

1 **Water-soluble organic acids at deep-ultradeep depth in Chinese sedimentary**
2 **basins: Experimental results and geological significances**

3 Pengpeng Li^{1,2,3}, Quanyou Liu^{1,2,*}, Zheng Zhou⁴, Jing Li², Shixin Zhou^{2,*}

4 Pengpeng Li: <https://orcid.org/0000-0001-6021-2492>

5 Quanyou Liu: <https://orcid.org/0000-0003-2334-2532>

6 Zheng Zhou: <https://orcid.org/0000-0002-2490-8801>

7 Jing Li: <https://orcid.org/0000-0002-4180-2400>

8 Shixin Zhou: <https://orcid.org/0000-0003-1760-6474>

9 ¹*Institute of Energy, Peking University, Beijing 100871, China*

10 ²*Key Laboratory of Petroleum Resources, Gansu Province, Northwest Institute of Eco-*
11 *Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China*

12 ³*University of Chinese Academy of Sciences, Beijing 100049, China*

13 ⁴*Lancaster Environment Centre, Lancaster University, LA1 4YQ, UK*

14 *Corresponding authors: Quanyou Liu, liuqy@pku.edu.cn; Shixin Zhou,
15 zhoushixin@nieer.ac.cn

16 **Abstract:** Water-soluble organic acid anions (WSOAA) in subsurface water have been
17 intensively studied during past several decades. They are used as natural gas precursor,
18 tracer for the movement of underground fluid, indicator for porosity improvement, and

19 detector of deep subsurface life on the Earth. However, little is known on the
20 distributions and origins of organic acids at deep-ultradeep depth underground. Herein,
21 we collected twenty-nine source rock samples covering wide maturity range from the
22 Ordos, Qinshui, Junggar, Minhe, and Southern North China basins, as well as six
23 subsurface water samples with depth between 6544 m and 8396 m from industrial gas
24 producing wells in the Tarim Basin, China. We carried out pyrolysis experiments at
25 various temperatures (250~450 °C) to investigate the role of water on the generation of
26 organic acids. Results show that there are considerable amounts of WSOAA detected
27 in both high-over mature source rocks and deep-ultradeep subsurface water. WSOAA
28 mainly consist of monocarboxylates, predominately formate and acetate. High-TOC
29 oil-generating source rock has low production rate of organic acids due to lack of
30 hydrogen. Different source rocks have distinct ratios of formate to acetate concentration,
31 expressed as $c(\text{formate})/c(\text{acetate})$, which is due to significant differences in both initial
32 molecular structure and metabolite. This indicates that $c(\text{formate})/c(\text{acetate})$ can be
33 used to distinguish types of organic matters (OMs). Concentrations of WSOAA show a
34 “sharp decrease-slight increase-slow decrease” evolution trend with progressive
35 maturity. Moreover, there are higher production rates of organic acids under hydrous
36 pyrolysis experiments at ≥ 400 °C. All geochemical signatures indicate that at both
37 deep-ultradeep depth and high-over mature stages, the formation of organic acids is
38 attributed to the thermochemical oxidation of organic components by mainly hydroxyl
39 radicals, challenging the traditional model of organic acid evolution. This work
40 suggests that petroleum exploration can be extended to great depths in sedimentary

41 basins, when formation temperatures are not exceeding 230 °C.

42 **Keywords:** Water-soluble organic acids; High-over mature stages; Deep-ultradeep
43 zone; Thermochemical oxidation of organic components; Hydroxyl radicals

44 **1 Introduction**

45 Water-soluble organic acid anions (WSOAA) in subsurface water have been paid
46 sustained attention due to their huge implications in porosity improvement, natural gas
47 precursor, tracing the movement of underground fluids, and understanding deep
48 subsurface life on the Earth (Carother and Kharaka, 1978; Surdam et al., 1984, 1989;
49 Workaman and Hanor, 1985; Yuan et al., 2019a, 2019b; Heuer et al., 2020; Sherwood
50 Lollar et al., 2021; Li et al., 2023). In particular, the evolution of secondary porosity
51 due to complex interactions between fluids and rocks during diagenetic processes, such
52 as organic-inorganic interactions, is critical for commercial petroleum activities
53 (Surdam et al., 1984, 1989; Surdam and Crossey, 1987; Surdam and MacGowan, 1987;
54 Zhong and Zhu, 2008; Cao et al., 2018; Ivanova et al., 2019; Liu et al., 2019; Yuan et
55 al., 2019a, 2019b, 2024; Chen et al., 2020; Helten et al., 2022; Li et al., 2023; Gong et
56 al., 2023; Huang et al., 2024). Organic acids can dissolve carbonate and aluminosilicate
57 minerals by providing proton and mainly complexing Al^{3+} and Si^{4+} , creating secondary
58 pores and promoting reservoir porosity (Surdam et al., 1984; Eglington et al., 1987;
59 Surdam and MacGowan, 1987; Barth et al., 1988; Chen et al., 1994a; Zhang et al., 2009;
60 Yuan et al., 2015, 2019a, 2019b; Li et al., 2018; Ivanova et al., 2019; Chen et al., 2020).
61 Moreover, the extensive microscopic observations of numerous cores from petroleum-

62 bearing reservoirs with good physical properties have proven the presence of secondary
63 pores (Zhong and Zhu, 2008; Cao et al., 2014; Yuan et al., 2015; Huang et al., 2016;
64 Meng et al., 2017; Huang et al., 2024).

65 Statistical analysis of numerous subsurface water samples with depth >5 km from
66 many petroleum-bearing basins worldwide indicate that concentrations of WSOAA
67 range from dozens to thousands milligrams per liter, where acetate is of highest
68 abundance (Carothers and Kharaka, 1978; Fisher, 1987; Barth and Riis, 1992;
69 MacGowan and Surdam, 1990; Barth, 1991). Concentrations of WSOAA usually show
70 good correlation with temperature. With increasing temperature at temperature not
71 exceeding 140°C, maximum concentrations occur at approximately 90°C. Afterward,
72 they decrease quickly (Fisher, 1978). However, data are absent at higher temperature
73 intervals due to lack of drilling campaigns previously. Therefore, there is little
74 information regarding the distributions of organic acids at both deep-ultradep zones
75 and at high-over mature stages. Nowadays, petroleum exploration and development
76 have drilled to ~9000 m reservoirs below the surface, such as in the Shunbei and Fuman
77 oil fields in China (Xu et al., 2022, 2024; Wang, 2023; Lu et al., 2024), and the presence
78 of secondary pores are partly attributed to the dissolution of acidic fluids (Ma et al.,
79 2019). Such conditions provide a window to look into the distributions and origins of
80 organic acids.

81 Using heated ultrapure water to extract in-situ organic acids from sedimentary
82 rocks is a very effective way. There are remarkable differences in the compositions and
83 abundances of WSOAA in fluid extracts of coals and shales (Zhu et al., 2015; Li et al.,

84 2021a, 2021b). Besides acetate, fluid extracts of some coals and shales include high
85 amount of formate. Concentrations of WSOAA are relatively high in immature source
86 rocks, and correlate roughly positively with oxygen index (OI) as observed (Zhu et al.,
87 2015; Li et al., 2021a, 2021b).

88 Numerous scholars have carried out a suite of hydrous pyrolysis experiment to
89 explore the distributions, generation potential, dissolution capacity, and possible origin
90 of organic acids during the thermal maturity of organic matter (OM) using natural
91 samples such as crude oil, hydrocarbons, kerogen isolates, and organic matter-rich shale
92 (e.g., Kawamura et al., 1986; Eglington et al., 1987; Kawamura and Kaplan, 1987; Barth
93 et al., 1988; Kharaka et al., 1993; Borgund and Barth; 1994; Chen et al., 1994a; Seewald,
94 2001; Dias et al., 2002; Zhang et al., 2009; Li et al., 2018; Yuan et al., 2019b). Source
95 rocks with low thermal maturity and high OI tend to generate more organic acids (Chen
96 et al., 1994a; Barth et al., 1998; Dias et al., 2002) because they have high oxygen
97 content and more oxygen-containing functional groups, which demonstrates that
98 organic acids can originate from the thermal degradation of OM. Whereas, it is
99 challenging to interpret the development of secondary dissolution pores in deep-
100 ultradeep reservoirs using the traditional knowledge of origin of organic acids, because
101 source rocks have very low potential to generate organic acids due to their oxygen
102 content at high-over mature stages. However, considerable levels of formate and acetate
103 have been detected in coals at high-over mature stages (Li et al., 2021a, 2021b).
104 Therefore, exploring the origin of organic acids at this stage is, although very difficult,
105 extremely important.

106 This study aims to uncover the distributions of WSOAA in source rocks from
107 immature to high-over mature stages, as well as in deep-ultradeep subsurface water
108 samples, to analyze the major factors influencing the distributions of organic acids, and
109 to discuss the origins of organic acids at high-over mature stages combined with
110 pyrolysis experiments under different moisture contents conditions. This work can
111 provide a deeper understanding of the origins of organic acids at high-over mature
112 stages and the evolution of secondary porosity in deep-ultradeep strata.

113 **2 Methods**

114 **2.1 Sample collection and pretreatment**

115 In this study, twenty-nine source rock samples were collected from drill cores in
116 several petroleum-bearing basins in China. They include five Shanxi Formation
117 mudstones with various buried depths and almost same TOC content in Ordos Basin,
118 seven Triassic Yanchang Formation shales with diverse TOC contents and almost same
119 thermal maturity in Ordos Basin, and seventeen coals with different thermal maturities
120 from Junggar Basin, Ordos Basin, Minhe Basin, Qinshui Basin and Southern North
121 China Basin due to no a single basin containing samples with wide thermal maturity
122 interval (Li et al., 2021a). In order to fully compare the effect of thermal maturity on
123 the generation of organic acids, the vast majority of coal samples (thirteen out of
124 seventeen) were chosen from the same stratigraphy in adjacent basins. Detailed
125 information on all samples was presented in [Table 1](#). Six subsurface water samples with
126 depth between 6544 m and 8396 m from exploration wells in Tarim Basin were also
127 collected, and their relevant information was presented in [Table 2](#). These subsurface

128 water samples were preserved in Ordovician carbonate reservoirs that include good
129 effective reservoir space (Jia et al. 2016; Chen et al., 2021).

