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Abstract—Self-supervised learning utilizes unlabelled data to1

train encoders, acquiring high-quality representations of input2

data, significantly advancing the field of computer vision. How-3

ever, recent studies have demonstrated that self-supervised learn-4

ing suffers from numerous adversarial attacks. Among them,5

backdoor attack is one of the focal issues, where downstream clas-6

sifiers inherit the backdoor behavior of the pre-trained encoder.7

Existing defense methods against backdoor attacks primarily8

focus on supervised learning, which heavily relies on labeled9

data and cannot be directly migrated to self-supervised scenarios.10

Furthermore, defense methods for self-supervised backdoor aims11

to separate poisoned samples on assumed small-scale datasets and12

retraining to obtain a clean encoder. However, these approaches13

are useless against encoders that have been implanted with a14

backdoor. To address these issues, we propose SSLDefender,15

a novel image-based backdoor mitigation method specially de-16

signed for self-supervised learning, which can remove backdoor17

attributes directly from the backdoor encoder. Specifically, we18

employ a trigger recovery method based on mutual information19

maximization to efficiently obtain trigger that resembles the20

target backdoor’s influence. Additionally, we design a distillation-21

guided unlearning strategy to purify backdoor features steadily22

and ensure the retention of clean knowledge to prevent over-23

forgetting. Extensive experimental evaluations on six benchmark24

datasets demonstrate that SSLDefender can successfully reduce25

the attack success rate of Badencoder to around 2% while main-26

taining high model accuracy on the main task. Its performance27

surpasses state-of-the-art methods.28

Index Terms—Self-supervised learning, Backdoor attacks,29

Trigger recovery, Knowledge distillation, Unlearning.30

I. INTRODUCTION31

SElf-supervised learning (SSL) is a machine learning32

paradigm that leverages unlabeled data for training, elim-33

inating the dependency on annotated samples [1]–[3]. It has34

exhibited substantial promise across diverse domains, includ-35

ing computer vision [4], [5] and natural language processing36

[5], [6]. In contrast to traditional supervised learning [7], SSL37

aims to acquire knowledge from the data itself, obtain high-38

quality representations of the data, and construct a pre-encoder39

to enable downstream tasks [8]. However, existing research40

has indicated that SSL is susceptible to the threat of backdoor41

attacks [9].42
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In order to embed and activate backdoors without directly 43

manipulating labels, the implementation of backdoor attacks in 44

SSL differs from supervised learning. In supervised learning, 45

attackers establish a strong correlation between the trigger 46

and the target label in a low-dimensional label space to carry 47

out backdoor attack [10]. However, in SSL, each pre-trained 48

encoder only outputs embedded features of input data, and the 49

prediction process relies on downstream classifiers. Therefore, 50

attackers in SSL generate similar embeddings for all inputs 51

containing triggers and the target class. As a result, any down- 52

stream classifier constructed based on a backdoor encoder will 53

incorrectly classify inputs with similar triggers into the same 54

target class [11]. As illustrated in Figure.1, encoders trained 55

under supervised learning rely on label guidance to classify 56

any input carrying triggers into the target label predetermined 57

by the attacker. In SSL, the attackers indirectly influence the 58

label space solely through the form of feature representations, 59

directly linking the trigger pattern to the target class in the 60

label space [12]. 61
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Fig. 1: Comparison of supervised and self-supervised backdoor
attacks.

To defend against backdoor attacks in SSL, researchers 62

have explored two directions for solutions: backdoor detection 63

and backdoor mitigation. ❶Backdoor detection methods in 64

SSL attempt to define the backdoor trigger as a constraint 65

problem and distinct the existence of the backdoor for the 66

target encoder by comparing the size of the inverted trigger 67

with an empirical threshold [13]. However, discarding a pre- 68

trained encoder incurs significant costs in SSL. Consequently, 69

while backdoor detection method can preemptively identify 70

backdoors, it is powerless to mitigate the malicious impact 71
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of this attack [14]. ❷Backdoor mitigation methods aim to72

