10

11

12

13

14

15

16

17

18

19

20

Socioecological determinants of dog ownership in Mara

region, Tanzania

Abstract

Understanding domestic dog population dynamics is critical for rabies control, particularly in
sub-Saharan Africa where domestic dogs are the primary virus reservoir. This study
investigates demographic and environmental determinants of dog ownership in Tanzania’s
Mara region, a rabies-endemic area with ecologically diverse landscapes. Using a cross-
sectional household survey (n = 27,400 households), we employed mixed-effects models to

assess predictors of dog ownership, dog counts, and Human-to-Dog Ratios (HDRs).

Overall, 12,975 households (47%) owned dogs, with a mean of 2.2 dogs per dog-owning
household. Logistic regression revealed key predictors of ownership: urban households had
reduced odds of dog ownership (OR = 0.311, Cl: 0.132-0.734, while ownership likelihood
increased with larger household size (adults: OR=1.151, Cl: 1.134-1.169; children: OR=1.160,
Cl: 1.140-1.180), and crop (OR =1.502, 95% Cl: 1.384-1.630), shrub (OR =1.387,95% CI: 1.269-
1.515), or tree land cover (OR = 1.708, 95% Cl: 1.260-2.314) compared to built areas.
However, among dog-owning households, variables had minimal practical impact on dog
counts with most households (85.6%) owning 1-3 dogs regardless of household size, location,
or land cover. Urban districts exhibited significantly higher HDRs (18.3:1 vs. rural 7.1:1),

further influenced by land cover (tree: 5.1:1 vs. built: 8.7:1).
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These findings highlight a critical divergence: while contextual factors strongly predict dog
ownership, they do not meaningfully influence the number of dogs owned. Consequently,
effective vaccination programmes require strategies tailored to local dog density and

ownership patterns.

Key Words

Dog demographics, Household survey, Human-animal interface, Rabies control, Spatial

epidemiology, Zoonosis

Introduction

Rabies, a deadly zoonotic disease transmitted through the bites of infected animals, claims
approximately 59,000 human lives annually, with over 95% of cases occurring in Africa and
Asia (Hampson et al., 2015). Domestic dogs are responsible for over 99% of human rabies
exposures, serving as the primary reservoir for the virus in rabies-endemic regions
(Cleaveland, 1998; Cleaveland et al., 2006; Lembo et al., 2008). To eliminate dog-mediated
human rabies by 2030, the World Health Organization (WHQO), the World Organisation for
Animal Health (WOAH), and the Food and Agriculture Organization of the United Nations
(FAQ) advocate for mass dog vaccination as the cornerstone strategy (FAO, 2025; WHO, 2018;
WOAH, 2025). While dog vaccination is effective in reducing transmission, its successful
implementation hinges on achieving high and uniform vaccination coverage (Cleaveland et

al., 2006; Ferguson et al., 2025, 2015; Townsend et al., 2013). Higher and more geographically
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even vaccination coverage reduces transmission bottlenecks and increases the likelihood of
sustained herd immunity (Fine, 1993), both important for rabies elimination. This in turn
requires accurate dog population data enabling the calculation of vaccine requirements,
identification of high-risk transmission zones, and adaptation of vaccination delivery
strategies to local ownership practices and veterinary practices, all of which are critical for
achieving the desired vaccination coverage. These data include ownership patterns, spatial
distribution of households, and human-to-dog ratios (HDR), which remain poorly
characterised in many rabies endemic regions within sub-Saharan Africa (Bouli et al., 2020;

Fitzpatrick et al., 2012; Lembo et al., 2008; Sambo et al., 2018).

Despite being 100% preventable, rabies persists as a serious public health threat in East Africa,
disproportionately affecting rural communities with limited access to human rabies post-
exposure prophylaxis (Hampson et al., 2015, 2008; Knobel et al., 2005; Sambo et al., 2013).
Dog vaccination has not yet been implemented at scale in most of sub-Saharan Africa, and
where dog vaccination has been undertaken incomplete population data leads to vaccination
coverage gaps (Butler and Bingham, 2000; Conan et al., 2015; Gibson et al., 2015; Gsell et al.,
2012; Mancy et al., 2022; Monroe et al., 2021; Moran et al., 2022). These challenges are
exacerbated in ecologically diverse regions like the Mara region in northern Tanzania, which
comprises a mosaic of croplands, shrublands, and rapidly growing towns. This region
exemplifies the complex interplay of ecological and socioeconomic drivers of dog ownership.
Localised data on how household demographics and land use interact to shape dog
populations will help planned vaccination campaigns avoid misjudging vaccination targets,

