1 Pharmaceutical pollution from healthcare: a systems-based strategy for mitigating

risks to public and environmental health

3

2

4 Authorship (full professors highlighted in blue)

Position	Name	Preferred degree	Affiliation	Full address
1	Kelly Thornber*	PhD	^a Department of Biosciences, Faculty of Health and Life Sciences, University of Exeter, UK	^a Geoffrey Pope Building, Stocker Road, Exeter, Devon, EX4 4QD, UK
			^b Pharma Pollution Hub	^b 2 Barnfield Crescent, Exeter, EX1 1QT, UK
2	Matthew Bentham	МА	Department of Biosciences, Faculty of Health and Life Sciences, University of Exeter, UK	Geoffrey Pope Building, Stocker Road, Exeter, Devon, EX4 4QD, UK
3	Sharon Pfleger	MPH	NHS Highland, Inverness, UK	NHS Highland, Assynt House, Beechwood Business Park, Inverness, IV2 3BW, UK
4	Claas Kirchhelle	PhD	CERMES3, INSERM, France	7 Rue Guy Môquet, 94801 Villejuif, France
5	Fiona Adshead	MSc	Sustainable Healthcare Coalition, Newton Abbot, UK	10 Decoy Road Newton Abbot TQ12 1DY UK
6	Stewart Owen	PhD	AstraZeneca UK Ltd Macclesfield, Macclesfield, UK	Charter Way, Macclesfield SK10 2NA, UK
7	Hayden Holmes	PGDip	York Health Economics Consortium, UK	Enterprise House, Innovation way, University of York, Heslington, York, YO10 5NQ, UK
8	A Ross Brown	PhD	Department of Biosciences, Faculty of Health and Life Sciences, University of Exeter, UK	Geoffrey Pope Building, Stocker Road Exeter, EX4 4QD, UK
9	Caroline Farmer	PhD	University of Exeter Medical School, UK	South Cloisters, University of Exeter, St Luke's Campus, Heavitree Road, Exeter, EX1 2LU, UK
10	Min Na Eii	MSc	South Tyneside and Sunderland NHS Foundation Trust, UK	Kayll Road, Sunderland, SR4 7TP, UK
11	Lydia Niemi	PhD	Environmental Research Institute, University of the Highlands and Islands, Thurso, UK	Castle Street KW14 7JD Thurso, UK
12	Lara Wöhler	PhD	University of Twente, The Netherlands	Chair of Multidisciplinary Water Management, Drienerlolaan 5, 7522NB Enschede, The Netherlands
13	Edward CF Wilson	PhD	University of Exeter Medical School, UK	South Cloisters, University of Exeter, St Luke's Campus, Heavitree