130 Prior to Soxhlet extraction experiments and pyrolysis experiments, the surface of
131 all source rocks must be removed due to surface oxidation or pollutions from drilling
132 activities rather than cleaning by ultrapure water, because the latter can cause the loss
133 of WSOAA. Then, powdered source rock samples (below 200 mesh) were freeze-dried
134 for 48 h for eliminating the effect of moisture on the subsequent experiments.

135 **2.2 Experiments**

136 **2.2.1 WSOAA analysis**

137 In order to eliminate the pollutions from filter papers, filter papers were extracted
138 using ultrapure water with the resistivity of $18.2 \text{ M}\Omega\cdot\text{cm}$ for 72 h. Extracted filter
139 papers were then freeze-dried for 48 h. Subsequently, 15 g of powdered samples
140 packaged by treated filter paper was extracted using 250 mL of heated ultrapure water.
141 Fluid extracts after filtering using a 0.22 um needle-tube filter were analyzed within 12
142 h using 930 Compact Flex Ion Chromatography System (Metrohm AG) for the
143 compositions and abundances of WSSOA.

144 Measured WSOAA included monocarboxylate (formate, acetate, propionate and
145 butyrate) and dicarboxylate (oxalate, malonate, succinate). Formate, acetate, propionate,
146 butyrate, malonate and succinate in extracts were determined by Metrosep Organic
147 Acids 250/7-8 column, with eluent of 2 mM H_2SO_4 plus 0.1 M LiCl, flow rate of 0.5
148 mL/min, and column temperature of 30 °C. Oxalate in extracts was measured using
149 Metrosep A Supp 17-250/4.0, with eluent of 5.0 mM Na_2CO_3 and 0.2 mM NaHCO_3

150 plus H₂SO₄ solution (1 L ultrapure water including 3 mL concentrated H₂SO₄), flow
151 rate of 0.9 mL/min, and column temperature of 40 °C. The concentrations of WSOAA
152 were determined by external standard via a multiple-point standard calibration curve.
153 The correlation coefficients of standard curves for all WSOAA measurements was
154 above 0.995 ([Figure 1](#)).

155 **2.2.2 Analysis of geochemistry and infrared spectra**

156 TOC content was determined using a CS-920 High Frequency Infrared Ray
157 Carbon Sulphur Analyzer. Programmed pyrolysis was conducted using a Rock-Eval 6
158 Pyrolyser (VINCI Technologies). Detailed descriptions of test principle can be found
159 in [Behar et al. \(2001\)](#). Prior to TOC tests, powdered samples were soaked into the
160 solution with ten percent of hydrochloric acid to eliminate the effect of carbonate
161 minerals. Vitrinite reflectance (R_o) was determined using Axio Scope A1 & JM
162 microscopic photometer (Zeiss) under ambient temperature (23 °C) following SY/T
163 5214-2012.

164 Mineral compositions for Triassic Yangchang Formation shale from Ordos Basin
165 were obtained using Rigaku Ultima IV X-ray diffractometer at 40 kV and 40 mA with
166 a CuK α radiation of $\lambda=1.5406$. Shale samples were scanned stepwise at a rate of 4°/min,
167 scanning range is 3°-75° (2 θ).

168 Infrared spectra for coals with various maturities were measured by an Infrared
169 spectrometer (Bruker) using the most used KBr pellet method. Data was collected
170 within scan range of 4000-400 cm⁻¹ with a resolution of 4 cm⁻¹ for 100 s. Detailed
171 procedures were described in [Li et al. \(2021a\)](#).

172 **2.2.3 Pyrolysis experiments**

173 20 g of powdered shale samples from Triassic Yanchang Formation of Ordos Basin

174 were placed into the high-temperature and high-pressure stainless-steel reactor, and

175 then pyrolysis experiments were conducted for 72 h. 2 mL ultrapure water was added

176 into reactor as hydrous pyrolysis system for comparison with anhydrous pyrolysis

177 system. Creating an inert condition in sealed stainless-steel reactor is via six-time

178 displace of high purity of N₂ and subsequent evacuation. Pyrolysis experiments were

179 conducted at 250 °C, 300 °C, 350 °C, 400 °C and 450 °C respectively. The tightness of

180 pyrolysis system was checked through applying soapy water at the exhaust port during

181 the pyrolysis experiments. After pyrolysis experiments, 5 g of powdered shale samples

182 were extracted using heated ultrapure water for 72 h to obtain WSOAA. Results of

183 Rock-Eval pyrolysis parameters for pyrolysis shale residues could be found in [Li et al.](#)

184 [\(2023\)](#).

185 **3 Results**

186 **3.1 WSOAA in source rocks and deep-ultradeep subsurface water**

187 The concentrations of WSOAA in source rocks are shown in [Figure 2a](#). They range

188 from 0.244 mg/L to 83.192 mg/L. Mudstones from Permian Shanxi Formation have

189 relatively low concentrations of WSOAA, ranging between 3.409 mg/L~13.201 mg/L.

190 Concentrations of WSOAA in the shales from Triassic Yanchang Formation are in the

191 range of 8.108 mg/L~39.943 mg/L. Concentrations of WSOAA in coals with very wide

192 maturity intervals (T_{max} from 420 °C to 618 °C) are between 0.244 mg/L and 83.192

193 mg/L. Concentrations of WSOAA in deep-ultradeep subsurface water samples from the

194 Tarim Basin are in the range of 3.693 mg/L~394.486 mg/L ([Figure 2a](#)). In addition,
195 with increasing pH value of subsurface water, the concentrations of WSOAA in the
196 samples show a dramatic decrease when pH<7 (from 394.486 ppm to 61.257 ppm) and
197 then a gradual reduction ([Figure 2b](#)).

198 For both source rocks and deep-ultradeep subsurface water samples, the
199 percentages of monocarboxylates are significantly greater than those of dicarboxylates
200 ([Figure 2c](#)), which is similar to what was documented in previous literatures ([Carothers](#)
201 and [Kharaka, 1978](#); [Fisher, 1987](#); [Barth and Rill, 1992](#); [MacGowan and Surdam, 1990](#);
202 [Barth, 1991](#)). Monocarboxylates are dominated by formate and acetate, and
203 dicarboxylates are mainly composed of oxalate and succinate ([Figure 2c](#)).

204 Formate concentrations in all samples are significantly different from the values
205 reported in previous studies. Formate concentrations have rarely been reported in
206 previous works (i.e., [Carothers and Kharaka, 1978](#); [Fisher, 1987](#)). In this study, formate
207 has relatively high abundance. For some samples with mainly type-III OM, such as
208 coals from Permian Shanxi Formation, it even outnumbers acetate concentration. In
209 addition, some recent literatures also have reported elevated level of formate from
210 sedimentary rocks ([Zhu et al., 2015](#); [Li et al., 2018](#); [Li et al., 2021a, 2021b, 2023](#)),
211 ancient fracture fluids ([Lollar et al., 2021](#)), products of hydrous pyrolysis ([Li et al.,](#)
212 [2018](#); [Yuan et al., 2019b](#)), hydrothermal fields ([Lang et al., 2010](#); [MaDermott et al.,](#)
213 [2015](#)), and flowback water ([Faksness et al., 2004](#); [Luek and Gonsior, 2017](#); [Orem et al.,](#)
214 [2014](#)). [McCollom and Seewald \(2003\)](#) have demonstrated that formate is
215 thermodynamically stable under strongly reducing and moderately alkaline pH

216 conditions. Therefore, the most possible reason for formate not being detected in
217 subsurface water may be attributed to low analytical techniques at that time.

218 **3.2 Production rate of organic acids**

219 Production rate of organic acids for shales under different pyrolysis conditions at
220 different temperatures are shown in [Figure 2d](#). At ≤ 350 °C pyrolysis temperature, the
221 production rate of organic acids is almost equivalent under both anhydrous and hydrous
222 pyrolysis, which is determined by the natural maturity of the shale used in this work.

223 However, at ≥ 400 °C pyrolysis temperature, the production rate of organic acids is
224 significantly higher under hydrous than anhydrous pyrolysis, and the difference
225 between two pyrolysis series increases from 400 °C to 450 °C pyrolysis temperature.

226 This indicates that the presence of water promotes the generation of organic acids.

227 **4 Discussion**

228 **4.1 Factors affecting the distributions of WSOAAs in source rocks**

229 **4.1.1 TOC content**

230 According to the fluid products from the hydrous pyrolysis of OM/kerogen
231 ([Eglinton et al., 1987](#); [Barth et al., 1988](#); [Chen et al., 1994a](#); [Zhang et al., 2009](#); [Helten
232 et al., 2022](#)) and crude oil ([Curiale et al., 1992](#); [Kharaka et al., 1993](#); [Borgund and Barth,
233 1994](#)), and liquid extracts from shales and coals using heated ultrapure water ([Zhu et
234 al., 2015](#); [Li et al., 2021a, 2021b](#)), source rocks can generate and release organic acids
235 under thermal stress.

236 In order to accurately determine the effect of OM abundance on the distributions
237 of WSOAA, and minimize the effect of other factors, such as sedimentary environment,

238 thermal maturity history, OM provenance and burial depth, seven representative shales
239 from Triassic Yanchang Formation with diverse TOC contents (from 0.84 to 23.90 %)
240 from well YK1 located in Ordos Basin are selected.