break the correlation between the trigger and the target label,73

thereby preventing the encoder from being compromised by74

the backdoor attack and ensuring its normal functionality. On75

the one hand, in SSL, some methods like PatchSearch [15]76

and SSL-Cleanse [15] employ clustering-based approaches to77

separate poisoned samples and retrain a clean encoder on clean78

samples. Additionally, some methods based on self-supervised79

knowledge distillation perform neural attention distillation by80

fine-tuning the target encoder and obtaining a purified encode81

[16]. On the other hand, in supervised learning, researchers82

have attempted various methods such as fine-tuning [17],83

neuron cleansing (NC) [18], adversarial neuron pruning (ANP)84

[19], model connection repair (MCR) [20], neuron attention85

distillation (NAD) [21], self-attention distillation (SAGE) [22],86

and unlearning [23] to eliminate the impact of backdoors.87

Motivation: However, existing defense methods have the88

following limitations in addressing backdoor attacks in SSL:89

1) Backdoor mitigation methods in supervised learning rely on90

label guidance and correction, making the model robust against91

attacks. However, simply transferring supervised backdoor92

defense methods, such as knowledge distillation, to the self-93

supervised scenario is challenging due to the lack of given94

labels, preventing this method from achieving the same per-95

formance as in supervised learning. When the purified encoder96

is transferred to downstream classification tasks, even if the97

attack success rate is successfully suppressed, the accuracy98

of the main task inevitably decreases. 2) Detection strategies99

cannot remove the malicious impact of backdoor encoders.100

Therefore, when performing downstream classification tasks,101

classifiers trained based on this encoder will still retain the102

original relationship between the trigger and the target label. 3)103

In SSL backdoor mitigation, clustering-based methods rely on104

an assumed small-scale dataset, purifying the dataset through105

toxic sample filtering, and training a clean encoder. These106

methods belong to data sanitization techniques, serving as a107

defense against data poisoning before encoder training. They108

are ineffective against pre-trained backdoor encoders, such as109

the BadEncoder method, which maliciously modifies a clean110

encoder. In summary, our exploration in this aspect raises a111

fundamental yet profound question: “How can we directly112

purify a backdoor encoder while ensuring the accuracy of113

downstream task classification?”114

Challenges: Purifying backdoors in the context of SSL115

poses three challenges that need to be addressed: 1) how to116

achieve ‘unlabeling’, i.e., breaking the limitations of label-117

dependent backdoor defense methods to make them applicable118

in SSL scenarios; 2) how to forget backdoor features by119

maximizing the reduction of the backdoor’s impact on the120

encoder; 3) how to ensure the performance of the target121

encoder by minimizing the negative impact of defense methods122

on the entire SSL process.123

To this end, this paper proposes a distillation-guided un-124

learning approach for backdoor mitigation, called SSLDe-125

fender. It initially achieves trigger recovery without labels by126

computing the embedding similarity of input sample pairs.127

Subsequently, leveraging the recovered trigger, SSLDefender128

employs the unlearning mechanism to mitigate the backdoor’s129

impact. To ensure the accuracy of the primary task, a teacher 130

model is constructed to guide the training of the backdoor 131

encoder. Our contributions can be summarized as below. 132

• A Novel Backdoor Defense Method: to mitigate the in- 133

fluence of backdoors on pre-trained encoders, our SSLDe- 134

fender breaks the connection between trigger features and 135

target label through distillation-guided unlearning. 136

• Trigger Recovery: to quickly acquire knowledge of 137

the backdoor and carry out subsequent mitigation tasks, 138

we employ a label-independent trigger recovery method 139

based on mutual information maximization. 140

• Distilled-Guided Unlearning: to ensure encoder perfor- 141

mance while achieving superior defensive performance, 142

we propose a strategy called distilled-guided unlearning. 143

The pre-trained encoders not only counter backdoor at- 144

tacks through unlearning but also maintain the accuracy 145

of the primary task via distillation learning, thereby 146

achieving a robust balance between the two objectives. 147

• Comprehensive Evaluation: we conduct experiments on 148

SSLDefender with six benchmark datasets. The exper- 149

imental results demonstrate that our SSLDefender can 150

effectively mitigate the backdoor in the encoder while 151

maintaining high performance in downstream classifica- 152

tion tasks. 153

The remainder of this paper is organized as follows. In 154

Section II, we discuss the background and related works. In 155

Section III, we describe the problem definition and the threat 156

model. In Section IV, we introduce our proposed SSLDefender 157

method. Section V demonstrates the performance evaluation 158

results. Finally, Section VI concludes this paper. 159

II. BACKGROUND AND RELATED WORK 160

A. Self-supervised Learning 161

Self-supervised learning has attracted widespread attention 162

and implementation because its remarkable performance does 163

not rely on sample labels and involves extensive data training 164

[24]–[29]. Self-supervised learning models typically consist of 165

two components: a high-quality encoder f and a downstream 166

classifier g, forming a final model h : f ◦ g together. The 167

encoder constructs a function f : X → E, where X is the 168

input space containing different sample inputs, and E is the 169

embedding space containing corresponding feature vectors. 170

Contrastive learning (e.g., SimCLR [30], SimCLRv2 [31], 171

MoCo [32] and CLIP [33]) has achieved outstanding results 172

among numerous training methods for self-supervised learning 173

encoders. Contrastive learning forms similar instance pairs 174

for inputs, making positive samples closer to each other 175

and negative samples farther apart in the embedding space. 176

Enhanced versions from the same input are considered positive 177

samples, while enhanced versions from different samples are 178

considered negative. Another approach, BYOL [34], trains 179

only with positive samples in the absence of negative samples. 180

The trained encoder can be used for various downstream tasks. 181

B. Backdoor attacks in SSL 182

Self-supervised learning aims to train encoders from large 183

amounts of uncurated data, which opens up backdoor op- 184
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portunities. Encoders embedded with backdoors can deceive185

downstream classifiers by leveraging their unique trigger pat-186

terns, leading to erroneous judgments when receiving inputs187

carrying the triggers. However, the downstream classifiers188

perform normally on clean inputs. Saha et al. [9] introduced189

triggers into randomly cropped augmented views, bringing190

them closer to each other in the embedded space compared to191

other views with the same augmentation, enabling the encoder192

to learn the association between triggers and target classes.193

Building upon this, Li et al. [35] ensured the concealment of194

triggers by employing Discrete Cosine Transform (DCT) [36]195

to define spectral perturbations that are invisible in the chro-196

matic space. Unlike image patches, spectral triggers exhibit197

enhanced resistance, demonstrating higher effectiveness and198

evasion during testing. Zhang et al. [37] theoretically derived199

the optimal size for background images, and the best positions200

for reference objects and triggers, to create optimal poisoned201

images and address some limitations of the approaches above.202

Jia et al. [38] constructed BadEncoder to generate similar203

feature vectors for reference inputs (target classes from down-204

stream tasks) and shadow datasets (carrying triggers), thereby205

transferring the influence of the poisoned encoder to any206

arbitrary downstream classifier. In the multimodal domain,207

Carlini et al. [39] built two encoders: an image encoder and a208

text encoder, projecting corresponding image-text inputs into209

the same embedding space and generating similar embedding210

vectors. Effective attacks could be executed by controlling211

only 0.01% of the data. However, Tao et al. [40] argued that212

the critical issue with existing attack methods lies in the out-213

of-distribution nature of poisoned data, which can be easily214

detected by advanced detection techniques. To address this,215

they proposed DRURE, a distribution-preserving backdoor216

attack that reduces the distribution distance between poisoned217

samples and clean data [41], [42], transforming poisoned218

samples into in-distribution data, and achieving stealthy attacks219

that are difficult to detect.220

C. Backdoor Defense in SSL221

Existing defense methods against backdoor attacks in SSL222

primarily include two approaches: backdoor detection and223

backdoor mitigation. DECREE [13] was a typical model-224

centric backdoor detection method that performed trigger225

recovery on the target encoder by minimizing the similarity226

between pairs of samples embedded with triggers generated227

from random noise. If the size of the inversed trigger was228

smaller than a given threshold, the encoder was identified229

as a backdoor encoder. Otherwise, it was considered normal.230

However, this passive detection method can only determine231

the presence of a backdoor threat in the model. Still, it cannot232

eliminate the negative impact of the backdoor attack on the233

target model.234

In contrast, backdoor mitigation methods aim to eliminate235

triggers and cleanse the backdoored model by severing the236

strong correlation between triggers and target labels. Data-237

level backdoor mitigation methods can generally be divided238

into three parts: 1) identifying poisoned samples, 2) removing239

poisoned samples, and 3) retraining on clean samples. Ex-240

amples of such methods include PatchSearch [15] and SSL- 241

Cleanse [43]. To the best of our knowledge, in the latest 242

efforts to mitigate SSL backdoors, Bie et al. [16] employed 243

a knowledge distillation approach on the backdoor encoder. 244

They adapted the method used in NAD [21] from supervised 245

learning and transferred it to SSL. Their mitigation of Baden- 246

coder in non-targeted attack scenarios proved to be highly 247

effective, demonstrating superior performance. However, their 248

focus was not on real-world scenarios of SSL but rather 249

on extensive comparisons with existing backdoor attacks in 250

supervised learning, overlooking the attacks in existing SSL. 251

Furthermore, as this method did not provide actual code, we 252

could only replicate it based on the NAD method. 253

III. THREAT MODEL AND DEFENSE GOAL 254

A. Threat Model 255

We focus primarily on malicious setups in image encoders, 256

where attackers employ illicit means to inject carefully de- 257

signed backdoor into pre-trained encoders, thereby disrupting 258

the correct classification by downstream classifiers relying 259

on these encoders. We present our threat model from the 260

perspectives of the attacker and defender. Based on recent 261

backdoor attack methods, we categorize the capabilities of 262

attacker and defender as follows: 263

• An attacker can construct a backdoor encoder using any 264

means, including crafting poisoned samples and compro- 265

mising clean encoders. The attacker can balance attack 266

effectiveness and evasion, ensuring that backdoor samples 267

exhibit high attack success rates on downstream classifi- 268

cation tasks without affecting the prediction accuracy of 269

clean samples. 270

• The defender can only passively obtain backdoor encoder 271

and remain unaware of the backdoor knowledge. Further- 272

more, apart from holding a small portion of unlabeled 273

clean data, the defender have no access to any other 274

relevant data. 275

B. Defense Goals 276

In light of the specific capabilities of the attacker, we 277

address our defense objectives in a targeted manner from two 278

aspects: Defense Effectiveness: SSL-Defender can effectively 279

purify the backdoor encoder, remove backdoor features, and 280

sever the strong connections between triggers and target labels. 281

When this encoder is transferred to downstream classification 282

tasks, malicious inputs carrying triggers cannot force the 283

classifier to produce misclassifications, significantly reducing 284

the attack success rate. Model Robustness: The prediction 285

accuracy on clean inputs should be comparable to or slightly 286

lower than the accuracy before SSL-Defender training. In other 287

words, within an acceptable range, the accuracy of the main 288

task should be maintained. 289

Additionally, we evaluate the defense objectives using two 290

primary criteria: the Attack Success Rate (ASR) on backdoor 291

samples and the Model Accuracy (ACC) on normal samples. 292
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Fig. 2: Framework of the proposed SSLDefender. “Red” and “‘Blue” represent the poisoned and clean outputs of the student
model, respectively, while “Green” represents the clean output of the teacher model.