				Road, Exeter, EX1 2LU, UK
				Chief Data Officer Group, 10
14	Matthew J	PhD	UK Health Security	South Colonnade, London E14
14	Wade	ווט	Agency, UK	4PU, UK
	Wendy Tyler-		NHS Gloucestershire	Great Crwys, The Hendre,
15	Batt	BSc	This stadesterms	Monmouth NP25 5NL
				YHEC, Enterprise House,
16	Matthew	PhD	York Health Economics	Innovation Way, York Science
	Taylor		Consortium, UK	Park, YO10 5NQ, UK
				The Advanced Wellbeing
			The Advanced Wellbeing	Research Centre,
17	Georgina	MBBS	Research Centre,	Sheffield Hallam University,
17	Sowman	MIDDO	Sheffield Hallam	Olympic Legacy Park, 2 Old
			University, UK	Hall Road, Sheffield, S9 3TU,
				UK
			^a Worcestershire Acute	^a Charles Hastings Way,
40	D. 10. 11.11	MOOLD	Hospitals NHS Trust, UK	Worcester, WR5 1DD, UK
18	Paul Southall	MBChB	bDovol Collogs of	Churchill House 25 Ded Lie
			^b Royal College of Anaesthetists, UK	^b Churchill House, 35 Red Lion Square, WC1R 4SG, UK
			Aliacollictioto, UN	Medical School Building, St
19	Richard	PhD	University of Exeter, UK	Luke's Campus, Magdalen
10	Smith	רווט	Shiverency of Exeter, OK	Road, Exeter, EX1 2LU, UK
				Professor in Practise, Faculty
	01			of Health and Life Sciences,
20	Carol	PhD	University of Exeter, UK	University of Exeter, Stocker
	Routledge			Road, Exeter, Devon, EX4 4QD,
				UK
				Scottish Environment
	lohn		Scottish Environment	Protection Agency, Angus
21	John Redshaw	PhD	Scottish Environment Protection Agency, UK	Protection Agency, Angus Smith Building, Unit 6, 4
21	John Redshaw	PhD	Scottish Environment Protection Agency, UK	Protection Agency, Angus Smith Building, Unit 6, 4 Parklands Avenue, Holytown,
21		PhD		Protection Agency, Angus Smith Building, Unit 6, 4 Parklands Avenue, Holytown, Motherwell ML1 4WQ, UK
21	Redshaw	PhD	Protection Agency, UK	Protection Agency, Angus Smith Building, Unit 6, 4 Parklands Avenue, Holytown, Motherwell ML1 4WQ, UK South Cloisters, University of
21	Redshaw Emma	PhD PhD	Protection Agency, UK University of Exeter	Protection Agency, Angus Smith Building, Unit 6, 4 Parklands Avenue, Holytown, Motherwell ML1 4WQ, UK South Cloisters, University of Exeter, St Luke's Campus,
	Redshaw		Protection Agency, UK	Protection Agency, Angus Smith Building, Unit 6, 4 Parklands Avenue, Holytown, Motherwell ML1 4WQ, UK South Cloisters, University of Exeter, St Luke's Campus, Heavitree Road, Exeter, EX1
	Redshaw Emma		Protection Agency, UK University of Exeter Medical School, UK	Protection Agency, Angus Smith Building, Unit 6, 4 Parklands Avenue, Holytown, Motherwell ML1 4WQ, UK South Cloisters, University of Exeter, St Luke's Campus, Heavitree Road, Exeter, EX1 2LU, UK
22	Redshaw Emma Pitchforth	PhD	Protection Agency, UK University of Exeter Medical School, UK York Health Economics	Protection Agency, Angus Smith Building, Unit 6, 4 Parklands Avenue, Holytown, Motherwell ML1 4WQ, UK South Cloisters, University of Exeter, St Luke's Campus, Heavitree Road, Exeter, EX1 2LU, UK YHEC, Enterprise House,
	Redshaw Emma		Protection Agency, UK University of Exeter Medical School, UK	Protection Agency, Angus Smith Building, Unit 6, 4 Parklands Avenue, Holytown, Motherwell ML1 4WQ, UK South Cloisters, University of Exeter, St Luke's Campus, Heavitree Road, Exeter, EX1 2LU, UK
22	Redshaw Emma Pitchforth	PhD	Protection Agency, UK University of Exeter Medical School, UK York Health Economics	Protection Agency, Angus Smith Building, Unit 6, 4 Parklands Avenue, Holytown, Motherwell ML1 4WQ, UK South Cloisters, University of Exeter, St Luke's Campus, Heavitree Road, Exeter, EX1 2LU, UK YHEC, Enterprise House, Innovation Way, York Science Park, YO10 5NQ, UK
22	Redshaw Emma Pitchforth	PhD	Protection Agency, UK University of Exeter Medical School, UK York Health Economics Consortium, UK	Protection Agency, Angus Smith Building, Unit 6, 4 Parklands Avenue, Holytown, Motherwell ML1 4WQ, UK South Cloisters, University of Exeter, St Luke's Campus, Heavitree Road, Exeter, EX1 2LU, UK YHEC, Enterprise House, Innovation Way, York Science Park, YO10 5NQ, UK
22	Emma Pitchforth Melissa Pegg	PhD MSc	Protection Agency, UK University of Exeter Medical School, UK York Health Economics Consortium, UK Sustainable Healthcare	Protection Agency, Angus Smith Building, Unit 6, 4 Parklands Avenue, Holytown, Motherwell ML1 4WQ, UK South Cloisters, University of Exeter, St Luke's Campus, Heavitree Road, Exeter, EX1 2LU, UK YHEC, Enterprise House, Innovation Way, York Science Park, YO10 5NQ, UK 10 Decoy Road Newton Abbot TQ12 1DY UK
22	Emma Pitchforth Melissa Pegg	PhD MSc	Protection Agency, UK University of Exeter Medical School, UK York Health Economics Consortium, UK Sustainable Healthcare Coalition, Newton Abbot, UK	Protection Agency, Angus Smith Building, Unit 6, 4 Parklands Avenue, Holytown, Motherwell ML1 4WQ, UK South Cloisters, University of Exeter, St Luke's Campus, Heavitree Road, Exeter, EX1 2LU, UK YHEC, Enterprise House, Innovation Way, York Science Park, YO10 5NQ, UK 10 Decoy Road Newton Abbot TQ12 1DY UK University of Oxford
22 23 24	Redshaw Emma Pitchforth Melissa Pegg Keith Moore	PhD MSc MSc	Protection Agency, UK University of Exeter Medical School, UK York Health Economics Consortium, UK Sustainable Healthcare Coalition, Newton Abbot, UK School of Geography and	Protection Agency, Angus Smith Building, Unit 6, 4 Parklands Avenue, Holytown, Motherwell ML1 4WQ, UK South Cloisters, University of Exeter, St Luke's Campus, Heavitree Road, Exeter, EX1 2LU, UK YHEC, Enterprise House, Innovation Way, York Science Park, YO10 5NQ, UK 10 Decoy Road Newton Abbot TQ12 1DY UK University of Oxford School of Geography and the
22	Emma Pitchforth Melissa Pegg	PhD MSc	Protection Agency, UK University of Exeter Medical School, UK York Health Economics Consortium, UK Sustainable Healthcare Coalition, Newton Abbot, UK School of Geography and the Environment,	Protection Agency, Angus Smith Building, Unit 6, 4 Parklands Avenue, Holytown, Motherwell ML1 4WQ, UK South Cloisters, University of Exeter, St Luke's Campus, Heavitree Road, Exeter, EX1 2LU, UK YHEC, Enterprise House, Innovation Way, York Science Park, YO10 5NQ, UK 10 Decoy Road Newton Abbot TQ12 1DY UK University of Oxford School of Geography and the Environment, South Parks
22 23 24	Redshaw Emma Pitchforth Melissa Pegg Keith Moore George	PhD MSc MSc	Protection Agency, UK University of Exeter Medical School, UK York Health Economics Consortium, UK Sustainable Healthcare Coalition, Newton Abbot, UK School of Geography and	Protection Agency, Angus Smith Building, Unit 6, 4 Parklands Avenue, Holytown, Motherwell ML1 4WQ, UK South Cloisters, University of Exeter, St Luke's Campus, Heavitree Road, Exeter, EX1 2LU, UK YHEC, Enterprise House, Innovation Way, York Science Park, YO10 5NQ, UK 10 Decoy Road Newton Abbot TQ12 1DY UK University of Oxford School of Geography and the
22 23 24	Redshaw Emma Pitchforth Melissa Pegg Keith Moore George	PhD MSc MSc	Protection Agency, UK University of Exeter Medical School, UK York Health Economics Consortium, UK Sustainable Healthcare Coalition, Newton Abbot, UK School of Geography and the Environment,	Protection Agency, Angus Smith Building, Unit 6, 4 Parklands Avenue, Holytown, Motherwell ML1 4WQ, UK South Cloisters, University of Exeter, St Luke's Campus, Heavitree Road, Exeter, EX1 2LU, UK YHEC, Enterprise House, Innovation Way, York Science Park, YO10 5NQ, UK 10 Decoy Road Newton Abbot TQ12 1DY UK University of Oxford School of Geography and the Environment, South Parks Road, Oxford, OX1 3QY, UK
22 23 24	Redshaw Emma Pitchforth Melissa Pegg Keith Moore George	PhD MSc MSc	Protection Agency, UK University of Exeter Medical School, UK York Health Economics Consortium, UK Sustainable Healthcare Coalition, Newton Abbot, UK School of Geography and the Environment,	Protection Agency, Angus Smith Building, Unit 6, 4 Parklands Avenue, Holytown, Motherwell ML1 4WQ, UK South Cloisters, University of Exeter, St Luke's Campus, Heavitree Road, Exeter, EX1 2LU, UK YHEC, Enterprise House, Innovation Way, York Science Park, YO10 5NQ, UK 10 Decoy Road Newton Abbot TQ12 1DY UK University of Oxford School of Geography and the Environment, South Parks Road, Oxford, OX1 3QY, UK
22 23 24	Redshaw Emma Pitchforth Melissa Pegg Keith Moore George Kirkham	PhD MSc MSc	Protection Agency, UK University of Exeter Medical School, UK York Health Economics Consortium, UK Sustainable Healthcare Coalition, Newton Abbot, UK School of Geography and the Environment,	Protection Agency, Angus Smith Building, Unit 6, 4 Parklands Avenue, Holytown, Motherwell ML1 4WQ, UK South Cloisters, University of Exeter, St Luke's Campus, Heavitree Road, Exeter, EX1 2LU, UK YHEC, Enterprise House, Innovation Way, York Science Park, YO10 5NQ, UK 10 Decoy Road Newton Abbot TQ12 1DY UK University of Oxford School of Geography and the Environment, South Parks Road, Oxford, OX1 3QY, UK *Department of Chemistry, University of Bath, Claverton
22 23 24 25	Emma Pitchforth Melissa Pegg Keith Moore George Kirkham	PhD MSc MSc	Protection Agency, UK University of Exeter Medical School, UK York Health Economics Consortium, UK Sustainable Healthcare Coalition, Newton Abbot, UK School of Geography and the Environment, University of Oxford, UK	Protection Agency, Angus Smith Building, Unit 6, 4 Parklands Avenue, Holytown, Motherwell ML1 4WQ, UK South Cloisters, University of Exeter, St Luke's Campus, Heavitree Road, Exeter, EX1 2LU, UK YHEC, Enterprise House, Innovation Way, York Science Park, YO10 5NQ, UK 10 Decoy Road Newton Abbot TQ12 1DY UK University of Oxford School of Geography and the Environment, South Parks Road, Oxford, OX1 3QY, UK
22 23 24	Redshaw Emma Pitchforth Melissa Pegg Keith Moore George Kirkham Barbara Kasprzyk-	PhD MSc MSc	Protection Agency, UK University of Exeter Medical School, UK York Health Economics Consortium, UK Sustainable Healthcare Coalition, Newton Abbot, UK School of Geography and the Environment,	Protection Agency, Angus Smith Building, Unit 6, 4 Parklands Avenue, Holytown, Motherwell ML1 4WQ, UK South Cloisters, University of Exeter, St Luke's Campus, Heavitree Road, Exeter, EX1 2LU, UK YHEC, Enterprise House, Innovation Way, York Science Park, YO10 5NQ, UK 10 Decoy Road Newton Abbot TQ12 1DY UK University of Oxford School of Geography and the Environment, South Parks Road, Oxford, OX1 3QY, UK *Department of Chemistry, University of Bath, Claverton
22 23 24 25	Emma Pitchforth Melissa Pegg Keith Moore George Kirkham	PhD MSc MSc	Protection Agency, UK University of Exeter Medical School, UK York Health Economics Consortium, UK Sustainable Healthcare Coalition, Newton Abbot, UK School of Geography and the Environment, University of Oxford, UK	Protection Agency, Angus Smith Building, Unit 6, 4 Parklands Avenue, Holytown, Motherwell ML1 4WQ, UK South Cloisters, University of Exeter, St Luke's Campus, Heavitree Road, Exeter, EX1 2LU, UK YHEC, Enterprise House, Innovation Way, York Science Park, YO10 5NQ, UK 10 Decoy Road Newton Abbot TQ12 1DY UK University of Oxford School of Geography and the Environment, South Parks Road, Oxford, OX1 3QY, UK aDepartment of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK
22 23 24 25	Redshaw Emma Pitchforth Melissa Pegg Keith Moore George Kirkham Barbara Kasprzyk-	PhD MSc MSc	Protection Agency, UK University of Exeter Medical School, UK York Health Economics Consortium, UK Sustainable Healthcare Coalition, Newton Abbot, UK School of Geography and the Environment, University of Oxford, UK	Protection Agency, Angus Smith Building, Unit 6, 4 Parklands Avenue, Holytown, Motherwell ML1 4WQ, UK South Cloisters, University of Exeter, St Luke's Campus, Heavitree Road, Exeter, EX1 2LU, UK YHEC, Enterprise House, Innovation Way, York Science Park, YO10 5NQ, UK 10 Decoy Road Newton Abbot TQ12 1DY UK University of Oxford School of Geography and the Environment, South Parks Road, Oxford, OX1 3QY, UK "Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK
22 23 24 25	Redshaw Emma Pitchforth Melissa Pegg Keith Moore George Kirkham Barbara Kasprzyk-	PhD MSc MSc	Protection Agency, UK University of Exeter Medical School, UK York Health Economics Consortium, UK Sustainable Healthcare Coalition, Newton Abbot, UK School of Geography and the Environment, University of Oxford, UK	Protection Agency, Angus Smith Building, Unit 6, 4 Parklands Avenue, Holytown, Motherwell ML1 4WQ, UK South Cloisters, University of Exeter, St Luke's Campus, Heavitree Road, Exeter, EX1 2LU, UK YHEC, Enterprise House, Innovation Way, York Science Park, YO10 5NQ, UK 10 Decoy Road Newton Abbot TQ12 1DY UK University of Oxford School of Geography and the Environment, South Parks Road, Oxford, OX1 3QY, UK aDepartment of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK bCentre of Excellence in Water Based Early Warning Systems