241 Results show that TOC content correlates positively with concentrations of
242 WSOAA ([Figure. 3a](#)). This indicates that shales with high TOC contents generate more
243 organic acids. Moreover, concentrations of WSOAA are positively proportional to the
244 percentage of dicarboxylate ([Figure. 3b](#)). Organic acids can dissolve carbonate,
245 aluminosilicate and quartz as demonstrated through a suite of acid fluid-minerals/rocks
246 dissolution simulation experiments, which is consistent with the negative correlations
247 observed between concentrations of WSOAA and the amounts of carbonate, clay
248 minerals and quartz respectively ([Figures. 3c, 3e and 3f](#)).

249 Note that feldspar content does not correlate with the concentrations of WSOAA
250 ([Figure 3d](#)), which is due to that strong volcanism inputting pyroclasts alters the
251 relationship between them. [Jones et al. \(2022\)](#) have demonstrated that pyroclasts
252 include multiple forms of plagioclase via microscope observations, such as phenocryst,
253 microphenocryst, and xenocryst. Additionally, previous studies have demonstrated that
254 there are multiply episodes of volcanism during the Triassic period, causing the
255 enrichment of organic matter and abnormally high TOC content in shale from the
256 Yanchang Formation ([Liu et al., 2024; Zhang et al., 2020](#)). To sum up, in this study, we
257 observed the unique occurrence that some shale from Yanchang Formation had both
258 high feldspar content and concentrations of WSOAA.

259 Commonly, soluble minerals have greater solubility in dicarboxylate than in

260 monocarboxylate buffer system (Surdam et al., 1984; Knauss and Copenhaver, 1995;
261 Chen et al., 2008; Bennett, 1991; Welch and Ullman, 1996; Blake and Walter, 1999;
262 Gama and Ganor, 2006; Chen et al., 2020). Taking hydrargillite as an example, the
263 content of aqueous Al^{3+} is three orders of magnitude higher in oxalic than in acetic acid
264 buffer system (Surdam et al., 1984). Chen et al. (2008) also have demonstrated stronger
265 complexing capacity of difunctional carboxylic acid buffer system. According to the
266 findings from Chen et al. (1994b), oxalate can combine quartz to form ring-like
267 compounds to prevent silica from agglomerating. However, Manning et al. (1994) have
268 documented that only the rate of albite dissolution is promoted, but its solubility cannot
269 be essentially enhanced under acetic acid buffer system, which challenges the
270 complexing potential of acetate. Although there are some controversies over the
271 dissolution mechanisms on complexing ability of monofunctional carboxylic anions,
272 the complexing ability of difunctional carboxylic anions is beyond doubt.

273 Al and Si released by the dissolution of organic acids generated can react with
274 dicarboxylate to form stable organic complex (Cama and Ganor, 2006; Welch and Ullan,
275 1996; Prasad and Sulaxna, 2005). Moreover, the seventh member of shale from Triassic
276 Yanchang Formation undergoing progressive generation of hydrocarbon caused
277 overpressure of fluid (Li et al., 2010). When the pressure of fluid was above pore
278 pressure, stable organic complex would migrate up or down during the expulsion of
279 liquid hydrocarbons generated. Without required elements such as Al and Si, the growth
280 of clay minerals and quartz would be inhibited, which is significant for reservoir space.
281 TOC-normalized concentration of WSOAA, which can be used to evaluate the

282 organic acid production rate per gram of TOC, is negatively proportional to TOC as
283 shown in [Figure 3e](#). This indicates that shale with high TOC has low organic acid
284 production rate, although it can generate great levels of organic acids. This is consistent
285 with the work by [Lundegard and Senftle \(1987\)](#), who carried out a suite hydrous
286 pyrolysis experiments at temperature interval of 250~350 °C for 72 h using
287 carbonaceous shale. At the same pyrolysis temperature, lower organic acid production
288 rate always is found for shale with 7.71 % TOC than shale with 4.05 % TOC ([Lundegard](#)
289 [and Senftle, 1987](#)). Low organic acid production rate possibly depends on limited
290 ability of hydrogen supply.

291 Hydrogen source is vital for the generation of hydrocarbon. H₂O and H₂ are
292 important hydrogen sources, participating in thermal degradation and cracking and
293 promoting hydrocarbon production rate ([Hawkes, 1972](#); [Lewan, 1997](#); [Jin et al., 2004](#);
294 [Liu et al., 2019](#); [Gao et al., 2020](#); [Huang et al., 2022](#); [Liang et al., 2021](#)). [Lewan \(1997\)](#)
295 demonstrated that OM could evolve into an insoluble bitumen-pyrobitumen under
296 anhydrous pyrolysis condition due to the absence of hydrogen, and cross linking was
297 the dominant reaction pathway. The experimental results from [Yuan et al. \(2019b\)](#) also
298 supported the generation of pyrobitumen under an anhydrous pyrolysis system. On the
299 contrary, OM generates saturate-enriched oil with enough hydrogen provided by H₂O
300 under hydrous pyrolysis condition, during which thermal cracking is the major reaction
301 pathway ([Lewan, 1997](#)). In summary, during the thermal evolution of OM, the higher
302 the initial TOC content, the more serious deficiency of hydrogen source, therefore, the
303 lower hydrocarbon conversion rate.

304 Figure 4 shows different evolution pathways of oxygen-containing functional
305 groups at diverse levels of hydrogen systems. In a system lacking of hydrogen, the
306 dehydration reactions of diverse oxygen-containing functional groups or multiple
307 carboxyl groups are important pathways to form H₂O. Meanwhile the cyclization and
308 aromatization of hydrocarbons are important pathways to form H₂. These H₂O and H₂
309 are vital for the generation of hydrocarbons (Liu et al., 2019). However, the decrease
310 of oxygen-including functional groups due to dehydration reactions results in low
311 organic acid production rate. In a system with sufficient hydrogen, the direct fall-off of
312 oxygen-including functional groups such as carboxyl, and the hydrolysis of ester tend
313 to form organic acids. Moreover, under favorable conditions, the dissociation of water
314 produces hydroxyl radicals, oxidizing hydrocarbon to alcohol to aldehyde/ketone to
315 final carboxylic acid (Seewald, 2001, 2003). Overall, shales with low TOC contents,
316 corresponding to sufficient hydrogen system, has high production rate of organic acids
317 due to either more initial carboxylic acids directly falling off from OM or other organic
318 components oxidized by hydroxyl radical, such as oxygen-containing functional groups
319 and hydrocarbons.

320 **4.1.2 Maturity**

321 Figure 5 shows that concentrations of WSOAA change with T_{max}. As T_{max} rises,
322 concentrations of WSOAA first present a quick downtick, followed by a slight uptick
323 and an ongoing downtick to trace afterward (Figure 5a). Concentrations of major
324 WSOAA, such as formate, acetate and oxalate, show almost same evolution trend over
325 T_{max} (Figures. 5b, 5c, and 5d). Moreover, there are positive correlations among

326 concentrations of formate, acetate and oxalate as observed (Figures. 5e, 5f, and 5g),
327 suggesting the same origin and occurrence of organic acids.

328 Thermal evolution of OM is a process during which the contents of hydrogen and
329 oxygen decrease gradually but carbon becomes enriched, leading to gradually increased
330 degree of aromatization (He et al., 2017). At immature stage, oxygen-containing
331 functional groups such as carboxylic-acid, ester and carbonyl groups, fall off
332 substantially. Robin and Rouxhet (1978) demonstrated that there were huge differences
333 in the stability of oxygen-containing functional groups. Carboxylic-acid groups were
334 less thermally stable, followed by ester groups and carbonyl groups. Relative to the
335 atomic ratio of H/C, atomic ratio of O/C has shown significantly decreased rate
336 according to the generalized van Krevelan diagram (Surdam et al., 1987). Element
337 analysis of coal from Li et al. (2021a) and infrared spectrum (Figure 6) also support the
338 dramatic decrease of oxygen contents. Moreover, the product from kerogen is mainly
339 water-soluble organic components at immature stage. Overall, the concentrations of
340 WSOAA are relatively high, and present remarkable downturn over maturity.

341 During mature stage, OM converts into large amounts of liquid hydrocarbons and
342 bitumen under thermal stress. These components consist of certain amount of oxygen-
343 containing functional groups, which is well substantiated by fourier transform infrared
344 spectroscopy and column chromatography (Craddock et al., 2015; Zhang et al., 2006).
345 Moreover, thermal stress at this stage is insufficient to cause thermal cracking of these
346 liquid hydrocarbons and bitumen. Therefore, concentrations of WSOAA at this stage is
347 relatively low.

348 With progressive maturity, the increase of thermal stress results in the thermal
349 cracking of liquid hydrocarbon and bitumen to generate certain concentrations of
350 organic acids. In addition, at high-over mature stages, gaseous hydrocarbons, especially
351 CH₄ as the byproducts of these liquid hydrocarbons and bitumen, possibly are oxidized
352 thermochemically by hydroxyl radical to form organic acids, which seem to be well
353 consistent with the experimental results of this study (Figure 2d). Lewan (1997) used
354 numerous hydrous pyrolysis experiments to explore the interactions between water and
355 OM, and demonstrated that water oxidizing organic components to form organic acids
356 was thermodynamically practicable. This suggests that concentrations of organic acids
357 after mature stage is not limited to the protal oxygen content of OM/kerogen. Overall,
358 concentrations of WSOAA at high-over mature stages present a slight uptick due to
359 thermal cracking of liquid hydrocarbons and thermochemical oxidation of organic
360 components.

361 As maturity increases, the content of oxygen in coal becomes extremely low. For
362 instance, coal with 618 °C T_{max} only has 2% oxygen content (Li et al., 2021a), which is
363 consistent with almost no responses to oxygen-containing functional groups with 1500-
364 1800 cm⁻¹ wavenumber (Figure 6). Moreover, this is well substantiated by the low
365 extraction rate and low amounts of bitumen plus non-hydrocarbon compositions (Zhang
366 et al., 2006). Coal is almost completely of aromatization. Therefore, concentrations of
367 WSOAA are trace at this stage.