which could fuel perceptions about the ineffectiveness of dog vaccination.
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Current gaps in knowledge regarding the size and distribution of dog populations in rabies
endemic settings such as East Africa limit the precision of rabies control strategies. While prior
work has linked dog ownership to household size or socio-economic status, few studies have
integrated environmental variables like land cover or examined how these factors influence
dog ownership (Gsell et al., 2012; Knobel et al., 2008; Moran et al., 2022; Perry, 1993; Wallace
et al., 2017). Furthermore, Human-to-Dog Ratios (HDRs) are often extrapolated from coarse
population data aggregated to administrative boundaries rather than being derived from
ecological or livelihood measures (Moran et al., 2022; Sambo et al., 2018, 2017; Sudarshan et
al., 2001; Voupawoe et al., 2022). This oversight is problematic in regions undergoing rapid
land use change, where shifting agricultural practices or urban expansion may affect the

distribution of dog populations with equal rapidity, rendering previous estimates inaccurate.

This study investigates demographic, spatial, and environmental determinants of dog
ownership and population size in the Mara region of Tanzania. Using household survey data,
we analyse how household composition (including size and age structure), land cover, and
urban-rural classification predict both the likelihood of owning dogs and the number of dogs
per household. We further examine how household size itself varies across land cover types
and urban-rural settings, reflecting underlying socioeconomic patterns. To contextualise
these findings, we also assess HDRs at different administrative levels (ward and district),
comparing urban versus rural areas and distinct land cover categories (e.g., croplands,
shrublands) using negative binomial regression models. By integrating these predictors, this
work advances frameworks for granular dog population estimation to inform mass dog

vaccination for effective rabies control.

Methods
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Study area

This study was conducted in the Mara Region, located in northern Tanzania identified in
Figure 1A. Mara is one of the country's 31 administrative regions, covering approximately
30,150 square kilometres, of which about 10,942 square kilometres (36%) consists of water
bodies, primarily Lake Victoria. According to the 2022 Human Population and Housing Census,
the region has a human population of 2,372,015 (Tanzania National Bureau of Statistics and

President’s Office, 2024). The regional capital is Musoma Municipality.

Mara borders Kenya and Uganda to the north, Arusha Region to the southeast, Simiyu Region
to the south, and Mwanza Region to the southwest. The region is known for its rich
biodiversity and forms part of the Serengeti ecosystem, which includes Serengeti National

Park, a globally recognised conservation area.

Administratively, Mara Region is divided into nine Local Government Authorities (LGAs):
Musoma Municipal Council, Bunda Town Council, Tarime Town Council, Bunda District
Council, Butiama District Council, Musoma District Council, Rorya District Council, Serengeti
District Council, and Tarime District Council. Of these, Musoma Municipal is considered urban,
while the others are rural. In this paper, the term "district" is used throughout this study to
refer to councils. Rural districts are divided into wards, then wards are divided into villages,
and villages are further divided into sub-villages (vitongoji), whereas urban districts are
divided into wards and then into streets, which serve as the smallest administrative units. In
this paper, the term "village" is also used to also represent "street" in urban areas. A map of

the Mara region’s wards coloured by the urban/rural split is shown in Figure 1B.
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Agriculture, forestry, and fishing account for 72.2% of employment in the Mara region; other
important economic activities include mining, tourism, and other professional activities that
include trade, teaching, healthcare provision, and public service (Tanzania National Bureau of

Statistics and President’s Office, 2024).

Household survey and sampling procedures

Data was collected across the Mara region, through a cross-sectional survey conducted in
November 2022. 104 of the Mara region wards were selected for the study, aligning with
those chosen for an ongoing randomised controlled trial (RCT) of mass vaccination delivery
strategies (ISRCTN registration number: 14813279). Within each ward the central-most village
was then selected as the study village for the ward such that each study village was not in

direct contact with another study village to avoid contamination within the RCT.