27	Karin Helwig	PhD	Glasgow Caledonian University, UK	Cowcaddens Road, Glasgow G4 0BA, UK
28	Stuart Gibb	PhD	Environmental Research Institute, University of the Highlands and Islands, Thurso, UK	Castle Street KW14 7JD Thurso, UK
29	Lora E Fleming	MD	University of Exeter Medical School, UK	European Centre for Environment and Human Health, University of Exeter Medical School, Penryn, Cornwall, TR10 8RD, UK
30	Sean Comber	PhD	Biogeochemistry Research Centre, School of Geography, Earth and Environmental Sciences, University of Plymouth, Plymouth, UK	503 Portland Square, Drakes Circus, Plymouth, Devon, PL4 8AA, UK
31	Rob Collins	PhD	The Rivers Trust, UK	Rain-Charm House, Kyl Cober Parc, Stoke Climsland, Callington, Cornwall, PL17 8PH, UK
32	Heather Brown	PhD	Lancaster University, UK	Division of Health Research, Health Innovation One, Sir John Fischer Drive, Lancaster LA1 4AT, UK
33	Sinead Brophy	PhD	Swansea University, UK	Centre for Population Health, Data Science, Swansea University, Singleton, Swansea SA2 8PP, UK
34	Richard Brazier	PhD	University of Exeter, Centre for Resilience in Environment, Water and Waste, Exeter, UK	CREWW Building, North Park Road, University of Exeter, Exeter, EX4 4TA, UK
35	Hannah Blitzer	PhD	N/A	5 Eardley Road, London, SW16 6DA
36	Julie Barnett	PhD	University of Bath, UK	Department of Psychology, University of Bath, Claverton Down, Bath, BA27AY, UK
37	Rosalie Arendt	PhD	University of Twente, The Netherlands	Chair of Multidisciplinary Water Management, Drienerlolaan 5, 7522NB Enschede, The Netherlands
38	Julius Cesar Alejandre	PhD	Behavioural Research UK (BR-UK) Leadership Hub, The University of Edinburgh, UK	School of Social and Political Sciences, Chisholm House, High School Yards, The University of Edinburgh, Scotland, EH1 1LZ, UK
39	Charles Tyler	PhD	University of Exeter, College of Life and Environmental Sciences, Exeter, UK	Geoffrey Pope Building, Stocker Road Exeter, EX4 4QD, UK

*Corresponding author. Email: <u>k.thornber@exeter.ac.uk</u>, Tel: 01392 725155

pharmaceutical life cycle, for a positive pharmaceutical future.

Summary

Human pharmaceuticals are increasingly being detected in environments around the world, with growing international calls to mitigate the ecological and human health risks posed by these novel entities. Exposure to pharmaceutical pollutants can negatively affect the behaviour, reproduction and health of wildlife, contributing towards declining ecological health and global biodiversity loss. Pharmaceuticals in the environment are also driving rising levels of antimicrobial resistance, a major public health threat. Developing strategies to mitigate these public and environmental health risks has been greatly limited by diverse and often conflicting stakeholder interests and the need to retain the major human health and socioeconomic benefits that pharmaceuticals provide. Here, we propose a multi-stakeholder, systems-based approach for high-income countries to develop transformational national mitigation strategies. Applying this to a UK case study highlighted the growing risks caused by the unsustainability of the current UK healthcare pharmaceutical system and enabled us to identify 37 synergistic intervention points that target both the tangible "easy wins" and the deep-rooted social drivers of the issue. We believe our approach will support high-income countries to minimise the public and environmental health risks associated with pharmaceutical pollution by driving long-term sustainability across the

Introduction

Pharmaceuticals underpin modern healthcare systems and provide major socioeconomic benefits to societies around the world. In 2022 the pharmaceutical industry contributed a total GDP of USD 2·295 trillion and supported approximately 74·9 million jobs worldwide.¹ Pharmaceutical usage in humans has been rising for many years, driven by ageing populations, the growing incidence of chronic diseases, improving access to medicines, increasing spending on healthcare, the expansion of pharmaceutical manufacturing capacity and the "medicalisation" of society.².³ By 2028, the annual global use of pharmaceuticals in human healthcare is predicted to reach 3·778 trillion defined daily doses,⁴ with an associated market value of USD 2·3 trillion.²

Expanding pharmaceutical production and usage is increasingly being associated with public and ecological health concerns over environmental contamination with active pharmaceutical ingredients (APIs; the biologically active compounds within pharmaceutical products).⁵⁻⁷ Exposure to pharmaceuticals in the environment can influence the long-term survival, fitness and dynamics of organisms within an ecosystem, contributing to biodiversity loss.⁷ For example, oestrogenic compounds including pharmaceuticals from the contraceptive pill and hormone replacement therapies (HRT) can alter fish reproduction,⁸ and antidepressant pharmaceuticals can alter fish behaviour, making them less risk-averse and more susceptible to predation.^{9,10} Pharmaceutical contamination also has food chain impacts, as tragically illustrated by the almost complete loss of three South Asian *Gyps* vulture populations following the introduction of diclofenac usage in cattle, whose carcasses were subsequently fed upon by the vultures. The loss of the vulture populations in turn had wider negative impacts on local populations, for example in India it led to an estimated 104,386 annual deaths in the following 5-year period, with estimated damages of USD 69.4 billion per year.^{11,12}

Antimicrobials and other APIs in the environment also pose a threat to public health through driving environmental selection for antimicrobial resistance (AMR), a major global public health threat and predicted to be one of the leading causes of human deaths worldwide by 2050. 13,14 Humans can be

directly exposed to API pollutants through drinking water⁷, ingestion of crops grown in contaminated soils¹⁵ and bathing.^{5,16} Where measured, levels of human exposure have mostly been found to be below safe therapeutic dosages, although the long-term public health risks of chronic low-dose exposure remain unclear and underexplored.^{7,15} Any risks are likely to be greater in low- and middle-income countries (LMICs) where pharmaceutical pollution levels are reportedly greater⁵ and there is typically weaker wastewater management and environmental regulation, fewer policies and infrastructure for safe disposal of pharmaceuticals, ¹⁷ and poorer access to sanitation infrastructure.⁷

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

Most countries do not routinely monitor environmental API levels and where there is such monitoring this is limited to very few pharmaceuticals. Therefore, the scale, distribution and levels of human or wildlife exposure to API pollution remain not well understood. However, research studies are increasingly evidencing extensive contamination of global waterways with pharmaceutical compounds. A 2022 study of 1052 sampling sites across 258 global rivers found that more than a quarter of sites had at least one API at concentrations considered either not safe for aquatic organisms or of risk in terms of driving antimicrobial resistance (AMR).⁵ API pollutants are often present in the wastewater effluents from households, manufacturing facilities, hospitals, agriculture and aquaculture, and in some cases leading to very high API concentrations in local environments. 6.7,18,19 In general, API pollutants are found at lower environmental concentrations than other chemical pollutants, however low environmental concentrations do not necessarily equate to lower ecological risk. APIs are designed to be biologically active at very low concentrations, cross biological membranes and be resistant to metabolic breakdown in order to maximise efficacy and reduce side effects in the human body. Human API target sites are also often evolutionarily highly conserved and thus can be active in non-target environmental species.²⁰ Furthermore, some APIs and their metabolites (products from human metabolism) and/or transformation products (where the parent compound or metabolite has been altered through wastewater treatment) can persist and accumulate in the environment.

