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SSLDefender: Backdoor Defense in Self-Supervised
Learning via Distillation-guided Unlearning

Jiale Zhang, Member, IEEE, Wanquan Zhu, Kai Wang, Chengcheng Zhu, Xiaobing Sun, Member, IEEE,
Weizhi Meng, Senior Member, IEEE, and Xiapu Luo

Abstract—Self-supervised learning utilizes unlabelled data to
train encoders, acquiring high-quality representations of input
data, significantly advancing the field of computer vision. How-
ever, recent studies have demonstrated that self-supervised learn-
ing suffers from numerous adversarial attacks. Among them,
backdoor attack is one of the focal issues, where downstream clas-
sifiers inherit the backdoor behavior of the pre-trained encoder.
Existing defense methods against backdoor attacks primarily
focus on supervised learning, which heavily relies on labeled
data and cannot be directly migrated to self-supervised scenarios.
Furthermore, defense methods for self-supervised backdoor aims
to separate poisoned samples on assumed small-scale datasets and
retraining to obtain a clean encoder. However, these approaches
are useless against encoders that have been implanted with a
backdoor. To address these issues, we propose SSLDefender,
a novel image-based backdoor mitigation method specially de-
signed for self-supervised learning, which can remove backdoor
attributes directly from the backdoor encoder. Specifically, we
employ a trigger recovery method based on mutual information
maximization to efficiently obtain trigger that resembles the
target backdoor’s influence. Additionally, we design a distillation-
guided unlearning strategy to purify backdoor features steadily
and ensure the retention of clean knowledge to prevent over-
forgetting. Extensive experimental evaluations on six benchmark
datasets demonstrate that SSLDefender can successfully reduce
the attack success rate of Badencoder to around 2% while main-
taining high model accuracy on the main task. Its performance
surpasses state-of-the-art methods.

Index Terms—Self-supervised learning, Backdoor attacks,
Trigger recovery, Knowledge distillation, Unlearning.

I. INTRODUCTION

Elf-supervised learning (SSL) is a machine learning

paradigm that leverages unlabeled data for training, elim-
inating the dependency on annotated samples [1]-[3]. It has
exhibited substantial promise across diverse domains, includ-
ing computer vision [4], [5] and natural language processing
[5], [6]. In contrast to traditional supervised learning [7], SSL
aims to acquire knowledge from the data itself, obtain high-
quality representations of the data, and construct a pre-encoder
to enable downstream tasks [8]. However, existing research
has indicated that SSL is susceptible to the threat of backdoor
attacks [9].
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In order to embed and activate backdoors without directly
manipulating labels, the implementation of backdoor attacks in
SSL differs from supervised learning. In supervised learning,
attackers establish a strong correlation between the trigger
and the target label in a low-dimensional label space to carry
out backdoor attack [10]. However, in SSL, each pre-trained
encoder only outputs embedded features of input data, and the
prediction process relies on downstream classifiers. Therefore,
attackers in SSL generate similar embeddings for all inputs
containing triggers and the target class. As a result, any down-
stream classifier constructed based on a backdoor encoder will
incorrectly classify inputs with similar triggers into the same
target class [11]. As illustrated in Figure.l, encoders trained
under supervised learning rely on label guidance to classify
any input carrying triggers into the target label predetermined
by the attacker. In SSL, the attackers indirectly influence the
label space solely through the form of feature representations,
directly linking the trigger pattern to the target class in the
label space [12].

Car Aircraft Ship
[ S A

?’ Label
l " Space
¢ B : f
@ pun 2 =3
2 : &l | i,
g Target @
Q| Label
- -Training- TFesting
w
% RI OLabeI
y | s Space
p LI o o <&
o

g PIN S S —>

' iy Q. \
S w8 2|3
3 Ul
o

OcCar

Fig. 1: Comparison of supervised and self-supervised backdoor
attacks.
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To defend against backdoor attacks in SSL, researchers
have explored two directions for solutions: backdoor detection
and backdoor mitigation. @Backdoor detection methods in
SSL attempt to define the backdoor trigger as a constraint
problem and distinct the existence of the backdoor for the
target encoder by comparing the size of the inverted trigger
with an empirical threshold [13]. However, discarding a pre-
trained encoder incurs significant costs in SSL. Consequently,
while backdoor detection method can preemptively identify
backdoors, it is powerless to mitigate the malicious impact
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of this attack [14]. @Backdoor mitigation methods aim to
break the correlation between the trigger and the target label,
thereby preventing the encoder from being compromised by
the backdoor attack and ensuring its normal functionality. On
the one hand, in SSL, some methods like PatchSearch [15]
and SSL-Cleanse [15] employ clustering-based approaches to
separate poisoned samples and retrain a clean encoder on clean
samples. Additionally, some methods based on self-supervised
knowledge distillation perform neural attention distillation by
fine-tuning the target encoder and obtaining a purified encode
[16]. On the other hand, in supervised learning, researchers
have attempted various methods such as fine-tuning [17],
neuron cleansing (NC) [18], adversarial neuron pruning (ANP)
[19], model connection repair (MCR) [20], neuron attention
distillation (NAD) [21], self-attention distillation (SAGE) [22],
and unlearning [23] to eliminate the impact of backdoors.

Motivation: However, existing defense methods have the
following limitations in addressing backdoor attacks in SSL:
1) Backdoor mitigation methods in supervised learning rely on
label guidance and correction, making the model robust against
attacks. However, simply transferring supervised backdoor
defense methods, such as knowledge distillation, to the self-
supervised scenario is challenging due to the lack of given
labels, preventing this method from achieving the same per-
formance as in supervised learning. When the purified encoder
is transferred to downstream classification tasks, even if the
attack success rate is successfully suppressed, the accuracy
of the main task inevitably decreases. 2) Detection strategies
cannot remove the malicious impact of backdoor encoders.
Therefore, when performing downstream classification tasks,
classifiers trained based on this encoder will still retain the
original relationship between the trigger and the target label. 3)
In SSL backdoor mitigation, clustering-based methods rely on
an assumed small-scale dataset, purifying the dataset through
toxic sample filtering, and training a clean encoder. These
methods belong to data sanitization techniques, serving as a
defense against data poisoning before encoder training. They
are ineffective against pre-trained backdoor encoders, such as
the BadEncoder method, which maliciously modifies a clean
encoder. In summary, our exploration in this aspect raises a
fundamental yet profound question: “How can we directly
purify a backdoor encoder while ensuring the accuracy of
downstream task classification?”

Challenges: Purifying backdoors in the context of SSL
poses three challenges that need to be addressed: 1) how to
achieve ‘unlabeling’, i.e., breaking the limitations of label-
dependent backdoor defense methods to make them applicable
in SSL scenarios; 2) how to forget backdoor features by
maximizing the reduction of the backdoor’s impact on the
encoder; 3) how to ensure the performance of the target
encoder by minimizing the negative impact of defense methods
on the entire SSL process.

To this end, this paper proposes a distillation-guided un-
learning approach for backdoor mitigation, called SSLDe-
fender. It initially achieves trigger recovery without labels by
computing the embedding similarity of input sample pairs.
Subsequently, leveraging the recovered trigger, SSLDefender
employs the unlearning mechanism to mitigate the backdoor’s
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impact. To ensure the accuracy of the primary task, a teacher
model is constructed to guide the training of the backdoor
encoder. Our contributions can be summarized as below.