The household survey was carried out by sub-village leaders (or street leaders in urban areas)
within the study districts. Each of the study sub-villages was assigned one enumerator who
was familiar with the households and geographical boundaries of their respective sub-villages
(or blocks/neighbourhoods in urban areas). Enumerators systematically visited each
household in the sub-village and recorded demographic data on both humans and dogs. Data
collection was conducted using the Open Data Kit platform (ODK, 2022). Prior to data
collection, enumerators received training on the use of the data collection tool and on the
standard operating procedures for conducting the survey. In each household, after obtaining
verbal consent from the respondent, a questionnaire was administered to the household
head or another family member over the age of 18 (Supplemental Table 1). Data was collected
on the total number of people living in the household, specifying adults i.e., above 18 years

of age, and children, as well as the total number of dogs owned (specifying adult dogs and



131  puppies below 3 months) and the geo-location (latitude, longitude) and altitude of each

132  visited household were recorded.

133
134
A)
C)
135

136 Figure 1. Spatial context and survey coverage of the Mara region, Tanzania. (A) Map of Tanzania with
137  the Mara region highlighted in blue. (B) Administrative wards of the Mara region: rural wards (orange)
138  and urban wards in the Musoma Municipal Council (blue). (C) Land cover, with district boundaries
139  within the Mararegionin black: shrubs (yellow), crops (orange), built (red), trees (green), water (blue).
140 (D) Surveyed household distribution: retained households (blue circles), households excluded during

141  data cleaning (orange circles), and protected areas/national parks (green).

142  Data cleaning of the household survey



143  Data cleaning was carried out prior to analysis to remove irregularities identified in the data.
144  Both the data cleaning process and the later data analysis was carried out using R version
145 4.5.1 (R Core Team, 2025), and a link to a GitHub repository with these processes can be found
146  in the supplemental information. A flowchart of the data cleaning process is provided in

147  Figure 2.
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Final analytic dataset
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148

149  Figure 2. Data Cleaning Flowchart. Flowchart illustrating the sequential exclusion of households
150 during data cleaning for a household survey in the Mara Region, Tanzania. The main vertical flow

151 shows the number of households at the beginning of each step, while rightward branches indicate
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excluded households. From the initial 36,956 households, 27,400 (74.1%) were retained for final

analysis.

1,518 records associated with enumerators who recorded fewer than 10 households were
excluded to mitigate inconsistencies arising from data entry errors (e.g., misspelled names
fragmenting enumerator identities) and to ensure sufficient sample sizes per enumerator for
reliable analysis. Additionally, 1,020 records associated with any enumerator name that only
reported records from households that owned dogs were also removed as enumerators had
mistakenly not also collected data from non-dog owning households (dog-biased
enumerators, Figure 2), which would artificially inflate ownership rates. One survey question,
intended to capture the total number of dogs owned by a household (adults and puppies) was
misunderstood by some enumerators who mistakenly recorded only the number of adult
dogs. For household records where the reported number of puppies exceeded the total
number of dogs owned, we assumed that the enumerator had included only adult dogs in
their assessment of the total number of dogs owned by a household. We also assumed that
the enumerator had made this mistake for all other households that they collected data from.
For the affected records, the total number of dogs owned by a household was used to
represent the number of adult dogs, and the total number of dogs was calculated as the sum
of this variable and the total number of puppies. 870, households belonging to a subvillage
with less than five recorded households were also removed as these are unlikely to be

representative of that area.

To align household locations with land cover data, GPS coordinates were first cleaned to
address inaccuracies. A total of 3,923 households sharing identical coordinates (likely due to

GPS signal errors or device limitations) were excluded to avoid spatial clustering artifacts.
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Remaining households were then mapped to a Sentinel-2 land cover (Sentinel Hub, 2022)
classification (Figure 1C) comprising five categories: built (areas dominated by closely spaced
buildings), shrublands (low-lying woody vegetation), croplands (actively cultivated
agricultural areas), trees (dense tree coverage), and water (natural or artificial water bodies).
To ensure spatial reliability, 480 households with low-precision GPS recordings (>50 metres,
as measured by the mobile survey application) and five households with coordinates outside
the study area were removed. During data cleaning, four households were found to be
erroneously geolocated within water bodies and were therefore excluded from the analysis

as they were considered to be GPS errors.

