in Table 1, while the prediction
performance of the hybrid PINN model under various combinations of the weight
coefficients w and y is shown in Table 2. From the results, the models with the chosen
hyperparameters perform the best. In contrast, the DNN model with a hidden layer neuron
configuration of (64,128,256,128,64) yields the poorest performance, with an MSE of
0.6463 and an R? of 0.7350. For the hybrid PINN model, the combination of w = 0.5
and y = 0.3 leads to the lowest accuracy, resulting in an MSE of 0.7197 and an R? of
0.7048. These results further validate the robustness of the selected hyperparameter

settings.

22



Table 1: Prediction performance of the DNN model under different numbers of hidden

layer neurons.

Hidden layer neurons MSE R?

(64,64,64,64,64) 0.5250 0.7847
(128,128,128,128,128) 0.5013 0.7944
(256,256,256,256,256) 0.5837 0.7606
(64,128,256,128,64) 0.6463 0.7350
(256,256,128,128,64) 0.5275 0.7837
(128,128,64,64,32) 0.6093 0.7501

Table 2: Prediction performance of the hybrid PINN model under different

combinations of the weight coefficients.

Value of w Value of y MSE R’
Fixed at 0.5 0.05 0.2746 0.8874
0.1 0.2248 0.9078
0.15 0.3272 0.8658
0.2 0.4508 0.8151
0.25 0.5847 0.7602
0.3 0.7197 0.7048
0.35 Fixed at 0.1 0.2920 0.8802
0.4 0.3424 0.8596
0.45 0.3638 0.8508
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Fig. 10 shows the fatigue life prediction results for axially loaded grouted connections
using the design codes DNV-ST-0126, DIN EN ISO 19902, and the proposed DNN, S-
PINN, H-PINN, and hybrid PINN models. As shown in the results, the methodologies
adopted in both design codes are inadequate, with only a limited number of predictions
falling within the 3-factor error bands. Moreover, the applicability of the DIN EN ISO
19902 code is restricted when dealing with structures subjected to pulsating compression
loads, highlighting the necessity of developing new models, including machine learning-
based models for more accurate fatigue life prediction. Among the proposed models, the
hybrid PINN model, which incorporates both simplified physical constraints and hidden
physical laws as the regularization terms, demonstrates the best prediction performance.
Most of its predictions fall within the 3-factor error bands, except for 3 outliers
corresponding to the structures with low fatigue life. It can be seen that the predictions of
the three structures from other models fall also outside the 3-factor error bands, which
can be attributed to the scarcity of training data in the low-fatigue-life range. While the
hybrid PINN has reduced deviation, more training data in this range are required to

improve the model.

In comparison, the predicted fatigue life of the S-PINN model has 5 points outside the 3-

factor error bands, showing better accuracy than the purely data-driven DNN model,
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which has 7 such predictions. In contrast, the H-PINN model exhibits the greatest
dispersion, with 11 predictions falling outside the bands. These results indicate that
incorporating the first- and second-order derivatives of fatigue life with respect to load
level guides the model to converge in a more physically consistent direction. However,
the lack of explicit physical formulation limits the potential to further improve accuracy.
The poor predictive performance of the H-PINN model demonstrates that when explicit
physical equations contain implicit parameters, such as the constants 4 and B in the
Basquin relation which vary for different grouted connections, the use of such equations
as model constraints should be complemented with additional prior physical knowledge

to enhance model reliability.
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Fig. 10. Fatigue life prediction results of axially loaded grouted connections by (a)

DNV-ST-0126; (b) DIN EN ISO 19902; (c) DNN; (d) S-PINN; (e) H-PINN; (f)
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Hybrid PINN.

