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School-aged-children are most vulnerable to schistosomiasis as exemplified by age-prevalence 
profiles although current understanding of these patterns needs improvement. Using epidemiological 
data from the southern shoreline of Lake Malawi, we investigated the dynamics of Schistosoma 
transmission and the main determinants of Schistosoma infection risk using a transmission dynamic 
model, considering urogenital and intestinal schistosomiasis respectively. Specifically, we assessed 
whether the proximity of primary schools to the immediate shoreline was a major geospatial and 
epidemiological determinant. Cross-sectional parasitology and malacological data previously collected 
and analysed was used, including age-infection profiles and interpolated predicted snail distributions 
for the southern part of Lake Malawi shoreline. A disease SEIRS ordinary differential equation model 
was created, and an observation prevalence model was formed using a binomial sampling distribution 
using the already published dataset. An optimisation using L-BFGS-B algorithm with upper/lower 
bounded box constraints was carried out to calibrate the model to find the best parameter values for 
each infection state transition given the disease model and dataset. The aim was to recapture the 
age-structure dynamics shown in the observation model representing the already published age-
infection profiles. Concerning intestinal schistosomiasis, the best model for Biomphalaria sp. was the 
use of a single transmission rate for all the school’s and no spatial effect. By contrast, for urogenital 
schistosomiasis, the best model for Bulinus spp. was found when using an independent transmission 
rate for each school and no spatial effect. There was some evidence that we were able to capture the 
age-structured dynamics of infection in SAC despite the expected outcome differing to statistical 
output due to sparse data. Within our study area, we found there was no significant effect on SAC 
exposure to Schistosoma infection risk based on school distance from the shoreline. Further, there 
was heterogeneity between schools in transmission rates estimated, although these did not have 
significantly different confidence intervals. However, schools considered in our study were all relatively 
close to cercaria infested shorelines. Further studies using a longitudinal cohort study could improve 
understanding of Schistosoma infection dynamics and allow for improved control method application.
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Schistosomiasis is a water-borne neglected tropical disease caused by the trematode worm Schistosoma, resulting 
in two forms of the disease, intestinal schistosomiasis (IS) caused by S. mansoni and urogenital schistosomiasis 
(UGS) caused by S. haematobium infections1. To complete their lifecycle, these species of Schistosoma require 
the presence of aquatic snail intermediate hosts, Biomphalaria sp. and Bulinus spp., respectively. Thus, exposure 
to the snail habitats is a known major risk factor for human Schistosoma infection2. School-aged-children (SAC) 
are known to be particularly vulnerable to schistosomiasis, with signs and symptoms of infection including 
malnutrition, anaemia, and neurological and developmental delays caused by the accumulation of trapped 
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eggs causing tissue inflammation3. Children are thought to be first infected soon after birth upon freshwater 
contact(s) with prevalence increasing with cumulative parasite exposure(s) up to adolescence, although the age-
profiles are known to oscillate over time due to many undefined factors2.

There are many known risk factors for Schistosoma infection transmission including repeated water 
contact, type of water use, animal contact, age and treatment2,4–6 Recent studies have reported an increase in 
transmission of Schistosoma infection through a changing ecological environment in the lake, an increasing 
human population and reduced molluscivore fish in the lake. This has created an increase in snail populations 
and new at-risk locations for water contact7. Changes in human behaviour affect age-dependent exposure, 
especially among SAC who are known for frequent water contact7–9. Reitzug et al.9, reported its importance 
in human exposure behaviour in driving Schistosoma transmission9. Other factors such as schistosomiasis 
infection immunity, formally known as resistance to reinfection, is still equivocal and being researched. Partially 
protective immunity in people developing over long repeated exposure to Schistosoma infection is much 
debated, alongside its interaction with age-dependent exposure10. Currently studies have reported some partial 
protection building up in individuals over time10–13. Most SAC, however, are considered to have very low to no 
acquired protective immunity allowing for reinfection(s) to occur. This is possibly shown by the Reed et al.4 
study where the age profiles of SAC increase up to 11 years before decreasing there afterwards, although this is 
conjecture and requires more investigation4,14.

People are more likely to make use of water facilities close to where they live and if that water facility happens 
to be a Schistosoma infection transmission site then the risk is likely to be higher for these people than people 
living further away leading to a higher need for control application in communities closer to these high-risk 
areas15. Further, Madsen et al.16 reported higher Schistosoma transmission in shoreline villages compared to 
in-land villages16. Furthermore, other studies have also found the proximity to the lake to increase Schistosoma 
transmission risk17,18. Ecological niche mapping and fine-scale malacological mapping of areas have previously 
been used as a technique to try to measure exposure risk dependent on location; these studies find that there is 
localised variation in areas with different biological effects impacting the transmission for each focal location19,20. 
Other studies have researched water-contact related activities and association with exposure risk9. However, 
there is a lack of knowledge of how to measure SAC age-dependent exposure and the associated Schistosoma 
transmission risk, which is limiting appropriate application of control methods4. The difficulty of measuring 
this exposure could be due to multiple factors, for example, immunity, age of child, water exposure patterns 
and treatment21. Currently prevalence among SAC is measured at survey school locations using parasitological 
methods to measure prevalence and intensity of infection22. Further as mentioned before, age prevalence profiles 
among SAC have been studied along the southern part of the Lake Malawi shoreline and reported to oscillate 
over time4.

