

# SSLDefender: Backdoor Defense in Self-Supervised Learning via Distillation-guided Unlearning

Jiale Zhang, *Member, IEEE*, Wanquan Zhu, Kai Wang, Chengcheng Zhu, Xiaobing Sun, *Member, IEEE*, Weizhi Meng, *Senior Member, IEEE*, and Xiapu Luo

**Abstract**—Self-supervised learning utilizes unlabelled data to train encoders, acquiring high-quality representations of input data, significantly advancing the field of computer vision. However, recent studies have demonstrated that self-supervised learning suffers from numerous adversarial attacks. Among them, backdoor attack is one of the focal issues, where downstream classifiers inherit the backdoor behavior of the pre-trained encoder. Existing defense methods against backdoor attacks primarily focus on supervised learning, which heavily relies on labeled data and cannot be directly migrated to self-supervised scenarios. Furthermore, defense methods for self-supervised backdoor aims to separate poisoned samples on assumed small-scale datasets and retraining to obtain a clean encoder. However, these approaches are useless against encoders that have been implanted with a backdoor. To address these issues, we propose SSLDefender, a novel image-based backdoor mitigation method specially designed for self-supervised learning, which can remove backdoor attributes directly from the backdoor encoder. Specifically, we employ a trigger recovery method based on mutual information maximization to efficiently obtain trigger that resembles the target backdoor’s influence. Additionally, we design a distillation-guided unlearning strategy to purify backdoor features steadily and ensure the retention of clean knowledge to prevent over-forgetting. Extensive experimental evaluations on six benchmark datasets demonstrate that SSLDefender can successfully reduce the attack success rate of Badencoder to around 2% while maintaining high model accuracy on the main task. Its performance surpasses state-of-the-art methods.

**Index Terms**—Self-supervised learning, Backdoor attacks, Trigger recovery, Knowledge distillation, Unlearning.

## I. INTRODUCTION

Self-supervised learning (SSL) is a machine learning paradigm that leverages unlabeled data for training, eliminating the dependency on annotated samples [1]–[3]. It has exhibited substantial promise across diverse domains, including computer vision [4], [5] and natural language processing [5], [6]. In contrast to traditional supervised learning [7], SSL aims to acquire knowledge from the data itself, obtain high-quality representations of the data, and construct a pre-encoder to enable downstream tasks [8]. However, existing research has indicated that SSL is susceptible to the threat of backdoor attacks [9].

J. Zhang and W. Zhu contributed equally to this work.

J. Zhang, W. Zhu, K. Wang, C. Zhu, and X. Sun are with the School of Information Engineering, Yangzhou University, Yangzhou, China, 225127 (e-mail: {jialezhang,xbsun}@yzu.edu.cn; {MX120230578,MZ120241054,MX120220554}@stu.yzu.edu.cn).

W. Meng is with the School of Computing and Communications, Lancaster University, United Kingdom (e-mail: weizhi.meng@ieee.org).

X. Luo is with the Department of Computing, The Hong Kong Polytechnic University, Hong Kong (e-mail: csxluo@comp.polyu.edu.hk).

J. Zhang and C. Zhu are the corresponding authors.

In order to embed and activate backdoors without directly manipulating labels, the implementation of backdoor attacks in SSL differs from supervised learning. In supervised learning, attackers establish a strong correlation between the trigger and the target label in a low-dimensional label space to carry out backdoor attack [10]. However, in SSL, each pre-trained encoder only outputs embedded features of input data, and the prediction process relies on downstream classifiers. Therefore, attackers in SSL generate similar embeddings for all inputs containing triggers and the target class. As a result, any downstream classifier constructed based on a backdoor encoder will incorrectly classify inputs with similar triggers into the same target class [11]. As illustrated in Figure.1, encoders trained under supervised learning rely on label guidance to classify any input carrying triggers into the target label predetermined by the attacker. In SSL, the attackers indirectly influence the label space solely through the form of feature representations, directly linking the trigger pattern to the target class in the label space [12].

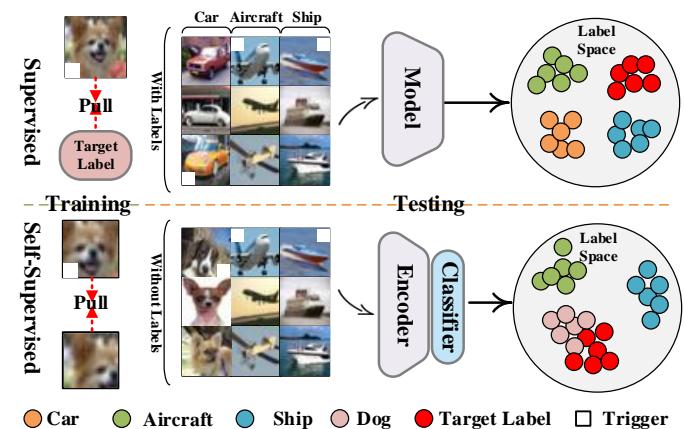


Fig. 1: Comparison of supervised and self-supervised backdoor attacks.

To defend against backdoor attacks in SSL, researchers have explored two directions for solutions: backdoor detection and backdoor mitigation. ① Backdoor detection methods in SSL attempt to define the backdoor trigger as a constraint problem and distinct the existence of the backdoor for the target encoder by comparing the size of the inverted trigger with an empirical threshold [13]. However, discarding a pre-trained encoder incurs significant costs in SSL. Consequently, while backdoor detection method can preemptively identify backdoors, it is powerless to mitigate the malicious impact

72 of this attack [14]. ②Backdoor mitigation methods aim to  
 73 break the correlation between the trigger and the target label,  
 74 thereby preventing the encoder from being compromised by  
 75 the backdoor attack and ensuring its normal functionality. On  
 76 the one hand, in SSL, some methods like PatchSearch [15]  
 77 and SSL-Cleanse [15] employ clustering-based approaches to  
 78 separate poisoned samples and retrain a clean encoder on clean  
 79 samples. Additionally, some methods based on self-supervised  
 80 knowledge distillation perform neural attention distillation by  
 81 fine-tuning the target encoder and obtaining a purified encode  
 82 [16]. On the other hand, in supervised learning, researchers  
 83 have attempted various methods such as fine-tuning [17],  
 84 neuron cleansing (NC) [18], adversarial neuron pruning (ANP)  
 85 [19], model connection repair (MCR) [20], neuron attention  
 86 distillation (NAD) [21], self-attention distillation (SAGE) [22],  
 87 and unlearning [23] to eliminate the impact of backdoors.

**Motivation:** However, existing defense methods have the  
 88 following limitations in addressing backdoor attacks in SSL:  
 89 1) Backdoor mitigation methods in supervised learning rely on  
 90 label guidance and correction, making the model robust against  
 91 attacks. However, simply transferring supervised backdoor  
 92 defense methods, such as knowledge distillation, to the self-  
 93 supervised scenario is challenging due to the lack of given  
 94 labels, preventing this method from achieving the same per-  
 95 formance as in supervised learning. When the purified encoder  
 96 is transferred to downstream classification tasks, even if the  
 97 attack success rate is successfully suppressed, the accuracy  
 98 of the main task inevitably decreases. 2) Detection strategies  
 99 cannot remove the malicious impact of backdoor encoders.  
 100 Therefore, when performing downstream classification tasks,  
 101 classifiers trained based on this encoder will still retain the  
 102 original relationship between the trigger and the target label. 3)  
 103 In SSL backdoor mitigation, clustering-based methods rely on  
 104 an assumed small-scale dataset, purifying the dataset through  
 105 toxic sample filtering, and training a clean encoder. These  
 106 methods belong to data sanitization techniques, serving as a  
 107 defense against data poisoning before encoder training. They  
 108 are ineffective against pre-trained backdoor encoders, such as  
 109 the BadEncoder method, which maliciously modifies a clean  
 110 encoder. In summary, our exploration in this aspect raises a  
 111 fundamental yet profound question: *“How can we directly*  
 112 *purify a backdoor encoder while ensuring the accuracy of*  
 113 *downstream task classification?”*

**Challenges:** Purifying backdoors in the context of SSL  
 115 poses three challenges that need to be addressed: 1) how to  
 116 achieve ‘unlabeling’, i.e., breaking the limitations of label-  
 117 dependent backdoor defense methods to make them applicable  
 118 in SSL scenarios; 2) how to forget backdoor features by  
 119 maximizing the reduction of the backdoor’s impact on the  
 120 encoder; 3) how to ensure the performance of the target  
 121 encoder by minimizing the negative impact of defense methods  
 122 on the entire SSL process.

123 To this end, this paper proposes a distillation-guided un-  
 124 learning approach for backdoor mitigation, called SSLDe-  
 125 fender. It initially achieves trigger recovery without labels by  
 126 computing the embedding similarity of input sample pairs.  
 127 Subsequently, leveraging the recovered trigger, SSLDefender  
 128 employs the unlearning mechanism to mitigate the backdoor’s

129 impact. To ensure the accuracy of the primary task, a teacher  
 130 model is constructed to guide the training of the backdoor  
 131 encoder. Our contributions can be summarized as below.

- 132 • **A Novel Backdoor Defense Method:** to mitigate the in-  
 133 fluence of backdoors on pre-trained encoders, our SSLDe-  
 134 fender breaks the connection between trigger features and  
 135 target label through distillation-guided unlearning.
- 136 • **Trigger Recovery:** to quickly acquire knowledge of  
 137 the backdoor and carry out subsequent mitigation tasks,  
 138 we employ a label-independent trigger recovery method  
 139 based on mutual information maximization.
- 140 • **Distilled-Guided Unlearning:** to ensure encoder perfor-  
 141 mance while achieving superior defensive performance,  
 142 we propose a strategy called distilled-guided unlearning.  
 143 The pre-trained encoders not only counter backdoor at-  
 144 tacks through unlearning but also maintain the accuracy  
 145 of the primary task via distillation learning, thereby  
 146 achieving a robust balance between the two objectives.
- 147 • **Comprehensive Evaluation:** we conduct experiments on  
 148 SSLDefender with six benchmark datasets. The exper-  
 149 imental results demonstrate that our SSLDefender can  
 150 effectively mitigate the backdoor in the encoder while  
 151 maintaining high performance in downstream classifica-  
 152 tion tasks.
- 153

154 The remainder of this paper is organized as follows. In  
 155 Section II, we discuss the background and related works. In  
 156 Section III, we describe the problem definition and the threat  
 157 model. In Section IV, we introduce our proposed SSLDefender  
 158 method. Section V demonstrates the performance evaluation  
 159 results. Finally, Section VI concludes this paper.

## II. BACKGROUND AND RELATED WORK

### A. Self-supervised Learning

160 Self-supervised learning has attracted widespread attention  
 161 and implementation because its remarkable performance does  
 162 not rely on sample labels and involves extensive data training  
 163 [24]–[29]. Self-supervised learning models typically consist of  
 164 two components: a high-quality encoder  $f$  and a downstream  
 165 classifier  $g$ , forming a final model  $h : f \circ g$  together. The  
 166 encoder constructs a function  $f : X \rightarrow E$ , where  $X$  is the  
 167 input space containing different sample inputs, and  $E$  is the  
 168 embedding space containing corresponding feature vectors.  
 169 Contrastive learning (e.g., SimCLR [30], SimCLRV2 [31],  
 170 MoCo [32] and CLIP [33]) has achieved outstanding results  
 171 among numerous training methods for self-supervised learning  
 172 encoders. Contrastive learning forms similar instance pairs  
 173 for inputs, making positive samples closer to each other  
 174 and negative samples farther apart in the embedding space.  
 175 Enhanced versions from the same input are considered positive  
 176 samples, while enhanced versions from different samples are  
 177 considered negative. Another approach, BYOL [34], trains  
 178 only with positive samples in the absence of negative samples.  
 179 The trained encoder can be used for various downstream tasks.