Furthermore, the prediction performance of the proposed models is assessed by utilizing
the evaluation parameters MSE and R?, which are calculated according to Eqgs. (11)-(12)
and is illustrated in Fig. 11. It can be evaluated that the hybrid PINN model achieves the
lowest MSE of 0.2248 and the highest R? of 0.9078, indicating that the integration of
simplified physical constraints and hidden physical laws significantly enhances the
model’s generalization capability. In contrast, the H-PINN model has the highest MSE of
0.5413 and the lowest R? of 0.7780, which performs worse than the conventional DNN
model. This further demonstrates that the effectiveness of a PINN model depends heavily
on the accuracy of the physical constraints, and inaccurate prior physical knowledge may
mislead the training process and limit the model’s representational capacity.
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Fig. 11. Prediction performance of different models: (a) MSE; (b) RZ.
Fig. 12 depicts the evolution of the loss functions among the proposed models during
training. It can be observed that the total loss for the H-PINN and hybrid PINN models is
higher than that of the DNN and S-PINN models, which are caused by the inclusion of
the Basquin relation as the hidden physical law in the loss function. Meanwhile, the DNN

model exhibits the most fluctuations at around 320 epochs. This behaviour mainly results
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from the increased sensitivity to noise and unstable optimization process due to the
absence of physical guidance. In contrast, the incorporation of simplified physical
constraints in the S-PINN model helps suppress such fluctuations. However, the use of
soft inequality constraints can lead to gradient discontinuities and a weakened gradient
signal, especially near the constraint boundaries, which results in the localized
instabilities at around 350 and 510 epochs. Compared to the DNN and S-PINN models,
the H-PINN and hybrid PINN models exhibit more stable training behaviour,
demonstrating the effectiveness of incorporating the hidden physical law. The hybrid
PINN model, which simultaneously incorporates simplified physical constraints and
hidden physical laws as the regularization terms, achieves further improvements in

prediction accuracy.
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Fig. 12. The evolution of the loss functions among different prediction models.
To comprehensively understand the convergence and optimization behaviour of the

hybrid PINN model, the evolution of its loss components is presented in Fig. 13. At the
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beginning of training, the data loss decreases rapidly and subsequently stabilizes. The
occurrence of oscillations arises from the need to balance the data-driven loss with the
physics-based constraints during optimization. The physical loss quickly approaches zero,
indicating that the corresponding soft inequality constraints is easy to satisfy. In contrast,
the hidden physical loss remains within a stable range, and the regularization effect
introduced by the hidden physical constraint helps prevent the data loss from overfitting

to the limited training samples, thereby enhancing the generalization capability of the

hybrid PINN model.
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Fig. 13. The evolution of the loss components in the hybrid PINN model.
4.2. Interpretive analysis of the hybrid PINN model
The hybrid PINN model demonstrates excellent performance in predicting fatigue life of
axially loaded grouted connections. To study further the predictions of the model,
interpretive analysis is conducted on the test data using SHAP analysis and physical

consistency evaluation. Fig. 14 presents the SHAP summary plot illustrating the
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contributions of the selected features to the predicted fatigue life. In this plot, the SHAP
value represents the quantitative contribution of each feature to the model output, with
positive SHAP values indicating an increase in the predicted fatigue life, whereas
negative values indicate a decrease. The colour of the points reflects the feature values,
with blue corresponding to lower values and red to higher values. The features are ranked
from top to bottom according to their average absolute SHAP value, which represents
their overall importance in the model’s predictions. It can be observed that f and t,
contribute the least to the model’s predictions, with their SHAP values largely centered
around 0. However, higher values of these features could still have a directional influence
on the predictions. This may be attributed to the limited variation of these two features
within the dataset, which reduces their informational value and weakens their influence
on the decision-making process of the model. Their influence on the model’s output is

localized and occurs only when their values deviate substantially from the mean.