IV. PROPOSED DEFENSE METHOD293

A. Overview294

Figure. 2 outlines our proposed framework of SSLDefender,295

designed specifically for backdoor defense in SSL. SSLDe-296

fender instructs the target shadow encoder to perform trigger297

recovery training based on mutual information maximization298

to obtain optimized triggers. This trigger, with approximate299

influence as set by the attacker’s backdoor, effectively cap-300

tures knowledge of existing maliciously impactful backdoor301

attributes. Furthermore, to leverage the acquired backdoor302

knowledge and cleanse model’s backdoor attributes, SSLDe-303

fender introduces distilled-guided unlearning.304

B. Trigger recovery305

Trigger recovery has been widely used in supervised learn-306

ing. Such methods inspired by the intuition of backdoor307

attacks, where the modification by attackers for misclassifying308

target labels is much smaller compared to clean labels, have309

traversed model labels and optimized trigger patterns under310

assumed labels to find the minimal trigger that misclassifies311

other labels as the assumed label. Building on this, outlier312

detection algorithms are employed to filter out true triggers313

and their corresponding target labels. However, this method314

relied on explicit labeling for target optimization and is not315

applicable to self-supervised learning. Feng et al. [13], based316

on observations of backdoor trigger patterns where samples317

carrying the same trigger exhibit highly similar embeddings,318

proposed a new solution by guiding trigger optimization319

through maximizing embedding similarity. However, they are320

limited to setting a threshold in this optimization process,321

whereby if the value exceeds this threshold, the encoder is322

deemed to be carrying a backdoor. Although this method can323

accurately determine the presence of a backdoor, it cannot324

acquire knowledge of the backdoor, thus impeding mitigation325

efforts. We have achieved a more lightweight and precise326

trigger through a trigger recovery strategy based on mutual327

information maximization.328

Firstly, we formalize trigger injection using the following329

equation:330

Mix(xi,∆) = x′
i, (1)

When injecting a backdoor into the target encoder, we ob- 331

served that the model learns backdoor knowledge much faster 332

than clean data. Even on datasets that are challenging to 333

converge, the model tends to converge more easily towards 334

backdoor data. In causal reasoning, this phenomenon is ex- 335

plained as the attacker opening a false “shortcut” between 336

the input images and the predicted labels. If the model has 337

already learned the relevance of this false path, then when 338

triggers are attached, their predictions will switch to the target 339

label. Additionally, the model will generate highly similar 340

feature embeddings for any input embedding such triggers. 341

Therefore, we guide the process of pre-set trigger optimization 342

by creating poisoned samples and computing the similarity 343

between them to restore triggers that approximate the original 344

backdoor influence and lead to optimal misclassification by 345

the model. Specifically, for a randomly generated noise δ, 346

we use the generation model G to generate the optimized 347

trigger ∆. Assuming a clean shadow dataset Dshadow, we 348

embed the optimized trigger through the mixing function 349

M(.) to construct the poisoned dataset D′
shadow. Typically, in 350

SSL, cosine similarity is employed to measure the similarity 351

between two embedding samples. Formally, given two inputs 352

xp and xq , the cosine similarity between their corresponding 353

trigger embedding samples can be represented as: 354

Lp,q(F,∆) = −cos(F (Mix(xp,∆)), F (Mix(xq,∆))), (2)

Moreover, to achieve high similarity between samples and 355

approximate search in dense regions of the backdoor model 356

embedding space, it is necessary to sample a batch of input 357

samples to stabilize the search process. The calculation of the 358

average pair similarity within batch B is as follows: 359

Lcos =
1

B2

B∑
p=1

B∑
q=1

Lp,q, (3)

the loss of Lcos serves as a constraint during the trigger opti- 360

mization process, ensuring that samples carrying the trigger to 361
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be optimized tend to cluster in dense regions of the embedding362

space.363

However, this typical generative model has been proven364

to struggle in estimating the differential entropy in high-365

dimensional trigger patterns, leading to a decline in model366

performance [44]. Therefore, we introduce the maximization367

of mutual information to address this issue. Mutual informa-368

tion is a measure of dependency between random variables369

based on Shannon entropy. The mutual information between370

X and Z can be understood as the reduction in uncertainty371

of X given Z. The calculation of their mutual information372

through the Mutual Information Neural Estimator (MINE) can373

be represented as:374

I(X;Z) = H(X)−H(X | Z), (4)

where H is the Shannon entropy, and H(X | Z) is the375

conditional entropy of Z given X .376

Specifically, we employ the enhanced algorithm of Mutual377

Information Neural Estimator (MINE), known as Maximum378

Entropy Staircase Approximation (MESA), to approximate379

the unknown trigger distribution by integrating a set of sub-380

models G = {G1, G2...Gn}, where each sub-model Gi learns381

a portion of the trigger ∆i. Additionally, we uniformly select n382

thresholds ϵ = {ϵ1, ϵ2...ϵn} from [0, 1], where each threshold383

βi corresponds to a sub-model Gi and an information estimator384

ITi
parameterized by a statistical network Ti. Consequently,385

the final optimized loss function becomes:386

min
θg
Lt =

n∑
i=1

(max(0, ϵi − Lcos)− ηITi
(Gi(δ); δ

′)). (5)

We compute the mutual information between the randomly387

initialized noise δ′ and the optimized trigger through a statis-388

tical network. The process of maximizing mutual information389

guides the optimization iterations to be more expedient and390

effective. Our method aims to expedite the restoration of the391

most influential backdoor by seeking the most similar triggers.392

This conclusion will be verified in Section IV. The complete393

process of trigger recovery is shown in Algorithm 1.394

C. Distilled-guided unlearning395

In deep learning, unlearning means that the data owners396

wish the model owner to erase the influence of their data397

on the model and request that the model owner no longer398

use this these data for training. For defenders, we also aim399

to utilize this technique to erase backdoor features to purify400

the model. The most effective and straightforward method401

for unlearning is to retrain the model using a training set402

that does not include the supplier’s data. However, in SSL403

scenarios, where the user aims to obtain an encoder that404

provides high-quality representations of the data, extensive405

training on unlabeled data is necessary. The computational406

cost of retraining becomes prohibitive. Therefore, we seek a407

method to conduct unlearning on backdoor knowledge for the408

backdoor encoder.409

Considering the existing trigger patterns, the next step for410

SSLDefender is to leverage the recovered trigger to eliminate411

Algorithm 1: Trigger recovery
Input: Shadow dataset

Dshadow = {x1, x2..., xn)},generation model
G = {G1, G2...Gn},thresholds
ϵ = {ϵ1, ϵ2...ϵn} ∈ [0, 1],random nosie δ and δ′

Output: Optimized tigger ∆
Formalize trigger injection;
for each sample xi ∈ Dshadow do

Mix(xi,∆) = x′
i;

D′
shadow ← Dshadow;

end
for any sample xp and xq ∈ D′

shadow do
Lp,q = −cos(E(Mix(xp,∆)), E(Mix(xq.∆)));
// computer the similarity between
two embedding sample;
Lcos =

1
N2

∑N
p=1

∑N
q=1 Lp,q;

// calculate of the average pair
similarity within batch N ;
Ltotal =∑n

i=1(max(0, ϵi − Lcos)− ηITi
(Gi(δ); δ

′));
// final optimized loss function;

end
Iterative training until convergence;
Return ∆;

malicious trigger functionalities. To maximize the use of 412

limited clean data, we employ a distillation-guided unlearning 413

strategy through a lightweight teacher-student framework for 414

unlearning. The objective of this strategy is to effectively 415

forget malicious features while ensuring model performance. 416

In a successful SSL backdoor attack, attackers tend to mod- 417

ify a clean encoder to generate similar embeddings for all 418

inputs containing triggers and target classes. Consequently, 419

any downstream classifier built on this encoder backbone will 420

erroneously classify inputs with similar triggers into the same 421

target class. Based on the above observation, a direct defense 422

intuition of ours is to force trigger inputs and original inputs of 423

the same sample to have similar distributions, thereby weak- 424

ening the effectiveness of backdoor attacks. Specifically, we 425

embed all samples from the limited clean dataset Dclean with 426

the recovered trigger to construct a poisoned dataset Dpoised. 427

For a clean sample x and its corresponding poisoned sample 428

x′, both are considered inputs for the student model. By 429

aligning their embedding generation operations, we implicitly 430

drive the student model to eradicate the backdoor. 431

However, this brute-force operation inevitably leads to a 432

decline in model performance. While minimizing the differ- 433

ence between trigger and clean input distributions, it causes 434

a shift in the distribution of clean data as well. Therefore, 435

we fine-tune the student model to obtain a relatively clean 436

teacher model that guides the student model in preserving 437

clean knowledge. The teacher model only receives clean data 438

x as input. We align the clean soft targets outputted by the 439

teacher model with the outputs of the student model for the 440

same inputs. The clean and useful information from the teacher 441

model is passed to the student to aid in forgetting trigger 442
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Algorithm 2: Distilled-guided unlearning
Input: clean dataset

Dclean = {x1, x2..., xn)},recovered trigger ∆,
Hyperparameter α and β.