Mathematical modelling can allow us to model the spread of disease and transmission dynamics to inform 
policy decision makers for intervention programmes. Many mathematical modelling studies have been carried 
out over the years to aid control programmes23–26. Both Nelson & Macdonald carried out pioneering work on 
transmission dynamics of Schistosoma infection27–29. Anderson et al.21 recently reviewed transmission models 
and control of Schistosoma infection by Mass Drug Administration (MDA). The World Health Organisation 
(WHO) has supplied new guidelines to target elimination of schistosomiasis by interrupting transmission30. 
Intrinsic factors such as age and their related exposure have a possible importance in interrupting transmission 
when moving towards elimination31.

In this study, we developed a susceptible—exposed—infection—recovered—susceptible (SEIRS) dynamical 
model with age-related-immunity to model the transmission dynamics of Schistosoma infection for SAC aged 
6–15 years, using published Schistosoma age-stratified prevalence4 from a study population considering school-
children in 12 schools, and proximity to snail-infested water as a proxy for exposure to the Schistosoma. We fit 
the SEIRS model over prevalence data via maximum likelihood to improve our understanding of Schistosoma 
transmission dynamics and what drives SAC age-profiles. The main aims of the study were the following: (i) To 
identify the main determinants of Schistosoma infection risk, (ii) To determine whether school distance from 
the lake shoreline determines the exposure of SAC Schistosoma risk and (iii) To improve our understanding of 
the non-linear relationship between age and prevalence found by Reed et al.4, and whether this was partially due 
to the exposure to the snails or immunity developed by the SAC. Hence, we produce models with immunity to 
try to reproduce the age-profiles of these SAC found in the previous study4. Consequently, we hope this analysis 
will help improve understanding of Schistosoma transmission dynamics and in turn, improve the application of 
schistosomiasis control within SAC.

Methods
We describe our modelling approach, We provide a brief description of our schistosomiasis prevalence training 
dataset, the state transition model used to model the disease process in the school, and how this relates to 
the observation process. All data processing and analysis was performed in R version 4.1.1. All methods were 
performed in accordance with the relevant guidelines and regulations.

Dataset
This secondary analysis study uses the outcomes of our previously published, Reed et al.4 on Schistosoma age 
prevalence profiles and Reed et al.32 on geospatial modelling of snail distributions based on the parasitological 
and malacological data from Kayuni et al.8 and Al-Harbi et al.33. These data were collected in 2019 for the age-
profiles and the snail distribution predictions were interpolated from aggregated data from 2017 to 2019 along 
the southern part of the Lake Malawi shoreline. Therefore, in the study we use cross sectional single point in 
time data.
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We removed St Augustine 2 school from Biomphalaria sp. dataset as it had no variation in prevalence 
(effectively 1). For Bulinus spp. all schools in the dataset were used including St Augustine 2.

Disease model formulation
We consider the incidence of schistosomiasis in SAC within a school as a function of childrens’ exposures to 
snail-infested waters. To investigate how their age and proximity to snail habitats affects the age-prevalence 
relationship in SAC, we develop an age-stratified SEIRS model where children are assumed to start susceptible 
(S) to infection, progress to being exposed (E) (i.e. infected but not yet infectious), infectious (and detectable, I), 
and recovered (R) with immunity as shown in Fig. 1. We then allow for immunity to wane and the children to 
return to being susceptible. Our approach differs from other published models in that we do not attempt to model 
the dynamics of schistosomiasis in the entire populations34,35. Given that our sampling frame represents a very 
small fraction of the total population in the study region, we concentrate on modelling Schistosoma challenge 
from exposure to snails, assuming that our infected SAC have negligible effect on Schistosoma prevalence in the 
snail population.

Within each school we assume that children are divided into 10 age-grades, with a class of size of 30, 
represented as m. Children are assumed to enter school at age 6 years at a rate of 1

30  per year (i.e. 30 children 
entering the school per year) having had no prior infection by Schistosoma spp. (α = 0%) infection. We also test 
the assumption where prior Schistosoma infection for SAC entering into age group 6 (age 6 years), α by testing 
different values (see 2.5 and 3.5 sensitivity analysis). They then progress between the age classes at a rate of 1

365
per day giving ξ as an aging rate of the SAC. We assumed SAC only enter the school via age 6 years and do not 
leave the school till aged 15 years.

Given the states, we model the rate of transition between S and E according to a function of exposure to 
snail habitats, mediated by distance to the lake shore. Letting λi be the infection rate experienced by a child in 
location i, we have:

	
λi =

ˆ
βKija (xj) dxj ≃ β

n

∑
j∈x

Kija (xj) ,� (1)

where, β (days−1) is the transmission rate coefficient for Schistosoma infection, Kij = exp(−
∥x2

i
−x2

j
∥2

ϕ2 ) is a 

function that decays with Euclidean distance between i and j, a (xj) is the snail abundance (count of snails), xj  
is the location of snails (see Supplementary Fig. S1 online) and xi is the location of the school for each SAC, i 
for i = 1, · · · , n. Contact with free living cercariae was assumed to be the only means through which children 

Fig. 1.  SEIRS transmission compartment model with SAC age ranging from 6 to 15 years. Transmission 
parameters are discussed in the text.
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become infected (i.e. transition from S to E). Furthermore, all snails were assumed infected and snails’ infection 
status is assumed independent of contact with SAC for the reason outlined above. In addition, we assume that 
SAC do not infect each other, and no mother-to-child transmission of disease occurs among humans. These 
assumptions are supported by the fact that we only model school-children, who are themselves a small fraction 
of the wider population and can therefore be assumed to be approximately independent within the overall 
human-snail-schistosome lifecycle.