The contributions of the remaining features are analyzed and found to be consistent with
known fatigue mechanisms in grouted connections. For h/s, larger height-to-spacing
ratio of the shear key enhances mechanical interlocking, reduces interface slip, and delays
crack initiation at the shear-key tips. These effects slow down the accumulation of fatigue
damage, resulting in improved fatigue resistance. For the loading parameters, a higher
Phin reduces loading fluctuation and slows fatigue crack propagation, whereas a higher
Prax/Pstatic indicates a larger cyclic loading range, which accelerates fatigue failure

processes in grouted connections, such as grout cracking, grout crush, and interface slip,
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thereby leading to opposite influences on the fatigue behaviour. For env, a feature value
of 1 represents that the grouted connections are deployed underwater. In such conditions,
cyclic hydraulic pressure can cause grout erosion, promote early cracking, and increase
the relative slip at the interface, which together accelerate fatigue degradation and reduce

the fatigue life.
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Fig. 14. Results of SHAP analysis for the hybrid PINN model.
Fig. 15 shows the predicted first- and second-order derivatives of fatigue life with respect
to load level for both the DNN and hybrid PINN models. It is evident that due to the
incorporation of the physical constraints, the hybrid PINN model tends to produce
physically consistent predictions on the unseen data, which in turn enhances the reliability
of the model. In contrast, even though the purely data-driven DNN model is capable of
achieving acceptable prediction accuracy, it produces extreme outliers that significantly
violate physical constraints described in Egs. (3)-(4), which undermines the physical

robustness of the model and limits its generalization capability in unseen scenarios.
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Fig. 15. Physical consistency analysis of proposed DNN and hybrid PINN models: (a)
First-order derivative trend and (b) Second-order derivative trend of fatigue life with

respect to load level.

5. Conclusions

A novel hybrid PINN model is developed to predict the fatigue life of axially loaded
grouted connections. The model integrates both simplified physical constraints and
hidden physical laws, and is based on a dataset constructed from the open literature. To
further understand the mechanisms of the model, SHAP analysis and physical consistency
analysis are conducted for model interpretation. Based on the prediction results, the

following conclusions are made:

(1) Although the DNN model can achieve acceptable prediction accuracy in estimating
fatigue life of axially loaded grouted connections, it may produce predictions that severely
violate physical laws. The results demonstrate that the predictive performance of purely
data-driven models heavily depends on the distribution alignment between the training

and the testing datasets.
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(2) A novel hybrid PINN model incorporating both simplified physical constraints and
hidden physical laws is developed to predict the fatigue life of axially loaded grouted
connections. Guiding the learning process in a manner consistent with physical principles,
the hybrid PINN model achieves the best fatigue life prediction performance among the
DNN, S-PINN, and H-PINN models, with the lowest MSE of 0.2248 and the highest R?

0f 0.9078.

(3) The SHAP analysis identifies the height-to-spacing ratio of the shear key (h/s) and
the minimum load (Ppyj,) as the two most influential features affecting the fatigue
behaviour of axially loaded grouted connections, Furthermore, the physical consistency
analysis confirms that the hybrid PINN model can generate physically consistent
predictions on unseen data, demonstrating the model’s reliability and generalization

capability.

Based on the findings of this paper, the proposed model can be extended to a dynamic
prediction framework. As more data become available, the model can be updated through
a warm-start fine-tuning strategy, in which the previously trained network serves as the
initialization while the original architecture and physics-based loss components are
retained. Furthermore, further investigations could explore more accurate and detailed
fatigue prediction by incorporating different forms of physical constraints, as well as
different failure modes of grouted connections, such as crack failure of grout and steel,
into the model. In addition, conducting additional representative fatigue experiments will

be essential to further verify the extrapolation capability of the proposed model under
32
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previously unseen conditions.

The current work is limited to fatigue prediction based on macroscopic features.
Developing a cross-scale fatigue life prediction framework that integrates microscale
damage evolution, mesoscale interfacial response, and macroscale fatigue behaviour is
possible under the framework established in this paper and represents an important

direction for future research.
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Appendix

See Table A.1.