### B. Backdoor attacks in SSL

180 Self-supervised learning aims to train encoders from large  
 181 amounts of uncurated data, which opens up backdoor op-  
 182

portunities. Encoders embedded with backdoors can deceive downstream classifiers by leveraging their unique trigger patterns, leading to erroneous judgments when receiving inputs carrying the triggers. However, the downstream classifiers perform normally on clean inputs. Saha et al. [9] introduced triggers into randomly cropped augmented views, bringing them closer to each other in the embedded space compared to other views with the same augmentation, enabling the encoder to learn the association between triggers and target classes. Building upon this, Li et al. [35] ensured the concealment of triggers by employing Discrete Cosine Transform (DCT) [36] to define spectral perturbations that are invisible in the chromatic space. Unlike image patches, spectral triggers exhibit enhanced resistance, demonstrating higher effectiveness and evasion during testing. Zhang et al. [37] theoretically derived the optimal size for background images, and the best positions for reference objects and triggers, to create optimal poisoned images and address some limitations of the approaches above. Jia et al. [38] constructed BadEncoder to generate similar feature vectors for reference inputs (target classes from downstream tasks) and shadow datasets (carrying triggers), thereby transferring the influence of the poisoned encoder to any arbitrary downstream classifier. In the multimodal domain, Carlini et al. [39] built two encoders: an image encoder and a text encoder, projecting corresponding image-text inputs into the same embedding space and generating similar embedding vectors. Effective attacks could be executed by controlling only 0.01% of the data. However, Tao et al. [40] argued that the critical issue with existing attack methods lies in the out-of-distribution nature of poisoned data, which can be easily detected by advanced detection techniques. To address this, they proposed DRURE, a distribution-preserving backdoor attack that reduces the distribution distance between poisoned samples and clean data [41], [42], transforming poisoned samples into in-distribution data, and achieving stealthy attacks that are difficult to detect.

### 221 C. Backdoor Defense in SSL

222 Existing defense methods against backdoor attacks in SSL  
 223 primarily include two approaches: backdoor detection and  
 224 backdoor mitigation. DECREE [13] was a typical model-  
 225 centric backdoor detection method that performed trigger  
 226 recovery on the target encoder by minimizing the similarity  
 227 between pairs of samples embedded with triggers generated  
 228 from random noise. If the size of the inverted trigger was  
 229 smaller than a given threshold, the encoder was identified  
 230 as a backdoor encoder. Otherwise, it was considered normal.  
 231 However, this passive detection method can only determine  
 232 the presence of a backdoor threat in the model. Still, it cannot  
 233 eliminate the negative impact of the backdoor attack on the  
 234 target model.

235 In contrast, backdoor mitigation methods aim to eliminate  
 236 triggers and cleanse the backdoored model by severing the  
 237 strong correlation between triggers and target labels. Data-  
 238 level backdoor mitigation methods can generally be divided  
 239 into three parts: 1) identifying poisoned samples, 2) removing  
 240 poisoned samples, and 3) retraining on clean samples. Ex-

amples of such methods include PatchSearch [15] and SSL-Cleanse [43]. To the best of our knowledge, in the latest efforts to mitigate SSL backdoors, Bie et al. [16] employed a knowledge distillation approach on the backdoor encoder. They adapted the method used in NAD [21] from supervised learning and transferred it to SSL. Their mitigation of Badencoder in non-targeted attack scenarios proved to be highly effective, demonstrating superior performance. However, their focus was not on real-world scenarios of SSL but rather on extensive comparisons with existing backdoor attacks in supervised learning, overlooking the attacks in existing SSL. Furthermore, as this method did not provide actual code, we could only replicate it based on the NAD method.

## 254 III. THREAT MODEL AND DEFENSE GOAL

### 255 A. Threat Model

256 We focus primarily on malicious setups in image encoders,  
 257 where attackers employ illicit means to inject carefully de-  
 258 signed backdoor into pre-trained encoders, thereby disrupting  
 259 the correct classification by downstream classifiers relying  
 260 on these encoders. We present our threat model from the  
 261 perspectives of the attacker and defender. Based on recent  
 262 backdoor attack methods, we categorize the capabilities of  
 263 attacker and defender as follows:

- 264 • An attacker can construct a backdoor encoder using any  
 265 means, including crafting poisoned samples and compro-  
 266 mising clean encoders. The attacker can balance attack  
 267 effectiveness and evasion, ensuring that backdoor samples  
 268 exhibit high attack success rates on downstream classifi-  
 269 cation tasks without affecting the prediction accuracy of  
 270 clean samples.
- 271 • The defender can only passively obtain backdoor encoder  
 272 and remain unaware of the backdoor knowledge. Further-  
 273 more, apart from holding a small portion of unlabeled  
 274 clean data, the defender have no access to any other  
 275 relevant data.

### 276 B. Defense Goals

277 In light of the specific capabilities of the attacker, we  
 278 address our defense objectives in a targeted manner from two  
 279 aspects: **Defense Effectiveness**: SSL-Defender can effectively  
 280 purify the backdoor encoder, remove backdoor features, and  
 281 sever the strong connections between triggers and target labels.  
 282 When this encoder is transferred to downstream classification  
 283 tasks, malicious inputs carrying triggers cannot force the  
 284 classifier to produce misclassifications, significantly reducing  
 285 the attack success rate. **Model Robustness**: The prediction  
 286 accuracy on clean inputs should be comparable to or slightly  
 287 lower than the accuracy before SSL-Defender training. In other  
 288 words, within an acceptable range, the accuracy of the main  
 289 task should be maintained.

290 Additionally, we evaluate the defense objectives using two  
 291 primary criteria: the Attack Success Rate (ASR) on backdoor  
 292 samples and the Model Accuracy (ACC) on normal samples.

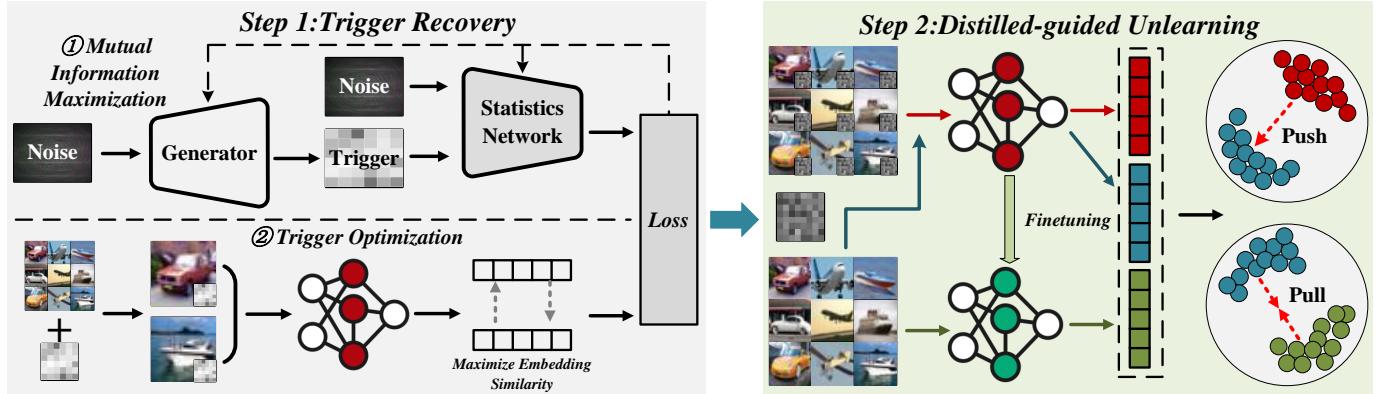


Fig. 2: Framework of the proposed SSLDefender. “Red” and “Blue” represent the poisoned and clean outputs of the student model, respectively, while “Green” represents the clean output of the teacher model.

293

#### IV. PROPOSED DEFENSE METHOD

##### 294 A. Overview

295 Figure. 2 outlines our proposed framework of SSLDefender, 331  
 296 designed specifically for backdoor defense in SSL. SSLDefender 332  
 297 instructs the target shadow encoder to perform trigger 333  
 298 recovery training based on mutual information maximization 334  
 299 to obtain optimized triggers. This trigger, with approximate 335  
 300 influence as set by the attacker’s backdoor, effectively 336  
 301 captures knowledge of existing maliciously impactful 337  
 302 backdoor attributes. Furthermore, to leverage the acquired 338  
 303 backdoor knowledge and cleanse model’s backdoor attributes, 339  
 304 SSLDefender introduces distilled-guided unlearning. 340

##### 305 B. Trigger recovery

306 Trigger recovery has been widely used in supervised learning. 341  
 307 Such methods inspired by the intuition of backdoor 342  
 308 attacks, where the modification by attackers for misclassifying 343  
 309 target labels is much smaller compared to clean labels, have 344  
 310 traversed model labels and optimized trigger patterns under 345  
 311 assumed labels to find the minimal trigger that misclassifies 346  
 312 other labels as the assumed label. Building on this, outlier 347  
 313 detection algorithms are employed to filter out true triggers 348  
 314 and their corresponding target labels. However, this method 349  
 315 relied on explicit labeling for target optimization and is not 350  
 316 applicable to self-supervised learning. Feng et al. [13], based 351  
 317 on observations of backdoor trigger patterns where samples 352  
 318 carrying the same trigger exhibit highly similar embeddings, 353  
 319 proposed a new solution by guiding trigger optimization 354  
 320 through maximizing embedding similarity. However, they are 355  
 321 limited to setting a threshold in this optimization process, 356  
 322 whereby if the value exceeds this threshold, the encoder is 357  
 323 deemed to be carrying a backdoor. Although this method can 358  
 324 accurately determine the presence of a backdoor, it cannot 359  
 325 acquire knowledge of the backdoor, thus impeding mitigation 360  
 326 efforts. We have achieved a more lightweight and precise 361  
 327 trigger through a trigger recovery strategy based on mutual 362  
 328 information maximization.

329 Firstly, we formalize trigger injection using the following 363  
 330 equation:

$$Mix(x_i, \Delta) = x'_i, \quad (1)$$

When injecting a backdoor into the target encoder, we observed that the model learns backdoor knowledge much faster than clean data. Even on datasets that are challenging to converge, the model tends to converge more easily towards backdoor data. In causal reasoning, this phenomenon is explained as the attacker opening a false “shortcut” between the input images and the predicted labels. If the model has already learned the relevance of this false path, then when triggers are attached, their predictions will switch to the target label. Additionally, the model will generate highly similar feature embeddings for any input embedding such triggers. Therefore, we guide the process of pre-set trigger optimization by creating poisoned samples and computing the similarity between them to restore triggers that approximate the original backdoor influence and lead to optimal misclassification by the model. Specifically, for a randomly generated noise  $\delta$ , we use the generation model  $G$  to generate the optimized trigger  $\Delta$ . Assuming a clean shadow dataset  $D_{shadow}$ , we embed the optimized trigger through the mixing function  $M(\cdot)$  to construct the poisoned dataset  $D'_{shadow}$ . Typically, in SSL, cosine similarity is employed to measure the similarity between two embedding samples. Formally, given two inputs  $x_p$  and  $x_q$ , the cosine similarity between their corresponding trigger embedding samples can be represented as:

$$L_{p,q}(F, \Delta) = -\cos(F(Mix(x_p, \Delta)), F(Mix(x_q, \Delta))), \quad (2)$$

Moreover, to achieve high similarity between samples and approximate search in dense regions of the backdoor model embedding space, it is necessary to sample a batch of input samples to stabilize the search process. The calculation of the average pair similarity within batch  $B$  is as follows:

$$L_{cos} = \frac{1}{B^2} \sum_{p=1}^B \sum_{q=1}^B \mathcal{L}_{p,q}, \quad (3)$$

the loss of  $L_{cos}$  serves as a constraint during the trigger optimization process, ensuring that samples carrying the trigger to

362 be optimized tend to cluster in dense regions of the embedding  
 363 space.

364 However, this typical generative model has been proven  
 365 to struggle in estimating the differential entropy in high-  
 366 dimensional trigger patterns, leading to a decline in model  
 367 performance [44]. Therefore, we introduce the maximization  
 368 of mutual information to address this issue. Mutual information  
 369 is a measure of dependency between random variables  
 370 based on Shannon entropy. The mutual information between  
 371  $X$  and  $Z$  can be understood as the reduction in uncertainty  
 372 of  $X$  given  $Z$ . The calculation of their mutual information  
 373 through the Mutual Information Neural Estimator (MINE) can  
 374 be represented as:

$$I(X; Z) = H(X) - H(X | Z), \quad (4)$$

375 where  $H$  is the Shannon entropy, and  $H(X | Z)$  is the  
 376 conditional entropy of  $Z$  given  $X$ .