Then we model the rate of transition from E to I as σ (days−1), which is the rate at which immature worms 
become adult worms residing in intestinal or urogenital region and producing eggs. Then we model the rate of 
transition from I to R, with γ (days−1) as the rate of infective SAC moving to the R. Next, we assume that the 
rate of age-specific loss of immunity, (1 − ρ (age))ω i.e. age-related, such that the rate of transition from R to S 
(Fig. 1) follows a logistic growth rate with an inverse relation to age represented as:

	
ρ (age) = 1

1 + e−κ(age−C) � (2)

 where κ governs the rate of change with respect to age, and C is a constant which controls the midpoint i.e. the 
age at which ρ (age) = 1

2  per day. For parameter identifiability reasons, we assume C to be 11 years which is the 
midpoint between age groups 6–15 years and was the age of peak infection prevalence found in the published 
secondary analysis paper, Reed et al.4 on Schistosoma prevalence age-profiles. We assumed the older the child, 
the slower they transition from R to S. In any transition of the model, no deaths from schistosomiasis or MDA 
treatment were considered.

The age-structured dynamics of schistosome transmission in this system are then represented by the following 
differential equations:

	

−→
dSt

dt
= −

(−→
λ + ξ

)
⊙ −→

St + ω (1 − −→ρ ) ⊙ −→
Rt + ξ

−→
S+

t
� (3)

	

−−→
dEt

dt
=

−→
λ ⊙ −→

St − (σ + ξ) −→
Et + ξ

−→
E+

t
� (4)

	

−→
dIt

dt
= σ

−→
Et − (γ + ξ) −→

It + ξ
−→
I+

t
� (5)

	

−−→
dRt

dt
= γ

−→
It − (ξ + ω (1 − −→ρ )) ⊙ −→

Rt + ξ
−→
R+

t
� (6)

where, t stands for time in days.
The age structure of the dynamical model are represented as the following equations:

	

{−→
S+

t

}
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t , R12

t , R13
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.� (10)

For a given set of parameters, θ = (β, σ, γ), we solve this set of ODEs using Euler’s method as implemented 
in the R package “desolve” version 4.1.1 (reduce computation time required). The solver is run until the SEIRS 
system achieves equilibrium, which by experimentation we find to be by timestep t = 1000 days for a large 
range of parameter values.

For simplicity, and exposition of the inference methods in the next section, we abstract the ODE model into 

a mathematical function, of the parameters θ and initial conditions X0 =
{−→

S0,
−→
E0,

−→
I0 ,

−→
R0

}
.

	 S∗, E∗, I∗, R∗ = g(θ, x0,z),� (11)

where the vector S∗, E∗, I∗, R∗ denotes the number of children in each age-group in each epidemiological state 
at equilibrium, z represents our input data (snail abundance, distance to the shoreline), and θ = (β, σ, γ) our 
model parameters. Where necessary, we subscript these quantities to denote that they relate to a specific school, 
for example θs = (βs, σ, γ) to denote the condition where all schools share σ and γ but have individual βs for 
the s th school.

Observation of prevalence
From our study we have observation of childhood infection prevalence in school. For school s, given that 
S∗

s , E∗
s , I∗

s , R∗
s = g(θ, x0, z), we assume observed number of positive children yas

in age-group a given a sample of na children is Binomially distributed given that.
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	 yas ∼ Binomial(nas, πas),� (12)

 where πas = I∗
as/Nas where I∗

as is the modelled number of infected children in age-group a in school s, and 
Nas = 30 is the size of the class.

Inference
In the model described above, we have parameters β, σ, γ which remain unknown. In order to estimate these 
we fitted the model using maximum likelihood estimation. Since the ODE model is a deterministic function of 
the input parameters and covariate data, the log-likelihood is a product over the 10 age groups and 12 schools.

	
l (θ; π, n) ∝

10∑
a=1

12∑
s=1

yaslog(πas) + (nas − yas)log(1 − πas) + k,� (13)

 where k is a constant. We calculated estimates for θ by optimising the log-likelihood numerically using the 
L-BFGS-B method provided by R’s “optim” function. Parameters bounded at zero were log-transformed for ease 
of optimisation, with marginal log-likelihoods generated for each parameter to visually inspect the quality of 
optimisation and suggest starting points for the optimisation algorithm. Parallel computing was used to quicken 
the computer processing time, exploiting conditional independence of the schools in the model, enabling the 
ODE solvers for each school to run simultaneously.