Output: Purified encoder f .
Formalize trigger injection;
Perform iterations for mutual information transfer:
for each sample xi ∈ Dclean do

Dpoised ← Dclean +∆;
end
for each sample xi ∈ Dclean and x′

i ∈ Dpoised do
zc ← f(x); zb ← f(x′);

W̃2(PS
c ,PS

b ) =
[∫

ω∈Ω
W 2

2 (Pω
c ,Pω

b )dω
] 1

2 ;
// The discrepancy between the trigger input

and clean input of the student model;
end
for each sample xi ∈ Dclean do

W̃2(PS
c ,PT

c ) =(
1
M

∑M
m=1

∫ 1

0
∥Fm

S (zc)− Fm
T (zc)∥2dz

)1/2
;

// The discrepancy between the clean input of
the teacher model and the student mode;

end
Update model parameters to min the loss;
Ltotal = αW̃2(PS

c ,PS
b ) + βW̃2(PS

c ,PT
c );

Return Purified encoder f .

features. Benefiting from this, the clean output distribution443

of the student model closely aligns with the teacher model,444

which can mitigate the adverse effects of over-forgetting on445

normal samples.446

We utilize the Wasserstein distance to compute differences447

between different distributions [45]. Generative modeling [46]448

is the task of learning the probability distribution from a given449

dataset D = {x}, where samples x ∼ Pb are drawn from450

an unknown data distribution Pb. Formally, the Wasserstein-p451

distance between distributions Pc and Pb is defined as:452

Wp(Pc,Pb) = inf
γ∈Π(Pc,Pb)

(E(x,y)∼γ [||x− y||p])
1
p , (6)

Given the constraint of only being able to utilize a small453

portion of the test dataset, to ensure that the model fully454

extracts all limited knowledge, we directly employ the fea-455

ture representations of the data. This also implies that our456

data is high-dimensional. Estimating the Wasserstein distance457

on high-dimensional data is not a trivial task. To alleviate458

computational complexity, we adopt a sliced version of the459

Wasserstein-2 distance [47], [48], which requires estimating460

distances between one-dimensional distributions, thus enhanc-461

ing efficiency. Therefore, the discrepancy between the trigger462

input and clean input of the student model can be defined as:463

W̃2(PS
c ,PS

b ) =

[∫
ω∈Ω

W 2
2 (Pω

c ,Pω
b )dω

] 1
2

=

(
1

M

M∑
m=1

∫ 1

0

∥Fm
S (zc)− Fm

S (zb)∥2dz

)1/2

,

Similarly, the distribution discrepancy between the clean 464

inputs of the teacher model and the student model is: 465

W̃2(PS
c ,PT

c ) =

(
1

M

M∑
m=1

∫ 1

0

∥Fm
S (zc)− Fm

T (zc)∥2dz

)1/2

,

(7)
By employing the aforementioned procedure for unlearning, 466

the overall loss constraint is determined by minimizing the 467

differences between two pairs of distributions, which can be 468

expressed as: 469

Ltotal = αW̃2(PS
c ,PS

b ) + βW̃2(PS
c ,PT

c ). (8)

The complete process of distilled-guided unlearning is 470

shown in Algorithm 2. 471

V. PERFORMANCE EVALUATION 472

In this section, we conduct multiple experiments of SSLDe- 473

fender on four real-world datasets under four SOTA backdoor 474

attack methods in SSL. To evaluate the effectiveness of our 475

proposed method, we aim to answer three key research ques- 476

tions: 477

• RQ1 (Defense Effectiveness): Can our proposed method 478

conduct effective defense against the four SOTA backdoor 479

attacks on different datasets? 480

• RQ2 (Ablation Analysis): Is SSLDefender still effective 481

in the elimination of tigger recovery or distillation-guided 482

unlearning methods? 483

• RQ3 (Parameter Sensitivity Analysis): What is the effect 484

of SSLDefender in different hyperparametric settings? 485

A. Experimental Settings 486

1) Dataset: SSLDefender is evaluated on five widely-used 487

benchmark datasets: CIFAR-10, STL-10, GTSRB, SVHN, and 488

ImageNet. The basic statistics of each dataset are shown in 489

Table. I, including the number of training and testing samples, 490

sample categories, and individual sample sizes. Particularly, 491

SVHN is a dataset composed of noisy samples, where some 492

distractor digits are distributed around the primary digit rep- 493

resented by the sample. 494

2) Attack Methods: We investigate five state-of-the-art 495

(SOTA) backdoor attack methods in SSL: SSL-backdoor em- 496

beds image patches into one view of the contrastively learned 497

enhanced images to establish a strong correlation between 498

triggers and target labels. PoisonedEncoder poisons specific 499

inputs, and combines target and reference inputs to create 500

poisoned samples. CorruptEncoder carefully crafts poisoned 501

images with two randomly cropped views that have a high 502

probability of including the reference object and trigger. In 503
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TABLE I: Dataset statistics.

Dataset
Training
images

Testing
images

Classes Size

CIFAR-10 50,000 10,000 10 32×32×3
STL-10 5,000 8,000 10 96x96x3
GTSRB 39,200 12,600 43 32x32x3
SHVN 73,257 26,032 10 32x32x3