377 Specifically, we employ the enhanced algorithm of Mutual  
 378 Information Neural Estimator (MINE), known as Maximum  
 379 Entropy Staircase Approximation (MESA), to approximate  
 380 the unknown trigger distribution by integrating a set of sub-  
 381 models  $G = \{G_1, G_2 \dots G_n\}$ , where each sub-model  $G_i$  learns  
 382 a portion of the trigger  $\Delta_i$ . Additionally, we uniformly select  $n$   
 383 thresholds  $\epsilon = \{\epsilon_1, \epsilon_2 \dots \epsilon_n\}$  from  $[0, 1]$ , where each threshold  
 384  $\beta_i$  corresponds to a sub-model  $G_i$  and an information estimator  
 385  $I_{T_i}$  parameterized by a statistical network  $T_i$ . Consequently,  
 386 the final optimized loss function becomes:

$$\min_{\theta_g} \mathcal{L}_t = \sum_{i=1}^n (\max(0, \epsilon_i - L_{cos}) - \eta I_{T_i}(G_i(\delta); \delta')). \quad (5)$$

387 We compute the mutual information between the randomly  
 388 initialized noise  $\delta'$  and the optimized trigger through a statis-  
 389 tical network. The process of maximizing mutual information  
 390 guides the optimization iterations to be more expedient and  
 391 effective. Our method aims to expedite the restoration of the  
 392 most influential backdoor by seeking the most similar triggers.  
 393 This conclusion will be verified in Section IV. The complete  
 394 process of trigger recovery is shown in Algorithm 1.

### 395 C. Distilled-guided unlearning

396 In deep learning, unlearning means that the data owners  
 397 wish the model owner to erase the influence of their data  
 398 on the model and request that the model owner no longer  
 399 use this data for training. For defenders, we also aim  
 400 to utilize this technique to erase backdoor features to purify  
 401 the model. The most effective and straightforward method  
 402 for unlearning is to retrain the model using a training set  
 403 that does not include the supplier's data. However, in SSL  
 404 scenarios, where the user aims to obtain an encoder that  
 405 provides high-quality representations of the data, extensive  
 406 training on unlabeled data is necessary. The computational  
 407 cost of retraining becomes prohibitive. Therefore, we seek a  
 408 method to conduct unlearning on backdoor knowledge for the  
 409 backdoor encoder.

410 Considering the existing trigger patterns, the next step for  
 411 SSLDefender is to leverage the recovered trigger to eliminate

---

### Algorithm 1: Trigger recovery

---

**Input:** Shadow dataset

$$D_{shadow} = \{x_1, x_2, \dots, x_n\}, \text{generation model}$$

$$G = \{G_1, G_2, \dots, G_n\}, \text{thresholds}$$

$$\epsilon = \{\epsilon_1, \epsilon_2, \dots, \epsilon_n\} \in [0, 1], \text{random noise } \delta \text{ and } \delta'$$

**Output:** Optimized trigger  $\Delta$

Formalize trigger injection;

**for** each sample  $x_i \in D_{shadow}$  **do**

$$Mix(x_i, \Delta) = x'_i;$$

$$D'_{shadow} \leftarrow D_{shadow};$$

**end**

**for** any sample  $x_p$  and  $x_q \in D'_{shadow}$  **do**

$$L_{p,q} = -\cos(E(Mix(x_p, \Delta)), E(Mix(x_q, \Delta)));$$

// computer the similarity between  
 two embedding sample;

$$L_{cos} = \frac{1}{N^2} \sum_{p=1}^N \sum_{q=1}^N L_{p,q};$$

// calculate of the average pair  
 similarity within batch  $N$ ;

$$\mathcal{L}_{total} =$$

$$\sum_{i=1}^n (\max(0, \epsilon_i - L_{cos}) - \eta I_{T_i}(G_i(\delta); \delta'));$$

// final optimized loss function;

**end**

Iterative training until convergence;

Return  $\Delta$ ;

---

412 malicious trigger functionalities. To maximize the use of  
 413 limited clean data, we employ a distillation-guided unlearning  
 414 strategy through a lightweight teacher-student framework for  
 415 unlearning. The objective of this strategy is to effectively  
 416 forget malicious features while ensuring model performance.  
 417 In a successful SSL backdoor attack, attackers tend to modify  
 418 a clean encoder to generate similar embeddings for all  
 419 inputs containing triggers and target classes. Consequently,  
 420 any downstream classifier built on this encoder backbone will  
 421 erroneously classify inputs with similar triggers into the same  
 422 target class. Based on the above observation, a direct defense  
 423 intuition of ours is to force trigger inputs and original inputs of  
 424 the same sample to have similar distributions, thereby weak-  
 425 ening the effectiveness of backdoor attacks. Specifically, we  
 426 embed all samples from the limited clean dataset  $D_{clean}$  with  
 427 the recovered trigger to construct a poisoned dataset  $D_{poised}$ .  
 428 For a clean sample  $x$  and its corresponding poisoned sample  
 429  $x'$ , both are considered inputs for the student model. By  
 430 aligning their embedding generation operations, we implicitly  
 431 drive the student model to eradicate the backdoor.

432 However, this brute-force operation inevitably leads to a  
 433 decline in model performance. While minimizing the differ-  
 434 ence between trigger and clean input distributions, it causes  
 435 a shift in the distribution of clean data as well. Therefore,  
 436 we fine-tune the student model to obtain a relatively clean  
 437 teacher model that guides the student model in preserving  
 438 clean knowledge. The teacher model only receives clean data  
 439  $x$  as input. We align the clean soft targets outputted by the  
 440 teacher model with the outputs of the student model for the  
 441 same inputs. The clean and useful information from the teacher  
 442 model is passed to the student to aid in forgetting trigger

**Algorithm 2:** Distilled-guided unlearning

---

**Input:** clean dataset  
 $D_{clean} = \{x_1, x_2, \dots, x_n\}$ , recovered trigger  $\Delta$ ,  
Hyperparameter  $\alpha$  and  $\beta$ .

**Output:** Purified encoder  $f$ .  
Formalize trigger injection;  
**Perform iterations for mutual information transfer:**

```

for each sample  $x_i \in D_{clean}$  do
|  $D_{poised} \leftarrow D_{clean} + \Delta$ ;
end
for each sample  $x_i \in D_{clean}$  and  $x'_i \in D_{poised}$  do
|  $z_c \leftarrow f(x)$ ;  $z_b \leftarrow f(x')$ ;
|  $\tilde{W}_2(\mathbb{P}_c^S, \mathbb{P}_b^S) = [\int_{\omega \in \Omega} W_2^2(\mathbb{P}_c^\omega, \mathbb{P}_b^\omega) d\omega]^{\frac{1}{2}}$ ;
| // The discrepancy between the trigger input
| and clean input of the student model;
end
for each sample  $x_i \in D_{clean}$  do
|  $\tilde{W}_2(\mathbb{P}_c^S, \mathbb{P}_c^T) = \left( \frac{1}{M} \sum_{m=1}^M \int_0^1 \|F_S^m(z_c) - F_T^m(z_c)\|_2 dz \right)^{\frac{1}{2}}$ ;
| // The discrepancy between the clean input of
| the teacher model and the student mode;
end
Update model parameters to min the loss;
 $L_{total} = \alpha \tilde{W}_2(\mathbb{P}_c^S, \mathbb{P}_b^S) + \beta \tilde{W}_2(\mathbb{P}_c^S, \mathbb{P}_c^T)$ ;
Return Purified encoder  $f$ .
```

---

443 features. Benefiting from this, the clean output distribution  
444 of the student model closely aligns with the teacher model,  
445 which can mitigate the adverse effects of over-forgetting on  
446 normal samples.

447 We utilize the Wasserstein distance to compute differences  
448 between different distributions [45]. Generative modeling [46]  
449 is the task of learning the probability distribution from a given  
450 dataset  $D = \{x\}$ , where samples  $x \sim \mathbb{P}_b$  are drawn from  
451 an unknown data distribution  $\mathbb{P}_b$ . Formally, the Wasserstein-p  
452 distance between distributions  $\mathbb{P}_c$  and  $\mathbb{P}_b$  is defined as:

$$W_p(\mathbb{P}_c, \mathbb{P}_b) = \inf_{\gamma \in \Pi(\mathbb{P}_c, \mathbb{P}_b)} (\mathbb{E}_{(x,y) \sim \gamma} [|x - y|^p])^{\frac{1}{p}}, \quad (6)$$

453 Given the constraint of only being able to utilize a small  
454 portion of the test dataset, to ensure that the model fully  
455 extracts all limited knowledge, we directly employ the feature  
456 representations of the data. This also implies that our  
457 data is high-dimensional. Estimating the Wasserstein distance  
458 on high-dimensional data is not a trivial task. To alleviate  
459 computational complexity, we adopt a sliced version of the  
460 Wasserstein-2 distance [47], [48], which requires estimating  
461 distances between one-dimensional distributions, thus enhancing  
462 efficiency. Therefore, the discrepancy between the trigger  
463 input and clean input of the student model can be defined as:

$$\begin{aligned} \tilde{W}_2(\mathbb{P}_c^S, \mathbb{P}_b^S) &= \left[ \int_{\omega \in \Omega} W_2^2(\mathbb{P}_c^\omega, \mathbb{P}_b^\omega) d\omega \right]^{\frac{1}{2}} \\ &= \left( \frac{1}{M} \sum_{m=1}^M \int_0^1 \|F_S^m(z_c) - F_S^m(z_b)\|_2 dz \right)^{\frac{1}{2}}, \end{aligned}$$

464 Similarly, the distribution discrepancy between the clean  
465 inputs of the teacher model and the student model is:

$$\tilde{W}_2(\mathbb{P}_c^S, \mathbb{P}_c^T) = \left( \frac{1}{M} \sum_{m=1}^M \int_0^1 \|F_S^m(z_c) - F_T^m(z_c)\|_2 dz \right)^{\frac{1}{2}}, \quad (7)$$

466 By employing the aforementioned procedure for unlearning,  
467 the overall loss constraint is determined by minimizing the  
468 differences between two pairs of distributions, which can be  
469 expressed as:

$$L_{total} = \alpha \tilde{W}_2(\mathbb{P}_c^S, \mathbb{P}_b^S) + \beta \tilde{W}_2(\mathbb{P}_c^S, \mathbb{P}_c^T). \quad (8)$$

470 The complete process of distilled-guided unlearning is  
471 shown in Algorithm 2.

## V. PERFORMANCE EVALUATION

472 In this section, we conduct multiple experiments of SSLDefender  
473 on four real-world datasets under four SOTA backdoor  
474 attack methods in SSL. To evaluate the effectiveness of our  
475 proposed method, we aim to answer three key research ques-  
476 tions:

- **RQ1** (Defense Effectiveness): Can our proposed method conduct effective defense against the four SOTA backdoor attacks on different datasets?
- **RQ2** (Ablation Analysis): Is SSLDefender still effective in the elimination of trigger recovery or distillation-guided unlearning methods?
- **RQ3** (Parameter Sensitivity Analysis): What is the effect of SSLDefender in different hyperparametric settings?

## A. Experimental Settings

486 1) *Dataset*: SSLDefender is evaluated on five widely-used  
487 benchmark datasets: CIFAR-10, STL-10, GTSRB, SVHN, and  
488 ImageNet. The basic statistics of each dataset are shown in  
489 Table I, including the number of training and testing samples,  
490 sample categories, and individual sample sizes. Particularly,  
491 SVHN is a dataset composed of noisy samples, where some  
492 distractor digits are distributed around the primary digit rep-  
493 resented by the sample.

494 2) *Attack Methods*: We investigate five state-of-the-art  
495 (SOTA) backdoor attack methods in SSL: SSL-backdoor em-  
496 beds image patches into one view of the contrastively learned  
497 enhanced images to establish a strong correlation between  
498 triggers and target labels. PoisonedEncoder poisons specific  
499 inputs, and combines target and reference inputs to create  
500 poisoned samples. CorruptEncoder carefully crafts poisoned  
501 images with two randomly cropped views that have a high  
502 probability of including the reference object and trigger. In

TABLE I: Dataset statistics.

| Dataset       | Training images | Testing images | Classes | Size      |
|---------------|-----------------|----------------|---------|-----------|
| CIFAR-10      | 50,000          | 10,000         | 10      | 32x32x3   |
| STL-10        | 5,000           | 8,000          | 10      | 96x96x3   |
| GTSRB         | 39,200          | 12,600         | 43      | 32x32x3   |
| SHVN          | 73,257          | 26,032         | 10      | 32x32x3   |
| Tiny-ImageNet | 128,116         | 5,000          | 100     | 224x224x3 |

504 contrast to the aforementioned methods, BadEncoder constructs a backdoor encoder using reference inputs to transfer  
 505 to different downstream classification tasks.  
 506

507 *3) Defense Baselines:* We select four backdoor defense  
 508 methods in SSL, i.e., DECREE, PatchSearch, SSL-Cleanse,  
 509 and SSL-KD. Here, DECREE belongs to backdoor detection,  
 510 while the other methods are categorized as backdoor  
 511 mitigation. PatchSearch and SSL-Cleanse are clustering-based  
 512 data filtering and retraining methods. SSL-KD is a mitigation  
 513 method for poisoned encoders.