A number of international initiatives have now called for action in mitigating the risks that pharmaceutical pollution poses to public and ecological health. This includes the United Nations Environment Programme's Global Chemicals Framework,²¹ the International Panel on Chemical Pollution (IPCP),²² the Intergovernmental Science-Policy Panel (SPP) on Chemicals, Waste, and Pollution Prevention, 23 the Global Leaders Group on Antimicrobial Resistance, 24 the World Health Organisation's (WHO) "Greener Pharmaceuticals' Regulatory Highway"25 and "Guidance on wastewater and solid waste management for manufacturing of antibiotics", 26 the European Commission's Pharmaceutical Strategy for Europe, 27 and the revised European Urban Wastewater Directive.²⁸ However, developing mitigation strategies is challenging. The potential ecological and public health risks of pharmaceutical pollution were raised more than 25 years ago, with very little progress made since then. 19,29,30 The issue of pharmaceutical pollution is multifaceted, dynamic and uncertain in nature, with a complex range of interconnected social, economic and environmental drivers. For example, barriers to change have included the need to balance diverging conflicting values and interests across a very broad stakeholder group, the need to find solutions that do not jeopardise the major human health and socioeconomic benefits that pharmaceuticals provide, and the need to overcome huge persistent knowledge gaps surrounding the ecological, health and societal risks and impacts of many pharmaceutical pollutants.³¹ Action is further complicated by the fact that the aquatic environment acts as a sink for chemical pollutants from multiple sources, making it difficult to both predict the risk of these mixtures and attribute any impacts to specific causative agents. 32,33 As such, pharmaceutical pollution is an archetypal complex sustainability challenge (also known as a "wicked problem"). 34,35 Such challenges are notoriously difficult to address.

Research examining the shortcomings of mitigation strategies for other complex sustainability challenges has suggested that there has been too much focus on short-term technological or behavioural intervention points (so-called "easy wins" or "quick fixes") that have the least propensity for driving large-

scale change. Although these more tangible interventions can help alleviate acute problems and may help pave the way for longer-term change, they typically fail to address the underlying societal drivers and equity-dimensions of environmental fallouts, with the greatest risks of unsustainability often felt by societies' most vulnerable. ^{36–39} Indeed, studies have shown that poorer disenfranchised communities often bear the greatest burden of risks and impacts from multigenerational chemical and pharmaceutical pollution. ^{40–42} Thus, strategies seeking to develop long-term sustainable and equitable pharmaceutical pollution mitigation will require greater attention to be paid to the deep-rooted social, economic, policy and regulatory drivers and inequities associated with pharmaceutical usage, ^{36–39} and should include measures to ensure social justice for past and present pollution fallouts. ⁴³ In line with this, a number of studies examining the issue of pharmaceutical pollution have now called for a systems approach to developing risk mitigation strategies. ^{44–48}

Systems thinking is a holistic method used for understanding complex issues at multiple societal depths, with a focus on how the system's constituent parts interact and behave as a whole. 49 It is increasingly being applied to complex sustainability issues to create a common language and framework between disciplines and sectors, as well as to identify shared values and priorities for promoting collective and systemic action. 34,39,50,51 In this study, our aim was to use systems thinking methodologies to develop a collective, multi-stakeholder approach for high-income countries (HICs) to create pragmatic strategies to mitigate the public and ecological health risks of pharmaceutical pollution. Herein, we first describe our proposed 7-step approach and then present the outputs of applying the first 4 steps to a case study of the United Kingdom (UK). Our results demonstrate the unsustainability and inequity of the current UK healthcare pharmaceutical system and identify 37 synergistic intervention points that target the "quick fixes" alongside the deep-rooted societal drivers of the system. We believe this work constitutes a foundation for a transformational UK national action plan in which mitigating the risks of pharmaceutical pollution does not detract from and may even enhance the long-term socioeconomic benefits of pharmaceutical supply and use. Our approach also provides a template for other HICs to create similar national strategies that seek long-term, systemic change for a sustainable pharmaceutical future.

Methodological approach

Our overarching approach is presented in **Figure 1**. We use "pharmaceutical system" as a broad term to encompass the societal organisations, processes and factors that shape decisions, impacts and actions across the entire pharmaceutical life cycle. Our approach is based upon the hypothesis that the growing public and ecological risks of pharmaceutical pollution are a consequence of unsustainable complex pharmaceutical systems. The United Nations defines sustainability as "meeting the needs of the present generation without compromising the ability of future generations to meet their own needs" and proposes that there are three interdependent dimensions to this: social, economic and environmental sustainability. Therefore, we surmise that the aim of transformational risk mitigation strategies should be to support the societal evolution of pharmaceutical systems towards long-term social, economic and environmental sustainability.

Central to our approach is working extensively with stakeholders to understand the pharmaceutical system from both a macro (whole system) and micro (individual organisational) level. Strategies targeting system-level change are often criticised for being too abstract, lacking real-world application, and adopting a flawed one-size-fits-all approach. In response, organisations such as the WHO are starting to interlayer governance strategies combining a top-down, systems perspective, with a bottom-up, peoplecentred and equity-aware perspective grounded in participatory stakeholder design. ^{35,53-56} Our approach aligns with this by working with stakeholders from across the pharmaceutical life cycle to collectively understand the current situation (step 1), agree on a common goal (step 2) and identify a tangible route to

achieving that goal (steps 3-7). In this study, we applied steps 1-4 to the UK healthcare pharmaceutical system as a specific HIC context.

Scope of the study

The scope for our analyses was defined as encompassing all processes and factors that influence or contribute to the supply, use and waste management of APIs (here referred to as "pharmaceuticals") used in UK healthcare across their entire life cycle. 47 We considered "pharmaceuticals used in human healthcare" to be compounds used primarily to diagnose, prevent, treat or cure human disease; this included both small molecule pharmaceuticals (low molecular weight, chemically-synthesised compounds) and biologics (large, complex molecules derived from living organisms). We did not include personal care products. We took "The environment" to include air, water and soil environments.

Our study did not consider pharmaceuticals used in animal healthcare since although animal use of pharmaceuticals significantly contributes towards the environmental load of pharmaceutical pollution, it is widely believed that urban wastewater is the primary source of total pharmaceuticals entering the environment. ^{6,57} Of the pharmaceuticals detected in global waterways, those most regularly reported have also been associated with human use. ^{5,7} Human pharmaceuticals enter urban wastewater through a number of routes, notably from households, healthcare and manufacturing facilities. Up to 90% of orally-administered pharmaceuticals are excreted by patients either as the parent compounds or in a metabolised form. ⁵⁸ Unused or expired pharmaceuticals are also regularly inappropriately disposed into urban wastewater systems across many countries. ^{6,57} Further, from a systems perspective, we believe the societal structures and the upstream drivers influencing pharmaceutical use in animal health are sufficiently distinct to warrant a separate analysis.

Our study is focused on HICs as these countries have historically dominated international pharmaceutical trading, income generation, and pharmaceutical usage.⁵⁹ In 2023, Western Europe and Japan had per capita pharmaceutical use volumes that were greater than all other global regions and more than double most.² HICs generally have well-established healthcare pharmaceutical systems and good access to medicines. Although many HICs also have established manufacturing capacity, the past four decades have seen HICs outsource the manufacturing of APIs to emerging economies. This is reportedly due to the substantial cost differentials and lenient environmental regulations which create a favourable environment for scaling up production and enhancing efficiency in these markets.⁴ Thus, HIC pharmaceutical markets have global supply chains, with considerable environmental impacts. However, increasing issues with international pharmaceutical supply chain vulnerability in recent years have raised national security concerns in a number of HICs, leading to increased calls to "reshore" the manufacture of critical pharmaceuticals.^{60,61}

Case study: the UK healthcare pharmaceutical system

Like most HICs, the UK population is ageing and suffering from more chronic diseases. A study in 2024 estimated that 14·8% of people in England were living with two or more health conditions (8·88 million people), rising to 68·2% of those aged 80 years and over. ⁶² Social deprivation is strongly linked with poorer health outcomes, with an estimated 19-year difference in life expectancy between the most deprived and least deprived areas of the UK. ⁶³ In line with other European HICs, the UK has universal healthcare (i.e. free at the point of access) provided through its National Health Service (NHS), and has levels of pharmaceutical research and development expenditure, employment, pharmaceutical production and international trade that have been rising for many years (**Supplementary Table 1**; page 2,

Supplementary Information). As a large, centralised procurement body the NHS also has an unusual degree of collective bargaining power and influence over pharmaceutical pricing, with below-average spending per head compared to other HICs.⁶⁴

In 2022 the NHS became the first healthcare system globally to embed into legislation a target of net zero carbon emissions by 2045. ⁶⁵ Each of the four devolved UK nations (England, Scotland, Wales and Northern Ireland) are now working to reduce the greenhouse gas emissions of pharmaceuticals throughout healthcare pathways since pharmaceuticals account for 25% of the NHS's annual carbon footprint. ⁶⁵ Pharmaceutical pollution is mentioned in the sustainability strategy of NHS Scotland ⁶⁶ but is not part of the NHS strategies of the other three devolved nations.