« A Novel Backdoor Defense Method: to mitigate the in-
fluence of backdoors on pre-trained encoders, our SSLDe-
fender breaks the connection between trigger features and
target label through distillation-guided unlearning.

o Trigger Recovery: to quickly acquire knowledge of
the backdoor and carry out subsequent mitigation tasks,
we employ a label-independent trigger recovery method
based on mutual information maximization.

« Distilled-Guided Unlearning: to ensure encoder perfor-
mance while achieving superior defensive performance,
we propose a strategy called distilled-guided unlearning.
The pre-trained encoders not only counter backdoor at-
tacks through unlearning but also maintain the accuracy
of the primary task via distillation learning, thereby
achieving a robust balance between the two objectives.

« Comprehensive Evaluation: we conduct experiments on
SSLDefender with six benchmark datasets. The exper-
imental results demonstrate that our SSLDefender can
effectively mitigate the backdoor in the encoder while
maintaining high performance in downstream classifica-
tion tasks.

The remainder of this paper is organized as follows. In
Section II, we discuss the background and related works. In
Section III, we describe the problem definition and the threat
model. In Section IV, we introduce our proposed SSLDefender
method. Section V demonstrates the performance evaluation
results. Finally, Section VI concludes this paper.

II. BACKGROUND AND RELATED WORK
A. Self-supervised Learning

Self-supervised learning has attracted widespread attention
and implementation because its remarkable performance does
not rely on sample labels and involves extensive data training
[24]-[29]. Self-supervised learning models typically consist of
two components: a high-quality encoder f and a downstream
classifier g, forming a final model i : f o g together. The
encoder constructs a function f : X — FE, where X is the
input space containing different sample inputs, and E is the
embedding space containing corresponding feature vectors.
Contrastive learning (e.g., SimCLR [30], SimCLRv2 [31],
MoCo [32] and CLIP [33]) has achieved outstanding results
among numerous training methods for self-supervised learning
encoders. Contrastive learning forms similar instance pairs
for inputs, making positive samples closer to each other
and negative samples farther apart in the embedding space.
Enhanced versions from the same input are considered positive
samples, while enhanced versions from different samples are
considered negative. Another approach, BYOL [34], trains
only with positive samples in the absence of negative samples.
The trained encoder can be used for various downstream tasks.

B. Backdoor attacks in SSL

Self-supervised learning aims to train encoders from large
amounts of uncurated data, which opens up backdoor op-
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portunities. Encoders embedded with backdoors can deceive
downstream classifiers by leveraging their unique trigger pat-
terns, leading to erroneous judgments when receiving inputs
carrying the triggers. However, the downstream classifiers
perform normally on clean inputs. Saha et al. [9] introduced
triggers into randomly cropped augmented views, bringing
them closer to each other in the embedded space compared to
other views with the same augmentation, enabling the encoder
to learn the association between triggers and target classes.
Building upon this, Li et al. [35] ensured the concealment of
triggers by employing Discrete Cosine Transform (DCT) [36]
to define spectral perturbations that are invisible in the chro-
matic space. Unlike image patches, spectral triggers exhibit
enhanced resistance, demonstrating higher effectiveness and
evasion during testing. Zhang et al. [37] theoretically derived
the optimal size for background images, and the best positions
for reference objects and triggers, to create optimal poisoned
images and address some limitations of the approaches above.
Jia et al. [38] constructed BadEncoder to generate similar
feature vectors for reference inputs (target classes from down-
stream tasks) and shadow datasets (carrying triggers), thereby
transferring the influence of the poisoned encoder to any
arbitrary downstream classifier. In the multimodal domain,
Carlini et al. [39] built two encoders: an image encoder and a
text encoder, projecting corresponding image-text inputs into
the same embedding space and generating similar embedding
vectors. Effective attacks could be executed by controlling
only 0.01% of the data. However, Tao et al. [40] argued that
the critical issue with existing attack methods lies in the out-
of-distribution nature of poisoned data, which can be easily
detected by advanced detection techniques. To address this,
they proposed DRURE, a distribution-preserving backdoor
attack that reduces the distribution distance between poisoned
samples and clean data [41], [42], transforming poisoned
samples into in-distribution data, and achieving stealthy attacks
that are difficult to detect.

C. Backdoor Defense in SSL

Existing defense methods against backdoor attacks in SSL
primarily include two approaches: backdoor detection and
backdoor mitigation. DECREE [13] was a typical model-
centric backdoor detection method that performed trigger
recovery on the target encoder by minimizing the similarity
between pairs of samples embedded with triggers generated
from random noise. If the size of the inversed trigger was
smaller than a given threshold, the encoder was identified
as a backdoor encoder. Otherwise, it was considered normal.
However, this passive detection method can only determine
the presence of a backdoor threat in the model. Still, it cannot
eliminate the negative impact of the backdoor attack on the
target model.

In contrast, backdoor mitigation methods aim to eliminate
triggers and cleanse the backdoored model by severing the
strong correlation between triggers and target labels. Data-
level backdoor mitigation methods can generally be divided
into three parts: 1) identifying poisoned samples, 2) removing
poisoned samples, and 3) retraining on clean samples. Ex-
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amples of such methods include PatchSearch [15] and SSL-
Cleanse [43]. To the best of our knowledge, in the latest
efforts to mitigate SSL backdoors, Bie et al. [16] employed
a knowledge distillation approach on the backdoor encoder.
They adapted the method used in NAD [21] from supervised
learning and transferred it to SSL. Their mitigation of Baden-
coder in non-targeted attack scenarios proved to be highly
effective, demonstrating superior performance. However, their
focus was not on real-world scenarios of SSL but rather
on extensive comparisons with existing backdoor attacks in
supervised learning, overlooking the attacks in existing SSL.
Furthermore, as this method did not provide actual code, we
could only replicate it based on the NAD method.

III. THREAT MODEL AND DEFENSE GOAL

A. Threat Model

We focus primarily on malicious setups in image encoders,
where attackers employ illicit means to inject carefully de-
signed backdoor into pre-trained encoders, thereby disrupting
the correct classification by downstream classifiers relying
on these encoders. We present our threat model from the
perspectives of the attacker and defender. Based on recent
backdoor attack methods, we categorize the capabilities of
attacker and defender as follows:

« An attacker can construct a backdoor encoder using any
means, including crafting poisoned samples and compro-
mising clean encoders. The attacker can balance attack
effectiveness and evasion, ensuring that backdoor samples
exhibit high attack success rates on downstream classifi-
cation tasks without affecting the prediction accuracy of
clean samples.

o The defender can only passively obtain backdoor encoder
and remain unaware of the backdoor knowledge. Further-
more, apart from holding a small portion of unlabeled
clean data, the defender have no access to any other
relevant data.

B. Defense Goals

In light of the specific capabilities of the attacker, we
address our defense objectives in a targeted manner from two
aspects: Defense Effectiveness: SSL-Defender can effectively
purify the backdoor encoder, remove backdoor features, and
sever the strong connections between triggers and target labels.
When this encoder is transferred to downstream classification
tasks, malicious inputs carrying triggers cannot force the
classifier to produce misclassifications, significantly reducing
the attack success rate. Model Robustness: The prediction
accuracy on clean inputs should be comparable to or slightly
lower than the accuracy before SSL-Defender training. In other
words, within an acceptable range, the accuracy of the main
task should be maintained.