Tiny-ImageNet 128,116 5,000 100 224x224x3

contrast to the aforementioned methods, BadEncoder con-504

structs a backdoor encoder using reference inputs to transfer505

to different downstream classification tasks.506

3) Defense Baselines: We select four backdoor defense507

methods in SSL, i.e., DECREE, PatchSearch, SSL-Cleanse,508

and SSL-KD. Here, DECREE belongs to backdoor detec-509

tion, while the other methods are categorized as backdoor510

mitigation. PatchSearch and SSL-Cleanse are clustering-based511

data filtering and retraining methods. SSL-KD is a mitigation512

method for poisoned encoders.513

4) Evaluation Metrics: We evaluate the performance of514

defense mechanisms with two metrics: attack success rate515

(ASR), which is the ratio of backdoored samples misclassified516

as the labels specified by attackers, and the accuracy of the517

main classification task on normal samples (ACC).518

5) Implementation Details: SSLDefender is assumed to be519

able to access 5% of the clean data randomly selected from520

the test set. For the unlearning process, we use the loss term521

B = 0.5, batch size B = 256, SGD as optimizer with522

learning rate η = 0.001, and run for E = 500 epochs. For523

all the baseline attacks and defenses, we adopt the default524

hyperparameters recommended by the corresponding papers.525

Specifically, attacks have the common parameters: trigger size526

t and injection ratio Φ. Unless otherwise mentioned, we set527

the backdoor injection ratio to Φ = 5% and the trigger size t528

to 20%. We test the performance of SSLDefender as well as529

other baselines five times and report the mean and standard530

deviation results to eliminate the effects of randomness.531

6) Experimental Environment: We implemented SSLDe-532

fender in Python using the PyTorch framework. Our exper-533

imental environment consists of 13th Gen Intel(R) Core(TM)534

i7-13700KF, NVIDIA GeForce RTX 4070 Ti, 32GiB memory,535

and Ubuntu 20.04 (OS).536

B. RQ1: Backdoor Defense Performance537

To answer RQ1, we evaluate the defense effectiveness and538

model accuracy of SSLDefender under both targeted attacks539

and untargeted attacks scenarios. In targeted attacks, we540

compare the performance of SSLDefender against four self-541

supervised backdoor attacks across three benchmark datasets542

under three contrastive learning paradigms. We select the best543

comparative training method to transform the method in su-544

pervised learning and use it as a baseline to compare with our545

method. The “before” column represents the original baseline546

without any defense, and the best results are highlighted in547

bold. In untargeted attacks, we train models on three different548

downstream tasks and compare SSLDefender with the state- 549

of-the-art defense method SSL-KD to verify the superiority of 550

SSLDefender. 551

1) Targeted attacks: We evaluated the effectiveness of 552

defense against representative SSL backdoor attack methods 553

on benchmark datasets. For fair comparison, all attacks were 554

conducted using the same settings as the original work. The 555

results are summarized in Table. II. Overall, even under 556

different contrastive learning algorithms, SSLDefender signif- 557

icantly defends against four typical existing self-supervised 558

backdoor attacks, resulting in ASR below 9%, with only a 559

slight decrease in ACC. 560

Specifically, in all settings, BadEncoder exhibits the highest 561

attack effectiveness. For instance, when training the backdoor 562

model using the MoCo algorithm, it achieves an ASR of 563

99.61% on CIFAR-10, which is nearly a perfect attack method. 564

We analyze that this is due to the attacker manipulating the 565

clean encoder with a reference input and trigger to make the 566

sample carrying this trigger highly similar to the embedding 567

of the reference input, thus achieving an effective attack. 568

However, this aggressive manipulation, while demonstrating 569

significant attack effects, is highly vulnerable. Defenders only 570

need a few clean samples to retrain the backdoor encoder, 571

leading to a substantial reduction in ASR. Therefore, in the 572

same setting, we lower the ASR of this backdoor encoder 573

to 0.97%. Additionally, the bidirectional optimization we 574

employed ensures that the model’s original performance is not 575

compromised, resulting in a decrease of only 0.37% in ACC 576

in this setup. Even on Tiny-ImageNet, we achieve an ASR of 577

0.2% and kept the ACC loss within 5%. 578

2) Comparing with Baselines: The aforementioned exper- 579

iments demonstrated the superiority of the BYOL method 580

over other commonly used contrastive learning approaches. 581

Therefore, we adapt several well-established backdoor defense 582

methods from supervised learning, namely fine-tuning, fine- 583

pruning, neural cleanse, and NAD, into a label-free SSL 584

paradigm consistent with the BYOL training framework. Since 585

SSL-KD relies on downstream datasets to fine-tune the back- 586

door encoder, it is included in the discussion of untargeted 587

attacks. The comparative results between the baseline methods 588

and SSLDefender are presented in Table. III. 589

Through repeated experiments and cross-validation, it is 590

evident that fine-tuning significantly reduces the ASR across 591

all four attack methods. In particular, when defending against 592

SSL-Backdoor attacks on the STL-10 dataset, fine-tuning 593

achieved the best performance among all defense methods. 594

However, the use of only a small subset of the dataset for 595

fine-tuning cannot guarantee the preservation of the model’s 596

performance on its primary task. Moreover, our experiments 597

reveal that fine-tuning suffers from high variability, struggling 598

to strike a consistent balance between high ACC and low 599

ASR, resulting in unstable outcomes. The intuition behind 600

fine-pruning is to identify and remove low-activation neurons, 601

which are presumed to be backdoor-related. While this method 602

does suppress the success rate of backdoor activation , benign 603

neurons or their informative features may also be pruned, 604

inevitably leading to a significant drop in prediction accuracy. 605

Compared with these two approaches, Neural Cleanse(NC) 606
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TABLE II: Performance of SSLDefender compared with baseline attacks on different pre-training datasets.

SimCLR MoCo BYOL

Before After Before After Before AfterAttack
Pre-training

Dataset
ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR

CIFAR-10 77.04±2.59 27.93±2.46 76.44±2.23 4.36±1.03 75.11±2.85 22.06±2.57 72.99±1.29 5.00±3.50 89.40±2.51 30.93±1.42 87.42±1.79 2.09±4.18

Tiny-ImageNet 69.22±3.41 30.12±1.87 69.01±2.55 6.53±0.92 67.48±4.13 23.00±2.06 67.05±1.34 4.88±3.67 69.81±0.78 36.97±2.19 67.75±1.24 2.96±4.02SSL-Backdoor

STL-10 68.00±1.76 36.71±3.09 65.40±0.88 7.29±2.41 60.30±4.67 35.90±1.23 56.00±2.95 8.20±0.54 70.82±3.18 36.95±1.67 73.19±2.04 6.68±4.32

CIFAR-10 75.64±0.97 32.93±2.58 73.68±1.41 1.19±3.75 75.40±2.19 23.31±4.06 67.45±0.73 0.34±1.88 89.40±3.27 32.45±0.65 88.73±2.33 0.79±1.09

Tiny-ImageNet 60.09±4.51 32.72±1.37 61.72±0.82 4.57±2.96 59.88±3.44 26.04±1.05 62.04±2.68 4.55±0.39 70.21±1.92 39.12±4.13 66.70±0.57 2.43±3.81
Poisoned-

Encoder
STL-10 60.14±2.37 39.90±1.05 59.11±3.88 8.95±0.64 58.56±4.19 37.15±2.71 57.23±1.44 7.61±3.02 70.92±0.79 39.09±2.15 73.12±1.67 6.78±4.53

CIFAR-10 78.40±0.92 36.58±3.41 72.10±1.78 0.54±2.06 74.76±4.67 33.48±0.55 64.36±2.89 0.66±1.33 89.80±3.12 31.91±0.78 87.50±2.44 0.96±1.95

Tiny-ImageNet 66.65±1.56 40.19±4.03 63.30±0.87 1.78±2.71 63.30±3.45 36.71±1.19 60.17±2.33 0.92±0.41 71.03±4.88 47.20±1.67 69.07±3.09 0.77±2.22
Corrupt-

Encoder
STL-10 67.00±2.14 46.77±0.93 66.62±3.67 3.02±1.45 58.75±4.02 43.27±2.78 51.91±1.19 2.79±0.56 72.32±3.88 58.96±2.31 75.05±1.07 2.48±4.55

CIFAR-10 80.98±1.82 98.92±3.41 81.16±0.78 0.58±2.09 80.37±4.67 99.61±1.33 80.00±2.95 0.97±0.44 83.20±3.12 98.99±1.67 84.08±2.23 1.89±0.91

Tiny-ImageNet 68.32±4.19 97.99±0.66 66.04±2.55 2.22±1.88 58.00±3.04 97.41±2.71 53.80±1.45 0.20±0.33 70.36±4.88 98.58±1.09 64.36±3.56 1.01±2.37BadEncoder

STL-10 67.04±1.67 96.75±3.22 67.39±0.89 1.95±2.41 62.41±4.03 94.60±1.15 62.33±2.78 4.78±0.56 72.96±3.91 99.98±1.34 73.50±2.07 1.86±4.19

TABLE III: Comparison results of different backdoor defense methods on three datasets.