368 **4.1.3 Type of OM**

369 Coal, typical type-III OM, has high oxygen content at immature stage in particular.

370 Li et al. (2021a) documented that lignites with T_{max} less than 425 °C in Ordos Basin
371 and Junggar Basin in China has over 20 % oxygen content. Mangi et al. (2020) reported
372 that coals with 0.4 % R_o in Lower Indus Basin in Pakistan contained oxygen content
373 from 39.38 % to 50.84 %. Such high oxygen content in coal is very conducive to
374 generate great levels of organic acids (Cooles et al., 1987). As expected, concentrations
375 of WSOAA in coal are significantly greater than those in shales (type-I or -II OM) at
376 immature stage as shown in Figure 7. With progressive maturity, concentrations of
377 WSOAA in diverse types of OMs are roughly comparable. This is due to little
378 differences of oxygen content. It coincides with the chemical model of kerogen
379 proposed by Behar and Vandenbroucke (1987). The huge difference in O/C atomic ratio
380 is at the beginning of diagenesis, O/C atomic ratios in type-I, -II and -III kerogens are
381 0.060, 0.196 and 0.281 respectively, but O/C atomic ratios are 0.013, 0.026 and 0.059
382 respectively at the end of catagenesis (Behar and Vandenbroucke, 1987).

383 Considering previous works and this work, formate and acetate are dominant
384 components, especially in deep-ultradeep zone and at high-over mature stages. In order
385 to uncover the differences in distributions between formate and acetate in different
386 types of OMs, the ratio of formate concentration to acetate concentration, expressed as
387 $c(\text{formate})/c(\text{acetate})$, are plotted vs. T_{max} as shown in Figure 8. For type-III OM, such
388 as most of the Permian coals from the Shanxi Formation in the Northern North China
389 Basin and Qinshui Basin, $c(\text{formate})/c(\text{acetate})$ ratios are close to or above 1, while they
390 are below 1 for type-I and -II OMs, such as shales from Triassic Yanchang Formation,
391 Jurassic Posidonia Formation, Mississippian Bakken Formation, Late Devonian

392 Duvernay Formation (Figure 8). Moreover, as T_{max} increases, for type-III OM
393 $c(\text{formate})/c(\text{acetate})$ ratios increase while they decrease for type-I and -II OMs (Figure
394 8). This suggests that type-III OM is enriched in formic acid but type-I and -II OMs are
395 enriched in acetic acid. Note that some coal samples collected from the Ordos Basin
396 have $c(\text{formate})/c(\text{acetate})$ ratios close to or below 1. This is due to that besides type-
397 III OM, these coals include some type-II or -I OMs formed in a marine-terrestrial
398 transitional environment. Insights from sedimentology, detrital zircon U-Pb
399 geochronology, and organic geochemistry, the Ordos Basin experienced a transition
400 from marine to terrestrial conditions during the Carboniferous–Permian period (Zhao
401 et al., 2021; Li et al., 2024).

402 The differences in the abundances of organic acids in different types of OMs are
403 closely related to macromolecular structure and their metabolites. According to the
404 chemical model proposed by Behar and Vandenbroucke (1987), at the beginning of
405 diagenesis, relative to type-I and -II kerogens, type-III kerogen has a number of shorter
406 oxygen-containing side chains, such as methoxy and methyl ester, the fall-off of these
407 functional groups tends to generate high level of formic acid. Herein, generated formic
408 acid comes from the fall-off of oxygen-containing functional groups before mature
409 stage.

410 At high-over mature stages, type-III OM mainly generates significant amount of
411 light gaseous hydrocarbons via thermal cracking, especially CH_4 . Zhang et al. (2019)
412 reported that CH_4 in No.3 coal seam in Qinshui Basin reaching up to 96.22 % (vol.). It
413 can be deduced that formic acid is generated via thermochemical oxidation of CH_4 ,

414 which will be discussed below in Section 4.2.

415 For type-I and -II OMs, liquid hydrocarbon and bitumen mainly evolve into light
416 condensate at high-over mature stages, lacking of CH₄ relatively. Although acetic
417 acid/acetate can occur decarboxylation to form CH₄, the kinetic barrier of acetic
418 acid/acetate decomposition is very high (Wang et al., 2021). The decomposition rate for
419 acetic acid/acetate reactive system is extremely low at 180 °C, only 2.48×10⁻⁹ s⁻¹ at 60
420 MPa of fluid pressure and 90 MPa of lithostatic pressure (Li et al., 2017; Li et al.,
421 2021c). Therefore, acetate acid is commonly the most abundant component in type-I
422 and -II OMs.

423 **4.2 Origin of organic acids at high-over mature stages**

424 Combining the results of extraction experiments and hydrous pyrolysis
425 experiments in this study, and the simulation experiments of thermal stability of organic
426 acid buffer system (Li et al., 2017; Li et al., 2021c), it is reasonably inferred that organic
427 acids can be formed via thermochemical oxidation of organic components at high-over
428 mature stages. The requirements for thermochemical oxidation of organic components
429 including temperature and oxidant, along with isotope fractionation evidences, are
430 analyzed in detail.

431 The thermochemical oxidation of organic components commonly takes place at
432 temperature above 100 °C (Machel, 2001; Kiyosu and Imaizumi, 1996). Hu et al. (2018)
433 demonstrated that CH₄ can be oxidized by high-valence Mn within 90-135 °C in natural
434 system (Triassic Baikouquan Formation mudstone in Junggar Basin, China) based on
435 the evidences from the carbon isotope of calcite and the thermometry of fluid inclusions.

436 The lower temperature (below 65 °C) could meet the conditions of CH₄ oxidized by
437 high-valence Mn, which had been demonstrated by [Cai et al. \(2021\)](#) according to the
438 clumped isotope of calcite. [Wan et al. \(2021\)](#) documented via a suite of pyrolysis
439 experiments that CH₃OH and CH₄ could be oxidized by MnO₂ and Fe₂O₃ at the
440 temperature of approximately 100 °C and 200 °C respectively. Yuan et al. (2019b)
441 demonstrated the interrelated changes of minerals, gaseous byproducts and organic
442 acids in heated oil-water-feldspar systems via a suite of thermal simulation experiments
443 at the temperature of 360 °C. They observed considerable levels of organic acids in the
444 C₂₀H₄₂ (2 g) plus H₂O (5 g) pyrolysis system, and the concentration of oxalic acid in
445 the liquid residues reached up to 50 mg/L. In summary, high-over mature stages
446 corresponding to geological temperature could meet the requirement for the
447 thermochemical oxidation of organic components.

448 Hydroxyl radical is one of the most powerful oxidizing agents ([Gligorovski, et al.,](#)
449 [2015; Nosaka and Nosaka, 2017; Pei et al., 2020](#)). Its oxidation potential is up to 2.8 V,
450 only second to Fluorine oxidizer (3.05 V). It can be yielded in the aqueous phase at
451 certain conditions such as radiolysis ([Gilles et al., 2018; Smith et al., 2021](#)), electric
452 field ([Xiong et al., 2020](#)). Yuan et al. (2024) carried out diverse pyrolysis experiments
453 using a transparent silica capillary thermal experimental system that was equipped with
454 the high-temperature, high pressure Hastelloy reactors. They observed the formation of
455 large amounts of microdroplets near the water-oil interface without surfactants since
456 the pyrolysis temperature exceeded 150~165 °C; moreover, hydroxyl radicals occurred
457 simultaneously with microdroplet formation through electron paramagnetic resonance

458 tests (Yuan et al., 2024). In this work, we observed higher concentrations of WSOAA
459 at 400 °C and 450 °C under hydrous pyrolysis, which was attributed to the hydroxyl
460 radicals oxidizing organic components. With the exception of hydroxyl radical, coal
461 itself and its roof and floor generally contain diverse key metals, such as iron,
462 manganese, gallium, titanium, vanadium, germanium, uranium and rare earth elements
463 (Seredin and Finkelman, 2008; Seredin et al., 2013; Dai et al., 2020), these high-valence
464 metals also possibly have certain capacity of oxidizing organic components, resulting
465 in the formation of organic acids. In summary, the presence of abundant oxidants in
466 geological conditions can meet the requirements for the thermochemical oxidation of
467 organic components.

468 From isotope evidence, Dias et al. (2002) demonstrated that $\delta^{13}\text{C}$ values of acetic
469 acid showed an uptick trend at pyrolysis temperature higher 260 °C, which
470 demonstrated the preferential oxidization of ^{12}C , subsequently resulting in the
471 enrichment of ^{13}C in acetic acid with the increase of pyrolysis temperature. Overall, the
472 thermochemical oxidation of organic components is an important mechanism to form
473 organic acids at high-over mature stages.

474 **5 Geological implications**

475 The role of organic acids as acid fluid, and as metastable intermediates due to the
476 thermochemical oxidation of organic components, have important geochemical
477 implications in sedimentary basins. The first implication centers on the phenomena that
478 different OMs have remarkable differences in $c(\text{formate})/c(\text{acetate})$ ratios. They show
479 reverse trends with T_{max} for different types of OMs (Figure 8). Therefore

480 $c(\text{formate})/c(\text{acetate})$ ratio can be used as an index distinguishing the type of OM and
481 evaluating the thermal maturity of OM. These findings can provide constraint on the
482 identification of OM type and the evaluation of thermal maturity.