Additionally, we evaluate the defense objectives using two
primary criteria: the Attack Success Rate (ASR) on backdoor
samples and the Model Accuracy (ACC) on normal samples.
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Step 2:Distilled-guided Unlearning

Fig. 2: Framework of the proposed SSLDefender. “Red” and “‘Blue” represent the poisoned and clean outputs of the student
model, respectively, while “Green” represents the clean output of the teacher model.

IV. PROPOSED DEFENSE METHOD

A. Overview

Figure. 2 outlines our proposed framework of SSLDefender,
designed specifically for backdoor defense in SSL. SSLDe-
fender instructs the target shadow encoder to perform trigger
recovery training based on mutual information maximization
to obtain optimized triggers. This trigger, with approximate
influence as set by the attacker’s backdoor, effectively cap-
tures knowledge of existing maliciously impactful backdoor
attributes. Furthermore, to leverage the acquired backdoor
knowledge and cleanse model’s backdoor attributes, SSLDe-
fender introduces distilled-guided unlearning.

B. Trigger recovery

Trigger recovery has been widely used in supervised learn-
ing. Such methods inspired by the intuition of backdoor
attacks, where the modification by attackers for misclassifying
target labels is much smaller compared to clean labels, have
traversed model labels and optimized trigger patterns under
assumed labels to find the minimal trigger that misclassifies
other labels as the assumed label. Building on this, outlier
detection algorithms are employed to filter out true triggers
and their corresponding target labels. However, this method
relied on explicit labeling for target optimization and is not
applicable to self-supervised learning. Feng et al. [13], based
on observations of backdoor trigger patterns where samples
carrying the same trigger exhibit highly similar embeddings,
proposed a new solution by guiding trigger optimization
through maximizing embedding similarity. However, they are
limited to setting a threshold in this optimization process,
whereby if the value exceeds this threshold, the encoder is
deemed to be carrying a backdoor. Although this method can
accurately determine the presence of a backdoor, it cannot
acquire knowledge of the backdoor, thus impeding mitigation
efforts. We have achieved a more lightweight and precise
trigger through a trigger recovery strategy based on mutual
information maximization.

Firstly, we formalize trigger injection using the following
equation:

Miz(z;, A) = o, (1)

When injecting a backdoor into the target encoder, we ob-
served that the model learns backdoor knowledge much faster
than clean data. Even on datasets that are challenging to
converge, the model tends to converge more easily towards
backdoor data. In causal reasoning, this phenomenon is ex-
plained as the attacker opening a false “shortcut” between
the input images and the predicted labels. If the model has
already learned the relevance of this false path, then when
triggers are attached, their predictions will switch to the target
label. Additionally, the model will generate highly similar
feature embeddings for any input embedding such triggers.
Therefore, we guide the process of pre-set trigger optimization
by creating poisoned samples and computing the similarity
between them to restore triggers that approximate the original
backdoor influence and lead to optimal misclassification by
the model. Specifically, for a randomly generated noise 9,
we use the generation model G to generate the optimized
trigger A. Assuming a clean shadow dataset Dgpqdow, We
embed the optimized trigger through the mixing function
M{(.) to construct the poisoned dataset D’, . . Typically, in
SSL, cosine similarity is employed to measure the similarity
between two embedding samples. Formally, given two inputs
xp and x4, the cosine similarity between their corresponding
trigger embedding samples can be represented as:

L, o(F,A) = —cos(F(Mix(zp,A)), F(Miz(zq,A))), (2)

Moreover, to achieve high similarity between samples and
approximate search in dense regions of the backdoor model
embedding space, it is necessary to sample a batch of input
samples to stabilize the search process. The calculation of the
average pair similarity within batch B is as follows:

3)

the loss of L.,s serves as a constraint during the trigger opti-
mization process, ensuring that samples carrying the trigger to
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be optimized tend to cluster in dense regions of the embedding
space.

However, this typical generative model has been proven
to struggle in estimating the differential entropy in high-
dimensional trigger patterns, leading to a decline in model
performance [44]. Therefore, we introduce the maximization
of mutual information to address this issue. Mutual informa-
tion is a measure of dependency between random variables
based on Shannon entropy. The mutual information between
X and Z can be understood as the reduction in uncertainty
of X given Z. The calculation of their mutual information
through the Mutual Information Neural Estimator (MINE) can
be represented as:

I(X;2) = H(X) - H(X | 2), )

where H is the Shannon entropy, and H(X | Z) is the
conditional entropy of Z given X.

Specifically, we employ the enhanced algorithm of Mutual
Information Neural Estimator (MINE), known as Maximum
Entropy Staircase Approximation (MESA), to approximate
the unknown trigger distribution by integrating a set of sub-
models G = {G1, Gs...G,, }, where each sub-model G; learns
a portion of the trigger A;. Additionally, we uniformly select n
thresholds € = {e1, €5...€, } from [0, 1], where each threshold
B; corresponds to a sub-model GG; and an information estimator
Ir, parameterized by a statistical network T;. Consequently,
the final optimized loss function becomes:

n
min £, = > (max(0,€& — Leos) — nl1,(Gi(8):0").  (5)

g i=1
We compute the mutual information between the randomly
initialized noise &’ and the optimized trigger through a statis-
tical network. The process of maximizing mutual information
guides the optimization iterations to be more expedient and
effective. Our method aims to expedite the restoration of the
most influential backdoor by seeking the most similar triggers.
This conclusion will be verified in Section IV. The complete

process of trigger recovery is shown in Algorithm 1.

C. Distilled-guided unlearning

In deep learning, unlearning means that the data owners
wish the model owner to erase the influence of their data
on the model and request that the model owner no longer
use this these data for training. For defenders, we also aim
to utilize this technique to erase backdoor features to purify
the model. The most effective and straightforward method
for unlearning is to retrain the model using a training set
that does not include the supplier’s data. However, in SSL
scenarios, where the user aims to obtain an encoder that
provides high-quality representations of the data, extensive
training on unlabeled data is necessary. The computational
cost of retraining becomes prohibitive. Therefore, we seek a
method to conduct unlearning on backdoor knowledge for the
backdoor encoder.

Considering the existing trigger patterns, the next step for
SSLDefender is to leverage the recovered trigger to eliminate
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Algorithm 1: Trigger recovery

Input: Shadow dataset
Dghadow = {x1,T2..., x,) }.generation model
G = {G1, Gs...G,, } thresholds
e = {e1, €2...6,} € [0,1],random nosie ¢ and ¢’
Output: Optimized tigger A
Formalize trigger injection;

for each sample x; € Dgpaqow dO
Miz(x;, A) = 23

! .
Dshadow < Dsnadows
end
for any sample x, and x, € D', .~ do

L, .= —cos(E(Miz(zp,A)), E(Mix(zqs.A)));
// computer the similarity between

two embedding sample;

1 N N .

Lcos = N2 Zp:] Zq:l ‘CP#P
// calculate of the average pair

similarity within batch N;
Etotal =

n

> iz (maz(0, €; — Leos) — 111, (Gi(6);6"));

// final optimized loss function;

end
Iterative training until convergence;
Return A;

malicious trigger functionalities. To maximize the use of
limited clean data, we employ a distillation-guided unlearning
strategy through a lightweight teacher-student framework for
unlearning. The objective of this strategy is to effectively
forget malicious features while ensuring model performance.
In a successful SSL backdoor attack, attackers tend to mod-
ify a clean encoder to generate similar embeddings for all
inputs containing triggers and target classes. Consequently,
any downstream classifier built on this encoder backbone will
erroneously classify inputs with similar triggers into the same
target class. Based on the above observation, a direct defense
intuition of ours is to force trigger inputs and original inputs of
the same sample to have similar distributions, thereby weak-
ening the effectiveness of backdoor attacks. Specifically, we
embed all samples from the limited clean dataset Djcqy With
the recovered trigger to construct a poisoned dataset Dised-
For a clean sample = and its corresponding poisoned sample
2’, both are considered inputs for the student model. By
aligning their embedding generation operations, we implicitly
drive the student model to eradicate the backdoor.

