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Lie-ins or early bedtimes: Do either affect how grasses perform in solar parks? 

 

Abstract 

Agrivoltaics combines solar infrastructure with agriculture. Fixed bifacial, north–south 

oriented panel rows expose plants to temporally structured morning or afternoon shade. Whether 

plants benefit from a "lie-in" (morning shade) or an "early bedtime" (afternoon shade) is unknown, 

despite contrasting physiological demands. A trait-based approach using glasshouse and field 

experiments investigated whether forage species outcomes differ under temporally structured shade. 

Glasshouse experiments characterised photosynthetic induction, hydraulic, stomatal, and leaf 

structural traits of eight temperate forage species: Timothy (Phleum pratense); Cocksfoot (Dactylis 

glomerata); Meadow fescue (Festuca pratensis); Tall fescue (Festuca arundinacea); Perennial ryegrass 

(Lolium perenne); Italian ryegrass (Lolium multiflorum); Hybrid ryegrass (Lolium × hybridum), and 

White Clover (Trifolium repens). Stomatal opening time varied eightfold; stomatal limitation ninefold. 

Maximum contrasts were between Timothy (fast) and Clover (slow stomata). Principal component 

analysis explained 80.6% of variation and was dominated by contrasts between grasses and the sole 

dicot, Clover. When Clover was excluded, stomatal size and density, leaf mass per area (LMA), and leaf 

hydraulic conductance predicted dynamic performance among grasses. 

Field experiments examined four species (Timothy, Clover, Italian ryegrass and Perennial 

ryegrass) under morning and afternoon shade treatments reducing daily light integrals by c. 26%. 

Species explained 88% of multivariate trait variation, and treatment effects 4%. Timothy produced 

69% more biomass under afternoon shade despite minimal plasticity in leaf traits. Clover showed no 

biomass gains but high plasticity in LMA. 
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Jointly, experiments revealed kinetic speed alone did not predict biomass responses: 

Perennial ryegrass showed fast opening (6.3 min) but no biomass gain, whereas Italian ryegrass 

achieved +24% despite intermediate kinetics (11.5 min). This first trait-based framework for forage 

species selection in temperate agrivoltaic systems demonstrates that an 'early bedtime' benefits 

species whose stomatal kinetics, hydraulic traits, and leaf structure are coordinated for exploiting 

concentrated morning light, while a 'lie-in' offers no comparable advantage. 
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1 Introduction 

1.1 Grasslands and Global Food Security 

Grasslands are one of the largest terrestrial biomes on the planet, covering around 40% of the 

Earth’s land area and supporting around 38% of the human population (Liu et al., 2023). They provide 

valuable ecosystem services such as carbon sequestration, biodiversity conservation, and climate 

regulation, whilst also providing resources for livestock production (Bengtsson et al., 2019; Liu et al., 

2023). Temperate improved grasslands play a vital role in livestock farming worldwide, with significant 

percentages of global milk (27%) and beef (23%) coming from grassland-based systems (Sere et al., 

1995, cited in Conant et al., 2001).  

The global transition toward renewable energy infrastructure is creating competition for land 

between energy and food production at an unprecedented rate (Dupraz et al., 2011; Kruitwagen et 

al., 2021). By 2050, the world's population is estimated to reach 10 billion, with demands for food and 

global energy requirements rising simultaneously (Akbar et al., 2024). Solar photovoltaic (PV) 

technology and agriculture have comparable land requirements: relatively flat terrain that receives 

sufficient sunlight, which means that land most suitable for solar installations is often identified as 

having high agricultural potential (Neesham-McTiernan et al., 2025). 

Agrivoltaics, the co-location of solar energy collection with agricultural production, offers a 

potential solution to this land-use conflict. Goetzberger and Zastrow (1982) first proposed this idea, 

demonstrating mathematically that elevated solar panels could permit approximately two-thirds of 

solar radiation to reach underlying crops, suggesting that C₃ species could coexist successfully with 

solar infrastructure. However, it wasn’t until 2011 that Dupraz et al. introduced the Land Equivalent 

Ratio framework, predicting 35–73% increases in global land productivity through this complementary 

resource use. Interestingly, Sekiyama and Nagashima (2019) found that under low-density panel 

configurations, even shade-intolerant crops could perform adequately, with corn biomass increasing 
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by 4.9% compared to controls. Since then, the global installed agrivoltaic capacity grew from 5 MW to 

2.8 GW between 2012 and 2020 (Kumpanalaisatit et al., 2022), whilst Neesham-McTiernan et al. 

(2025) suggest that 127,087 km² of Great Britain has high spatial suitability for agrivoltaics. Whilst 

agrivoltaics can potentially increase total land productivity, understanding which species thrive under 

panel-created shade and the mechanisms underlying their responses remains incomplete. 

1.2 The Agrivoltaic Light Environment 

The light environment beneath photovoltaic arrays differs fundamentally from natural shade 

or uniform light reduction. Solar panels create complex spatial and temporal patterns of irradiance 

that vary with panel configuration, orientation, and diurnal sun angle (Dupraz et al., 2011; Sturchio 

and Knapp, 2023). The design of PV panels influences the temporal distribution of shade over time: 

fixed-tilt arrays create fairly static patterns, creating areas of deep shade beneath panels, and sunlit 

zones between rows; while single-axis tracking systems create dynamic light environments where 

plants beneath panels receive periods of direct sunlight as panels rotate throughout the day (Sturchio 

and Knapp, 2023). Beneath fixed-tilt panels, the light availability is significantly heterogeneous across 

both space and time. During the summer months, inter-row spaces can receive 

photosynthetic photon flux density (PPFD) values above 450 µmol m⁻² s⁻¹ at solar noon, whereas 

irradiance is generally reduced to less than 100 µmol m⁻² s⁻¹, approaching the light compensation 

point for numerous plant species, during the winter (Dhlamini and Brent, 2025). Beyond light 

reduction, photovoltaic infrastructure modifies the microclimate in ways that may benefit or inhibit 

crop function. Modifications in temperature are one of the most consistent findings across studies, 

although the magnitude varies with latitude. In Mediterranean systems, mean daily soil temperatures 

beneath panels were reduced by 1–1.2 °C, whilst mean air temperatures were not significantly 

modified (Marrou et al., 2013b). In contrast, Barron-Gafford et al. (2019) found that panels reduced 

mean air temperature by 1.9–2.3 °C in drylands. However, in the UK's temperate climate, substantially 

larger effects on soil temperature have been documented in the summer, with average reductions of 
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5.2°C and maximum decreases up to 7.6 °C in the daily temperatures compared with open areas. 

However, air temperature showed no significant difference in daily average, although diurnal variation 

was less pronounced. By contrast, in the winter months, soil temperatures were up to 1.7 °C cooler in 

the gap areas compared to areas underneath the panels, which acted as a thermal buffer (Armstrong 

et al., 2016). In dryland environments, vapour pressure deficit (VPD) is consistently 0.5 ± 0.15 kPa 

lower beneath arrays (Barron-Gafford et al., 2019), with reduced actual evapotranspiration (10–30% 

lower) resulting primarily from reduced climatic demand rather than stomatal closure (Marrou et al., 

2013a). For plant physiology, this difference is mechanistically important because plants can maintain 

stomatal conductance while experiencing lower transpirational demand, potentially enabling higher 

water use efficiency without forgoing carbon gain (Marrou et al., 2013a; 2013b). 

Despite the environmental heterogeneity found within agrivoltaic environments, most studies 

have evaluated crop responses in terms of total shade intensity rather than temporal structure. A 

meta-analysis of 58 studies found nonlinear relationships between solar radiation reduction (RSR) and 

crop yield, indicating that most crops can maintain productivity with reductions up to 15% (Laub et 

al., 2022). Forages were classified as shade-tolerant and maintained 103% of control yield at 20% RSR 

and 93% at 40% RSR, although with substantial uncertainty (Confidence Interval: 75–117%). In 

contrast, a 40% RSR reduced the photosynthetic efficiency of maize (C4), resulting in significant yield 

losses (45%) (Laub et al., 2022). Cool-season C₃ forages generally perform better under moderate 

shade than warm-season C₄ species, with American orchard grass (Dactylis glomerata) and Tall fescue 

(Festuca arundinacea) maintaining yields at 50% shade due to reduced heat stress and photoinhibition 

during summer (Lin et al., 1999). Additionally, morphological plasticity allowed lettuce to maintain 

yields by compensating for reduced light through an increase in specific leaf area (SLA), despite having 

fewer leaves (Marrou et al., 2013c). Similar plastic responses were observed in grass-Clover mixtures, 

where shade altered the species composition, with White Clover proportions increasing relative to 

Perennial ryegrass under reduced light (Weselek et al., 2021). 
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Agrivoltaic field studies conducted within semi-arid grasslands have hinted at the importance 

of temporal light dynamics, demonstrating interesting spatial patterns. In a single-axis tracking system, 

aboveground net primary productivity (ANPP) was consistently highest at eastern panel edges, 

exceeding the productivity of western edges by 33% (Sturchio et al., 2022). The authors attributed this 

asymmetry to diurnal timing benefits: plants at eastern edges received morning sun when air 

temperatures and VPD were low, followed by afternoon shade when conditions become unfavourable 

for C₃ photosynthesis. Subsequent work confirmed that plants exposed primarily to morning light 

maintained consistently higher stomatal conductance (115% higher than controls) and leaf water 

potential throughout the growing season, with the eastern edge microsite consistently the most 

productive across all management treatments (Sturchio et al., 2024a; 2024b). 

These findings suggest that the timing of light exposure may be as important as total light 

quantity for determining plant productivity. Nevertheless, the temporal structure of shade and 

whether plants experience morning light followed by afternoon shade, or morning shade followed by 

afternoon light, has not been scientifically studied, despite fundamentally different physiological 

demands. Morning periods are characterised by low VPD and maximum stomatal responsiveness 

(Sturchio et al., 2024b), which may be advantageous for species that can rapidly initiate 

photosynthesis. Afternoon periods bring high VPD and potential hydraulic stress (Barron-Gafford et 

al., 2019), which may disadvantage species that cannot quickly close their stomata to conserve water. 

The limited understanding of how species respond to these features of agrivoltaic configurations 

inhibits evidence-based design of solar parks to sustain agricultural productivity. 

1.3 Photosynthesis Under Fluctuating Light  

1.3.1 The Problem of Non-Steady-State Photosynthesis 

Plants in natural habitat and agrivoltaic environments experience constant light fluctuations; 

however, most of our understanding of photosynthesis has been built primarily on steady-state 
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measurements that assume instantaneous adjustment to light conditions (Kaiser et al., 2018). To 

accurately predict yield, we need to understand how plants respond to dynamic light. In forest 

understories, sunflecks have been shown to contribute 20–80% of daily carbon exchange (Pearcy, 

1990), while crop canopies experience comparable dynamics as leaves move, clouds pass, and self-

shading patterns shift (Kaiser et al., 2018). However, photosynthesis does not respond immediately; 

when light levels increase after a period of shade, CO₂ assimilation rises gradually over several 

minutes, a phenomenon termed photosynthetic induction (Tanaka et al., 2019). Consequently, models 

based on steady-state photosynthesis can therefore overestimate daily carbon gain by 20–30% (Way 

and Pearcy, 2012). These impacts on plant productivity are significant. In wheat, Taylor and Long 

(2017) demonstrated that slow induction may cost at least 21% of potential productivity, with 

calculated losses ranging from 10–40% during light fluctuations (Long et al., 2022). As Kaiser et al. 

(2018) remark, fluctuating light effectively takes crop photosynthesis on a "rollercoaster ride" where 

regulatory processes struggle to keep pace with environmental change. 

1.3.2 Processes Limiting Photosynthetic Induction 

Photosynthetic induction is influenced by a series of processes operating at different 

timescales (Kaiser et al., 2015; Pearcy, 1990). The fastest involves Ribulose 1,5-bisphosphate (RuBP) 

regeneration, recovering within seconds as electron transport rates increase (Sassenrath-Cole and 

Pearcy, 1994). The second limitation involves Rubisco activation via Rubisco activase (Rca), which 

typically required between 1–10 minutes (Mott and Woodrow, 2000). Species differ in induction 

speed; for example, tobacco shows faster induction than Arabidopsis or camelina, which has been 

attributed to Rca regulatory properties (Carmo-Silva and Salvucci, 2013). However, the slowest 

process is stomatal opening, typically requiring 10–30 minutes or longer, an order of magnitude slower 

than biochemical responses (Kaiser et al., 2015; Lawson and Vialet-Chabrand, 2019). This temporal 

hierarchy means slow RuBP regeneration limits until approximately 60 seconds; Rubisco activation 

dominates until approximately 10 minutes; thereafter, stomatal opening becomes the primary 
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limitation (Kaiser et al., 2016). This balance can change during induction: in Brassica crops, biochemical 

limitation was greatest immediately after light increased, while stomatal limitation became more 

important as carboxylation capacity recovered (Taylor et al., 2020). Additionally, an analysis across 15 

species found that forgone assimilation was strongly correlated with stomatal opening time, 

highlighting stomatal kinetics as the dominant source of interspecific variation in dynamic 

performance (Deans et al., 2019a). 

1.3.3 De-induction and Carbon Costs 

When light levels decrease, a temporal asymmetry emerges. Stomatal closure often lags 

behind biochemical down-regulation, allowing continued water loss when carbon gain is constrained 

(Vialet-Chabrand et al., 2017). The slow relaxation of non-photochemical quenching (NPQ) represents 

another carbon cost, with theoretical losses estimated to be between 13–32%, depending on 

temperature (Zhu et al., 2004). However, accelerating NPQ relaxation has been shown to increase 

field biomass by approximately 15% in tobacco, demonstrating that alleviating a single dynamic 

bottleneck can yield substantial productivity gains (Kromdijk et al., 2016). Furthermore, non-steady-

state modelling reveals that delayed stomatal opening limits morning assimilation, while delayed 

closure causes afternoon water loss when carbon gain is constrained by declining light (Liu et al., 

2024). Therefore, whether plants experience morning shade versus afternoon shade may have 

fundamentally different consequences depending on the kinetic traits of the species. 

1.3.4 Interspecific Variation in Dynamic Responses 

Substantial interspecific variation exists in dynamic responses. Across 15 species, the time 

constant for stomatal opening ranged from 0.9 minutes in rice to 23 minutes in faba bean, a 25-fold 

variation, although species with dumbbell-shaped guard cells (grasses) were on average 10 minutes 

faster than those with elliptical guard cells (dicots)  (McAusland et al., 2016). Such variation is not 

limited to interspecific comparisons; within soybean, induction time constants ranged from 1.2 to 13.8 
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minutes across 37 genotypes (Soleh et al., 2017; 2016). Model simulations suggest that substituting 

slow kinetics with fast kinetics would reduce daily carbon loss from 21.2% to 11.5% (Tanaka et al., 

2019). In rice, small dense stomata contributed to faster responses, and plants with faster stomatal 

opening showed higher biomass accumulation (Xiong et al., 2022). 

In forage species, research on dynamic responses remains limited. In Cocksfoot (Dactylis 

glomerata), the rate at which stomatal conductance changes was slower than that of  photosynthesis 

both entering shade and during subsequent induction, with time to full induction ranging from 15 

minutes after brief shade to 37 minutes after extended shade (Peri et al., 2002a). Although it remains 

unclear how other temperate forages respond within a temporally shaded environment.  

While interspecific and intraspecific variation in photosynthetic induction is documented in 

major crops, the mechanistic basis for this variation, particularly the roles of stomatal anatomy and 

hydraulic traits, remains poorly characterised in forage species. Whether kinetic properties predict 

field performance under temporally structured agrivoltaic shade has also not been studied. 

1.4 Stomatal Anatomy and Kinetics 

Guard cell morphology differs fundamentally between major plant groups, with consequences 

for dynamic performance. Stomata occur in two principal forms: kidney-shaped guard cells 

characteristic of dicots, and dumbbell-shaped guard cells found in grasses (Franks and Farquhar, 

2007). These morphologies differ not only in appearance, but also in their mechanical operation. In 

kidney or elliptical-shaped stomata, guard cell swelling against the surrounding epidermal cells 

generates the force required to open the pore and it is the mechanical advantage of the epidermis 

that constrains maximum aperture (Franks and Farquhar, 2007). On the other hand, dumbbell-shaped 

stomata found in grasses operate through a different mechanism. The guard cells are flanked by 

specialised subsidiary cells that function as osmotic reservoirs (Franks and Farquhar, 2007; Lawson 

and Blatt, 2014). When stomata open, osmotically active solutes, principally potassium, chloride, and 
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malate, shuttle rapidly between guard cells and subsidiary cells in a "see-sawing" of turgor pressure, 

enabling what Franks and Farquhar (2007) described as "greatly accelerated stomatal opening and 

closure." Across fifteen species, McAusland et al. (2016) found that the opening speed of dumbbell-

shaped stomata was, on average, ten minutes faster in reaching maximum conductance than elliptical 

stomata, a functional group effect representing a fundamental constraint. 

The type of guard cell type combined with the size of the stomata influences the speed of 

response. Smaller stomata possess greater surface-area-to-volume ratios, which may facilitate rapid 

ion fluxes (Bertolino et al., 2019; Lawson and Blatt, 2014). Across taxonomically diverse rainforest 

species, Kardiman and Ræbild (2018) demonstrated that stomatal size correlated negatively with 

opening speed, with these kinetic differences translating to biomass accumulation. Conversely, Elliott-

Kingston et al. (2016) found that the closing rate was not correlated with size across an evolutionarily 

diverse species (ferns, cycads, conifers, and angiosperms); instead, the timing of species diversification 

relative to historical atmospheric CO₂ concentrations emerged as a stronger predictor. This apparent 

contradiction may be understood by considering how size-speed relationships operate differently 

within versus across guard cell types. McAusland et al. (2016) found that among dumbbell-shaped 

stomata, size significantly impacted speed, whereas among elliptical stomata, physiological processes 

were considered more important factors than anatomical features, with the type of photosynthesis 

(C3 versus C4) also deemed as being particularly significant. 

The distribution of stomata across leaf surfaces varies substantially among species. 

Approximately 90% of plant species in some communities are hypostomatous, possessing stomata 

exclusively on the abaxial surface (Muir, 2015). However, grasses represent an exception, often 

exhibiting equal or higher stomatal density on the adaxial surface (Wall et al., 2022). Amphistomaty, 

the presence of stomata on both surfaces, may be advantageous because the distance for CO₂ 

diffusion between substomatal cavities and chloroplasts is reduced (Drake et al., 2019; Muir, 2015). 
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Wall et al. (2022) demonstrated that adaxial and abaxial stomata operate semi-independently, with 

each surface contributing to the total conductance differently, whilst Hõrak (2025) showed that 

adaxial and abaxial stomata exhibit different light sensitivities, which is mediated by different 

potassium channel complements, differences that may translate to distinct kinetic properties on each 

surface. 

Stomatal density can change in response to environmental conditions during leaf formation, 

and is therefore considered a developmentally plastic trait (Casson and Gray, 2008). Additionally, it 

has been suggested that higher stomatal density may enhance dynamic performance: Sakoda et al. 

(2020) demonstrated that Arabidopsis lines with higher stomatal densities exhibited faster 

photosynthetic induction, with a 46.5% increase in density achieving 25.6% higher biomass under 

fluctuating light. This occurred because species with greater stomatal densities had higher initial 

conductances under low light, reducing stomatal limitation when irradiance increases (Sakoda et al., 

2020). However, it is important to note that stomatal anatomy is determined during early leaf 

development before expansion is complete, whereas structural traits such as leaf area continue to 

adjust through differential cell expansion (Carins Murphy et al., 2014; Pantin et al., 2011). 

Furthermore, unified changes in cell size coordinate functionally linked traits: guard cell length 

correlates with vein density and hydraulic architecture across diverse taxa (Brodribb et al., 2013), 

suggesting that anatomical, kinetic, and hydraulic traits may be mechanistically linked. 

Whether anatomical traits that predict kinetics in controlled studies translate to performance 

advantages in temporally heterogeneous field environments remains untested. The grass-dicot divide 

in guard cell morphology suggests fundamentally different structure-kinetics relationships may exist, 

but direct comparison within realistic agrivoltaic light environments has not been conducted. 
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1.5 Hydraulic-Photosynthetic Co-ordination 

Leaf hydraulic conductance (Kleaf), which measures the efficiency with which water moves 

from the petiole to sites of evaporation, varies more than 65-fold across species. This variance can be 

attributed to differences in venation architecture, petiole anatomy, and outside-xylem pathways 

through living tissues (Sack and Holbrook, 2006). The leaves account for at least 30% of whole-plant 

hydraulic resistance, positioning leaf hydraulics as a major bottleneck in the plant water transport 

system (Sack and Holbrook, 2006). This resistance comprises xylem conductance through veins and 

outside-xylem conductance through bundle sheath and mesophyll cells operating in series (Sack and 

Scoffoni, 2013). 

Across species, Kleaf shows strong positive coordination with maximum stomatal conductance 

(gmax) and photosynthetic rates. Across eight species, including tree dicots, ferns and grassy monocots, 

Brodribb and Jordan (2008) demonstrated that Kleaf and gmax are strongly linearly correlated (r² = 0.80), 

whilst Brodribb et al. (2007) used a quadratic regression and found an even tighter coupling between 

Kleaf and maximum assimilation rates (Amax; r² = 0.94) across 43 taxonomically diverse species. This 

coordination reflects the sequential positioning of xylem and stomata in the water flow path, and 

stomatal conductance cannot sustainably exceed what the hydraulic supply supports. Additionally, 

Brodribb and Jordan (2008) found that the ratio between gmax and Kleaf determines the sensitivity of 

stomata to VPD, with species having higher Kleaf relative to gmax being less responsive to increases in 

VPD. More generally, it is acknowledged that leaf hydraulic conductance and leaf water potential are 

recognised as major controls on guard cell turgor responses to VPD changes (Grossiord et al., 2020). 

Beyond maintaining steady-state coordination, Kleaf adapts to environmental changes 

dynamically within minutes (Sack and Holbrook, 2006). The intensity and quality of light adjust the Kleaf 

through signal transduction in bundle sheath cells, which act as hydraulic "gatekeepers" (Grunwald et 

al., 2024). Blue light increases Kleaf via phototropin signalling, which increases aquaporin activity in 
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bundle sheath cells; in the absence of blue light, Kleaf can decline by 60–70%. This response to light 

occurs more rapidly than changes in stomatal conductance, which effectively prepares the leaves 

hydraulically prior to stomatal opening (Grunwald et al., 2024), which may be important in dynamic 

light environments. 

Temperate forage grasses exhibit distinctive hydraulic strategies. Holloway-Phillips and 

Brodribb (2011b) demonstrated that Lolium perenne (Perennial ryegrass) operates with a "water-

spending" strategy characterised by extremely vulnerable xylem (P50 at −1 MPa) and a negative 

hydraulic safety margin of −1.35 MPa. Despite operating beyond their hydraulic safety threshold, 

these grasses can maintain high assimilation rates until >70% of hydraulic conductivity is lost and 

recover rapidly upon rewatering. Even closely related forage species show contrasting regulation: 

Lolium multiflorum (Italian ryegrass) has a higher maximum leaf hydraulic conductance (Kmax) and 

maintains conservative stomatal control, while Festuca arundinacea (Tall fescue) exhibits reduced 

stomatal sensitivity and accepts greater hydraulic risk (Holloway-Phillips and Brodribb, 2011a). 

Emerging evidence directly links hydraulic strategy to stomatal kinetics. Meinzer et al. (2017) 

found that the time it takes for stomata to open is about five times longer in isohydric plants (those 

that conserve water) compared to anisohydric plants (which use water more freely), while the 

activation of photosynthesis in isohydric species can take roughly 14 times longer. Additionally, 

anisohydric species possessed higher stomatal densities, smaller guard cells and faster kinetics. This 

coordination along the isohydry-anisohydry continuum, now recognised as a spectrum rather than a 

dichotomy (Ratzmann et al., 2019) suggests that hydraulic strategy may predict dynamic performance: 

if anisohydric species open their stomata faster, they should be able to exploit transient high-light 

periods more effectively. 
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1.6 Phenotypic Plasticity and Shade Acclimation 

Phenotypic plasticity is the ability of a genotype to produce different phenotypes in response 

to environmental variation and presents a potential mechanism for shade acclimation (Bradshaw, 

1965; Stearns, 1989). In a comprehensive meta-analysis of 500 experiments spanning 760 species 

Poorter et al. (2019) identified that most leaf traits respond to daily light integral (DLI) in a saturating 

manner, with specific leaf area (SLA) exhibiting a plasticity index of approximately 2.6 and leaf mass 

per area (LMA) showing corresponding increases with irradiance. Among all traits examined, tillering 

displayed the highest plasticity index, as the only trait increasing more than linearly with light 

availability (Poorter et al., 2019). LMA is the combination of leaf thickness and tissue density, which 

effect photosynthetic capacity in opposing ways: leaf thickness increases the accumulation of 

photosynthetic proteins, whereas increases in density reduce the allocation of nitrogen to assimilative 

compounds and increase mesophyll CO₂ transfer resistance (Niinemets, 2001; 2002). 

The expression of plasticity is not cost-free. DeWitt et al. (1998) proposed two types of 

plasticity costs; fitness reductions while producing the same phenotype, and plasticity limits, which is 

the inability to produce the optimal phenotype. Their framework identifies five costs (maintenance, 

production, information acquisition, developmental instability, genetic) and four limits (information 

reliability, lag-time, developmental range, epiphenotype). For example, when plants respond to 

shade, the lag-time limit is particularly relevant because morphological changes depend on 

developmental time to detect signals, interpret information, and generate new tissue, a process that 

can take days to weeks. If conditions shift more rapidly than these changes can occur, the ability to 

adapt becomes ineffective (DeWitt et al., 1998). Ecological factors further constrain plasticity 

expression; importantly, the most plastic species in response to light exhibited highest seedling 

mortality in deep shade (Valladares et al., 2007). 
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Not all plasticity improves fitness. Ghalambor et al. (2007) emphasised that only adaptive 

plasticity, responses placing organisms closer to the phenotypic optimum, predictably enhances 

fitness; non-adaptive plasticity may shift phenotypes further from the optimum. A meta-analysis of 

280 species directly tested whether SLA plasticity contributes to shade tolerance finding that plants 

increased SLA by 55.4% under shade, whereas biomass decreased by 59.9%. Shade tolerance 

depended on having high SLA from the start, not on adjusting it (Liu et al., 2016). Meanwhile, 

acclimation to fluctuating light produces characteristic shifts; lightfleck-grown leaves have been 

shown to exhibit SLA 12% higher than the constant light control, although the maximum 

photosynthetic capacity was unaffected, while stomatal kinetics changed with acclimation (Morales 

and Kaiser, 2020). This suggests physiological adjustment matters more than structural change for 

dynamic performance. 

Species differ significantly in their plasticity, and these differences typically exceed treatment 

effects. According to global meta-analyses, intraspecific trait variation accounts for only 25% of 

variation within communities and 32% among communities, meaning approximately 70% occurs 

among species (Funk et al., 2017; Siefert et al., 2015). Shade-tolerant species are generally less plastic 

compared to light-demanding species, with reduced plasticity appearing to be part of a conservative 

resource-use strategy (Valladares and Niinemets, 2008). Notable differences have been observed 

between functional groups: grasses can maintain better relative feed values under shade, whereas 

legumes show greater resilience in crude protein content, likely reflecting Nitrogen-fixation feedback 

mechanisms (Pang et al., 2017). 

Whether morphological plasticity or kinetic specialisation determines performance under 

diurnal shade regimes has not been directly studied. Theory predicts that structural plasticity should 

help plants acclimate to changing light; however, Liu et al. (2016) found that plasticity did not improve 

biomass under shade. When light changes diurnally and on timescales of minutes to hours, 
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morphological adjustments may simply be too slow. Therefore, in diurnally shaded environments, fast 

kinetic responses may matter more than structural traits that take days or weeks to develop.  
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2 Knowledge Gaps 

While theory on induction kinetics, hydraulics, and plasticity is well developed, significant gaps 

remain in how these processes interact, especially for forage species in bifacial agrivoltaic systems. 

Temporal versus intensity effects: Agrivoltaic research has focused on total light reduction 

rather than diurnal shade timing. Meta-analyses quantify yield responses to shade intensity, forages 

maintain productivity under moderate shade (Laub et al., 2022); however, the physiological effects of 

morning versus afternoon shade remain unexplored. Field observations suggest eastern panel edges 

receiving morning light show higher productivity (Sturchio et al., 2024a; 2022), coinciding with lower 

VPD (Barron-Gafford et al., 2019; Marrou et al., 2013b). Whether this reflects kinetic advantages, 

hydraulic supply, or microclimate interactions remains unknown. 