483 The second implication is related to both the uptick of concentrations of WSOAA
484 at high-over mature stages and considerable concentrations of organic acids at deep-
485 ultradeep depth. Anomalous concentrations of organic acids are largely attributed to the
486 thermochemical oxidation of organic components by mainly hydroxyl radicals. Within
487 the crust of the Earth, water is ubiquitous in rock pores, fractures and hydrated minerals
488 (Lewan, 1997). With continuous subsidence of strata, hydroxyl radicals are generated
489 at the water-hydrocarbon interfaces, which initiates the extensive thermochemical
490 oxidation of organic components, resulting in the ongoing generation of organic acids
491 and simultaneously creating new secondary pores. Well-developed corroded cavities in
492 No. 3 or No. 15 coals ($\text{Ro} \geq 2.0\%$) in Qinshui Basin, China ([Figure 9](#)) are visible
493 evidence with regard to the dissolution of acidic fluids. Moreover, we observed higher
494 pore volume via low-pressure N_2 adsorption under hydrous than anhydrous pyrolysis
495 at $\geq 400\text{ }^{\circ}\text{C}$, which is partly due to the dissolution of organic acids ([Li et al., 2023](#)).
496 Consequently, petroleum exploration can be extended to great depths in sedimentary
497 basins, when formation temperatures are not exceeding $230\text{ }^{\circ}\text{C}$, because organic acids
498 occur to decompose extensively at temperature above $230\text{ }^{\circ}\text{C}$ ([Li et al., 2017](#)).

499 These evidence mentioned above challenge the organic acid model proposed by
500 [Surdam et al. \(1989\)](#), where high concentration interval of organic acids occurred at
501 temperature between $80\text{--}120\text{ }^{\circ}\text{C}$. Beside the temperature interval proposed by [Surdam](#)

502 et al. (1989), there is at least another one at deep-ultradeep zone. However, it is difficult
503 to capture this temperature interval so far due to the compilation of limited dataset. It
504 still requires extensive further studies.

505 **6 Conclusions**

506 (1) Percentage of monocarboxylate is significantly higher than that of dicarboxylate in
507 both source rocks and deep-ultradeep subsurface water samples. Monocarboxylate
508 is mainly dominated by formate and acetate, and dicarboxylate is mainly composed
509 of oxalate and succinate.

510 (2) TOC content, maturity and OM type jointly affect the distributions of WSOAA.
511 Although high-TOC oil-generating source rocks generate elevated level of organic
512 acids, it has low organic acid production rate possibly due to lack of hydrogen.
513 Concentrations of WSOAA show a “sharp decrease-slight increase-slow decrease”
514 evolution trend with progressive maturity. At immature stage, gas-generating source
515 rock contains higher concentrations of WSOAA, due to the presence of abundant
516 oxygen-bearing function groups. Gas-generating source rock is rich in formic acid
517 while oil-generated source rock is rich in acetic acid, which relates closely to
518 macromolecular structure and their metabolites.

519 (3) Both an uptick of concentrations of WSOAA at high-over mature stages and the
520 presence of high level of organic acids in deep-ultradeep subsurface water are due
521 to thermochemical oxidation of organic components by mainly hydroxyl radicals.
522 These geochemical signatures provide new insight into the origins of organic acids
523 and the evolution of secondary porosity at deep-ultradeep depth. It indicates that

524 petroleum exploration can be extended to great depths (formation temperature not
525 exceeding 230 °C) in sedimentary basins.

526 **Conflict of Interest**

527 The authors declare that they have no conflict of Interest.

528 **Date availability**

529 Data will be made available on request.

530 **Acknowledgements**

531 This work was supported by the National Nature Science Foundation of China (Grant
532 Nos. 42203027, U20B6001, 41872147), and the China Postdoctoral Science
533 Foundation (Grant No. 2023M730039).

534 **References**

- 535 Barth, T., 1991. Organic acids and inorganic ions in waters from petroleum reservoirs,
536 Norwegian continental shelf: a multivariate statistical analysis and comparison
537 with American reservoir formation waters. *Applied Geochemistry*, 6: 1-15.
- 538 Barth, T., Borgund, A.E., Hopland, A.L., Graue, A., 1988. Volatile organic acids
539 produced during kerogen maturation-Amounts, composition and role in migration
540 of oil. *Organic Geochemistry*, 13: 461-465.
- 541 Barth, T., Rill, M., 1992. Interaction between organic acid anions in formation waters
542 and reservoir mineral phase. *Organic Geochemistry*, 19(4-6): 455-482.
- 543 Behar, F., Beaumont, V., Penteado, H.L.D., 2001. Rock-Eval 6 Technology:
544 Performances and Developments. *Oil & Gas Science and Technology*, 56, 111-134.
- 545 Behar, F., Vandenbroucke, M., 1987. Chemical modelling of kerogen. *Organic
546 Geochemistry*, 111: 15-24.
- 547 Bell, J.L.S., Palmer, D.A., Barnes, H.L., Drummond, S.E., 1994. Thermal
548 decomposition of acetate: III. Catalysis by mineral surfaces. *Geochimica Et
549 Cosmochimica Acta*, 58: 4155-4177.
- 550 Bennett, P.C., 1991. Quartz dissolution in organic-rich aqueous systems. *Geochimica
551 Et Cosmochimica Acta*, 55: 1781-1797.
- 552 Blake, R.E., Walter, L.M., 1999. Kinetics of feldspar and quartz dissolution at 70-80 °C
553 and near-neutral pH: Effects of organic acids and NaCl. *Geochimica Et
554 Cosmochimica Acta*, 63: 2043-2059.
- 555 Borgund, A.V., Barth, T., 1994. Generation of short-chain organic acids from crude oil
556 by hydrous pyrolysis. *Organic Geochemistry*, 21(8-9): 943-952.

- 557 Cai, C.F., Li, K.K., Liu, D.W., John, C.M., Wang, D.W., Fu, B., Fakhraee, M., He, H.,
558 Feng, L.J., Jiang, L., 2021. Anaerobic oxidation of methane by Mn oxides in
559 sulfate-poor environments. *Geology*, 49: 48553.
- 560 Cama, J., Ganor, J., 2006. The effects of organic acids on the dissolution of silicate
561 minerals: A case study of oxalate catalysis of kaolinite dissolution. *Geochimica Et
562 Cosmochimica Acta*, 70: 2191-2209.
- 563 Cao, Y.C., Yang, T., Song, M.Y., Wang, Y.Z., Ma, B.B., Wang, J., Yuan, G.H., Xi, K.L.,
564 2018. Characteristics of low-permeability clastic reservoirs and genesis of
565 relatively high-quality reservoirs in the continental rift alke basin: a case study of
566 Paleogene in the Dongying sag, Jiyang depression. *Acta Petrolei Sinica*, 39: 727-
567 743. (in Chinese with English abstract)
- 568 Cao, Y.C., Yuan, G.H., Li, X.Y., Wang, Y.Z., Xi, K.L., Wang, X.M., Jia, Z.Z., Yang, T.,
569 2014. Characteristics and origin of abnormally high porosity zones in buried
570 Paleogene clastic reservoirs in the Shengtuo area, Dongying Sag, East China.
571 *Petroleum Science*, 11: 346-362.
- 572 Carothers, W., Kharaka Y.K., 1978. Aliphatic acid anions in oil-field waters-
573 Implications for origin of natural gas. *AAPG Bulletin*, 62: 2441-2453.
- 574 Chen S.Y., Wang, Y.J., Guo, J.Y., He, Q.L., Yin, X.R., 2021. Multi-scale evaluation of
575 fractured carbonate reservoir and its implication to sweet-spot optimization: A case
576 study of Tazhong oilfield, Central Tarim Basin, China. *Energy Reports*, 7: 2976-
577 2988.
- 578 Chen, C.P., Gu, X., Zhou, S.M., Liu, J.P., 2008. Experimental research on dissolution
579 dynamics of main minerals in several aqueous organic acid solutions. *Acta
580 Geologica Sinica*, 827: 1007-1012. (in Chinese with English abstract)
- 581 Chen, C.P., Mei, B.W., Jia, F.J., Cheng, F.G., 1994a. Experimental study on simulation
582 of the generation of low-molecular weight organic acids from source rocks.
583 *Geochimica*, 23: 156-159. (in Chinese)
- 584 Chen, C.P., Mei. B.W., Ma. T., Cai, C.F., 1994b. Experimental researches on downy
585 siliceous precipitate in aqueous solutions. *Oil & Gas Geology*, 15: 316-321. (in
586 Chinese)
- 587 Chen, X., Qu, X.Y., Xu, S.Y., Wang, W.M., Li, S.M., He, H., Liu, Y., 2020. Dissolution
588 pores in shale and their influence on reservoir quality in Damintun Depression,
589 Bohai Bay Basin, East China: Insights from SEM images, N₂ adsorption and fluid-
590 rock interaction experiments. *Maraine and Petroleum Geology*, 117: 104394.
- 591 Cooles, G.P., Mackenzie, A.S., Parkes, R.J., 1987. Non-hydrocarbons of significance in
592 petroleum exploration: volatile fatty acids and nonhydrocarbon gases.
593 *Mineralogical Magazine*, 51: 483-493.
- 594 Craddock, P.R., Doan, T.V.L., Bake, K., Polyakov, M., Charsky, A.M., Pomerantz, A.E.,
595 2015. Evolution of Kerogen and Bitumen during Thermal Maturation via Semi-
596 Open Pyrolysis Investigated by Infrared Spectroscopy. *Energy & Fuels*, 29: 2197-
597 2210
- 598 Curiale, J.A., Lundegard, P.D., Kharaka, Y.K., 1992. Hydrous pyrolysis of crude oil in
599 gold-plated reactors. *Organic Geochemistry*, 185: 745-756.
- 600 Dai, S.F., Zhao, L., Wei, Q., Song, X.L., Wang, W.F., Liu, J.J., Duan, P.P., 2020.

