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Dynamical response theory is employed to investigate the effects of various transverse confinements
on electron correlations in the ground state of a ferromagnetic one-dimensional quantum wire for
different wire widths b and density parameters rs. In the regime of a thin quantum wire, electrons are
treated as a one-dimensional gas under different confinement models via effective electron-electron
interaction potentials. Using the first-order random phase approximation (FRPA) including self-
energy and exchange contribution, which provides the ground state structure beyond the random
phase approximation, we numerically compute the structure factor, pair-correlation function, cor-
relation energy, and ground-state energy for various values of b and rs. Our results reveal that the
correlation energy depends on the choice of confinement model. For the ultrathin wire (b — 0) in the
high-density limit, we find that the correlation energy for transverse confinement models Vi(q) (har-
monic), Va(q) (cylindrical), and Vs(q) (harmonic-delta) approaches ec(rs) = —n2/360 ~ —0.02741
a.u., which agrees with the exact results in this limit [P.-F. Loos, J. Chem. Phys. 138, 064108
(2013), V. Ashokan et al., Phys. Rev. B 101, 075130 (2020)]. This clearly illustrates that for at
least these three confinement potentials, the one-dimensional Coulomb potential can be regularized
at interparticle distance z = 0 to yield the same correlation energy. In contrast, other confinement
potentials, Vz(g) (infinite square well), V4(g) (infinite square-infinite triangular well), and Vs(q)
(infinite square-delta well), do not approach the same high-density limit; instead, the correlation
energy tends to €. ~ —0.03002 a.u. for these potentials. The percentage difference in correlation
energy between the confinement models Vi(q), V2(q), Vs(g) and V3(q), Vi(q), Vs(q) is within about
10% in the high-density limit. The ground-state properties obtained from the FRPA are compared
with the available quantum Monte Carlo results in the high-density regime. We observe that the
peak height in the static structure factor at k = 2kr depends significantly on the confinement model.
These prominent peaks at k = 2kr are fitted with a function based on our finite wire-width theory,

guided by insights from bosonization, demonstrating good agreement with our FRPA theory.

I. INTRODUCTION

The study of interacting particles has been essential
for understanding the complex quantum behaviors ob-
served in condensed matter physics [1-4]. Recent experi-
mental breakthroughs have produced exceptionally clean
quasi-one-dimensional (1D) systems, including strongly
interacting 1D Fermi gases in optical lattices [5], carbon
nanotubes [6-8], semiconductor nanowires [9-12], and
high-mobility quantum wires grown by cleaved edge over-
growth [13]. These recent developments have generated
considerable theoretical interest and research.

In many-body physics [1, 14], theoretical investiga-
tions predict qualitatively distinct quantum behaviors
in systems of reduced dimensionality (e.g., two dimen-
sions, 1D) as compared to their three-dimensional coun-
terparts. These deviations are anticipated both at zero
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temperature and at finite temperatures within the ther-
modynamic limit [15-18]. Reducing the dimensional-
ity of electron systems to one leads to a breakdown
of the Landau’s Fermi-liquid picture. In this regime,
strong Coulomb interactions drive electrons to behave
collectively, a phenomenon explained by the Tomonaga-
Luttinger liquid theory [19, 20], replacing the Landau pic-
ture of individual particle description. One-dimensional
interacting systems exhibit intriguing phenomena, in-
cluding spin-charge separation [21-23], where collective
spin and charge excitations become distinct and prop-
agate independently; charge fractionalization [24, 25],
where charge excitations carry nonquantized charge; and
Wigner crystallization [26-29], where electrons get lo-
calized due to repulsive Coulomb interactions between
them.

The electronic properties of quasi-1D systems are sig-
nificantly influenced by electron-electron interactions un-
der various transverse confinement schemes. The effec-
tive electron-electron interaction will be repulsive for all
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energies as long as the uniformly positively charged back-
ground is rigid. However, confinement effects manifest
themselves as modifications to the electronic band struc-
ture, enhancement of Coulomb interactions between elec-
trons, and the emergence of novel collective excitations.

In this work, to examine the role of the nature of con-
finement and the correlation effects, we consider some
different confinement models developed in the literature.
Among them, the harmonic confinement model is quite
realistic in interparticle potential [30], and is capable of
tackling excitonic instability for a rigid and uniformly
charged positive background. Interactions by a soft-
ened Coulomb potential appropriate for a cylindrical wire
[17, 31] also remove the singularity at zero interparticle
distance. The interactions can also be modelled using
a square quantum well confinement approach when the
subband separation is large, i.e., for thin wires, such as
in GaAs semiconductor quantum-well wires [32]. Epi-
taxial growth techniques are commonly used to fabricate
these wires, and their optical properties have been ex-
tensively reported [33]. In 1D quantum wires within
GaAs heterostructures, interactions are studied using
a square quantum well confinement model and realis-
tic variational optimized wave functions for the trans-
verse directions [34]. Therefore, an accurate description
of the ground-state properties of 1D wires with realis-
tic Coulomb interactions remains a complex challenge,
even though significant progress has been made towards
more sophisticated and accurate modelling. Moudgil et
al. [35] studied the plasmon dispersion with different
transverse confinement models on an atom-scale metallic
wire using the random phase approximation (RPA) and
the Singwi-Tosi-Land-Sj6lander (STLS) approximation,
which shows good agreement with electron-energy-loss
spectroscopy measurements [36]. However, the structure
factor and correlation energy were not calculated for the
different confinement models on the effective electron-
electron interaction potential. In this paper, we model
1D homogeneous electron gases (HEGs) in the high den-
sity limit interacting via effective long-range Coulomb po-
tentials and report the numerical calculation of the static
structure factor (SSF), pair-correlation function (PCF),
correlation energy, and ground state energy for various
confinement models [17, 30, 32, 34, 37, 38] and compare
with the available quantum Monte Carlo (QMC) simu-
lation results including variational Monte Carlo (VMC)
and diffusion Monte Carlo (DMC) [15, 39].