However, this brute-force operation inevitably leads to a
decline in model performance. While minimizing the differ-
ence between trigger and clean input distributions, it causes
a shift in the distribution of clean data as well. Therefore,
we fine-tune the student model to obtain a relatively clean
teacher model that guides the student model in preserving
clean knowledge. The teacher model only receives clean data
x as input. We align the clean soft targets outputted by the
teacher model with the outputs of the student model for the
same inputs. The clean and useful information from the teacher
model is passed to the student to aid in forgetting trigger
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Algorithm 2: Distilled-guided unlearning

Input: clean dataset
D iean = {x1,x2..., 2,) }recovered trigger A,
Hyperparameter v and /3.
Output: Purified encoder f.
Formalize trigger injection;
Perform iterations for mutual information transfer:
for each sample x; € D jeqn do
‘ Dpoised — Dclean + A;
end
for each sample x; € D jeqn and x}; € Dppiseq do
ze < f(2); 20 < f(2));
~ 1
Wo (P2, Py) = [[eq W3 (PE,PY)dw] *;
// The discrepancy between the trigger input
and clean input of the student model,
end
for each sample x; € D¢jeqn do
V~V2 (]P)f’ P?) =

1/2
M 1 m )
3 Lomer Jo IFE (2e) = Ff (ze)[l2dz)
// The discrepancy between the clean input of

the teacher model and the student mode;

end

Update model parameters to min the loss;
Ltota,l = QWQ (]P)(Sv Pbs) + /BWQ (]P)($7 P?)’
Return Purified encoder f.

features. Benefiting from this, the clean output distribution
of the student model closely aligns with the teacher model,
which can mitigate the adverse effects of over-forgetting on
normal samples.

We utilize the Wasserstein distance to compute differences
between different distributions [45]. Generative modeling [46]
is the task of learning the probability distribution from a given
dataset D = {x}, where samples  ~ P, are drawn from
an unknown data distribution P,. Formally, the Wasserstein-p
distance between distributions P, and P, is defined as:

Eegyrlllz = ylPD7, (6

Bl =

Given the constraint of only being able to utilize a small
portion of the test dataset, to ensure that the model fully
extracts all limited knowledge, we directly employ the fea-
ture representations of the data. This also implies that our
data is high-dimensional. Estimating the Wasserstein distance
on high-dimensional data is not a trivial task. To alleviate
computational complexity, we adopt a sliced version of the
Wasserstein-2 distance [47], [48], which requires estimating
distances between one-dimensional distributions, thus enhanc-
ing efficiency. Therefore, the discrepancy between the trigger
input and clean input of the student model can be defined as:
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Nl=

WS B = | [ waee

€N

v 1/2
1 ! m m
(37 2 [ 1o - Pyl
m=1

Similarly, the distribution discrepancy between the clean
inputs of the teacher model and the student model is:

1 Mo 1/2

Wa(PS, PT) = (MZ / ||F§l<zc>—F%”<zc>||zdz> ,
m=1

(7)

By employing the aforementioned procedure for unlearning,
the overall loss constraint is determined by minimizing the
differences between two pairs of distributions, which can be
expressed as:

Liotar = aWa (PS5, PY) + W, (RS, PT). (8)

The complete process of distilled-guided unlearning is
shown in Algorithm 2.

V. PERFORMANCE EVALUATION

In this section, we conduct multiple experiments of SSLDe-
fender on four real-world datasets under four SOTA backdoor
attack methods in SSL. To evaluate the effectiveness of our
proposed method, we aim to answer three key research ques-
tions:

« RQ1 (Defense Effectiveness): Can our proposed method
conduct effective defense against the four SOTA backdoor
attacks on different datasets?

« RQ2 (Ablation Analysis): Is SSLDefender still effective
in the elimination of tigger recovery or distillation-guided
unlearning methods?

o RQ3 (Parameter Sensitivity Analysis): What is the effect
of SSLDefender in different hyperparametric settings?

A. Experimental Settings

1) Dataset: SSLDefender is evaluated on five widely-used
benchmark datasets: CIFAR-10, STL-10, GTSRB, SVHN, and
ImageNet. The basic statistics of each dataset are shown in
Table. I, including the number of training and testing samples,
sample categories, and individual sample sizes. Particularly,
SVHN is a dataset composed of noisy samples, where some
distractor digits are distributed around the primary digit rep-
resented by the sample.

2) Attack Methods: We investigate five state-of-the-art
(SOTA) backdoor attack methods in SSL: SSL-backdoor em-
beds image patches into one view of the contrastively learned
enhanced images to establish a strong correlation between
triggers and target labels. PoisonedEncoder poisons specific
inputs, and combines target and reference inputs to create
poisoned samples. CorruptEncoder carefully crafts poisoned
images with two randomly cropped views that have a high
probability of including the reference object and trigger. In
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TABLE I: Dataset statistics.

Training  Testing

Dataset . . Classes Size
images  images
CIFAR-10 50,000 10,000 10 32x32x%3
STL-10 5,000 8,000 10 96x96x3
GTSRB 39,200 12,600 43 32x32x3
SHVN 73,257 26,032 10 32x32x3
Tiny-ImageNet 128,116 5,000 100 224x224x3

contrast to the aforementioned methods, BadEncoder con-
structs a backdoor encoder using reference inputs to transfer
to different downstream classification tasks.

3) Defense Baselines: We select four backdoor defense
methods in SSL, i.e., DECREE, PatchSearch, SSL-Cleanse,
and SSL-KD. Here, DECREE belongs to backdoor detec-
tion, while the other methods are categorized as backdoor
mitigation. PatchSearch and SSL-Cleanse are clustering-based
data filtering and retraining methods. SSL-KD is a mitigation
method for poisoned encoders.

4) Evaluation Metrics: We evaluate the performance of
defense mechanisms with two metrics: attack success rate
(ASR), which is the ratio of backdoored samples misclassified
as the labels specified by attackers, and the accuracy of the
main classification task on normal samples (ACC).

5) Implementation Details: SSLDefender is assumed to be
able to access 5% of the clean data randomly selected from
the test set. For the unlearning process, we use the loss term
B = 0.5, batch size B = 256, SGD as optimizer with
learning rate 77 = 0.001, and run for £ = 500 epochs. For
all the baseline attacks and defenses, we adopt the default
hyperparameters recommended by the corresponding papers.
Specifically, attacks have the common parameters: trigger size
t and injection ratio ®. Unless otherwise mentioned, we set
the backdoor injection ratio to ® = 5% and the trigger size t
to 20%. We test the performance of SSLDefender as well as
other baselines five times and report the mean and standard
deviation results to eliminate the effects of randomness.