Kinetic mechanisms in forages: While interspecific variation in photosynthetic induction is 

documented, opening time constants ranging from 0.9 to 23 minutes (McAusland et al., 2016), with 

productivity costs potentially exceeding 21% (Taylor and Long, 2017), the mechanisms in temperate 

forages remain uncharacterised. Grass stomata possess subsidiary cells enabling rapid turgor "see-

sawing" (Franks and Farquhar, 2007), but whether this translates to faster kinetics in temperate forage 

grasses and compared to Clover has not been directly compared. 

Structure-kinetics relationships: Anatomical traits predict kinetics in controlled studies; 

smaller guard cells should open faster (Kardiman and Ræbild, 2018), but size-speed relationships may 

differ between guard cell morphologies (Elliott-Kingston et al., 2016; McAusland et al., 2016). Higher 

stomatal densities are known to accelerate induction speeds (Sakoda et al., 2020), and Kleaf 

coordinates with gmax  (Brodribb and Jordan, 2008; Sack and Holbrook, 2006), but whether these 

predictions translate to field performance of temperate forage species under diurnal shade regimes 

is unknown. 
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Plasticity versus kinetics: Species exhibiting greater SLA plasticity show worse biomass 

maintenance (Liu et al., 2016), while shade-tolerant species exhibit lower plasticity (Valladares and 

Niinemets, 2008) and morphological adjustments may be too slow for diurnal shade patterns (DeWitt 

et al., 1998), making kinetic traits more important. Whether morphological plasticity or the inherent 

kinetic properties determine the performance of forage species under temporally structured shade 

has not been tested.  

Field translation: Laboratory trait measurements show only modest correlation with field 

performance (median r² = 0.26; Poorter et al., 2016). Whether the kinetic properties obtained within 

controlled glasshouse experiments predict the performance of temperate forage species under 

realistic agrivoltaic conditions remains untested. 
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3 Aims and Hypotheses 

3.1 Overall Aim 

The overall aim of this thesis is to determine how forage species differ in their structural, 

hydraulic, and dynamic photosynthetic traits, and how these traits shape their phenotypic responses 

to diurnal shading under bifacial agrivoltaic conditions. 

This aim is addressed through two complementary components: (1) a controlled glasshouse 

experiment quantifying dynamic photosynthetic responses and leaf traits across eight temperate 

forage species, and (2) a field shading experiment testing how shade timing influences plasticity and 

biomass in four species covering the kinetic spectrum identified in the glasshouse. 

3.2 Glasshouse Experimental Aims and Hypotheses 

• GH1: Quantify interspecific variation in photosynthetic induction and de-induction dynamics 

across eight temperate forage species. 

• GH2: Characterise structural (LMA, stomatal anatomy) and hydraulic (Kleaf, ψleaf) traits. 

• GH3: Evaluate whether structural and hydraulic traits explain variation in dynamic gas-exchange 

performance. 

• GH4: Identify coordinated trait syndromes through multivariate analysis. 

3.2.1 Hypotheses  

• GH H1: During step-changes in irradiance, stomatal conductance will adjust more slowly than 

biochemical processes, generating transient stomatal limitations. Rationale: The three-phase 

limitation hierarchy places stomatal opening as the slowest process, typically requiring 10–60 

minutes compared to seconds for RuBP regeneration (Kaiser et al., 2015; Lawson and Vialet-

Chabrand, 2019; Pearcy, 1990). 
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• GH H2: Forage species will exhibit significant interspecific variation in both the magnitude and rate 

of gas-exchange adjustments. Rationale: Opening time constants range from 0.9 to 23 minutes 

across species (McAusland et al., 2016), with t90 varying more than 18-fold (Deans et al., 2019a). 

• GH H3: Interspecific differences in photosynthetic capacity will be more pronounced under high 

irradiance than low irradiance. Rationale: Under low irradiance, photon supply limits assimilation 

uniformly; under high irradiance, species express greater differences in carboxylation capacity 

(Jaikumar et al., 2021; Pons and Poorter, 2014). 

• GH H4: Structural traits (guard cell length, stomatal density) will correlate with stomatal kinetics, 

with smaller guard cells associated with faster opening. Rationale: Smaller stomata have greater 

surface-area-to-volume ratios, enabling faster ion fluxes (Kardiman and Ræbild, 2018; Lawson and 

Blatt, 2014), although this relationship may hold within but not across guard cell types (McAusland 

et al., 2016). 

• GH H5: Kleaf will positively correlate with gmax and potentially with stomatal kinetics. Rationale: Kleaf 

and gmax show strong coordination (r² = 0.80; Brodribb and Jordan, 2008). 

• GH H6: Multivariate analysis will identify coordinated trait syndromes defined by species grouping 

of kinetic, structural, and hydraulic traits. Rationale: Global analyses demonstrate trait space is 

constrained along major axes reflecting fundamental trade-offs (Diaz et al., 2016; Reich, 2014; 

Wright et al., 2004). 

3.3 Field Experimental Aims and Hypotheses 

• F1: Determine how shade timing (morning versus afternoon) influences diurnal microclimate. 

• F2: Quantify phenotypic plasticity in structural and stomatal traits under contrasting temporal 

shading regimes. 

• F3: Test whether species differ in plasticity magnitude and direction. 

• F4: Assess whether shade timing influences final biomass accumulation. 
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• F5: Evaluate whether glasshouse-characterised kinetics predict field performance. 

• Species selection: Four species covering the kinetic spectrum, representing fast and slow stomatal 

kinetics, contrasting functional groups (grass versus legume), and different structural strategies. 

3.3.1 Hypotheses 

• F H1: Morning and afternoon shading will create contrasting diurnal profiles for photosynthetically 

active radiation (PAR), temperature, and VPD. Rationale: Panel shade reduces both irradiance and 

VPD simultaneously; timing determines when plants experience high light with high evaporative 

demand (Marrou et al., 2013b). 

• F H2: Forage species will show phenotypic plasticity in response to shade timing. Rationale: 

Plasticity indices reach 2.6 for LMA and 5.0 for tillering under varying light (Poorter et al., 2019). 

• F H3: Species will differ in plasticity magnitude, reflecting different functional strategies. 

Rationale: Shade-tolerant species typically exhibit lower plasticity as part of a conservative 

resource-use strategy (Nicotra et al., 2010; Valladares and Niinemets, 2008). 

• F H4: Structural traits will be more plastic than stomatal anatomical traits, which are 

developmentally constrained. Rationale: Stomatal anatomy is determined during early leaf 

development and remains fixed thereafter (Carins Murphy et al., 2014; Haworth et al., 2021). 

• F H5: Shade timing will alter the final biomass, with effects depending on species identity. 

Rationale: Eastern panel edges receiving morning light produce higher ANPP than western edges 

(Sturchio et al., 2024a; 2022), suggesting temporal light distribution affects productivity. 

• F H6: Species with faster kinetics will show greater biomass benefits from shade regimes 

preserving morning high-light periods. Rationale: Circadian and time-integrated processes cause 

stomatal responsiveness to decline throughout the day (Suwannarut et al., 2023), while VPD is 

typically lowest early in the day (Marrou et al., 2013b). Species capable of rapid induction may 
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therefore be able to exploit morning conditions when both stomatal responsiveness and external 

conditions remain favourable for gas-exchange. 
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4 Glasshouse materials and methods 

4.1 Plant material and growth conditions 

Two consecutive glasshouse experiments were conducted within an environmentally 

controlled facility at Lancaster University to investigate (i) the kinetics of photosynthetic induction and 

de-induction and (ii) the structural, hydraulic, and anatomical traits underpinning these dynamic 

responses in eight forage species (seven grasses and the legume, White Clover; Table 1). Seeds were 

obtained from Cotswold Grass Seeds Ltd. (Moreton-in-Marsh, UK). The selected species represent 

common constituents of temperate improved grassland mixtures and reflect the functional diversity 

typically included in UK solar-compatible sward formulations. Timothy (Phleum pratense), Perennial 

ryegrass (Lolium perenne), and White Clover (Trifolium repens) are included in Cotswold Seeds “Solar 

Park Permanent Grassland and Long Term Grazing” mixtures (Cotswold Grass Seeds, 2025b), because 

of their tolerance of partial shade, while the remaining grasses encompass complementary rooting 

depths and growth forms used to enhance sward resilience and resource capture (Hopkins and 

Wilkins, 2006). Together, these species span the major agronomic functional types of UK forage 

systems and provide a suitable comparative framework for agrivoltaic contexts (Andrew et al., 2021; 

Mason et al., 2016). 

All plants were cultivated in 4 L pots (22 cm depth, 16.5 cm diameter) filled with nutrient-rich 

Petersfield PPC compost (Petersfield Growing Mediums, Leicester, UK). Sowing rates followed supplier 

recommendations (kg acre⁻¹) converted to grams per square metre (g m⁻²) and scaled to pot surface 

area (A = 0.0214 m²). This maintained agronomically realistic sowing densities among species while 

ensuring uniform canopy development. 
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Table 1. Forage grass and Clover species used within the experiment, including sowing rates. 
Note: Sowing rates based on Cotswold Seeds recommendations. Seeds per 4L pot calculated 
from g/m² rate. 

Common name Latin name Cultivar 
Sowing rate 

(kg/acre) 
Sowing rate 

(g/m²) 
Seeds per 4L 

pot (g) 

Perennial 
ryegrass 

Lolium perenne Aberbann 14 3.46 0.07 

Italian ryegrass Lolium multiflorum Danergo 14 3.46 0.07 

Hybrid ryegrass Lolium × hybridum Aberedge 14 3.46 0.07 

Meadow fescue Festuca pratensis Pardus 12 2.97 0.06 

Tall fescue Festuca arundinacea Elodie 10 2.47 0.05 

Timothy Phleum pratense Dolina 8 1.98 0.04 

Cocksfoot Dactylis glomerata Donata 8 1.98 0.04 

White Clover Trifolium repens Aberswan 4 2.47 0.02 

 

For the photosynthetic induction experiment, pots were arranged in a randomised complete-

block design with six blocks. Each block (0.84 m²) contained one replicate of each species positioned 

within a 3 × 3 grid of eight pots and one intentionally empty position. The space was included to 

maintain a regular square grid, thus providing consistent spacing to account for variations in 

microclimate (Hartung et al., 2019). Additionally, pots were spaced 15 cm apart to minimise shading 

between individuals and provide a homogenous light environment (Brien et al., 2013). Blocks were 

sown sequentially in three two-block sets (Blocks 1–2, 3–4, 5–6) at two-week intervals, enabling gas-

exchange measurements to be taken in succession while maintaining equivalent plant age within each 

set. Measurements for each set commenced when plants reached six weeks after sowing and required 

approximately one week to complete. 

Following completion of the gas-exchange measurements, a second experiment was 

established under identical environmental conditions to quantify hydraulic and anatomical traits. This 

experiment used the same randomised complete-block layout, block positions, and pot spacing as the 

photosynthetic induction experiment, ensuring that all measurements were made within the same 
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spatial configuration. For this phase, pots were sown one block at a time and again measured when 

plants reached six weeks after sowing, ensuring developmental equivalence between cohorts. 

Both experiments were maintained under a 16-hour photoperiod, with daylight 

supplemented by 400 W Philips SON-T high-pressure sodium lamps controlled by a timer and ambient 

light sensors. Lamps were programmed to switch on at the start of the photoperiod and switch off 

when ambient irradiance exceeded 500 W m⁻², resuming when irradiance dropped below 450 W m⁻². 

Lamps also switched off when the glasshouse temperature exceeded 30 °C to prevent overheating. 

When operating, supplementary lighting provided 120 ± 17 W m⁻² (photosynthetic photon flux 

density, PPFD ≈ 553 µmol m⁻² s⁻¹) at canopy height. Continuous light-sensor data showed a realised 

mean photoperiod of 17.1 ± 1.9 h (n = 177 days). Temperature set-points were 21 °C (day) and 11 °C 

(night). Realised mean ± SD conditions were 24.1 ± 1.9 °C (day) and 14.3 ± 1.2 °C (night), with relative 

humidity 39 ± 4% (day) and 46 ± 4% (night). Pots were maintained well-watered throughout the 

experiment, and yellow sticky boards (Catch-It™) were installed for pest control. 

4.2 Leaf gaseous exchange measurements 

Gas-exchange measurements were conducted between 09:00 and 15:00 h to minimise 

circadian influences on photosynthetic capacity (Dodd et al., 2005). During measurement, plants were 

placed within a temporary light rig that provided a uniform background PPFD of approximately 500 

µmol m⁻² s⁻¹ at canopy height, verified using a handheld photosynthetically active radiation (PAR) 

meter (MQ-200, Apogee Instruments, Logan, UT, USA). The rig comprised four dimmable ASRM-II LED 

grow lights (Speciality Lighting Holland BV) mounted on a steel frame and enclosed on three sides by 

highly reflective MCPET M4 panels (Furukawa Electric Europe Ltd). This provided constant 

environmental illumination to stabilise plant microclimate; the measured leaves acclimated inside the 

LI-6800 chamber, and all programmed light transitions were generated and controlled by the LI-6800’s 

internal light source (LI-COR, Lincoln, NE, USA). 



24 | P a g e  

 

Leaf net CO₂ assimilation rate (A) and stomatal conductance to water vapour (gsw) were 

quantified using a portable open gas-exchange system (LI-6800F, LI-COR, Lincoln, NE, USA; Bluestem 

v2.1.11, Scripts v2023.02). Before each measurement series, reference and sample analysers were 

matched using the system’s automated Head Match CO₂/H₂O routine. For Clover, the central leaflet 

was enclosed within a 2 cm² aperture; for grasses, a 6 cm² aperture enclosed several parallel blades 

aligned adaxially upward and secured with silicone tape to prevent overlap (Busch, 2018). The cuvette 

was filled with leaves to avoid estimating leaf area. 

Cuvette conditions were standardised: CO₂ reference, 440 µmol mol⁻¹; air temperature, 25 

°C; flow rate, 600 µmol s⁻¹; and relative humidity, 65 ± 3 %, yielding a vapour-pressure deficit of ≈ 1.0 

kPa at 25 °C. During the high-light phase, sample CO₂ (Ca) stabilised at ~420 µmol mol⁻¹, effectively 

matching current atmospheric concentrations (NOAA Global Monitoring Laboratory, 2025). 

Leaves were equilibrated at 150 µmol m⁻² s⁻¹ PPFD until both A and gsw varied by < 2 % over 

5 min, indicating steady state (Long and Bernacchi, 2003).  The selected light levels (150 µmol m⁻² s⁻¹ 

for low light and 1000 µmol m⁻² s⁻¹ for high light) were chosen to simulate realistic irradiance 

fluctuations encountered beneath bifacial solar arrays. The low-light intensity represents the mean 

shade level recorded in a mock agrivoltaics experiment in the field (Taylor, 2024, unpublished), while 

1000 µmol m⁻² s⁻¹ provided saturating but non-photoinhibitory conditions across species (Kaiser et al., 

2017). The programmed light sequence comprised 150 µmol m⁻² s⁻¹ for 15 min, 1000 µmol m⁻² s⁻¹ for 

60 min, then 150 µmol m⁻² s⁻¹ for 45 mins, and commenced once steady-state was achieved (typically 

30–60 min). Values for A and gsw were logged every 30 s throughout.  
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4.3 Photosynthetic dynamics and stomatal conductance kinetics 

4.3.1 Calculation of photosynthetic induction and de-induction time 

constants 

The time constants describing photosynthetic induction and de-induction were derived 

directly from the observed gas-exchange traces following controlled step changes in irradiance. 

Although photosynthetic responses are often modelled as first-order exponential functions (Acevedo-

Siaca et al., 2020; Kaiser et al., 2015) preliminary fitting of the de-induction data indicated that the 

recorded data did not consistently conform to this assumption. Consequently, a threshold-based 

method was adopted, following the empirical framework established by Chazdon and Pearcy (1986). 

For each light transition, the instantaneous rate of CO₂ assimilation (Aₜ) was normalised 

between its initial and final steady-state values (Aᵢ and Af, respectively) to calculate the time-

dependent induction state (ISₜ), representing the fractional progression toward the new steady-state 

(Equation 1). 

Equation 1. Induction-state calculation (Chazdon and Pearcy, 1986). 

𝐼𝑆ₜ =  
(𝐴ₜ −  𝐴ᵢ) 

(𝐴𝑓 −  𝐴ᵢ)
 

For the induction phase, Aᵢ represented the mean assimilation rate during the preceding low-

light steady state, and Af represented the mean rate under the subsequent high-light steady state. The 

time constant t₉₀(A) was defined as the elapsed time from the onset of the light increase (t₀) to the 

first time point at which ISₜ = 0.9, corresponding to 90% completion of the transition between the two 

steady states. The 90% threshold (t90) was selected because it provides a robust descriptor of the 

speed of induction that captures the physiologically relevant later phases of the transition, which 

strongly influence realised carbon gain under fluctuating light (Lawson and Vialet-Chabrand, 2019; 

Way and Pearcy, 2012), and because t₉₀ is now routinely used as a comparative metric of induction 

speed across species (Zhang et al., 2022). 
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For the de-induction phase (DSt), the same normalisation approach was applied (Equation 1), 

with Aᵢ representing the steady-state assimilation under high light and Af representing the subsequent 

low-light steady state. Under this formulation, DSₜ increased from 0 immediately after the light 

decrease to 1 once A stabilised at the new low-light steady state. All species displayed a brief, 

reproducible transient undershoot in A immediately following the light reduction, where A 

temporarily dropped below Af before recovering (Figure 1). This undershoot reflects the slower 

kinetics of stomatal closure relative to the down-regulation of photosynthetic biochemistry, 

transiently limiting CO2 supply (Lawson and Vialet-Chabrand, 2019; Vico et al., 2011). The DSt was 

therefore initiated from the minimum A value following this undershoot, when A began its monotonic 

progression toward Af. The DSt constant t₉₀(A) was defined as the elapsed time from this point to the 

first occurrence of DSₜ = 0.9, ensuring that the estimated time constant captured the true relaxation 

dynamics rather than the short-lived physiological transient immediately after the light decrease. 

4.3.2 Modelling of stomatal conductance kinetics 

Dynamic responses of gsw to irradiance transitions were modelled to quantify the speed of 

stomatal response. Four models were evaluated following Vialet-Chabrand et al. (2013, 2017), 

comprising two sigmoidal (Equation 2 and Equation 3)  and two exponential (Equation 4 and Equation 

5) formulations. The sigmoidal models describe asymmetric responses with explicit lag (λ) and 

curvature (k) parameters, whereas the exponential models describe monotonic responses governed 

by a single time constant (τ). All additional definitions used in the calculation of t₆₃ (Equation 6 and 

Equation 7) follow the same Vialet-Chabrand et al. (2017) framework. 

Equation 2. Sigmoidal model for induction (low-to-high light) 

𝑔𝑠(𝑡) =  (𝐺𝑚𝑎𝑥 − 𝐺𝑚𝑖𝑛) ∙ 𝑒
−𝑒

(
𝜆−𝑡
𝑘𝑖
+1)

+ 𝐺𝑚𝑖𝑛 
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Equation 3. Sigmoidal model for de-induction (high-to-low light) 

𝑔𝑠(𝑡) =  (𝐺𝑚𝑖𝑛 − 𝐺𝑚𝑎𝑥) ∙ 𝑒
−𝑒

(
𝜆−𝑡
𝑘𝑑

+1)

+ 𝐺𝑚𝑎𝑥 

 

Equation 4. Exponential induction model 

𝑔𝑠(𝑡) = 𝐺𝑚𝑎𝑥 + (𝐺𝑚𝑖𝑛 − 𝐺𝑚𝑎𝑥) ∙ 𝑒
−
𝑡
𝜏𝑖  

 

Equation 5. Exponential de-induction model 

𝑔𝑠(𝑡) = 𝐺𝑚𝑖𝑛 + (𝐺𝑚𝑎𝑥 − 𝐺𝑚𝑖𝑛) ∙ 𝑒
−
𝑡
𝜏𝑑 

 

The time required to reach 63% of the total transition (t₆₃) was used as a standardised index 

of stomatal kinetics. For exponential models, t₆₃ is equal to the model time constant 𝜏 (Equation 6). 

Equation 6. Exponential time constant 

𝑡63 = 𝜏 
 

For sigmoidal models, t₆₃ was obtained by numerically solving the normalised form in Equation 

7 (Vialet-Chabrand et al., 2017). 

Equation 7. Definition of t₆₃ for sigmoidal models  

𝑔𝑠(𝑡) − 𝐺min
𝐺max − 𝐺min

= 1 − 𝑒−1 ≈ 0.63 

 

This framework enabled the extraction of the key dynamic parameters (Gₘᵢₙ, Gₘₐₓ and t₆₃) for 

subsequent multivariate analysis. 
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 Non-linear model fitting and model selection for stomatal kinetics 

Time-series trajectories of stomatal conductance during induction and de-induction were 

analysed using a multi-model information-theoretic approach. For each plant and each phase of the 

light transition, both the single-exponential and Gompertz-type sigmoid models were fit using non-

linear least squares with the Levenberg–Marquardt algorithm implemented in the nlsLM function of 

the minpack.lm package in R (Moré, 1978). Time series of gsw were obtained from LI-6800 

measurements following transitions from low to high irradiance (150 → 1000 µmol m⁻² s⁻¹; induction) 

and from high to low irradiance (1000 → 150 µmol m⁻² s⁻¹; de-induction), using the time after the light 

change (s) as the predictor. 

In all fits, parameters were constrained to biologically meaningful values (non-negative 

conductances and time constants) by setting lower bounds of 0 on the minimum and maximum 

stomatal conductance (Gmin, Gmax), λ, and k/τ. The same biologically plausible starting values (Gmin = 

0.05 mol m⁻² s⁻¹, Gmax = 0.4 mol m⁻² s⁻¹, λ = 20 s, kᵢ = kd = 5 s), were supplied to nlsLM to aid convergence 

and maintain comparability across plants. However, final parameter estimates were free to vary 

according to each plant-level time series, and a maximum of 500 iterations was allowed for 

convergence. Fits were only attempted for plant × phase combinations with at least three time points 

and non-missing gsw values. 

For each successful fit: (i) parameter estimates (Gmin, Gmax, λ, τ or kᵢ/kd), (ii) the root mean 

square error (RMSE) between observed and predicted gsw  (Chai and Draxler, 2014), and (iii) the Akaike 

information criterion (AIC) and its small-sample correction AICc (Akaike, 1974; Hurvich and Tsai, 1989), 

were extracted. Although AIC was recorded for completeness, all model selection was based solely on 

AICc, following recommended information-theoretic practice for small sample sizes (Burnham and 

Anderson, 2002). For the exponential models, the fitted time constant τ, is the time to achieve 63% of 

the transition between Gmin and Gmax and was therefore taken directly as t₆₃. For the Gompertz-type 
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sigmoid models, an effective response time t₆₃ was approximated as ln(100)·k, which captures the 

dominant portion of the sigmoidal change from near-initial to near-final conductance (Vialet-

Chabrand et al., 2017) 

Non-convergent fits or fits that yielded non-finite parameter estimates were flagged as 

unsuccessful and excluded from subsequent summaries but retained in a fitting log for transparency 

(“Failed” or “Insufficient data”). Model selection followed an information-theoretic framework 

(Burnham and Anderson, 2002). Plant-level AICc values were first summarised as species means for 

each candidate model and phase. Within each species × phase combination, mean AICc then ranked 

models, and ΔAICc values and corresponding Akaike weights (wₘ) were calculated using Equation 8. 

Equation 8. ΔAICc and Akaike weights for model selection 

𝛥𝐴𝐼𝐶𝑐ₘ =  𝐴𝐼𝐶𝑐ₘ − min(𝐴𝐼𝐶𝑐) 

𝑤ₘ =
𝑒𝑥𝑝(−0.5 · 𝛥𝐴𝐼𝐶𝑐ₘ)

∑𝑖𝑒𝑥𝑝(−0.5 · 𝛥𝐴𝐼𝐶𝑐𝑖)
, 

where m indexes the model being evaluated and i indexes all candidate models in the set, so 

that Akaike weights represent the relative support for each model normalised across the full model 

set. The model with the lowest mean AICc (ΔAICc = 0, highest Akaike weight) was taken as the best-

supported description of gsw kinetics for that species and phase. Final stomatal kinetic traits (Gmin, Gmax, 

λ, τ or k, t₆₃, RMSE, AICc) were compiled exclusively from these best-supported models and 

summarised at the species level as mean ± standard error for integration into the univariate and 

multivariate analyses described below. 

4.4 Steady-state intrinsic water-use efficiency (iWUE) 

Steady-state intrinsic water-use efficiency (iWUE) was calculated as A/gsw at the low-light and 

high-light steady states of the induction–de-induction protocol. These values quantify species-level 
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carbon–water trade-offs under stable conditions and were incorporated as independent traits in the 

univariate and multivariate analyses. 

4.5 Ci-correction and cumulative CO₂ losses 

To quantify the integrated carbon penalties arising during the transient phases of 

photosynthetic induction and de-induction, assimilation rates were normalised for variation in 

intercellular CO₂ concentration (Cᵢ) to calculate a Cᵢ-corrected potential assimilation rate, A*(t). This 

follows an approach used in earlier induction studies Soleh et al. (2016) and Acevedo-Siaca et al. 

(2020), in which the measured assimilation rate A(t) is rescaled according to the ratio between a 

reference steady-state Cᵢ and the instantaneous Cᵢ(t) (Equation 9). Thus, at each time step: 

Equation 9. Ci-corrected potential assimilation 

𝐴∗(𝑡) = max [𝐴(𝑡), 𝐴(𝑡) × 
𝐶𝑖,steady

𝐶𝑖(𝑡)
], 

where A(t) is the measured assimilation rate, Cᵢ(t) is the instantaneous intercellular CO₂ 

concentration, and Cᵢ, steady is the steady-state Cᵢ for the relevant light phase, defined as the mean of 

the final three minutes after <2% stabilisation. The use of the maximum ensures that A*(t) does not 

fall below the measured value when short-lived Cᵢ excursions cause the ratio 𝐶𝑖,steady/𝐶𝑖(𝑡) to exceed 

unity, this prevents artificial negative limitation values and preserves the interpretation of A*(t) as the 

assimilation expected under constant Ci. 

Cumulative forgone assimilation was then calculated by integrating the difference between 

potential (A*) and realised (A) assimilation over each transition period, following the cumulative-loss 

framework established by Tomimatsu and Tang (2012) and Acevedo-Siaca et al. (2020) (Equation 10-

Equation 13). Forgone assimilation was partitioned into stomatal (Fs) and biochemical (F) components. 

Stomatal forgone assimilation (Fs) represents CO₂ uptake prevented by incomplete stomatal opening 
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or delayed closure, while biochemical forgone assimilation (F) represents CO₂ uptake prevented by 

incomplete activation or relaxation of photosynthetic biochemistry (Deans et al., 2019b; Kaiser et al., 

2015).   

 Stomatal forgone assimilation during induction (low to high light, ↑) was calculated using Equation 10. 

Equation 10. Forgone assimilation due to stomatal limitation on induction 

↑ 𝐹𝑠 = ∑ 𝑚𝑎𝑥

𝑖𝑛𝑑𝑢𝑐𝑡𝑖𝑜𝑛

(0, 𝐴∗(𝑡) − 𝐴(𝑡))𝛥𝑡, 

Stomatal forgone assimilation during de-induction (high to low light, ↓) was computed using 

Equation 11. 

Equation 11. Forgone assimilation due to stomatal limitation during de-induction  

 

↓ 𝐹𝑠 = ∑ 𝑚𝑎𝑥

𝑑𝑒−𝑖𝑛𝑑𝑢𝑐𝑡𝑖𝑜𝑛

(0, 𝐴∗(𝑡) − 𝐴(𝑡))𝛥𝑡. 

Biochemical forgone assimilation (F) was estimated by comparing A*(t) with the appropriate 

steady-state potential assimilation for each phase. During induction, F reflects the lag in  biochemical 

machinery activation relative to the attained high-light steady state; during de-induction, it reflects 

the delay in down-regulation towards the low-light steady state (Deans et al., 2019b; Kaiser et al., 

2018; Kaiser et al., 2015). For the induction phase, biochemical forgone assimilation was defined 

relative to the high-light steady-state potential assimilation, 𝐴ss,HL
∗ , as shown in Equation 12. 
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Equation 12. Forgone assimilation due to biochemical limitation during induction 

↑ 𝐹 = ∑ 𝑚𝑎𝑥

𝑖𝑛𝑑𝑢𝑐𝑡𝑖𝑜𝑛

(0, 𝐴ss,HL
∗   −  𝐴∗(𝑡)) 𝛥𝑡  

For the de-induction phase, F was defined relative to the low-light steady-state potential 
assimilation, 𝐴ss,𝐿𝐿

∗ , as shown in Equation 13. 