The rest of the paper is structured as follows. In Sec.
II, we present various theoretical models for the confine-
ment of electrons in a quasi-one-dimensional HEG. We
also discuss the dynamic density response function using
first-order random phase approximation (FRPA). In Sec.
III, the SSF is calculated numerically and compared un-
der various confinement schemes for several wire widths
(b) and density parameters (rg). In Sec. IV, the PCF is
calculated numerically and compared under various con-
finement schemes for several wire widths and density pa-
rameters. In Sec. V, we report the ground state and cor-

relation energies’ dependence on the wire widths (b) and
density parameters (rs). In Sec. VI, we present results
and a detailed discussion of other ground-state properties
of the 1D HEG for various confinement models at differ-
ent coupling parameters (b and rs). Finally, we summa-
rize our work in Sec. VII. Throughout the paper, we use
Hartree atomic units (A = |e] = me = dme = 1).

II. THEORETICAL FORMALISM
A. Quasi-1D wires

Our model considers a quasi-1D system, a finite-width
quantum wire in which electrons can freely roam along
the wire axis, neutralized by a rigid positive background
and strongly confined in the transverse directions using
various confinement potentials. The wire is modelled
such that the length of the wire is much larger than
its width, allowing electrons to move freely along the
z-axis (wire axis) and confining them in the yz- plane
by a potential V(y, z) uniform in z. The strength of the
transverse confinement can be used to tune the electron-
electron interaction in quantum wires. Numerical or ap-
proximate methods are essential for studying the ground
state properties of quasi-1D electron systems under the
various transverse confinement models, as exact analyti-
cal solutions are usually not possible. We limit our calcu-
lations to the extreme quantum limit, a regime in which
electrons occupy only the lowest energy subband asso-
ciated with transverse motion, as this approximation is
valid for atomic-scale metallic wires with significant sub-
band separation [32, 35].

B. Confinement models

1. Harmonic confinement in the yz-plane and
particles free to move along the x-direction

In this confinement scheme [30, 40], the effective inter-
action between electrons in a quasi-1D wire is considered
by taking the harmonic confinement potential along the
transverse directions (yz- plane), which confines the elec-
trons tightly and keeps them close to the center of the
wire along the x-axis. This model represents a cylindri-
cally symmetric chain as a collection of electrons in gas
against a rigid positive background. The analytic form
of this effective interaction potential in real space is

n(z) = ge%erfc (';”;) (1)

and the Fourier transform is given as
Vi(q) = exp (¢*b%) B (¢°b%) (2)

where E7 denotes the exponential integral function of the
first kind. The analytic expression is derived in Appendix
A for ready reference.



2. Cylindrical confinement in the yz-plane

This model represents the effective interactions be-
tween cylindrically confined electrons through a softened
Coulomb potential [17] defined as ve(z) = 1/va? + b2,
where b is wire width. The Fourier transform is given as

Va(q) = 2Ko(bg), (3)

where K((bg) denotes the zeroth-order modified Bessel
function of the second kind. The analytic expression is
derived in Appendix B.

3. Infinite square well confinement in the yz-plane

In this confinement model, electrons are free to move
along the z-axis but confined along y and z axes by square
well confinement [32] such that V(y,z) = 0for 0 < y,z <
b and V(y, z) = oo otherwise, with b as the width of the
square well. The effective potential is defined as
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(4)
where R = /(y — ¢/)2 + (2 — 2/)2. As an exact analytic
potential expression is challenging to derive, numerical
results are obtained using Eq. (4), and detailed steps are
given in Appendix C. This confinement is crucial for un-
derstanding the properties of GaAs-GaAlAs quantum-
well wires [41].

Va(q) =

4. Infinite square-well potential in the y-direction
and a triangular potential in the z-direction

Under this confinement scheme, electrons are trapped
in the y-direction by square-well confinement with trans-

verse wave function ¢(y) = \/%sin (7%), while in the

z-direction electrons experience a triangular potential
kz for z > 0, where kK > 0 is a constant, together
with hard-wall boundary conditions at z = 0. The
solutions to the Schrodinger equation in the z direc-
tion can be expressed in terms of Airy functions; how-
ever, a simple variational Ansatz for the lowest sub-
3/2
band is {(z) = % (%) / zexp (—;’—;)@(z), with av-
erage wire width 2o along the z-direction. ©(z) is
the Heaviside function. Fang and Howard [42, 43] ini-
tially proposed this form of {(z) to describe the width
of a two-dimensional electron gas within a semicon-
ductor quantum well. The same wave function has
been used by Cole [44] for the lowest subband of elec-
trons on liquid helium, provided the barrier for enter-
ing the helium is infinite and the solid-vapor interface is

sharp. Hence, the total wave function is ¥(z,y,z) =

eike 19 \1/2 . Ty 1 3 3/2 3z :
NG (2)""sin (72) % (%) z exp (—E)@(Z) and it
is the appropriate confinement for understanding 1D
semiconductor structures [34].

The effective interaction potential can be represented
as

1458 !
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Similar to the previous confinement model, the poten-
tial cannot be expressed analytically. Equation (5) is
used to obtain the results numerically. The details are
given in Appendix D.

5. Harmonic confinement in the y-direction and a
\/0(z) wave function in the z-direction

In this confinement model [37], we consider a two-
dimensional electron gas in the xy-plane with zero thick-
ness, in which electrons move freely in the z-direction
with harmonic confinement in the y-direction. The mo-
tion of electrons in the z-direction is neglected. This
forms a quasi-one-dimensional system as electrons oc-
cupy the lowest subband of harmonic confinement. Vs(q)
can be obtained analytically as

Vs(q) = exp <q24b2> Ko ( 1b2> - (6)

The derivation of the analytic expression is presented in
Appendix E.

6. Infinite square-well confinement in the y-direction
and a /6(z) wave function in the z-direction

In this case [38], electrons move freely in the z-
direction with square-well confinement in the y-direction,
and the motion of electrons in the z-direction is ne-

glected. Vi(gq) can be represented as
2 (Y
) sin < ) )

Vs(q) bQ/dy/dysm

x Ko (qly —y'l)- (7)

The potential cannot be expressed analytically. Hence,
Eq. (7) is calculated numerically, and the details are given
in Appendix F.