6) Experimental Environment: We implemented SSLDe-
fender in Python using the PyTorch framework. Our exper-
imental environment consists of 13th Gen Intel(R) Core(TM)
17-13700KF, NVIDIA GeForce RTX 4070 Ti, 32GiB memory,
and Ubuntu 20.04 (OS).

B. RQI: Backdoor Defense Performance

To answer RQ1, we evaluate the defense effectiveness and
model accuracy of SSLDefender under both targeted attacks
and untargeted attacks scenarios. In targeted attacks, we
compare the performance of SSLDefender against four self-
supervised backdoor attacks across three benchmark datasets
under three contrastive learning paradigms. We select the best
comparative training method to transform the method in su-
pervised learning and use it as a baseline to compare with our
method. The “before” column represents the original baseline
without any defense, and the best results are highlighted in
bold. In untargeted attacks, we train models on three different
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downstream tasks and compare SSLDefender with the state-
of-the-art defense method SSL-KD to verify the superiority of
SSLDefender.

1) Targeted attacks: We evaluated the effectiveness of
defense against representative SSL backdoor attack methods
on benchmark datasets. For fair comparison, all attacks were
conducted using the same settings as the original work. The
results are summarized in Table. II. Overall, even under
different contrastive learning algorithms, SSLDefender signif-
icantly defends against four typical existing self-supervised
backdoor attacks, resulting in ASR below 9%, with only a
slight decrease in ACC.

Specifically, in all settings, BadEncoder exhibits the highest
attack effectiveness. For instance, when training the backdoor
model using the MoCo algorithm, it achieves an ASR of
99.61% on CIFAR-10, which is nearly a perfect attack method.
We analyze that this is due to the attacker manipulating the
clean encoder with a reference input and trigger to make the
sample carrying this trigger highly similar to the embedding
of the reference input, thus achieving an effective attack.
However, this aggressive manipulation, while demonstrating
significant attack effects, is highly vulnerable. Defenders only
need a few clean samples to retrain the backdoor encoder,
leading to a substantial reduction in ASR. Therefore, in the
same setting, we lower the ASR of this backdoor encoder
to 0.97%. Additionally, the bidirectional optimization we
employed ensures that the model’s original performance is not
compromised, resulting in a decrease of only 0.37% in ACC
in this setup. Even on Tiny-ImageNet, we achieve an ASR of
0.2% and kept the ACC loss within 5%.

2) Comparing with Baselines: The aforementioned exper-
iments demonstrated the superiority of the BYOL method
over other commonly used contrastive learning approaches.
Therefore, we adapt several well-established backdoor defense
methods from supervised learning, namely fine-tuning, fine-
pruning, neural cleanse, and NAD, into a label-free SSL
paradigm consistent with the BYOL training framework. Since
SSL-KD relies on downstream datasets to fine-tune the back-
door encoder, it is included in the discussion of untargeted
attacks. The comparative results between the baseline methods
and SSLDefender are presented in Table. III.

Through repeated experiments and cross-validation, it is
evident that fine-tuning significantly reduces the ASR across
all four attack methods. In particular, when defending against
SSL-Backdoor attacks on the STL-10 dataset, fine-tuning
achieved the best performance among all defense methods.
However, the use of only a small subset of the dataset for
fine-tuning cannot guarantee the preservation of the model’s
performance on its primary task. Moreover, our experiments
reveal that fine-tuning suffers from high variability, struggling
to strike a consistent balance between high ACC and low
ASR, resulting in unstable outcomes. The intuition behind
fine-pruning is to identify and remove low-activation neurons,
which are presumed to be backdoor-related. While this method
does suppress the success rate of backdoor activation , benign
neurons or their informative features may also be pruned,
inevitably leading to a significant drop in prediction accuracy.

Compared with these two approaches, Neural Cleanse(NC)
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TABLE II: Performance of SSLDefender compared with baseline attacks on different pre-training datasets.

o SimCLR MoCo BYOL
Attack Pre-training Before After Before After Before After
Dataset
ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR
CIFAR-10 77.04:259 27.93:246 76441223 4.36:1.03 75.11s285 22.06:257 72.99:129 5.00:350 89.40:251  30.93:142  87.42:179  2.09:4.8
SSL-Backdoor  Tiny-ImageNet 69.22:341 30.12:187 69.01:255 6.53:092 67.48:4.13 23.00:206 67.05:134 4.88:3.67  69.81:078 36.9752.19 67.75:124  2.964.02
STL-10 68.00:1.76  36.71:3.09 65.40:088 7.29:241  60.30:4.67 35.90:123 56.00:295 8.20:054 70.82:3.18 36.95:1.67 73.19:2.04  6.68:4.32
. CIFAR-10 75.64:097 32.93:258 73.68:141 1.19:375 75.40:219 23.31:406 67.45:073 0.34:188 89.40:327 32.45:065 88.73x233  0.79:1.09
Poisoned- Tiny-ImageNet  60.09+451 32.72:137 61.72:082 4.57:296 59.88:3.44 26.04x1.05 62.04:268 4.55:039 70.21:1.92 39.12+413  66.70:0.57 2.43:3.81
Fncoder STL-10 60.14:237  39.90:1.05 59.11:388 8.95:0.64 58.56:4.19 37.15:271 57.23x144  7.61:302 70.92:079 39.09:2.15 73.12:1.67 6.78x4.53
CIFAR-10 78.40:092 36.58:3.41 72.10:1.78  0.54:2.06 74.76:4.67 33.48:055 64.36:x280 0.66:1.33 89.80:3.12 31.91x078 87.50:2.44  0.96:1.95
cormupt Tiny-ImageNet  66.65:1.56 40.19:4.03  63.30:087 1.78:271  63.30:3.45 36.71:1.19  60.17233  0.92:041 71.03:488 47.20:1.67 69.07+3.09 0.77:2.22
Fncoder STL-10 67.00:2.14  46.77:093 66.62:367 3.02:145 58.75:402 43.27:278 S51.91:119  2.79:056 72.32:388 58961231 75.05:1.07 2.481455
CIFAR-10 80.98+1.82  98.92:341  81.16:078 0.58:2.09 80.37:467 99.61:133 80.00:295 0.97:044 83.20:3.12 98.99:167 84.08:223 1.89:091
BadEncoder  Tiny-ImageNet 68.32:4.19 97.99:066 66.04+255 2.22:188 58.00:3.04 97.41:271  53.80:145 0.20:033 70.36:488 98.58:1.09 64.36:356 1.01:237
STL-10 67.04:1.67  96.75:322  67.39:089 1.95:241  62.41:403 94.60:1.15  62.33:278 4.78x056 72.96:391 99.98:134 73.50:2.07 1.86:4.19
TABLE III: Comparison results of different backdoor defense methods on three datasets.
Pre-training Attacks W/O Def FT FP NC NAD SSLDefender
Datasets ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR
SSLBackdoor 89.40+123  30.931367 40.57:080  9.49:241  49.77:402  10.52:156  70.26:278  8.40x095  53.59x3.14 433107 87.42:255  2.09:066
CIFAR-10 PoisonedEncoder ~ 89.40:1.88 32.45:4.19 49.93:233 8241077  52.14s345  8.56:1.92  62.45:058 15.26:271  57.74x134  4.50:3.00  88.73:082 0.79:2.04
CorruptEncoder ~ 89.80:091 31.91x267 50.39z145  8.08:388  52.43x066 11.15:2.19 65.25:1.07 4262433  80.93:295  2.51x1.56  87.5x044  0.96:3.41
BadEncoder 83.20+278  98.99:123  50.17s3.67  13.32:089  59.75:241  17.62:402 66.38+156 14.26:295 60.17:095  7.24s3.14  84.08+1.07 1.89:255
SSLBackdoor 69.81x082  36.97+2.04 38.36x1.88 10.57:345 46.44z077 13.70:233 55.52:192  9.42:058  48.76:271  3.58x134  67.75:3.09 2.96:091
Tiny- PoisonedEncoder  70.21x267 39.52:145 32.47:388  7.75:066  50.35:2.19  9.40:1.07  60.31:433 12.38:295 64.08:1.56  4.12:044  66.70341 2.43:278
ImageNet CorruptEncoder ~ 71.03x1.23  47.20:3.67 44.69:080  10.92:241  58.40x4.02  12.27x156 62.24x278  7.60x095  66.39:3.14  1.92:z1.07  69.07:255  0.77:0.66
BadEncoder 70.36+1.88  98.58:4.19 42.87:233 16.03x077 63.41x345 18.22:192 62.27x058 17.30:271  60.82:134  10.04:3.09 64.36:082 1.01:2.04
SSLBackdoor 70.82:145  36.95:388 38.95:066  2.40:219  50.61:1.07  9.47:433  61.18:295  8.82:1.56  56.25:044  3.84:341  73.19:278 6.68:1.23
STL-10 PoisonedEncoder | 70.92:3.67 39.09:089 40.82:241  12.69:4.02 44.19:156  9.37:278  61.27:095  8.63:3.14  68.58:1.07 5.49:255  73.12:066 6.78x1.88
CorruptEncoder | 72.32:4.19  58.96+233 47.262077 12.55+345 60.05:1.92  11.36:058 62.75:271  5.44x134  69.33:3.09  2.06:082  75.05:2.04 2.48+1.45
BadEncoder 72961388 99.98:066 58.90:219  9.34:433  55.48x295 10.17:156 64.71x044 10.49+341  69.831278  5.07x1.23  73.50:367 1.86:0.89