Stakeholder engagement

We established a transdisciplinary consortium of 48 stakeholders from across the UK pharmaceutical life cycle, including representatives from across the healthcare sector (decision-making, pharmacy, practitioner and public health), academia (biomedicine/health, environmental and social sciences), industry (pharmaceutical and water), advocacy (environment and sustainable healthcare), policy (environmental and healthcare), finance and the media (Supplementary Figure 1; page 3, Supplementary Information). Stakeholder selection across the above-mentioned sectors was based on the snowball method: a core group of initial experts including those who had been involved in our preliminary mapping of the UK healthcare pharmaceutical system⁴⁷ identified key stakeholder representatives. Selection was based on expertise and relevant publications regarding the use, management, and treatment of pharmaceutical waste across the UK health systems sectors as well as regarding societal impacts and perceptions of pollution. While our aim was to ensure as diverse and inclusive representation as possible, we were constrained by the need to keep the group size manageable within our resource capacity. The research project's focus on and location in the UK meant that the vast majority (45/48) of consortium members were UK-based (although many work with global partners) with additional European experts invited to reflect on the international dimensions of integrated pharmaceutical supply chains and pollution burdens. Many stakeholders had expertise/experience that spanned multiple sectors and disciplines. Where certain stakeholder groups (e.g. some UK Government departments/agencies) did not accept the invitation to participate, we ensured that we had representation from academics and/or other stakeholder groups that work closely with them and are familiar with their perspectives relating to pharmaceutical pollution.

Within the consortium, we created five interconnected working groups (WGs) that broadly correlated with distinct sectors and stakeholder groups as identified through our preliminary systems mapping work. These covered the topics of: population health (WG1); design, manufacture and licensing (WG2); reimbursement, procurement and prescribing (WG3); distribution, sales, use and disposal (WG4); and environmental monitoring and management (WG5). Consortium members participated in as many WGs as they wished.

Micro and macro analyses

Our micro analysis comprehensively mapped and detailed the operational and regulatory processes for a typical UK healthcare pharmaceutical product across the entire life cycle, with a focus on those that influence the creation or mitigation of pharmaceutical pollution (step 1, **Figure 1**). Overall, this process helped to create a common language within the consortium by enabling stakeholders to gain a holistic

understanding of the system within areas distant from their own work, and to better understand the activities, needs and constraints of others.

Our macro analysis generated a collective "big picture" perspective across the breadth and depth of the system (step 3). To facilitate this analysis, we adapted a systems thinking tool called the Iceberg Model (**Figure 2A**). ⁶⁷⁻⁶⁹ Based on our previous work and in line with the multi-level perspective framework, ^{47,48} we identified three distinct depths of the UK healthcare pharmaceutical system that we believed stakeholders could relate to: *structures* (analogous to the micro analysis), *goals*, and *culture* (**Figure 2A**). Each WG used the Iceberg model as a discursive tool for collectively discussing and agreeing on a situational summary at each layer of the iceberg.

Using the information gathered through the micro and macro analyses, the WGs collectively identified leverage points where interventions could be targeted for enabling transformational change (step 4). When considering leverage points, members were asked to focus on those over which UK societal stakeholders have agency, since our aim was to support the development of national mitigation strategies.

An iterative process

Although **Figure 1** depicts an incremental process for the purposes of methodological clarity, in practice the development of outputs for steps 1-4 was an iterative process that took place between October 2023 and December 2024. Through both informal interviews with individual consortium members as well as extensive white and grey literature searching, reports were created for the remit of each WG. These contained: i) maps and descriptions of processes across the UK healthcare pharmaceutical life cycle (micro analysis); and ii) a list of initial leverage points with proposed needs and enablers. WG members provided extensive written input into these reports and then attended online WG workshops to consider the situation and challenges/opportunities for their remit (macro analysis), discuss the draft leverage points and identify any others that had emerged following the macro analysis. Feedback from each WG was then consolidated into the figures and supplementary tables of this manuscript, and further consortium feedback (written and verbal) was integrated to produce the final outputs. In cases where stakeholders had differing interpretations of the situation, this was discussed in more detail and the perspective of the majority was put forward but with alternative viewpoints presented in the more detailed supplementary information.

Case study: the UK healthcare pharmaceutical system

Describing the current system (step 1)

Our micro analysis (summarised in **Figure 3** and described in detail in **Supplementary Table 2**; pages 4-18, **Supplementary Information**) illustrates the complexity and interconnectivity of the processes across the life cycle of a typical UK healthcare pharmaceutical product. We identified many routes through which pharmaceuticals used in UK healthcare enter the environment across their life cycle (**Figure 4**), although the relative contributions of each source are not clearly understood. Overall, this micro perspective highlights the ever-increasing supply and use of pharmaceuticals in UK healthcare, but also shows that the environmental costs associated with pharmaceutical pollution are currently being externalised and poorly mitigated across the life cycle. As such, we suggest that the existing UK healthcare pharmaceutical system is not environmentally sustainable. This builds upon broader planetary health concerns over the substantial greenhouse gas emission and freshwater usage footprints of UK pharmaceutical usage. ⁷⁰⁻⁷²

Defining the environmental costs and risks of pharmaceutical pollution from UK healthcare is challenging for a number of reasons, a major one being the very limited availability of data on the ecotoxicological risks posed by pharmaceutical pollution exposure to wildlife. A 2018 report estimated that 89% of the 1,912 pharmaceuticals registered for use in UK healthcare did not have available environmental risk data. ⁷³ Of the compounds with available environmental risk data, there are currently (April 2025) twenty which are of sufficient ecological concern to be considered for future UK and EU environmental monitoring lists. ^{74,75} All of these products are used in UK healthcare. (**Supplementary Table 3**; page 19, **Supplementary Information**).

Establishing a common goal (step 2)

Our micro analysis highlights important overlaps between the three dimensions of sustainability (social, economic and environmental, Figure 1) across the existing UK pharmaceutical system. At both a domestic and global level, poor or marginalised communities who already have reduced access to the healthcare and economic benefits of pharmaceuticals are often disproportionately exposed to negative environmental impacts resulting from pharmaceutical pollution. For example, LMIC populations are typically exposed to higher pharmaceutical pollution levels and greater impacts of AMR. ^{5,76} Domestically, rising pharmaceutical costs coupled with severely strained NHS budgets pose substantial financial risks to the healthcare sector and are exacerbating the inequalities associated with pharmaceutical and healthcare access. Meanwhile, growing customer, investor and regulator demand for environmental sustainability is providing long-term financial, compliance and reputational corporate risks to the global pharmaceutical sector. These challenges are all being exacerbated by climate change and the loss of biodiversity, which are depleting raw material availability and increasing supply chain volatility. ^{2,77}

Across our Consortium, there was widespread consensus that the target goal for the UK healthcare pharmaceutical system should be long-term social, economic and environmental sustainability (**Figure 1**). Thus, strategies seeking to mitigate the public and environmental health risks of pharmaceutical pollution from UK healthcare should be aiming for social and economic sustainability as well as mitigating environmental risk.

Understanding challenges and opportunities (step 3)

Our macro analysis (presented in **Table 1**) highlighted some consistencies across the WGs. At the upper *Structures* layer, it was recognised that many operational and regulatory processes to support change in terms of pharmaceutical pollution mitigation were already in place across the system, although this varied between WGs. Where processes already existed, implementation was identified as a major barrier to change, but there were different implementation challenges for different WGs. For example, in WG1 and 5, whose remit was predominantly the public sector (population health and environmental monitoring and management, respectively) the major implementation challenge raised was poor interand intra-sectoral collaboration, whereas for WG2 (pharmaceutical design, manufacture and licensing) the implementation challenges listed were the lack of economic/regulatory incentives and physical capacity (for generic manufacturers).

In the middle *Goals* layer there was recognition of the intention to take action but weak governance was a common narrative, either via inadequate policies (WG4), regulations (WG5) and/or the implementation (WG1) of these. Across WG 2, 3 and 4 (which represent the pharmaceutical and healthcare sectors) the consistent prioritisation of acute clinical need and neglect of long-term environmental considerations in favour of short-term economic ones was a major barrier noted. For all WGs, the *Culture* (deepest) layer

summaries highlighted the inherent connectivity of the issue of pharmaceutical pollution with well-established societal sustainability and equity challenges. These included the ongoing medicalisation of care provision, ^{3,78} the prioritisation of short-term (predominantly health and economic) gains over long-term environmental risks, and the ever-growing challenges of managing a shared resource or limiting a public good (**Table 1**).