514 *4) Evaluation Metrics:* We evaluate the performance of  
 515 defense mechanisms with two metrics: attack success rate  
 516 (ASR), which is the ratio of backdoored samples misclassified  
 517 as the labels specified by attackers, and the accuracy of the  
 518 main classification task on normal samples (ACC).

519 *5) Implementation Details:* SSLDefender is assumed to be  
 520 able to access 5% of the clean data randomly selected from  
 521 the test set. For the unlearning process, we use the loss term  
 522  $B = 0.5$ , batch size  $B = 256$ , SGD as optimizer with  
 523 learning rate  $\eta = 0.001$ , and run for  $E = 500$  epochs. For  
 524 all the baseline attacks and defenses, we adopt the default  
 525 hyperparameters recommended by the corresponding papers.  
 526 Specifically, attacks have the common parameters: trigger size  
 527  $t$  and injection ratio  $\Phi$ . Unless otherwise mentioned, we set  
 528 the backdoor injection ratio to  $\Phi = 5\%$  and the trigger size  $t$   
 529 to 20%. We test the performance of SSLDefender as well as  
 530 other baselines five times and report the mean and standard  
 531 deviation results to eliminate the effects of randomness.

532 *6) Experimental Environment:* We implemented SSLDefender  
 533 in Python using the PyTorch framework. Our experimental  
 534 environment consists of 13th Gen Intel(R) Core(TM)  
 535 i7-13700KF, NVIDIA GeForce RTX 4070 Ti, 32GiB memory,  
 536 and Ubuntu 20.04 (OS).

### 537 B. RQ1: Backdoor Defense Performance

538 To answer RQ1, we evaluate the defense effectiveness and  
 539 model accuracy of SSLDefender under both targeted attacks  
 540 and untargeted attacks scenarios. In targeted attacks, we  
 541 compare the performance of SSLDefender against four self-  
 542 supervised backdoor attacks across three benchmark datasets  
 543 under three contrastive learning paradigms. We select the best  
 544 comparative training method to transform the method in su-  
 545 pervised learning and use it as a baseline to compare with our  
 546 method. The “before” column represents the original baseline  
 547 without any defense, and the best results are highlighted in  
 548 bold. In untargeted attacks, we train models on three different

549 downstream tasks and compare SSLDefender with the state-  
 550 of-the-art defense method SSL-KD to verify the superiority of  
 551 SSLDefender.

552 *1) Targeted attacks:* We evaluated the effectiveness of  
 553 defense against representative SSL backdoor attack methods  
 554 on benchmark datasets. For fair comparison, all attacks were  
 555 conducted using the same settings as the original work. The  
 556 results are summarized in Table. II. Overall, even under  
 557 different contrastive learning algorithms, SSLDefender signif-  
 558 icantly defends against four typical existing self-supervised  
 559 backdoor attacks, resulting in ASR below 9%, with only a  
 560 slight decrease in ACC.

561 Specifically, in all settings, BadEncoder exhibits the highest  
 562 attack effectiveness. For instance, when training the backdoor  
 563 model using the MoCo algorithm, it achieves an ASR of  
 564 99.61% on CIFAR-10, which is nearly a perfect attack method.  
 565 We analyze that this is due to the attacker manipulating the  
 566 clean encoder with a reference input and trigger to make the  
 567 sample carrying this trigger highly similar to the embedding  
 568 of the reference input, thus achieving an effective attack.  
 569 However, this aggressive manipulation, while demonstrating  
 570 significant attack effects, is highly vulnerable. Defenders only  
 571 need a few clean samples to retrain the backdoor encoder,  
 572 leading to a substantial reduction in ASR. Therefore, in the  
 573 same setting, we lower the ASR of this backdoor encoder  
 574 to 0.97%. Additionally, the bidirectional optimization we  
 575 employed ensures that the model’s original performance is not  
 576 compromised, resulting in a decrease of only 0.37% in ACC  
 577 in this setup. Even on Tiny-ImageNet, we achieve an ASR of  
 578 0.2% and kept the ACC loss within 5%.

579 *2) Comparing with Baselines:* The aforementioned exper-  
 580 iments demonstrated the superiority of the BYOL method  
 581 over other commonly used contrastive learning approaches.  
 582 Therefore, we adapt several well-established backdoor defense  
 583 methods from supervised learning, namely fine-tuning, fine-  
 584 pruning, neural cleanse, and NAD, into a label-free SSL  
 585 paradigm consistent with the BYOL training framework. Since  
 586 SSL-KD relies on downstream datasets to fine-tune the back-  
 587 door encoder, it is included in the discussion of untargeted  
 588 attacks. The comparative results between the baseline methods  
 589 and SSLDefender are presented in Table. III.

590 Through repeated experiments and cross-validation, it is  
 591 evident that fine-tuning significantly reduces the ASR across  
 592 all four attack methods. In particular, when defending against  
 593 SSL-Backdoor attacks on the STL-10 dataset, fine-tuning  
 594 achieved the best performance among all defense methods.  
 595 However, the use of only a small subset of the dataset for  
 596 fine-tuning cannot guarantee the preservation of the model’s  
 597 performance on its primary task. Moreover, our experiments  
 598 reveal that fine-tuning suffers from high variability, struggling  
 599 to strike a consistent balance between high ACC and low  
 600 ASR, resulting in unstable outcomes. The intuition behind  
 601 fine-pruning is to identify and remove low-activation neurons,  
 602 which are presumed to be backdoor-related. While this method  
 603 does suppress the success rate of backdoor activation, benign  
 604 neurons or their informative features may also be pruned,  
 605 inevitably leading to a significant drop in prediction accuracy.

606 Compared with these two approaches, Neural Cleanse(NC)  
 607

TABLE II: Performance of SSLDefender compared with baseline attacks on different pre-training datasets.

| Attack           | Pre-training Dataset | SimCLR                           |                  |                                  |                                 | MoCo                             |                  |                                  |                                 | BYOL                             |                  |                                  |                                 |
|------------------|----------------------|----------------------------------|------------------|----------------------------------|---------------------------------|----------------------------------|------------------|----------------------------------|---------------------------------|----------------------------------|------------------|----------------------------------|---------------------------------|
|                  |                      | Before                           |                  | After                            |                                 | Before                           |                  | After                            |                                 | Before                           |                  | After                            |                                 |
|                  |                      | ACC                              | ASR              | ACC                              | ASR                             | ACC                              | ASR              | ACC                              | ASR                             | ACC                              | ASR              | ACC                              | ASR                             |
| SSL-Backdoor     | CIFAR-10             | <b>77.04<math>\pm</math>2.59</b> | 27.93 $\pm$ 2.46 | 76.44 $\pm$ 2.23                 | <b>4.36<math>\pm</math>1.03</b> | <b>75.11<math>\pm</math>2.85</b> | 22.06 $\pm$ 2.57 | 72.99 $\pm$ 1.29                 | <b>5.00<math>\pm</math>3.50</b> | <b>89.40<math>\pm</math>2.51</b> | 30.93 $\pm$ 1.42 | 87.42 $\pm$ 1.79                 | <b>2.09<math>\pm</math>4.18</b> |
|                  | Tiny-ImageNet        | <b>69.22<math>\pm</math>3.41</b> | 30.12 $\pm$ 1.87 | 69.01 $\pm$ 2.55                 | <b>6.53<math>\pm</math>0.92</b> | <b>67.48<math>\pm</math>4.13</b> | 23.00 $\pm$ 2.06 | 67.05 $\pm$ 1.34                 | <b>4.88<math>\pm</math>3.67</b> | <b>69.81<math>\pm</math>0.78</b> | 36.97 $\pm$ 2.19 | 67.75 $\pm$ 1.24                 | <b>2.96<math>\pm</math>4.02</b> |
|                  | STL-10               | <b>68.00<math>\pm</math>1.76</b> | 36.71 $\pm$ 3.09 | 65.40 $\pm$ 0.88                 | <b>7.29<math>\pm</math>2.41</b> | <b>60.30<math>\pm</math>4.67</b> | 35.90 $\pm$ 1.23 | 56.00 $\pm$ 2.95                 | <b>8.20<math>\pm</math>0.54</b> | 70.82 $\pm$ 3.18                 | 36.95 $\pm$ 1.67 | <b>73.19<math>\pm</math>2.04</b> | <b>6.68<math>\pm</math>4.32</b> |
| Poisoned-Encoder | CIFAR-10             | <b>75.64<math>\pm</math>0.97</b> | 32.93 $\pm$ 2.58 | 73.68 $\pm$ 1.41                 | <b>1.19<math>\pm</math>3.75</b> | <b>75.40<math>\pm</math>2.19</b> | 23.31 $\pm$ 4.06 | 67.45 $\pm$ 0.73                 | <b>0.34<math>\pm</math>1.88</b> | <b>89.40<math>\pm</math>3.27</b> | 32.45 $\pm$ 0.65 | 88.73 $\pm$ 2.33                 | <b>0.79<math>\pm</math>1.09</b> |
|                  | Tiny-ImageNet        | 60.09 $\pm$ 4.51                 | 32.72 $\pm$ 1.37 | <b>61.72<math>\pm</math>0.82</b> | <b>4.57<math>\pm</math>2.96</b> | 59.88 $\pm$ 3.44                 | 26.04 $\pm$ 1.05 | <b>62.04<math>\pm</math>2.68</b> | <b>4.55<math>\pm</math>0.39</b> | <b>70.21<math>\pm</math>1.92</b> | 39.12 $\pm$ 4.13 | 66.70 $\pm$ 0.57                 | <b>2.43<math>\pm</math>3.81</b> |
|                  | STL-10               | <b>60.14<math>\pm</math>2.37</b> | 39.90 $\pm$ 1.05 | 59.11 $\pm$ 3.88                 | <b>8.95<math>\pm</math>0.64</b> | <b>58.56<math>\pm</math>4.19</b> | 37.15 $\pm$ 2.71 | 57.23 $\pm$ 1.44                 | <b>7.61<math>\pm</math>3.02</b> | 70.92 $\pm$ 0.79                 | 39.09 $\pm$ 2.15 | <b>73.12<math>\pm</math>1.67</b> | <b>6.78<math>\pm</math>4.53</b> |
| Corrupt-Encoder  | CIFAR-10             | <b>78.40<math>\pm</math>0.92</b> | 36.58 $\pm$ 3.41 | 72.10 $\pm$ 1.78                 | <b>0.54<math>\pm</math>2.06</b> | <b>74.76<math>\pm</math>4.67</b> | 33.48 $\pm$ 0.55 | 64.36 $\pm$ 2.89                 | <b>0.66<math>\pm</math>1.33</b> | <b>89.80<math>\pm</math>3.12</b> | 31.91 $\pm$ 0.78 | 87.50 $\pm$ 2.44                 | <b>0.96<math>\pm</math>1.95</b> |
|                  | Tiny-ImageNet        | <b>66.65<math>\pm</math>1.56</b> | 40.19 $\pm$ 4.03 | 63.30 $\pm$ 0.87                 | <b>1.78<math>\pm</math>2.71</b> | <b>63.30<math>\pm</math>3.45</b> | 36.71 $\pm$ 1.19 | 60.17 $\pm$ 2.33                 | <b>0.92<math>\pm</math>0.41</b> | <b>71.03<math>\pm</math>4.88</b> | 47.20 $\pm$ 1.67 | 69.07 $\pm$ 3.09                 | <b>0.77<math>\pm</math>2.22</b> |
|                  | STL-10               | <b>67.00<math>\pm</math>2.14</b> | 46.77 $\pm$ 0.93 | 66.62 $\pm$ 3.67                 | <b>3.02<math>\pm</math>1.45</b> | <b>58.75<math>\pm</math>4.02</b> | 43.27 $\pm$ 2.78 | 51.91 $\pm$ 1.19                 | <b>2.79<math>\pm</math>0.56</b> | 72.32 $\pm$ 3.88                 | 58.96 $\pm$ 2.31 | <b>75.05<math>\pm</math>1.07</b> | <b>2.48<math>\pm</math>4.55</b> |
| BadEncoder       | CIFAR-10             | 80.98 $\pm$ 1.82                 | 98.92 $\pm$ 3.41 | <b>81.16<math>\pm</math>0.78</b> | <b>0.58<math>\pm</math>2.09</b> | <b>80.37<math>\pm</math>4.67</b> | 99.61 $\pm$ 1.33 | 80.00 $\pm$ 2.95                 | <b>0.97<math>\pm</math>0.44</b> | 83.20 $\pm$ 3.12                 | 98.99 $\pm$ 1.67 | <b>84.08<math>\pm</math>2.23</b> | <b>1.89<math>\pm</math>0.91</b> |
|                  | Tiny-ImageNet        | <b>68.32<math>\pm</math>4.19</b> | 97.99 $\pm$ 0.66 | 66.04 $\pm$ 2.55                 | <b>2.22<math>\pm</math>1.88</b> | <b>58.00<math>\pm</math>3.04</b> | 97.41 $\pm$ 2.71 | 53.80 $\pm$ 1.45                 | <b>0.20<math>\pm</math>0.33</b> | <b>70.36<math>\pm</math>4.88</b> | 98.58 $\pm$ 1.09 | 64.36 $\pm$ 3.56                 | <b>1.01<math>\pm</math>2.37</b> |
|                  | STL-10               | 67.04 $\pm$ 1.67                 | 96.75 $\pm$ 3.22 | <b>67.39<math>\pm</math>0.89</b> | <b>1.95<math>\pm</math>2.41</b> | <b>62.41<math>\pm</math>4.03</b> | 94.60 $\pm$ 1.15 | 62.33 $\pm$ 2.78                 | <b>4.78<math>\pm</math>0.56</b> | 72.96 $\pm$ 3.91                 | 99.98 $\pm$ 1.34 | <b>73.50<math>\pm</math>2.07</b> | <b>1.86<math>\pm</math>4.19</b> |