During data cleaning, 1,062 households were excluded for being unoccupied (containing no
adults or children). Additionally, it was noted that some households were atypical residences,
such as schools or community centres, leading to abnormally high counts of people and dogs,
while others exhibited extreme values, possibly resulting from data entry errors. To address
these anomalies, z-scores were calculated for each variable (adults, children, dogs, puppies),
and values exceeding three standard deviations from the mean were classified as outliers. A
total of 678 households were removed through this process. Crucially, zero values (e.g.,
households without dogs or children) were excluded from z-score calculations to prevent
skewing thresholds for non-zero entries. A map of all the surveyed households coloured by

inclusion or exclusion is shown in Figure 1D.

Analysis of Household Composition and Dog Ownership

To assess variation in household size across ecological and administrative contexts, household
composition (total humans, adults, and children under 18) was analysed using mixed-effects

negative binomial regression with village as a random intercept to account for clustering
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effects. Predictor variables included land cover type (built, crops, shrubs, trees) and urban-
rural classification. Model selection was performed using the dredge function in the MuMIn
package to identify the best-fitting model through automated comparison of all possible
subsets, with selection based on the lowest Akaike Information Criterion (AIC).
Multicollinearity was assessed via variance inflation factors (VIF) from the car package, with
all VIF values below 2.0, well under the conservative threshold of 5, indicating no problematic
multicollinearity. We further examined bivariate relationships between predictors, finding

expected associations that did not affect model stability (Supplemental Table 2a/2b).

Two mixed-effects regression models were developed to analyse dog populations. For dog
ownership, a mixed-effects logistic regression model with village random intercepts was used,
with dog ownership as the binary outcome variable. For the number of dogs owned, a mixed-
effects negative binomial regression model with village random intercepts accounted for
overdispersion in the count data. This analysis was restricted to households with at least one
dog. Both models included the number of adults and children under 18 years in the
household, land cover type, and urban-rural classification as predictor variables, and followed
the same automated model selection procedure using dredge and multicollinearity
assessment via VIF as described above. Model performance was evaluated using Nakagawa's

marginal R? (variance explained by fixed effects) and conditional R? (fixed + random effects).

HDRs were analysed at multiple ecological scales using a hierarchical approach. The
fundamental HDR for any given area (e.g., a village, district, or land cover class) was calculated
as the total number of people (including children) from all surveyed households divided by
the total number of dogs and puppies from those same households. Overall HDRs with 95%

confidence intervals were calculated for urban-rural classifications and land cover types using
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village bootstrapping (10,000 iterations) to account for sampling variability. This method
involved resampling villages with replacement within each category and recalculating the
total human-to-dog ratio for each bootstrap sample, thereby generating a distribution of
possible HDRs from which confidence intervals were derived. Village medians and
interquartile ranges (IQR) were derived from village-aggregated HDRs after filtering villages
with no recorded dogs to avoid infinite HDRs. Mixed-effects negative binomial regression
models with village random intercepts assessed statistical differences between categories,
with incidence rate ratios (IRR) and 95% Wald confidence intervals estimated for fixed effects.

Model performance was evaluated using Nakagawa's marginal and conditional R2.

District and regional dog populations were estimated by applying the survey-derived HDRs to
2022 National Census human population data (Tanzania National Bureau of Statistics and
President’s Office, 2024). For each district, the HDR was calculated from all surveyed
households within its boundaries. District-specific HDRs were calculated from all surveyed
households within the district, with 95% confidence intervals generated through village
bootstrapping (10,000 iterations) for districts with less than three sampled villages. For
districts with insufficient sampled villages (Bunda DC; n = 2), point estimates are reported
without Cls due to limited sampling precision. The regional HDR was derived from all surveyed
households across the Mara Region. Final dog population estimates and their confidence
intervals were calculated by dividing the human population by the bootstrapped HDR
distribution, with the upper HDR confidence bound vyielding the lower bound for the dog

population and vice versa, thereby propagating the uncertainty from the HDR estimate.

Ethical approval
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This research was approved by the Ifakara Health Institute Review Board (IHI/IRB/No. 16-

2021), and Tanzania’s National Institute for Medical Research (NIMR/HQ/R.8a/Vol.IX/3701).