Due to data in this model being cross-sectional data for a single point in time, we cannot easily identify a 
timescale for the disease process. If we double all transition rates, we find the same steady state conditions. To 
accommodate for this, we chose to fix κ (smoothness of age - dependent) and ω (recovery of loss of immunity 
of SAC aged 6 years) for identifiability purposes. Since β, γ, σ are rate parameters (days−1), and therefore have 
positive support, they were optimised on the log scale, e.g. optimising β∗ = log (β) . This improved the efficiency 
of the optimisers by constraining the parameter space to be positive. κ was fixed to be κ = 0.5 days−1 as this 
allowed for a moderate age-related loss of immunity slope in the logistic regression function with C = 11.0 
years as shown in Fig. 2. ω was fixed till ω = 0.5 days−1 such that the rate of loss of immunity was approximately 
0.5 days−1 for 6-year-olds. We also fixed the spatial decay parameter ϕ which enabled the identification of the 
β parameters given the length scale. ϕ was fixed at ϕ = 4.48km as represents spatial decay to 0 by 100 km (the 
approx. distance along the shoreline of Lake Malawi for our data used) and the distance was divided by 10km to 
improve the numerical stability and convergence of the model and avoid overfitting reducing the computational 
complexity.

To allow the optimiser to find the best-estimate values of the parameters in our models with reduced 
computation time, we set initial values for the non-fixed parameters by plotting the marginal log-likelihoods 
and starting the optimiser near to the maximum (peak) of the log-likelihood. We constrained the optimiser 
search space by ±1 either side of the graphical maximum to stop the optimiser entering unstable regions of the 
parameter space36.

The log-likelihood was plotted against each parameter (keeping the other parameters fixed at their respective 
MLE) to check if the maximum was found. Optimisation of certain parameters was carried out as shown in 
Table 1.

Fig. 2.  Logistic age-specific loss of immunity function, 1 − ρ (age) versus age. For κ = 0.5 days−1, C = 11 
years, age ranging between 6 and 15 years.
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The following four models were fitted for each species using the optimiser as shown in Table 1.

	(1)	 Different (independent) βs value (transmission rate) for each school s with spatial effect
	(2)	 single-β value for all schools with spatial effect
	(3)	 No spatial effect by making ϕ large with multiple (independent) βs’s values for each school
	(4)	 No spatial effect by making ϕ large with single-β value for all schools.

In the third and fourth model we removed the spatial effect competent, modifying the snail force of infection to 
test whether we still need a model with multi-βs’s or single-β for each school.

We then calculated the Akaike Information criterion (AIC) to compare the fit of different models, and is our 
preferred metric as it trades off increasing fit to the data with model complexity. In additional, we examined 
the in-sample predictive performance of the model through visual assessment of predicted versus observed 
prevalence values. In addition, to assess the in-sample predictive performance further, mean squared error 
(MSE) was computed for each model for each school to compare between the observed and predicted prevalence 
using the following:

	

1
n

n∑
i=1

(Yi − Ŷi)2� (14)

where a vector of n predictions were sampled from our n data points (i = 1, . . . , n) for all variables, Yi is the 
vector of the observed values of prevalence (at school location xi) that are being used for the prediction and Ŷi  
are the predicted parameter values of model. Then we took the mean of Eq. (14) (e.g. square of the errors) to find 
MSE value for each model.

We computed approximate confidence intervals (CI) for our parameter estimate using the Wald method 
based on the diagonal of the Fisher Information matrix. Then we plotted the estimated coefficients values 
(parameters) and the CI together.

Sensitivity analysis
A sensitivity analysis was carried out by allowing for prior Schistosoma infection prevalence of SAC entering age 
group 6, α as 5% (0.05), 10% (0.10) and 20% (0.20).

Results
Check best value of ϕ
If we fixed all parameters to the estimated values from multi-βs space model and unfix ϕ the model converges 
quickly and finds the best value of ϕ=4.48km.

Snail abundance
Figure 3 shows the distance (10km) of school from the lake shoreline versus SAC snail-infested water exposure 
decreases till ∼100km distance from school to shoreline when ϕ=4.48km. Whereas, when ϕ = 106 km, the snail 
exposure is the same all along the shoreline, which shows there is no spatial effect in this case.

Model optimisation
All models converged to the maximum likelihood for each school (See Supplementary Figs. S2–S7 online) 
although there were some identifiability issues between β and γ. As shown in Tables 2, 3, 4 and 5 the following 
was found: the best model (AIC = 250) for Biomphalaria sp. was the single-β with no spatial effect. When testing 
multi-βs or single-β with spatial effect (AIC = 258 & AIC = 269) and multi-βs with no spatial effect (AIC = 258) 
we found a worse model fit compared to single-β with no spatial effect (AIC = 250). Whereas for Bulinus sp. the 
best model (lowest AIC) was the multi-βs with no spatial effect (AIC = 248). When testing the multi-βs with 
spatial (AIC = 250), single-β with spatial effect (AIC = 341) and single-β with no spatial effect (AIC = 351) we 
found a worse model fit compared to the multi-βs with spatial effect (AIC = 248).