Pre-training

Datasets
Attacks

W/O Def FT FP NC NAD SSLDefender

ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR

CIFAR-10

SSLBackdoor 89.40±1.23 30.93±3.67 40.57±0.89 9.49±2.41 49.77±4.02 10.52±1.56 70.26±2.78 8.40±0.95 53.59±3.14 4.33±1.07 87.42±2.55 2.09±0.66

PoisonedEncoder 89.40±1.88 32.45±4.19 49.93±2.33 8.24±0.77 52.14±3.45 8.56±1.92 62.45±0.58 15.26±2.71 57.74±1.34 4.50±3.09 88.73±0.82 0.79±2.04

CorruptEncoder 89.80±0.91 31.91±2.67 50.39±1.45 8.08±3.88 52.43±0.66 11.15±2.19 65.25±1.07 4.26±4.33 80.93±2.95 2.51±1.56 87.5±0.44 0.96±3.41

BadEncoder 83.20±2.78 98.99±1.23 50.17±3.67 13.32±0.89 59.75±2.41 17.62±4.02 66.38±1.56 14.26±2.95 60.17±0.95 7.24±3.14 84.08±1.07 1.89±2.55

Tiny-

ImageNet

SSLBackdoor 69.81±0.82 36.97±2.04 38.36±1.88 10.57±3.45 46.44±0.77 13.70±2.33 55.52±1.92 9.42±0.58 48.76±2.71 3.58±1.34 67.75±3.09 2.96±0.91

PoisonedEncoder 70.21±2.67 39.52±1.45 32.47±3.88 7.75±0.66 50.35±2.19 9.40±1.07 60.31±4.33 12.38±2.95 64.08±1.56 4.12±0.44 66.70±3.41 2.43±2.78

CorruptEncoder 71.03±1.23 47.20±3.67 44.69±0.89 10.92±2.41 58.40±4.02 12.27±1.56 62.24±2.78 7.60±0.95 66.39±3.14 1.92±1.07 69.07±2.55 0.77±0.66

BadEncoder 70.36±1.88 98.58±4.19 42.87±2.33 16.03±0.77 63.41±3.45 18.22±1.92 62.27±0.58 17.30±2.71 60.82±1.34 10.04±3.09 64.36±0.82 1.01±2.04

STL-10

SSLBackdoor 70.82±1.45 36.95±3.88 38.95±0.66 2.40±2.19 50.61±1.07 9.47±4.33 61.18±2.95 8.82±1.56 56.25±0.44 3.84±3.41 73.19±2.78 6.68±1.23

PoisonedEncoder 70.92±3.67 39.09±0.89 40.82±2.41 12.69±4.02 44.19±1.56 9.37±2.78 61.27±0.95 8.63±3.14 68.58±1.07 5.49±2.55 73.12±0.66 6.78±1.88

CorruptEncoder 72.32±4.19 58.96±2.33 47.26±0.77 12.55±3.45 60.05±1.92 11.36±0.58 62.75±2.71 5.44±1.34 69.33±3.09 2.06±0.82 75.05±2.04 2.48±1.45

BadEncoder 72.96±3.88 99.98±0.66 58.90±2.19 9.34±4.33 55.48±2.95 10.17±1.56 64.71±0.44 10.49±3.41 69.83±2.78 5.07±1.23 73.50±3.67 1.86±0.89

appears more systematic and effective. The core idea of NC607

aligns with our own: leveraging reversed triggers to identify608

backdoor-related components in DNNs and mitigate their609

influence. Building upon Fine-pruning, NC sets the output610

of suspected backdoor neurons to zero during inference.611

However, NC prioritizes neurons that exhibit the greatest612

activation difference between clean and adversarial inputs,613

thereby minimizing the performance degradation caused by614

pruning. Once the model no longer responds to the reverse615

trigger, NC terminates the pruning procedure. As shown in the616

experimental results, NC achieves approximately 15% higher617

ACC than Fine-pruning across all datasets.618

Overall, the adapted NAD method achieves performance619

most comparable to our approach. NAD purifies the student620

model from backdoor features by aligning the intermediate621

attention maps of teacher and student models via attention622

distillation. On the STL-10 dataset under PoisonedEncoder623

and CorruptEncoder attacks, NAD slightly outperforms our624

method in mitigating backdoors. However, considering both625

ASR and ACC, while NAD reduces the ASR to 2.06%, the626

corresponding ACC is only 69.33%. In contrast, SSLDefender627

achieves a comparable ASR of 2.48% while improving ACC to628

75.05%. This result not only surpasses NAD in defense effec- 629

tiveness but also enhances the model’s predictive performance 630

and robustness. This improvement stems from our emphasis 631

on maintaining the integrity of the model’s primary task by 632

aligning the embedding distributions of clean outputs. 633

3) Untargeted attacks: Unlike targeted attacks, the pre- 634

trained dataset of untargeted attacks has a different class 635

distribution from the downstream dataset. The downstream 636

classifiers obtained by the victim still carry backdoor attributes 637

even if the pretrained backdoor encoder is fine-tuned using 638

other clean datasets. Therefore, we consider untargeted at- 639

tacks and measure the defense effectiveness by the accuracy 640

of the model on the trigger input. Table. IV presents the 641

results of six defense methods against BadEncoder across 642

different pretraining and downstream datasets. The pretraining 643

datasets include CIFAR-10, ImageNet, and CLIP. It is worth 644

noting that, unlike the experiments in the Targeted Attacks 645

section, the backdoor encoder pretrained on ImageNet and 646

CLIP are directly provided by BadEncoder. Our work focuses 647

on mitigating these backdoors based on the given encoders. 648

Additionally, we only utilize the image encoder provided by 649

CLIP, excluding the text encoder from our experiments. The 650
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TABLE IV: Performance of SSLDefender compared with baseline attacks on different pre-training and downstream datasets.

Pre-training

Dataset

Downstream

Dataset

W/O Def FT FP NC NAD SSL-KD SSLDefender

ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR

CIFAR-10

STL-10 77.58±1.34 99.97±0.88 61.78±2.71 10.67±3.12 55.31±0.56 9.93±1.95 66.20±4.23 6.39±2.07 60.43±1.45 9.22±0.79 57.79±3.67 9.44±2.41 77.54±1.08 3.06±4.02

SVHN 71.22±2.19 98.87±1.67 49.25±0.93 14.18±3.56 47.75±1.23 10.28±4.88 68.37±0.66 9.25±2.78 68.05±1.41 12.73±0.82 68.28±3.09 13.64±1.56 64.96±2.95 5.97±0.44

GTSRB 82.00±1.88 98.80±3.45 44.78±0.77 0.08±2.33 44.94±1.92 1.64±4.19 74.24±0.58 4.68±2.71 54.46±1.34 1.41±3.88 52.5±0.91 0.70±1.07 79.58±2.55 0.63±4.33

Tiny-

ImageNet

STL-10 95.55±1.23 99.99±0.66 47.5±2.41 4.68±3.14 56.62±0.89 6.45±1.56 82.47±4.02 12.54±2.95 61.18±1.07 9.39±0.82 52.95±3.67 7.57±2.19 96.10±1.45 1.61±4.67

SVHN 73.99±2.78 99.88±1.34 42.79±0.95 0.12±3.09 55.81±1.88 2.27±4.55 66.40±0.44 6.26±2.33 50.22±1.92 4.76±0.58 51.81±3.41 0.81±1.23 68.09±2.71 4.31±0.77

GTSRB 77.27±1.56 99.08±3.88 45.78±0.82 0.66±2.04 58.26±1.41 7.27±4.33 69.96±0.91 4.34±2.95 50.04±1.07 3.77±3.67 49.83±0.66 1.39±1.88 77.44±2.41 1.52±0.93

CLIP

STL-10 96.56±1.19 99.85±2.55 48.12±0.78 4.68±3.45 47.07±1.67 10.74±0.44 63.72±4.02 6.05±2.19 53.22±1.34 9.41±0.95 50.29±3.88 6.43±1.56 89.62±2.78 1.53±4.67

SVHN 70.94±0.89 99.99±1.92 48.79±3.14 2.12±0.66 54.82±2.33 24.37±1.07 60.11±4.55 7.83±2.71 59.36±1.45 16.09±3.09 51.81±0.82 14.32±1.88 67.02±2.95 2.03±0.58

GTSRB 82.44±1.41 99.35±3.67 46.26±0.93 1.26±2.41 42.77±1.23 12.96±4.88 68.47±0.77 5.31±2.04 52.28±1.56 4.10±3.45 48.23±0.44 0.27±1.92 74.71±2.78 0.57±0.91

TABLE V: Defense Performance of SSLDefender against
Special Trigger Type Attacks.