Results

A total of 36,956 households were surveyed from a total of 104 villages. The process of data
cleaning removed 9,556 households (25.8%), leaving 27,400 households remaining
(Supplemental Table 3, Figure 1D). These households were distributed across land cover types
as follows: 13,857 (50.6%) in built areas, 7,288 (26.6%) in shrub areas, 6,028 (22%) in crop
areas, and 227 (0.8%) in tree areas. From these households, 124,635 adults were recorded,
as well as 84,838 children, totalling 209,473 people. Correspondingly, a total of 27,919 dogs

were recorded in these households (22,049 adults and 5,870 puppies).

Household size

The median household size was 7 people (IQR: 5-10), with a median of 4 adults (IQR: 2-6) and
3 children (IQR: 2-4) per household. The distribution of people per household is shown in

Figure 3A.

Using a multivariable mixed-effects model with village random effects to account for
clustering, neither land cover nor urban-rural classification significantly predicted household
size while village accounted for 19% of household size variance (Supplemental Table 4). Urban
households showed negligible size differences compared to rural households (IRR = 1.001,
95% Cl: 0.861-1.164, p = 0.990). Similarly, crop-dominated areas exhibited no significant
difference from built areas (IRR = 0.999, 95% Cl: 0.982-1.016, p = 0.899), nor did tree-

dominated areas (IRR = 0.962, 95% Cl: 0.900-1.028, p = 0.249). Households in shrub-
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dominated areas showed a marginal increase, though this did not reach statistical significance

(IRR = 1.016, 95% CI: 0.997-1.035, p = 0.098).

Dog Ownership

Of the 27,400 households surveyed, 12,975 (47%) households reported owning dogs. Dog-
owning households owned a median of 2 dogs (IQR: 1-3). Of the 27,400 households surveyed,
3,195 (12%) of these households owned puppies. Puppy owning households had a median of
1 puppies per household (IQR: 1-2). The distribution of dogs per household is shown in Figure

3B.

. B
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Figure 3. Distribution of household occupants and dog ownership in the Mara region, Tanzania.
(A) Histogram of the number of people per household. Household sizes ranged from 1 to 23, with a
median of 7 people per household. (B) Histogram of dogs per household. Dog ownership ranged from

0 to 1 3 dogs, with 14,425 households (53%) reporting no dogs. Data is based on 27,400 households

surveyed (see Figures 1 & 2).
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The multivariable mixed-effects logistic regression analysis identified several significant
predictors of dog ownership (Supplemental Table 5). Households with more adults were more
likely to own dogs, with each additional adult increasing the odds of dog ownership by
approximately 15% (OR = 1.151, 95% Cl: 1.134-1.169, p < 0.001). Similarly, the number of
children under 18 years of age increased the likelihood of dog ownership, with each additional

child raising the odds by approximately 16% (OR = 1.160, 95% Cl: 1.140-1.180, p < 0.001).

Land cover was significantly associated with differences in dog ownership. Households
located in areas dominated by crops had approximately 50% higher odds of owning dogs
compared to those in built areas, i.e. the reference category (OR = 1.502, 95% Cl: 1.384-1.630,
p < 0.001). Similarly, households in areas characterised by shrub-dominated land had
approximately 39% higher odds of owning dogs (OR = 1.387, 95% Cl: 1.269-1.515, p < 0.001),
while those in tree-dominated areas were approximately 71% more likely to own dogs
compared to households in built areas (OR = 1.708, 95% ClI: 1.260-2.314, p < 0.001).
Households in the one urban district, Musoma Municipal were substantially less likely to own
dogs compared to households in the other rural districts of the Mara region (OR =0.311, 95%
Cl:0.132-0.734, p =0.008). Figure 4 provides a summary of factors that influenced the number
of dogs owned by dog-owning households. Model diagnostics confirmed no evidence of
multicollinearity among the variables, with all variance inflation factors (VIFs) below 5. Model
dredging to identify the most parsimonious model resulted in the same significant predictors

as the initial analysis. The final model had a conditional R? of 0.402 and a marginal R? of 0.098.