- 601 Resource of critical metals in coal-bearing sequences in China: Enrichment types
602 and distribution. Chinese Science Bulletin, 65: 3715-3729. (in Chinese with
603 English abstract)
- 604 Dias, R.F., Freeman, K.H., Lewan, M.D., Franks, S.G., 2002. $\delta^{13}\text{C}$ of low-molecular-
605 weight organic acids generated by the hydrous pyrolysis of oil-prone source rocks.
606 *Geochimica Et Cosmochimica Acta*, 6615: 2755-2769.
- 607 Eglinton, T.I., Curtis, C.D., Rowland, S.J., 1987. Generation of water-soluble organic
608 acids from kerogen during hydrous pyrolysis: implications for porosity
609 development. *Mineralogical Magazine*, 51: 495-503.
- 610 Faksness, L.G., Grini, P.G., Daling, P.S., 2004. Partitioning of semisoluble organic
611 com-pounds between the water phase and oil droplets in produced water. *Marine
612 Pollution Bulletin*, 48: 731-742.
- 613 Fisher, J.B., 1978. Distribution and occurrence of aliphatic acid anions in deep
614 subsurface waters. *Geochimica Et Cosmochimica Acta*, 51: 2459-2468.
- 615 Franks, S.G., Dias, R.F., Freeman, K.H., Boles, J.R., Holba, A., Fincannon, A.L., Jordan,
616 E.D., 2001. Carbon isotopic composition of organic acids in oil field waters, San
617 Joaquin Basin, Colifornia, USA. *Geochimica Et Cosmochimica Acta*, 65: 1301-
618 1310.
- 619 Gao, J.L., Ni, Y.Y., Li, W., Yuan, Y.L., 2020. Pyrolysis of coal measure source rocks at
620 highly to over mature stage and its geological implications. *Petroleum Exploration
621 and Development*, 474: 773-780.
- 622 Gilles, M., Brun, E., Sicard-Roselli, C., 2018. Quantification of hydroxyl radicals and
623 solvated electrons produced by irradiated gold nanoparticles suggests a crucial role
624 of interfacial water. *Journal of Colloid and Interface Science*, 525: 31-38.
- 625 Gligorovski, S., Strekowski, R., Barbati, S., & Vione, D., 2015. Environmental
626 Implications of Hydroxyl Radicals $\cdot\text{OH}$. *Chemical Reviews*, 115, 13051-13092.
- 627 Gong, L., Gao, X.Z., Qu, F.T., Zhang, Y.S., Zhang, G.Y., Zhu, J., 2023. Reservoir
628 Quality and Controlling Mechanism of the Upper Paleogene Fine-Grained
629 Sandstones in Lacustrine Basin in the Hinterlands of Northern Qaidam Basin, NW
630 China. *Journal of Earth Science*, 34(3): 806-823. <https://doi.org/10.1007/s12583-022-1701-6>
- 632 Hawkes, H.E., 1972. Free hydrogen in genesis of petroleum. *AAPG Bulletin*, 56: 2268-
633 2270.
- 634 He, X.Q., Liu, X.F., Nie, B.S., Song, D.Z., 2017. FTIR and Raman spectroscopy
635 charaterization of functional groups in various rank coals. *Fuel*, 206: 555-563.
- 636 Helten, O., Ostertag-Henning, C., Back, W., Hinrichs, K., 2022. Generation and
637 decomposition of low-molecular-weight organic acids in hydrous pyrolysis
638 experiments with Opalinus Clay rock. *Organic Geochemistry*, 172: 104481.
- 639 Heuer, V.B., Inagaki, F., Morono, Y., Kubo, Y., Spivack, A.J., Viehweger, B., Treude,
640 T., Beulig, F., Schubotz, F., Tonai, S., 2020. Temperature limits to deep subseafloor
641 life in the Nankai Trough subduction zone. *Science*, 370: 1230-1234.
- 642 Hu, W.X., Kang, X., Cao, J., Wang, X.L., Fu, B., Wu, H.G., 2018. Thermochemical
643 oxidation of methane induced by high-valence metal oxides in a sedimentary basin.
644 *Nature Communications*, 9: 5131.

- 645 Huang, C.G., Zhao, F., Yuan, J.Y., Sun, P., Zhang, S.M., 2016. Acid fluids
646 reconstruction clastic reservoir experiment in Qaidam saline lacustrine Basin,
647 China. *Carbonates and Evaporites*, 31: 319-328.
- 648 Huang, J.,
- 649 Huang, X.W., Jin, Z.J., Liu, Q.Y., Meng, Q.Q., Zhu, D.Y., Wang, L., Liu, J.Y., Zhang,
650 P.P., Wang, J.B., 2022. Geochemical Characteristics of Catalytic Hydrogenation of
651 Low-Mature Kerogen Under Deep Fluids. *Frontiers of Earth Science*, 10: 885860.
- 652 Ivanova, A., Mitiurev, N., Cheremisin, A., Orekhov, A., Kamyshinsky, R., Vasiliev, A.,
653 2019. Characterization of Organic Layer in Oil Carbonate Reservoir Rocks and its
654 Effect on Microscale Wetting Properties. *Scientific Reports*, 9: 10667.
- 655 Jia, L.Q., Cai, C.F., Jiang, L., Zhang, K., Li, H.X., Zhang, W., 2016. Petrological and
656 geochemical constraints on diagenesis and deep burial dissolution of the
657 Ordovician carbonate reservoirs in the Tazhong area, Tarim Basin, NW China.
658 *Maraine and Petroleum Geology*, 78: 271-290.
- 659 Jin, Z.J., Zhang, L.P., Yang, L., Hu, W.X., 2004. A preliminary study of mantle-derived
660 fluids and their effects on oil/gas generation in sedimentary basins. *Journal of*
661 *Petroleum Science and Engineering*, 41: 45-55.
- 662 Jones, T.J., Le Moigne, Y., Russell, J.K., Williams-Jones, G., Giordano, D., Dingwell,
663 D.B. (2022). Inflated pyroclasts in proximal fallout deposits reveal abrupt
664 transitions in eruption behaviour. *Nature Communications*, 13(1): 2832.
- 665 Kawamura, K., Kaplan, I.S., 1987. Dicarboxylic acids generated by thermal alteration
666 of kerogen and humic acids. *Geochimica Et Cosmochimica Acta*, 81: 3201-3207.
- 667 Kawamura, K., Tannebaum E., Huizinga B.J., Kaplan, I.S., 1986. Volatile organic acids
668 generated from kerogen during laboratory heating. *Geochemical Journal*, 20: 51-
669 59.
- 670 Kharaka, Y.K., Lundegard, P.D., Ambats, G., Evans, W.C., Bischoff, J.L., 1993.
671 Generation of aliphatic acid anions and carbon dioxide by hydrous pyrolysis of
672 crude oils. *Applied Geochemistry*, 8: 317-324.
- 673 Kilby, W.E., 1988. Recognition of vitrinite with non-uniaxial negative reflectance
674 characteristics. *International Journal of Coal and Geology*, 9: 267-285.
- 675 Kiyosu, Y., Imaizumi, S., 1996. Carbon and hydrogen isotope fractionation during
676 oxidation of methane by metal oxides at temperatures from 400 to 530 °C.
677 *Chemical Geology*, 133: 279-287.
- 678 Knauss, K.G., Copenhaver, S.A., 1995. The effect of malonate on the dissolution
679 kinetics of albite, quartz, and microcline as a function of pH at 70°C. *Applied*
680 *Geochemistry*, 10: 17-33.
- 681 Lang, S.Q., Butterfield, D.A., Schulte, M.S., Kelley, D.S. Lilley, M.D., 2010. Elevated
682 concentrations of formate, acetate and dissolved organic carbon found at the Lost
683 City hydrothermal field. *Geochimica Et Cosmochimica Acta*, 74: 941-952.
- 684 Lewan, M.D., 1997. Experiments on the role of water in petroleum formation.
685 *Geochimica Et Cosmochimica Acta*, 61: 3691-3723.
- 686 Li, D., Liu, L., Wang, Z.W., Hu, C., Chen, H.D., Zhu, S.Y., Zhang, R., Zhiwei Wang,
687 Zhao, F. 2024. Tectonosedimentary patterns of multiple interacting source-to-sink
688 systems of the permian Shanxi Formation, Ordos Basin, China: Insights from