appears more systematic and effective. The core idea of NC
aligns with our own: leveraging reversed triggers to identify
backdoor-related components in DNNs and mitigate their
influence. Building upon Fine-pruning, NC sets the output
of suspected backdoor neurons to zero during inference.
However, NC prioritizes neurons that exhibit the greatest
activation difference between clean and adversarial inputs,
thereby minimizing the performance degradation caused by
pruning. Once the model no longer responds to the reverse
trigger, NC terminates the pruning procedure. As shown in the
experimental results, NC achieves approximately 15% higher
ACC than Fine-pruning across all datasets.

Overall, the adapted NAD method achieves performance
most comparable to our approach. NAD purifies the student
model from backdoor features by aligning the intermediate
attention maps of teacher and student models via attention
distillation. On the STL-10 dataset under PoisonedEncoder
and CorruptEncoder attacks, NAD slightly outperforms our
method in mitigating backdoors. However, considering both
ASR and ACC, while NAD reduces the ASR to 2.06%, the
corresponding ACC is only 69.33%. In contrast, SSLDefender
achieves a comparable ASR of 2.48% while improving ACC to

75.05%. This result not only surpasses NAD in defense effec-
tiveness but also enhances the model’s predictive performance
and robustness. This improvement stems from our emphasis
on maintaining the integrity of the model’s primary task by
aligning the embedding distributions of clean outputs.

3) Untargeted attacks: Unlike targeted attacks, the pre-
trained dataset of untargeted attacks has a different class
distribution from the downstream dataset. The downstream
classifiers obtained by the victim still carry backdoor attributes
even if the pretrained backdoor encoder is fine-tuned using
other clean datasets. Therefore, we consider untargeted at-
tacks and measure the defense effectiveness by the accuracy
of the model on the trigger input. Table. IV presents the
results of six defense methods against BadEncoder across
different pretraining and downstream datasets. The pretraining
datasets include CIFAR-10, ImageNet, and CLIP. It is worth
noting that, unlike the experiments in the Targeted Attacks
section, the backdoor encoder pretrained on ImageNet and
CLIP are directly provided by BadEncoder. Our work focuses
on mitigating these backdoors based on the given encoders.
Additionally, we only utilize the image encoder provided by
CLIP, excluding the text encoder from our experiments. The
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TABLE IV: Performance of SSLDefender compared with baseline attacks on different pre-training and downstream datasets.
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Pre-training  Downstream W/O Def FT FP NC NAD SSL-KD SSLDefender
Dataset Dataset ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR

STL-10 77.58:134  99.97:088 61.78x271  10.67:312 5531056  9.93:195  66.20x423  6.39:207  60.43:145  9.22:079  57.79:367  9.44s241  77.54:108  3.06+4.02
CIFAR-10 SVHN 71.22:219  98.87:1.67 49.25:093 14.181356 47.75:123  10.2824.88 68.372066 9.25:278  68.05:141 12.73:082  68.28:3.09 13.64x156 64.96:295 5.97:044
GTSRB 82.00:188 98.80:3.45 44.78:077  0.08:233  44.94x192  1.64x419  T4.24:058 4.68:271  54.46:134  1.41:3s8 52.5:091 0.70:1.07  79.58+255  0.63:4.33
. STL-10 95.55:123  99.99:066  47.5:241  4.68:3.14  56.62:080  6.45:156  82.47x402 12.54x295 61.18:107  9.39x082  52.95:367  7.57:219  96.10:145 1.61x467
Tiny- SVHN 73.99:278  99.88:134  42.79:095  0.12:3.09 5581188  2.27x455  66.40:044  6.26:233  50.22:192  4.76:058 51.81x341  0.81x123  68.09x271 4.31x077
fmageNet GTSRB 77.27+156  99.08:388 45.78x082  0.66:2.04  58.26:141  7.27x433  69.96:091 4342295  50.04:107  3.77367 49.83x066 1.39:188  77.44x241  1.52:093
STL-10 96.56:1.19  99.85:255 48.12:078  4.68:3.45  47.07:1.67 10.74z044  63.72x402  6.05:219  53.22:134  9.41x095 50.29:388  6.43:1.56  89.62:278  1.53x467
CLIP SVHN 70.94:080  99.99:192 48.79:3.14  2.12:066  54.82:233 24.37:1.07  60.11:455  7.83:271  59.36:145 16.09:300 S51.81x082 1432188 67.02:295 2.03:0.58
GTSRB 82.44+141 99.35:367  46.26:093  1.26+x241  42.77x123  12.96+488 68.47:077 531204 52.28:156 4.10s345  48.23x044  027:192  74.71:278  0.57:091

TABLE V: Defense Performance of SSLDefender against
Special Trigger Type Attacks.

Spectral Trigger Random Noise
Before After After
ACC ASR ACC ASR ACC ASR ACC ASR
90.83 89.79 91.72 0.62 8241 92.17 80.28 1.04
73.50 6328 7752 284 69.40 5876 7095 441

Pre-training  Downstream
Before

Dataset Dataset

CIFAR-10
STL-10

CIFAR-10

downstream classification datasets include STL-10, SVHN,
and GTSRB.