Dog-owning households with more adult people were slightly more likely to own more dogs,
with each additional adult increasing the expected number of dogs by 4% (IRR = 1.035, 95%

Cl: 1.029-1.041, p < 0.001). Similarly, households with more children under 18 years of age
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were also associated with an increase in the number of dogs owned, with each additional
child raising the expected number of owned dogs by approximately 4% (IRR = 1.035, 95% Cl:
1.027-1.042, p < 0.001). Dog-owning households in areas with crop land cover owned a mean
of 2.2 dogs (SD = 1.48), which was significantly higher than the mean number of 2.1 dogs
(SD=1.59) owned by households in areas with built land cover (IRR = 1.067, 95% CI: 1.031-
1.103, p < 0.001). The households in shrub areas also owned a mean of 2.2 dogs (SD = 1.43)
however this was not significantly different from the households in built areas (IRR = 1.031,
95% Cl: 0.994-1.070, p = 0.097). Households from areas with tree land cover had a mean of
2.3 dogs (SD = 1.60) and this was significantly different from those from built areas (IRR =
1.127, 95% Cl: 1.009-1.261, p = 0.035). Urban-rural classification was excluded from the best
fitting model due to a lack of statistical significance (Supplemental Table 6a/6b). A summary
of these factors influencing the number of dogs owned by dog-owning households are shown
in Figure 4. Model diagnostics confirmed no evidence of multicollinearity among the
variables, with all variance inflation factors (VIFs) below 5. The final model had a conditional

R? of 0.147 and a marginal R? of 0.044.
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Figure 4. Forest Plots of Predictor Effects on Dog Ownership Outcomes. Effect sizes are shown
as odds ratios (Dog Ownership model) and incidence rate ratios (Dog Count model) with 95%
confidence intervals. Red markers indicate statistically significant effects (confidence intervals do
not include 1, Wald Test). Predictors include the number of adults and children under 18 in the
household, land cover classifications (crop, shrub, and tree) relative to the reference (built), and urban
households relative to the reference (rural households). Dashed vertical line represents no effect

(ratio = 1). Household counts were restricted to dog-owning households in the Dog Count model.

Human-Dog Ratios

With a total human population of 209,473 and a total dog population of 27,919, the region is
estimated to have an overall HDR of 7.5 humans per dog. Analysis of village-level data
revealed that rural areas showed a median HDR of 6.7 (IQR: 4.8-11.2) versus urban areas

(20.9; IQR: 8.7-34.6). Mixed-effects modelling confirmed significantly higher Human-to-Dog
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Ratios (HDRs) in urban settings (IRR = 2.49, 95% Cl: 1.600-3.860, p < 0.001, Figure 5A)

(Supplemental Table 7). This model had a conditional R? of 0.831 and a marginal R? of 0.151.

Land cover analysis of village-level data showed parallel patterns: built areas (median: 7.5,
IQR: 5.1-14.9), shrubs (median: 6.4, IQR: 4.2-9.4), crops (median: 6.5, IQR: 4.2-9.3), and trees
(median: 3.6, IQR: 2.4-7.3). All land cover types differed significantly from built areas (p <
0.001, Figure 5B) (Supplemental Table 8). This model had a conditional R?> of 0.703 and a

marginal R? of 0.064.
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Figure 5. Predictors of the Number of Dogs Owned by Dog-Owning Households. (A) Distribution of
village HDRs in urban versus rural districts. Rural districts had significantly lower HDRs (median HDR =
6.7) than urban districts (median HDR = 20.9). (B) Distribution of village HDRs across land cover types.

Built areas show the highest HDRs (median = 7.5), followed by crop (median = 6.5), shrub (median =
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6.4), and tree areas (median = 3.6). Each box represents the interquartile range (IQR), with the central

line indicating the median village HDR. Y-axes are log-transformed to normalise skewed distributions.

Estimating the Mara region dog population

District-level dog population estimates revealed substantial heterogeneity across the Mara
Region (Supplemental Table 9). Tarime DC had the highest estimated dog population (53,637;
95% Cl: 51,673-55,591 dogs), while Musoma MC had the lowest (8,948; 95% Cl: 8,103- 9,826
dogs). Summing district estimates yielded a regional total of 345,565 dogs, while
extrapolation using the overall regional human-to-dog ratio (7.5; 95% Cl: 7.4-7.6) gave
316,147 dogs (95% Cl: 310,807—321,587), representing a difference of 29,418 dogs (8.5%)

between the two estimation methods.