MSE score was the same for Biomphalaria sp. multi-βs with spatial effect and no spatial effect. For both 
Biomphalaria sp. and Bulinus spp., there were cases where the MSE was slightly lower (better value) for particular 

Parameters Definition Multi-βs  space Single-β space Multi-βs  no space Single-β no space

β Transmission rate coefficient (days−1) Multiple Single Multiple Single

σ Rate of exposed SAC becoming infective (shredding eggs) (days−1) Unknown Unknown Unknown Unknown

γ Rate of infective SAC Recovering (days−1) Unknown Unknown Unknown Unknown

ξ School recruitment rate and rate at which SAC age 1
365  days−1

κ Smoothness of age-dependent loss of immunity curve (logistic curve) 0.5 days−1

C Constant (Age range of SAC) 11.0 years

ω Recovery of loss of immunity of SAC aged 6 years 0.5 days−1

ϕ Spatial decay constant 4.48km 4.48km 106km 106km

Table 1.  Different models used in the optimiser to find the best estimated parameters values.
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parameters estimates for a school despite the model having a higher AIC score compared to the other models. 
For instance, Biomphalaria sp. multi-βs with spatial effect (AIC = 258), Chikomwe school MSE score was 0.487 
whereas for single-β with spatial effect (AIC = 269) Chikomwe school MSE score was 0.475.

From the best fit model, for Biomphalaria sp. the following parameter values were found for all schools, 
log β [− 1.42, CI − 4.95, 2.00], for log σ [0.147, CI − 3.34, 3.63] giving 1

σ
= 0.863 days [ranging from 0.0265 to 

28.2 days] exposed period and for log γ [− 2.61, CI − 2.85, − 2.36] giving 1
γ

= 13.6 days [ranging from 0.0573 to 
17.3 days]. For the best fit model, for Bulinus spp. the following parameter values were found all schools, log σ 
was estimated to be − 2.50 [CI − 8.49, 3.38] giving 1

σ
= 12.2 days [ranging from 0.03 to 4870 days] and log γ 

Multi-βsspace

Biomphalaria
AIC = 258

MSE

Bulinus
AIC = 250

MSEParmeters/Schools [CI] log β log σ log γ log β log σ log γ

Mchoka − 2.78
[− 5.31, − 0.253]

− 2.59
[− 9.07, 3.89]

− 5.40
[− 7.68, − 3.13]

0.442 − 6.31
[− 8.30, − 4.31]

− 2.80
[− 7.93, 2.33]

− 4.65
[− 6.50, 2.80]

0.0661

Samama − 2.15
[− 5.83, 1.54] 0.339 − 4.15

[− 7.42, − 1.62] 0.254

MOET − 4.65
[− 8.45, − 0.85] 0.252 − 7.32

[− 9.38, − 5.25] 0.0656

Koche − 2.97
[− 13.1, 7.15] 0.103 − 8.95

[− 11.65, − 6.26 0.0248

St Augustine 2 − 5.02
[− 7.45, − 2.59] 1.15

Ndembo − 0.922
[− 4.49, 2.64] 0.186 − 4.38

[− 7.58, − 1.18] 0.657

Sungusya 1.66
[− 7.96, 11.3] 0.380 − 6.24

[− 8.38, − 4.09] 1.18

St Martins 1.72
[− 9.70, 13.1] 0.420 − 8.26

[− 11.0, − 5.56] 0.0564

Chikomwe − 1.77
[− 5.28, 1.74] 0.487 − 7.54

[− 9.76, − 5.33] 0.261

Chipeleka 0.769
[− 8.82, 10.4] 0.291 − 6.14

[− 8.30, − 3.96] 0.397

Makumba 0.438
[− 2.74, 3.61] 0.671 [− 9.8,− 5.10] 0.254

Mtengeza 0.919
[− 3.52, 5.35] 0.451 5.84

[− 8.04 ,− 3.64] 0.870

Table 2.  Parameter estimates for multi-βs spatial model for each species.

 

Fig. 3.  Distance (10km) of school from lake shoreline versus SAC snail-infested water exposure . Black line: 
ϕ = 4.48km, red line: ϕ = 106km.
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[− 3.39, CI − 8.49, 1.72] giving 1
γ

= 29.7 days [ranging from 0.179 to 4866 days] infectious period for all the 
schools. For Bulinus spp. at each school, the following log β parameters were found: Mchoka [− 7.26, CI 12.4, 
− 2.14], Samama [− 4.80, CI − 11.0, 1.35], MOET [-8.26, CI − 13.4, − 3.12], Koche [− 9.98, CI − 15.4, − 4.55], St 
Augustine 2 [− 5.73 CI − 11.2,0. 289], Ndembo [− 4.20, CI − 12.1, 3.70], Sungusya [− 7.41, CI − 12.6,-2.19], St 
Martins [− 9.26, CI − 14.7, − 3.81], Chikomwe [− 8.05, CI − 13.3, − 2.82], Chipeleka [− 6.72, CI − 12.0, − 1.50], 
Makumba [− 8.51, CI − 13.8, − 3.22], Mtengeza [− 6.53, CI − 11.80, − 1.24].

Figures  4, 5, 6 and 7 show visually that the prevalence prediction model, π̂as at steady state was able to 
capture the age-prevalence structure of the Reed et al. 2023 paper4. Visually there is no evidence to suggest these 
models do not fit the data for Biomphalaria sp. with either single-β or multi-βs cases and for Bulinus spp. only 
the multi-βs case. For Bulinus spp. the single-β does not visually capture the observed prevalence model for 
certain schools including Samama, Moet, Koche, Ndembo and St Martins.