Table A.1: Fatigue test database for grouted connections

Source Year oot Dyt L ‘e W Eg ovs E, oy, UGS, Ve Vg Proin i Pinax! N
(mm) (mm) (mm) (mm) (mm) (mm) (mm) (GPa) (MPa) (GPa) (MPa) (MPa) (kN) Patic

Bechtel [3] 2016 813.0 20.0 406.4 25.00 2140.0 183.50 12.0 0.0600 210 423.0 210 360.0 140.0 0.20 0.30 -1000.00 2.00 0 0.25 5890
Bechtel [3] 2016 813.0 20.0 406.4 25.00 2140.0 183.50 12.0 0.0600 210 423.0 210 360.0 140.0 0.20 0.30 -2000.00 2.00 0 0.49 29
Bechtel [3] 2016 813.0 20.0 610.0 25.00 2140.0 81.50 12.0 0.0600 210 423.0 210 360.0 140.0 0.20 0.30 -1000.00 2.00 0 0.16 89100
Bechtel [3] 2016 813.0 20.0 610.0 25.00 2140.0 81.50 12.0 0.0600 210 423.0 210 360.0 140.0 0.20 0.30 -2000.00 2.00 0 0.33 602
Bechtel [3] 2016 813.0 20.0 610.0 25.00 2140.0 81.50 12.0 0.0600 210 423.0 210 360.0 140.0 0.20 0.30 -3000.00 2.00 0 0.49 30
Bechtel [3] 2016 813.0 20.0 406.4 25.00 2140.0 183.50 12.0 0.0600 210 423.0 210 360.0 90.0 0.18 0.30 -1000.00 2.00 0 0.27 3090
Bechtel [3] 2016 813.0 20.0 406.4 25.00 2140.0 183.50 12.0 0.0600 210 423.0 210 360.0 90.0 0.18 0.30 -2000.00 2.00 0 0.53 14
Bechtel [3] 2016 813.0 20.0 610.0 25.00 2140.0 81.50 12.0 0.0600 210 423.0 210 360.0 90.0 0.18 0.30 -1000.00 2.00 0 0.17 69183
Bechtel [3] 2016 813.0 20.0 610.0 25.00 2140.0 81.50 12.0 0.0600 210 423.0 210 360.0 90.0 0.18 0.30 -2000.00 2.00 0 0.34 457
Bechtel [3] 2016 813.0 20.0 610.0 25.00 2140.0 81.50 12.0 0.0600 210 423.0 210 360.0 90.0 0.18 0.30 -3000.00 2.00 0 0.51 20
Bechtel [3] 2016 813.0 20.0 406.4 25.00 2140.0 183.50 12.0 0.0600 210 423.0 210 360.0 90.0 0.18 0.30 -1000.00 2.00 1 0.25 95000
Raba [4] 2018 1143 7.2 60.0 9.50 90.0 22.50 2.5 0.0625 210 355.0 210 355.0 90.0 0.180.30 0.00 10.00 1 0.50 36686
Raba [4] 2018 1143 7.2 60.0 9.50 90.0 22.50 2.5 0.0625 210 355.0 210 355.0 90.0 0.180.30 0.00 5.00 1 0.50 58011
Raba [4] 2018 1143 7.2 60.0 9.50 90.0 22.50 2.5 0.0625 210 355.0 210 355.0 90.0 0.180.30 0.00 2.00 1 0.50 137243
Raba [4] 2018 1143 7.2 60.0 9.50 90.0 22.50 2.5 0.0625 210 355.0 210 355.0 90.0 0.180.30 0.00 1.00 1 0.50 87178
Raba [4] 2018 1143 7.2 60.0 9.50 90.0 22.50 2.5 0.0625 210 355.0 210 355.0 90.0 0.180.30 0.00 030 1 0.50 233262
Raba [4] 2018 1143 7.2 60.0 9.50 90.0 22.50 2.5 0.0625 210 355.0 210 355.0 90.0 0.180.30 0.00 5.00 1 0.20 1113506
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Table A.1: (continued)