 

Equation 13. Forgone assimilation due to biochemical limitation during de-induction 

↓ 𝐹 = ∑ 𝑚𝑎𝑥

𝑖𝑛𝑑𝑢𝑐𝑡𝑖𝑜𝑛

(0, 𝐴ss,LL
∗   − 𝐴∗(𝑡)) 𝛥𝑡  

All integrations used the finite-difference time step:  

𝛥𝑡 = 30 𝑠𝑒𝑐𝑜𝑛𝑑𝑠. 

These integrals yield cumulative forgone assimilation (µmol CO₂ m⁻²) for each species and light phase, 

representing the total CO2 uptake that was prevented by delayed stomatal adjustment or biochemical 

acclimation. For de-induction, integration began at the start of the programmed light reduction and 

included the immediate, reproducible transient undershoot in A, ensuring that the full relaxation 

trajectory was captured. 

4.6 Measurement of leaf hydraulic conductance, water potential, leaf 
area and dry mass 

Maximum leaf hydraulic conductance (Kleaf) was measured using the evaporative flux method 

(EFM) described by Sack and Scoffoni (2012). Tillers were harvested in the evening, excised at the soil 

surface, and immediately placed in water before overnight rehydration in darkness. Measurements 

were performed between 09:00 and 15:00 hours the following day. 

For grasses, the youngest fully expanded leaf was excised under water at the base of the ligule 

to avoid air entry. A short plastic rod pre-wrapped in Parafilm was submerged; the leaf blade was 
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wrapped around the rod under water and sealed with additional Parafilm. The rod–leaf assembly was 

inserted under water into silicone tubing connected to a reservoir of deionised water positioned on 

an analytical balance (Apollo GX-A series; A&D Company Ltd, Tokyo, Japan). For Clover, the excised 

petioles were inserted directly into the silicone tubing under water and sealed with Parafilm. Mass 

loss was logged into a Microsoft Excel worksheet every 10 s with RsKey software (WinCT; A&D 

Company Ltd, Tokyo, Japan). Leaves were mounted adaxial side up on a wooden frame strung with 

fishing line, parallel to the reservoir meniscus, and illuminated uniformly with two LI-COR 6400-18 

RGB light sources (LI-COR Biosciences, Lincoln, NE, USA) driven by an LI-6400XT console and delivering 

c. 1,000 µmol m⁻² s⁻¹ PPFD using equal parts red, green and blue; gentle air movement was provided 

by a desk fan. 

Leaves were allowed to transpire for at least 30 min before steady-state was assessed. Steady-

state was defined as a coefficient of variation (CV) < 10% in the transpiration signal computed over a 

5-minute window (30 consecutive 10-second readings); after this criterion was met, logging 

continued, and the fifth qualifying value was taken as the steady-state estimate. For each record, the 

2-minute mean mass-loss rate (µg s⁻¹) was used and converted to a molar flow (mmol s⁻¹) using the 

molar mass of water (18.015 g mol⁻¹). This rate, normalised by leaf area, defined the steady-state 

transpiration rate (E, mmol m⁻² s⁻¹). This flux represents the rate of water loss through transpiration 

under steady-state conditions and provides the basis for calculating Kleaf. 

Leaf temperature was measured using a fine-wire thermocouple at the start and end of each 

measurement; the mean of the two readings (typical range 23–27 °C) was used as the measurement 

temperature (T) for viscosity correction. Immediately after measurement, leaves were enclosed in 

plastic bags that had been pre-exhaled into to halt transpiration and equilibrated for 20 min. Leaf 

water potential (Ψleaf) was then measured with a 3000 Series pressure chamber (Soilmoisture Corp, 

Santa Barbara, CA, USA) equipped with a suitable compression gland. Leaf hydraulic conductance was 
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calculated using Equation 14 (Sack and Scoffoni, 2012), where E is steady-state transpiration (mmol 

m⁻² s⁻¹) and ∆ψ𝑙𝑒𝑎𝑓 is the difference between the leaf water potential and the water potential at the 

leaf base. Because the leaf and the water reservoir were maintained at the same vertical height, 

gravitational effects were negligible, and the water potential at the leaf base was assumed to be 0 

MPa. Thus, ΔΨleaf = Ψleaf − 0, where Ψleaf is the leaf water potential measured immediately after 

sealing the transpiring leaf to halt water loss. This formulation yields conductance values standardised 

to the driving force for water movement through the leaf. 

Equation 14. Leaf hydraulic conductance 

𝐾𝑙𝑒𝑎𝑓 = 
𝐸

−∆ψ𝑙𝑒𝑎𝑓
 

 

To standardise leaf hydraulic conductance to 25 °C, the Sack and Scoffoni (2012) viscosity 

correction (Equation 15) was applied exactly as specified in their EFM protocol, using the mean leaf 

temperature (T, °C) from the start–end thermocouple readings. 

Equation 15: Viscosity correction for leaf hydraulic conductance 

 

𝐾𝑙𝑒𝑎𝑓(25°𝐶) =
𝐾𝑙𝑒𝑎𝑓(𝑇)

(

 0.88862 × (
1

10(1.3272 ×
(20 − 𝑡) − 0.001053 × (𝑇 − 20)2

(𝑇 + 105)⁄ )
)

)

 

 

 

 

Leaf area was measured for the same leaf used for the Kleaf using an LI-3100C area meter (LI-

COR Biosciences, Lincoln, NE, USA).  Leaves were oven-dried (70 °C, 48 h) to determine dry mass. Leaf 

mass per area (LMA) was calculated as dry mass divided by fresh leaf area (g m⁻²). 
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4.7 Stomatal anatomy and derived indices 

Stomatal traits were measured on the youngest fully expanded, intact leaves of the second 

experimental cohort. Stomatal impressions were taken from the mid-section of both the adaxial 

(upper) and abaxial (lower) leaf surfaces using dental putty (President Plus, Coltène/Whaledent Ltd, 

Burgess Hill, UK). Transparent nail varnish peels were subsequently made from the hardened 

impressions, mounted on glass microscope slides, and imaged using an Olympus IMT-2 inverted 

microscope fitted with a GXCAM-U3-5 camera. Stomatal density (SD) was determined at 100× 

magnification from five non-overlapping fields of view per leaf surface. Guard cell length (GCL) was 

measured at 400× magnification for a subset of stomata from each surface. All microscopy was 

calibrated using a stage micrometer (0.01 mm divisions), and all image analysis was performed using 

ImageJ v1.54g (Schneider et al., 2012). 

To capture anatomical determinants of stomatal function, stomatal density (SD) and guard 

cell length (GCL) were quantified on both the adaxial and abaxial leaf surfaces. Total stomatal density 

(SDₜₒₜ) was calculated as the sum of adaxial and abaxial counts, and mean GCL as the arithmetic mean 

across both surfaces. 

In addition to these primary traits, a composite index characterising stomatal distribution 

between leaf surfaces was derived for this study, adapting the conceptual framework of Muir et al. 

(2014): the normalised stomatal distribution (NSD) index. Muir et al. (2014) used stomatal ratio (SR = 

SDad / SDₜₒₜ) to quantify stomatal allocation across species. However, for the present study, which 

aimed to compare species with fundamentally different stomatal distributions (hypostomatous Clover 

versus amphistomatous grasses) within multivariate analyses, a normalised difference formulation 

was developed (Equation 16). 
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Equation 16. Normalised Stomatal Distribution 

 

𝑁𝑆𝐷 =
𝑆𝐷𝑎𝑑 − 𝑆𝐷𝑎𝑏
𝑆𝐷𝑎𝑑 + 𝑆𝐷𝑎𝑏

, 

where SDad and SDab are stomatal densities on the adaxial and abaxial surfaces, respectively. This 

formulation offers several advantages for comparative analysis: (1) NSD ranges from –1 (entirely 

abaxial, hypostomatous) to +1 (entirely adaxial, hyperstomatous), with values near 0 indicating 

approximately equal allocation between surfaces (amphistomatous), centering the amphistomatous 

condition at zero and facilitating interpretation in principal component analysis; (2) the symmetric 

scale around zero treats deviations from amphistomy equivalently regardless of direction, making it 

suitable for detecting variation in stomatal allocation strategy among amphistomatous species; and 

(3) for Clover, which lacks adaxial stomata (SDad = 0), NSD = -1 accurately reflects its hypostomatous 

anatomy without requiring imputation or arbitrary assignments. This composite trait complemented 

the surface-specific SD and GCL measurements by characterising stomatal deployment strategy as a 

higher-order functional trait relevant to whole-leaf gas exchange capacity. 

4.8 Plant Biomass 

At the end of the second glasshouse experiment, all above-ground material from each pot was 

cut at the soil surface, oven-dried at 70 °C for 72 hours and weighed to determine total biomass.  

4.9 Statistical Analysis 

4.9.1 Overview and software 

All statistical analyses were conducted in R version 4.4.1 (R Core Team, 2024) within the 

RStudio integrated development environment (Posit Team, 2024). Data manipulation and visualisation 

were performed using the `tidyverse` suite of packages (Wickham et al., 2019). The analysis was 

structured into two distinct components to address the hierarchical nature of the data and research 
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questions: univariate analysis of individual traits, and multivariate analysis of species strategies using 

the integrated suite of traits.  

4.9.2 Univariate analysis 

 Data screening and assumption checking 

Prior to inference, all trait distributions were inspected for completeness and potential 

outliers. The assumptions of normality and homogeneity of variances, required for parametric tests 

like ANOVA, were formally assessed. Normality was evaluated using the Shapiro–Wilk test (Shapiro 

and Wilk, 1965) applied to each species group and also looked at the overall dataset for each trait 

across. Homogeneity of variances was assessed using Levene’s test (Levene, 1960). As several traits 

violated one or both of these assumptions, all formal hypothesis testing followed non-parametric 

approaches. 

To complement statistical significance testing and quantify the magnitude of species 

differences, effect sizes were calculated for all Kruskal-Wallis tests and are reported as eta-squared 

(η²), calculated as H/(N-1), where H is the Kruskal-Wallis test statistic, and N is the total sample size. 

This represents the proportion of variance in each trait explained by species differences. Following 

traditional benchmarks for ecological data (Fritz et al., 2012), effect sizes were categorised as: 

negligible (η² < 0.01), small (η² ≥ 0.01), medium (η² ≥ 0.06), and large (η² ≥ 0.14). 

 Hypothesis testing and post-hoc analysis 

Species differences for each individual trait were tested using the Kruskal–Wallis rank-sum 

test (Kruskal and Wallis, 1952). For traits where a significant differences among species was detected, 

post-hoc pairwise comparisons were performed using the Conover–Iman procedure (Conover and 

Iman, 1979). This test was selected because it is robust to non-normality, heteroscedasticity, and 

unbalanced group sizes. To control the false discovery rate across the multiple pairwise contrasts for 
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each trait, Benjamini–Hochberg (BH) correction was applied to the resulting p-values (Benjamini and 

Hochberg, 1995). The results of these comparisons were summarised using compact letter displays to 

identify statistically homogeneous groups, generated using the algorithm of Piepho (2004). 

Descriptive statistics (mean ± SE, median ± IQR, n) were computed for all traits. 

4.9.3 Multivariate analysis of greenhouse trait coordination 

To analyse the coordination among traits and identify multivariate functional strategies, a 

combination of principal component analysis (PCA) and permutational multivariate analysis of 

variance (PERMANOVA) were employed. Analyses were carried out using the packages FactoMineR 

(Lê et al., 2008) and vegan (Oksanen et al., 2025). Four a priori trait sets were defined to address 

specific hypotheses. 

 Trait Sets and Hypotheses 

The four a priori trait sets defined to address the hypotheses outlined in Section 3.2.1 were: 

1. Transition magnitude and speed: ↑ΔA, ↑Δgsw, ↑t₉₀(A), ↓t₉₀(A), ↑t₆₃(gsw), ↓t₆₃(gsw), 

t₆₃(gsw) ↑:↓ (where, up and down arrows indicate induction and de-induction 

respectively). This set was designed to test the multivariate integration of dynamic traits 

and identify coordinated physiological strategies. 

2. Efficiency vs anatomy, and hydraulics + anatomy: iWUE, CO₂ loss, Kleaf ψleaf, SDₜₒₜ, GCL, 

NSD, LMA. These sets were integrated to reveal the architectural basis of photosynthetic 

strategies and test for relationships between hydraulic anatomy and photosynthetic 

efficiency. 

3. Greenhouse–Field Alignment: leaf area, leaf biomass, plant biomass, LMA, SDₜₒₜ, abaxial 

GCL, ↑gₘₐₓ. This set was used to justify species selection for field trials based on the 

continuum of trait variation observable in the greenhouse. 
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All analyses were performed on the complete-case individual-plant dataset. Analysis included 

all available data, with most species having 6 replicates and one species having 5 replicates for some 

measurements.  

 Principal component analysis on scaled traits 

For each trait set, a PCA was performed on the correlation matrix to eliminate the influence 

of differing measurement units (Jolliffe, 2002). We used the PCA function in FactoMineR with 

scale.unit = TRUE. For each analysis, eigenvalues, the percentage of variance explained, and the 

loadings of traits on the principal components were extracted. Trait loadings (correlations between 

traits and PCs) were used to interpret the biological meaning of each axis. The suitability of the data 

for PCA was confirmed using the Kaiser–Meyer–Olkin (KMO) measure of sampling adequacy and 

Bartlett’s test of sphericity (Bartlett, 1954; Kaiser, 1974).  

 Testing for multivariate group differences (PERMANOVA) 

Formal tests of multivariate differences among species were conducted using PERMANOVA 

(Anderson, 2001). For each trait set, a Euclidean distance matrix was constructed from the same z-

standardised trait matrix used for PCA. A one-factor PERMANOVA model (species) was fitted 

using adonis2() in the vegan package. To respect the randomised block design, permutations were 

constrained within blocks using the strata argument. Each model was run with 9,999 permutations. 

The pseudo-F statistic, the proportion of variance explained (R²), and the permutation-based p-value 

are reported. To ensure that significant PERMANOVA results were due to differences in group 

centroids (location) and not group dispersions (spread), homogeneity of multivariate dispersions were 

tested using betadisper() followed by a permutation test (Anderson, 2006). 
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 Pairwise Species Contrasts 

Where the global PERMANOVA was significant, pairwise comparisons were conducted to 

identify which species pairs drove the overall effect. For each pair, a separate PERMANOVA was run 

on the z-standardised traits for those two species, with 9,999 permutations. The resulting p-values for 

all pairs within a trait set were adjusted using the Benjamini–Hochberg false discovery rate procedure. 

The results are presented as heatmaps of pairwise R² values and adjusted p-values. 

Together, this framework quantifies (i) the main axes of trait coordination and (ii) the extent 

of multivariate divergence between species, providing an integrated view of plant functional strategy. 
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5 Glasshouse Results 

5.1 Experimental System Captures Fundamental Kinetic Decoupling 

The greenhouse experiment was designed to recreate, under controlled conditions, the light 

transitions that occur within a bifacial agrivoltaic system, where plants transition between diffuse 

shade cast by solar panels and full sunlight. The aim was to quantify interspecific differences in how 

forage species coordinate photosynthesis and stomatal conductance during transient irradiance 

changes. The hypothesis tested was that physiological regulation, particularly stomatal kinetics, 

constrains dynamic photosynthetic efficiency and thereby limits potential productivity under 

fluctuating light. 

To test for impacts of light transitions, plants were exposed to a standardised, three-step light 

sequence: an initial period under low diffuse irradiance (150 µmol m⁻² s⁻¹; simulating morning shade), 

a sudden step to high irradiance (1000 µmol m⁻² s⁻¹; representing unshaded midday sun), and a 

subsequent return to the original low-light level. Although this protocol does not replicate the full 

diurnal asymmetry of morning and afternoon shading, it isolates the essential irradiance step changes 

that drive photosynthetic induction (from shade) and de-induction (when shaded). This controlled 

sequence provides a mechanistic window into the processes governing carbon–water dynamics within 

diurnally part-shaded agrivoltaic light environments. 

The protocol was applied identically across all replicates (n = 6 plants per species, except n = 

5 for Perennial ryegrass), ensuring consistent exposure histories. Gas-exchange traces revealed a 

pronounced temporal decoupling between assimilation (A) and stomatal conductance (gsw) in all 

species (Figure 1). Following the step increase to high-light, A rose steeply and typically reached a new 

steady state within approximately ten minutes. By contrast, gsw continued to rise for several minutes 

after photosynthesis had stabilised. During the subsequent return to low light, the pattern reversed: 

A fell almost immediately, often with a brief transient increase before reaching steady state, while gsw 
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declined more slowly, remaining elevated for an extended period. This created a distinct window of 

water loss without concomitant carbon gain. The consistent temporal offset between A and gsw 

provides foundational evidence for the overarching hypothesis that stomatal kinetics are the primary 

constraint on dynamic carbon gain and water use efficiency. 

 

 

Figure 1. Temporal responses of net photosynthesis and stomatal conductance during 
controlled light transitions for eight forage species. Net photosynthesis (A, black) and 
stomatal conductance (gsw, red) were recorded at 30-s intervals during a light sequence 
comprising a 15-min low-light phase (150 µmol m⁻² s⁻¹), a 60-min high-light phase (1000 
µmol m⁻² s⁻¹), and a 45-min return to low light. Grey shading indicates low-light periods. 
The blue dashed crosshair marks the modelled photosynthetic induction time constant 
T₉₀(A), defined as the time at which the normalised induction state (Iₜ = (Aₜ − Aᵢ)/(Af − Aᵢ)) 
reached 0.9, corresponding to 90 % completion of the transition to the high-light steady 
state. Lines show species means with shaded ribbons representing the standard error (± 
SE; n = 5–6 biological replicates). The figure illustrates the faster biochemical activation 
of photosynthesis relative to the slower stomatal adjustment during light induction and 
de-induction. 
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5.2 Steady-State Performance Establishes a Clear Species Hierarchy 

Before examining response dynamics, steady-state photosynthetic capacity was compared 

under both light extremes to define the operating range for each species. These steady-state 

measurements establish a reference framework for testing whether variation in the magnitude of 

dynamic responses reflects underlying differences in photosynthetic capacity and hydraulic supply. 

Steady-state assimilation under high irradiance (ASS,HL) differed significantly among species (H₇ 

= 18.83, p < 0.05, η² = 0.41; Figure 2A). Values ranged from 15.4 ± 0.9 µmol m⁻² s⁻¹ in Timothy to 21.6 

± 0.7 µmol m⁻² s⁻¹ in Clover. Expressed relative to Timothy, Clover assimilated approximately 40% 

more CO₂ on a leaf area basis at the photosynthetic steady-state. Post-hoc comparisons revealed that 

Timothy showed significantly lower ASS,HL than Clover, Meadow fescue, and Tall fescue (p < 0.05). The 

three ryegrass species (Italian, Hybrid, and Perennial) and Cocksfoot formed an intermediate group 

showing no significant differences from either the high-assimilating or low-assimilating species. 

Among grasses, the fescues consistently occupied the upper range of photosynthetic capacity, while 

Timothy defined the conservative lower extreme. 

Steady-state assimilation under low irradiance (ASS,LL) varied over a much narrower range (6.4–

7.5 µmol m⁻² s⁻¹) than ASS,HL, and did not differ significantly among species (H₇ = 9.16, p > 0.05, η² = 

0.20; Figure 2B). Thus, all species converged on a similar photosynthetic baseline in shade but diverged 

strongly under full sun. This asymmetry suggests that interspecific differentiation primarily arises at 

high irradiance, consistent with the expectation that species differ most in their ability to exploit 

transient high-light opportunities while maintaining comparable performance in shade.  
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Figure 2. Steady-state photosynthetic capacity of eight forage species under contrasting 
irradiance conditions. Mean steady-state assimilation rates (A) of eight forage species 
measured under (A) high irradiance (ASS,HL, 1000 µmol m⁻² s⁻¹; H₇ = 18.83, p < 0.05, η² = 
0.41) and (B) low irradiance (ASS,LL, 150 µmol m⁻² s⁻¹; H₇ = 9.16, p > 0.05, η² = 0.20). Bars 
represent mean ± standard error (n = 5–6 biological replicates per species). Compact 
letter displays indicate statistically different groups based on Conover–Iman pairwise 
comparisons with Benjamini–Hochberg adjustment following a Kruskal–Wallis test (p < 
0.05); species sharing the same letter were not significantly different.  

 

5.3 Dynamic Responses Reveal a Fundamental Trade-Off Between 
Speed and Gain 

The following analyses test whether species differ in the magnitude and speed of 

photosynthetic induction and relaxation. First, changes in assimilation and stomatal conductance are 

quantified. Second, time constants describing induction and de-induction kinetics are compared 

among species. Third, multivariate analysis evaluates whether magnitude and timing form 

coordinated response patterns. 

Within this framework, the magnitude of change in A and gsw represents each species’ capacity 

for adjustment, whereas the temporal parameters (t₆₃ and t₉₀) describe the speed with which these 

adjustments occur. 
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5.3.1 Magnitude of Induction and the Coordination of A and gsw 

The magnitude of photosynthetic induction (↑ΔA = ASS,HL – ASS,LL) differed significantly among 

species (H₇ = 22.69, p < 0.01, η² = 0.49; Figure 3A). Clover achieved the largest increase (14.2 ± 0.7 

µmol m⁻² s⁻¹), while Timothy showed the smallest (8.6 ± 0.6 µmol m⁻² s⁻¹), indicating a 65 % greater 

induction gain in Clover. Tall fescue and Meadow fescue also achieved significantly larger ΔA than 

Timothy (p < 0.05). The fescues, therefore, aligned with Clover at the high-gain end of the spectrum, 

whereas Timothy and Cocksfoot exhibited more conservative, low-gain behaviour. 

The corresponding change in stomatal conductance on induction (↑ΔgSW) exhibited even 

stronger interspecific differentiation (H₇ = 33.76, p < 0.001, η² = 0.73; Figure 3B) than was observed 

for ↑ΔA. Clover increased gsw by 0.2168 ± 0.0199 mol m⁻² s⁻¹, compared with 0.0851 ± 0.0071 mol 

m⁻² s⁻¹ in Cocksfoot and 0.0882 ± 0.0102 mol m⁻² s⁻¹ in Timothy. Clover’s gsw was therefore 2.4-fold 

larger than that of the most conservative grasses. Across all replicates, the increases in A and gsw upon 

induction were tightly correlated (ρ = 0.78, p < 0.001; Figure 3C), indicating that plants with higher 

stomatal conductance consistently achieved proportionally larger photosynthetic gains. This tight 

correlation between the magnitudes of change in A and gsw demonstrates a coordinated capacity for 

adjustment of photosynthetic CO2 assimilation and water use across species.  
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Figure 3. Species differences in the magnitude and coordination of photosynthesis on 
induction. Mean changes in (A) assimilation rate (↑ΔA) and (B) stomatal conductance 
(↑Δgsw) following transition from low to high light (150 - 1000 µmol m⁻² s⁻¹), and (C) their 
cross-trait relationship across species. Bars represent mean ± standard error (n = 5–6 
biological replicates per species). Compact letter displays denote statistically distinct 
groups after a Kruskal–Wallis analysis with Conover-Iman pairwise comparisons and a 
Benjamini–Hochberg adjustment. Species differed significantly in both traits (↑ΔA: H₇ = 
22.69, p < 0.01; ↑Δgsw: H₇ = 33.76, p < 0.001), and responses were positively correlated 
(ρ = 0.78, p < 0.001), indicating coordinated increases in photosynthetic and stomatal 
capacity during induction. 

 

5.3.2 Stomatal Opening Lags Behind Photosynthetic Activation 

Stomatal opening times (↑t₆₃(gsw)) differed almost eightfold among species (H₇ = 27.78, p < 

0.001, η² = 0.60; Figure 4A); Timothy achieved 63% of its final gsw in 5.0 ± 0.5 min, whereas Clover 

required 40.0 ± 5.4 min. Tall fescue exhibited a slow opening rate similar to Clover, while Italian and 

Hybrid ryegrass were intermediate, and Cocksfoot and Timothy were consistently fast. Across species, 

Δgsw was moderately positively related to ↑t₆₃(gsw) (ρ = 0.46, p < 0.01; Figure 4D), indicating that 

species with greater stomatal capacity required longer opening times, a capacity–speed trade-off 

spanning the dicot-monocot divide and grass functional types.  

Photosynthetic induction times (↑t₉₀(A)) differed significantly among species (H₇ = 28.50, p < 

0.001, η² = 0.62; Figure 4B), although they were universally shorter than ↑t₆₃(gsw) for stomata. 
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Induction was fastest in Italian ryegrass (4.9 ± 0.4 min) and slowest in Clover (11.4 ± 0.7 min). Given 

that ↑t₆₃(gsw) were much longer than ↑t₉₀(A), and that the two parameters were positively correlated 

(ρ = 0.37, p < 0.01; Figure 4C), stomatal kinetics appear to be the primary limitation to photosynthetic 

induction. However, this correlation was driven primarily by Clover and became non-significant among 

grasses alone (ρ = 0.07, p > 0.05; Table 2), indicating that the apparent coordination reflects the dicot–

monocot contrast rather than a general coupling mechanism. Photosynthetic induction time (↑t₉₀(A)) 

was not correlated with the magnitude of the assimilation response (↑ΔA; ρ = 0.24, p > 0.05), nor was 

there strong evidence for a stomatal capacity–speed trade-off (↑Δgsw vs ↑t₆₃(gsw): ρ = 0.46, p < 0.01 

across all species, weakening to ρ = 0.32, p < 0.05 among grasses; Table 2). Nevertheless, the primary 

evidence for stomatal limitation lies in the timescale separation between stomatal and biochemical 

processes. Direct comparison of ↑t₆₃(gsw) and ↑t₉₀(A) revealed that for most species, stomatal 

opening remained incomplete well after photosynthetic activation had finished. However, this pattern 

was not universal. Timothy completed stomatal opening 2.3 minutes before reaching 90% 

photosynthetic activation, indicating that for this fast-opening species, mesophyll factors such as 

Rubisco activation, rather than stomatal conductance, represent the kinetic bottleneck. Cocksfoot 

showed a similar pattern, with stomatal and biochemical processes completing near-simultaneously. 

These species-specific differences in limitation hierarchy have important implications for the 

partitioning of forgone assimilation examined in Section 5.4. 
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Figure 4. Species differences in the timing and coordination of photosynthetic induction. 
Mean modelled time constants describing (A) stomatal opening (↑t₆₃(gsw); H₇ = 27.78, p 
< 0.001, η² = 0.60) and (B) photosynthetic activation (↑t₉₀(A); H₇ = 19.84, p < 0.01, η² = 
0.44) during transition from low to high light (150–1000 µmol m⁻² s⁻¹). Bars represent 
mean ± standard error (n = 5–6 biological replicates per species). Compact letter displays 
indicate statistically distinct groups based on Conover–Iman pairwise comparisons with 
Benjamini–Hochberg adjustment following a Kruskal–Wallis test (p < 0.05). (C) 
Relationship between ↑t₉₀(A) and ↑t₆₃(gsw), showing moderate positive correlation (ρ = 
0.37, p = 0.01), indicating that species with slower stomatal responses also tended to 
exhibit slower biochemical activation, though the two processes were not tightly 
coordinated. (D) Relationship between stomatal opening time (↑t₆₃(gsw)) and the 
magnitude of gsw response (↑Δgsw) on induction, (ρ = 0.46, p = 0.001).  
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During light reduction, photosynthetic and stomatal de-induction diverged sharply (Figure 5). 