Identifying leverage points for transformational change (step 4)

Through an iterative and co-productive engagement process, each WG identified potential leverage points for change at different layers of the Adapted Iceberg Model (Figure 2A). These were consolidated into 37 leverage points and grouped according to whether they were focused on *Optimising pharmaceutical supply, use and waste management structures*; *Reforming economic and health sector goals*; or *Evolving societal culture* (corresponding with different depths of the Iceberg Model). The leverage points are outlined in Table 2 and described further in Supplementary Table 4; pages 20-35, Supplementary Information).

WG discussions highlighted the interlinkages and synergies between the leverage points, with each leverage point identified within a WG having needs and enablers that spanned the remit of other WGs. Some leverage points were raised by multiple WGs (e.g. "Better patient pharmaceutical management" came up in WG1, WG3 and WG4 discussions). In contrast, other leverage points initially appeared to be specific to individual WGs but deeper inquiry into the needs and enablers evidenced the need for cross-sectoral collaboration. For example, responsibility for "Greener pharmaceutical design" initially appeared to be within the WG2 remit but further discussions on how to implement this identified the need for pharmaceutical companies to be incentivised through healthcare procurement (WG3 remit) and environmental policies (WG5 remit).

Across all WGs, and particularly when discussing leverage points for the deepest *Culture* layers of the Iceberg Model, there were common themes of needs and enablers that emerged repeatedly. These were grouped into the *Evolve societal culture* category of leverage points. For example, this included raising societal awareness of the issue of pharmaceutical pollution, addressing social and environmental injustice, and improving our knowledge base of the health, socioeconomic and environmental impacts of pharmaceutical pollution. Many of the leverage points at this level were not necessarily UK-specific, highlighting the global nature of identified challenges and demonstrating that leveraging maximal impact will require international collaboration.

According to the Iceberg Model, deeper intervention points have more leverage for transformational change (**Figure 2B**). Therefore, interventions aiming to *Evolve societal culture* would be expected to have the greatest leverage in reducing pharmaceutical pollution from UK healthcare, followed by those targeted at *Reforming economic and health sector goals*, with those aimed at *Optimising pharmaceutical supply, use and waste management structures* having the weakest leverage.

Taking this forward (steps 5-7)

The leverage points identified in **Table 2** represent points within the UK healthcare pharmaceutical system whereby interventions can be targeted to drive change, however the requirements for each one vary considerably in terms of the number of stakeholder groups involved, their location (e.g. some will require more international collaboration than others), cost, timescales, accessibility, acceptability, feasibility, appropriateness and measurability of the interventions required, as well as progress to date (with some leverage points already receiving much attention). In addition to differing requirements, each

leverage point varies in the scale and speed of potential impacts. Key aspects of an action plan (step 5, Figure 1) will therefore be to work with the relevant stakeholders to identify short-, medium- and long-term priorities with accompanying tangible targets, in some cases using vector-based targets that aim to incrementally move the system in the direction of an aspirational state rather than setting unfeasible end goals, to allow for adaptation and flexibility. Measuring progress towards these targets will be essential, and this will also require the identification of appropriate qualitative metrics, recognising that not everything that counts can be counted. For example, context, depth and meaning could be added to quantitative indicators (such as reduced API loads) by linking them with qualitative case studies, narratives and rankings (such as optical river assessments via CrowdWater). Following WHO's peoplecentred approach for AMR, one way of doing so will be to devise regular civil society fora in which regulators, industry, environmental groups, patient advocates, and other civil society actors come together to discuss and reassess targets, feasibility, and prioritisation in view of community feedback.

With the multitude of competing needs and interests across the system, independent facilitation and oversight to co-ordinate implementation (step 6) will be vital for success. This is a system-wide, long-term challenge with strong and deeply-embedded market forces. Therefore, transformative change will be difficult without effective public-policy-practice dialogue across disciplines, sectors and nations, as well as robust governance to define clear roles and responsibilities, ensure compliance with regulatory standards and ethical guidance, and provide transparency and accountability. Core to the success of this will be the use of multiple policy approaches⁵⁵ and the interlayering of pollution strategies with other related national action programmes (e.g. AMR, biodiversity targets). Finally, given the dynamic nature of the system, with rapidly evolving regulatory, financial and social incentives for change as public and policy maker awareness and attention on this topic grows, strategies and implementation efforts will need to be flexible and adapt to new information, changing environments and/or market forces (step 7).

How could this approach drive system transformation?

Our UK case study analysis suggests that the technological, institutional and social infrastructures of pharmaceutical supply, use and waste management are entrenched in modern HIC societies in a way that shows some parallels with the "locked-in" theory of our fossil fuel dependence. These are complex adaptive systems that have evolved over centuries and are inherently resilient to rapid change. However, this does not mean that change is impossible. Studies on social system transformation have shown that this process typically features non-linear periods of slow, incremental (evolutionary) change punctuated by infrequent sudden shifts that are catalysed by expected or unexpected events, for example technological innovation, environmental disasters, war, major policy changes, financial market instability or high-profile media affairs. We believe that by targeting action across the breadth and depth of the system, our approach can encourage transformative change by creating systemic conditions that favour and support collective evolution towards greater sustainability, such that it is receptive to positive catalytic events and resilient against negative ones.

Expanding the scope of responsibility and risk

How a problem is framed is key to defining the cause of the problem (who/what is responsible), and the consequences (who/what is impacted). ⁸⁴ Our UK analysis shows that the stakeholders who are currently allocated responsibility through existing reports and initiatives are those who can directly influence pharmaceutical waste management and environmental fate, for example stakeholders working in pharmaceutical design and manufacture, dispensing, wastewater treatment and environmental regulation (see **Supplementary Table 2**; pages **4-18**, **Supplementary Information**). Expanding the

framing of the issue from a "waste management and environmental fate" problem to a broader "unsustainable system" suggests that the interdependent risks and responsibilities instead lie across the wider publics, industries and governments who have long welcomed the pursuit of scientific innovation to develop new and improved pharmaceuticals, to trade them on international markets for financial gain, and to make them as accessible as possible for human health gain. This is a much broader scope than existing strategies.

Overcoming risk at the individual level

Research into transformational strategies for change has suggested the need for top-down approaches (for example the overarching global strategies aimed at improving manufacturing emissions²⁶ healthcare wastage⁸⁵ and wastewater treatment²⁸) to be coupled with local knowledge co-production in order to understand the individual risks, interdependencies, feedback loops and emergent behaviours that exist and vary widely between organisations within complex systems.53 Our analyses highlight the challenges faced by organisations seeking to take action at the individual level, who often face considerable time, money or resource trade-offs, thus limiting their ability and/or desire to act. For example, the requirement for more staff time and resources are common considerations cited by general practitioners when choosing social prescriptions over pharmaceutical prescriptions, 86 whereas pharmaceuticals can be quick to prescribe and are generally highly cost-effective in terms of healthcare spending.⁸⁷ Further, poor coherence between sectors across the system makes it difficult for individual stakeholder groups or sectors to plan, justify and take action, since the their actions are often interdependent upon an array of needs and enablers (e.g. the need for data, resources, social acceptance, tighter regulation, better infrastructure) that are under the control of stakeholders in another part of the system. Our approach aims to encourage positive systematic change by fostering cross-sectoral collaboration and synergistic action at a multitude of leverage points such that the risks and resources required by individual organisations are reduced (and benefits bolstered) across the system.

Identifying win-win opportunities

Our UK case study shows that taking a systems perspective enables the identification of upstream leverage points that offer mutually-beneficial ("win-win") opportunities. These could prevent or reduce the severity of downstream risks associated with pollution whilst optimising the use of limited resources for maximal, long-term progress towards sustainability. For example, strategies focused on health creation and disease prevention (leverage points 25 and 27, **Table 2 and Supplementary Table 4**; pages **20-35**, **Supplementary Information**) are designed to improve long-term human health and socioeconomic benefits to society (e.g. greater quality of life, economic productivity) but could also help to reduce our societal reliance on pharmaceuticals and encourage a reduction in pharmaceutical demand/use. Similarly, developing outcomes-based business models (leverage point 22) and incorporating pharmaceutical pollution targets into sustainable finance incentives within the corporate sector (leverage point 24) could create win-win opportunities by providing a financially-rewarding route for companies who invest in more environmentally sustainable practices.