Pre-training

Dataset

Downstream

Dataset

Spectral Trigger Random Noise

Before After Before After

ACC ASR ACC ASR ACC ASR ACC ASR

CIFAR-10
CIFAR-10 90.83 89.79 91.72 0.62 82.41 92.17 80.28 1.04

STL-10 73.50 63.28 77.52 2.84 69.40 58.76 70.95 4.41

downstream classification datasets include STL-10, SVHN,651

and GTSRB.652

Experimental results indicate that even under untargeted653

attacks, SSLDefender is capable of reducing an ASR close654

to 100% to below 6%. For example, when using an ImageNet655

pre-trained backdoor encoder for the downstream classification656

in GTSRB, our method does not achieve the lowest ASR (1.657

52% vs. 0. 66%), but improves the classification accuracy658

to 77.44%, significantly higher than the 45.78% achieved by659

Fine-tuning. Undeniably, all baseline methods contribute to660

reducing ASR to some extent. However, they generally fail to661

preserve the model’s predictive performance. In contrast, our662

method demonstrates both effectiveness and generalizability,663

achieving a better trade-off between attack mitigation and664

model utility across various datasets and scenarios.665

4) Special Trigger Type Attacks: Since the aforementioned666

methods are all patch-based backdoor attacks, we conducted667

experimental validations against more complex trigger types.668

As shown in Table. V, SSLDefender can still effectively669

counter even invisible Spectral Triggers and difficult-to-670

reconstruct Random Noise triggers. This is because our pro-671

posed method does not aim to reconstruct a trigger identical672

to the one set by the attacker, but rather to learn the backdoor673

knowledge and apply the optimized perturbation to clean data674

for robust training.675

5) Overhead of SSLDefender: To investigate the practical676

feasibility of SSLDefender, we quantified the computational677

overhead of each component while defending against BadEn-678

coder on the CIFAR-10 dataset, and compared the overall679

framework with fine-tuning and retraining methods. The re-680

sults are presented in Table.VI. The experiments demonstrate681

that, owing to the incorporation of key components such as682

trigger inversion, mutual information estimation, and Wasser-683

stein distance computation, SSLDefender incurs higher costs684

compared to fine-tuning operations. Nevertheless, it achieves685

superior performance. In contrast to retraining methods, our686

approach exhibits efficiency that is nearly 10 times greater. If 687

the training data were replaced with datasets of larger size and 688

scale, the costs associated with retraining would only become 689

more burdensome. 690

C. RQ2: Ablation Analysis 691

We conducted an ablation study to understand the contribu- 692

tions of individual components of SSLDefender to the overall 693

defense framework. To verify the contribution of trigger recov- 694

ery, we experimented with directly applying unlearning to the 695

backdoor encoder after removing the trigger recovery module. 696

During the processing of a small clean dataset, we replaced 697

the recovered trigger with other perturbations to construct poi- 698

soned datasets. Additionally, we validated the contribution of 699

mutual information maximization. In the process of backdoor 700

feature unlearning, we examined the roles of two loss terms 701

L1 and L2 to enhance our understanding of the mechanisms 702

behind the distillation- guided unlearning learning process. 703

1) Eliminate Trigger Inversion: we experimented with three 704

non-reconstructed random triggers to validate the role of 705

trigger recovery module, and the experimental results are 706

shown in Table. VII. Although the three triggers we set are 707

structurally similar to the triggers we reconstructed, they still 708

fail to achieve the mitigation effect. The best result is to reduce 709

the ASR of BadEncoder to 41.44%. The data results indicate 710

that randomly generated perturbations affect the model’s de- 711

cisions but are ineffective against the backdoor. The process 712

of trigger reconstruction is actually about learning the model’s 713

backdoor knowledge. Applying this trigger in the distillation- 714

guided unlearning process is not only for robust model training 715

but also for breaking the backdoor pattern and severing the 716

connection between the trigger and the target label. This shows 717

that the trigger recovery process is an indispensable key step 718

for SSLDefender. 719

2) The contribution of mutual information maximization: 720

TABLE. VIII illustrates the effect of mutual information 721

maximization in the trigger inversion module, where DECREE 722

refers to the variant that does not employ mutual information 723

maximization. Since the primary objective of DECREE is to 724

detect whether an encoder carries backdoor features, it imposes 725

relatively low requirements on the quality of the reconstruction 726

process. DECREE halts training and identifies an encoder as 727

backdoored once the optimization loss falls below a predefined 728

threshold. To ensure a fair comparison, we adjusted this 729
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TABLE VI: Comparison of Computational Overhead of Various Methods on the CIFAR-10 Dataset.

Epoch 10 20 30 40 50 60 70 80 90 100 RAM(G) VRAM(G)
Fine-Tuning 5.71 11.43 17.25 22.82 28.35 33.90 39.54 45.30 51.13 56.51 1.32 1.49

Trigger Recovery 9.71 18.08 28.63 40.12 54.05 - - - - -
Trigger Recovery+MI 12.40 22.37 35.76 50.24 62.90 - - - - -

Unlearning 11.76 22.75 33.90 44.95 56.33 67.30 78.35 89.37 100.28 111.51
ALL 24.16 45.12 69.66 95.19 119.23 130.20 141.25 152.27 163.18 174.41

1.71 3.2
Training
Time(s)

Retraining 158.82 319.10 479.54 639.48 799.48 959.70 1119.72 1279.95 1440.54 1601.36 1.88 3.3

TABLE VII: Impact of different triggers on subsequent back-
door mitigation efforts.

W/O Def
Trigger

1
Trigger

2
Trigger

3
Recovered

Trigger
ACC 83.20 83.77 83.75 84.27 84.08 (↑0.88)
ASR 98.99 41.44 51.25 77.44 1.89 (↓97.10)

TABLE VIII: Comparison with the DECREE method.

W/O Def DECREE SSLDefender
ACC ASR ACC ASR ACC ASR
67.04 96.75 64.16(↓2.88) 35.23(↓61.52) 73.50(↑6.46) 1.86(↓94.89)

threshold to a lower value, allowing DECREE to reach its op-730

timal solution. However, when the reconstructed trigger from731

DECREE is used for backdoor mitigation, it only reduces the732

ASR of BadEncoder to 35.23%, which is significantly worse733

than the performance of our proposed method. This experiment734

demonstrates the superiority of our trigger inversion approach735

based on mutual information maximization, highlighting its736

effectiveness in enhancing backdoor mitigation performance.737

3) Component Contributions.: The framework we designed738

mainly relies on the latter part, the distillation-guided un-739

learning module, for backdoor mitigation. Therefore, in the740

ablation experiments section V.C, we were unable to com-741

pletely remove this module to verify the irreplaceability of742

the method. However, we can analyze the deep-level impact743

of different functional components within this module on744

SSLDefender. Specifically, our central idea involves erasing745

the backdoor attributes and maintaining model performance,746

corresponding to the L1 and L2 loss terms, respectively. The747

experimental results are shown in Table. IX. Clearly, when748

optimizing only the L1 term, although it can effectively resist749

four types of self-supervised backdoor attacks, it fails to750

ensure the model’s original performance. The results indicate751

a consistent decrease in ACC of around 8%. In contrast, if752

only optimizing the L2 term, SSLDefender stabilizes ACC753

but struggles to reduce the malicious impact of attackers. The754

combined optimization of these two loss terms enables the755

model to find a delicate balance between them, emphasizing756

the indispensability of L1 and L2, further demonstrating the757

efficiency of our proposed method.758

D. RQ3: Parameter Sensitivity Analysis759

1) Effect of ratio of poised samples: In our threat model,760

we assume that the defender has access only to the victim761

model, while the proportion of poisoned samples injected762

during training remains unknown. To evaluate the robustness763

TABLE IX: Impact of different components.