Discussion

Across the Mara region in northwest Tanzania, we found high levels of dog ownership with
47% of households owning dogs with a mean of 2.2 dogs per dog-owning household. More
specifically, we identified household composition, land cover, and urban-rural classification
as significant predictors of dog ownership in the Mara region. The odds of owning at least one
dog were strongly associated with rural households and crop/tree-dominated land cover,
while urban households had lower odds of dog ownership. Among dog-owning households,
the number of dogs owned showed minimal variation across predictors, with relatively small
effect sizes even for statistically significant factors. District-level HDRs revealed stark
disparities (Tarime TC: 2.6:1 - Musoma Municipal: 18.3:1), informing two regional dog
population estimates: 316,147 dogs using the overall regional HDR, and 345,565 dogs from

summing district-level estimates.
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The association between dog ownership and rural/agricultural settings reflects dogs'
functional roles in agrarian livelihoods, specifically with dogs serving as guardians against
wildlife predation of crops and livestock, a pattern documented across sub-Saharan Africa
(Butler and Bingham, 2000; Czupryna et al., 2016; Knobel et al., 2008; Murungi et al., 2025;
Sambo et al., 2018). Land cover reinforced this relationship, with elevated dog ownership in
crop- and shrub-dominated areas where subsistence crops and livestock production prevail,
while urban households had lower rates (OR = 0.31), possibly resulting from diminished
agricultural utility and reduced household space. Notably, households in tree-dominated
landscapes had the strongest association with dog ownership, but we acknowledge the
limited sample size (0.8% of households) and so caution against overinterpretation. Future
studies could target households in tree-dominated areas for more thorough investigation.
Additionally, while these variables showed statistical associations, the model's low
explanatory power (marginal R? = 0.098) indicates these variables alone cannot fully explain
dog ownership patterns and unmeasured variables like cultural or religious preferences or

economic constraints likely further contribute.

These ownership patterns directly shape Human-to-Dog Ratios (HDRs), manifesting in stark
rural-urban disparities (mean: 7.1 vs 18.3). This aligns with broader African studies
(Cleaveland et al., 2014; Sambo et al., 2018) and confirms that dogs are most common in
agricultural zones where their protective functions are valued. While land cover (marginal R?
= 0.064) and urban-rural classification (marginal R? = 0.151) were significant predictors, their
modest explanatory power indicates livelihood practices alone cannot fully account for HDR

variation. Nevertheless, these patterns have operational significance and vaccination
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campaigns could use this for prioritising areas where both dog ownership and rabies

transmission risks peak.

While household composition variables were statistically significant predictors of numbers of
dogs owned, their practical relevance is limited. For instance, each additional household
resident only increased the expected dog count by 4%. These marginal increases suggest that,
even in households with large families, the difference in dog numbers is negligible: a
household with 10 residents would own approximately 1.4 dogs on average, compared to 1
dog in a household with 1 resident, a difference unlikely to translate to meaningful variation
in rabies transmission risk or resource demands. Similarly, the land cover disparity in dogs
owned per dog-owning household, though statistically significant, reflects only a modest
difference. These findings imply that dog counts are largely decoupled from household
demographics or land cover once ownership is established. The trend of 1-3 dogs per
household, regardless of household size, was consistent with similar studies (Durr et al., 2009;
Kitala et al., 2001; Murungi et al., 2025). This typical pattern of owned dogs may also reflect
unmeasured variables such as economic capacity, dog utility (e.g., guarding, herding), or
owner preferences. Future studies should incorporate qualitative methods to explore these
latent drivers, as quantitative predictors alone are insufficient to explain these patterns of

dog ownership.

Dog population estimates are critical for vaccination campaign logistics, informing vaccine
procurement, resource allocation, and coverage assessment. Our study yielded two regional
estimates: 345,565 dogs (district-aggregated) and 316,147 dogs (regional HDR-derived), a
difference of 29,418 dogs (8.5%). This discrepancy reflects the methodological differences

between the approaches; the district-summed estimate is sensitive to local HDR variation,
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while the regional estimate, using the survey-wide ratio, benefits from greater precision due
to compensatory effects across districts. The notably small magnitude of this difference,
despite these distinct methods, provides confidence in the robustness of the overall estimate.
Both values provide actionable baselines, though their precision depends on representative
sampling across ecological gradients. As land cover significantly influences ownership
patterns, uneven sampling across these strata could bias HDRs, possibly affecting their
accuracy. While valuable for regional planning, these estimates should not be extrapolated
nationally as Tanzania's diverse cultural and ecological landscapes likely yield different

human-dog dynamics than those in the Mara.