TABLE III: Comparison results of different backdoor defense methods on three datasets.

| Pre-training Datasets | Attacks         | W/O Def          |                                  | FT               |                                 | FP               |                  | NC               |                  | NAD              |                  | SSLDefender      |                 |
|-----------------------|-----------------|------------------|----------------------------------|------------------|---------------------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|-----------------|
|                       |                 | ACC              | ASR                              | ACC              | ASR                             | ACC              | ASR              | ACC              | ASR              | ACC              | ASR              | ACC              | ASR             |
| CIFAR-10              | SSLBackdoor     | 89.40 $\pm$ 1.23 | 30.93 $\pm$ 3.67                 | 40.57 $\pm$ 0.89 | 9.49 $\pm$ 2.41                 | 49.77 $\pm$ 4.02 | 10.52 $\pm$ 1.56 | 70.26 $\pm$ 2.78 | 8.40 $\pm$ 0.95  | 53.59 $\pm$ 3.14 | 4.33 $\pm$ 1.07  | 87.42 $\pm$ 2.55 | 2.09 $\pm$ 0.66 |
|                       | PoisonedEncoder | 89.40 $\pm$ 1.88 | 32.45 $\pm$ 4.19                 | 49.93 $\pm$ 2.33 | 8.24 $\pm$ 0.77                 | 52.14 $\pm$ 3.45 | 8.56 $\pm$ 1.92  | 62.45 $\pm$ 0.58 | 15.26 $\pm$ 2.71 | 57.74 $\pm$ 1.34 | 4.50 $\pm$ 3.09  | 88.73 $\pm$ 0.82 | 0.79 $\pm$ 2.04 |
|                       | CorruptEncoder  | 89.80 $\pm$ 0.91 | 31.91 $\pm$ 2.67                 | 50.39 $\pm$ 1.45 | 8.08 $\pm$ 3.88                 | 52.43 $\pm$ 0.66 | 11.15 $\pm$ 2.19 | 65.25 $\pm$ 1.07 | 4.26 $\pm$ 4.33  | 80.93 $\pm$ 2.95 | 2.51 $\pm$ 1.56  | 87.5 $\pm$ 0.44  | 0.96 $\pm$ 3.41 |
|                       | BadEncoder      | 83.20 $\pm$ 2.78 | <b>98.99<math>\pm</math>1.23</b> | 50.17 $\pm$ 3.67 | 13.32 $\pm$ 0.89                | 59.75 $\pm$ 2.41 | 17.62 $\pm$ 4.02 | 66.38 $\pm$ 1.56 | 14.26 $\pm$ 2.95 | 60.17 $\pm$ 0.95 | 7.24 $\pm$ 3.14  | 84.08 $\pm$ 1.07 | 1.89 $\pm$ 2.55 |
| Tiny-ImageNet         | SSLBackdoor     | 69.81 $\pm$ 0.82 | 36.97 $\pm$ 2.04                 | 38.36 $\pm$ 1.88 | 10.57 $\pm$ 3.45                | 46.44 $\pm$ 0.77 | 13.70 $\pm$ 2.33 | 55.52 $\pm$ 1.92 | 9.42 $\pm$ 0.58  | 48.76 $\pm$ 2.71 | 3.58 $\pm$ 1.34  | 67.75 $\pm$ 3.09 | 2.96 $\pm$ 0.91 |
|                       | PoisonedEncoder | 70.21 $\pm$ 2.67 | 39.52 $\pm$ 1.45                 | 32.47 $\pm$ 3.88 | 7.75 $\pm$ 0.66                 | 50.35 $\pm$ 2.19 | 9.40 $\pm$ 1.07  | 60.31 $\pm$ 4.33 | 12.38 $\pm$ 2.95 | 64.08 $\pm$ 1.56 | 4.12 $\pm$ 0.44  | 66.70 $\pm$ 3.41 | 2.43 $\pm$ 2.78 |
|                       | CorruptEncoder  | 71.03 $\pm$ 1.23 | 47.20 $\pm$ 3.67                 | 44.69 $\pm$ 0.89 | 10.92 $\pm$ 2.41                | 58.40 $\pm$ 4.02 | 12.27 $\pm$ 1.56 | 62.24 $\pm$ 2.78 | 7.60 $\pm$ 0.95  | 66.39 $\pm$ 3.14 | 1.92 $\pm$ 1.07  | 69.07 $\pm$ 2.55 | 0.77 $\pm$ 0.66 |
|                       | BadEncoder      | 70.36 $\pm$ 1.88 | 98.58 $\pm$ 4.19                 | 42.87 $\pm$ 2.33 | 16.03 $\pm$ 0.77                | 63.41 $\pm$ 3.45 | 18.22 $\pm$ 1.92 | 62.27 $\pm$ 0.58 | 17.30 $\pm$ 2.71 | 60.82 $\pm$ 1.34 | 10.04 $\pm$ 3.09 | 64.36 $\pm$ 0.82 | 1.01 $\pm$ 2.04 |
| STL-10                | SSLBackdoor     | 70.82 $\pm$ 1.45 | 36.95 $\pm$ 3.88                 | 38.95 $\pm$ 0.66 | <b>2.40<math>\pm</math>2.19</b> | 50.61 $\pm$ 1.07 | 9.47 $\pm$ 4.33  | 61.18 $\pm$ 2.95 | 8.82 $\pm$ 1.56  | 56.25 $\pm$ 0.44 | 3.84 $\pm$ 3.41  | 73.19 $\pm$ 2.78 | 6.68 $\pm$ 1.23 |
|                       | PoisonedEncoder | 70.92 $\pm$ 3.67 | 39.09 $\pm$ 0.89                 | 40.82 $\pm$ 2.41 | 12.69 $\pm$ 4.02                | 44.19 $\pm$ 1.56 | 9.37 $\pm$ 2.78  | 61.27 $\pm$ 0.95 | 8.63 $\pm$ 3.14  | 68.58 $\pm$ 1.07 | 5.49 $\pm$ 2.55  | 73.12 $\pm$ 0.66 | 6.78 $\pm$ 1.88 |
|                       | CorruptEncoder  | 72.32 $\pm$ 4.19 | 58.96 $\pm$ 2.33                 | 47.26 $\pm$ 0.77 | 12.55 $\pm$ 3.45                | 60.05 $\pm$ 1.92 | 11.36 $\pm$ 0.58 | 62.75 $\pm$ 2.71 | 5.44 $\pm$ 1.34  | 69.33 $\pm$ 3.09 | 2.06 $\pm$ 0.82  | 75.05 $\pm$ 2.04 | 2.48 $\pm$ 1.45 |
|                       | BadEncoder      | 72.96 $\pm$ 3.88 | 99.98 $\pm$ 0.66                 | 58.90 $\pm$ 2.19 | 9.34 $\pm$ 4.33                 | 55.48 $\pm$ 2.95 | 10.17 $\pm$ 1.56 | 64.71 $\pm$ 0.44 | 10.49 $\pm$ 3.41 | 69.83 $\pm$ 2.78 | 5.07 $\pm$ 1.23  | 73.50 $\pm$ 3.67 | 1.86 $\pm$ 0.89 |

607 appears more systematic and effective. The core idea of NC  
608 aligns with our own: leveraging reversed triggers to identify  
609 backdoor-related components in DNNs and mitigate their  
610 influence. Building upon Fine-pruning, NC sets the output  
611 of suspected backdoor neurons to zero during inference.  
612 However, NC prioritizes neurons that exhibit the greatest  
613 activation difference between clean and adversarial inputs,  
614 thereby minimizing the performance degradation caused by  
615 pruning. Once the model no longer responds to the reverse  
616 trigger, NC terminates the pruning procedure. As shown in the  
617 experimental results, NC achieves approximately 15% higher  
618 ACC than Fine-pruning across all datasets.

619 Overall, the adapted NAD method achieves performance  
620 most comparable to our approach. NAD purifies the student  
621 model from backdoor features by aligning the intermediate  
622 attention maps of teacher and student models via attention  
623 distillation. On the STL-10 dataset under PoisonedEncoder  
624 and CorruptEncoder attacks, NAD slightly outperforms our  
625 method in mitigating backdoors. However, considering both  
626 ASR and ACC, while NAD reduces the ASR to 2.06%, the  
627 corresponding ACC is only 69.33%. In contrast, SSLDefender  
628 achieves a comparable ASR of 2.48% while improving ACC to

75.05%. This result not only surpasses NAD in defense effectiveness but also enhances the model's predictive performance and robustness. This improvement stems from our emphasis on maintaining the integrity of the model's primary task by aligning the embedding distributions of clean outputs.

629  
630  
631  
632  
633  
634  
635  
636  
637  
638  
639  
640  
641  
642  
643  
644  
645  
646  
647  
648  
649  
650

3) *Untargeted attacks*: Unlike targeted attacks, the pre-trained dataset of untargeted attacks has a different class distribution from the downstream dataset. The downstream classifiers obtained by the victim still carry backdoor attributes even if the pretrained backdoor encoder is fine-tuned using other clean datasets. Therefore, we consider untargeted attacks and measure the defense effectiveness by the accuracy of the model on the trigger input. Table. IV presents the results of six defense methods against BadEncoder across different pretraining and downstream datasets. The pretraining datasets include CIFAR-10, ImageNet, and CLIP. It is worth noting that, unlike the experiments in the Targeted Attacks section, the backdoor encoder pretrained on ImageNet and CLIP are directly provided by BadEncoder. Our work focuses on mitigating these backdoors based on the given encoders. Additionally, we only utilize the image encoder provided by CLIP, excluding the text encoder from our experiments. The

TABLE IV: Performance of SSLDefender compared with baseline attacks on different pre-training and downstream datasets.