Dy, t, D, L, ly w E, oys £E, oy, UCS, Prin P/
Source Year  om) (mm) (mm) (mm) (mm) (mm) (mm) (GPa) (MPa) (GPa) (MPa) (MPa) gy ¢ e N
Baba [4] 2018 1143 7.2 60.0 950 90.0 22.50 2.5 0.0625 210 355.0 210 355.0 140.0 020030 0.00 500 1 0.50 37279
Raba [4] 2018 1143 72 60.0 9.50 90.0 2250 2.5 0.0625 210 3550 210 355.0 140.0 0.200.30 0.00 1.00 1 050 95624
Raba [4] 2018 1143 72 60.0 9.50 90.0 2250 2.5 0.0625 210 355.0 210 355.0 140.0 0200.30 0.00 500 1 020 1118255
Raba [4] 2018 1143 7.2 60.0 9.50 90.0 22.50 2.5 0.0625 210 355.0 210 355.0 140.0 020030 0.00 1.00 1 020 1325875
Raba [4] 2018 177.8 72 60.0 9.50 90.0 5425 2.5 0.0625 210 3550 210 3550 90.0 0.180.30 0.00 500 1 0.50 23068
Raba [4] 2018 177.8 72 60.0 9.50 90.0 5425 2.5 0.0625 210 3550 210 355.0 140.0 0200.30 0.00 500 1 0.50 5180
Boswell ctal. [6] 1986 366.0 5.0 324.0 10.00 325.0 16.00 3.0 0.0240 200 240.0 200 240.0 84.7 0.20 030 -400.00 0.75 0 043 12
Boswell ctal. [6] 1986 366.0 5.0 324.0 10.00 325.0 1600 3.0 0.0240 200 240.0 200 240.0 87.1 0.20 030 -300.00 0.75 0 032 19
Boswell ctal. [6] 1986 366.0 5.0 324.0 10.00 325.0 1600 3.0 0.0240 200 240.0 200 240.0 87.7 0.20 030 -500.00 0.75 0 053 19
Boswell ctal. [6] 1986 366.0 5.0 324.0 10.00 325.0 16.00 3.0 0.0240 200 240.0 200 240.0 945 0.20 030 -275.00 0.75 0 028 1035
Boswell etal. [6] 1986 366.0 5.0 324.0 10.00 325.0 16.00 3.0 0.0240 200 240.0 200 240.0 93.6 0.20 030 -250.00 0.75 0 025 4205
Boswell ctal. [6] 1986 366.0 5.0 324.0 10.00 325.0 16.00 3.0 0.0240 200 240.0 200 240.0 75.5 0.200.30 -302.00 0.75 0 035 1026
Lecetal [19] 20212674 6.0 190.7 600 760.0 3235 8.0 0.0667 207 322.4 179 410.0 125.0 0.200.30 0.00 0.12 0 074 4800
Lecetal. [19] 20212674 6.0 190.7 6.00 760.0 32.35 8.0 0.0500 207 3224 179 410.0 125.0 0.200.30 0.00 0.2 0 058 56300
Lecctal. [19]  2021267.4 6.0 190.7 6.00 760.0 32.35 8.0 0.0500 207 3224 179 410.0 125.0 0.200.30 0.00 0.2 0 083 175
Borgelt ctal. [20] 2024 320.0 14.0 219.0 20.00 402.5 39.00 6.0 0.0500 210 355.0 210 355.0 138.9 020030 0.00 200 1 025 228509
Borgelt et al. [20] 2024 320.0 14.0 219.0 20.00 402.5 39.00 6.0 0.0500 210 355.0 210 355.0 138.7 020030 000 200 1 0.22 238088
Borgelt ctal. [20] 2024 320.0 14.0 219.0 20.00 402.5 39.00 6.0 0.0500 210 355.0 210 355.0 142.4 020030 000 200 1 0.19 681270
Borgelt ctal. [20] 2024 320.0 14.0 219.0 20.00 402.5 39.00 6.0 0.0500 210 355.0 210 355.0 1433 020030 000 200 1 020 232550
Borgelt et al. [20] 2024 320.0 14.0 219.0 20.00 402.5 39.00 6.0 0.0500 210 3550 210 355.0 1193 020030 000 200 1 0.23 489390
Borgelt ctal. [20] 2024 320.0 14.0 219.0 20.00 402.5 39.00 6.0 0.0500 210 355.0 210 355.0 1283 020030 000 200 1 020 567442
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Table A.1: (continued)