Experimental results indicate that even under untargeted
attacks, SSLDefender is capable of reducing an ASR close
to 100% to below 6%. For example, when using an ImageNet
pre-trained backdoor encoder for the downstream classification
in GTSRB, our method does not achieve the lowest ASR (1.
52% vs. 0. 66%), but improves the classification accuracy
to 77.44%, significantly higher than the 45.78% achieved by
Fine-tuning. Undeniably, all baseline methods contribute to
reducing ASR to some extent. However, they generally fail to
preserve the model’s predictive performance. In contrast, our
method demonstrates both effectiveness and generalizability,
achieving a better trade-off between attack mitigation and
model utility across various datasets and scenarios.

4) Special Trigger Type Attacks: Since the aforementioned
methods are all patch-based backdoor attacks, we conducted
experimental validations against more complex trigger types.
As shown in Table. V, SSLDefender can still effectively
counter even invisible Spectral Triggers and difficult-to-
reconstruct Random Noise triggers. This is because our pro-
posed method does not aim to reconstruct a trigger identical
to the one set by the attacker, but rather to learn the backdoor
knowledge and apply the optimized perturbation to clean data
for robust training.

5) Overhead of SSLDefender: To investigate the practical
feasibility of SSLDefender, we quantified the computational
overhead of each component while defending against BadEn-
coder on the CIFAR-10 dataset, and compared the overall
framework with fine-tuning and retraining methods. The re-
sults are presented in Table.VI. The experiments demonstrate
that, owing to the incorporation of key components such as
trigger inversion, mutual information estimation, and Wasser-
stein distance computation, SSLDefender incurs higher costs
compared to fine-tuning operations. Nevertheless, it achieves
superior performance. In contrast to retraining methods, our

approach exhibits efficiency that is nearly 10 times greater. If
the training data were replaced with datasets of larger size and
scale, the costs associated with retraining would only become
more burdensome.

C. RQ?2: Ablation Analysis

We conducted an ablation study to understand the contribu-
tions of individual components of SSLDefender to the overall
defense framework. To verify the contribution of trigger recov-
ery, we experimented with directly applying unlearning to the
backdoor encoder after removing the trigger recovery module.
During the processing of a small clean dataset, we replaced
the recovered trigger with other perturbations to construct poi-
soned datasets. Additionally, we validated the contribution of
mutual information maximization. In the process of backdoor
feature unlearning, we examined the roles of two loss terms
L1 and Lo to enhance our understanding of the mechanisms
behind the distillation- guided unlearning learning process.

1) Eliminate Trigger Inversion: we experimented with three
non-reconstructed random triggers to validate the role of
trigger recovery module, and the experimental results are
shown in Table. VII. Although the three triggers we set are
structurally similar to the triggers we reconstructed, they still
fail to achieve the mitigation effect. The best result is to reduce
the ASR of BadEncoder to 41.44%. The data results indicate
that randomly generated perturbations affect the model’s de-
cisions but are ineffective against the backdoor. The process
of trigger reconstruction is actually about learning the model’s
backdoor knowledge. Applying this trigger in the distillation-
guided unlearning process is not only for robust model training
but also for breaking the backdoor pattern and severing the
connection between the trigger and the target label. This shows
that the trigger recovery process is an indispensable key step
for SSLDefender.

2) The contribution of mutual information maximization:
TABLE. VIII illustrates the effect of mutual information
maximization in the trigger inversion module, where DECREE
refers to the variant that does not employ mutual information
maximization. Since the primary objective of DECREE is to
detect whether an encoder carries backdoor features, it imposes
relatively low requirements on the quality of the reconstruction
process. DECREE halts training and identifies an encoder as
backdoored once the optimization loss falls below a predefined
threshold. To ensure a fair comparison, we adjusted this
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TABLE VI: Comparison of Computational Overhead of Various Methods on the CIFAR-10 Dataset.

Epoch 10 20 30 40 50 60 70 80 90 100 RAM(G) | VRAM(G)
Fine-Tuning 5.71 11.43 1725 2282 2835 33.90 39.54 45.30 51.13 56.51 1.32 1.49
Trigger Recovery 9.71 18.08  28.63  40.12  54.05 - - - - -
Training Trigger Recovery+MI 1240 2237 3576 50.24  62.90 - - - - - 171 30
Time(s) Unlearning 11.76 2275 3390 4495 5633  67.30 78.35 89.37 100.28  111.51
ALL 24.16 4512 69.66 9519 11923 130.20 141.25 15227 163.18 17441
Retraining 158.82 319.10 479.54 639.48 799.48 959.70 1119.72 1279.95 1440.54 1601.36 1.88 33

TABLE VII: Impact of different triggers on subsequent back-
door mitigation efforts.

W/O Def Trigger | Trigger | Trigger Rec?vered
1 2 3 Trigger
ACC 83.20 83.77 83.75 84.27 84.08 (10.88)
ASR 98.99 41.44 51.25 77.44 1.89 (497.10)

TABLE VIII: Comparison with the DECREE method.

W/O Def DECREE SSLDefender
ACC ASR ACC ASR ACC ASR
67.04 96.75 | 64.16(2.88) 35.23(61.52) | 73.50(16.46) 1.86(]94.89)

threshold to a lower value, allowing DECREE to reach its op-
timal solution. However, when the reconstructed trigger from
DECREE is used for backdoor mitigation, it only reduces the
ASR of BadEncoder to 35.23%, which is significantly worse
than the performance of our proposed method. This experiment
demonstrates the superiority of our trigger inversion approach
based on mutual information maximization, highlighting its
effectiveness in enhancing backdoor mitigation performance.

3) Component Contributions.: The framework we designed
mainly relies on the latter part, the distillation-guided un-
learning module, for backdoor mitigation. Therefore, in the
ablation experiments section V.C, we were unable to com-
pletely remove this module to verify the irreplaceability of
the method. However, we can analyze the deep-level impact
of different functional components within this module on
SSLDefender. Specifically, our central idea involves erasing
the backdoor attributes and maintaining model performance,
corresponding to the Ly and Lo loss terms, respectively. The
experimental results are shown in Table. IX. Clearly, when
optimizing only the L; term, although it can effectively resist
four types of self-supervised backdoor attacks, it fails to
ensure the model’s original performance. The results indicate
a consistent decrease in ACC of around 8%. In contrast, if
only optimizing the L, term, SSLDefender stabilizes ACC
but struggles to reduce the malicious impact of attackers. The
combined optimization of these two loss terms enables the
model to find a delicate balance between them, emphasizing
the indispensability of L; and Lo, further demonstrating the
efficiency of our proposed method.

D. RQ3: Parameter Sensitivity Analysis

1) Effect of ratio of poised samples: In our threat model,
we assume that the defender has access only to the victim
model, while the proportion of poisoned samples injected
during training remains unknown. To evaluate the robustness

TABLE IX: Impact of different components.