| Pre-training  | Downstream | W/O Def          |                  |                  |                  | FT               |                  |                  |                  | FP               |                  |                  |                  | NC               |                 |                  |                 | NAD              |                 |                  |                 | SSL-KD           |                 |                  |                 | SSLDefender |  |  |  |
|---------------|------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|-----------------|------------------|-----------------|------------------|-----------------|------------------|-----------------|------------------|-----------------|------------------|-----------------|-------------|--|--|--|
|               |            | Dataset          | Dataset          | ACC              | ASR              | ACC              | ASR             | ACC              | ASR             | ACC              | ASR             | ACC              | ASR             | ACC              | ASR             | ACC              | ASR             |             |  |  |  |
| CIFAR-10      | STL-10     | 77.58 $\pm$ 1.34 | 99.97 $\pm$ 0.88 | 61.78 $\pm$ 2.71 | 10.67 $\pm$ 3.12 | 55.31 $\pm$ 0.56 | 9.93 $\pm$ 1.95  | 66.20 $\pm$ 4.23 | 6.39 $\pm$ 2.07  | 60.43 $\pm$ 1.45 | 9.22 $\pm$ 0.79  | 57.79 $\pm$ 3.67 | 9.44 $\pm$ 2.41  | 77.54 $\pm$ 1.08 | 3.06 $\pm$ 4.02 |             |  |  |  |
|               | SVHN       | 71.22 $\pm$ 2.19 | 98.87 $\pm$ 1.67 | 49.25 $\pm$ 0.93 | 14.18 $\pm$ 3.56 | 47.75 $\pm$ 1.23 | 10.28 $\pm$ 4.88 | 68.37 $\pm$ 0.66 | 9.25 $\pm$ 2.78  | 68.05 $\pm$ 1.41 | 12.73 $\pm$ 0.82 | 68.28 $\pm$ 3.09 | 13.64 $\pm$ 1.56 | 64.96 $\pm$ 2.95 | 5.97 $\pm$ 0.44 |             |  |  |  |
|               | GTSRB      | 82.00 $\pm$ 1.88 | 98.80 $\pm$ 3.45 | 44.78 $\pm$ 0.77 | 0.08 $\pm$ 2.33  | 44.94 $\pm$ 1.92 | 1.64 $\pm$ 4.19  | 74.24 $\pm$ 0.58 | 4.68 $\pm$ 2.71  | 54.46 $\pm$ 1.34 | 1.41 $\pm$ 3.88  | 52.5 $\pm$ 0.91  | 0.70 $\pm$ 1.07  | 79.58 $\pm$ 2.55 | 0.63 $\pm$ 4.33 |             |  |  |  |
| Tiny-ImageNet | STL-10     | 95.55 $\pm$ 1.23 | 99.99 $\pm$ 0.66 | 47.5 $\pm$ 2.41  | 4.68 $\pm$ 3.14  | 56.62 $\pm$ 0.89 | 6.45 $\pm$ 1.56  | 82.47 $\pm$ 4.02 | 12.54 $\pm$ 2.95 | 61.18 $\pm$ 1.07 | 9.39 $\pm$ 0.82  | 52.95 $\pm$ 3.67 | 7.57 $\pm$ 2.19  | 96.10 $\pm$ 1.45 | 1.61 $\pm$ 4.67 |             |  |  |  |
|               | SVHN       | 73.99 $\pm$ 2.78 | 99.88 $\pm$ 1.34 | 42.79 $\pm$ 0.95 | 0.12 $\pm$ 3.09  | 55.81 $\pm$ 1.88 | 2.27 $\pm$ 4.55  | 66.40 $\pm$ 0.44 | 6.26 $\pm$ 2.33  | 50.22 $\pm$ 1.92 | 4.76 $\pm$ 0.58  | 51.81 $\pm$ 3.41 | 0.81 $\pm$ 1.23  | 68.09 $\pm$ 2.71 | 4.31 $\pm$ 0.77 |             |  |  |  |
|               | GTSRB      | 77.27 $\pm$ 1.56 | 99.08 $\pm$ 3.88 | 45.78 $\pm$ 0.82 | 0.66 $\pm$ 2.04  | 58.26 $\pm$ 1.41 | 7.27 $\pm$ 4.33  | 69.96 $\pm$ 0.91 | 4.34 $\pm$ 2.95  | 50.04 $\pm$ 1.07 | 3.77 $\pm$ 3.67  | 49.83 $\pm$ 0.66 | 1.39 $\pm$ 1.88  | 77.44 $\pm$ 2.41 | 1.52 $\pm$ 0.93 |             |  |  |  |
| CLIP          | STL-10     | 96.56 $\pm$ 1.19 | 99.85 $\pm$ 2.55 | 48.12 $\pm$ 0.78 | 4.68 $\pm$ 3.45  | 47.07 $\pm$ 1.67 | 10.74 $\pm$ 0.44 | 63.72 $\pm$ 4.02 | 6.05 $\pm$ 2.19  | 53.22 $\pm$ 1.34 | 9.41 $\pm$ 0.95  | 50.29 $\pm$ 3.88 | 6.43 $\pm$ 1.56  | 89.62 $\pm$ 2.78 | 1.53 $\pm$ 4.67 |             |  |  |  |
|               | SVHN       | 70.94 $\pm$ 0.89 | 99.99 $\pm$ 1.92 | 48.79 $\pm$ 3.14 | 2.12 $\pm$ 0.66  | 54.82 $\pm$ 2.33 | 24.37 $\pm$ 1.07 | 60.11 $\pm$ 4.55 | 7.83 $\pm$ 2.71  | 59.36 $\pm$ 1.45 | 16.09 $\pm$ 3.09 | 51.81 $\pm$ 0.82 | 14.32 $\pm$ 1.88 | 67.02 $\pm$ 2.95 | 2.03 $\pm$ 0.58 |             |  |  |  |
|               | GTSRB      | 82.44 $\pm$ 1.41 | 99.35 $\pm$ 3.67 | 46.26 $\pm$ 0.93 | 1.26 $\pm$ 2.41  | 42.77 $\pm$ 1.23 | 12.96 $\pm$ 4.88 | 68.47 $\pm$ 0.77 | 5.31 $\pm$ 2.04  | 52.28 $\pm$ 1.56 | 4.10 $\pm$ 3.45  | 48.23 $\pm$ 0.44 | 0.27 $\pm$ 1.92  | 74.71 $\pm$ 2.78 | 0.57 $\pm$ 0.91 |             |  |  |  |

TABLE V: Defense Performance of SSLDefender against Special Trigger Type Attacks.

| Pre-training | Downstream | Spectral Trigger |       |       |      | Random Noise |       |       |      |
|--------------|------------|------------------|-------|-------|------|--------------|-------|-------|------|
|              |            | Before           |       | After |      | Before       |       | After |      |
| Dataset      | Dataset    | ACC              | ASR   | ACC   | ASR  | ACC          | ASR   | ACC   | ASR  |
| CIFAR-10     | CIFAR-10   | 90.83            | 89.79 | 91.72 | 0.62 | 82.41        | 92.17 | 80.28 | 1.04 |
|              | STL-10     | 73.50            | 63.28 | 77.52 | 2.84 | 69.40        | 58.76 | 70.95 | 4.41 |

downstream classification datasets include STL-10, SVHN, and GTSRB.

Experimental results indicate that even under untargeted attacks, SSLDefender is capable of reducing an ASR close to 100% to below 6%. For example, when using an ImageNet pre-trained backdoor encoder for the downstream classification in GTSRB, our method does not achieve the lowest ASR (1.52% vs. 0.66%), but improves the classification accuracy to 77.44%, significantly higher than the 45.78% achieved by Fine-tuning. Undeniably, all baseline methods contribute to reducing ASR to some extent. However, they generally fail to preserve the model’s predictive performance. In contrast, our method demonstrates both effectiveness and generalizability, achieving a better trade-off between attack mitigation and model utility across various datasets and scenarios.

4) *Special Trigger Type Attacks*: Since the aforementioned methods are all patch-based backdoor attacks, we conducted experimental validations against more complex trigger types. As shown in Table. V, SSLDefender can still effectively counter even invisible Spectral Triggers and difficult-to-reconstruct Random Noise triggers. This is because our proposed method does not aim to reconstruct a trigger identical to the one set by the attacker, but rather to learn the backdoor knowledge and apply the optimized perturbation to clean data for robust training.

5) *Overhead of SSLDefender*: To investigate the practical feasibility of SSLDefender, we quantified the computational overhead of each component while defending against BadEncoder on the CIFAR-10 dataset, and compared the overall framework with fine-tuning and retraining methods. The results are presented in Table.VI. The experiments demonstrate that, owing to the incorporation of key components such as trigger inversion, mutual information estimation, and Wasserstein distance computation, SSLDefender incurs higher costs compared to fine-tuning operations. Nevertheless, it achieves superior performance. In contrast to retraining methods, our

approach exhibits efficiency that is nearly 10 times greater. If the training data were replaced with datasets of larger size and scale, the costs associated with retraining would only become more burdensome.

### C. RQ2: Ablation Analysis

We conducted an ablation study to understand the contributions of individual components of SSLDefender to the overall defense framework. To verify the contribution of trigger recovery, we experimented with directly applying unlearning to the backdoor encoder after removing the trigger recovery module. During the processing of a small clean dataset, we replaced the recovered trigger with other perturbations to construct poisoned datasets. Additionally, we validated the contribution of mutual information maximization. In the process of backdoor feature unlearning, we examined the roles of two loss terms  $\mathcal{L}_1$  and  $\mathcal{L}_2$  to enhance our understanding of the mechanisms behind the distillation-guided unlearning learning process.

1) *Eliminate Trigger Inversion*: we experimented with three non-reconstructed random triggers to validate the role of trigger recovery module, and the experimental results are shown in Table. VII. Although the three triggers we set are structurally similar to the triggers we reconstructed, they still fail to achieve the mitigation effect. The best result is to reduce the ASR of BadEncoder to 41.44%. The data results indicate that randomly generated perturbations affect the model’s decisions but are ineffective against the backdoor. The process of trigger reconstruction is actually about learning the model’s backdoor knowledge. Applying this trigger in the distillation-guided unlearning process is not only for robust model training but also for breaking the backdoor pattern and severing the connection between the trigger and the target label. This shows that the trigger recovery process is an indispensable key step for SSLDefender.

2) *The contribution of mutual information maximization*: TABLE. VIII illustrates the effect of mutual information maximization in the trigger inversion module, where DECREE refers to the variant that does not employ mutual information maximization. Since the primary objective of DECREE is to detect whether an encoder carries backdoor features, it imposes relatively low requirements on the quality of the reconstruction process. DECREE halts training and identifies an encoder as backdoored once the optimization loss falls below a predefined threshold. To ensure a fair comparison, we adjusted this

TABLE VI: Comparison of Computational Overhead of Various Methods on the CIFAR-10 Dataset.

| Epoch            |                     | 10     | 20     | 30     | 40     | 50     | 60     | 70      | 80      | 90      | 100     | RAM(G) | VRAM(G) |
|------------------|---------------------|--------|--------|--------|--------|--------|--------|---------|---------|---------|---------|--------|---------|
| Training Time(s) | Fine-Tuning         | 5.71   | 11.43  | 17.25  | 22.82  | 28.35  | 33.90  | 39.54   | 45.30   | 51.13   | 56.51   | 1.32   | 1.49    |
|                  | Trigger Recovery    | 9.71   | 18.08  | 28.63  | 40.12  | 54.05  | -      | -       | -       | -       | -       |        |         |
|                  | Trigger Recovery+MI | 12.40  | 22.37  | 35.76  | 50.24  | 62.90  | -      | -       | -       | -       | -       | 1.71   | 3.2     |
|                  | Unlearning          | 11.76  | 22.75  | 33.90  | 44.95  | 56.33  | 67.30  | 78.35   | 89.37   | 100.28  | 111.51  |        |         |
|                  | ALL                 | 24.16  | 45.12  | 69.66  | 95.19  | 119.23 | 130.20 | 141.25  | 152.27  | 163.18  | 174.41  |        |         |
|                  | Retraining          | 158.82 | 319.10 | 479.54 | 639.48 | 799.48 | 959.70 | 1119.72 | 1279.95 | 1440.54 | 1601.36 | 1.88   | 3.3     |

TABLE VII: Impact of different triggers on subsequent backdoor mitigation efforts.

|     | W/O Def | Trigger 1 | Trigger 2 | Trigger 3 | Recovered Trigger          |
|-----|---------|-----------|-----------|-----------|----------------------------|
| ACC | 83.20   | 83.77     | 83.75     | 84.27     | 84.08 ( $\uparrow$ 0.88)   |
| ASR | 98.99   | 41.44     | 51.25     | 77.44     | 1.89 ( $\downarrow$ 97.10) |

TABLE VIII: Comparison with the DECREE method.

| W/O Def |       | DECREE                    |                            | SSLDefender             |                           |
|---------|-------|---------------------------|----------------------------|-------------------------|---------------------------|
| ACC     | ASR   | ACC                       | ASR                        | ACC                     | ASR                       |
| 67.04   | 96.75 | 64.16( $\downarrow$ 2.88) | 35.23( $\downarrow$ 61.52) | 73.50( $\uparrow$ 6.46) | 1.86( $\downarrow$ 94.89) |

730 threshold to a lower value, allowing DECREE to reach its optimal solution. However, when the reconstructed trigger from 731 DECREE is used for backdoor mitigation, it only reduces the 732 ASR of BadEncoder to 35.23%, which is significantly worse 733 than the performance of our proposed method. This experiment 734 demonstrates the superiority of our trigger inversion approach 735 based on mutual information maximization, highlighting its 736 effectiveness in enhancing backdoor mitigation performance. 737

738 3) *Component Contributions*.: The framework we designed 739 mainly relies on the latter part, the distillation-guided un- 740 learning module, for backdoor mitigation. Therefore, in the 741 ablation experiments section V.C, we were unable to com- 742 pletely remove this module to verify the irreplaceability of 743 the method. However, we can analyze the deep-level impact 744 of different functional components within this module on 745 SSLDefender. Specifically, our central idea involves erasing 746 the backdoor attributes and maintaining model performance, 747 corresponding to the  $L_1$  and  $L_2$  loss terms, respectively. The 748 experimental results are shown in Table. IX. Clearly, when 749 optimizing only the  $L_1$  term, although it can effectively resist 750 four types of self-supervised backdoor attacks, it fails to 751 ensure the model’s original performance. The results indicate 752 a consistent decrease in ACC of around 8%. In contrast, if 753 only optimizing the  $L_2$  term, SSLDefender stabilizes ACC 754 but struggles to reduce the malicious impact of attackers. The 755 combined optimization of these two loss terms enables the 756 model to find a delicate balance between them, emphasizing 757 the indispensability of  $L_1$  and  $L_2$ , further demonstrating the 758 efficiency of our proposed method.