Figure 1 depicts a significant dependence on confine-
ment models in reciprocal space. Throughout, for the
quantum wire to be 1D, the transverse dimension (wire
width, b) must be significantly smaller than Wigner-Seitz
radius rs. The nonphysical situation (b > rs) is where
the difference between the confinement models [V;(q) to



Vs(q)] has the greatest effect; however, the effects of the
choice of confinement model on quasi-1D HEG proper-
ties can also be seen where 1y > b. A comparative study
of analytical interelectronic interaction potentials [V;(g),
Va2(q), and V5(q)] reveals that they exhibit similar behav-
ior in the small-¢ limit (¢ — 0). Conversely, in the large-q
limit (¢ — 00), they converge to zero with distinct func-
tional dependencies as shown in Eqgs. (A19), (B20), and
(E10), respectively.
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FIG. 1. Effective electron-electron interaction potential V'(q)
plotted in reciprocal space against a nondimensionalized
quantity ¢/2kr, for various confinement models. The differ-
ent curves represent V1 (q) to Vs(¢) as in Egs. (2), (3), (4), (5),
(6), and (7) discussed in Sec. II B, respectively. As shown in
the inset, the potential V' (g) is plotted over a small interval of
q, demonstrating that Vi(q) and V5(q) yield almost identical
results in this regime. This illustrates the variation in inter-
action strength and range due to the geometric confinement.

C. Density response function

In this section, we present an analysis of the static
properties of the 1D HEG using the dynamical density
response function and the fluctuation-dissipation theo-
rem [1]. The density response function quantifies the
change in electron density due to a change in the exter-
nal potential. It is obtained in FRPA and given as [45]

@ w) = Xo(9,w) + MX1°(¢: w) + X7 (g, w)}

’ 1= AV(q) [xo(g: w) + Mxi(g, w) + x7*(q, w)g}]s)’
where V(q) is the Fourier transform of the effective po-
tential and A denotes the order of the potential, while
X;¢(¢q,w) and x§*(q,w) represent the first-order self-
energy and exchange correction to the polarizability, re-
spectively. In the weak coupling (= high density) ap-
proximation, the FRPA density response function, Eq.

(8), can be written as

xX(a,w) = xo(q,w) + A V(g)xg(q,w)
FA X (¢ w) + A X7 (g, w). 9)

This approximation enables us to do most of the calcula-
tions analytically [17]. The noninteracting polarizability
describes the response of a system of independent parti-
cles to an external perturbation and is simplified as

gsm
= 1
xola.) = $7 In

SR

w? — (L 4 ke y2

The simplified forms of the self-energy and exchange
contributions are, respectively, [17, 39]

X3°(q,w)= 295 Y many [V (k —p) = V(k = p+q)]
k,p

02 +w?
sz,qi (11)
(Qf, —w?)?

with

Qpyg =Wk —Witq 5 Qpg=wp —Wpyq, (13)
where gs is defined as the spin degeneracy factor and ny
represents the Fermi-Dirac distribution function. The
above expressions are directly incorporated into our cal-
culations.

III. SSF

The SSF is defined as
1 o0

S(q) =——

nm Jo

dw X" (g, w), (14)

where x”(q,w) corresponds to the imaginary part of the
density response function, and n = (kr gs)/7 is the num-
ber density of electrons. To evaluate the integral in Eq.
(14), we employ the contour integration technique [1] as

S@) = [ dwx(giw). (15)

nm Jo

Substituting Eq. (9) into Eq. (15), the total SSF can be
expressed as

S(q) = So(q) + S5(q) + S°(q) + ST*(q),  (16)
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FIG. 2. SSF S(k) plotted against k/kr for rs = 0.6, 0.8, 1.2, and 1.5 with b = 0.1 and 0.5 a.u. Using the FRPA, the SSFs
for different confinement models Vi (q) to Vs(g) have been compared with the available VMC simulations of harmonic wires for
N =99 electrons. In Figs. 2(a), 2(b), 2(c), and 2(d), the main plot shows the behavior at the 2kr peak to show the variation
across different confinement schemes, whereas the inset shows a zoomed-out view. In Figs. 2(e) and 2(f), the FRPA SSF is
compared with VMC simulations and RPA SSFs.

where The noninteracting SSF is calculated using Eq. (10)
1 [ and Eq. (17), simplifies as [46]
So(q) =—— | xo(g,iw) dw (17)
nr Jo -1
x,
1 o ) S = ’ . 21
Sd(q) = | V(q)x3(q,iw) dw (18) (@) {1, x>1 with z=q/2kp 1)
1 o .
ro) =—o0 [ X i) dw (19)
1 [e.¢]
T@)=—— [ Xx{(giw)dw (20)
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FIG. 3. 2kp peak height of the SSF as a function of density
parameter 7 for different confinement models [Vi(q)-Vs(q)]
and (a) b = 0.1 and (b) b = 0.5 a.u. The data points repre-
senting the peak heights are joined by lines, revealing a linear
relationship with r¢ at fixed wire width (b < rs).

The first-order SSF can also be expressed as
Si(z) = S§(x) + Si°(x) + S7%(x). (22)

S5¢(x) does not contribute to the SSF as the integral
of the self-energy term over w vanishes as shown in Ap-
pendix G. There are contributions to the SSF only from
the exchange and direct terms. The analytical expres-
sions of S{(x) and S$*(x) have been reported in the liter-
atures [17, 39, 47]. These are presented below for ready
reference. In this paper, we will numerically evaluate
S1(x) for other confinement models using the following
expressions.

The contribution of direct term to the SSF [15, 47] is
obtained for x < 1 as

w2

Sd(z) = s [((1 —2)In(1 - 2)

+(z+1)In(z + 1)) V(x)} (23)
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FIG. 4. 2kr peak height of the SSF, fitted by Eq. (34), for dif-
ferent confinement models [V1(¢)-Vs(¢)]. The different sym-
bols represent our FRPA data, and the solid lines show the
corresponding fitted function for (a) rs = 0.6 and (b) rs = 0.8.

and similarly for z > 1,

Si(@) =

_ﬁ’; K(g; —1)In(z — 1) — 2z In(z)

+(z+1)In(z + 1))1/(3:)]. (24)

The contribution of the exchange term to the SSF [17] is
obtained for x < 1 as

w2

9 1+x
Sf"<x>=95“[ (+0) [ ~0-a
1

&‘z\»—‘
&3|‘§
<
—
\&/\

1
1 1+z

+ /—/ de(:c)] (25)

1
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FIG. 5. PCF plotted against r/rs for r¢ = 0.6, 0.8, 1.2, and 1.5 with b = 0.1 and 0.5 a.u. The PCFs for different confinement
models Vi(q) to Vs(g) have been compared with the available VMC simulations of harmonic wires with N = 99 electrons. In
Figs. 5(a), 5(b), 5(c), and 5(d), the main plot shows a zoomed-in view of the amplitude of oscillations around r = 275, which

varies depending on the coupling parameters (b, 7s) and the confinement model, whereas the inset shows a zoomed-out view.
In Figs. 5(e) and 5(f), the FRPA PCF is compared with VMC simulations and the RPA.

and similarly for > 1,

st =22 [avn) [ -y [ | Zve

T2

The exchange term can be calculated numerically by
solving the integrals in Eqs. (25) and (26), however the
integral can only be solved analytically for harmonic and
cylindrical confinement potentials. It does not require
discussion here as it has been reported previously in the
literature [17, 39].