SSL- Poisoned- Corrupt- Bad-
Component
Backdoor Encoder Encoder Encoder

Ly Lo ACC ASR | ACC ASR | ACC ASR | ACC ASR

X X 77.04 2793 | 75.64 3293 | 78.40 36.58 | 80.98 98.92

v X 70.33 490 | 69.75 3.58 | 68.63 7.27 | 73.54 0.94

X v 7547 1996 | 71.16 22.89 | 74.24 29.62 | 79.11 65.27

v v 7644 436 | 73.68 1.19 | 72.10 0.54 | 81.16 0.58

of our method against backdoor attacks with varying poisoning
rates, we compare different defense strategies on the CIFAR-
10 dataset under four attack scenarios with different backdoor
injection rates. The results, as shown in Figure. 3, present
attack scenarios where the backdoor injection rate ranges from
1% to 9% in increments of 2%. Notably, according to the
original BadEncoder experimental setup, the attack achieves
optimal performance when the poisoning rate of the shadow
dataset reaches 20%. Therefore, we evaluate the impact of
BadEncoder poisoning at five levels: 1%, 5%, 10%, 15%, and
20%. Intuitively, in the absence of any defense mechanism,
the ASR of all attack methods increases as the injection
rate rises, as expected, while the accuracy of the primary
task deteriorates accordingly. Prior research suggests that the
difficulty of backdoor defense is positively correlated with the
poisoning rate. However, it is worth noting that, compared
to the mitigation effects observed at lower poisoning rates
(< 7%), our method demonstrates superior performance under
high poisoning rates.

2) Impact of Holding Rate: As highlighted in our proposed
method, a small amount of clean data is crucial for our
approach. Not only does it guide the model to forget the
backdoor patterns, it also preserves the accuracy of the primary
task. In our experimental set-up, we define a holding rate,
which represents the proportion of clean samples available
to the defender, extracted from the test set. In real-world
applications, we recognize that defenders may face a “data
scarcity” challenge. To account for this, we constrain the
amount of clean data available to a maximum of 10% of the
total dataset and evaluate the performance of SSLDefender
at different holding rates within this range. The experimental
results are shown in Figure. 4. Interestingly, even with an
extremely low retention rate of 1%, our method successfully
reduces the ASR of the BadEncoder to 0.8%, while keeping
the ASR of other attack methods below 10%.

Furthermore, defenders might encounter an extreme ‘“‘data
isolation” scenario, where access to the original pre-training
dataset is not possible. Intuitively, a successful backdoor attack
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Fig. 3: Impact of injection ratio with five SOTA methods.

TABLE X: Performance of SSLDefender on alternative
datasets.

Setting Origin Auxiliary
Datasets CIFAR-10 STL-10 GTRSB SVHN
Attack ACC ASR | ACC ASR ACC ASR ACC ASR
SSLBackdoor 8742 2.09 | 79.58 1524 7239 1848 80.13 11.82
PoisonedEncoder 88.73  0.79 | 81.77 10.45 7620 16.62 81.06 9.40
CorruptEncoder ~ 87.50 0.96 | 80.02 7.76 7693 10.03 80.53 10.29
BadEncoder 84.08 1.89 | 80.59 821 7347 6.60 7517 6.22

relies on establishing a strong correlation between the embed-
ded trigger and the target label. In other words, the attacker
introduces perturbations to the original input, deceiving the
model into producing the expected adversarial result. Our
trigger inversion process aims to reconstruct this perturbation
and leverage distillation-guided unlearning to desensitize the
model, mitigating backdoor effects.

To address data isolation, we explore the use of publicly
available alternative clean datasets to support the SSLDefender
framework. Specifically, we substitute part of the clean data
required for defense in the CIFAR-10 dataset with STL-10
and GTSRB samples. As shown in Table. X, even without
relying on clean data from the original distribution, the use
of alternative datasets reduces BadEncoder’s ASR to 8.21%,
albeit at the cost of a 3% drop in accuracy. This demonstrates
that our method does not strictly depend on the assumed clean
data, yet clean samples from the original data distribution
better highlight the superiority of our approach.

3) Effect of batch_size: In SSL, the purpose of training
on samples is to extract high-quality representations of the
samples themselves. Therefore, the potential impact of dif-
ferent batch sizes on backdoor mitigation methods remains
unknown, especially with the support of a small amount of
clean data. To address this, we set the batch sizes to commonly
used values of 32, 64, 128, 256, and 512. Table. XI illustrates
the detailed results of this parameter’s influence. Specifically,
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Fig. 4: Impact of holding rate on three datasets.

during the experimental process, batch size indeed has a
significant impact on training duration, but it does not greatly
disturb the performance of the method. Given the unique
context of SSL, we do not recommend using larger batch
sizes for training, as it burdens device memory and leads to
signs of decreased model performance. For instance, at a batch
size of 64, the model can maintain an accuracy of 87.52%
on the CIFAR-10 dataset even under BadEncoder, while with
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Fig. 5: Impact of model types on four attack methods.

TABLE XI: Effect of batch size.

. W/O Def SSLDefender
Batch-Size
ACC ASR ACC ASR
32 85.59 99.36 84.81 (10.78) 1.11 (198.25)
64 87.52 99.30 87.58 (10.06) 1.12 ({98.18)
128 83.20 98.99 84.08 (10.88) 1.89 (197.10)
256 86.52 99.34 86.51 ({0.01) 0.68 (198.66)
512 84.01 99.09 84.63 (10.62) 1.37 (197.72)

a batch size of 512, this accuracy drops to 84.01%. Testing
after backdoor mitigation also demonstrates similar outcomes.
The robustness of our method to training batch sizes has been
proven. Nevertheless, due to constraints, we suggest training
models with a batch size of 256 to strike a balance between
ACC and ASR.

4) Impact of Model Types: Due to the specificity of the
scenarios, different models imply “scratch pre-training”, hence
in prior related studies, researchers typically fix a model archi-
tecture. This approach does not align with the universality we
seek for our defense method. We validated our method on four
widely used models in this field: ResNet-18, ShuffleNet-V2,
MobileNet-V2, Restnet-34. As shown in Figure. 5, even under
complex model architectures and diverse backdoor attacks,
our method demonstrates robustness. Overall, when subjected
to various attack scenarios, the ASR of all four models
consistently remains below 9%. These results demonstrate the
model-agnostic nature of our method, highlighting its robust
generalizability across different model architectures.

VI. CONCLUSION AND DISCUSSION

In this paper, we propose SSLDefender, a feasible and ef-
fective backdoor mitigation method in SSL. SSLDefender can
conveniently alleviate the negative impacts of backdoor attacks
through a simple strategy of knowledge distillation-guided
unlearning. Extensive experiments validate that SSLDefender
can counter the most advanced self-supervised backdoor at-
tacks with negligible performance degradation and outper-
forms SOTA defense methods.Although we can ensure the
effectiveness of the mitigation method on surrogate datasets,
the outstanding performance of our method relies on the
assumption of a small amount of clean data. In future work,
we will continue to explore generating clean data using
adversarial samples to achieve a “Data-free” implementation,

addressing the key pain point of our method. Furthermore, the
underlying mechanisms of SSLDefender, which utilize mutual
information maximization for trigger recovery and knowledge
distillation-guided unlearning, have extension potential beyond
traditional convolutional networks in self-supervised visual
tasks. For example, adapting our framework to Vision Trans-
formers (ViT) may enhance backdoor defenses in transformer-
based architectures, where self-attention mechanisms might
introduce unique backdoor trigger vulnerabilities. Similarly,
applying similar concepts to the Natural Language Processing
(NLP) domain, such as defending against backdoor attacks in
large language models or text-based self-supervised learning,
represents a promising direction. However, this remains an
entirely new research direction that warrants thorough explo-
ration, as differences in data modalities and model architec-
tures may require significant adjustments to ensure efficacy
and generalization.
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