While this study provides critical insights into dog ownership patterns, several conceptual and
contextual limitations warrant consideration. The analysis focused on household-level
predictors but did not capture individual-level factors such as religious practices, cultural
beliefs, income disparities, or owner perceptions of dogs as economic assets versus
companions, all of which have been shown to impact attitudes towards dog ownership
(Cleaveland et al., 2014; Conan et al., 2015; Knobel et al., 2008; Sambo et al., 2024, 2018). In
the predominantly Christian Mara region (Tanzania National Bureau of Statistics and
President’s Office, 2024), Islamic views of dogs as impure likely have limited impact, but
religion remains an important consideration for broader Tanzanian studies. These
unmeasured variables may explain residual variation in ownership rates, particularly in
urbanising areas where shifting livelihoods could redefine human-dog relationships.
Accounting for these variables in subsequent research would enhance predictive models for

rabies vaccination planning.
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The study’s cross-sectional design precludes causal inference; longitudinal data are needed
to assess how land use changes (e.g., urban expansion, deforestation, or shrubland being
converted to cropland) dynamically influence dog populations over time. Geographic and
temporal generalisability is also uncertain. Furthermore, the timing of the survey may
introduce some temporal bias. While domestic dogs in sub-Saharan Africa generally lack a
discrete breeding season (Gsell et al., 2012; Mutembei et al., 2002), their reproductive success
can be influenced by seasonal resource availability (Ortega-Pacheco et al., 2007; Conan et al.,
2015). As data collection occurred in November, immediately following the main dry season,
the observed population may reflect seasonal fluctuations; however, due to the short study

timeframe, we cannot determine the significance of this potential effect.

This study by design focuses on owned dogs as it was carried out in tandem with a rabies
vaccination campaign focussing on owned dogs. Evidence suggests that unowned dogs are
negligible within the Mara region (Kaare et al., 2009; Maganga et al., 2018) and neighbouring
districts (Czupryna et al., 2016). However, as urbanisation accelerates, this assumption may
require re-evaluation, as urban and peri-urban areas could develop transient dog populations.
In other regions with different cultural contexts or less established vaccination programs,

unowned dogs may represent a more substantial proportion of the dog population.

Methodological limitations emerged during data cleaning, primarily stemming from
enumerator inconsistencies and technical challenges. A small number of enumerators
demonstrated sampling bias by preferentially visiting dog-owning households, potentially
inflating ownership rates in initial records. Similarly, misunderstanding of the questions
regarding household dog ownership by some enumerators led to miscounted totals, while

inconsistent enumerator name entries complicated quality control across survey days.
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Additionally, GPS inaccuracies resulted in misaligned household coordinates,
disproportionately affecting densely populated areas. These errors were spatially clustered,
with certain wards exhibiting higher exclusion rates due to enumerator teams working in
localised zones. Consequently, some high-error areas are underrepresented in the final
analysis. Future studies could mitigate these issues through standardised enumerator
identifiers for longitudinal tracking, real-time GPS validation tools to flag low-precision
entries, and more comprehensive training of enumerators. Despite these limitations, the
large sample size and robustness checks across ecological zones support the validity of our
findings, which generally align with broader sub-Saharan African patterns (Butler and
Bingham, 2000; Cleaveland et al., 2014; Conan et al., 2015; Knobel et al., 2008; Murungi et

al., 2025; Sambo et al., 2024, 2018).

Understanding the spatial and demographic determinants of dog populations is critical for
designing effective rabies vaccination programmes. This study highlights that dog distribution
is not uniform but closely tied to land use and urbanisation. However, land use itself is
heterogeneously distributed, and human settlement patterns do not align neatly with land
classifications. These findings underscore the need for dynamic, iterative dog population
mapping. Static estimates based on coarse administrative boundaries risk misrepresenting
localised variation. Integrating land use trends (e.g., deforestation or urban expansion) into
predictive models could help anticipate future shifts in dog populations, enabling proactive
vaccination planning. Collaborative partnerships with local governments and agricultural
extension services would further enhance data granularity, ensuring interventions align with

both ecological and sociocultural realities.
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