In Fig. 2, the SSF is numerically evaluated using Eq.
(16) and plotted for rs = 0.6, 0.8, 1.2, and 1.5 with b =
0.1 and 0.5 a.u. The SSF exhibits a prominent peak
at 2kp; a magnified view can be seen in the main plot,
whereas the zoomed-out plot is shown in the inset of the
figure. The 2kp peak heights in the SSF are plotted as
a function of the density parameter (rs) and wire width
(b) in Figs. 3 and 4, respectively.

IvVv. PCF

The PCF g(r) is obtained by performing an inverse
Fourier transform on the SSF S(q) as

1 oo
= 1 —_—
g(r) el

dge'[1 - S(q)].  (27)
It quantifies the probability of finding a particle at a
certain distance from another in real space. Using Eq.
(27), the PCFs for various confinement schemes are eval-
uated and subsequently plotted in Fig. 5 for various den-
sity parameters with wire widths b = 0.1 and 0.5 a.u.

V. GROUND STATE ENERGY

The ground-state energy can be determined from
the density-density response function and fluctuation-
dissipation theorem as [17],

n
E, = Eo + 5ZV(q)
q#0

y (—;T/Oldx/ooox(q,wm dw—l). (28)

Substituting Eq. (9) into Eq. (28), the ground-state en-
ergy of the HEG can be decomposed into three com-
ponents: the noninteracting kinetic energy FEj, the ex-
change energy FE,, and the correlation energy F. as

E, = Ey+ Ex + E.. (29)

For the fully spin-polarized (kp = 7/2rs) HEG, inte-
grating the kinetic energy of each electron over all occu-
pied states yields the total kinetic energy, which is given
by Eo = m2/24r2. The exchange energy contribution can
be expressed as

B2 vo( -5 [ o[ e -1)

q#0

= 23 V@ISe() ~ 1 (30)

q#0

and the correlation energy is given by

E.=5> V(@) [ - L /1 dX Ooo </\ V(@)x5 (g, iw)

q#0 0
+ A Xﬁe(Q, ’iW) + A X?X(q, zw)) dw:| (31)
- g > V(@S5 (g) + Si(a) + 55(q))- (32)
q7#0

The correlation energy per particle can be expressed
as

€= % /OOO V(@)[57(q) + Si°(q) + S7(q)] dg. ~ (33)
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FIG. 6. Correlation energy per electron (e.) plotted as a

function of wire width b for s = 0.1 and 0.5. The differ-
ent confinement models Vi(q) to Vs(q) have been compared
with the VMC- and DMC-simulated correlation energy of
harmonic wire for r¢ = 0.1 and 0.5 [15, 39]. The triangle
symbol A indicates the correlation energy e. = —m2/360 at
the high-density limit for an ultrathin wire. The correlation
energy for the confinement models Vi(q), Va(q), and V5(q)
approaches e.(rs) = —m>/360, whereas other confinement po-
tentials V3(q), Vi(q), and Vs(q) do not approach the same
high-density limit. [17].



VI. RESULTS AND DISCUSSION

In this section, we discuss the results of our numeri-
cal calculations of the SSF, PCF, correlation energy, and
ground state energy of various confinement models as in
Egs. (2), (3), (4), (5), (6), and (7).

The SSF is plotted for various density parameters and
wire widths using Eq. (16). In Fig. 2 it is plotted for
density parameters rs = 0.6, 0.8, 1.2, and 1.5, with wire
widths b = 0.1 and 0.5 a.u. The SSF shows a promi-
nent peak at 2k, of which a magnified view can be seen
in the main plot of Fig. 2. Figures 2(a) and 2(b) show
that, as rg varies from 0.6 to 0.8 at fixed b = 0.1 a.u., the
correlations between the electrons are enhanced and thus
lead to higher values of the 2kp peak heights in the SSF.
Similarly, this can be observed in Figs. 2(c) and 2(d).
Further, it can be observed from Figs. 2(a) and 2(c) [also
in Figs. 2(b) and 2(d)] that as b increases the height of
the 2kp peak decreases at fixed rs. The coupling between
the electrons decreases and the system is less correlated
for width b = 0.5 a.u. compared to b = 0.1 a.u. For fixed
b = 0.1 and 0.5 a.u., the trend of the peak heights at
2kp in the SSF is linear with the density parameter rg
(b < rs), as shown in Figs. 3(a) and 3(b). We propose
a fitting function for the parametric relationship of the
peak height of the charge SSF S(2kp,b) with wire width
b deduced from our finite width theory [39] and bosoniza-
tion [26, 48]. The functional form can be represented as

S(2kg,b) = (bC/L(;S)eXp(— ct/1In

where ag, a1, as, and c are fitting parameters.

Figures 4(a) and 4(b) show how the peak height of
the SSF at 2kp changes with wire-width b for different
confinement models at fixed rs. The higher peaks gener-
ally suggest stronger electron correlations as b decreases.
Equation (34) provides a good fit to the 2kr peak heights,
and the fitted results are consistent with our finite wire-
width theory and bosonization. Overall, Figs. 2, 3, and 4
depict that the peak height is different for each confine-
ment model and the strength of electron correlations is
sensitive to how electrons are confined in the wire. We
can conclude that the differences in peak heights between
the models are more pronounced, as electron correlations
are stronger for thinner wires and lower electron densities
[21]. In Fig. 2, we have also compared our numerically
calculated SSF with the VM C-simulated SSF for the con-
finement model [V;(q)] of the harmonic wire [15, 39]. We
observe that the height of the 2kp peak depends signif-
icantly on the density parameter ry, wire width b, and
confinement model Vi (q)-Vs(q).