Source Year Dot Byt hy ‘e W Eg ovs E, oy, UCS, Ve Vg Prin [ env P N
(mm) (mm) (mm) (mm) (mm) (mm) (mm) (GPa) (MPa) (GPa) (MPa) (MPa) (kN) Pyiaiic
Borgelt et al. [20] 2024 320.0 14.0 219.0 20.00 402.5 39.00 6.0 0.0500 210 355.0 210 355.0 134.7 0.200.30 0.00 2.00 1 0.27 295740
Borgelt et al. [20] 2024 320.0 14.0 219.0 20.00 402.5 39.00 6.0 0.0500 210 355.0 210 355.0 138.4 0.200.30 0.00 2.00 1 0.28 233970
Borgelt et al. [20] 2024 320.0 14.0 219.0 20.00 402.5 39.00 6.0 0.0500 210 355.0 210 355.0 116.3 0.200.30 0.00 2.00 1 031 109500
Borgelt et al. [20] 2024 320.0 14.0 219.0 20.00 402.5 39.00 6.0 0.0500 210 355.0 210 355.0 138.8 0.200.30 0.00 2.00 1 0.23 355980
Borgelt et al. [20] 2024 320.0 14.0 219.0 20.00 402.5 39.00 6.0 0.0500 210 355.0 210 355.0 146.7 0.200.30 0.00 2.00 1 0.30 205994
Borgelt et al. [20] 2024 320.0 14.0 219.0 20.00 402.5 39.00 6.0 0.0500 210 355.0 210 355.0 142.1 0.200.30 0.00 2.00 1 0.25 311680
Borgelt et al. [20] 2024 320.0 14.0 219.0 20.00 402.5 39.00 6.0 0.0500 210 355.0 210 355.0 140.0 0.200.30 0.00 2.00 1 0.25 370753
Borgelt et al. [20] 2024 320.0 14.0 219.0 20.00 402.5 39.00 6.0 0.0500 210 355.0 210 355.0 140.0 0.200.30 0.00 2.00 1 0.38 58137
Borgelt et al. [20] 2024 320.0 14.0 219.0 20.00 402.5 39.00 6.0 0.0500 210 355.0 210 355.0 140.0 0.200.30 0.00 2.00 1 0.34 63681
Borgelt et al. [20] 2024 320.0 14.0 219.0 20.00 402.5 39.00 6.0 0.0500 210 355.0 210 355.0 140.0 0.200.30 0.00 2.00 1 0.44 28661
Borgelt et al. [20] 2024 320.0 14.0 219.0 20.00 402.5 39.00 6.0 0.0500 210 355.0 210 355.0 140.0 0.200.30 0.00 2.00 1 041 44442
Schaumann et al. [44] 2015 144.3 83 60.0 8.25 90.0 22.50 2.5 0.0556 210 355.0 210 355.0 90.0 0.180.30 0.00 030 1 0.50 493120
Schaumann et al. [44] 2015 144.3 8.3 60.0 8.25 90.0 22.50 2.5 0.0556 210 355.0 210 355.0 90.0 0.180.30 0.00 1.00 1 0.50 94231
Schaumann et al. [44] 2015 144.3 83 60.0 8.25 90.0 22.50 2.5 0.0556 210 355.0 210 355.0 140.0 0.200.30 0.00 2.00 1 0.50 65325
Schaumann et al. [44] 2015 144.3 83 60.0 8.25 90.0 22.50 2.5 0.0556 210 355.0 210 355.0 90.0 0.180.30 0.00 2.00 1 0.50 173238
Schaumann et al. [44] 2015 144.3 83 60.0 8.25 90.0 22.50 2.5 0.0556 210 355.0 210 355.0 90.0 0.180.30 0.00 5.00 1 0.50 48266
Schaumann et al. [44] 2015 144.3 83 60.0 8.25 90.0 22.50 2.5 0.0556 210 355.0 210 355.0 90.0 0.180.30 0.00 10.00 1 0.50 36719
Schaumann et al. [45] 2015 144.3 83 60.0 8.25 90.0 22.50 2.5 0.0556 210 355.0 210 355.0 140.0 0.200.30 0.00 1.00 1 0.50 91716
Schaumann et al. [45] 2015 144.3 83 60.0 8.25 90.0 22.50 2.5 0.0556 210 355.0 210 355.0 140.0 0.200.30 0.00 5.00 1 0.50 41789
Ingebrigtsen et al. [46] 1990 406.0 12.6 353.8 13.70 714.0 13.50 4.4 0.0065 200 240.0 200 240.0 40.1 0.200.30 94.24 1.00 0 0.85 345699
Ingebrigtsen et al. [46] 1990 406.0 12.8 357.0 13.30 714.0 11.70 4.4 0.0065 200 240.0 200 240.0 42.9 0.200.30 24.74 1.00 0 0.93 3950
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Table A.1: (continued)