- 689 sedimentology and detrital zircon U-Pb geochronology. *Marine and Petroleum*
690 *Geology*, 168: 107034.
- 691 Li, J., Li, Y.J., Li, P.P., Zhou, S.X., Chen, K.F., Zhang, C., Sun, Z.X., 2021c. Simulation
692 study of the thermostability of organic acid at the temperature and pressure
693 conditions of deep layers: A case study of acetic acid and oxalic acid. *Acta*
694 *Sedimentologica Sinica*, 394: 1047-1056. (in Chinese with English abstract)
- 695 Li, J.J., Ma, Y., Huang, K.Z., Zhang, Y.N., Wang, W.M., Liu, J.W., Liu, J.W., Li, Z., Lu,
696 S.F., 2018. Quantitative characterization of organic acid generation,
697 decarboxylation, and dissolution in a shale reservoir and the corresponding
698 applications—A case study of the Bohai Bay Basin. *Fuel*, 214: 538-545.
- 699 Li, P.P., Zhou, S.X., Ji, B.Q., Liu, X.P., Li, J., Zhang, X.D., Huang, J.P., Ma, Y.L., 2021b.
700 Water-soluble organic acids in sedimentary rocks: Compositions and influencing
701 factors. *Journal of Natural Gas Geoscience*, 63: 173-181.
- 702 Li, P.P., Zhou, S.X., Liu, Q.Y., Li, J., 2023. Mechanism of water-induced alterations to
703 nanoscale pores: Implications from anhydrous versus hydrous pyrolysis.
704 *Fundamental Research*. <https://doi.org/10.1016/j.fmre.2023.07.014>
- 705 Li, P.P., Zhou, S.X., Zhang, X.D., Li, J., Liu, M.M., Chen, K.F., Zhang, C., Sun, Z.X.,
706 Meng, B.K., 2021a. Distributions and evolution model of water-soluble organic
707 acids for coals with different thermal maturations. *Fuel*, 283: 118863.
- 708 Li, Y.H., Zhang, M.J., Wang, X.J., Du, Y.L., 2010. Accumulation mechanism of
709 composite reservoir of Upper Triassic Yanchang Formation in northwestern Ordos
710 Basin. *Lithologic Reservoirs*, 22: 32-36. (in Chinese)
- 711 Li, Y.J., Zhou, S.X., Li, J., Ma, Y., Chen, K.F., Wu, Y.D., Zhang, Y.H., 2017.
712 Experimental study of the decomposition of acetic acid under conditions relevant
713 to deep reservoirs. *Applied Geochemistry*, 84: 306-313.
- 714 Liang, X.P., Zhao, Q.Y., Dong, Y., Guo, L.J., Jin, Z.J., Liu, Q.Y., 2021. Experimental investigation on
715 supercritical water gasification of organic-rich shale with low maturity for syngas
716 production. *Energy & Fuels*, 359: 7657-7665.
- 717 Liu, Q.Y., Li, P., Jiang, L., Jin, Z.J., Liang, X.P., Zhu, D.Y., Pang, Q., Zhang, R., Liu,
718 J.Y. (2024). Distinctive volcanic ash-rich lacustrine shale deposition related to
719 chemical weathering intensity during the Late Triassic: Evidence from lithium
720 contents and isotopes. *Science Advances*, 10, eadi6594.
- 721 Liu, Q.Y., Zhu, D.Y., Meng, Q.Q., Liu, J.Y., Wu, X.Q., Zhou, B., Fu, Q., Jin, Z.J., 2019.
722 The scientific connotation of oil and gas formations under deep fluids and organic-
723 inorganic interaction. *Science China: Earth Sciences*, 62: 507-528.
- 724 Lu, Z.D., Ping, H.W., Chen, H.H., Zhang, Y.Q., Xie, Z., Zhang, Y.T., Chen, Z.L., Yang,
725 X., Zhang, X.L., Yang, K., Li, X.Q. 2024. Geochemical characteristics of
726 Ordovician crude oils in the FI17 strike-slip fault zone of the Fuman oilfield, Tarim
727 basin: Implications for ultra-deep hydrocarbon accumulation in the Tarim basin.
728 *Marine and Petroleum Geology*, 163: 106800.
- 729 Luek, J.L., Gonsior, M., 2017. Organic compounds in hydraulic fracturing fluids and
730 wastewaters: A review. *Water Research*, 123: 536-548.
- 731 Lundegard, P.D., Senftle, J.T., 1987. Hydrous pyrolysis: a tool for the study of organic
732 acid synthesis. *Applied Geochemistry*, 2: 605-612.

- 733 Ma, Y.S., He, Z.L., Zhao, P.R., Zhu, H.Q., Han, J., You, D.H., Zhang, J.T. 2019. A new
734 progress in formation mechanism of deep and ultra-deep carbonate reservoir. *Acta*
735 *Petrolei Sinica*, 40: 1415-1425.
- 736 MacGowan, D.B., Surdam, R.C., 1988. Difunctional carboxylic acid anions in oilfield
737 water. *Organic Geochemistry*, 123: 245-259.
- 738 MacGowan, D.B., Surdam, R.C., 1990. Carboxylic acid anions in formation waters,
739 San Joaquin Basin and Louisiana Gulf Coast, U.S.A.-Implications for clastic
740 diagenesis. *Applied Geochemistry*, 5: 687-701.
- 741 Machel, H.G., 2001. Bacterial and thermochemical sulfate reduction in diagenetic
742 settings-old and new insights. *Sedimentary Geology*, 140: 143-175.
- 743 Mangi, H.N., Detian, Y., Hameed, N., Ashraf, U., Rajper, R.H., 2020. Pore structure
744 characteristics and fractal dimension analysis of low rank coal in the Lower Indus
745 Basin, SE Pakistan. *Journal of Natural Gas Science and Engineering*, 77: 103231.
- 746 Manning, D.A.C., Rae, E.I.C., Gestsdóttir, K., 1994. Appraisal of the use of
747 experimental and analogue studies in the assessment of the role of organic acid
748 anions in diagenesis. *Marine and Petroleum Geology*, 111: 10-19.
- 749 McCollom, T.M., Seewald, J.S., 2003. Experimental constraints on the hydrothermal
750 reactivity of organic acids and acid anions: I. Formic acid and formate.
751 *Geochimica Et Cosmochimica Acta*, 67: 3625-3644.
- 752 McDermott, J.M., Seewald, J.S., German, C.R., Sylva, S.P., 2015. Pathways for abiotic
753 organic synthesis at submarine hydrothermal fields. *Proceedings of the National
754 Academy of Sciences of the United States of America*, 112: 7668-7672.
- 755 Meng, T., Liu, P., Qiu, L.W., Wang, Y.S., Liu, Y.L., Lin, H.M., Cheng, F.Q., Qu, C.S.,
756 2017. Formation and distribution of the high quality reservoirs in a deep saline
757 lacustrine basin: A case study from the upper part of the 4th member of Paleogene
758 Shahejie Formation in Bonan sag, Jiyang depression, Bohai Bay Basin, East China.
759 *Petroleum Exploration and Development*, 44: 948-959.
- 760 Orem, W., Tatu, C., Varonka, M., Lerch, H., Bates, A., Engle, M., Crosby, L., McIntosh,
761 J., 2014. Organic substances in produced and formation water from
762 unconventional natural gas extraction in coal and shale. *International Journal of
763 Coal and Geology*, 126: 20-31.
- 764 Pei, S., You, S., Ma, J., Chen, X., Ren, N., 2020. Electron spin resonance evidence for
765 electro-generated hydroxyl radicals. *Environmental Science & Technology*, 54:
766 13333-13343.
- 767 Prasad, R., Sulaxna, K.A., 2005. Kinetics of thermal decomposition of ironIII
768 dicarboxylate complexes. *Journal of Thermal Analysis and Calorimetry*, 81:
769 441-450.
- 770 Robin, P.L., Rouxhet, P.G., 1978. Characterization of kerogens and study of their
771 evolution by infrared spectroscopy: Carbonyl and carboxyl groups. *Geochimica
772 Et Cosmochimica Acta*, 42: 1341-1349.
- 773 Salah, M.K., Janjuhah H.T., Sanjuan, J., 2023. Analysis and Characterization of Pore
774 System and Grain Sizes of Carbonate Rocks from Southern Lebanon. *Journal of
775 Earth Science*, 34(1): 101-121. <https://doi.org/10.1007/s12583-020-1057-8>
- 776 Seewald, J.S., 2001. Aqueous geochemistry of low molecular weight hydrocarbons at

- 777 elevated temperature and pressures: Constraints from mineral buffered laboratory
778 experiments. *Geochimica Et Cosmochimica Acta*, 65: 1641-1664.
- 779 Seewald, J.S., 2003. Organic-inorganic interactions in petroleum-production
780 sedimentary basins. *Nature*, 426: 327-333.
- 781 Seredin, V.V., Dai, S.F., Sun, Y.Z., Chekryzhov, I.Y., 2013. Coal deposits as promising
782 sources of rare metals for alternative power and energy-efficient technologies.
783 *Applied Geochemistry*, 31: 1-11.
- 784 Seredin, V.V., Finkelman, R.B., 2008. Metalliferous coals: A review of the main genetic
785 and geochemical types. *International Journal of Coal and Geology*, 76: 253-289.
- 786 Sherwood Sherwood Lollar, B., Heuer, V.B., McDermott, J., Tille, S., Warr, O., Moran,
787 J.J., Telling, J., Hinrichs, K.-U., 2021. A window into the abiotic carbon cycle –
788 Acetate and formate in fracture waters in 2.7 billion year-old host rocks of the
789 Canadian Shield. *Geochimica Et Cosmochimica Acta*, 294: 295-314.
- 790 Smith, M., Pimblott, S.M., LaVerne, J.A., 2021. Hydroxyl radical yields in the heavy
791 ion radiolysis of water. *Radiation Physics and Chemistry* 188.Nosaka, Y., Nosaka,
792 A.Y., 2017. Generation and Detection of Reactive Oxygen Species in
793 Photocatalysis. *Chemical Reviews*, 117: 11302-11336.
- 794 Surdam, R.C., Boese, S.W., Crossey, L.J., 1984. The chemistry of secondary porosity.
795 AAPG Memoir, 37: 127-149.
- 796 Surdam, R.C., Crossey, L.J., 1987. Integrated diagenetic modeling: A process oriented
797 approach for clastic system. *Annual Review of Earth and Planetary Sciences*, 15:
798 141-170.
- 799 Surdam, R.C., Crossey, L.J., Hagen, E.S., Heasler, H.P., 1989. Organic-inorganic
800 interactions and sandstone diagenesis. *AAPG Bulletin*, 73: 1-23.
- 801 Surdam, R.C., MacGowan, D.B., 1987. Oilfield waters and sandstone diagenesis.
802 *Applied Geochemistry*, 2: 613-619.
- 803 Wang, Q.H. 2023. Origin of gas condensate reservoir in Fuman Oilfield, Tarim Basin,
804 NW China. *Petroleum Exploration and Development*, 50: 1295-1307.
- 805 Wan, Y., Bourdet, J., Hu, W.X., Kang, X., Heath, C., Qiu, Y., Gao, W., Wang, X.L.,
806 2021. Experimental investigations on the thermochemical oxidation of n-alkane
807 and alcohol compounds by MnO₂ and Fe₂O₃ at temperatures up to 325 °C.
808 *Chemical Geology*, 559: 119982.
- 809 Wang, Z.Y., Wang, F.P., Lin, X.Y., Wu, D.S., 1995. Pore types and origin of secondary
810 pores of Triassic and Jurassic in north Tarim. *Oil & Gas Geology*, 163: 203-210.
811 (in Chinese)
- 812 Welch, S.A., Ullman, W.J., 1996. Feldspar dissolution in acidic and organic solutions:
813 Compositional and pH dependence of dissolution rate. *Geochimica Et
814 Cosmochimica Acta*, 60: 2939-2348.
- 815 Workman, A.L., Hanor, J.S., 1985. Evidence for large-scale vertical migration of
816 dissolved fatty acids in Louisiana oil field brines: Iberia Field, south-central
817 Louisiana. *Gulf Coast Association of Geological Societies*, 35: 293-300.
- 818 Xiong, H., Lee, J.K., Zare, R.N., Min, W., 2020. Strong Electric Field Observed at the
819 Interface of Aqueous Microdroplets. *Journal of Physical Chemistry Letters*, 11:
820 7423-7428.