We are studying a ferromagnetic system where pairs
of electrons with parallel spins are affected by the anti-
symmetry of the wave function. For same-spin electrons,
the PCF diminishes to zero (consistent with Pauli’s ex-
clusion principle) at short interelectronic distances and
converges to one, leading to an uncorrelated system, at

2 b) + as, (34)

Ts

large distances [1]. This can be seen in Fig. 5, which il-
lustrates the r/rs dependence of the PCF g¢(r) at fixed rg
and b. In the main plot of Fig. 5, we can observe that the
amplitude of oscillations for various confinement models
reaches its maximum value around r = 2rg, signifying
that the normalized probability of observing an electron
pair with an interelectronic distance of 2rg is the high-
est. These peaks are associated with an oscillation period
of 2r5 in the PCF. For fixed b, Figs. 5(a) and 5(b) [also
Figs. 5(c) and 5(d)] show that the strength of correlations
enhances with increasing rg, and the PCF exhibits oscil-
latory behavior, with the amplitude of oscillations grow-
ing with the density parameter rs. For fixed rg, intrawire
correlation effects decrease with increasing b, and the am-
plitude of oscillations decays as observed from Figs. 5(a)
and 5(c). This behavior is consistently observed in Figs.
5(b) and 5(d). We also present a comparison between
our numerically calculated PCF with VMC (in Fig. 5)
and RPA [in Figs. 5(e) and 5(f)] for the harmonic wire
confinement model [15, 39].

The correlation energy is the difference between the
exact ground state energy and the Hartree-Fock ground
state energy. Using Eq. (33), we numerically calculate the
correlation energy per electron for different confinement
models at a fixed value of the coupling parameters (ry or
b) as a function of (b or ry ) respectively. In Fig. 6, we plot
the correlation energy as a function of the wire width b at
a fixed value of the density parameter (rs = 0.1 and 0.5).
In Fig. 6(a) for r¢ = 0.1, a significant difference in cor-
relation energies among various confinement models is
observed as b increases, whereas as b — 0 the correla-
tion energy with confinement potentials V1 (q), Va(g), and
Vs(q) approaches —72/360 [17, 49]. In contrast the cor-
relation energy with confinement potentials V3(q), Vi(q),
and Vs(q) does not approaches this high density limit.
At fixed rg, a smaller b implies that stronger confinement
forces electrons closer together, enhancing the Coulomb
interaction. In Figs. 6(a) and 6(b), we have found a good
agreement with QMC-simulated correlation energies of
harmonic wires [Vi(q)] for r = 0.1 and 0.5. Figure
7 depicts the ry dependence of the correlation energies
across various confinement models at fixed wire widths
(b =0.005, 0.1, and 0.5 a.u.), and we have also compared
it with our QMC-simulated results [15, 39]. In Fig. 7(b),
they are in good agreement within the validity of high
density theory ry < 0.6 and start deviating in the region
0.6 < rs <2 at fixed b= 0.1 a.u. In Fig. 7(c), the FRPA
is valid in range ry < 1.2 and shows deviation from QMC
in the domain 1.2 < r, <2 at b = 0.5 a.u. Also we have
shown the validity of RPA till r¢ < 0.1 for b = 0.1 a.u. and
rs < 0.3 for b = 0.5 a.u. Unlike the confinements V;(q),
V2(q), and Vi(q), the correlation energies for the confine-
ment potentials V5(q), Vi(q), and Vs(q) are significantly
different as ry increases. At fixed b, large gy implies a
lower electron density; the electron-electron interactions
become stronger and the magnitude of the correlation
energy increases. In a high-density regime (rs < 1), the
correlation energy is more sensitive to both wire width



b and choice of confinement model.This highlights that
the choice of confinement model significantly affects the
calculated correlation energy, especially at intermediate
values of b.

The ground-state energy is calculated by summing all
the contributions outlined in Eq. (29). In Fig. 8, the
ground-state energies for various confinement models are
plotted against b at r; = 0.5 and against 7 at b = 0.1
and 0.5 a.u. At fixed rs = 0.5, the ground-state energy
per electron becomes negative at smaller wire width b
values for all confinement models as in Fig. 8(a). At
fixed b = 0.1, 0.5 a.u., the ground-state energy per elec-
tron rapidly decreases and becomes negative. In simpler
terms, the electrons arrange themselves in a way that
minimizes their repulsive interactions, indicating that the
interactions between the particles actually stabilize the
system. It suggests that the 1D HEG becomes more en-
ergetically stable as the wire width b decreases [39]. Ob-
viously this is only because the transverse kinetic energy
and the electrostatic energy of the background are ne-
glected.

VII. CONCLUSIONS

In this paper, we studied confinement-driven correla-
tion effects on the ground-state properties of a ferromag-
netic quasi-one-dimensional quantum wire using FRPA|
which provides ground state structure beyond RPA, in-
cluding self-energy and exchange contributions for vari-
ous confinement models. The ground-state properties of
quasi-one-dimensional quantum metallic wires for differ-
ent confinement schemes have been calculated numeri-
cally and compared with the available QMC simulated
data, which provides validation of the accuracy of our
numerical calculations. Our study demonstrates that the
choice of confinement model can have a significant impact
on the ground-state properties of quasi-one-dimensional
quantum wires. This suggests that employing an accu-
rate confinement model when studying these systems be-
comes crucial. The prominent peaks of charge SSF at
2kp are fitted using a fitting function based on our finite
wire-width theory, guided by insights from bosonization,
demonstrating good agreement with our FRPA theory.