Source Year Dot Byt hy ‘e W Eg ovs E, oy, UCS, Ve Vg Pinin ny P! N
(mm) (mm) (mm) (mm) (mm) (mm) (mm) (GPa) (MPa) (GPa) (MPa) (MPa) (kN) Pyiaiic
Ingebrigtsen et al. [46] 1990 406.5 12.8 354.0 13.90 714.0 13.45 4.2 0.0062 200 240.0 200 240.0 44.1 0.200.30 50.34 1.00 0 0.83 56
Ingebrigtsen et al. [46] 1990 407.3 13.3 354.3 13.00 714.0 13.20 4.5 0.0066 200 240.0 200 240.0 43.8 0.20 0.30 -636.25 1.00 0 0.74 79
Ingebrigtsen et al. [46] 1990 407.5 13.5 354.512.80 714.0 13.00 4.5 0.0066 200 240.0 200 240.0 43.1 0.20 0.30 -651.30 1.00 0 0.77 63
Ingebrigtsen et al. [46] 1990 406.5 12.7 355.7 13.00 714.0 12.70 4.4 0.0065 200 240.0 200 240.0 43.4 0.200.30 -682.02 1.00 0 0.80 96
Ingebrigtsen et al. [46] 1990 405.5 13.6 355.512.50 714.0 11.40 4.5 0.0066 200 240.0 200 240.0 46.1 0.20 0.30 -1151.97 1.00 0 0.85 250
Ingebrigtsen et al. [46] 1990 406.0 13.5 356.0 13.80 714.0 11.50 4.6 0.0068 200 240.0 200 240.0 38.5 0.200.30-1126.02 1.00 0 0.96 250
Ingebrigtsen et al. [46] 1990 406.8 13.4 354.8 14.10 714.0 12.60 3.8 0.0056 200 240.0 200 240.0 42.3 0.20 0.30 -1222.98 1.00 0 0.83 96
Ingebrigtsen et al. [46] 1990 409.1 12.9 356.1 13.40 714.0 13.60 4.5 0.0066 200 240.0 200 240.0 45.9 0.200.30 709.29 1.00 0 0.89 1050
Ingebrigtsen et al. [46] 1990 408.7 13.4 356.3 14.00 714.0 12.80 4.5 0.0066 200 240.0 200 240.0 45.8 0.20 0.30 -1842.45 1.00 0 0.73 20
Ingebrigtsen et al. [46] 1990 409.0 13.2 357.7 13.00 714.0 12.45 4.5 0.0066 200 240.0 200 240.0 46.6 0.20 0.30 -1992.72 1.00 0 0.76 5
Ingebrigtsen et al. [46] 1990 408.8 13.2 356.9 12.40 714.0 12.75 4.5 0.0066 200 240.0 200 240.0 46.9 0.20 0.30 -1704.30 1.00 0 0.65 12
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