- 821 Xu, H.Y., Liu, Q.Y., Zhu, D.Y., Peng, W.L., Meng, Q.Q., Wang, J.B., Shi, J.Y., Jin, Z.J.
822 2022. Molecular evidence reveals the presence of hydrothermal effect on ultra-
823 deep-preserved organic compounds. *Chemical Geology*, 608: 121045.
- 824 Xu, H.Y., Liu, Q.Y., Jin, Z.J., Zhu, D.Y., Meng, Q.Q., Wu, X.Q., Li, P.P., Zhu, B.Q.
825 2024. Organic compounds in geological hydrothermal systems: A critical review
826 of molecular transformation and distribution. *Earth-Science Reviews*, 252: 104757.
- 827 Yuan, G.H., Cao, Y.C., Schulz, H.M., Hao, F., Gluyas, J., Liu, K.Y., Yang, T., Wang,
828 Y.Z., Xi, K.L., Li, F.L., 2019a. A review of feldspar alteration and its geological
829 significance in sedimentary basins: From shallow aquifers to deep hydrocarbon
830 reservoirs. *Earth-Science Reviews*, 191: 114-140.
- 831 Yuan, G.H., Cao, Y.C., Gluyas, J., Li, X.Y., Xi, K.L., Wang, Y.Z., Jia, Z.Z., Sun, P.P.,
832 Oxtoby, N.H., 2015. Feldspar dissolution, authigenic clays, and quartz cements in
833 open and closed sandstone geochemical systems during diagenesis: Typical
834 examples from two sags in Bohai Bay Basin, East China. *AAPG Bulletin*, 99:
835 2121-2154.
- 836 Yuan, G.H., Cao, Y.C., Zan, N.M., Schulz, H.-M., Gluyas, J., Hao, F., Jin, Q., Liu K.Y.,
837 Wang, Y.Z., Chen, Z.H., Jia, Z.Z., 2019b. Coupled mineral alteration and oil
838 degradation in thermal oil-water-feldspar systems and implications for organic-
839 inorganic interactions in hydrocarbon reservoirs. *Geochimica Et Cosmochimica
840 Acta*, 248: 61-87.
- 841 Yuan, G.H., Jin, Z.H., Cao, Y.C., Zan, N.M., Schulz, H.-M., Gluyas, J., Liu, K.Y., He,
842 X.L., Wang, Y.Z., 2024. Microdroplets initiate organic-inorganic interactions and
843 mass transfer in thermal hydrous geosystems. *Nature communications*, 15: 4960.
- 844 Zhang, S., Zhang, X.D., Li, G.Z., Liu, X., Zhang, P., 2019. Distribution characteristics
845 and geochemistry mechanisms of carbon isotope of coalbed methane in central-
846 southern Qinshui basin, China. *Fuel*, 224: 1-12.
- 847 Zhang, X.D., Qin, Y., Sang, S.X., 2006. Group composition characteristic of the
848 fractional ultrasonic-extraction of different metamorphism coals. *Coal Conversion*
849 29: 5-9. (in Chinese)
- 850 Zhang, Y.W., Zeng, J.H., Guo, J.Y., 2009. Simulated experimental study of feldspar
851 dissolution in low temperature. *Geological Review*, 551: 134-142. (in Chinese
852 with English abstract)
- 853 Zhang, K., Liu, R., Liu, Z.J., Li, B.L., Han, J.B., Zhao, K.G. (2020). Influence of
854 volcanic and hydrothermal activity on organic matter enrichment in the Upper
855 Triassic Yanchang Formation, southern Ordos Basin, Central China. *Marine and
856 Petroleum Geology*, 112. 104059.
- 857 Zhao, B.S., Li, R.X., Qin, X.L., Wang, N., Zhou, W., Khaled, A., Zhao, D., Zhang, Y.N.,
858 Wu, X.L., Liu, Q., 2021. Geochemical characteristics and mechanism of organic
859 matter accumulation of marine-continental transitional shale of the lower permian
860 Shanxi Formation, southeastern Ordos Basin, north China. *Journal of Petroleum
861 Science and Engineering*, 205: 108815.
- 862 Zhong, D.K., Zhu, X.M., 2008. Characteristics and genetic mechanism of deep-buried
863 clastic eureservoir in China. *Science China Series D: Earth Sciences*, 51: 11-19.
- 864 Zhu, Y.L., Vieth-Hillebrand A., Wilke, F.D.H., Horsfield, B., 2015. Characterization of

865 water-soluble organic compounds released from black shales and coals.
 866 International Journal of Coal and Geology, 150-151: 265-275.

867 **Table 1** Information on sedimentary rock samples

ID	Lithology/	Basin	Stratum	TOC (%)	Depth (m)	T _{max} (°C)	Ro (%)	S ₃ (mg/g)	Type of OM
									Subsurfac
									e water
YK46	Shale	Ordos Basin	Triassic Yanchang	5.82	182.2	433	0.01	0.01	I or II
YK55			Formation	0.84	198.1	442	0	0	
YK78				13.40	223.4	435	0.01	0.01	
YK81				14.40	228.9	436	0.45	0.45	
YK83				16.60	231.5	436	0.38	0.38	
YK93				23.90	237.8	442	0.48	0.48	
YK107				12.80	256.8	442	0.38	0.38	
L30-1	Mudstone		Permian Shanxi	0.92	3797.7	n.d.	1.68	n.d.	III
L30-2			Formation	1.37	3849.7		1.41		
Q44				0.91	2861.4		1.24		
S16				1.08	2201.3		1.61		
S202				0.99	2704.3		1.38		
JZMY	Coal		Jurassic Yan'an	58.25	138.6	420	10.8	10.8	III
JXD			Formation	57.07	140.3	424	9.4	9.4	
S27			Permian Shanxi	66.32	2060.0	481	0.80	0.80	
S394			Formation	60.49	2932.4	502	0.89	0.89	
S13				69.84	2148.5	456	1.28	1.28	
E82				76.80	3760.6	500	0.95	0.95	
E27				55.62	3891.7	473	0.97	0.97	
JJ-GB		Junggar Basin	Jurassic	64.36	99.5	425	8.99	8.99	
			Xishanyao						
			Formation						
YJ		Minhe Basin	Jurassic Yaojie	75.52	362.4	450	0.49	0.49	
			Formation						
PSD		Southern	Permian Shanxi	74.91	605.1	452	0.78	0.78	
ZJZ		North China	Formation	68.73	455.2	522	0.23	0.23	
LG		Basin		46.12	350.5	594	0.12	0.12	
ZGX				63.21	742.3	618	0.06	0.06	
SL		Qinshui Basin		53.48	451.1	460	0.36	0.36	
YX				74.92	608.1	477	0.59	0.59	
ZZ				67.12	695.4	540	0.94	0.94	
HD				60.60	355.6	604	0.22	0.22	

868 **Table 2** Information on deep-ultradeep subsurface water samples in the Tarim Basin

ID	Depth (m)	pH	Salinity (g/L)	Concentrations of WSOAA (ppm)
TH12214CH	6890~7135	6	253	109.929

TH12328	6279~6544	7.4	206	61.257
SB53-2H	7749~8847	7	119	62.625
SB5-15H	7632~8211	6.4	107	3.693
SB42X	7385~7996	4.7	no data	394.486
SB8X	7738~8396	8.9	159	16.149

869

870 **Figure captions and Explanation plates**

871 **Figure 1.** Fitting curves of peak area vs. concentrations of WSOAA

872 **Figure 2.** WSOAA in various sedimentary basins in China. (a) Concentrations of
 873 WSOAA in source rocks and deep-ultradeep subsurface water. (b) Plot of pH and
 874 concentration of WSOAA for subsurface water samples in the Tarim Basin, China. (c)
 875 Percentages of diverse WSOAA in source rocks and deep-ultradeep subsurface water,
 876 Solid and blank bars represent dicarboxylates, and monocarboxylates respectively. (d)
 877 Production rate of organic acids for shales after pyrolysis experiments at different
 878 temperatures.

879 **Figure 3.** Distributions of WSOAA in shales with different TOC contents. Plots of TOC
 880 content vs. concentrations of WSOAA (a), concentrations of WSOAA vs. percentage
 881 of dicarboxylates (b), concentrations of WSOAA vs. carbonate content (c),
 882 concentrations of WSOAA vs. feldspar contents (d), concentrations of WSOAA vs. clay
 883 mineral content (e), concentrations of WSOAA vs. quartz contents (f), TOC content vs.
 884 TOC-normalized concentrations of WSOAA (g).

885 **Figure 4.** Diverse evolution pathways associated with oxygen-containing functional

886 groups in systems with different levels of hydrogen. R-, R₁, R₂, R₃, R₄, R₅, and R₆ all
887 represent alkyl groups.

888 **Figure 5.** Distributions of WSOAA in coals with various maturities. Plots of T_{max} versus
889 concentrations of WSOAA (a), formate (b), acetate (c) and oxalate (d), correlations
890 among concentrations of formate (e), acetate (f) and oxalate (g).

891 **Figure 6.** Infrared spectrum for coals with different maturities

892 **Figure 7.** Plots of T_{max} vs. concentrations of WSOAA in diverse types of OMs

893 **Figure 8.** Plot of T_{max} versus $c(\text{formate})/c(\text{acetate})$ ratio for different types of OMs,
894 including Duvernay shale, Posidonia shale, Bakken shale and New Zealand coal (date
895 from Zhu et al., 2015).

896 **Figure 9.** Corroded cavities in No.3 and No. 15 high-rank coals in Qinshui Basin, China.
897 Corroded cavities are area defined by red lines.