Multi-βs  no space

Biomphalaria
AIC = 258

MSE

Bulinus
AIC = 248

MSEParameters/Schools [CI] log β log σ log γ log β log σ log γ

Mchoka − 6.07 [− 8.59, 3.56] − 2.59 [− 9.08, 3.90] − 5.40 [− 7.66, − 3.15] 0.442 − 7.26 [− 12.4, − 2.14] − 2.50 [− 8.49, 3.38] − 3.39 [− 8.49, 1.72] 0.0683

Samama − 5.12
[− 8.79, − 1.45] 0.339 − 4.80

[− 11.0, 1.35] 0.215

MOET − 5.07
[− 8.86, − 1.29] 0.252 − 8.26

[− 13.4, − 3.12] 0.0682

Koche − 3.80
[− 13.9, 6.29] 0.103 − 9.98

[− 15.4, − 4.55] 0.0249

St Augustine 2 − 5.73
[− 11.2 ,− 0.289] 1.08

Ndembo − 5.23
[− 8.78, − 1.68] 0.186 − 4.20

[− 12.1, 3.70] 0.623

Sungusya − 3.89
[− 13.5, 5.68] 0.380 − 7.41

[− 12.6, − 2.19] 1.13

St Martins − 3.73
[− 15.1, 7.66] 0.420 − 9.26

[− 14.7, − 3.81] 0.0568

Chikomwe − 5.26
[− 8.75, − 1.76] 0.486 − 8.05

[− 13.3, − 2.82] 0.261

Chipeleka − 3.90
[− 13.4, 5.63] 0.291 − 6.72

[− 12.0, − 1.50] 0.390

Makumba − 5.50
[− 8.66, − 2.34] 0.672 − 8.51

[− 13.8, − 3.22] 0.256

Mtengeza − 4.91
[− 9.33, − 0.489] 0.451 − 6.53

[− 11.8, − 1.24] 0.884

Table 4.  Parameter estimates for multi-βs no spatial model for each species.

 

Single-β space

Biomphalaria
AIC = 269

MSE

Bulinus
AIC = 341

MSEParmeters/Schools [CI] log β log σ log γ logβ log σ log γ

Mchoka

− 0.514
[− 0.526, − 0.502]

− 4.60
[− 5.18, − 4.02]

− 6.46
[− 7.00, − 5.92]

0.684

− 5.00
[− 9.07, − 0.927]

0.500
[− 12.2, 13.2]

− 3.55
[− 7.58, 0.489]

0.0856

Samama 0.357 1.17

MOET 0.291 0.307

Koche 0.107 0.459

St Augustine 2 1.49

Ndembo 0.134 1.64

Sungusya 0.469 1.12

St Martins 0.681 0.482

Chikomwe 0.475 0.859

Chipeleka 0.307 0.400

Makumba 0.894 0.455

Mtengeza 0.756 0.909

Table 3.  Parameter estimates for single-β spatial model for each species.
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CI intervals
We assessed the likely impact of school-level differences in baseline transmission rate by comparing log β values. 
Considering log β̂1 as a reference, the confidence intervals for all other log β̂2,...,12 include log β̂1 such that we 
have no strong evidence that schools 2,…, 12 differ from school 1. In other words, a single β1 for all schools 
(single-β model) in the model suffices (Figs. 8 and 9). For Biomphalaria sp. multi-βs space and no space models, 
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Fig. 4.  Multi-βs with space effect model optimisation prevalence prediction (black line) and observed 
prevalence (red line) against age of SAC carried out for each species. (a) Biomphalaria sp., (b) Bulinus spp.

 

Single-β no space

Biomphalaria
AIC = 250

MSE

Bulinus
AIC = 351

MSEParmeters/Schools [CI] log β log σ log γ log β log σ log γ

Mchoka

− 1.48 [ − 4.95, 2.00] 0.147 [− 3.34, 3.63] − 2.61 [ − 2.85, − 2.36

0.613

− 5.50 [− 14.8, 3.75] − 4.62 [− 11.8, 2.64] − 3.70 [8.67, 1.27]

0.100

Samama 0.275 1.24

MOET 0.190 0.329

Koche 0.233 0.547

St Augustine 2 1.45

Ndembo 0.261 1.78

Sungusya 0.519 1.16

St Martins 0.372 0.541

Chikomwe 0.535 0.542

Chipeleka 0.476 0.390

Makumba 0.506 0.541

Mtengeza 0.326 0.924

Table 5.  Parameter estimates for single-β no space model outcome for each species.
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Fig.  8a and b shows visually the approximate baseline β1 value to be between log β = −3 and log β = −7 
from average of the CIs for all schools. For Biomphalaria sp. single-β space and no space models, Fig. 8c and d 
shows visually the approximate baseline β1 value to be between log β = −0.5 and log β = 1.5 from average 
of the CIs for all schools. For Bulinus spp. multi-βs space and no space models, Fig. 9a and b shows visually the 
approximate baseline β1 value to between log β = −6 and log β = −7 from average of the CIs for all schools. 
For single-β space and no space models, Fig. 9c and d shows visually the approximate baseline β1 value to be 
between log β = −5 and log β = −5.5 from average of the CIs for all schools.

Sensitivity analysis
When testing different values of SAC age 6 prevalence, α we found that the parameter estimates did not change 
a lot and the AIC and MSE scores were similar, suggesting a similar fit. In addition, for α = 0.10 and α = 20 for 
Bulinus spp. we found that that there were non-identifiability issues between γ and β as shown in Fig. 10 where 
essentially the optimiser is just contouring around the distribution, following the contours, instead of finding 
the estimated parameter value(s).