#### 759 D. RQ3: Parameter Sensitivity Analysis

760 1) *Effect of ratio of poised samples*: In our threat model, 761 we assume that the defender has access only to the victim 762 model, while the proportion of poisoned samples injected 763 during training remains unknown. To evaluate the robustness

TABLE IX: Impact of different components.

| Component    | SSL-Backdoor    |                 | Poisoned-Encoder |       | Corrupt-Encoder |       | Bad-Encoder |       |
|--------------|-----------------|-----------------|------------------|-------|-----------------|-------|-------------|-------|
|              | $\mathcal{L}_1$ | $\mathcal{L}_2$ | ACC              | ASR   | ACC             | ASR   | ACC         | ASR   |
| $\times$     | $\times$        |                 | 77.04            | 27.93 | 75.64           | 32.93 | 78.40       | 36.58 |
| $\checkmark$ | $\times$        |                 | 70.33            | 4.90  | 69.75           | 3.58  | 68.63       | 7.27  |
| $\times$     | $\checkmark$    |                 | 75.47            | 19.96 | 71.16           | 22.89 | 74.24       | 29.62 |
| $\checkmark$ | $\checkmark$    |                 | 76.44            | 4.36  | 73.68           | 1.19  | 72.10       | 0.54  |

of our method against backdoor attacks with varying poisoning 764 rates, we compare different defense strategies on the CIFAR- 765 10 dataset under four attack scenarios with different backdoor 766 injection rates. The results, as shown in Figure. 3, present 767 attack scenarios where the backdoor injection rate ranges from 768 1% to 9% in increments of 2%. Notably, according to the 769 original BadEncoder experimental setup, the attack achieves 770 optimal performance when the poisoning rate of the shadow 771 dataset reaches 20%. Therefore, we evaluate the impact of 772 BadEncoder poisoning at five levels: 1%, 5%, 10%, 15%, and 773 20%. Intuitively, in the absence of any defense mechanism, 774 the ASR of all attack methods increases as the injection 775 rate rises, as expected, while the accuracy of the primary 776 task deteriorates accordingly. Prior research suggests that the 777 difficulty of backdoor defense is positively correlated with the 778 poisoning rate. However, it is worth noting that, compared 779 to the mitigation effects observed at lower poisoning rates 780 ( $\leq 7\%$ ), our method demonstrates superior performance under 781 high poisoning rates.

782 2) *Impact of Holding Rate*: As highlighted in our proposed 783 method, a small amount of clean data is crucial for our 784 approach. Not only does it guide the model to forget the 785 backdoor patterns, it also preserves the accuracy of the primary 786 task. In our experimental set-up, we define a holding rate, 787 which represents the proportion of clean samples available 788 to the defender, extracted from the test set. In real-world 789 applications, we recognize that defenders may face a “data 790 scarcity” challenge. To account for this, we constrain the 791 amount of clean data available to a maximum of 10% of the 792 total dataset and evaluate the performance of SSLDefender 793 at different holding rates within this range. The experimental 794 results are shown in Figure. 4. Interestingly, even with an 795 extremely low retention rate of 1%, our method successfully 796 reduces the ASR of the BadEncoder to 0.8%, while keeping 797 the ASR of other attack methods below 10%.

798 Furthermore, defenders might encounter an extreme “data 799 isolation” scenario, where access to the original pre-training 800 dataset is not possible. Intuitively, a successful backdoor attack 801

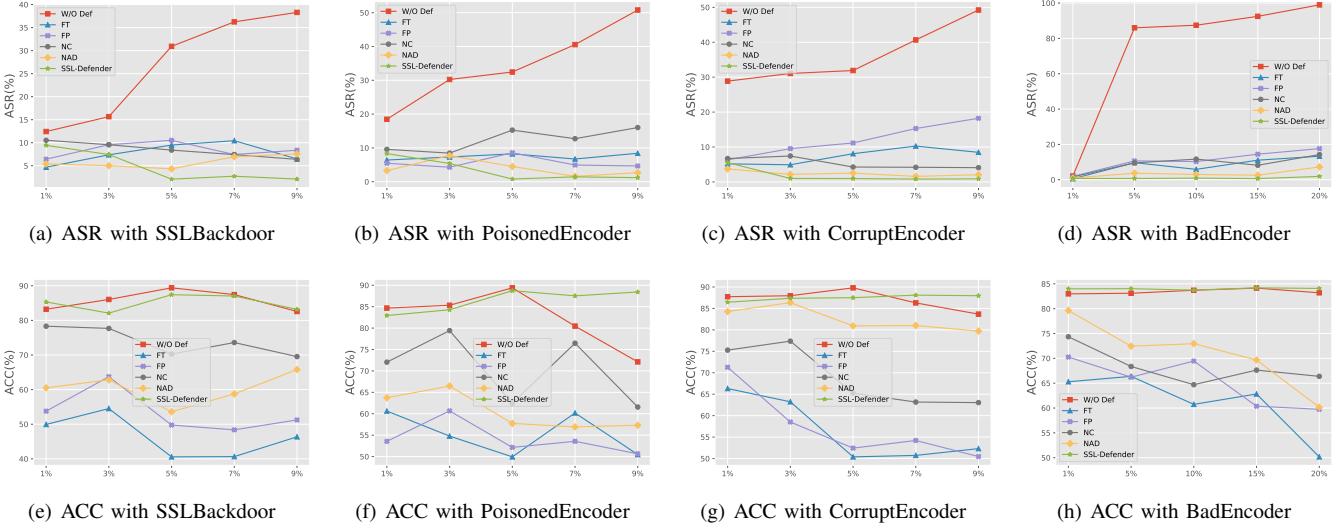


Fig. 3: Impact of injection ratio with five SOTA methods.

TABLE X: Performance of SSLDefender on alternative datasets.

| Setting         | Origin   |      | Auxiliary |       |       |       |       |       |
|-----------------|----------|------|-----------|-------|-------|-------|-------|-------|
|                 | CIFAR-10 |      | STL-10    |       | GTRSB |       | SVHN  |       |
| Datasets        | ACC      | ASR  | ACC       | ASR   | ACC   | ASR   | ACC   | ASR   |
| SSLBackdoor     | 87.42    | 2.09 | 79.58     | 15.24 | 72.39 | 18.48 | 80.13 | 11.82 |
| PoisonedEncoder | 88.73    | 0.79 | 81.77     | 10.45 | 76.20 | 16.62 | 81.06 | 9.40  |
| CorruptEncoder  | 87.50    | 0.96 | 80.02     | 7.76  | 76.93 | 10.03 | 80.53 | 10.29 |
| BadEncoder      | 84.08    | 1.89 | 80.59     | 8.21  | 73.47 | 6.60  | 75.17 | 6.22  |

802 relies on establishing a strong correlation between the embedded trigger and the target label. In other words, the attacker 803 introduces perturbations to the original input, deceiving the 804 model into producing the expected adversarial result. Our 805 trigger inversion process aims to reconstruct this perturbation 806 and leverage distillation-guided unlearning to desensitize the 807 model, mitigating backdoor effects.

808 To address data isolation, we explore the use of publicly 809 available alternative clean datasets to support the SSLDefender 810 framework. Specifically, we substitute part of the clean data 811 required for defense in the CIFAR-10 dataset with STL-10 812 and GTSRB samples. As shown in Table. X, even without 813 relying on clean data from the original distribution, the use 814 of alternative datasets reduces BadEncoder’s ASR to 8.21%, 815 albeit at the cost of a 3% drop in accuracy. This demonstrates 816 that our method does not strictly depend on the assumed clean 817 data, yet clean samples from the original data distribution 818 better highlight the superiority of our approach.

819 3) *Effect of batch\_size*: In SSL, the purpose of training 820 on samples is to extract high-quality representations of the 821 samples themselves. Therefore, the potential impact of different 822 batch sizes on backdoor mitigation methods remains 823 unknown, especially with the support of a small amount of 824 clean data. To address this, we set the batch sizes to commonly 825 used values of 32, 64, 128, 256, and 512. Table. XI illustrates 826 the detailed results of this parameter’s influence. Specifically, 827

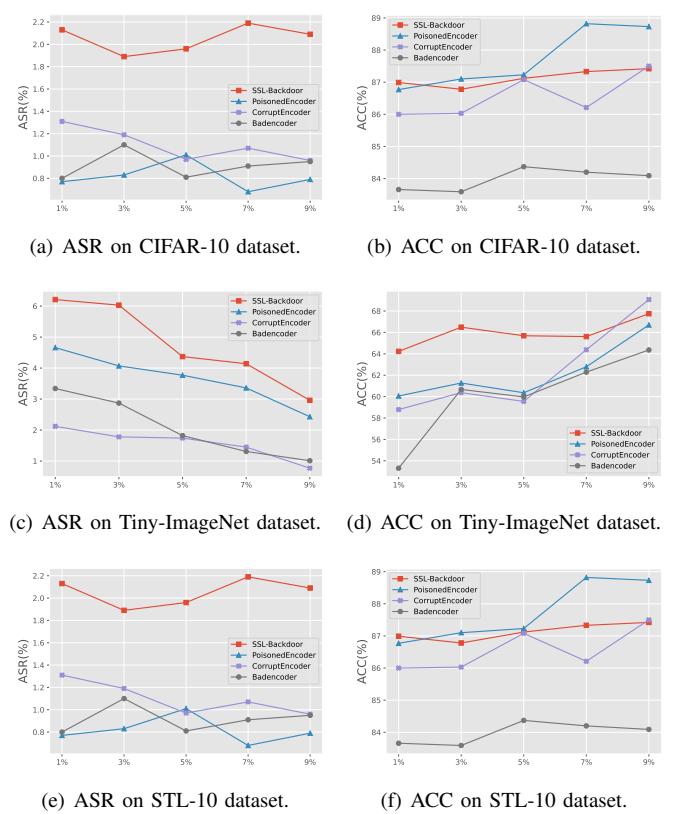


Fig. 4: Impact of holding rate on three datasets.

828 during the experimental process, batch size indeed has a 829 significant impact on training duration, but it does not greatly 830 disturb the performance of the method. Given the unique 831 context of SSL, we do not recommend using larger batch 832 sizes for training, as it burdens device memory and leads to 833 signs of decreased model performance. For instance, at a batch 834 size of 64, the model can maintain an accuracy of 87.52% 835 on the CIFAR-10 dataset even under BadEncoder, while with

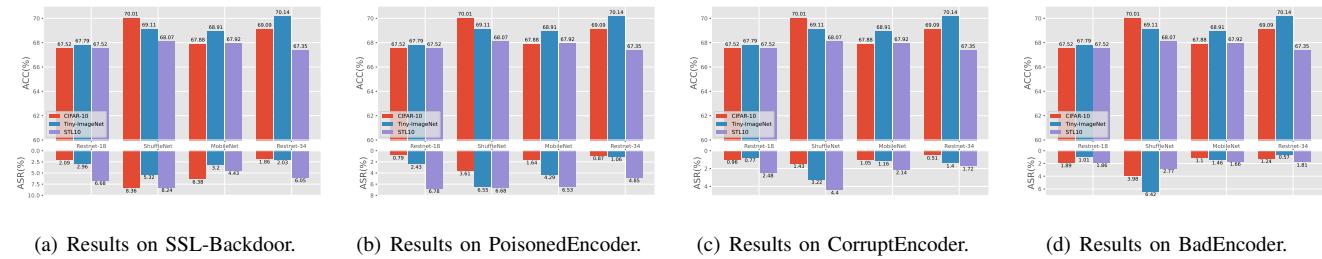


Fig. 5: Impact of model types on four attack methods.