Our findings also indicate that for the ultrathin wire

J

10

in the high-density limit the correlation energy for con-
finement models Vi(q), V2(q), and Vs(q) approaches
€e(rs) = —m2/360 a.u., which agrees with the exact re-
sults in this limit [17, 49]. This clearly illustrates that
for at least these three confinement potentials, the one-
dimensional Coulomb potential can be regularized at in-
terparticle distance x = 0 to yield the same correlation
energy. In contrast, other confinement potentials V3(q),
Va(q), and V5(q) do not approach the same high-density
limit. The percentage difference in correlation energy
between the confinement models Vi(q), V2(q), and V5(q)
and V3(q), Vi(q), and Vg(g) is within about 10% in the
high-density limit. This indicates that the specific shape
of the confinement potential affects the long-range corre-
lations between the electrons. These findings contribute
to a deeper understanding of electronic correlations and
confinement effects in quasi-1D metallic systems. This
enhanced modelling of electron interaction effects within
confined systems may be useful in the optimization and
fabrication of ferromagnetic quasi-1D quantum wire de-
vices in the future.
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APPENDIX

In general, the Hamiltonian for a quasi-one-dimensional HEG can be written schematically as

. 2

1 e?
H= ! = — +A 35
. 2m+2;|xi—xj|+ ’ (35)

K2

where p; is the momentum of the i*® electron and the second term in Eq. (35) is the Coulomb interaction between
electrons positioned at r; and r;. A represents Coulomb interactions with the background, required to make the
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electron-electron Coulomb sum convergent. The electron-electron Coulomb interaction is modified at short range due
to different confinement potentials in the yz-plane.

Appendix A: Harmonic confinement

With harmonic confinement, the electrons are free to move along the axis of the wire (z-direction) and are trapped
in the ground state of a harmonic potential in the yz-plane. So, the wave function of one electron will have the
following form:

Yq(x, R) = —= exp(iqz)p(R), (A1)

1
VL
where R is a two-dimensional vector, ¢ is in the z-direction, and ¢(R) is the two-dimensional harmonic oscillator wave
function. Using Egs. (35) and (A1), the average electron-electron interaction is given by

(e /me // [(z —2')2 + (R — R)2Y? (42)

The electron transverse wave function for two-dimensional harmonic oscillators in cylindrical coordinates is given as
o —1/2 R?

where b is related to wire width and oscillator frequency wy = ﬁ Now, substituting electron wave function for
two-dimensional harmonic oscillators in Eq. (A2), we get

© exp 2b2 exp (%) )
Vilg) = 7006 27Tb2 5~ dRAR'. (A4)

77
x2+ R—-R') }

Using @ = 5z and substituting R — R’ = R” we obtain,

Vi(q) = —— / ¢ / / oxp (Tof) exp (_Q(R_RN)Q) dRdR" (A5)

47-(—2b4 R//2]1/2
1 oo —2aR? —aR’z 2aRR’ cos GRR/ dR dR’' d6 do’
L el : (A6)
4m2bt (22 + R’2]1/2
_ 2 2 -
1 / et o // 2o e R RR' dR R’ / e2o¢RR/ cost gn | (A?)
27rb4 (22 —|—R’2]1/2 T Jo
Using angular integration and the zeroth-order Bessel’s function of the first kind, Jyo(z) = % foﬂ e'#cos0 4,
1o, —eR"RR AR [
Vilg) = / e dx / € wrdr / e 20R* R J0 (2aRR'i) dR. (A8)
bt J 22 + R2)M? o
Integration over R in Eq. (A8) gives,
1 Ry e 2 dR’
Vilq) — iq g ek hiahiy A9
0) = 7o /_ s /0 ERRTE (A9)
Now substituting R"? =t in Eq. (A9) reduces to
1 [ . < em3l gt
=— 1T q — Al
Y19 = g2 /_ooe x/o 22 4 ]'/? o
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Again substituting, 22 +t =u% Ast=0, u = |z| and t — oo, u — co. Equation (A10) can be written as

1 R ) 0 a2 o0 a2
= e'e2® dx [/ e 2" du+/ e 2% du].
4b —00 |z| 0

2

Now changing the variable from u to y by relation, Su® = y?, which implies the limit of integration as, u = |z| —

y = \/5|z|. Therefore it becomes

L[ e 2| [0 _ >
Vl(q)zﬁ/_wemeﬂz dy |~ [/e v dy+/0 eV’ dy]. (A11)
We can rewrite Eq. (A11) as

Vi(g) = \2/; 0o erfc(| |> ) (A12)

where vy(z) = fexp ( 4b2) erfc <‘z|) in which erfc is the complementary error function defined as erfc(z) =

% = e~ dt. It can be noted that V(z) is finite at x = 0 and varies as 1/x for x — oco. Hence

\2/7;? _‘: dp o1 o on (1 —y (2%)) 7 (A13)

where ¢ (2%) is the error function. The integral in Eq. (A13) can be simplified by using the method of contour
integration by choosing a closed contour in the first quadrant of the upper half complex z plane and noting that the
integral is zero, as there is no pole in the integrand and the contribution of the quarter circle also vanishes when
the magnitude of complex z — co. This procedure converts the integral along the real axis to an integral along the
imaginary y-axis, which reduces the integral to a standard form that can be easily integrated, and Eq. (A13) becomes:

Vi(g) =

Vi(q) = \/f {\;;eq%zEl (—g%b?) — iﬁbea2b2} . (A14)
This can be written as
Vi(g) = e {— By (—¢*? — i0) — ir} (A15)
= edV’ {Ey (q2b2) +im — i}, (A16)
which can be written as
Vi(g) = exp (¢*0%) En (%) . (A17)

The limiting behavior of harmonic confinement is

Vi(g) = =y —21In(gb) for (¢b) — 0, (A18)
1
= @b for (¢b) — oo, (A19)

where v is the Euler constant.

Appendix B: Cylindrical confinement
1. Radial Distribution of Cylindrically Confined Electrons

Consider an electron confined in a cylindrical channel of radius b, with hard-wall boundary conditions on the
cylindrical channel. Suppose b is small compared to the mean electron separation. Then the transverse motion is
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dominated by the kinetic energy of confinement, and hence we can describe the transverse motion in an independent
particle approximation.
In cylindrical polar coordinates, the wave function of a single electron in the channel is of the form

U(r) = R(r,0) X (x), (B1)

where r and 6 are the radial and polar coordinates, and x is the axial coordinate. In the ground state, R is independent
of f. The radial Schrodinger equation for the ground state is

—% (R”(r) + iR’(ﬂ) = ErR(r), (B2)

where Eg is the constant contribution to the energy eigenvalue due to the kinetic energy of the transverse motion.
R(r) is smooth and nondivergent for 0 < r < b and satisfies the boundary condition R(b) = 0. Hence we have

r?R"(r) + rR (r) + 2Err*R(r) = 0. (B3)