Conversely, a systems perspective could also help to avoid unintended consequences of well-intentioned solutions which were designed with a narrow problem scope but can have broader negative consequences, as seen in carbon mitigation strategies, 88 one-size-fits-all AMR interventions, 43 or "regrettable substitutions" of hazardous chemicals, 89 where changing practices to mitigate one risk worsened another. In healthcare, the creation of new categories of long-term illness or new cut off points for more established conditions (for example the expansion of the definition of "pre-diabetes") 90 could

play a role in increasing pharmaceutical usage and, in turn, pharmaceutical pollution. Another ongoing example is the shift from gaseous to intravenous general anaesthesia; this has benefits in reducing the greenhouse gas footprint of UK healthcare but there are concerns that it may instead incur broader environmental risks (e.g. greater ecotoxicological risk from increased patient excretion into wastewater).⁹¹

Potential limitations of our approach

Many of our 48 stakeholder representatives were individuals already actively engaged in pharmaceutical/healthcare sustainability or environmental pollution and may have supported a more positive and optimistic view of opportunities for change. Future steps to transcribe these leverage points into a pragmatic UK national action plan (step 5, Figure 1) will therefore need to ensure more inclusive representation. They will also need to consider how to effectively manage the substantial power and political dynamics of this issue, since co-production processes with biases towards more powerful/influential stakeholders have been shown to reproduce or even exacerbate existing inequalities and may jeopardise efforts for system transformation. 53,92 Creating and maintaining such stakeholder collectives is not straightforward. Success depends on transcending academia and traditional knowledge deficit communication as well as addressing power asymmetries and special interests involved in policy formulation. 92 It also entails avoiding disciplinary silos and making policy agendas relevant across multiple domains. These challenges also impacted our own research consortium, for example we faced challenges in engaging some stakeholder groups, particularly those for whom pharmaceutical pollution is not considered to be within their direct remit. Moving forward, the creation and adequate resourcing of a central independent facilitator can be useful to support inclusive, open and fair dialogue between stakeholders, as shown in studies considering how to address AMR as a "super-wicked problem". However, such impartial, pan-sectoral institutions remain rare. 54 In the UK, we have recently established the Pharma Pollution Hub (www.pharmapollution.org) as a new national think tank and charitable organisation aiming to fill such a gap.

Our systems analysis did not include pharmaceuticals used in agriculture, however there are likely to be overlaps in the leverage points between these systems, particularly at the deep-rooted *Evolve societal culture* depth (see **Table 2**). Therefore, the development and implementation of an equivalent strategy for agricultural and domestic veterinary pharmaceutical use would be mutually-beneficial. Our analyses also did not meaningfully consider international pharmaceutical supply and distribution chains, which are intrinsically linked to the UK system but largely outside its regulatory jurisdiction. This is a major limitation to our approach, which uses a defined system scope and boundaries for a challenge whose accountability and impact in reality has no natural geographic or economic borders. The UK is a relatively small pharmaceutical market within the global economy and although UK stakeholders have some agency over the leverage points identified, driving long-term, sustainable action across the UK system will only be possible through meaningful and equitable international collaboration across the global network of national pharmaceutical systems.

Conclusion

Internationally, there is growing recognition and desire for action to reduce pharmaceutical pollution across the public and private sectors, but the challenge lies in how to generate meaningful real-world transformational change. Our UK case study highlights the complexity, resilience and unsustainability of the current UK healthcare pharmaceutical system, and therefore the need for systems-based mitigation

497 498 499 500	strate Overa	egies in other HICs which likely face similar macro challenges but may vary in their micro situations. all, it provides a template to support stakeholders from across the pharmaceutical life cycle to ctively participate in the Great Transition ⁹³ towards a society that lives within its planetary daries.					
501							
502	Ackı	nowledgements					
503 504		The views expressed in this manuscript are a general consensus from a diverse group of stakeholders an may not represent those of individual co-authors.					
505 506 507 508	We would like to thank all members of our Consortium who provided valuable evidence and perspective in the working group activities but did not contribute to the interpretations of these data. We thank A-Sid Design Limited (www.a-side.studio) and Dr Will Stahl-Timmins (www.behance.net/will-s-t) for their support in creating the infographics.						
509 510 511 512 513	This project was made possible by co-funding from the Faculty of Health and Life Sciences Business Engagement and Innovation Fund, University of Exeter, and the University of Exeter's Medical Research Council Impact Accelerator Account (grant reference MR/X502820/1). These funding sources had no role in the study design, the collection, analysis, and interpretation of data, the writing of the report or in the decision to submit the paper for publication.						
514 515	For the purpose of open access, the authors have applied a 'Creative Commons Attribution (CC BY) licence to any Author Accepted Manuscript version arising from this submission.						
516 517 518 519 520 521 522 523 524	Kelly the ad Matth the plautho	tributions Thornber conceptualised the project, acquired funding, designed and facilitated all workshops, led equisition, analysis and interpretation of data collected, and co-wrote the draft manuscript. New Bentham and George Kirkham supported the acquisition of data. Charles Tyler conceptualised project, analysed and interpreted the data, acquired funding and co-wrote the draft manuscript. All purs contributed towards the acquisition, analysis and interpretation of data collected for the UK case and the refinement of our overall approach. All authors reviewed and edited the manuscript.					
525	Declaration of interests						
526 527	Stewa	art Owen is a shareholder and employee of AstraZeneca UK Ltd.					
528	Refe	erences					
529 530 531	1.	Juneja M, Mai L, Albu N. <i>The Economic Impact of the Global Pharmaceutical Industry</i> .; 2024. Accessed May 13, 2025. https://www.wifor.com/en/download/economic-impact-of-the-global-pharmaceutical-industry/?wpdmdl=351721&refresh=673ca1ce6f5421732026830					
532 533	2.	IQVIA. Global Use of Medicines 2024: Outlook to 2028.; 2024. Accessed January 27, 2025. https://www.iqvia.com/insights/the-iqvia-institute/reports-and-publications/reports/the-global-use-of-medicines-2024-outlook-to-2028					

535 536	3.	Busfield J. "A pill for every ill": Explaining the expansion in medicine use. <i>Soc Sci Med</i> . 2010;70(6):934-941. doi:10.1016/j.socscimed.2009.10.068
537 538 539	4.	Chandana D. <i>Overview of the Active Pharmaceutical Ingredient Market.</i> ; 2024. Accessed January 28, 2025. https://www.iqvia.com/-/media/iqvia/pdfs/library/white-papers/iqvia-innsight-apimarket-article-02-24-forweb.pdf
540 541	5.	Wilkinson JL, Boxall ABA, Kolpin DW, et al. Pharmaceutical pollution of the world's rivers. 2022;119(8):1-10. doi:10.1073/pnas.2113947119/-/DCSupplemental.Published
542 543	6.	aus der Beek T, Weber FA, Bergmann A, et al. Pharmaceuticals in the environment—Global occurrences and perspectives. <i>Environ Toxicol Chem</i> . 2015;35(4):823-835. doi:10.1002/etc.3339
544	7.	OECD. Pharmaceutical Residues in Freshwater: Hazards and Policy Responses.; 2019.
545 546 547 548	8.	Gross-Sorokin M, Roast S, Brighty G. <i>Causes and Consequences of Feminisation of Male Fish in English Rivers</i> .; 2004. Accessed March 6, 2024. https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/290367/scho0704bibd-e-e.pdf
549 550	9.	Hellström G, Klaminder J, Finn F, et al. GABAergic anxiolytic drug in water increases migration behaviour in salmon. <i>Nat Commun</i> . 2016;7(1):13460. doi:10.1038/ncomms13460
551 552 553	10.	Aich U, Polverino G, Yazdan Parast F, et al. Long-term effects of widespread pharmaceutical pollution on trade-offs between behavioural, life-history and reproductive traits in fish. <i>Journal of Animal Ecology</i> . 2025;94(3):340-355. doi:10.1111/1365-2656.14152
554 555	11.	Oaks JL, Gilbert M, Virani MZ, et al. Diclofenac residues as the cause of vulture population decline in Pakistan. <i>Nature</i> . 2004;427(6975):630-633. doi:10.1038/nature02317
556 557 558	12.	Frank E, Sudarshan A. The Social Costs of Keystone Species Collapse: Evidence from the Decline of Vultures in India. <i>American Economic Review</i> . 2024;114(10):3007-3040. doi:10.1257/aer.20230016
559 560 561	13.	Naghavi M, Vollset SE, Ikuta KS, et al. Global burden of bacterial antimicrobial resistance 1990–2021: a systematic analysis with forecasts to 2050. <i>The Lancet</i> . 2024;404(10459):1199-1226. doi:10.1016/S0140-6736(24)01867-1
562 563 564	14.	Hayes A, Zhang L, Snape J, et al. Common non-antibiotic drugs enhance selection for antimicrobial resistance in mixture with ciprofloxacin. <i>ISME Communications</i> . Published online September 25, 2025. doi:10.1093/ismeco/ycaf169
565 566	15.	Earl K, Sleight H, Ashfield N, Boxall ABA. Are pharmaceutical residues in crops a threat to human health? <i>J Toxicol Environ Health A</i> . 2024;87(19):773-791. doi:10.1080/15287394.2024.2371418
567 568	16.	Boxall ABA, Collins R, Wilkinson JL, et al. Pharmaceutical Pollution of the English National Parks. <i>Environ Toxicol Chem</i> . 2024;43(11):2422-2435. doi:10.1002/etc.5973
569 570 571	17.	Ravinetto R, Lates J, Jonkman L, et al. Inadequate last-mile pharmaceutical waste management is a neglected threat to environmental and public health: A call to action. <i>BMJ Glob Health.BMJ Publishing Group</i> . 2025;10(7). doi:10.1136/bmjgh-2025-019544
572 573 574	18.	Larsson DGJ. Pollution from drug manufacturing: review and perspectives. <i>Philosophical Transactions of the Royal Society B: Biological Sciences</i> . 2014;369(1656):20130571. doi:10.1098/rstb.2013.0571