In addition the plots of the fits to the age-prevalence profiles for the different α values are shown in 
Supplementary Figs. S8–S19 online. The tables of the parameter estimates for the different α values are shown 
in Supplementary Tables S1–S12 online. The confidence intervals for the parameter estimates for the different α 
values are shown in Supplementary Figs. S20–S25 online.

Discussion
Our analysis has made attempts to model the dynamics of Schistosoma transmission at a single point in time, 
and estimate the best possible values of our parameters given our data. Our model was designed to determine 
SAC associated Schistosoma infection risk and to determine whether school distance from the lake shoreline 
determines the exposure of SAC Schistosoma risk, and further, whether we can reproduce the SAC prevalence 
age-profiles shown in Reed et al.4 on our study population (i.e. school-children in 12 schools). This was conducted 
using a SEIRS ODE model and carried out using the LBFGS-B optimisation algorithm. Our model is novel in the 
sense that we focus on capturing the disease process within children as a function of exposure to a quasi-static 
snail population, as opposed to modelling the entire Schistosoma lifecycle as is common in other studies34,35. 
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Fig. 5.  Single-β with space effect model optimisation prevalence prediction (black line) and observed 
prevalence ( red line) against age of SAC carried out for each species. (a) Biomphalaria sp., (b) Bulinus spp.
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Our approach by comparison is more parsimonious, with the advantage of decreased complexity and increased 
computational speed.

Our study found the best fitting model for Biomphalaria sp. was the single-β no spatial effect model 
(AIC = 250), which supports the use of single-β model for all schools and with no spatial decay of the force of 
infection from snails with distance from the lake shoreline. Hence, we cannot conclude that transmission differs 
appreciably between schools or that school distance from the shoreline has an effect on SAC exposure. For 
Bulinus spp., however, the best model was the multi-βs with no spatial effect model, which supports a hypothesis 
that school-level factors determine the apparent prevalence of urinary schistosomiasis though we have no 
evidence that the spatial relationship to snail exposure affects prevalence. Therefore, within the narrow range 
studied, distance from the shoreline to the schools was not a determinant.

There was possible heterogeneity in transmission between schools. Based on our AIC scores the model 
preferred incorporating different transmission rates for each school and this was also shown in Figs. 4 and 6 
which suggests this is likely the case. In particular, one noted result was Samama, Moet, Koche, Ndembo and St 
Martins predictive estimate for single transmission rate for all schools with Bulinus spp. did not capture the data 
that we observed and so this suggested that we needed different transmission rates in the schools. However, we 
found no statistical evidence that transmission rates are different from each other based on CIs given our data. 
This may well be due to the noisy nature of the observed prevalences, and associated wide confidence intervals, 
as well as the possibility that our approximate confidence intervals were not capturing the true correlation 
structure in the joint likelihood surface. Since, Figs. 4, 5, 6, and 7 indicate that the multi-β models indicate a 
better predictive fit, it is perhaps not surprising that these are preferred by AIC. Our conclusion, therefore, is 
that the multi-β model should be preferred on the grounds of improved predictive performance, rather than 
model parsimony.

From the best fit models, the exposed period (S to E group) was estimated to be 0.863 days for Biomphalaria 
sp. and 12.2 days Bulinus spp. compared to 14–84 days [usually between 35 and 42 days] usually reported in 
other studies23,37. In additional, the infectious period (E to I group) was estimated to be 13.6 days and 0.357 days, 
whereas in other studies the infectious period (gamma) (I to R group) has been found to be estimated around 
35 days (14–70 days); we found lower rate in the infectious period than previous studies13. These differences in 
exposed and infectious period could have been due to some identifiability issues (i.e. Fig. 10) that were noted 
for our unknown parameters beta, sigma, gamma making it difficult for the model to capture the observed 
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Fig. 6.  Multi-βs with no space effect model optimisation prevalence prediction (black line) and observed 
prevalence (red line) against age of SAC carried out for each species. (a) Biomphalaria sp., (b) Bulinus spp.
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prevalence in our dataset. Further, the shorter exposed and infectious predictions could suggest our model 
fit is artefact of data collection or even the ODE fitted to a small population (in which there is a continuous 
approximation to a discrete state space of numbers of individuals). A SIR model could have been the more 
parsimonious model to fit, albeit with the obvious violation of a biological principle (the fact that your infection 
is not immediately detectable when you first get infected).

Limitations
A limitation of this study is that we only accounted for distance from the lake shoreline (data aligned to the 
lake shoreline) and did not account for inland bodies of water, for instance, ponds and pools of water inland 
in the dataset. Further we do not know in detail the local environment from the inland schools, only the local 
environment and their relative exposure along the lake shoreline. If there is any effect of differential exposure 
to snails by SAC at the different schools, this may not be the best representation using the simple distance from 
the lake. This could be due to individual human spatial movement having predictable patterns influenced by 
their environment and socio-economic factors. For instance, SAC schools that have direct and easy access to 
the lakeshore could be more likely to be exposed to snails as they visit the lake shoreline more often than rural 
villages38. This could have also been due to all our schools in our study being close enough to the lake that they 
guarantee SAC visiting the shoreline often. Although, water contact can also be dictated by gender or age9. 
Our study was place specific so there may be a different result at other locations with different snail species or 
seasonality. In the future other geospatial variables such as water quality or microhabitats within the lake could 
be considered. Moreover, the study could have been expanded to other schools in the area, changes to water 
contact patterns throughout the year and seasonality9.