Photosynthetic relaxation (↓t₉₀(A)) was rapid (2–5 min) and differed significantly among species (H₇ 

= 19.61, p < 0.01, η² = 0.43; Figure 5B). It was fastest in Timothy (2.0 ± 0.3 min) and slowest in Italian 

ryegrass (5.3 ± 0.7 min). Stomatal closure (↓t₆₃(gsw)) was substantially slower and more variable (H₇ = 

22.32, p < 0.01, η² = 0.49; Figure 5A). Post-hoc analysis found that Italian ryegrass (13.3 ± 1.1 min) was 

the fastest-closing species, while Tall fescue (34.4 ± 5.0 min) and Hybrid ryegrass (36.7 ± 7.2 min) were 

significantly slower. The other five species formed a statistically intermediate group (16.7–24.7 min) 

that did not differ from either extreme. The time constants for stomatal closure and photosynthetic 

relaxation during de-induction showed no significant relationship (ρ = 0.28, p > 0.05; Figure 5C), 

indicating that the two processes were not coordinated. Likewise, stomatal opening and closure were 

independent (ρ = 0.16, p > 0.05; Figure 6A). However, sensitivity analysis revealed a significant positive 

correlation among grasses alone (ρ = 0.39, p < 0.05; Table 2), indicating coordinated stomatal 

behaviour within the monocot functional group that is masked by Clover's asymmetric kinetics. The 

opening:closure ratio (t₆₃(gsw) ↑:↓) differed significantly among species (H₇ = 25.84, p < 0.001; Figure 

6B), revealing marked asymmetry in stomatal dynamics, with Clover, Timothy, and Cocksfoot tending 

towards faster closure relative to opening. A side-by-side comparison of opening and closing times is 

provided in Figure S1. These asymmetric kinetics highlight that stomatal and photosynthetic 

adjustments operate on different timescales, defining distinct species strategies for managing gas 

exchange during light transitions.  
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Table 2. Pairwise Spearman correlations for induction and de-induction kinetics comparing all 
eight species versus grasses only (Clover excluded). This analysis examines the robustness of 
kinetic correlations within the grass group versus those influenced by Clover. Significance: * p < 
0.05, ** p < 0.01, *** p < 0.001, NS = not significant. Interpretation categories: Robust = 
significant in both analyses; Weaker = significant in both but reduced strength in grasses; Clover-
driven = significant only with Clover included; Masked by Clover = significant only among grasses 
(Clover obscures the relationship); No relationship = not significant in either analysis. Trait 
abbreviations: ↑ΔA = induction magnitude (assimilation); ↑Δgsw = induction magnitude 
(conductance); ↑t63(gsw) = stomatal opening time; ↑t90(A) = photosynthetic induction time; 
↓F = forgone assimilation (biochemical, de-induction); ↓Fs = forgone assimilation (stomatal, 
de-induction); ↓t63(gsw) = stomatal closing time; ↓t90(A) = photosynthetic de-induction time; 
t63(gsw) ↑:↓ratio = ratio of stomatal opening to closing rate constants. 

Trait X Trait Y All species ρ Sig. Grasses only ρ Sig. Interpretation 

Induction kinetics 

↑ΔA ↑Δgsw 0.78 *** 0.76 *** Robust 

↑Δgsw ↑t63(gsw) 0.46 ** 0.32 * Weaker 

↑t90(A) ↑t63(gsw) 0.37 * 0.07 NS Clover-driven 

↑ΔA ↑t90(A) 0.24 NS 0.04 NS No relationship 

De-induction kinetics 

↓t63(gsw) ↓t90(A) 0.28 NS 0.03 NS No relationship 

Kinetic coordination 

↑t63(gsw) ↓t63(gsw) 0.16 NS 0.39 * Masked by Clover 

t63(gsw) ↑:↓ratio ↑t63(gsw) −0.30 * 0.05 NS Clover-driven 

Δgsw ↑:↓  ratio ↑Δgsw −0.05 NS 0.28 NS No relationship 

 

Figure 5. Species differences in the timing and coordination of photosynthetic and stomatal de-
induction. Mean modelled time constants describing (A) stomatal closure (↓t₆₃(gsw); H₇ = 22.32, 
p < 0.01, η² = 0.49), (B) photosynthetic relaxation (↓t₉₀(A); H₇ = 19.61, p < 0.01, η² = 0.43), and 
(C) their cross-trait relationship during transition from high to low light (1000 → 150 µmol m⁻² 
s⁻¹). Bars represent mean ± 1 standard error (n = 5–6 biological replicates per species). Compact 
letter displays indicate statistically distinct groups after Kruskal–Wallis analysis with Dunn 
pairwise tests and Benjamini–Hochberg adjustment (p < 0.05). The time constants for stomatal 
closure and photosynthetic relaxation were not significantly correlated (ρ = 0.28, p > 0.05), 
showing that these processes were not coordinated during de-induction. 
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Figure 6. Asymmetry in stomatal opening and closure dynamics across species. 
(A) Relationship between stomatal opening (↑t₆₃(gsw)) and closure (↓t₆₃(gsw)) time 
constants, and (B) interspecific differences in the opening:closure ratio (t₆₃(gsw) ↑:↓) 
Bars represent mean ± standard error (n = 5–6 biological replicates per species). Compact 
letter displays indicate statistically distinct groups based on Conover–Iman pairwise 
comparisons with Benjamini–Hochberg adjustment following a Kruskal–Wallis test (p < 
0.05). Opening and closure speeds were not significantly correlated (ρ = 0.16, p > 0.05), 
while the t63(gsw)↑:↓ differed markedly among species (H₇ = 25.84, p < 0.001), revealing 
pronounced asymmetry in stomatal kinetics, with Clover tending towards faster closure 
relative to opening. 

 

5.3.3 Multivariate Integration of Dynamic Traits Identifies Coordinated 

Physiological Strategies 

To determine whether the univariate kinetic traits correspond with higher-order strategies, a 

principal component analysis (PCA) was performed on the combined set of induction and de-induction 

magnitudes and timings (↑ΔA, ↑Δgsw, ↑t₉₀(A), ↓t₉₀(A), ↑t₆₃(gsw), ↓t₆₃(gsw), t₆₃(gsw) ↑:↓Figure 7A). 

Sampling adequacy was moderate (KMO = 0.45) but sufficient (Bartlett’s χ² = 110.46, p < 0.001), and 

homogeneity of multivariate dispersion was confirmed (PERMDISP F7,39 = 1.41, p > 0.05). 

The PCA revealed pronounced multivariate separation, with PC1 and PC2 together explaining 

57.1% of total variance. PC1 (35.4%) represented an induction kinetics syndrome: species with slow 

stomatal opening (↑t63(gsw), +0.85) also exhibited slow photosynthetic induction (↑t90(A), +0.81), 
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large stomatal adjustments (↑Δgsw, −0.57), and prolonged opening relative to closing (t63 ↑:↓, 

−0.73). Trait contributions confirmed that ↑t63(gsw) (28.9%), ↑t90(A) (26.7%), and t63(gsw) ↑:↓ (21.2%) 

were the primary drivers of PC1, together accounting for 77% of axis variance, while induction 

magnitudes contributed less (↑Δgsw = 13.0%, ↑ΔA = 9.4%). PC2 (21.6%) captured a de-induction 

kinetics axis, defined primarily by stomatal closing time (↓t63(gsw), +0.77) and photosynthetic de-

induction time (↓t90(A), +0.72), which together contributed 73% of PC2 variance (Figure 7A). 

Species identity explained 52% of the multivariate variation (PERMANOVA F7,39 = 5.95, R² = 

0.52, p < 0.001), confirming that the eight forage species possess distinct kinetic strategies rather than 

differing in isolated traits. Clover occupied the positive extreme of PC1 (mean = +3.66, range +3.33 to 

+4.48), separated from all grasses by more than three standard deviations, reflecting its combination 

of slow stomatal opening, slow photosynthetic induction, and large stomatal adjustment capacity. The 

grasses clustered in the negative-to-neutral region of PC1 (means −0.93 to +0.31), consistent with 

faster induction kinetics and smaller adjustments. Within this cluster, Tall fescue showed the highest 

PC1 scores among grasses (mean = +0.31), indicating relatively slower induction, while Perennial 

ryegrass (−0.93), Timothy (−0.81), and Cocksfoot (−0.81) exhibited the fastest responses. PC2 further 

discriminated species by relaxation behaviour: Hybrid ryegrass showed the highest scores (mean = 

+1.12), indicating slow stomatal closure, while Timothy exhibited the lowest (mean = −1.23), indicating 

rapid closure. 

Pairwise PERMANOVA confirmed that the primary axis of differentiation was between Clover 

and all grass species (R² = 0.40–0.50, p < 0.01; Figure 7B). Within grasses, Italian ryegrass showed the 

strongest differentiation, differing significantly from all other grasses (R² = 0.37–0.44, p < 0.01), while 

Tall fescue and Timothy represented opposing ends of the grass kinetic spectrum (R² = 0.38, p < 0.01). 

Several grass pairings showed non-significant differentiation (e.g., Cocksfoot vs Timothy, R² = 0.13, p 

> 0.05), indicating overlapping multivariate strategies among some species. 
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Figure 7. Principal component and pairwise analyses of coordination in gas exchange 
kinetics across species. (A) Principal component analysis (PCA) summarises seven kinetic 
traits that describe the magnitude and timing of photosynthetic and stomatal 
adjustments (↑ΔA, ↑Δgsw, ↑t₉₀(A), ↓t₉₀(A), ↑t₆₃(gsw), ↓t₆₃(gsw), and the t₆₃(gsw) ↑:↓). 
The first two components together explained 57.1% of the total variance (PC1 = 35.4%, 
PC2 = 21.6%), representing the induction and de-induction dimensions, respectively. 
Species differed significantly in multivariate trait space (PERMANOVA F₇,₃₉ = 5.95, R² = 
0.52, p < 0.001) with homogeneous dispersion (PERMDISP F₇,₃₉ = 1.41, p > 0.05). (B) 
Pairwise PERMANOVA heatmap showing interspecific Euclidean distances (R² %), where 
darker red cells indicate greater dissimilarity. Pairwise PERMANOVA p-values were 
adjusted for multiple comparisons using the Benjamini–Hochberg false discovery rate 
(FDR) procedure. Together, these analyses reveal a coordinated multivariate gradient 
defined primarily by induction kinetics, with Clover exhibiting slow stomatal and 
photosynthetic responses at one extreme and Timothy and Cocksfoot exhibiting fast 
responses at the other. 

5.4 Stomatal Kinetics Are the Dominant Constraint on Transient 
Carbon Gain 

To estimate the transient carbon cost during light increase and decrease for each species the 

forgone CO₂ (µmol m⁻²) relative to Ci-corrected potential assimilation (A*) was partitioned into 

stomatal and biochemical components. These metrics capture the impact of transient inefficiency and 

allow direct comparison of diffusional versus biochemical constraints across species. 

During induction, forgone assimilation due to stomatal limitation during induction (↑Fs) 

exhibited the largest absolute differences among species and was a significant component of transient 
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photosynthetic inefficiency (H₇ = 31.09, p < 0.001, η² = 0.68; Figure 8A). Clover incurred the greatest 

Fs (3,238 ± 263 µmol m⁻²), whereas Cocksfoot lost only 349 ± 142 µmol m⁻², representing more than 

a ninefold difference between the species incurring the greatest and smallest transient carbon costs. 

Tall fescue exhibited losses comparable to Clover, while Timothy and Cocksfoot experienced the 

smallest penalties.  

Across species, Fs on induction (↑Fs) was closely associated with both the time to 63% 

stomatal opening (↑t₆₃(gsw); ρ = 0.77, p < 0.001; Figure 8B) and the change in stomatal conductance 

between light and shade (Δgsw; ρ = 0.76, p < 0.001), confirming that slow and extensive stomatal 

responses directly amplified the transient carbon cost. Both correlations remained significant when 

Clover was excluded (ρ = 0.65 and ρ = 0.72, respectively; ), confirming that these relationships are 

robust within grasses and not solely driven by the Clover outlier. Species with slower and larger 

stomatal adjustments incurred proportionally greater transient inefficiency, identifying stomatal 

dynamics as the principal driver of interspecific variation in transient carbon cost during induction.  

Although ↑Fs explained the majority of interspecific variation in forgone assimilation during 

induction (η² = 0.68), the relative contribution of stomatal versus biochemical limitation differed 

among species (Table 3). For Clover and Tall fescue, stomatal costs exceeded biochemical costs by 

1.5–4.5 fold, consistent with their slow stomatal opening constraining carbon gain. By contrast, 

Timothy and Cocksfoot exhibited the opposite pattern: biochemical limitation exceeded stomatal 

limitation by 2.7–3.0 fold. For these fast-opening species, stomata reached their operating 

conductance before non-stomatal processes (including Rubisco activation and mesophyll 

conductance), inverting the typical limitation hierarchy. This reveals that while stomatal kinetics 

explain most of the interspecific variation in transient carbon costs, the within-species bottleneck 

depends on position along the kinetic spectrum. 
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Table 3. Partitioning of forgone assimilation during induction (↑) and deinduction (↓) into 
stomatal (↑Fs) and biochemical (↑F) components. Values are mean ± SE (µmol m⁻²; n = 5–6). 
The ratio indicates the relative contribution of each limitation type; values >1 indicate stomatal 
dominance, values <1 indicate biochemical dominance. Species are ordered by ratio to illustrate 
the spectrum from biochemical-limited (Timothy, Cocksfoot) to stomatal-limited (Clover). 

Species 
Induction De-induction 

↑Fs ↑F ↑Fs:↑F Primary ↓Fs ↓F ↓Fs:↓F Primary 

Cocksfoot 349 ± 142 1035 ± 111 0.34 Biochemical 313 ± 119 411 ± 39 0.76 Biochemical 

Timothy 440 ± 53 1185 ± 126 0.37 Biochemical 64 ± 11 519 ± 70 0.12 Biochemical 

Meadow fescue 879 ± 124 1231 ± 156 0.71 Biochemical 316 ± 87 653 ± 68 0.48 Biochemical 

Hybrid RG 791 ± 171 979 ± 156 0.81 Balanced 92 ± 7 498 ± 46 0.18 Biochemical 

PRG 775 ± 220 881 ± 112 0.88 Balanced 141 ± 35 527 ± 36 0.27 Biochemical 

IRG 800 ± 164 653 ± 62 1.23 Balanced 77 ± 8 431 ± 44 0.18 Biochemical 

Tall fescue 1615 ± 180 1111 ± 99 1.45 Stomatal 178 ± 54 625 ± 57 0.28 Biochemical 

Clover 3238 ± 263 723 ± 143 4.48 Stomatal 129 ± 32 607 ± 54 0.21 Biochemical 

Fold range 9.3× 1.9×   4.9× 1.6×   

 

For ↑F, although smaller in interspecific effect sizes (H₇ = 15.48, p < 0.05, η² = 0.34; Figure 

8C), comparisons still exhibited significant overall species differences, with mean values ranging from 

approximately 650 µmol m⁻² in Italian ryegrass to more than 1,200 µmol m⁻² in Meadow fescue. 

Despite the apparent separation of species means in the bar plots (Figure 8C), no pairwise differences 

remained significant after FDR correction. This combination of medium effect size and lack of post-

hoc separation suggests that additional sampling to improve statistical power would be needed to 

establish certainty in whether there are detectable underlying differences among species. There was 

a weak correlation between ↑F and the time to 90% of the maximum A on induction (↑t₉₀(A); ρ = 

0.30, p < 0.05; Figure 8D) across all species. However, this relationship strengthened substantially 

among grasses alone (ρ = 0.58, p < 0.001;Table 4), indicating that comparative biochemical kinetics 

are a stronger predictor of forgone assimilation within the grass functional group, where stomatal 

limitation is less dominant. Across all species, however, the large stomatal costs incurred by Clover 

obscured the contribution of biochemical activation to interspecific variation in transient carbon loss. 
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Table 4. Spearman correlations between forgone assimilation and kinetic parameters for all 
species (n=8) versus grasses only (Clover excluded). Sensitivity analysis tests whether 
relationships are robust within grasses or driven by the grass–Clover contrast. Significance: * p 
< 0.05, ** p < 0.01, *** p < 0.001, NS = not significant. Interpretation: Robust = significant in 
both analyses; Strengthens in grasses = stronger correlation when Clover is excluded. 
Abbreviations: ↑Fs, ↓Fs = forgone assimilation (stomatal, induction/de-induction); ↑F, ↓F = 
forgone assimilation (biochemical, induction/de-induction); ↑t63(gsw), ↓t63(gsw) = stomatal 
opening/closing time; ↑t90(A), ↓t90(A) = photosynthetic induction/de-induction time; ↑Δgsw 
= conductance magnitude; ASS,HL = steady-state assimilation at high light. 

Trait X Trait Y All species ρ Sig. Grasses only ρ Sig. Interpretation 

Induction costs 

↑Fs ↑t63(gsw) 0.77 *** 0.65 *** Robust 

↑Fs ↑Δgsw 0.76 *** 0.72 *** Robust 

↑Fs ASS,HL 0.54 *** 0.44 ** Robust 

↑F ↑t90(A) 0.30 * 0.58 *** Masked - Strengthens 

De-induction costs 

↓F ↓t90(A) −0.47 *** −0.44 ** Robust 

↓Fs ↓t63(gsw) 0.02 NS 0.01 NS No relationship 

During de-induction, patterns of limitation affecting forgone assimilation differed in two 

important respects. First, both Fs and F decreased in magnitude relative to those identified during 

induction. Second, F exceeded Fs for most species, but showed smaller differences between species. 

Fs during de-induction remained significantly different between species (H₇ = 23.09, p < 0.01, η² = 0.50; 

Figure 8E). It was lowest in Timothy (63 ± 11 µmol m⁻²) and highest in Cocksfoot and Meadow fescue 

(> 300 µmol m⁻²). By contrast, F during de-induction was moderate, but consistently larger than Fs 

(approximately 410–650 µmol m⁻² across species; H₇ = 15.50, p < 0.05, η² = 0.34; Figure 8F).  

The contrast between induction and de-induction limitation patterns was striking (Table 3). 

During induction, ↑Fs varied 9.3-fold across species (349–3238 µmol m⁻²), reflecting the strong 

influence of stomatal kinetics on transient carbon costs. During de-induction, however, ↓F varied only 

1.6-fold (411–653 µmol m⁻²), despite biochemical limitation exceeding stomatal limitation for all 

species.  

For de-induction, similarly to induction, no pairwise contrasts remained significant after FDR 

correction, and neither Fs nor F were correlated with their corresponding kinetic parameters 
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(↓t₆₃(gsw), ↓t₉₀(A); ρ < 0.2, p > 0.1), indicating that interspecific variation in efficiency during de-

induction was weakly governed by the dynamics quantified here.  

 

Figure 8. Forgone assimilation and its stomatal and biochemical determinants during light 
transitions. (A) Forgone assimilation due to stomatal limitation during induction (↑Fs; H₇ = 
31.09, p < 0.001, η² = 0.68); (B) relationship between ↑Fs and stomatal opening time (↑t₆₃(gsw); 
ρ = 0.77, p < 0.001); (C) forgone assimilation due to biochemical limitation during induction (↑F; 
H₇ = 15.48, p < 0.05, η² = 0.34); (D) relationship between ↑F and photosynthetic induction time 
(↑t₉₀(A); ρ = 0.30, p < 0.05); (E) forgone assimilation due to stomatal limitation during de-
induction (↓Fs; H₇ = 23.09, p < 0.01, η² = 0.50); (F) forgone assimilation due to biochemical 
limitation during de-induction (↓F; H₇ = 15.50, p < 0.05, η² = 0.34). Bars represent species 
means ± standard error (n = 5–6 biological replicates per species). Compact letter displays 
indicate statistically distinct groups based on Kruskal–Wallis analysis with Conover–Iman 
pairwise comparisons and Benjamini–Hochberg adjustment (p < 0.05). 
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5.5 Structural and Hydraulic Traits Underpin Dynamic Strategies 

Species exhibited substantial variation in photosynthetic induction and de-induction kinetics 

(Figure 1 – Figure 8). This section examines the structural and hydraulic traits that may underpin these 

dynamic differences. First, interspecific variation in leaf mass per area (LMA), leaf hydraulic 

conductance (Kleaf), leaf water potential (ψleaf), and stomatal anatomy is quantified. Second, univariate 

correlations between these static traits and dynamic parameters are evaluated. Third, multivariate 

analyses test whether structural and hydraulic traits coordinate into integrated syndromes. 

5.5.1 Structure–Kinetics Relationships Emerge Within Functional 

Groups 

Six structural and hydraulic traits, leaf mass per area (LMA), leaf hydraulic conductance (Kleaf), 

leaf water potential (ψleaf), total stomatal density (SDtot), guard cell length (GCL), and normalised 

stomatal distribution (NSD), provide the anatomical and physiological context for the physiological 

dynamics described in Sections 5.1 – 5.4. Significant interspecific variation was observed across all 

traits, confirming distinct leaf architectures among the eight species (Figure 9A–F). 

LMA differed significantly among species (H7 = 44.61, p < 0.001, η² = 0.97; Figure 9A), ranging 

from 26.9 g m⁻² in Hybrid ryegrass to 43.9 g m⁻² in Tall fescue. Kleaf varied markedly (H7 = 41.55, p < 

0.001, η² = 0.90; Figure 9B), spanning a fivefold range from 6.7 mmol m⁻² s⁻¹ MPa⁻¹ in Tall fescue to 

34.7 mmol m⁻² s⁻¹ MPa⁻¹ in Clover. ψleaf showed more moderate but significant variation (H7 = 19.91, 

p < 0.01, η² = 0.43; Figure 9C), from −0.18 MPa in Clover to −0.57 MPa in Tall fescue. 

Stomatal traits revealed equally strong contrasts. SDtot varied almost fourfold (H7 = 41.36, p < 

0.001, η² = 0.90; Figure 9D), from approximately 47.5 mm⁻² in Perennial ryegrass to 199 mm⁻² in 

Clover. GCL ranged from 21.9 µm in Clover to 51.0 µm in Italian ryegrass (H7 = 42.98, p < 0.001, η² = 

0.93; Figure 9E). NSD ranged from −1.0 in the hypostomatous Clover to 0.26–0.87 in the 

amphistomatous grasses (H7 = 41.84, p < 0.001, η² = 0.91; Figure 9F). These patterns reflect the 
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fundamental morphological divide between the dicot Clover and the monocot grasses, but also reveal 

notable divergence among grasses in stomatal allocation across leaf surfaces. 

 

Figure 9. Structural, hydraulic, and stomatal traits defining species-level leaf construction 
strategies. (A) Leaf mass per area (LMA), (B) leaf hydraulic conductance (Kleaf), and (C) leaf 
water potential (ψₗₑₐf) quantify variation in structural investment and water transport 
capacity. (D) Total stomatal density (SDₜₒₜ), (E) guard-cell length (GCL), and (F) normalised 
stomatal distribution (NSD) describe stomatal deployment across adaxial and abaxial 
surfaces. Bars represent mean ± SE (n = 5–6 biological replicates per species). Compact 
letter displays indicate statistically distinct groups following Kruskal–Wallis and Conover-
Iman and BH tests (p < 0.05). 

 

Having established the presence of substantial interspecific trait variation, it was tested 

whether these static measurements predict dynamic performance. Pairwise correlations between 

structural–hydraulic traits and dynamic gas-exchange parameters revealed contrasting patterns 

depending on whether all species or grasses alone were analysed (Table 5). 
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Several structural–hydraulic relationships were robust across all species. Guard cell length was 

strongly negatively correlated with both Kleaf (ρ = −0.75, p < 0.001) and SDtot (ρ = −0.81, p < 0.001), 

confirming a fundamental size–number trade-off that operated independently of functional group. 

Species with smaller, more numerous stomata possessed higher hydraulic conductance, while those 

with larger, sparser stomata showed lower hydraulic capacity. The correlation between Kleaf and SDtot 

was significant across all species (ρ = 0.55, p < 0.001). However, it weakened among grasses alone (ρ 

= 0.33, p < 0.05), indicating that Clover's extreme trait values partially inflated the apparent hydraulic–

anatomical coupling. Similarly, the correlation between Kleaf and ψleaf (ρ = 0.39, p < 0.01) became non-

significant among grasses (ρ = 0.10, p > 0.05), suggesting that hydraulic–water status coordination is 

primarily a Clover-driven pattern rather than a general relationship. 

In contrast to the structural–hydraulic correlations, relationships between anatomical traits 

and dynamic gas-exchange parameters were largely non-significant across all species but emerged 

strongly among grasses alone (Table 5). Stomatal opening time (↑t₆₃(gsw)) showed no significant 

correlation with guard cell length (ρ = 0.03, p > 0.05), leaf hydraulic conductance (ρ = 0.01, p > 0.05), 

or total stomatal density (ρ = 0.07, p > 0.05) when considering Clover and the grasses in combination. 

However, sensitivity analysis excluding Clover revealed that these relationships were masked by the 

functional group contrast between monocots and the dicot. Within grasses, stomatal opening time 

was positively correlated with GCL (ρ = 0.55, p < 0.001) and negatively correlated with both Kleaf (ρ = 

−0.49, p < 0.01) and SDtot (ρ = −0.39, p < 0.05): grasses with larger guard cells, lower hydraulic capacity, 

and fewer stomata opened more slowly. 

Adaxial and abaxial stomatal densities showed contrasting relationships with stomatal 

kinetics. SDad was negatively correlated with stomatal opening time across all species (ρ = −0.63, p < 

0.001), indicating that species with more stomata on the upper leaf surface opened faster. This 

relationship remained significant among grasses (ρ = −0.45, p < 0.01; Table 5), though it weakened 
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when the hypostomatous Clover was excluded because its extreme position (zero adaxial stomata 

combined with very slow opening) acted as a leverage point that inflated the all-species correlation. 

By contrast, SDab showed no significant relationship with opening time in either analysis (ρ = 0.16 and 

−0.26, respectively, both p > 0.05; Table 5). This asymmetry suggests that stomatal allocation to the 

adaxial surface specifically confers kinetic advantages, independent of total stomatal investment. 

Notably, Kleaf was positively correlated with adaxial stomatal density among grasses only (ρ = 0.40, p < 

0.01), a relationship entirely masked by the hypostomatous Clover. By contrast, Kleaf showed no 

relationship with NSD in either analysis (ρ = −0.22 and ρ = 0.18, respectively, both p > 0.05), indicating 

that while hydraulic conductance relates to stomatal density on individual surfaces, it does not predict 

the distribution of stomata between adaxial and abaxial surfaces. 

Stomatal conductance magnitude (↑Δgsw) was similarly uncorrelated with anatomical traits 

across all species but showed significant positive correlations with both guard cell length (ρ = 0.44, p 

< 0.01) and LMA (ρ = 0.37, p < 0.05) among grasses. Additionally, LMA was positively correlated with 

photosynthetic induction time among grasses (ρ = 0.49, p < 0.01), suggesting that leaves with greater 

structural investment activated photosynthesis more slowly. These masked relationships indicate that 

anatomical traits do constrain stomatal and photosynthetic kinetics within functional groups, but the 

pronounced Clover–grass contrast obscures these finer-scale patterns when all species are pooled.  

Together, these analyses reveal a hierarchical structure in trait–function relationships. The 

fundamental size–number trade-off (GCL vs SDtot) and its coordination with hydraulic capacity (Kleaf vs 

GCL) were robust across functional groups. However, the translation of anatomical variation into 

dynamic performance differed between dicots and monocots, such that structure–kinetics 

relationships emerged only when Clover was excluded. Clover, the only dicot in the sample, combined 

high SD, GCL, and high Kleaf with slow stomatal kinetics, a combination distinct from all grass species. 
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Whether this pattern reflects a broader grass–dicot divide or is specific to Clover cannot be 

determined from a single dicot species. 

Table 5. Pairwise Spearman correlations between structural–hydraulic traits and dynamic gas-
exchange parameters. Values show correlation coefficients (ρ) for all species (n = 47) and 
grasses only (n = 41, excluding Clover). Significance: * p < 0.05, ** p < 0.01, *** p < 0.001, NS = 
not significant. Interpretation categories: Robust = significant in both analyses with |Δρ| < 0.15; 
Weaker = significant in both but |Δρ| ≥ 0.15; Clover-driven = significant with all species but NS 
among grasses; Masked = NS with all species but significant among grasses. 