Let r = as for some constant a. Let S(s) = R(r). Then S'(s) = aR'(r) and S”(s) = o?R"(r). Hence, the
equation becomes

528" (s) + 55'(s) + 2Era?s*S(s) = 0. (B4)
But Ep is positive since it is a purely kinetic energy. Let o« = 1/4/2FR. Then
528" (s) + s5'(s) + s%S(s) = 0. (B5)

This is Bessel’s equation of zeroth order. The nondivergent solution is S(s) = Jy(s), i.e.,

R(r) = Jo (r/a) = Jo (V2Egr) . (B6)

where J is the zeroth order Bessel function of the first kind.
In the ground state, R(b) = 0, and there are no additional nodes in 0 < r < b. Hence, v/2Erb = jo 1, where
Jo1 &~ 2.40483. .. is the first zero of Jy. So the radial wave function is R(r) = Jy (jo,17/b) in 0 < r < b. Hence the

radial distribution is
5|2 |R(r)|?
‘R(r)‘ = . (B7)
Jo 2mr|R(r)|? dr

2. Effective Interaction between Cylindrically Confined Electrons

Now consider two cylindrically confined electrons (labelled 1 and 2) with axial separation z. Assuming tight
confinement in the transverse direction, we average the full Coulomb interaction over the radial distributions to
obtain the effective Coulomb interaction

Ugﬂ(x)_/ob/o%r/ob/o%r

But ro —ry = xé, + [rycos(f2) — 71 cos(61)] €, + [rasin(f2) — rqsin(61)] €., where ég is the unit vector in the
Cartesian direction . Hence

~ 2. 2
R(ry)| |R(ra)|

T1 d91 dT1 T9 d92 dT’Q. (BS)

[ry — 1

Ity —r1|? = 22 + r2 cos?(62) + 72 cos? (A1) — 2173 cos(Ay) cos(Ba) + 75 sin?(63) + 72 sin?(Ay) — 27179 sin(6, ) sin(6s)

=22 412 + 12 — 2rirycos(fy — 67). (B9)

So,

b b 27 5 2 . 2 1
eff
ve(x) =27 rire |R(r R(r df dro drq. B10
> (@) /0 /o /o ' 2‘ ( 1)‘ ‘ (2)‘ Va2 + 77 + 13 — 2ry7r9 cos(6) 2T (B10)
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To find the effective interaction, we must solve the integral in Eq. (B10). We can make a little bit of progress by
solving the angular integral:
2 do do

27
0 /22 + 7]+ 75 — 2173 cos(f) /0 \/x2 + 12 412 — 2117y + 4ry7ro sin?(0/2)

/2 do
_4/
Ve

(r1 —re)? +4riry sin2(6)

/ de
IGEITEL VI a iy sin’(0)
4 4
= K <k2 - — ) e 2) ) (B]‘l)
2%+ (ry — r2)? x? + (r1 —r2)
where K is a complete elliptic integral of the first kind. Substituting this in Eq. (B10) gives,
b b - 2 . 2 K (k2 = —%)
f(z) = 871'/ / 179 ‘R(Tl)’ ‘R(Tz)‘ ) dry drs. (B12)
0o Jo x2 + (rp —12)?

As a sanity check, in the limit of large x, /22 + (r; — r3)? — |z| and K (k:Q = —4”7”2> — K(0) =7/2.

z24-(r1—72)2
Hence, at long range, the effective interaction reduces to the bare interaction:

s (z) — |i| <2ﬂ/ob ‘R(r)r dr) = % (B13)

x|

The above Eq. (B13) is for zero radius cylinder. It is difficult to make further analytic progress with Eq. (B12) when
R(r) is nontrivial, as is the case for cylindrical hard-wall confinement.
The above potential can be analyzed in an alternative way using the one-electron wave function of the form

eiqm
VL

where 1/d(y) and /d(z) are types of wave functions which are equivalent to the assumption of zero wire width in the
y and z-directions, resulting in a much harder interaction potential.
Matrix elements of the Coulomb interaction are given by

wa= [ e [ [ ] ety it s

Substituting z — 2’ = x and using the Dirac delta function’s 1ntegral,

(2,y,2) = o(y)vo(2), (B14)

_ iqx . 2 _ 2 2
Va(q) /_Ooe [x2+b2}1/2dx ;b bi” + 027, (B16)

where b is wire width parameter. Hence, the softened Coulomb interaction is approximated as v§f(z) ~ 1/,/(22 + b?)
and Fourier transform after simplification becomes

> cos (qx)
Va(q) = 2/ ——duz. (B17)
0 [224b2"?
Using the integral identity for Bessel functions, Eq. (B17) becomes
Va(q) = 2Ko(gb), (B18)

where Ky(gb) is the zeroth-order modified Bessel function of the second kind. The limiting behavior of cylindrical
confinement is

Va(q) = —2y+2In2 — 2In(qd) for (gb) — 0, (B19)
2T

—e
& qb

for (gb) = oo. (B20)



15

Appendix C: Infinite square well confinement

For this case, the one-electron wave function is of the form
eiqm
VL

The ground state wave function for an infinite square well is

U(,y,2) = —=0n(y) 0 (). (C1)

o(y) = (Z)m sim(22), 0<y<b (C2)

¢(z) = (i)m sin (55), 0<z<o. (C3)

Using Egs. (C2) and (C3), the total wave function (C1) can be written as

= (5) () () o (3) <

where b is the width of the infinite square well. Now, the matrix elements of the Coulomb interaction are given by

Vs(q) / dz/ d?' sin® )sln ( )/ dy/ dy sin? )bm2 <7TbZ/)
ciae— T)d(x_x)
e

)+ (2 — )

Substituting z — 2’ = x,

Va(a) /d/ 2" sin® (72 s’ ( )/ dy/ dy sin )@)
/ \/ RIC _Zl)z. o)

+(z

Using the integral identity for Bessel functions, Eq. (C6) becomes

/ dz / d2' sin? ( > / dy / dy sin? >51n2 (”g) Ko(qR), (C7)

where R = \/y y)’ + (2 —2)>

Appendix D: Infinite square well confinement in the y direction, triangular quantum well confinement in the
z direction