We also consider SAC to only travel using Euclidean distance (straight) from their school to the lake 
shoreline. This is a misrepresentation as often SAC will go to different parts of the shoreline, with more easily 
accessible areas than others so repeated exposure is more likely at these focal locations. Further, we did not know 
where the residences of the SAC were, only their school location was considered in our models. Future studies, 
using a quantitative social study are required to improve our understanding of how exposure to snails along 
the shoreline is affected with distance from SAC school or residential living area15. For instance, other socio-
economic factors including education, wealth, trade, or health could affect how often, where, and when SAC are 
exposed to snail habitats, and hence effect their Schistosoma transmission risk39.
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Fig. 7.  Single-β with no space effect model optimisation prevalence prediction, π̂as (black line) and observed 
prevalence (red line) against age of SAC carried out for each species. (a) Biomphalaria sp., (b) Bulinus spp.
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We only had cross-sectional data for a single point in time (aggregate 2017–2019 data) due to having too 
small samples for each year. Due to this we were not able to consider the temporal interpretations of the model 
(e.g. equilibrium assumptions and transition durations). Ideally, in future studies, a longitudinal cohort study 
should be carried out to attain more data, where we recruit a panel of children and then follow them every 
year. Firstly, this would allow us to better understand the sensitivity and specificity of the tests used as they are 
repeated. Secondly, this would allow us to study how the dynamic of infection changes over time. In particular, it 
would provide the opportunity to study the effects of co-morbidities (e.g. HIV status) on the build-up or loss of 
immunity allowing us to understand the drivers of age-prevalence profiles. Similarly, a longitudinal study would 
allow us to study any effects of MDA that might be concomitant.

Another limitation of the study is that we fixed some parameters for identifiability purposes (i.e. Fig. 10). For 
instance, we assumed immunity to be under one day for age 6 SAC due to the optimiser difficulty in identifying 
omega against the other parameters, however estimating omega would be useful if we had more data on the 
children’s partial immunity to be able to find their actual immunity accumulated over time. Further, we could 
have explored immunity to be continuous with respect to age, however, this would have required a more 
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Fig. 8.  Confidence intervals for parameter estimates for Biomphalaria sp. models with SAC prevalence at age 
6 set as α set to zero. (a) Multi-βs space, Biomphalaria sp., (b) Multi-βs no space, Biomphalaria sp., (c) Single-β 
space, (d) Single-β no space.
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complex partial differential equation setup. This would have concomitant implications for increased complexity 
of the numerical machinery required to solve these equations40. Kura et al.41, reported that in the presence of 
acquired immunity MDA programmes were less effective in decreasing the prevalence of infection compared 
to no acquired immunity41. Hence, the ability to estimate immunity within SAC could improve application of 
appropriate control methods. Further, we could have also accounted for treatment from MDA, which can affect 
the children’s infection status and load of infection (light/heavy) which was not considered in this study.

To improve how our model captures the dynamics of Schistosoma transmission, the identifiability of 
parameters and the significant statistical evidence of the model. Future work preferably using longitudinal 
collected data could be carried out using a Bayesian approach to look at the structure of the posterior very 
carefully and work out whether it’s the non-identifiability of parameters in the model that mean we can’t trust the 
Gaussian approximation that we need for calculating the CI in the way we designed our models. In additional, 
machine learning could be used to improve parameter estimated enhancing the model ability to capture complex 
transmission dynamics particularly in regions with significant variability42.

Furthermore, a limitation of the model was that we assumed the all-snail infection drops off by 100km, 
although this is a sensible assumption as it is unlikely SAC would travel more than 100km from the shoreline: 
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Fig. 9.  Confidence intervals for parameter estimates for Bulinus spp. models with SAC prevalence at age 6 set 
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this is a weakness of the model given our data. Another limitation of our study is we assumed that all snails are 
infected and snail’s infected status is assumed independent of contact with SAC, so presence of snail indicates 
exposure to Schistosoma infection and SAC are independent of the overall human-snail-schistosome lifecycle. 
This may not be the case in reality. However, in spite of these several limitations, our model provides insight into 
how proximity to snail abundance might affect the patterns of age prevalence in schools nearby to the shoreline.

Conclusion
Our study reproduces the non-linear age-prevalence profiles by modelling the Schistosoma infection transmission 
dynamics with age-related immunity using cross-sectional parasitology and malacological data already collected 
and analysed. We find the best estimates values of the main determinants of Schistosoma risk with SAC at 
schools along the southern part of Lake Malawi. One of the main outcomes of our study is that school measured 
distance from the shoreline has no tangible effect on the SAC exposure. However, our dataset was limited by 
our assumptions of the model, size and single-time-point. We were able to a certain extent to reconstruct the 
age-infection profile using a simple state transmission model. However, further studies could be carried out 
using a longitudinal cohort study, which would be much more powerful than a single cross-sectional study to 
understand Schistosoma infection dynamics and how this affects SAC age-infection profiles and the implications 
on how control methods are applied.

Data availability
All code for this publication is accessible on Zenodo. https://doi.org/10.5281/zenodo.10410481. The primary 
data is provided in Supplementary Dataset S1 and S2.
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