Trait X Trait Y All species ρ Sig. Grasses ρ Sig. Interpretation 

Structural–hydraulic coordination 

SDtot GCL -0.81 *** -0.71 *** Robust 
Kleaf GCL -0.75 *** -0.62 *** Robust 
Kleaf SDtot 0.55 *** 0.33 * Weaker 
Kleaf ψleaf 0.39 ** 0.10 NS Clover-driven 
Kleaf SDab 0.37 ** 0.06 NS Clover-driven 
Kleaf SDad -0.07 NS 0.40 ** Masked 
Kleaf NSD -0.22 NS 0.18 NS No relationship 

Structure–kinetics relationships 

SDad ↑t63(gsw) -0.63 *** -0.45 ** Weaker 
SDab ↑t63(gsw) 0.16 NS -0.26 NS No relationship 
LMA ↑t63(gsw) -0.37 * -0.11 NS Clover-driven 
NSD ↑t63(gsw) -0.30 * 0.05 NS Clover-driven 
ASS,HL ↑t63(gsw) 0.33 * 0.18 NS Clover-driven 
GCL ↑t63(gsw) 0.03 NS 0.55 *** Masked 
Kleaf ↑t63(gsw) 0.01 NS -0.49 ** Masked 
SDtot ↑t63(gsw) 0.07 NS -0.39 * Masked 
LMA ↑t90(A) 0.09 NS 0.49 ** Masked 
GCL ↑Δgsw 0.07 NS 0.44 ** Masked 
LMA ↑Δgsw 0.07 NS 0.37 * Masked 
LMA ↑ΔA 0.06 NS 0.33 * Masked 
Kleaf ↑Δgsw 0.04 NS -0.27 NS No relationship 
SDtot ↑Δgsw 0.07 NS -0.22 NS No relationship 

 

5.5.2 Multivariate analysis of trait syndromes 

To test whether the observed univariate differences in leaf anatomy coordinate as functional 

syndromes, principal component analyses were performed on two trait sets: a structural–hydraulic 

set (Kleaf, ψleaf, SDtot, NSD, GCL, LMA) and an expanded efficiency–anatomical set incorporating water-

use efficiency and dynamic carbon costs (Section 5.5.4). Sampling adequacy was acceptable for the 

structural–hydraulic analysis (KMO = 0.74; Bartlett's χ² = 215.28, df = 15, p < 0.001), which also showed 

marginally significant heterogeneity (PERMDISP F₇,₃₉ = 2.03, p = 0.045); however, PERMANOVA is 
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robust to moderate heterogeneity when group sizes are similar, and the strong species separation 

observed (R² = 0.86) suggests minimal impact on inference. . Sampling adequacy for the efficiency–

anatomical analysis was acceptable (KMO = 0.68; Bartlett's χ² = 421.09, df = 55, p < 0.001), and 

homogeneity of multivariate dispersion was confirmed (PERMDISP p > 0.05). Summary statistics for 

both PCAs are provided in Table 6. 

Table 6. Summary of principal component analyses examining multivariate trait coordination 
across eight forage species. Note: R² and F-statistics from PERMANOVA with 999 permutations. 
All pairwise species comparisons were significant (p < 0.01) in both analyses. 

Analysis Traits PC1 (%) PC2 (%) R² F p 

Structural–Hydraulic (Figure 10) 6 61.3 19.3 0.86 35.63 < 0.001 

Efficiency–Anatomical (Figure 11) 11 39.0 25.1 0.69 12.53 < 0.001 

 

 

Figure 10. Principal component and pairwise analyses of species multivariate 
differentiation in structural–hydraulic trait space. (A) Principal component analysis of six 
foundational traits, with PC1 representing a hydraulic–anatomical syndrome and PC2 
capturing leaf construction strategy, explaining 80.6 % of total variance. 
(B) Corresponding pairwise PERMANOVA heatmap confirming strong species 
differentiation (F₇,₃₉ = 35.63, R² = 0.86, p < 0.001; PERMDISP F₇,₃₉ = 2.03, p > 0.05). 
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5.5.3 Integration of structural and hydraulic traits 

The structural–hydraulic PCA revealed pronounced multivariate separation, with PC1 

accounting for 61.3% of variance alone (Figure 10A). This dominant axis represented a hydraulic–

anatomical syndrome: species with high leaf hydraulic conductance (Kleaf, loading +0.96) also 

possessed dense stomata (SDtot, +0.92) and less negative water potentials (ψleaf, +0.52) while 

exhibiting a hypostomatous distribution (NSD, −0.91) and smaller guard cells (GCL, −0.85). Species 

with the opposite trait combination, amphistomatous distributions, larger guard cells, and lower 

hydraulic conductance, occupied the negative end of PC1. Trait contributions confirmed that Kleaf 

(24.8%), SDtot (23.0%), NSD (22.4%), and GCL (19.8%) were the primary drivers of PC1, together 

accounting for 90% of the axis variance, while ψleaf (7.4%) and LMA (2.6%) contributed minimally. By 

contrast, PC2 (19.3%) captured additional variation in leaf construction strategy,  reflecting differences 

in leaf mass per area (LMA, loading +0.85, contribution 62.1%) and water status (ψleaf, −0.51, 22.3%), 

with stomatal traits contributing less than 16% combined.  

Species identity explained 86% of the multivariate variation (PERMANOVA p < 0.001), 

confirming that the eight forage species possess distinct structural–hydraulic syndromes rather than 

merely differing in isolated traits. Clover occupied the positive extreme of PC1 (scores +4.3 to +5.1), 

separated from all grasses by more than four standard deviations, reflecting its combination of high 

hydraulic conductance, dense stomata, and hypostomatous architecture. The grasses clustered at 

negative PC1 values but diverged substantially along PC2: Tall fescue showed the highest LMA, 

Cocksfoot and Meadow fescue were intermediate, while the ryegrasses and Timothy exhibited lower 

leaf construction costs (Figure 10B). All pairwise species contrasts were significant, with the strongest 

differentiation between Clover and grasses (R² = 0.77–0.90) and weaker but still significant contrasts 

among grass species (R² = 0.35–0.80). 
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5.5.4 Linking Anatomical Syndromes to Dynamic Photosynthetic 

Strategies 

Having established that the species show different structural–hydraulic syndromes, a key 

question is whether these differences predict dynamic photosynthetic performance. Specifically, 

whether species with greater hydraulic investment also incur larger carbon costs during stomatal 

adjustment. To test this, the PCA was expanded to include steady-state water-use efficiency (iWUEss,HL, 

iWUEss,LL) and forgone assimilation due to stomatal (↑Fs, ↓Fs) and biochemical (↑F, ↓F) limitations 

during light transitions (Figure 11A).  

The expanded efficiency-anatomy analysis confirmed that species differentiation persists 

when dynamic traits are included, though the strength of separation was reduced (R² = 0.69 vs. 0.86 

for anatomy alone; Table 6). The same structural–hydraulic traits dominated PC1 (Kleaf, +0.93; SDtot, 

+0.92; NSD, −0.91; GCL, −0.85), but crucially, forgone assimilation due to stomatal limitation on 

induction (↑Fs) also loaded positively on this axis (+0.72). Trait contributions revealed that Kleaf 

(20.0%), SDtot (19.9%), NSD (19.5%), and GCL (16.8%) remained the primary drivers of PC1, with ↑Fs 

contributing 12.2% of axis variance. This co-loading suggests a mechanistic link: species that invest 

heavily in hydraulic capacity and stomatal density also incur larger transient carbon penalties when 

stomata open. 

PC2 (25.1%) captured an efficiency–cost axis distinct from the hydraulic gradient, defined by 

steady-state water-use efficiency at both light levels (iWUEss,LL, +0.79; iWUEss,HL, +0.66) alongside 

forgone assimilation during stomatal de-induction (↓Fs, +0.72) and biochemical limitation during 

induction (↑F, +0.66). Contributions to PC2 were dominated by iWUEss,LL (22.6%), ↓Fs (18.6%), ↑F 

(15.9%), and iWUEss,HL (15.6%), collectively accounting for 73% of the axis variance. Notably, the two 

biochemical limitation components loaded on different axes: while ↑F aligned with efficiency traits 

on PC2, ↓F contributed minimally to PC1–PC2 but dominated PC3 (37.9% contribution, +0.69 loading). 
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This pattern indicates that variation in ↓F occurred primarily within rather than between species, 

consistent with the univariate finding that species did not differ significantly in ↓F after pairwise 

correction. Furthermore, ↓F showed no correlation with either stomatal kinetics or anatomical–

hydraulic traits. This indicates that variation in biochemical deactivation during shade transitions is 

largely independent of the structural and dynamic traits that shape induction behaviour, representing 

a third, orthogonal dimension contributing to physiological responses to shade. 

Species positions in the combined efficiency–anatomical trait space largely mirrored the 

anatomical analysis (Figure 11A). Clover remained at the positive extreme of PC1 (+4.4 to +5.3), 

characterised by high hydraulic investment and correspondingly large stomatal induction costs. 

Among grasses, Hybrid and Italian ryegrass occupied the most negative PC1 positions (−1.4 to −2.1), 

reflecting low hydraulic investment and minimal transient losses, while Timothy and Cocksfoot 

clustered near the origin, indicative of balanced carbon–water strategies. The grasses separated more 

clearly along PC2, with Meadow fescue and Cocksfoot showing higher water-use efficiency and greater 

de-induction costs than the ryegrasses. Comparisons between Clover and grasses yielded the highest 

pairwise dissimilarity (R² = 0.54–0.66), while contrasts among grasses ranged from 0.28 to 0.58 (Figure 

11B). 
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Figure 11. Principal component and pairwise analyses of multivariate strategies in the 
combined efficiency–anatomical trait space across species. (A) Principal component 
analysis of eleven traits integrating structural (Kleaf, ψleaf, SDₜₒₜ, NSD, GCL, LMA), hydraulic, 
efficiency (iWUEss,HL, iWUEss,LL), and the dynamic cost metrics of forgone assimilation due 
to stomatal limitations (Fs) and biochemical components (F) associated with induction 
and de-induction, explaining 69% of the total variance. The positive co-loading of ↑Fs 
with hydraulic traits on PC1 indicates that high anatomical investment incurs large 
induction costs. (B) Pairwise PERMANOVA heatmap showing significant interspecific 
separation in the integrated trait space (PERMANOVA F₇,₃₉ = 12.53, R² = 0.69, p < 0.001; 
PERMDISP F₇,₃₉ = 1.82, p > 0.05). 

  

5.6 Greenhouse Trait Strategies Justify Species Selection for Field 
Trials 

To select focal species for field experiments, a separate PCA was performed on structural and 

productivity traits measurable in both environments (leaf area, leaf and plant biomass, LMA, SDtot, 

abaxial GCL, ↑g,max; Figure 12). Sampling adequacy was low (KMO = 0.45), though Bartlett's test 

confirmed sufficient correlations for analysis (χ² = 384.26, df = 28, p < 0.001). The low KMO reflects 

limited correlation among traits spanning different functional domains (productivity, anatomy, 

physiology). PC1 (39.4% variance) described a guard cell size–stomatal density trade-off: species with 

larger guard cells (GCLab, +0.92) and greater leaf size (leaf area, +0.70; leaf biomass, +0.71) possessed 

lower stomatal densities (SDtot, −0.78). PC2 (23.1% variance) captured a tissue construction axis 
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contrasting leaf mass per area (LMA, +0.82) with whole-plant biomass allocation (plant biomass, 

−0.78). Species were strongly differentiated (PERMANOVA F7,39 = 25.61, R² = 0.82, p < 0.001; PERMDISP 

F7,39 = 1.77, p > 0.05) and pairwise contrasts confirmed consistent multivariate separation (R² = 0.44–

0.81, all p < 0.01). 

 

Figure 12. Principal component and pairwise analyses of field-relevant trait space used to 
select four representative species for field trials. (A) Principal component analysis of 
structural and productivity traits measurable in both glasshouse and field experiments 
(leaf area, leaf and plant biomass, LMA, SDtot, abaxial GCL, ↑gmax). PC1 (39.4%) captured 
a guard cell size–stomatal density trade-off, while PC2 (23.1%) reflected tissue 
construction costs. (B) Pairwise PERMANOVA heatmap showing strong multivariate 
separation among species (F7,39 = 25.61, R² = 0.82, p < 0.001; PERMDISP F7,39 = 1.77, p > 
0.05). 

Based on the multivariate ordinations of kinetic and structural traits, four species were 

selected to represent contrasting functional strategies: Clover (high stomatal investment, slow 

kinetics, stomata-limited), Timothy (low stomatal investment, fast kinetics, biochemistry-limited), and 

Italian and Perennial ryegrass (intermediate grass strategies). These species span the functional range 

identified under controlled conditions. To evaluate whether these differences in trait syndromes 

translate to differential performance under field-relevant conditions, the four species were subjected 

to temporally structured shade treatments simulating bifacial agrivoltaic arrays. 
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6 Field Materials and Methods 

6.1 Site Description and Experimental Shade Structures  

The field experiment was conducted at the Hazelrigg Field Station, Lancaster, UK (54°01′50″ 

N, 2°46′30″ W), during the summer months of July and August 2025. The site experiences a cool-

temperate oceanic climate, characterised by a mean annual temperature of 9.3 °C and total annual 

precipitation of 1307 mm, as recorded by Climate-Data.org (2025). To investigate the ecophysiological 

consequences of diurnal shading regimes, a key feature of bifacial, agrivoltaic system designs, two 

custom shade structures were constructed on a north-south alignment. These structures were 

designed to simulate the dynamic light environment cast by vertically mounted, bifacial solar panels. 

Each structure was composed of oriented strand board (OSB) panels measuring 1.2 m in height and 

2.4 m in length, which were mounted vertically on timber uprights to form a continuous 4.8 m façade. 

The two primary structures were separated by a distance of 6.0 m, sufficient space for control blocks 

in full sunlight throughout the day (Figure 12A). 

This specific configuration generated three distinct, replicated experimental treatments 

defined exclusively by the timing of shade incidence. A morning shade (AM) zone was established on 

the west side of each structure, which was shaded from sunrise until approximately solar noon. An 

afternoon shade (PM) zone was created on the east side of each structure, which was shaded from 

solar noon until sunset. A full-sun Control zone was positioned centrally between the two structures; 

it was therefore shaded for only brief, equal periods in the morning and evening. In addition to these 

three replicated treatments, a fourth data logger was positioned to the south of the entire 

experimental array in a consistently unshaded area. While this South logger was not part of the formal 

replicated design for plant trait analysis, it served as a contextual reference to monitor and confirm 

baseline environmental conditions outside the experimental infrastructure. 
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Figure 13. Experimental design and infrastructure for investigating diurnal shade regime 
effects on forage species. (A) Photograph of the field site showing two shade structures 
on a north-south alignment, constructed from vertically mounted OSB panels (1.2 m × 2.4 
m), creating 4.8 m shaded façades on both eastern and western sides. This configuration 
generated distinct morning (AM) and afternoon (PM) shade zones, replicating the light 
environment of a bifacial solar array. (B) Schematic representation of the randomised 
complete block design showing the layout of a single experimental block containing 12 
pot positions. The four species, Clover, Italian ryegrass (IRG), Perennial ryegrass (PRG), 
and Timothy, were randomly assigned to positions within each block, with three replicate 
pots per species. This randomisation was repeated in each of six blocks (two blocks per 
treatment: AM1/AM2, PM1/PM2, C1/C2), spatially aligned with the physical 
infrastructure: AM blocks west of the structures, PM blocks east, and Control blocks 
centrally between them. The design provided 72 pots total, yielding six independent 
replicates per species. 

 

6.2 Plant Material and Experimental Cultivation 

To test the hypothesis that forage species with contrasting functional strategies would differ 

in their phenotypic plasticity to temporal shade regimes, four key species were selected based on 

multivariate trait divergence observed in the preceding glasshouse experiment. The selected species 

were White Clover, Timothy, PRG and IRG. These are widely used in temperate improved grassland 

mixtures, including solar-compatible swards, and are already incorporated into commercial “solar 

park” and long-term grazing seed mixes because of their compatibility with partial shade and their 
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contrasting rooting depths and growth forms (Andrew et al., 2021; Mason et al., 2016). They also span 

a strategic spectrum of leaf economic and stomatal kinetic strategies that typify UK forage systems, 

providing a functionally and agronomically relevant framework for evaluating phenotypic plasticity to 

agrivoltaic-style diurnal shading regimes. 

Seeds of each species were sown in June 2025 into 4-L cylindrical pots (22 cm deep × 16.5 cm 

diameter) filled with a nutrient-rich peat-based compost (Petersfield Growing Mediums, Leicester, 

UK), using agronomically realistic sowing rates (Cotswold Grass Seeds, 2025a) (Section 4.1;Table 1). 

Germination and initial establishment of seedlings was in a controlled-environment glasshouse with 

set day/night temperatures of 21/11 °C to ensure uniform seedling vigour and eliminate any 

emergence bias. After a nine-day establishment period, pots were transferred to their respective field 

treatments in early July 2025 and maintained for a total of 39 days (5.5 weeks), encompassing the 

peak summer growing season.  

Pots were elevated on bricks atop a geotextile membrane to ensure consistent application of 

shade treatments across the entire pot canopy and to avoid edge effects from the gap between the 

shade structure base and the ground. They were spaced 22 cm apart to minimise neighbour shading 

and thereby maintain reasonably consistent light conditions among individuals and species within 

each treatment. Throughout the experimental period, plants were watered daily to drip point, to 

eliminate water stress as a confounding variable.  

6.3 Experimental Design and Layout 

The experiment was established as a randomised complete block design (Mead et al., 2017). 

The treatments were spatially aligned to the physical shade structures. Each of the three primary 

treatments (AM shade, PM shade, Control) comprised two replicate blocks (designated AM1/AM2, 

PM1/PM2, C1/C2), resulting in a total of six blocks. Each block contained 12 pots, representing the 

four species with three replicate pots per species (Figure 13B). Within each block, the positional order 
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of the 12 pots was fully randomised to avoid any systematic spatial biases. Across the entire 

experiment, the total sample size consisted of 72 pots, providing six experimental replicates for each 

of the 12 species-by-treatment combinations, providing a balanced design for testing main effects of 

species and treatment, as well as their interaction. 

 

6.4 Environmental Monitoring and Microclimate Characterisation 

To quantitatively characterise the light and microclimatic environment within each treatment 

zone, conditions were monitored continuously during the 39-day experiment using HOBO Micro 

Station data loggers (H21-USB; Onset Computer Corporation, Bourne, MA, USA). Each station was 

equipped with a photosynthetically active radiation (PAR) sensor (S-LIA-M003), and a combined air 

temperature and relative humidity sensor (S-THB-M002) housed within a solar radiation shield (RS3-

B) to protect against radiative heating errors. All PAR sensors were mounted on light brackets (M-LBB) 

and carefully levelled to ensure accurate measurements. Both PAR, temperature and relative humidity 

sensors were positioned 0.4 m above the black weed fabric surface, at roughly the same height as 

grass plant canopies emerged from their pots. Data were logged at 5 min intervals, providing high-

resolution temporal data, and were subsequently downloaded via HOBOware Pro software (Onset 

Computer Corporation, 2024). 

Vapour pressure deficit (VPD), a key biophysical determinant of evaporative demand and 

plant water stress, was calculated from the logged air temperature (T, °C) and relative humidity (RH, 

%) data following the established FAO-56 Tetens equation (Allen et al., 1998). Saturation vapour 

pressure (es, kPa) was first calculated using Equation 17, VPD was then derived using Equation 18.   

Equation 17. Saturation vapour pressure: 

𝑒𝑠(𝑇) [𝑘𝑃𝑎] = 0.6108 ∙  𝑒𝑥𝑝 (
17.27 ∙  𝑇

𝑇 + 237.3
) 
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Equation 18. Vapour pressure deficit: 

𝑉𝑃𝐷 [𝑘𝑃𝑎] = 𝑒𝑠(𝑇)  ∙ (1 − 
 𝑅𝐻

100
) 

The daily light integral (DLI, mol m⁻² d⁻¹), representing the total photosynthetically active 

photon flux received per square metre per day, was calculated for each treatment by time-integration 

of the logged PAR values (Faust et al., 2005) using Equation 19, where PARi is the instantaneous 

photosynthetic photon flux density (µmol m⁻² s⁻¹) at time step i, Δti is the logging interval in seconds 

(300 s), and the divisor of 106 converts the total from micromoles to moles. 

Equation 19. Daily light integral: 

𝐷𝐿𝐼 [𝑚𝑜𝑙 ∙ 𝑚−2 ∙ 𝑑−1] =
∑(𝑃𝐴𝑅𝑖 ∙ ∆𝑡𝑖)

106
 

The analysis of environmental data followed a structured progression from qualitative 

verification to quantitative hypothesis testing. Initially, the high-resolution data were visually 

inspected as full diurnal profiles to confirm that the treatments consistently produced the intended 

morning and afternoon shade regimes. Next, a precise temporal framework was established for formal 

analysis. Using the suncalc package (Thieurmel and Elmarhraoui, 2019), daytime was 

programmatically defined for each date, and the data were subsequently aggregated into two distinct 

analytical windows: morning (sunrise to solar noon) and afternoon (solar noon to sunset). For each 

window, instantaneous environmental variables (PAR, temperature, relative humidity, and VPD) were 

calculated as daily means from the high-resolution (5-min interval) measurements. By contrast, DLI 

was calculated as the time-integrated sum of photosynthetic photon flux within each window. These 

aggregated values served as response variables in statistical models used to test for significant 

treatment effects. 
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6.5 Trait Measurements for Functional Response Quantification 

After six weeks of growth, a comprehensive suite of functional traits was measured to capture 

leaf-level and stomatal plasticity in response to the shade treatments. For each plant, a single, apical, 

fully expanded leaf was excised at the ligule and sealed in a humidified plastic bag to prevent 

desiccation during transport to the laboratory, which was done within 1h. Stomatal impressions and 

image analysis followed the protocol described in Section 4.7. 

 The leaf used for stomatal impressions was used for leaf area measurement using a calibrated 

leaf-area meter (LI-3100C; LI-COR Inc. Lincoln NE, USA). Afterwards, it was oven-dried at 70 °C for at 

least 72 hours to reach a constant mass. Leaf mass per area (LMA, g m⁻²) was calculated as the leaf 

dry mass divided by its leaf area. At the final harvest, 48 days after sowing, the entire above-ground 

biomass of each plant was harvested by cutting at the soil surface, oven-dried to constant mass, and 

weighed to determine total plant biomass. 

To capture higher-order stomatal traits that integrate multiple anatomical features, two 

composite indices were calculated. The NSD index was calculated Muir et al. (2014), which quantifies 

the relative allocation of stomata between adaxial and abaxial leaf surfaces (Equation 16; Section 4.7), 

and a proxy for maximum stomatal conductance (gmax proxy). The gmax proxy was formulated to 

capture the functional coordination between stomatal size and density within multivariate trait space 

By simplifying the theoretical framework presented in Franks and Beerling (2009), retaining the core 

scaling relationship in which theoretical maximum pore area scales with SD (mm-2) and the square of 

GCL (Equation 20). This relationship is based on the biophysics of gas diffusion through stomatal pores 

and the biomechanics of guard cell function (Dow et al., 2014; Franks and Beerling, 2009; Sack and 

Buckley, 2016). By combining size and density parameters for both leaf surfaces into a single 

integrated metric, the composite index provides a functionally meaningful variable for multivariate 

analysis that can be calculated for all species, complementing the analysis of individual stomatal traits. 
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While based on established biomechanical principles, this novel, simplified formulation has not been 

independently validated against direct physiological measurements of stomatal conductance. 

Equation 20. Proxy for stomatal conductance (gmax proxy): 

𝑔𝑚𝑎𝑥 𝑝𝑟𝑜𝑥𝑦 =  (𝑆𝐷𝑎𝑑  ×  𝐺𝐶𝐿
2
𝑎𝑑) + (𝑆𝐷𝑎𝑏  × 𝐺𝐶𝐿

2
𝑎𝑏),  

where SD is stomatal density (mm⁻²) and GCL is guard cell length (µm), and the resulting proxy 

is a dimensionless index proportional to theoretical maximum stomatal conductance. 

6.6 Statistical Analysis Framework 

All statistical analyses were conducted in R version 4.4.1 (R Core Team, 2024) within the 

RStudio integrated development environment (Posit Team, 2024). Data manipulation and visualisation 

were performed using the `tidyverse` suite of packages (Wickham et al., 2019). The analysis was 

structured into three distinct components: environmental data, multivariate, and univariate traits. 

6.6.1 Environmental Data Analysis 

Linear mixed-effects models were used to test for treatment effects on environmental 

variables, using the nlme package (Pinheiro et al., 2024). To avoid pseudoreplication from multiple 

measurements per day, daily aggregated values for each environmental variable (PAR, T, RH, VPD, and 

DLI) were calculated separately for morning and afternoon windows, obtaining a single observation 

per treatment, per day, per window (156 observations per window: 39 dates × 4 treatments). Separate 

models were fitted for morning and afternoon windows for each environmental variable, with the 

model structure: variable ~ treatment + (1|date). This approach allowed direct assessment of whether 

AM and PM shade structures created time-specific microclimate effects, while accounting for day-to-

day environmental variation by including date as a random intercept. 
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Model assumptions of normality and homoscedasticity were assessed using Shapiro-Wilk tests 

and Levene's tests on normalised residuals. While heterogeneous variance structures (varIdent) 

provided  better model fits according to AIC criteria (ΔAIC = -21 to -197), homogeneous variance 

models were selected to ensure comparable standard errors across treatments for multiple-

comparison procedures and to avoid inflated standard errors that can produce misleading compact 

letter displays (Table S1). Linear mixed models are robust to moderate violations of normality 

assumptions when sample sizes are adequate (Schielzeth et al., 2020).  

Statistical inference for fixed effects used Type III F-tests with denominator degrees of 

freedom calculated via the containment method (Pinheiro and Bates, 2000). This method accounts for 

both the fixed-effect structure (4 treatment levels) and the random-effect structure (39 date levels), 

providing a denominator df ≈ 114 for hypothesis tests. Post-hoc pairwise comparisons between 

treatments were performed on estimated marginal means using the Šidák correction for multiple 

comparisons, implemented in the emmeans package (Lenth, 2025). Standard errors and confidence 

intervals for estimated marginal means were calculated based on the number of random effect levels 

(df = 38), reflecting the true replication at the daily level. Compact letter displays derived from these 

comparisons were used to indicate statistical groupings in figures. Equivalent analyses for the full 

photoperiod (sunrise to sunset) are presented in Figure S1.  

6.6.2 Multivariate Trait Analysis 

To integrate the suite of leaf and stomatal traits into a cohesive functional framework, a PCA 

was performed on a correlation matrix using the ‘prcomp’ function. The trait set comprised leaf area, 

LMA, plant biomass, leaf biomass, adaxial and abaxial SD, abaxial GCL, the NSD index, and a composite 

index integrating stomatal size and density (gmax proxy). Adaxial GCL was excluded from the PCA 

because White Clover is hypostomatous and lacks adaxial stomata, precluding direct comparison of 

this trait across all four species. The composite index (Equation 20) provided an alternative approach 
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to capture size-density integration for comparative analysis across species with contrasting stomatal 

distributions. Data were mean-centred and scaled to unit variance prior to ordination. The suitability 

of the data for PCA was confirmed via the Kaiser-Meyer-Olkin measure of sampling adequacy (KMO = 

0.691) and Bartlett's test of sphericity (p < 0.001). 

Multivariate treatment effects were assessed using a combination of methods. Multivariate 

normality was assessed on the residuals of a MANOVA model using Mardia’s test (Mardia, 1970). The 

results showed that the normality assumption was not met (p < 0.001). Given this violation, a non-

parametric PERMANOVA (Anderson, 2001) was conducted on Euclidean distances between individuals 

using the `adonis2()` function in the `vegan` package (Oksanen et al., 2025), with 9999 permutations 

to test the significance of species, treatment, and their interaction. Homogeneity of multivariate 

dispersions was tested using the `betadisper()` function (PERMDISP) in `vegan`. To quantify the 

magnitude of phenotypic plasticity for each species, the Euclidean distance between shade treatment 

centroids and their respective control centroid was calculated in the space defined by the first two 

principal components. The statistical significance of these centroid displacements was assessed using 

permutation tests (9999 permutations), and the resulting p-values were adjusted for multiple testing 

using the Benjamini-Hochberg false discovery rate (FDR) procedure (Benjamini and Hochberg, 1995). 

A supplementary PCA and PERMANOVA were conducted on a dataset containing only the three grass 

species (Timothy, PRG, IRG) to ascertain whether the inclusion of Clover obscured more subtle 

patterns of functional differentiation among the grasses (Figure S3 and Figure S4). 