The one-electron electron wave function for this case is given as
elaz
VL

The ground state wave function for an infinite square well in the y-direction is

9 1/2 Ty
aﬁ(y):(b) sm(b), 0<y<b, (D2)

and the ground state normalized wave function in the z-direction is

) = (3)/ s (52 o) (D3)

U(z,y,2) = —=0n(y)Gi(2). (D1)
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where this b is the width of 1-D wire along y axis, and zq is defined as the average wire width along the z-direction.
Using Egs. (D2) and (D3), the total wave function (D1) can be written as

Wy, 2) = e\/kg (Z)W sin (72 % (i)g/QzeXp (;:’)e(z). (D4)

Matrix elements of the Coulomb interaction are given by

T S P (Y
Vi) = B2 ZOG/ dZ/ dz' z°2"%e dy dy sin? )51n -
= :

(@ =)+ (y —y)" +(z - 2)

using the integral identity for Bessel functions, Eq. (D5) becomes
1458 _3(e+z ’
Valq) = 326 / / dz' 2% 2% e % / dy/ dy’ sin® )51112 (7?) Koy(qR). (D6)
0

Appendix E: Harmonic confinement in the y direction, delta-function confinement in the z direction

In this case, we confine electrons in the transverse yz-plane using harmonic confinement in the y-direction and
neglect the motion of electrons in the z-direction, which is equivalent to the assumption of zero wire width. The
one-electron wave function is of the form

ﬁén(y) Vo(2). (E1)

The ground state wave function for a harmonic potential in the y-direction is

o =[] e (<) m (1), (82

where b is related to wire width and Hy (y/b) = 1 is the Hermite polynomial. Using Eqs. (E1) and (E2), matrix
elements of the Coulomb interaction are given by,

v5(q)/Zeiq(w’)d(;@z')/Zdz'/Za( / dy/ dy’ \/ 5 ()50;)2:(22,)2. (E3)

Substituting z — 2z’ = =z,

U(x,y,2) =

> ' da > e 21
VQ):/_Oo\/m/_wdy/_mdyfo(y)fo(y)~ (E4)

Using the integral identity for Bessel functions and Eq. (E2),

2 > > / 7y2 -y /
Vs(a) = —5 dy dy exp | —5- | exp Ko(qly—y'l), (E5)

2
b2

where Ky (¢ |y — ¢'|) is the zeroth-order modified Bessel function of the second kind. Equation (E5) can also be

rewritten as
y—y y+y)°
Vs(q) b2/ dy/ dy eXp< ( 2b2) )eXp (—( 2b2) )Ko (qly =) (E6)

Now transform y and 3’ into center of mass coordinates. Given =% \/5 =Y and y\'%y =Y, the Jacobian transformation
implies dy dy’ = dY dY’ and so Eq. (E6) becomes

Va(q) = 7T2b2/oooexp( bf >K0(q\fy*)dy/°° exp< 2/2) qy’. (E7)

—0o0
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Using the Gamma function and Bessel function integral identities, Eq. (E7) simplifies to

Vs(q) = exp ( 24b2> Ko ( 24b2> : (E8)

The limiting behavior of harmonic-delta confinement is

Vs(q) = =2y +3In2 — 2In(gb) for (gb) — 0, (E9)
- ib” for (gb) — oo, (E10)
q

Appendix F: Infinite square well confinement in the y direction, delta function confinement in the z direction

Electrons are free to move in the z-direction and confined in the yz-plane using square well confinement in the
y-direction and neglecting the motion of electrons in the z-direction, which is equivalent to the assumption of zero
wire width. The one-electron wave function for this case is

P(z,y,2) = i Pn(y) V6(2). (F1)
The ground state wave function for an infinite square well of width b in the y-direction is
o\ /2 Ty
Py) = <b) sin (7) , 0<y<b. (F2)

Using Egs. (F1) and (F2), the matrix elements of the Coulomb interaction are given by

Ve( b2/ dz/ dz/ dy/ dy’ sin® )sm2 <7rby')
/ = eiale- I)d(w—x — (F3)

(y—y)" + (2

Substituting z — 2’ = x and using the Dirac delta function’s integral,
4 b b ;o (TY .y 7_‘,y/ o] el dr
Volg9) = 35 | dy | dy sin (?) sin” (=~ —— (F4)
0 0 —oo /m2_|_(y_y/)2

Using the integral identity for Bessel functions, Eq. (F4) reduces to

Volq) = ()82/ dy/ dy' sin (Wby)bir12 <7Tby,> Ko(qly—v'1), (F5)

where Ko (¢q|y — v'|) is the zeroth-order modified Bessel function of the second kind.

Appendix G

The self-energy contribution to the SSF [Eq. (19)] is
@) =+ [ xi(giw)d (@)
=—— iw) dw,
1 \q nm Jo X1 \4,
where, by Eq. (11), x3°(q, iw) is proportional to a frequency-dependent part,

Q2 2

X1 (g, iw) o< m (G2)



To evaluate the integral

/0 (g, iw) dw—A/ (CEPEE dw,
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where A is a proportionality constant, we use the substitution w = Qtan . The integral becomes

oo /2
| atisdo=a [ g
0
7r/2
“al

o) 2 _
02 — w2 (@3)
— (Qtan#)?
((Q on 9)) BE (Q2sec® 0 do) (G4)
—tan?6
-y ——df#=0. (G5)

Hence S5°(q) = 0, i.e., the self-energy contribution to the SSF is zero.
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FIG. 7. Correlation energy per electron e. as a function of
density parameter rs at fixed wire width b = 0.005, 0.1, and
0.5 a.u. for different confinement models [Vi(q)-Vs(q)]. Inset
of Fig. 7(a) depicts a zoomed in view of the correlation energy
for Vi(q), Va(q), and V5(g). Also, in the insets of Figs. 7(b)
and 7(c), we have shown a zoomed-in view of the correlation
energy and the validity of the FRPA with VMC simulation
[15, 39] and the RPA.
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FIG. 8. In Fig. 8(a) the ground state energy per electron Ej is
plotted as a function of wire width b for rs = 0.5 for different
confinement models. In Figs. 8(b) and 8(c), the ground state
energy per electron E, is plotted as a function of density
parameter rs for wire widths b = 0.1 and 0.5 a.u. Also, the
ground state energies in the FRPA are compared with QMC
simulated and RPA results for harmonic wires [15, 39].
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