TABLE XI: Effect of batch size.

| Batch-Size | W/O Def |       | SSLDefender   |               |
|------------|---------|-------|---------------|---------------|
|            | ACC     | ASR   | ACC           | ASR           |
| 32         | 85.59   | 99.36 | 84.81 (↓0.78) | 1.11 (↓98.25) |
| 64         | 87.52   | 99.30 | 87.58 (↑0.06) | 1.12 (↓98.18) |
| 128        | 83.20   | 98.99 | 84.08 (↑0.88) | 1.89 (↓97.10) |
| 256        | 86.52   | 99.34 | 86.51 (↓0.01) | 0.68 (↓98.66) |
| 512        | 84.01   | 99.09 | 84.63 (↑0.62) | 1.37 (↓97.72) |

836 a batch size of 512, this accuracy drops to 84.01%. Testing  
837 after backdoor mitigation also demonstrates similar outcomes.  
838 The robustness of our method to training batch sizes has been  
839 proven. Nevertheless, due to constraints, we suggest training  
840 models with a batch size of 256 to strike a balance between  
841 ACC and ASR.

842 *4) Impact of Model Types:* Due to the specificity of the  
843 scenarios, different models imply “scratch pre-training”, hence  
844 in prior related studies, researchers typically fix a model archi-  
845 tecture. This approach does not align with the universality we  
846 seek for our defense method. We validated our method on four  
847 widely used models in this field: ResNet-18, ShuffleNet-V2,  
848 MobileNet-V2, Restnet-34. As shown in Figure. 5, even under  
849 complex model architectures and diverse backdoor attacks,  
850 our method demonstrates robustness. Overall, when subjected  
851 to various attack scenarios, the ASR of all four models  
852 consistently remains below 9%. These results demonstrate the  
853 model-agnostic nature of our method, highlighting its robust  
854 generalizability across different model architectures.

## VI. CONCLUSION AND DISCUSSION

855 In this paper, we propose SSLDefender, a feasible and ef-  
856 fective backdoor mitigation method in SSL. SSLDefender can  
857 conveniently alleviate the negative impacts of backdoor attacks  
858 through a simple strategy of knowledge distillation-guided  
859 unlearning. Extensive experiments validate that SSLDefender  
860 can counter the most advanced self-supervised backdoor at-  
861 tacks with negligible performance degradation and outper-  
862 forms SOTA defense methods. Although we can ensure the  
863 effectiveness of the mitigation method on surrogate datasets,  
864 the outstanding performance of our method relies on the  
865 assumption of a small amount of clean data. In future work,  
866 we will continue to explore generating clean data using  
867 adversarial samples to achieve a “Data-free” implementation,

868 addressing the key pain point of our method. Furthermore, the  
869 underlying mechanisms of SSLDefender, which utilize mutual  
870 information maximization for trigger recovery and knowledge  
871 distillation-guided unlearning, have extension potential beyond  
872 traditional convolutional networks in self-supervised visual  
873 tasks. For example, adapting our framework to Vision Trans-  
874 formers (ViT) may enhance backdoor defenses in transformer-  
875 based architectures, where self-attention mechanisms might  
876 introduce unique backdoor trigger vulnerabilities. Similarly,  
877 applying similar concepts to the Natural Language Processing  
878 (NLP) domain, such as defending against backdoor attacks in  
879 large language models or text-based self-supervised learning,  
880 represents a promising direction. However, this remains an  
881 entirely new research direction that warrants thorough explo-  
882 ration, as differences in data modalities and model architec-  
883 tures may require significant adjustments to ensure efficacy  
884 and generalization.

## ACKNOWLEDGMENTS

## REFERENCES

- [1] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton, “A simple framework for contrastive learning of visual representations,” in *International conference on machine learning*. PMLR, 2020, pp. 1597–1607.
- [2] R. Hadsell, S. Chopra, and Y. LeCun, “Dimensionality reduction by learning an invariant mapping,” in *2006 IEEE computer society conference on computer vision and pattern recognition (CVPR’06)*, vol. 2. IEEE, 2006, pp. 1735–1742.
- [3] X. Chen and K. He, “Exploring simple siamese representation learning,” in *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, 2021, pp. 15 750–15 758.
- [4] T. Chen, J. Frankle, S. Chang, S. Liu, Y. Zhang, M. Carbin, and Z. Wang, “The lottery tickets hypothesis for supervised and self-supervised pre-training in computer vision models,” in *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, 2021, pp. 16 306–16 316.
- [5] L. Gomez, Y. Patel, M. Rusinol, D. Karatzas, and C. Jawahar, “Self-supervised learning of visual features through embedding images into text topic spaces,” in *Proceedings of the ieee conference on computer vision and pattern recognition*, 2017, pp. 4230–4239.
- [6] A. Elnaggar, M. Heinzinger, C. Dallago, G. Rehawi, Y. Wang, L. Jones, T. Gibbs, T. Feher, C. Angerer, M. Steinegger *et al.*, “Prottrans: Toward understanding the language of life through self-supervised learning,” *IEEE transactions on pattern analysis and machine intelligence*, vol. 44, no. 10, pp. 7112–7127, 2021.
- [7] R. Caruana and A. Niculescu-Mizil, “An empirical comparison of supervised learning algorithms,” in *Proceedings of the 23rd international conference on Machine learning*, 2006, pp. 161–168.
- [8] H. Dong, Z. Cheng, X. He, M. Zhou, A. Zhou, F. Zhou, A. Liu, S. Han, and D. Zhang, “Table pre-training: A survey on model architectures, pre-training objectives, and downstream tasks.” *IJCAI*, 2022.
- [9] A. Saha, A. Tejankar, S. A. Koohpayegani, and H. Pirsiavash, “Backdoor attacks on self-supervised learning,” in *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, 2022, pp. 13 337–13 346.

922 [10] J.-B. Grill, F. Strub, F. Altché, C. Tallec, P. Richemond, E. Buchatskaya, 999  
 923 C. Doersch, B. Avila Pires, Z. Guo, M. Gheshlaghi Azar *et al.*, 1000  
 924 “Bootstrap your own latent-a new approach to self-supervised learning,” 1001  
 925 *Advances in neural information processing systems*, vol. 33, pp. 21 271– 1002  
 926 21 284, 2020. 1002

927 [11] Y. Qian, S. Wu, K. Wei, M. Ding, D. Xiao, T. Xiang, C. Ma, 1003  
 928 and S. Guo, “Eminspector: Combating backdoor attacks in federated 1004  
 929 self-supervised learning through embedding inspection,” *arXiv preprint 1005*  
 930 *arXiv:2405.13080*, 2024. 1006

931 [12] K. He, H. Fan, Y. Wu, S. Xie, and R. Girshick, “Momentum contrast 1007  
 932 for unsupervised visual representation learning,” in *Proceedings of the 1008  
 933 IEEE/CVF conference on computer vision and pattern recognition*, 2020, 1009  
 934 pp. 9729–9738. 1010

935 [13] S. Feng, G. Tao, S. Cheng, G. Shen, X. Xu, Y. Liu, K. Zhang, 1011  
 936 S. Ma, and X. Zhang, “Detecting backdoors in pre-trained encoders,” 1012  
 937 in *Proceedings of the IEEE/CVF Conference on Computer Vision and 1013  
 938 Pattern Recognition*, 2023, pp. 16 352–16 362. 1014

939 [14] Z. Liu, X. Yu, Y. Fang, and X. Zhang, “Graphprompt: Unifying 1015  
 940 pre-training and downstream tasks for graph neural networks,” in *Proceedings 1016  
 941 of the ACM Web Conference 2023*, 2023, pp. 417–428. 1017

942 [15] A. Tejankar, M. Sanjabi, Q. Wang, S. Wang, H. Firooz, H. Pirsavash, 1018  
 943 and L. Tan, “Defending against patch-based backdoor attacks on self- 1019  
 944 supervised learning,” in *Proceedings of the IEEE/CVF conference on 1020  
 945 computer vision and pattern recognition*, 2023, pp. 12 239–12 249. 1021

946 [16] R. Bie, J. Jiang, H. Xie, Y. Guo, Y. Miao, and X. Jia, “Mitigating 1022  
 947 backdoor attacks in pre-trained encoders via self-supervised knowledge 1023  
 948 distillation,” *IEEE Transactions on Services Computing*, 2024. 1024

949 [17] K. Liu, B. Dolan-Gavitt, and S. Garg, “Fine-pruning: Defending 1025  
 950 against backdooring attacks on deep neural networks,” in *International 1026  
 951 symposium on research in attacks, intrusions, and defenses*. Springer, 2018, 1027  
 952 pp. 273–294. 1028

953 [18] B. Wang, Y. Yao, S. Shan, H. Li, B. Viswanath, H. Zheng, and B. Y. 1029  
 954 Zhao, “Neural cleanse: Identifying and mitigating backdoor attacks in 1030  
 955 neural networks,” in *2019 IEEE symposium on security and privacy (SP)*. 1031  
 956 IEEE, 2019, pp. 707–723. 1032

957 [19] D. Wu and Y. Wang, “Adversarial neuron pruning purifies backdoored 1033  
 958 deep models,” *Advances in Neural Information Processing Systems*, 1034  
 959 vol. 34, pp. 16 913–16 925, 2021. 1035

960 [20] P. Zhao, P.-Y. Chen, P. Das, K. N. Ramamurthy, and X. Lin, “Bridging 1036  
 961 mode connectivity in loss landscapes and adversarial robustness,” in 1037  
 962 *International Conference on Learning Representations (ICLR 2020)*, 1038  
 963 2020. 1039

964 [21] Y. Li, X. Lyu, N. Koren, L. Lyu, B. Li, and X. Ma, “Neural attention 1040  
 965 distillation: Erasing backdoor triggers from deep neural networks,” in 1041  
 966 *International Conference on Learning Representations*. 1042

967 [22] X. Gong, Y. Chen, W. Yang, Q. Wang, Y. Gu, H. Huang, and C. Shen, 1043  
 968 “Redeem myself: Purifying backdoors in deep learning models using 1044  
 969 self attention distillation,” in *2023 IEEE Symposium on Security and 1045  
 970 Privacy (SP)*. IEEE, 2023, pp. 755–772. 1046

971 [23] V. S. Chundawat, A. K. Tarun, M. Mandal, and M. Kankanhalli, “Can 1047  
 972 bad teaching induce forgetting? unlearning in deep networks using 1048  
 973 an incompetent teacher,” in *Proceedings of the AAAI Conference on 1049  
 974 Artificial Intelligence*, vol. 37, no. 6, 2023, pp. 7210–7217. 1050

975 [24] X. Zhai, A. Oliver, A. Kolesnikov, and L. Beyer, “S4l: Self-supervised 1051  
 976 semi-supervised learning,” in *Proceedings of the IEEE/CVF international 1052  
 977 conference on computer vision*, 2019, pp. 1476–1485. 1053

978 [25] I. Misra and L. v. d. Maaten, “Self-supervised learning of pre-text 1054  
 979 invariant representations,” in *Proceedings of the IEEE/CVF conference 1055  
 980 on computer vision and pattern recognition*, 2020, pp. 6707–6717. 1056

981 [26] D. Hendrycks, M. Mazeika, S. Kadavath, and D. Song, “Using self- 1057  
 982 supervised learning can improve model robustness and uncertainty,” 1058  
 983 *Advances in neural information processing systems*, vol. 32, 2019. 1059

984 [27] T. Chen, S. Kornblith, K. Swersky, M. Norouzi, and G. E. Hinton, “Big 1060  
 985 self-supervised models are strong semi-supervised learners,” *Advances 1061  
 986 in neural information processing systems*, vol. 33, pp. 22 243–22 255, 1062  
 987 2020. 1063

988 [28] Z. Huang, R. Jiang, S. Aeron, and M. C. Hughes, “Systematic 1063  
 989 comparison of semi-supervised and self-supervised learning for medical 1063  
 990 image classification,” in *Proceedings of the IEEE/CVF Conference on 1063  
 991 Computer Vision and Pattern Recognition*, 2024, pp. 22 282–22 293. 1063

992 [29] X. Wanyan, S. Seneviratne, S. Shen, and M. Kirley, “Extending global- 1063  
 993 local view alignment for self-supervised learning with remote sensing 1063  
 994 imagery,” in *Proceedings of the IEEE/CVF Conference on Computer 1063  
 995 Vision and Pattern Recognition*, 2024, pp. 2443–2453. 1063

996 [30] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton, “A simple framework 1063  
 997 for contrastive learning of visual representations,” in *International 1063  
 998 conference on machine learning*. PMLR, 2020, pp. 1597–1607. 1063