6.6.3 Univariate Trait Analysis 

Univariate trait responses were analysed using generalised least squares (GLS) models, 

implemented in the `nlme` package (Pinheiro et al., 2024). Each trait was modelled with `Species`, 

`Treatment`, and their `interaction` as fixed effects. To handle potential heteroscedasticity among 

groups, model structures with and without variance weighting functions (e.g., `varIdent`) were 
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compared using Akaike's Information Criterion (AIC) under maximum likelihood estimation. Variance-

weighted models were selected for all eight traits based on better AIC values, consistent with 

recommendations to apply variance structures consistently rather than selectively (Gelman and Hill, 

2006). The best-fitting model was then refitted using restricted maximum likelihood (REML) for final 

parameter estimation (Zuur et al., 2009). Type II ANOVA tables were obtained from the selected 

models using the ̀ Anova()` function in the ̀ car` package (Fox and Weisberg, 2019). Estimated marginal 

means (EMMs) were computed for all species-by-treatment combinations (Lenth, 2025). Post-hoc 

pairwise comparisons were performed using Šidák’s test for all possible contrasts.  For key traits, effect 

sizes were expressed as percentage differences of the raw trait means relative to the control. Model 

assumptions were checked; the normality of residuals was assessed using the Shapiro-Wilk test, and 

homogeneity of variances was tested using Levene's test. Using the same variance structures for all 

traits aligns with statistical practices that favour maintaining complex variance structures when 

supported by model selection criteria (Gelman and Hill, 2006). 
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7 Field Results 

7.1 Experimental Infrastructure Creates Targeted Diurnal Light 
Environments 

The successful creation of distinct, temporally segregated light environments was a 

prerequisite for testing the research question. Averaged diurnal profiles for PAR, temperature, relative 

humidity, and VPD visually demonstrated clear separation between treatments, with AM and PM 

shade regimes reducing PAR as expected (Figure 14). The South reference sensor, positioned outside 

the experimental array to capture unshaded conditions independent of structural effects, recorded 

values intermediate between Control and shaded treatments across most variables, suggesting minor 

inter-sensor calibration variation rather than positional effects. 

To quantitatively validate differences in microclimate conditions between the morning and 

afternoon periods, analysis was conducted on daily-aggregated values for each time window (Figure 

15). Treatment effects on photosynthetically active radiation (PAR; Figure 15A) were highly significant 

in both morning (F₃,₁₁₄ = 52.02, p < 0.001) and afternoon periods (F₃,₁₁₄ = 95.17, p < 0.001), confirming 

that the shade structures created the intended diurnal light regimes. During the morning period, the 

AM shade treatment reduced PAR by 47% relative to the Control (283 ± 35 vs. 535 ± 35 μmol m⁻² s⁻¹; 

p < 0.001), while PM shade and South reference treatments did not differ significantly from the Control 

(p > 0.05). This pattern reversed in the afternoon: the PM shade treatment reduced PAR by 50% 

compared to the Control (343 ± 35 vs. 681 ± 35 μmol m⁻² s⁻¹; p < 0.001), whereas the AM shade 

treatment showed no significant reduction (631 ± 35 μmol m⁻² s⁻¹; p > 0.05). Notably, the PM shade 

treatment uniquely reversed natural diurnal patterns at the field site, with morning PAR exceeding 

afternoon levels by 185 μmol m⁻² s⁻¹. 
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Figure 14. Microclimate conditions under experimental diurnal shading regimes. 
Continuous (5 min interval) environmental measurements made over the 39-day field 
experiment are summarised to show diurnal patterns of (A) photosynthetically active 
radiation (PAR), (B) air temperature (°C), (C) relative humidity (RH%), and (D) vapour 
pressure deficit (VPD, kPa) within treatment zones. Lines represent hourly means with 
shaded ribbons indicating ±1 standard error across days (n = 39). Treatment colours: 
Control (black), AM shade (orange), PM shade (blue), South reference (green). 
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To complement these instantaneous light measurements, cumulative photon flux was 

quantified as the DLI for each time window. Treatment effects on morning DLI were highly significant 

(F₃,₁₁₄ = 50.96, p < 0.001), with the AM shade treatment receiving 47% less light than the Control (8.18 

± 1.03 vs. 15.52 ± 1.03 mol m⁻²; p < 0.001), while PM shade, South reference, and Control treatments 

formed a statistically indistinguishable group (all p > 0.05; Figure 15E). This pattern was mirrored in 

the afternoon (F₃,₁₁₄ = 90.74, p < 0.001); the PM shade treatment received 50% less cumulative light 

than the Control (9.95 ± 1.03 vs. 19.77 ± 1.03 mol m⁻²; p < 0.001) while AM shade did not differ from 

the Control (18.35 ± 1.03 mol m⁻²; p > 0.05). These DLI reductions demonstrate that shade structures 

created substantial cumulative light deficits during the respective shaded periods. When integrated 

over the full photoperiod, treatment effects on total daily DLI remained highly significant (F₃,₁₁₄ = 

80.23, p < 0.001; Figure S2). Both shade treatments significantly reduced cumulative daily light (p < 

0.001), by 25%  for AM shade (26.5 ± 1.77 mol m⁻² d⁻¹) and 28%  for PM shade (25.3 ± 1.77 mol m⁻² 

d⁻¹) compared to the Control (35.3 ± 1.77 mol m⁻² d⁻¹), while the South reference recorded 

intermediate values (32.8 ± 1.77 mol m⁻² d⁻¹; p < 0.001 vs Control; Figure S2).  

Associated with their impact on PAR, shading regimes generated corresponding time-specific 

modifications to T, RH, and VPD (Figure 15B-D). Morning T showed a significant treatment effect (F₃,₁₁₄ 

= 45.45, p < 0.001), with the AM shade treatment creating a cooler microclimate (17.0 ± 0.43 °C) 

compared to the Control (17.5 ± 0.43 °C; p < 0.001), a reduction of 0.5 °C (Figure 15B). The PM shade 

treatment was significantly warmer than all other treatments during the morning period (18.8 ± 0.43 

°C; p < 0.001). In the afternoon, temperature differences were smaller, but remained significant (F₃,₁₁₄ 

= 4.97, p = 0.003), with treatments forming overlapping groups and no clear pattern of shade-induced 

cooling. 

Relative humidity displayed an inverse pattern to temperature (Figure 15C). Morning RH was 

significantly affected by treatment (F₃,₁₁₄ = 40.75, p < 0.001), with the AM shade increasing humidity 
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by 1.53 percentage points relative to the Control (82.6 ± 1.65% vs. 81.1 ± 1.65%; p < 0.001), while the 

PM shade treatment showed the lowest morning humidity (76.9 ± 1.65%; p < 0.001; Figure 15C). 

Afternoon RH also showed significant treatment effects (F₃,₁₁₄ = 21.61, p < 0.001), with the AM shade 

treatment creating the driest afternoon conditions (70.8 ± 1.77%; p < 0.001 compared to Control at 

72.1 ± 1.77%). 

Vapour pressure deficit (VPD), a key determinant of evaporative demand, showed significant 

treatment effects in both morning (F₃,₁₁₄ = 29.69, p < 0.001) and afternoon periods (F₃,₁₁₄ = 8.98, p < 

0.001; Figure 15D). During the morning, VPD was lowest under the AM shade treatment (0.38 ± 0.059 

kPa), representing a reduction of 0.05 kPa (12.5%) compared to the Control (0.43 ± 0.059 kPa; p < 

0.001). The PM shade treatment created significantly higher morning VPD (0.62 ± 0.059 kPa; p < 0.001) 

than all other treatments. In the afternoon, the pattern reversed, with the AM shade treatment 

generating the highest VPD (0.77 ± 0.078 kPa; p < 0.001), an increase of 0.07 kPa (9.4%) compared to 

the Control (0.7 ± 0.078 kPa). Although absolute VPD values remained low across all treatments (0.38–

0.77 kPa), these shifts show that the shade structures consistently and significantly modified 

atmospheric evaporative demand in a time-of-day-dependent manner. 
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Figure 15. Morning and afternoon microclimatic conditions under temporally distinct 
shade regimes during a 39-day field experiment at Hazelrigg Experimental Station, 
Lancaster, UK. Mean values ± SE for (A) photosynthetically active radiation (PAR), (B) air 
temperature, (C) relative humidity (RH), and (D) vapour pressure deficit (VPD), for 
morning (sunrise to solar noon) and afternoon (solar noon to sunset) periods. (E) Daily 
Light Integral (DLI) for each treatment within morning and afternoon windows (n = 39 
days). Bar colours denote treatments (grey = Control, orange = AM shade, blue = PM 
shade, green = South reference). Compact letter displays above bars summarise Šidák-
adjusted comparisons of estimated marginal means between treatments within each 
time window; treatments sharing the same letter within a panel were not significantly 
different (p > 0.05). All treatment effects were highly significant (p < 0.001), except 
afternoon temperature (p < 0.01). 
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Figure 16. Temporal consistency of treatment effects on environmental variables during 
the experimental period at Hazelrigg Experimental Station, Lancaster, UK. Seven-day 
rolling means ± SE of daily aggregated values for (A) daily light integral (DLI, mol m⁻² d⁻¹), 
(B) vapour pressure deficit (VPD, kPa), (C) air temperature (°C), and (D) relative humidity 
(%) across a 39-day field experiment. Each data point represents the rolling average of 
daily means calculated from high-resolution measurements (5-minute intervals) within 
each 24-hour period. Lines show rolling averages with shaded ribbons representing 
standard error, demonstrating maintained separation between treatments despite 
underlying meteorological variability. Colours denote treatments (black = Control, orange 
= AM shade, blue = PM shade, green = South reference). Temperature and RH are shown 
to illustrate their contribution to observed VPD patterns. 

 

To demonstrate the temporal consistency of these treatment effects throughout the 

experimental period, seven-day rolling averages for DLI, VPD, air temperature and relative humidity 

(Figure 16). These descriptive time series show that, despite underlying day-to-day meteorological 
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variability, the treatment separations established by statistical analyses (Figure 14 and Figure 15) were 

observable consistently throughout the July-August field experimental period. 

In summary, the environmental data demonstrate that the experimental infrastructure 

created diurnal shading regimes with significant differences in microclimate. This provided the 

foundation for investigating how the timing of shade, distinct from its total quantity, influences 

phenotypic responses in forage species. 

7.2 Multivariate Analysis Reveals Species-Specific Patterns of 
Integrated Phenotypic Response 

Having established the distinct environmental treatments, the study investigated how these 

regimes shaped the overall phenotypic architecture of the four forage species. A principal component 

analysis (PCA) performed on seven plant traits identified the primary axes of trait variation across the 

72 individual plants, with the first two components (PCs) accounting for 87.9% of the total variance 

(PC1 = 73.4%, PC2 = 14.5%; Figure 17). Variable loadings indicated that PC1 represented a gradient of 

plant size and mass investment, with positive loadings from leaf biomass (0.42), abaxial guard cell 

length (0.42), the gmax proxy (0.39), plant biomass (0.38), and leaf area (0.36). By contrast, PC2 

represented a gradient in leaf economic strategy, defined by positive loadings from leaf area (0.51) 

and plant biomass (0.27) and negative loadings from LMA (-0.53) and the normalised stomatal density 

index (-0.52). The distribution of species within this trait space under control conditions showed clear 

separation, with Italian ryegrass (IRG) occupying the positive extreme of PC1, characterised by high 

values for size-related traits, while Clover occupied the negative extreme. Perennial ryegrass (PRG) 

was separated from the other species along PC2, characterised by higher LMA and NSD. 
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Figure 17. Multivariate principal component analysis (PCA) of four forage species under 
diurnal shading regimes during a 39-day field experiment. Biplot of the first two principal 
components (PC1 = 73.40%, PC2 = 14.52%) derived from seven standardised plant traits: 
plant biomass (g), leaf biomass (g), gmax proxy, abaxial guard cell length (µm), normalised 
stomatal density (NSD) index, leaf mass per area (g m-2) (LMA). Points represent individual 
plants (n = 72). Species are distinguished by shape (circle = Clover, triangle = Timothy, 
square = Perennial ryegrass, diamond = Italian ryegrass). Treatments are indicated by 
colour (grey = Control, blue = PM shade, orange = AM shade). Vectors show trait loadings, 
with arrow length and direction proportional to the correlation strength of each trait with 
the principal components. 

 

To statistically validate these visual patterns and the effect of shading, PERMANOVA was 

utilised, which is robust to violations of parametric assumptions. This analysis confirmed highly 

significant main effects of species (F₃,₆₀ = 432.46, R² = 0.880, p < 0.001) and treatment (F₂,₆₀ = 31.21, 

R² = 0.042, p < 0.001), and a significant species × treatment interaction (F₆,₆₀ = 8.96, R² = 0.0365, p < 
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0.001). The presence of this significant interaction indicated that the species responded differently to 

the timing of shade, necessitating a species-specific analysis of phenotypic plasticity. 

Given this significant interaction, the magnitude of multivariate plasticity for each species was 

quantified by calculating the Euclidean distance between treatment centroids and their control 

positions in the PCA space (Figure 18). This analysis revealed species-specific patterns of response. For 

PRG, both AM shade (d = 1.22, 95% CI = 1.116–1.352, FDR-adjusted p < 0.01) and PM shade (d = 0.96, 

95% CI = 0.809–1.108, FDR-adjusted p < 0.01) produced significant and substantial displacements. 

Similarly, Clover shifted significantly under both AM (d = 0.70, 95% CI = 0.563–0.900, FDR-adjusted p 

< 0.01) and PM shade (d = 0.58, 95% CI = 0.469–0.726, FDR-adjusted p < 0.01). By contrast, IRG and 

Timothy exhibited more selective responses, shifting significantly only under PM shade (IRG: d = 1.14, 

95% CI = 0.780–1.608, FDR-adjusted p < 0.01; Timothy: d = 0.90, 95% CI = 0.631–1.179, FDR-adjusted 

p < 0.01), while their shifts under AM shade were not statistically significant (IRG: FDR-adjusted p > 

0.05; Timothy: FDR-adjusted p > 0.05). 

Further analysis of multivariate dispersion (PERMDISP) showed significant differences in 

within-group dispersion among species (F₃, ₆₈ = 9.67, p < 0.001), with IRG exhibiting greater phenotypic 

variation than Clover, Timothy, and PRG. In contrast, dispersion did not differ among treatments (F₂, 

₆₉ = 0.09, p = 0.916), indicating that shading altered the mean trait values but not the variance around 

those means. A supplementary PCA restricted to the three grass species further clarified that Timothy 

occupied a distinct functional phenotype from the two ryegrasses, primarily driven by its higher LMA 

and divergent stomatal distribution (NSD), patterns that were partially obscured when the distantly 

related Clover was included in the analysis (Figure S4). 
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Figure 18. Heatmap of Euclidean distances between species x treatment centroids in the 
PCA space, calculated from PC1 and PC2 scores. Distances quantify multivariate 
separation of treatment means; significant centroid shifts from control treatment, tested 
using permutation tests with Benjamini–Hochberg FDR adjustment, are indicated by an 
asterisk (**, p < 0.01). Colour gradient denotes centroid distance (lighter yellow = smaller 
functional differences, darker purple = larger differences).  

 

7.3 Univariate Trait Analysis Elucidates Underlying Structural and 
Stomatal Response Mechanisms 

To identify the specific morphological and anatomical adjustments underlying the multivariate 

responses, a univariate analysis was conducted. This revealed that plasticity was most pronounced in 

structural and biomass traits, with highly significant species × treatment interactions governing their 

responses (Figure 19; all p < 0.001). 
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Stomatal morphology exhibited constrained and surface-specific plasticity. Guard cell length 

on the adaxial surface showed a significant species x treatment interaction (Figure 19D; F₄,₄₅ = 168.48, 

p < 0.001), with PRG showing significant reductions under both shade treatments and IRG under PM 

shade only. However, adaxial stomatal density, while showing a significant species x treatment 

interaction (Figure 19E; F₄,₄₅ = 27.13, p < 0.001), exhibited no significant pairwise differences within 

any species. For the abaxial surface, guard cell length showed a significant interaction, but no 

significant within-species effects were detected (Figure 19F). Abaxial stomatal density was 

significantly influenced by the species × treatment interaction (Figure 19G; F₆,₆₀ = 582.12, p < 0.001), 

with Clover and Timothy showing significant reductions under shade, while the ryegrasses showed no 

significant changes. 

Individual leaf area, a key determinant of light capture potential, exhibited a strong species x 

treatment interactive effect (F₆,₆₀ = 30.33, p < 0.001), which highlighted fundamental differences 

between the dicot species (Clover) and the monocot grasses (Figure 19A). The ryegrasses 

demonstrated notable plasticity, with PRG increasing leaf area most dramatically under afternoon 

shade (+64.0%, p < 0.05) and IRG increasing significantly under both morning (+20.0%, p < 0.05) and 

afternoon shade (+38.0%, p < 0.01). By contrast, Clover and Timothy showed no statistically significant 

changes in leaf area in response to shading, indicating a more conservative leaf deployment strategy. 

Analysis of individual leaf biomass, representing direct investment in photosynthetic tissue, 

revealed a significant species × treatment interaction (Figure 19B; F₆,₅₇ = 30.68, p < 0.001) that 

highlighted divergent allocation strategies under temporal shading. Both ryegrass species significantly 

increased leaf biomass under shade; however, PRG responded specifically to PM shade (+27.0%, p < 

0.05), whereas Italian ryegrass leaf biomass increased under both morning (+11.0%, p < 0.05) and 

afternoon shade (+12.0%, p < 0.05). By contrast, Timothy and Clover showed no significant differences 

in leaf biomass across diurnal shading regimes.  
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Figure 19. Species-specific trait means under diurnal shading regimes during a 39-day field experiment for (A) leaf area, (B) leaf biomass, (C) leaf mass per area 
(LMA), (D) adaxial guard cell length, (E) adaxial stomatal density, (F) abaxial guard cell length, (G) abaxial stomatal density, and (H) plant biomass. Rows 
correspond to species: (1) Timothy, (2) Clover, (3) Perennial ryegrass (PRG), (4) Italian ryegrass (IRG). Bars represent raw means ±1 standard error (n = 6 
biological replicates per species per treatment). Bar colours represent treatments (orange = AM shade, grey = Control, blue = PM shade). Compact letter 
displays above bars summarise Šidák-adjusted comparisons of estimated marginal means from species × treatment linear models. Treatments sharing the 
same letter within a species and panel were not significantly different (p > 0.05). As Clover is hypostomatous it was excluded from the adaxial trait analysis. 
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Combining leaf biomass with leaf area at the level of individual leaves, the investment of mass 

per unit leaf area (LMA) was greater in the control than the shaded treatments in all species (Figure 

19C). However, the extent of differences varied by species (F₆,₆₀ = 89.52, p < 0.001). Clover significantly 

reduced LMA under both shade treatments (AM: -35.8%, PM: -30.4%) compared to the control, 

indicating a shift towards thinner leaves in lower light. PRG exhibited the most complex response, with 

all three treatments differing significantly: AM shade (-33.3%) resulted in the lowest LMA, followed by 

PM shade (-22.3%), and then the control. Timothy and IRG showed significant reductions only under 

PM shade, mirroring their multivariate response patterns.  

For whole-plant biomass, there were also significant species × treatment interactions (Figure 

19H; F₆,₆₀ = 109.09, p < 0.001). Timothy demonstrated a remarkable biomass response, producing 

significantly more biomass under PM shade conditions (68.7%) compared to the control. IRG also 

produced the most biomass under PM shade, which was significantly greater (24.0%) than plants 

receiving AM shade. Conversely, Clover and PRG showed no significant treatment effects on final plant 

biomass, suggesting that their larger LMA responses and clearer multivariate responses to shade were 

associated with smaller among shade-treatment differences in total biomass accumulation under the 

conditions and timeframe of this experiment. 
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8 Discussion 

The central finding of this thesis is that the timing of shade exposure, not merely its intensity 

or duration, determines how forage species perform in agrivoltaic systems, and that species differ 

significantly in whether they thrive from a lie-in or early bedtime. When four species were grown 

under a diurnal shade regime, delivering near-identical daily light integrals but differing in whether 

light reduction occurred in morning or afternoon periods (Figure 15), their biomass responses 

diverged significantly (Figure 19). Timothy increased biomass by 69% under afternoon shade relative 

to controls, exploiting the unshaded morning window like an early riser, while Italian ryegrass showed 

a 24% gain under the same treatment. By contrast, Clover and Perennial ryegrass showed no 

significant differences in biomass despite exhibiting pronounced morphological plasticity. Clover's 

slow stomatal kinetics (40 min) imposed carbon penalties during each transition, while Perennial 

ryegrass's fast kinetics (6.3 min) failed to translate to gains because its water-spending hydraulic 

strategy imposes costs under shade, continuing to lose water when light limits carbon gain, meaning 

that an early bedtime and an early start proved no more productive than a lie-in. 

These results challenge the general assumptions in agrivoltaic research that shade tolerance 

can be predicted from responses to uniform reductions in light (Laub et al., 2022). Most studies 

evaluate shade tolerance through yield responses to uniform light reduction, quantifying how much 

light plants receive rather than when they receive it (Laub et al., 2022). The present findings 

demonstrate that performance depends on species-specific capacities to exploit the temporal 

structure of light availability: capacities rooted in the coordinated stomatal, structural, and hydraulic 

trait syndromes characterised under controlled glasshouse conditions (Figure 1 - Figure 11). This 

overlooked temporal dimension may explain why, despite the rapid expansion of agrivoltaics research, 

the understanding of underlying plant physiological mechanisms remains incomplete. 
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The difference between morning and afternoon shade responses reflects a fundamental 

asymmetry in how diurnal light regimes challenge plant carbon gain. The eight-fold variation in 

stomatal opening times observed across eight species in the glasshouse, ranging from approximately 

5 minutes in Timothy to 40 minutes in Clover (Figure 4), translates into differential capacity to exploit 

temporally structured light environments. Although this range is narrower than the 25-fold range (0.9–

23 min)  reported by McAusland et al. (2016) and the 18-fold variation (7.4–133 min) documented by 

Deans et al. (2019a) across broader taxonomic groups, this range is still meaningful and demonstrates 

the kinetic diversity among the temperate forage species examined here. For Timothy, the fast 5-

minute stomatal opening time means near-complete exploitation of morning light windows; for 

Clover, the 40-minute lag means a considerable part of each high-light period passes before stomata 

reach full operational conductance. In bifacial agrivoltaics, morning light combines with afternoon 

shade, replicating the unshaded morning window when leaves must transition from overnight 

darkness to full photosynthetic capacity, a process requiring coordinated stomatal opening and 

Rubisco activation (Carmo-Silva and Salvucci, 2013; Kaiser et al., 2015; Pearcy, 1990). Both stomatal 

responsiveness and photosynthetic capacity exhibit circadian regulation, with the speed and 

magnitude of stomatal responses declining as the day progresses (Matthews et al., 2017); the morning 

light/afternoon shade combination, therefore, aligns with leaves being in their most responsive state. 

By contrast, the pairing of morning shade and afternoon sunlight delays exposure to high light, 

condensing the window for carbon gain into a period when vapour pressure deficit typically peaks 

(Figure 15D) and stomatal conductance may be constrained by hydraulic limitations (Grossiord et al., 

2020). 

This interpretation reframes the concept of shade tolerance for agrivoltaic contexts. Clover 

reduced leaf mass per area by 36% under morning shade and 30% under afternoon shade (Figure 19C), 

consistent with classical shade-acclimation responses emphasising morphological plasticity: increased 

specific leaf area, altered chlorophyll content, and modified leaf angles, as mechanisms for 
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maintaining carbon balance under reduced irradiance (Valladares et al., 2007; Valladares and 

Niinemets, 2008). Clover's documented petiole elongation response allows leaves to position at 

canopy tops (Dennis and Woledge, 1982). However, this morphological flexibility yielded no biomass 

advantage. Liu et al. (2016) demonstrated across 280 species that specific leaf area (SLA) plasticity was 

not related to shade tolerance measured as the capacity to maintain biomass production, and that 

species with greater SLA plasticity showed worse biomass maintenance under shade, a finding 

replicated in the Clover response observed here. Those species that gained biomass, Timothy and 

Italian ryegrass, showed minimal structural adjustment but possessed the fastest induction kinetics in 

glasshouse trials (Figure 4). Ghalambor et al. (2007) differentiated between adaptive plasticity, in 

which phenotypes move toward new optima, and non-adaptive plasticity, which may move 

phenotypes further from optima. Clover's extensive structural response aligns with the latter, as an 

adjustment to diurnal shade that fails to address the key limiting factor, kinetic constraints during light 

transitions. This suggests performance in temporally heterogeneous light environments depends less 

on the capacity to modify leaf structure than on the kinetic properties that determine how quickly 

photosynthesis reaches full capacity following shade-to-sun transitions (Kaiser et al., 2017; Way and 

Pearcy, 2012). 

Considering species differences within the generalists-versus-specialists framework provides 

additional insight. Clover and Perennial ryegrass behaved as generalists, exhibiting significant 

plasticity under both shade treatments but achieving no biomass gains, consistent with ecological 

studies that have shown species with greater plastic responses to light exhibit higher seedling 

mortality in deep shade (Liu et al., 2016; Valladares et al., 2007). By contrast, Timothy and Italian 

ryegrass responded selectively to afternoon shade, translating this response into substantial increases 

in biomass. DeWitt et al. (1998) identified lag-time limits as a fundamental constraint on plasticity: 

when environments change faster than plastic responses can track, morphological adjustment 
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provides no benefit. The diurnally structured light environment of fixed bifacial agrivoltaic systems 

represents a scenario in which kinetic specialisation outperforms morphological generalism. 

8.1 Physiological Components Affecting Transient Carbon Gain 

8.1.1 Multivariate Separation Reveals Distinct Kinetic Syndromes 

Species occupied distinct positions in multivariate kinetic trait space (Figure 7), though species 

discrimination was weaker than for structural traits (R² = 0.53 versus 0.87 for hydraulic-anatomy), and 

not all pairwise comparisons achieved significance, indicating that kinetic traits exhibit greater within-

species variability than anatomical properties. PC1 explained 35.4% of variance and captured a fast-

slow kinetic continuum: grasses clustered toward the fast end of this axis, while Clover was isolated 

at the slow extreme, separated from all grass species by more than two standard deviations. The 

loadings revealed that stomatal opening time drove this primary axis of separation, with biochemical 

induction time and response magnitudes contributing secondarily. This multivariate pattern, in which 

species cluster by kinetic syndrome, indicates that coordination of trait combinations results in 

categorical differences in photosynthetic performance between functional groups. 

As mentioned above, stomatal opening time varied 8-fold across species, from 5 min in 

Timothy to 40 min in Clover (Figure 4), with species identity explaining 60% of this variance. The 

grasses could be further separated into fast responders: Timothy, Perennial ryegrass, Cocksfoot, and 

Meadow fescue (5.0–6.6 min), and intermediate responders, Tall fescue, Italian ryegrass, and Hybrid 

ryegrass (10.9–12.5 min). This pattern of faster responses in grasses aligns with Vico et al. (2011), who 

reported that graminoids showed faster stomatal responses (3.9 ± 2.6 min) than forbs or woody 

species.  

Biochemical induction time showed a different ranking among species than stomatal opening 

time (Figure 4B). While species differed significantly in biochemical induction (Figure 4B), the 

correlation between timing of stomatal and biochemical effects was only moderate (Figure 4C), and 
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among grasses, this coordination disappeared entirely. This independence reflects mechanistic 

differences: the opening of stomata requires changes in guard cell turgor that are governed by ion 

transport and interactions with subsidiary cells, whereas biochemical induction relies on the activation 

of Rubisco-by-Rubisco activase and the replenishment of metabolite pools in the Calvin-Benson cycle. 

(Kaiser et al., 2015). Sassenrath-Cole and Pearcy (1994) demonstrated that these processes unfold 

over distinct temporal phases: an initial stomatal limitation phase followed by a Rubisco activation 

phase, and coordination of the two would require selection to act on independent components of leaf 

molecular machinery. Way and Pearcy (2012) observed that when induction is slow, much of each 

sunfleck is spent below the potential assimilation rate. For Timothy, stomatal opening completes in 5 

minutes while biochemical induction requires 7.3 minutes (Figure 4-Figure 5; Table S2), meaning 

stomata finish opening before Rubisco activates, inverting the typical limitation hierarchy. For Clover, 

both processes are slow, but stomatal opening (40 min) significantly exceeds biochemical induction 

(11.4 min), making stomata the unmistakable bottleneck (Table 3). 