Component
SSL-

Backdoor
Poisoned-
Encoder

Corrupt-
Encoder

Bad-
Encoder

L1 L2 ACC ASR ACC ASR ACC ASR ACC ASR
✗ ✗ 77.04 27.93 75.64 32.93 78.40 36.58 80.98 98.92
✓ ✗ 70.33 4.90 69.75 3.58 68.63 7.27 73.54 0.94
✗ ✓ 75.47 19.96 71.16 22.89 74.24 29.62 79.11 65.27
✓ ✓ 76.44 4.36 73.68 1.19 72.10 0.54 81.16 0.58

of our method against backdoor attacks with varying poisoning 764

rates, we compare different defense strategies on the CIFAR- 765

10 dataset under four attack scenarios with different backdoor 766

injection rates. The results, as shown in Figure. 3, present 767

attack scenarios where the backdoor injection rate ranges from 768

1% to 9% in increments of 2%. Notably, according to the 769

original BadEncoder experimental setup, the attack achieves 770

optimal performance when the poisoning rate of the shadow 771

dataset reaches 20%. Therefore, we evaluate the impact of 772

BadEncoder poisoning at five levels: 1%, 5%, 10%, 15%, and 773

20%. Intuitively, in the absence of any defense mechanism, 774

the ASR of all attack methods increases as the injection 775

rate rises, as expected, while the accuracy of the primary 776

task deteriorates accordingly. Prior research suggests that the 777

difficulty of backdoor defense is positively correlated with the 778

poisoning rate. However, it is worth noting that, compared 779

to the mitigation effects observed at lower poisoning rates 780

(≤ 7%), our method demonstrates superior performance under 781

high poisoning rates. 782

2) Impact of Holding Rate: As highlighted in our proposed 783

method, a small amount of clean data is crucial for our 784

approach. Not only does it guide the model to forget the 785

backdoor patterns, it also preserves the accuracy of the primary 786

task. In our experimental set-up, we define a holding rate, 787

which represents the proportion of clean samples available 788

to the defender, extracted from the test set. In real-world 789

applications, we recognize that defenders may face a “data 790

scarcity” challenge. To account for this, we constrain the 791

amount of clean data available to a maximum of 10% of the 792

total dataset and evaluate the performance of SSLDefender 793

at different holding rates within this range. The experimental 794

results are shown in Figure. 4. Interestingly, even with an 795

extremely low retention rate of 1%, our method successfully 796

reduces the ASR of the BadEncoder to 0.8%, while keeping 797

the ASR of other attack methods below 10%. 798

Furthermore, defenders might encounter an extreme “data 799

isolation” scenario, where access to the original pre-training 800

dataset is not possible. Intuitively, a successful backdoor attack 801
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Fig. 3: Impact of injection ratio with five SOTA methods.

TABLE X: Performance of SSLDefender on alternative
datasets.

Setting Origin Auxiliary

Datasets CIFAR-10 STL-10 GTRSB SVHN

Attack ACC ASR ACC ASR ACC ASR ACC ASR

SSLBackdoor 87.42 2.09 79.58 15.24 72.39 18.48 80.13 11.82

PoisonedEncoder 88.73 0.79 81.77 10.45 76.20 16.62 81.06 9.40

CorruptEncoder 87.50 0.96 80.02 7.76 76.93 10.03 80.53 10.29

BadEncoder 84.08 1.89 80.59 8.21 73.47 6.60 75.17 6.22

relies on establishing a strong correlation between the embed-802

ded trigger and the target label. In other words, the attacker803

introduces perturbations to the original input, deceiving the804

model into producing the expected adversarial result. Our805

trigger inversion process aims to reconstruct this perturbation806

and leverage distillation-guided unlearning to desensitize the807

model, mitigating backdoor effects.808

To address data isolation, we explore the use of publicly809

available alternative clean datasets to support the SSLDefender810

framework. Specifically, we substitute part of the clean data811

required for defense in the CIFAR-10 dataset with STL-10812

and GTSRB samples. As shown in Table. X, even without813

relying on clean data from the original distribution, the use814

of alternative datasets reduces BadEncoder’s ASR to 8.21%,815

albeit at the cost of a 3% drop in accuracy. This demonstrates816

that our method does not strictly depend on the assumed clean817

data, yet clean samples from the original data distribution818

better highlight the superiority of our approach.819

3) Effect of batch size: In SSL, the purpose of training820

on samples is to extract high-quality representations of the821

samples themselves. Therefore, the potential impact of dif-822

ferent batch sizes on backdoor mitigation methods remains823

unknown, especially with the support of a small amount of824

clean data. To address this, we set the batch sizes to commonly825

used values of 32, 64, 128, 256, and 512. Table. XI illustrates826

the detailed results of this parameter’s influence. Specifically,827
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Fig. 4: Impact of holding rate on three datasets.

during the experimental process, batch size indeed has a 828

significant impact on training duration, but it does not greatly 829

disturb the performance of the method. Given the unique 830

context of SSL, we do not recommend using larger batch 831

sizes for training, as it burdens device memory and leads to 832

signs of decreased model performance. For instance, at a batch 833

size of 64, the model can maintain an accuracy of 87.52% 834

on the CIFAR-10 dataset even under BadEncoder, while with 835
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Fig. 5: Impact of model types on four attack methods.

TABLE XI: Effect of batch size.

Batch-Size
W/O Def SSLDefender

ACC ASR ACC ASR
32 85.59 99.36 84.81 (↓0.78) 1.11 (↓98.25)
64 87.52 99.30 87.58 (↑0.06) 1.12 (↓98.18)

128 83.20 98.99 84.08 (↑0.88) 1.89 (↓97.10)
256 86.52 99.34 86.51 (↓0.01) 0.68 (↓98.66)
512 84.01 99.09 84.63 (↑0.62) 1.37 (↓97.72)

a batch size of 512, this accuracy drops to 84.01%. Testing836

after backdoor mitigation also demonstrates similar outcomes.837

The robustness of our method to training batch sizes has been838

proven. Nevertheless, due to constraints, we suggest training839

models with a batch size of 256 to strike a balance between840

ACC and ASR.841

4) Impact of Model Types: Due to the specificity of the842

scenarios, different models imply “scratch pre-training”, hence843

in prior related studies, researchers typically fix a model archi-844

tecture. This approach does not align with the universality we845

seek for our defense method. We validated our method on four846

widely used models in this field: ResNet-18, ShuffleNet-V2,847

MobileNet-V2, Restnet-34. As shown in Figure. 5, even under848

complex model architectures and diverse backdoor attacks,849

our method demonstrates robustness. Overall, when subjected850

to various attack scenarios, the ASR of all four models851

consistently remains below 9%. These results demonstrate the852

model-agnostic nature of our method, highlighting its robust853

generalizability across different model architectures.854

VI. CONCLUSION AND DISCUSSION855

In this paper, we propose SSLDefender, a feasible and ef-856

fective backdoor mitigation method in SSL. SSLDefender can857

conveniently alleviate the negative impacts of backdoor attacks858

through a simple strategy of knowledge distillation-guided859

unlearning. Extensive experiments validate that SSLDefender860

can counter the most advanced self-supervised backdoor at-861

tacks with negligible performance degradation and outper-862

forms SOTA defense methods.Although we can ensure the863

effectiveness of the mitigation method on surrogate datasets,864

the outstanding performance of our method relies on the865

assumption of a small amount of clean data. In future work,866

we will continue to explore generating clean data using867

adversarial samples to achieve a “Data-free” implementation,868

addressing the key pain point of our method. Furthermore, the 869

underlying mechanisms of SSLDefender, which utilize mutual 870

information maximization for trigger recovery and knowledge 871

distillation-guided unlearning, have extension potential beyond 872

traditional convolutional networks in self-supervised visual 873

tasks. For example, adapting our framework to Vision Trans- 874

formers (ViT) may enhance backdoor defenses in transformer- 875

based architectures, where self-attention mechanisms might 876

introduce unique backdoor trigger vulnerabilities. Similarly, 877

applying similar concepts to the Natural Language Processing 878

(NLP) domain, such as defending against backdoor attacks in 879

large language models or text-based self-supervised learning, 880

represents a promising direction. However, this remains an 881

entirely new research direction that warrants thorough explo- 882

ration, as differences in data modalities and model architec- 883

tures may require significant adjustments to ensure efficacy 884

and generalization. 885
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