A significant finding is the dissociation between the magnitude and speed of coordination 

during photosynthetic induction. The strong correlation between the change in assimilation and 

stomatal conductance on induction (Figure 3C) indicates intrinsic linkage between carbon assimilation 

and water loss that scales across species, linked with how much they respond to light transitions. By 

contrast, the weak correlation between the time constants for assimilation and stomatal conductance 

(Figure 4C; Table 2) indicate these responses do not coordinate and suggest distinct regulatory 

mechanisms operating at different timescales. This timing decoupling suggests different rate-limiting 

steps: stomatal opening is constrained by guard cell mechanics, turgor dynamics and ion flux rates 

(Franks and Farquhar, 2007), while biochemical activation depends on Rubisco activase properties 

(Carmo-Silva and Salvucci, 2013). Taylor et al. (2020) previously demonstrated that the relative 

importance and timing of these limitations can vary between species. 
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8.1.2 Stomatal Limitation Dominates Carbon Costs During Induction 

On induction, stomatal limitation differed significantly among species (Figure 8A), explaining 

68% of among species variance in carbon costs, twice that explained by biochemical limitation (Figure 

8C). Forgone assimilation ranged nine-fold across species, and interspecific variation was primarily 

driven by Clover's slow stomatal kinetics, consistent with Deans et al. (2019b) who found that stomatal 

opening time, not biochemical activation, dominated dynamic limitations across 15 angiosperm 

species. The functional link between kinetics and carbon costs emerged from the strong correlation 

between forgone assimilation and stomatal opening time (ρ = 0.77; Figure 8B): slow-opening species 

sacrifice more carbon because their stomata remain below steady-state conductance while 

assimilation proceeds sub-optimally (Way and Pearcy, 2012). 

Clover's 40-min stomatal opening time (Figure 4A) produced the highest stomatal limitation 

values among all species tested (Figure 8A), despite Clover possessing the highest Kleaf (34.7 mmol m⁻² 

s⁻¹ MPa⁻¹; Figure 9B). This apparent paradox, highest hydraulic capacity paired with slowest stomatal 

response, may reflect the fundamental anatomical difference between kidney-shaped and dumbbell-

shaped guard cells. Franks and Farquhar (2007) demonstrated that graminoid stomata achieve rapid 

aperture changes through osmotic see-sawing between guard cells and subsidiary cells, a mechanism 

they noted enables greatly accelerated stomatal opening and closure that might underlie the success 

of grasses. This mechanism is not available to dicot stomata lacking this subsidiary cell architecture. 

Clover's high hydraulic investment supports large steady-state fluxes (↑Δgsw = 0.38 mol m⁻² s⁻¹; 

Figure 3B) but the kidney-shaped guard cells may not provide opportunities to accelerate the rate at 

which those fluxes are achieved. This explains why Clover achieved the highest photosynthetic 

capacity among all species (21.6 µmol m⁻² s⁻¹; Figure 2A) yet failed to translate this potential into 

biomass gains under temporally structured shade; the kinetic penalty accumulated over repeated 

transitions overwhelmed the steady-state advantage. 
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The noticeable asymmetry between stomatal opening and closing kinetics observed in Clover 

(ratio 5.1) versus the grasses (ratios 0.26–0.92; Figure 6B) likely reflects differences in guard cell 

mechanics. The absence of correlation between opening and closing times across all species (Figure 

6A) indicates that these processes are mechanistically decoupled. McAusland et al. (2016) reported 

that the opening and closing rates for species possessing dumbbell-shaped guard cells were 

moderately correlated (R² = 0.52) but weaker in elliptical species (R² = 0.29), suggesting similar 

mechanisms control grass responses. Unlike grasses, Clover possesses anomocytic stomata, which lack 

differentiated subsidiary cells (Rashid et al., 2018); therefore, they cannot utilise the rapid ion shuttling 

mechanism (Franks and Farquhar, 2007). Stomatal opening requires the uptake of potassium ions, 

whilst closing depends on the release of potassium anions (Lawson and Blatt, 2014). This asymmetry 

limits both the opening and closing speeds of stomatal responses; for species like Clover, therefore, 

slow opening cannot be offset by intermediate closing rates, compounding the kinetic penalty under 

fluctuating light. 

Although stomatal limitation dominated interspecific variation in forgone assimilation during 

induction (Figure 8A), not all species conformed to this pattern. Timothy and Cocksfoot, the fastest 

stomatal responders, were instead limited by biochemical activation, with their stomata opening more 

rapidly than photosynthesis could activate (Table 3). Timothy's stomata completely opened in 

approximately 5 minutes (Figure 4A), paired with biochemical induction over 7.3 minutes (Figure 4B). 

Sassenrath-Cole and Pearcy (1994) established the canonical temporal hierarchy of limitations: 

ribulose-1,5-bisphosphate regeneration limits for the first 1-2 minutes, Rubisco activation becomes 

limiting for 1-10 minutes, and stomatal limitation dominates thereafter. For Timothy, Cocksfoot, and 

Meadow Fescue, stomata open faster than biochemical capacity activates, meaning the rate-limiting 

step becomes biochemical rather than stomata. This finding challenges the improvement of dynamic 

performance through stomatal manipulation alone (Lawson and Vialet-Chabrand, 2019), and supports 
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the idea that both stomatal and biochemical traits should be considered in dynamic light 

environments (Taylor et al., 2020).  

8.1.3 Partial Coupling Between Stomatal Speed and Capacity 

Stomatal response magnitude and opening time showed a moderate positive correlation (ρ = 

0.46; Figure 4), explaining approximately 21% of variance and indicating partial coupling between 

these traits. This relationship reflects a biophysical constraint, whereby larger aperture changes 

require greater ion flux across guard cell membranes, which takes longer to achieve (Lawson and Blatt, 

2014; Lawson and Vialet-Chabrand, 2019). This coupling weakened among grasses alone (ρ = 0.32), 

possibly due to the mechanical advantages of subsidiary cell osmotic exchange that permit faster ion 

shuttling regardless of magnitude (Franks and Farquhar, 2007). Species within the intermediate kinetic 

range (8–15 min) exhibited the full spectrum of response magnitudes (Figure 3B), indicating that 

factors beyond aperture size modulate opening speed. 

The functional consequence of this coupling is extended asynchrony between stomatal 

conductance and photosynthetic demand. Lawson and Vialet-Chabrand (2019) noted that sluggish 

stomata cause non-synchronous behaviour between assimilation and conductance, reducing intrinsic 

water-use efficiency under dynamic conditions. However, the incomplete nature of this relationship; 

with 79–90% of variance unexplained, indicates that other factors modulate opening speed 

independently of magnitude.  

8.1.4 Biochemical Limitation Dominates During De-induction 

The transition from high to low light revealed a reversal in the hierarchy of limitations. While 

stomatal limitation dominated during induction (Figure 8A), biochemical limitation (↓F) was greater 

in magnitude than stomatal limitation (↓Fs) during de-induction for all species (Figure 8 E-F). Species 

differed significantly in both stomatal closing time (Figure 5A) and biochemical relaxation time (Figure 
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5B), but critically, these two processes were not coordinated with respect to their duration (Figure 

5C). As for induction processes, this independence indicates that stomatal closure and Calvin-Benson 

cycle down-regulation operate on different timescales controlled by distinct mechanisms (Kaiser et 

al., 2017). 

Biochemical costs during de-induction were remarkably conserved across species, ranging 

only from 411 to 653 µmol m⁻² (1.6-fold; Figure 8E) despite the large variation in stomatal properties 

(9-fold range in ↑Fs). This conservation, compared to the 9-fold range in stomatal-limited forgone 

assimilation during induction, suggests that Rubisco deactivation kinetics are constrained by 

fundamental enzyme properties shared across species. Mott and Woodrow (2000)  modelled the time 

constant for Rubisco activation as typically 1-5 minutes, depending on species, reflecting constraints 

on Rubisco activase concentration and activity, while  Carmo-Silva and Salvucci (2013) demonstrated 

that Rubisco activation state decreased from approximately 90% to 50-70% upon high-to-low light 

transition. This independence was confirmed by multivariate analysis, where ↓F loaded onto a 

separate axis from stomatal and hydraulic traits (Figure 11). For species selection, this decoupling 

means that stomatal architecture does not constrain de-induction costs, making induction kinetics, 

not de-induction, the primary axis along which species differentiate for fluctuating light performance. 

8.1.5 Steady-State Capacity Does Not Predict Dynamic Performance 

Steady-state photosynthetic capacity varied 1.4-fold across species, from Timothy (15.4 µmol 

m⁻² s⁻¹) to Clover (21.6 µmol m⁻² s⁻¹), with grasses forming a continuous gradient and Clover positioned 

only marginally above the highest-performing grass, Tall Fescue (20.8 µmol m⁻² s⁻¹; Figure 2A). Under 

low light, however, this hierarchy collapsed: interspecific differences diminished and statistical 

separation disappeared (Figure 2B), indicating that differentiation of species under fluctuating 

conditions depended more on the capacity to exploit periods of high-light than on low-light efficiency. 

The high-light hierarchy reflects species positioning along the leaf economics spectrum, where quick-
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return species with high nitrogen content achieve high photosynthetic rates (Wright et al., 2004). 

Rubisco's low catalytic efficiency requires 20–30% of leaf nitrogen investment (Irving, 2015), 

establishing the strong correlation between photosynthetic capacity and leaf nitrogen concentration 

characteristic of C₃ species (Evans, 1989). Clover's position at the top of this hierarchy is consistent 

with the legume nitrogen advantage: symbiotic nitrogen fixation typically enables legumes to maintain 

higher leaf nitrogen concentrations than grasses, dependent on soil nitrogen availability (Adams et al., 

2016). However, this steady-state advantage translated to no field benefit under temporally 

structured shade; Clover's kinetic constraints overwhelmed its capacity advantage (Figure 19). 

The integration of hydraulic traits with carbon economics along the fast-slow continuum 

described by  (Reich, 2014) and the constraint of global plant trait space into a two-dimensional plane 

identified by Diaz et al. (2016) provides additional context: species with acquisitive trait syndromes 

achieve rapid carbon gain under favourable conditions. However, they may lack the kinetic 

responsiveness required for fluctuating environments. Mott and Woodrow (2000) demonstrated 

through modelling that optimal nitrogen allocation between Rubisco and Rubisco activase depends 

on the light environment, favouring greater investment. Similarly, Kaiser et al. (2015) identified 

Rubisco activase and stomatal conductance as targets for improvement of photosynthesis of plants in 

fluctuating irradiance, suggesting that selection for high steady-state capacity may have traded off 

against dynamic responsiveness. 

Timothy, despite possessing the lowest steady-state assimilation among the species tested 

(15.4 µmol m⁻² s⁻¹; Figure 2A), exhibited the fastest induction kinetics (5 min; Figure 4A). Conversely, 

Clover's high photosynthetic ceiling (21.6 µmol m⁻² s⁻¹) was undermined by the slowest stomatal 

responses (40 min), creating a mismatch between potential and realised carbon gain under fluctuating 

conditions. The strong correlation between steady-state high-light assimilation and induction 

magnitude (Table 5) confirms that species with higher photosynthetic capacity achieve larger absolute 
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responses during induction, but says nothing about the rate at which they approach this capacity.  

Soleh et al. (2017) found no significant correlation between maximum photosynthetic rate and 

cumulative CO₂ fixation during induction in soybean genotypes, while Acevedo-Siaca et al. (2020) 

showed that steady-state capacity does not predict the speed of convergence to that capacity. 

Because most studies report steady-state values and miss dynamic behaviour (Lawson and Blatt, 

2014), screening based solely on maximum photosynthetic rates would favour Clover over Timothy, 

yet field performance under temporally structured shade reversed this ranking. 

8.2 Structure-Kinetics Relationships Are Functional-Group Specific 

8.2.1 Structural Traits Define Multivariate Positions 

Species separation was strongest in structural-hydraulic trait space (Figure 9), with PC1 and 

PC2 together explaining 80.6% of variance; substantially more than the kinetic PCA (57.1%; Figure 7). 

Clover separated from all grasses by more than four standard deviations along PC1, a categorical 

rather than continuous distinction. This pattern indicates that anatomy and hydraulics, which are fixed 

mainly during development, generate greater interspecific differentiation than dynamic traits, which 

show more within-species variation due to environmental plasticity (Siefert et al., 2015). For species 

selection, anatomy provides reliable markers of functional type, while kinetic measurements require 

careful standardisation. 

PC1 (61.3% of variance) integrated leaf hydraulic conductance (loading 0.96), total stomatal 

density (0.92), normalised stomatal distribution index (−0.91), and guard cell length (−0.85) into a 

coherent functional syndrome. One proposed explanation for this coordination is the unified cell size 

hypothesis, in which developmental constraints link guard cell dimensions to vein density and other 

cellular infrastructure (Brodribb et al., 2013). The exceptional explanatory power of this axis, the 

highest among all principal component analyses performed, indicates that species identity is encoded 

more strongly in anatomical coordination than in any single trait. 
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PC2 (19.3% of variance) captured leaf construction strategy, with leaf mass per area loading 

positively (0.85) and leaf water potential loading negatively (−0.51). Clover combined the least 

negative water potential (−0.18 MPa) with the lowest LMA, positioning it at the acquisitive extreme. 

At the same time, high-LMA grasses, such as Tall Fescue, operated at more negative water potentials. 

This separation aligns with the leaf economics spectrum, where conservative species with thicker 

leaves show lower mass-based photosynthetic rates and longer leaf lifespans (Wright et al., 2004). 

Among grasses, this axis distinguished resource-acquisition strategies independent of the hydraulic-

stomatal syndrome captured by PC1. 

Clover occupied the extreme of PC1, combining the highest leaf hydraulic conductance (34.7 

mmol m⁻² s⁻¹ MPa⁻¹; Figure 9B) with the smallest guard cells (21.9 μm; Figure 9E) and exclusive 

hypostomaty (NSD = −1.00; Figure 9F). This structural combination, high hydraulic capacity with small, 

abaxially-restricted stomata, represents a fundamentally different functional type from the grasses. 

Hypostomaty predominates in broad-leaved dicots, while amphistomy characterises high-light 

herbaceous growth forms (Muir, 2018). Clover's hypostomatous arrangement may optimise gas 

exchange for its horizontal leaf display, but appears maladaptive in the diurnal shade regime of fixed 

bifacial agrivoltaic environments. 

Grasses exhibited the inverse structural combination (Figure 9): lower leaf hydraulic 

conductance (6.7–18.2 mmol m⁻² s⁻¹ MPa⁻¹), larger guard cells (31.3–51.0 μm), and consistent 

amphistomaty (NSD = +0.26 to +0.87). This coordination reflects the fundamental link between 

hydraulic supply and stomatal demand: maximum stomatal conductance and leaf hydraulic 

conductance are strongly correlated (r² = 0.80) across species (Brodribb and Jordan, 2008), while leaf 

hydraulic conductance varies more than 65-fold globally and coordinates with maximum gas exchange 

rates within life forms (Sack and Holbrook, 2006). Among the grasses examined here, this supply-
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demand coordination operated within the dumbbell guard cell architecture that enables rapid 

aperture adjustment. 

Stomatal distribution varied substantially among grasses, from Timothy's relatively even 

allocation across leaf surfaces (NSD = +0.26) to Perennial Ryegrass's strong adaxial bias (NSD = +0.87). 

In wheat, the adaxial surface makes substantial contributions to gas exchange under high light, where 

it receives direct illumination, with each surface operating semi-independently (Wall et al., 2022). 

However, higher adaxial stomatal density is associated with lower grain yield in spring wheat, 

indicating that extreme adaxial bias may incur water costs that offset kinetic advantages (Samantara 

et al., 2025). Timothy's intermediate position, maintaining substantial stomatal densities on both 

surfaces, may represent a favourable balance between rapid light responsiveness and distributed 

water loss under the directional shade of agrivoltaic systems. 

8.2.2 Excluding Clover Reveals Correlations Between Stomatal and 

Hydraulic Traits Among Grasses 

Across all species, no correlation was observed between GCL and stomatal opening time, 

whereas among grasses alone, larger guard cells opened significantly slower (Table 5). This obscured 

pattern arose because Clover combined the smallest guard cells (21.9 μm) with the slowest kinetics 

(40 min), a combination opposite to the grass trend, effectively flattening the overall trend.  Kardiman 

and Ræbild (2018) demonstrated a similar size-speed relationship in tropical hardwood trees, Tectona, 

where smaller stomata opened faster, while Elliott-Kingston et al. (2016) found no correlation 

between stomatal size and closing rate across species with mixed guard cell types. The distinction is 

critical: within a single guard cell type (dumbbell), the mechanical relationship between pore 

geometry and aperture change rate produces predictable size-speed correlations; across guard cell 

types, these relationships are obscured by fundamentally different operating mechanisms (McAusland 

et al., 2016). Lawson and Blatt (2014) attributed faster kinetics to higher stomatal density and smaller 
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guard cell size, noting that the greater surface-area-to-volume ratio presumably facilitates solute 

exchange with neighbouring cells.  For Timothy (GCL = 31.7 µm) and Cocksfoot (GCL = 31.3 µm), small 

guard cells contribute to their fast kinetics; for Clover (GCL = 21.9 µm), even smaller guard cells cannot 

overcome the fundamental constraint imposed by kidney-shaped architecture. 

Kleaf showed a similar pattern. Across all species, Kleaf showed no relationship with stomatal 

opening time (Table 5); another relationship obscured by Clover's anomalous position. Among grasses 

alone, higher Kleaf was associated with faster stomatal opening (Table 5), suggesting that hydraulic 

supply capacity facilitates kinetic performance when guard cell architecture is held constant. Species 

with high Kleaf can sustain the water flux required for rapid guard cell swelling without declines in leaf 

water potential (Buckley, 2005). Furthermore,  Sack and Holbrook (2006) documented that Kleaf varies 

more than 65-fold across species and co-ordinates with maximum gas exchange rates. Brodribb and 

Jordan (2008) quantified this coordination (R² = 0.80) across eight species, while Brodribb et al. (2005) 

reported R² = 0.87 across 20 species. Brodribb et al. (2017) demonstrated that Kleaf directly limits 

stomatal kinetics in species where hydraulic delivery to guard cells constrains the rate of turgor 

change, and it has further been shown that Kleaf is coordinated with both stomatal and mesophyll 

conductance (Xiong and Nadal, 2020), suggesting that hydraulic architecture constrains the entire gas 

exchange pathway.  

The kinetic differences observed among the grasses studied here align with previous studies 

investigating hydraulic regulation strategies in forage species. Holloway-Phillips and Brodribb (2011a) 

showed that Italian ryegrass maintains more conservative stomatal regulation than Tall Fescue, with 

smaller safety margins (+0.11 to −0.21 MPa versus −0.90 to −0.95 MPa). In this study, species-level 

differences were evident in contrasting closing kinetics: Italian Ryegrass closed its stomata fastest 

among all species (t₆₃ = 13.3 min), whereas Tall Fescue was among the slowest (t₆₃ = 34.4 min). Tall 

Fescue also exhibited the lowest Kleaf (6.7 mmol m⁻² s⁻¹ MPa⁻¹) and most negative ψleaf (−0.57 MPa), 
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consistent with Holloway-Phillips and Brodribb’s (2011a) finding that this species operates closer to 

hydraulic limits with less sensitive stomatal regulation. 

The relationship between GCL, Kleaf and dynamic performance can be explained by guard cell 

architecture. Among the grasses, dumbbell-shaped guard cells with subsidiary cells enable the rapid 

exchange of ions that accelerate turgor changes beyond what water supply alone permits (Franks and 

Farquhar, 2007). Clover had the highest Kleaf of all species studied (34.7 mmol m⁻² s⁻¹ MPa⁻¹; Figure 9), 

placing it within the upper ranges observed within angiosperms (3.9–36 mmol m⁻² s⁻¹ MPa⁻¹; Brodribb 

et al., 2005); however, it exhibited the slowest kinetics (t63(gsw) ~ 40 min). This demonstrates that 

hydraulic potential cannot compensate for the structural constraints that govern ion flux at the guard 

cell level (Franks and Farquhar, 2007). 

Adaxial stomatal density was the only correlation robust to Clover's inclusion. Across all 

species, higher adaxial stomatal density was associated with faster opening (Table 5), and this 

relationship remained significant, though weakened, among grasses alone. This correlation connects 

to the variation in the distribution of stomata between the leaf surfaces among grasses (NSD index): 

Timothy, with the most even stomatal distribution (+0.26), maintains substantial populations on both 

surfaces, while Perennial ryegrass concentrates stomata adaxially (+0.87). Sakoda et al. (2020) 

demonstrated that higher stomatal densities led to faster photosynthetic induction due to higher 

initial stomatal conductance, with moderate increases in stomatal density yielding 25.6% greater 

biomass under fluctuating light. The robust adaxial density-kinetics correlation may reflect a spatial 

hydraulic constraint: stomata distributed across both leaf surfaces (higher adaxial stomatal density 

and thus amphistomaty) experience more uniform access to mesophyll water pools and shorter 

hydraulic path lengths to the epidermis. Drake et al. (2019) demonstrated that amphistomatous leaves 

achieved 50% higher maximum stomatal conductance than hypostomatous leaves at equivalent total 

stomatal density, attributing this advantage to shorter carbon dioxide diffusion paths. In wheat, Wall 
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et al. (2022) found that adaxial stomata opened faster in response to light increases than abaxial 

stomata; meanwhile, Hõrak (2025) noted that adaxial and abaxial stomata differ in their ion channel 

composition (AKT1 and KAT1, respectively), contributing to their functional differentiation. This 

finding supports the adaxial stomatal density-kinetics correlation observed here: species with more 

adaxial stomata may benefit from faster-responding stomatal populations on this surface. The 

evenness of stomatal distribution between leaf surfaces in the fast-responding Timothy means that 

roughly half its stomata are these faster adaxial types. A higher proportion of stomata on adaxial 

surfaces is not, however, the whole story. Perennial ryegrass's strong adaxial bias (hyperstomy) would 

suggest most of its stomata are the faster type, but Timothy achieved the fastest opening times 

overall, indicating that guard cell architecture and other traits interact with stomatal distribution to 

determine kinetic performance. Timothy's kinetic advantage over Perennial ryegrass may be 

contributed to be the smaller size of its guard cells (Kardiman and Ræbild, 2018), which is thought to 

enable faster ion flux (Lawson and Blatt, 2014). 

8.2.3 Integrating Dimensions of Variation 

The three principal component analyses performed across the glasshouse dataset reveal 

complementary dimensions of interspecific variation that together characterise the functional 

strategies available within this assemblage of forage species. The hydraulic-anatomy analysis (Figure 

10) achieved the highest species discrimination (R² = 0.86), reflecting the stability of structural traits, 

while the kinetics analysis (Figure 7) showed lower explanatory power (R² = 0.52), indicating greater 

within-species variability in dynamic responses. The efficiency-anatomy integration (Figure 11; R² = 

0.69) bridged these dimensions by demonstrating how structural investment translates into carbon 

costs during light transitions. De Bello et al. (2009) found that within-community functional diversity 

was lower than expected at random, with much of the total leaf economy variation occurring among 

coexisting species, the finding that species differentiate more strongly in structural than kinetic traits 

align with this pattern. 
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The efficiency-anatomy PCA (Figure 11) integrated eleven traits combining structure, 

hydraulics, and dynamic cost metrics, which identified three distinct dimensions of species 

differentiation. The majority of variance was associated with stomatal-hydraulic syndromes, with high 

leaf hydraulic conductance and stomatal density (0.92) aligning with greater forgone assimilation due 

to stomatal limitation during induction (↑Fs). This suggests that investments in hydraulic capacity and 

stomatal density incur correspondingly larger transient carbon penalties when stomata lag behind 

biochemistry during light transitions. Orthogonal to this was an efficiency-cost axis that suggested an 

association between intrinsic water-use efficiency and forgone CO2 attributed to biochemical factors 

during induction and stomatal factors during de-induction. This reflects the well-documented 

asynchrony between stomatal and photosynthetic kinetics: Lawson and Vialet-Chabrand (2019) 

demonstrated that slower stomatal responses relative to biochemistry cause at least a 20% reduction 

in iWUE, which also incurs transition costs during transitions. Notably, LMA was positively associated 

with higher iWUE and greater biochemical limitation during both induction and de-induction, 

consistent with the role of LMA in integrating multiple dimensions of leaf economics.  

Timothy achieved the highest water-use efficiency among all species, despite moderate 

hydraulic capacity, whilst Clover exhibited the opposite pattern: the highest hydraulic capacity, paired 

with the lowest water-use efficiency (Figure 11), which reflects the kinetic asynchrony during de-

induction. When light decreased, Clover’s assimilation dropped rapidly, but its stomata remained 

open (Figure 6), a mismatch that wastes water without carbon gain. By contrast, Timothy’s 

biochemical and stomatal responses were more coordinated, minimising water loss during light 

transitions. Perennial Ryegrass exhibited an intermediate strategy: fast stomatal opening (t₆₃ = 6.3 

min) but a water-spending strategy that maintains conductance despite declining water status 

(Holloway-Phillips and Brodribb, 2011b), rather than optimising for specific temporal light regimes.  
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The grasses studied here exhibit anisohydric (water-spending) hydraulic behaviour. 

Anisohydric species keep their stomata open even as leaf water status declines, prioritising carbon 

gain over hydraulic safety. Holloway-Phillips and Brodribb (2011a) demonstrated this in Perennial 

ryegrass: stomata remained open until leaf water potential reached −2.35 MPa, well below the −1 

MPa threshold at which the leaf's water transport system begins to fail (P₅₀), accepting hydraulic 

damage to maintain gaseous exchange. Holloway-Phillips and Brodribb (2011b) demonstrated this 

further, finding that this risky strategy maximised water-use efficiency in forage grasses. Sperry (2000) 

established the foundational framework linking hydraulic conductance to gas exchange: stomatal 

conductance and transpiration are positively correlated with soil-to-leaf hydraulic conductance, with 

stomatal responses to experimental reductions in hydraulic conductance occurring within 15 minutes. 

Additionally, Grossiord et al. (2020) identified leaf water potential and Kleaf as major controls of 

stomatal response to vapour pressure deficit. 

Collectively, the multivariate analyses support a framework distinguishing generalist from 

specialist strategies with respect to shade. Generalists, exemplified by Clover and to a lesser extent 

Perennial ryegrass, maintain the capacity to respond morphologically and physiologically to diverse 

environmental conditions but pay costs in terms of slow kinetic responses and delayed adjustment to 

diurnal light regimes. Specialists, exemplified by Timothy, possess fast kinetics suited to exploiting 

specific temporal patterns but show limited morphological plasticity when conditions change. This 

distinction echoes the broader ecological literature on specialist-generalist trade-offs (Valladares et 

al., 2007) and the recognition that low plasticity associated with a conservative resource-use strategy 

may be adaptive (Valladares and Niinemets, 2008). The consistency between laboratory and field 

phenotypes, while significant, remains modest, Poorter et al. (2016) reported a median R² of 0.26 for 

lab-field correlations, reinforcing the importance of field validation. 
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8.3 Field Validation: Temporal Shade Timing Determines Performance 
Outcomes 

8.3.1 Microclimate: Shade Treatments Achieved Intended Light 

Regimes 

The 39-day field experiment at Hazelrigg provided the critical test of whether glasshouse-

characterised kinetic traits predict performance under realistic agrivoltaic conditions. The shade 

treatments successfully created the intended temporal light regimes (Figure 14 - Figure 16). Morning 

shade reduced morning PAR by 47%, while afternoon PAR was unaffected; conversely, afternoon 

shade reduced afternoon PAR by 50% without affecting morning PAR. Afternoon shade thus reversed 

the natural diurnal light pattern, creating conditions where morning PAR exceeded that in the 

afternoon by 185 μmol m⁻² s⁻¹, in a context where average diurnal maxima were c. 1000 μmol m⁻² s⁻¹ 

and where afternoon PAR exceeded morning PAR in the control treatment. Total daily light integral 

reductions were comparable across treatments: −25% for morning shade versus −28% for afternoon 

shade (Figure 15 and supplementary), indicating that differential biomass responses reflected the 

timing rather than the total quantity of light reduction. The findings of Poorter et al. (2019), whose 

meta-analysis of 70 traits ranging from molecules to whole plant performance established dose-

response relationships against daily light integral, helps frame these results: most structural and 

allocation traits show non-linear responses to daily light integral, with the steepest responses 

occurring below approximately 10 mol m⁻² d⁻¹. The daily light integral reductions imposed in the 

present study occurred within the range where trait responses to light quantity alone should be 

modest. 

VPD differed significantly between treatments and interacted with the morning-afternoon 

asymmetry (Figure 15D). Morning shade reduced VPD during the morning period, while the morning 

sun-afternoon shade combination increased morning VPD to the highest values recorded (0.62 kPa). 

Morning light when the VPD is low enables rapid stomatal opening without hydraulic constraint 

(Sturchio et al., 2022). Sturchio et al. (2024a) confirmed this advantage within agrivoltaic systems and 
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semiarid environments: plants exposed primarily to morning light maintained higher stomatal 

conductance and less negative leaf water potential, resulting in +33% aboveground net primary 

productivity. Barron-Gafford et al. (2019) documented VPD reductions of 0.52 kPa under agrivoltaic 

panels, emphasising the potential of these systems to modify the microclimate. For Timothy, 

afternoon shade may have preserved the low-VPD morning window when its fast kinetics could be 

fully exploited; for Clover, slow kinetics meant the favourable VPD conditions may have passed before 

stomata reached operational conductance. However, the VPD differences observed in this study 

(0.05–0.25 kPa between treatments) were considerably smaller (4–10×) than those reported by 

Barron-Gafford et al. (2019), and occurred within a temperate UK environment where VPD is already 

low. Further research is needed to establish whether biomass responses observed in this study were 

driven primarily by the diurnal timing of light availability and plant circadian rhythms (Resco de Dios, 

2017; Sellaro et al., 2012), rather than VPD-mediated effects on water use, which should have been 

relatively marginal. 

8.3.2 Multivariate Field Patterns Confirm Species Dominance 

The field experiment confirmed the dominance of species identity over treatment effects 

(Figure 17). Variance partitioning assigned approximately 88% of the variation to species identity, 

compared with only 4% to treatment effects. This is consistent with the meta-analytic finding of Siefert 

et al. (2015) that approximately 75% of trait variation occurs among rather than within species, with 

the findings of Funk et al. (2017), who reported approximately 70% interspecific versus 30% 

intraspecific variation across functional trait datasets, and with results from Poorter et al. (2012) that 

demonstrated environmental variables explain only 10–30% of biomass allocation variation, with 

species identity dominating variance structure. 



112 | P a g e  

 

8.3.3 Species Biomass Responses Align With Speeds of Leaf Gas 

Exchange Responses to Shade 

Timothy increased biomass by 69% under afternoon shade (Figure 19H) despite showing 

minimal structural plasticity across treatments. Timothy's 5-minute stomatal opening time (Figure 4) 

enabled near-complete exploitation of the unshaded morning window. Each dawn presented a high-

light window that Timothy could access within minutes, while slower species remained kinetically 

limited as the light opportunity passed. Over the 6-week growth period, it appears these daily kinetic 

advantages compounded into the substantial biomass differential observed. Sakoda et al. (2020) 

demonstrated that higher stomatal density resulted in faster photosynthetic induction owing to the 

higher initial stomatal conductance and that the Arabidopsis epf1 mutant, with a moderate increase 

in stomatal density, achieved 25.6% greater biomass production than wild type under fluctuating light. 

Timothy's relatively high stomatal density on the adaxial surface (Figure 9), combined with fast guard 

cell responses, is analogous. The absence of structural adjustment in Timothy may reflect there being 

little to drive morphological plasticity when physiological responses are capable of matching 

environmental challenges.  

Like Timothy, Italian ryegrass showed a positive, though smaller, biomass response (+24%) 

under afternoon shade relative to morning shade (Figure 19H). placing it among the slower-

responding grasses rather than the fast group. However, Italian ryegrass's stomatal carbon cost during 

induction (↑Fs ≈ 800 μmol m⁻²) was approximately four-fold lower than Clover's (↑Fs ≈ 3238 μmol 

m⁻²; Figure 8A), indicating that intermediate kinetics need not impose prohibitive carbon penalties. 

Italian ryegrass also exhibited a selective multivariate response, shifting significantly only under 

afternoon shade (d = 1.14, p < 0.01) while showing no significant shift under morning shade (Figure 

18). This selectivity contrasts with Perennial ryegrass, which shifted under both treatments yet gained 

no biomass. Holloway-Phillips and Brodribb (2011a) demonstrated that L. multiflorum exhibits 

conservative stomatal regulation with a near-zero safety margin (+0.11 to −0.21 MPa), in marked 



113 | P a g e  

 

contrast to Perennial ryegrass's water-spending strategy (−1.35 MPa). This conservative regulation 

may explain why Italian ryegrass converted its selective response into biomass gain, while Perennial 

ryegrass's generalist response yielded no benefit. Italian ryegrass showed pronounced leaf area 

plasticity (+38% under afternoon shade; Figure 19A), which may also have contributed to these 

responses. Marrou et al. (2013b) demonstrated that lettuce maintained yield under moderate shade 

through increased total leaf area despite reduced leaf number, a morphological compensation 

strategy that Italian ryegrass appears to share.  

Perennial ryegrass showed no significant biomass response to either shade treatment (Figure 

19H), despite exhibiting moderate structural plasticity (−28% LMA under morning shade, −20% under 

afternoon shade; Figure 19C). Yet in PCA space, Perennial ryegrass exhibited the clearest multivariate 

response to shade treatments (Figure 17). Ehret et al. (2015) documented that White Clover 

proportion increased under shade relative to Perennial ryegrass, with Perennial ryegrass showing 

greater reduction in photosynthetic rate under shade than White Clover. Perennial ryegrass's fast 

stomatal opening (6.3 min), while comparable to Timothy (5 min), did not translate to biomass gains, 

likely because its water-spending hydraulic strategy (described above) imposes costs under shade, 

continuing to lose water when light limits carbon gain. Poorter et al. (2012) noted that species groups 

explain more variation than environment for biomass allocation; the multivariate trait response 

without biomass consequence suggests that Perennial ryegrass adjusted its trait integration strategy 

without affecting the net outcome for growth. Perennial ryegrass's water-spending hydraulic strategy 

may impose costs under the combined water and light stress of shade treatments, offsetting any 

benefit from its moderate opening speed. Furthermore, Perennial ryegrass's extreme adaxial stomatal 

concentration (NSD = +0.87) may amplify these hydraulic costs by concentrating evaporative demand 

on a single leaf surface rather than distributing water loss across both surfaces as in Timothy (NSD = 

+0.26); Samantara et al. (2025) demonstrated that higher adaxial stomatal density was associated with 
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lower grain yield in spring wheat, with the penalty greater under high vapour pressure deficit 

conditions 

Clover's failure to convert high plasticity into biomass gain under either treatment represents 

the study's most instructive negative result. Despite exhibiting the largest specific leaf area plasticity 

(−35% under morning shade, −30% under afternoon shade; Figure 19C) and the highest leaf hydraulic 

conductance (Kleaf = 34.7 mmol m⁻² s⁻¹ MPa⁻¹; Figure 9B), Clover showed no significant biomass 

response to temporal shade manipulation (Figure 19H). Its 40-min stomatal opening time may have 

imposed carbon penalties during each shade-to-sun transition that accumulated over the growth 

period, overwhelming any benefits derived from structural adjustment.  

In contrast to the pronounced plasticity in leaf structural and biomass traits, stomatal 

morphology exhibited more constrained and surface-specific responses to shade treatments (Figure 

19D–G). Although species × treatment interactions were significant for both guard cell length and 

stomatal density, pairwise comparisons revealed minimal within-species adjustment. Adaxial stomatal 

density showed no significant differences within any species despite the significant overall interaction 

(Figure 19E), and abaxial guard cell length likewise showed no significant within-species effects (Figure 

19F). Only Clover and Timothy showed significant reductions in abaxial stomatal density under shade, 

while the ryegrasses remained unchanged (Figure 19G). This pattern aligns with the plasticity indices 

reported by Poorter et al. (2019) who found stomatal density has relatively low plasticity (PI = 1.8) 

compared to structural traits such as specific leaf area (PI = 2.6) and tillering (PI = 5.0). The constrained 

plasticity of stomatal anatomy carries a critical functional consequence: the guard cell architecture 

that determines opening kinetics, and thus the carbon costs quantified in the glasshouse experiment, 

remains largely fixed regardless of shade treatment. DeWitt et al. (1998) identified developmental 

range limits as a fundamental constraint on plasticity; stomatal anatomy, established during early leaf 

development, may represent such a limit. This explains why Clover's extensive structural plasticity 
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failed to translate into biomass gains; while specific leaf area can adjust within weeks, the slow 

stomatal kinetics imposed by the kidney-shaped guard cells of Clover persisted throughout the 

experiment, compounding carbon losses with each shade-to-sun transition. 

8.4 Plasticity-Performance Paradox: Why Structural Adjustment 
Failed to Compensate 

Clover exhibited the most significant structural plasticity among species across treatments but 

gained no biomass advantage. Ghalambor et al. (2007) provide a theoretical context for understanding 

this, arguing that only adaptive plasticity that places populations close to a new phenotypic optimum 

predictably enhances fitness. Non-adaptive plasticity, plasticity that shifts phenotypes further from 

the optimum or fails to address the actual limiting factor, provides no fitness benefit regardless of its 

magnitude. Liu et al. (2016) extended the Ghalambor et al. (2007) framework using biomass as a 

measure of plant performance in a meta-analysis of 280 species. They found that species with greater 

SLA were less, not more, able to maintain biomass under shade. Clover's 35% increase in specific leaf 

area under morning shade (Figure 19C) did not translate into any biomass benefits, which aligns with 

this framework.  

Clover's plasticity appears non-adaptive in this framework. Its specific leaf area increases 

under shade, representing a classic shade-acclimation response, thinner leaves with greater light 

capture area per unit mass investment, but failed to address kinetic constraints during light 

transitions. Under temporally fluctuating light, morphological adjustment to steady-state shade is 

maladaptive (DeWitt et al., 1998)  because the environment repeatedly alternates between conditions 

for which the phenotype is optimised (shade) and conditions for which it is suboptimal (sun). There 

are costs in terms of forgone assimilation associated with each transition because of Clover's slow 

kinetics, that adjustment to specific leaf area does not offset. Poorter et al. (2019) conducted a meta-

analysis of plant responses to light intensity for 70 traits across 500 experiments and 760 species, 

finding that plasticity differences among species groups were generally small compared with the 
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overall responses to daily light integral. The magnitude of plasticity observed here falls within normal 

ranges and cannot be considered unusually high or low. 

8.5 Integrating Outcomes from the Glasshouse and Field 

While field validation focused on four species (Timothy, Italian ryegrass, Perennial ryegrass, 

and Clover), the glasshouse experiment characterised eight species spanning the full kinetic and 

structural spectrum. The four additional species, Cocksfoot, Meadow fescue, Tall fescue, and Hybrid 

ryegrass, provide context for interpreting both the mechanisms underlying field responses and the 

generalisability of structure-kinetics relationships. 

Cocksfoot exhibited the second-fastest stomatal opening time (6.6 min; Figure 4A), 

approaching Timothy's rapid kinetics. Its structural profile, moderate Kleaf (12.4 mmol m⁻² s⁻¹ MPa⁻¹; 

Figure 9B), intermediate guard cell length (31.3 μm; Figure 9E), and amphistomaty, positioned it within 

the fast-kinetic grass cluster in multivariate space (Figure 7). Based on the glasshouse-derived kinetic 

ranking, Cocksfoot would be predicted to respond positively to afternoon shade treatment in field 

conditions, a prediction that remains untested but follows directly from Timothy's response. Peri et 

al. (2002b) reported that the rate of change of stomatal conductance in Cocksfoot was slower than 

for photosynthesis both when entering shade and during subsequent induction, but described the 

species as shade-tolerant from a physiological perspective, a classification that may reflect steady-

state tolerance rather than dynamic performance. 

Tall fescue showed the lowest Kleaf among grasses (6.7 mmol m⁻² s⁻¹ MPa⁻¹; Figure 9B) and 

occupied a distinct position in structural-hydraulic PCA space, separated from other grasses along both 

PC1 and PC2 (Figure 10). Its 15-min stomatal opening time placed it among the slower grasses (Figure 

4A), but its low Kleaf violated the grass-specific correlation between higher Kleaf and faster opening 

(Table 5). Tall fescue thus represents a potential outlier within the grass functional group, a species 

whose hydraulic-kinetic coordination deviates from the general grass pattern. This outlier status has 
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implications for trait-based screening: LMA or stomatal density alone would fail to predict Tall fescue's 

kinetic performance because its hydraulic architecture imposes constraints not captured by surface 

traits. 

Meadow fescue and Hybrid ryegrass (Lolium × hybridum) occupied intermediate positions 

across all measured traits. Their moderate kinetics (10–12 min opening; Figure 4A), moderate 

hydraulic conductance, and intermediate stomatal dimensions placed them as intermediate in both 

kinetic and structural PCAs (Figure 7Figure 10Figure 11). This makes them useful reference species for 

standardising structure-kinetics relationships; they conform to grass-typical patterns without 

exhibiting the extreme values of Timothy (fastest), Tall fescue (lowest Kleaf), or Italian ryegrass (largest 

guard cells). For breeding programs seeking to shift kinetic performance within a grass species, 

Meadow fescue and Hybrid ryegrass represent starting points from which selection could proceed in 

either direction along the fast-slow continuum. 

8.6 Implications for Agrivoltaic Species Selection 

The results of this research establish a trait-based framework for predicting species 

performance under temporally structured shade regimes. For grasses, stomatal anatomy (guard cell 

length, adaxial stomatal density), leaf construction (leaf mass per area), and hydraulics (leaf hydraulic 

conductance) predict dynamic performance through structure-kinetics relationships that explain 25–

30% of variance in opening time (Table 5). Species with smaller guard cells, higher adaxial stomatal 

density, lower leaf mass per area, and higher leaf hydraulic conductance tend toward faster stomatal 

kinetics and thus lower amounts of forgone carbon assimilation during induction. These structural 

traits can serve as screening criteria for species selection or breeding targets for kinetic improvement 

within grass germplasm. 

Among the grasses, species with higher LMA required longer to achieve full photosynthetic 

capacity following a light increase (ρ = 0.49; Table 5).  established that high LMA reflects a 
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conservative, slow-return strategy within the leaf economics spectrum. The correlation with slower 

biochemical induction and greater LMA observed here suggests this slow signature may extend to 

dynamic performance. Because LMA can be measured rapidly and non-destructively, it may offer 

potential as a screening tool for identifying species with lower LMA (or high SLA) as fast responding 

genotypes for agrivoltaic environments. However, the moderate effect size and restriction to grasses 

limit its predictive reliability, and the mechanistic basis remains unclear. Poorter et al. (2016) reported 

that lab-grown plants have, on average, a 60% higher specific leaf area than field-grown plants. LMA 

measurements should therefore be standardised to field conditions for maximum predictive validity. 

Future work should test LMA screening across broader species ranges, including additional dicots, to 

determine whether the grass-specific relationship observed here extends to other functional groups 

or whether distinct screening criteria are needed for each. 

Yiotis et al. (2021) found approximately 7-fold intraspecific variation in aboveground biomass 

productivity among 40 ryegrass genotypes, with tiller count being the strongest predictor of dry 

weight. Future work should examine whether kinetic traits show similar phenotypic correlations and 

genotypic variation within species. Poorter et al. (2019) reported that tillering showed the highest 

plasticity index (5.0) among allocation traits, suggesting this whole-plant response may be more 

important than leaf-level kinetics for field outcomes. Pang et al. (2017) documented that grasses 

maintained relative feed value better under shade (relative distance plasticity index = 0.035–0.039) 

while legumes were more resilient in crude protein content, adding a nutritional quality dimension to 

species selection considerations. These forage quality responses may interact with kinetic 

performance to determine the overall suitability of species for agrivoltaic systems. 

Laub et al. (2022) classified forages as shade-tolerant based on constant shade (103% yield at 

20% light reduction). However, Clover's failure to benefit from shade treatments despite meeting 

these criteria demonstrates that steady-state shade tolerance does not predict performance when 
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light fluctuates; kinetic constraints become limiting under dynamic conditions. For agrivoltaic system 

design, this distinction matters: fixed arrays produce temporal light patterns regardless of average 

shade intensity, meaning that species selection based on shade tolerance alone will miss kinetic 

limitations that determine performance. Sturchio and Knapp (2023) proposed an ecovoltaics 

framework that co-prioritises ecosystem services and energy production, noting that panel design 

determines microclimate patterns and species suitability, a design principle directly supported by the 

kinetics-dependent responses observed here. 

Weselek et al. (2021) documented that Clover proportion increased relative to grasses under 

agrivoltaic shade, a shift conventionally interpreted as Clover's superior shade tolerance. Results here 

suggest an alternative interpretation: Clover may persist under shade not because it performs well 

but because grasses decline more when light is reduced uniformly. Under temporally structured shade 

where light concentrates during windows that favour fast kinetics, this competitive balance could 

reverse. Timothy’s 69% biomass gain under afternoon shade suggests that array configurations 

shifting the diurnal pattern of light availability could shift grass-Clover balance in favour of fast-kinetic 

grasses, potentially improving forage quality (higher grass:legume ratio) and reducing nitrogen 

leaching risk associated with legume decomposition Pang et al. (2017). 

8.7 Limitations and Future Directions 

Inclusion of only one dicot species (Clover) in this study prevented assessment of whether 

structure-kinetics relationships masked by Clover reflect legume-specific, dicot-general, or species-

specific patterns. Resolving this uncertainty requires testing additional dicot species across multiple 

families. 

Leaf nitrogen content was not measured, preventing direct assessment of allocation patterns 

underlying kinetic differences. The leaf mass per area–biochemical induction relationship observed 
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among grasses (Table 5) may reflect nitrogen allocation to Rubisco and Rubisco activase (Wright et al., 

2004; Yamori et al., 2011), but this remains untested. 

Mesophyll conductance (gm) was not separated from the biochemical limitation component. 

The differential method employed (Deans et al., 2019b) partitions limitations into stomatal and non-

stomatal components, but the latter encompasses both true biochemical constraints and gm 

limitations. Given that gm varies among functional groups and responds dynamically to environmental 

conditions (Flexas et al., 2008), biochemical limitation values reported here likely include a mesophyll 

conductance component. However, this does not affect primary conclusions regarding stomatal 

kinetics, which were directly measured through conductance dynamics. 

The field experiment used pot-grown plants rather than ground-planted swards, which may 

have limited the expression of species-specific responses. Root restriction in containers limits soil 

volume exploration and can modify biomass allocation patterns (Poorter et al., 2016). Additionally, 

Sperry (2000) demonstrated that the soil-to-root pathway represents a major component of whole-

plant hydraulic conductance, and that this component declines substantially as soil dries; a dynamic 

that may differ between pot and field trials. Poorter et al. (2016) found that phenotypic correlations 

between controlled and field environments are often modest, advising that pot-based trials may not 

fully predict responses of established swards. Furthermore, the single-site, single-season experiment 

limits confidence in the treatment effects generally; multi-year replication would strengthen 

predictions across environmental variation. Finally, step-change light transitions differ from natural 

sunfleck dynamics (Pearcy, 1990), and induction kinetics were not directly measured in the field. 

McAusland et al. (2016) noted that the rapidity of stomatal conductance in dumbbell-shaped 

guard cells could be attributed to size, whilst in elliptical-shaped guard cells features other than 

anatomy were more important for kinetics. The present study provides additional support for this 

pattern: among grasses with dumbbell-shaped guard cells, stomatal size (GCL) and density predicted 
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kinetic performance (Table 5), whereas Clover, with kidney-shaped guard cells, showed no such 

structure-function relationships, despite exhibiting the slowest kinetics of all species tested. Guard 

cell architecture may therefore be the primary screening criterion when comparing across functional 

groups, with anatomical predictors valid within grasses but not transferable to dicots. Testing this 

prediction across additional dicot species, genotypes, and environments represents a clear direction 

for future research. The practical implication for agrivoltaic system design is that forage species 

selection should be informed by panel orientation and tracking systems that determine the temporal 

pattern of shading, not merely by expectations of overall shade tolerance. Where morning light is 

preserved and afternoon light reduced, fast-inducing species like Timothy may substantially 

outperform conventionally shade-tolerant alternatives. 

 

8.8 Conclusions 

This study establishes stomatal kinetics as a critical determinant of species performance under 

temporally structured light environments characteristic of agrivoltaic systems. The 8-fold variation in 

stomatal opening time across temperate forage species (5–40 min; Figure 4A) translated to 

approximately a 2-fold variation in carbon costs during induction (Figure 8A), with forgone assimilation 

strongly predicted by opening speed (Figure 8B). Field experiments confirmed these kinetic 

differences determine biomass outcomes: Timothy's 5-min opening time enabled +69% biomass gain 

under afternoon shade by exploiting concentrated morning light, while Clover's 40-min opening time 

prevented biomass response despite high structural plasticity. However, kinetic speed alone was not 

deterministic: Perennial ryegrass's fast opening (6.3 min) yielded no biomass gain, likely because its 

water-spending hydraulic strategy imposes costs under shade, whereas Italian ryegrass achieved +24% 

gain despite intermediate kinetics (11.5 min), suggesting that the coordination of stomatal kinetics 

with hydraulic regulation determines outcomes. 
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Structure-kinetics relationships operated within, but not across, functional groups within this 

study. Among grasses, stomatal anatomy, leaf construction, and hydraulic conductance predict kinetic 

performance (Table 5), enabling trait-based screening for dynamic performance. These relationships 

are obscured when Clover is included, likely reflecting fundamental differences between graminoid 

and dicot leaves. Whether dicots exhibit their own structure-kinetics relationships, or whether 

Clover's position reflects legume-specific or species-specific outlier behaviour, requires further study. 

For agrivoltaic system design, these results indicate that species selection should consider 

kinetic traits alongside traditional shade tolerance criteria. Array configurations that concentrate light 

temporally, whether through tracking systems or fixed north-south orientations that create diurnal 

shade patterns, create conditions favouring fast-kinetic species capable of exploiting concentrated 

light windows. Leaf mass per area emerges as a potential screening tool: among grasses, lower leaf 

mass per area predicts faster biochemical induction (Table 5), offering a rapid, non-destructive proxy 

for dynamic performance that should be tested across broader species ranges including additional 

dicots. Ultimately, the study demonstrates that understanding plant performance under novel light 

environments such as presented by photovoltaic arrays requires moving beyond steady-state 

measurements to characterise the kinetics of response, a shift with implications extending beyond 

agrivoltaics to any agricultural context where light varies on timescales comparable to stomatal 

response times. 
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10 Supplementary Results 

 

Figure S1. Side-by-side comparison of mean stomatal opening and closing time constants 
(t63) on induction and de-induction for eight forage species. Bars represent mean +/- 
standard error. 

 

Table S1. Model comparison of heterogeneous versus homogeneous variance structures for 
microclimate variables. Models were fitted using linear mixed-effects models with treatment as 
a fixed effect and date as a random intercept (1|date). Heterogeneous variance models allowed 
treatment-specific variances using the varIdent structure in nlme. ΔAIC is calculated as 
AIC(heterogeneous) - AIC(homogeneous); negative values indicate better fit for the 
heterogeneous variance model. Despite substantially better AIC fit for heterogeneous variance 
structures (ΔAIC ranging from -21 to -197), homogeneous variance models were selected for 
final analyses to ensure comparable standard errors across treatments for multiple comparison 
procedures and to avoid inflated standard errors that can produce misleading compact letter 
displays in post-hoc comparisons 

Variable Hetero AIC Homog AIC ΔAIC 
PAR Morning 1775.98 1972.84 −196.86 

T Morning 411.45 516.71 −105.26 
T Afternoon 392.76 426.44 −33.69 

RH Afternoon 744.30 765.99 −21.69 
VPD Morning −170.13 −43.99 −126.14 

VPD Afternoon −164.01 −94.07 −69.94 
DLI window Morning 704.39 901.16 −196.77 

Mean PAR 1719.91 1828.85 −108.94 
Mean T 325.51 374.47 −48.96 

Mean RH 707.72 748.69 −40.98 
Mean VPD −256.29 −203.75 −52.54 

DLI 861.59 967.93 −106.34 
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Figure S2. Full photoperiod microclimatic conditions across treatments during a 39-day 
shade experiment at Hazelrigg Experimental Station, Lancaster, UK. Mean values ± SE for 
(A) photosynthetically active radiation (PAR), (B) air temperature, (C) relative humidity 
(RH), and (D) vapour pressure deficit (VPD), aggregated over the entire photoperiod 
(sunrise to sunset). (E) Daily light integral (DLI) representing total photosynthetically 
active photon flux received per day (n = 39 days). Bar colours denote treatments (grey = 
Control, orange = AM shade, blue = PM shade, green = South reference). Compact letter 
displays above bars summarise Šidák-adjusted comparisons of estimated marginal means 
between treatments; treatments sharing the same letter were not significantly different 
(p > 0.05). All treatment effects were highly significant (p < 0.001). These full-day 
aggregations complement the time-window-specific analyses (morning and afternoon) 
presented in the main text (Figure 15) and demonstrate that shade structures 
substantially modified microclimate conditions throughout the photoperiod. 
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Field experiment - Multivariate Phenotypic Analysis of Grass Species 

A principal component analysis (PCA) on eight traits for the three grass species confirmed the 
data's suitability for analysis (KMO = 0.715, Bartlett's p < 0.001). The first two PCs accounted for 
90.40% of the total variance (PC1: 68.04%, PC2: 22.36%). PC1 represented a size and stomatal 
morphology gradient (high loadings: adaxial GCL, leaf biomass, gmax proxy), while PC2 represented a 
leaf economics gradient (positive: leaf area; negative: LMA, NSD). Under control conditions, species 
occupied distinct positions: Italian ryegrass (IRG) high on PC1, Perennial ryegrass (PRG) low on PC2, 
and Timothy intermediate (Figure S2). Analysis of multivariate dispersion (PERMDISP) indicated 
greater within-species variation in IRG compared to Timothy (p < 0.001) and PRG (p < 0.05), but no 
difference in dispersion among treatments (p > 0.05). 

A PERMANOVA revealed significant main effects of species (F₂,₄₅ = 378.42, R² = 0.853, p < 
0.001) and treatment (F₂,₄₅ = 23.19, R² = 0.052, p < 0.001), and a significant species × treatment 
interaction (F₄,₄₅ = 9.83, R² = 0.044, p < 0.001). 

 

Figure S3. Multivariate principal component analysis (PCA) of three grass species under 
diurnal shading regimes during a 39-day field experiment. Biplot of the first two principal 
components (PC1 = 68.04%, PC2 = 22.36%) derived from eight standardised plant traits: 
leaf area (cm²), leaf biomass (g), plant biomass (g), LMA (g m⁻²), NSD, gmax proxy, adaxial 
guard cell length (µm), abaxial guard cell length (µm). Points represent individual plants 
(n = 54). Species are distinguished by shape (circle = Timothy, square = Perennial ryegrass, 
diamond = Italian ryegrass), while treatments are indicated by colour (black = Control, 
blue = PM shade, orange = AM shade). Vectors show trait loadings, with arrow length and 
direction proportional to the correlation strength of each trait with the principal 
components. 
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Centroid displacement analysis showed species-specific plasticity (Figure S3). PRG shifted 
significantly under both AM (d = 1.434, p < 0.01) and PM shade (d = 0.940, p < 0.01). In contrast, IRG 
and Timothy shifted significantly only under PM shade (IRG: d = 1.143; Timothy: d = 1.041; both p < 
0.01), but not under AM shade (p > 0.05). 

 

Figure S4. Heatmap of Euclidean distances between species × treatment centroids in the 
grass-only PCA space. Calculated from PC1 and PC2 scores. Distances quantify 
multivariate separation of treatment means; significant centroid shifts from control 
treatment, tested using permutation tests with Benjamini-Hochberg FDR adjustment, are 
indicated by an asterisk (** p < 0.01). Colour gradient denotes centroid distance (lighter 
yellow = smaller functional differences, darker purple = larger differences). The analysis 
shows Perennial ryegrass shifted under both shade treatments, while Italian ryegrass and 
Timothy responded significantly only to PM shade. 
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Table S2. Kinetic bottleneck analysis comparing stomatal opening time (↑t₆₃(gsw)) and 
biochemical induction time (↑t₉₀(A)) across species. The difference column (Stomatal − 
Biochem) indicates which process completes first; negative values indicate stomata finish 
before biochemistry, identifying Rubisco activation as the bottleneck. Values are mean ± 
SE (n = 5–6). 

Species ↑t₆₃(gsw) (min) ↑t₉₀(A) (min) Difference (min) Bottleneck 
Timothy 5.0 ± 0.5 7.3 ± 0.4 −2.3 Biochemical 

Cocksfoot 6.6 ± 1.8 6.5 ± 0.6 +0.1 Balanced 
PRG 6.3 ± 0.7 6.0 ± 0.2 +0.3 Balanced 

Meadow fescue 6.6 ± 0.9 6.9 ± 0.5 −0.3 Balanced 
Tall fescue 10.9 ± 1.6 8.9 ± 0.7 +2.0 Stomatal 

IRG 11.5 ± 1.8 4.9 ± 0.4 +6.6 Stomatal 
Hybrid RG 12.5 ± 2.5 6.2 ± 0.9 +6.3 Stomatal 

Clover 40.0 ± 5.4 11.4 ± 0.7 +28.6 Stomatal 

 

 

 

 

 

 