575 576 577	19.	Kolpin DW, Furlong ET, Meyer MT, et al. Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams, 1999-2000: A national reconnaissance. <i>Environ Sci Technol</i> . 2002;36(6). doi:10.1021/es011055j
578 579 580	20.	Legehar A, Monaghan S, Briand M, et al. EcoDrug PLUS: An advanced database for drug target conservation analysis and environmental risk assessment. <i>Nucleic Acids Res</i> . Published online October 27, 2025. doi:https://doi.org/10.1093/nar/gkaf1251
581 582	21.	United Nations Environment Programme. Global Framework on Chemicals. Preprint posted online 2023. Accessed April 28, 2025. https://www.chemicalsframework.org/about/overview
583 584	22.	IPCP. About IPCP. International Panel on Chemical Pollution. 2021. Accessed January 27, 2025. https://www.ipcp.ch/about-ipcp
585 586 587	23.	UNEP. New body aims to limit pollution's deadly toll. United Nations Environment Programme. 2024. Accessed January 27, 2025. https://www.unep.org/news-and-stories/story/new-body-aims-limit-pollutions-deadly-toll
588 589 590 591	24.	AMR Leaders. World leaders and experts call for action to protect the environment from antimicrobial pollution. AMR Leaders. 2022. Accessed January 28, 2025. https://www.amrleaders.org/news-and-events/news/item/02-03-2022-world-leaders-and-experts-call-for-action-to-protect-the-environment-from-antimicrobial-pollution
592 593 594	25.	World Health Organisation. <i>Greener Pharmaceuticals' Regulatory Highway</i> .; 2024. Accessed November 6, 2025. https://www.who.int/publications/m/item/greener-pharmaceuticals-regulatory-highway
595 596	26.	World Health Organization. <i>Guidance on Wastewater and Solid Waste Management for Manufacturing of Antibiotics.</i> ; 2024. https://www.who.int/publications/i/item/9789240097254
597 598 599	27.	European Commission. <i>Pharmaceutical Strategy for Europe</i> . Vol 761.; 2020. Accessed October 11, 2022. https://ec.europa.eu/health/sites/health/files/human-use/docs/pharmastrategy_com2020-761_en.pdf
600 601 602 603	28.	Parliament E, Council E. Directive (EU) 2024/3019 of the European Parliament and of the Council of 27 November 2024 concerning urban wastewater treatment (recast). <i>Official Journal of the European Union</i> . Preprint posted online 2024. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=OJ:L_202403019
604 605 606	29.	Daughton CG. Pharmaceuticals and the Environment (PiE): Evolution and impact of the published literature revealed by bibliometric analysis. <i>Science of the Total Environment.Elsevier B.V.</i> 2016;562:391-426. doi:10.1016/j.scitotenv.2016.03.109
607 608 609	30.	Kirchhelle C, Podolsky SH. An Awkward Fit: Antimicrobial Resistance and the Evolution of International Health Politics (1945-2022). <i>Journal of Law, Medicine and Ethics</i> . 2022;50. doi:10.1017/jme.2022.78
610 611	31.	Tyrer D, Moore K, Nicol L, et al. <i>The Socio-Economic Costs of Chemical Pollution to the UK – Final.</i> ; 2022. Accessed April 4, 2025. https://randd.defra.gov.uk/ProjectDetails?ProjectId=21646
612 613	32.	Sumpter JP, Johnson AC, Runnalls TJ. Pharmaceuticals in the Aquatic Environment: No Answers Yet to the Major Questions. <i>Environ Toxicol Chem</i> . 2024;43(3):589-594. doi:10.1002/etc.5421

614 615 616	33.	Johnson AC, Donnachie RL, Sumpter JP, Jürgens MD, Moeckel C, Pereira MG. An alternative approach to risk rank chemicals on the threat they pose to the aquatic environment. <i>Science of The Total Environment</i> . 2017;599-600:1372-1381. doi:10.1016/j.scitotenv.2017.05.039
617 618 619	34.	Hynes W, Lees M, Müller JM. Systemic Thinking for Policy Making: The Potential of Systems Analysis for Addressing Global Policy Challenges in the 21st Century. (Hynes W, Lees M, Müller JM, eds.). OECD; 2020. doi:10.1787/879c4f7a-en
620 621	35.	Head BW. Wicked Problems in Public Policy: Understanding and Responding to Complex Challenges.; 2022. doi:10.1007/978-3-030-94580-0
622 623 624	36.	Angheloiu C, Tennant M. Urban futures: Systemic or system changing interventions? A literature review using Meadows' leverage points as analytical framework. <i>Cities</i> . 2020;104:102808. doi:10.1016/j.cities.2020.102808
625 626	37.	Abson DJ, Fischer J, Leventon J, et al. Leverage points for sustainability transformation. <i>Ambio</i> . 2017;46(1):30-39. doi:10.1007/s13280-016-0800-y
627 628	38.	Fischer J, Riechers M. A leverage points perspective on sustainability. <i>People and Nature</i> . 2019;1(1):115-120. doi:10.1002/pan3.13
629 630 631	39.	Scoones I, Stirling A, Abrol D, et al. Transformations to sustainability: combining structural, systemic and enabling approaches. <i>Curr Opin Environ Sustain</i> . 2020;42:65-75. doi:10.1016/j.cosust.2019.12.004
632 633	40.	Doron Assa, Broom Alex. <i>A World of Resistance : India and the Global Antibiotic Crisis</i> . The Belknap Press of Harvard University Press; 2026.
634 635 636	41.	Abbas Hussein APH. ECOCRITICAL ANALYSIS OF SLOW VIOLENCE AND THE ENVIRONMENTALISM OF THE POOR BY ROB NIXON. <i>INTERNATIONAL JOURNAL OF RESEARCH IN SOCIAL SCIENCES & HUMANITIES</i> . 2022;12(03). doi:10.37648/ijrssh.v12i03.002
637 638	42.	Boudia S, Jas N. <i>Powerless Science?: Science and Politics in a Toxic World</i> . Vol 2.; 2014. doi:10.5860/choice.51-6716
639 640 641	43.	Varadan SR, Chandler CIR, Weed K, et al. A just transition for antimicrobial resistance: planning for an equitable and sustainable future with antimicrobial resistance. <i>The Lancet.Elsevier B.V.</i> 2024;403(10446):2766-2767. doi:10.1016/S0140-6736(23)01687-2
642 643 644	44.	van Vliet ED, Kannegieter NM, Moermond CTA, Alves TL. Keystones in the implementation of greener pharmaceuticals: A scoping review. <i>Sustain Chem Pharm</i> . 2025;44:101938. doi:10.1016/j.scp.2025.101938
645 646 647	45.	Moermond CTA, Puhlmann N, Pieters L, et al. Eco-pharma dilemma: Navigating environmental sustainability trade-offs within the lifecycle of pharmaceuticals – A comment. <i>Sustain Chem Pharm</i> . 2025;43:101893. doi:10.1016/j.scp.2024.101893
648 649	46.	Helwig K, Niemi L, Stenuick JY, et al. Broadening the Perspective on Reducing Pharmaceutical Residues in the Environment. <i>Environ Toxicol Chem</i> . 2024;43(3):653-663. doi:10.1002/etc.5563
650 651 652	47.	Thornber K, Adshead F, Balayannis A, et al. First, do no harm: time for a systems approach to address the problem of health-care-derived pharmaceutical pollution. <i>Lancet Planet Health</i> . 2022;6(12):e935-e937. doi:10.1016/S2542-5196(22)00309-6

653 654 655	48.	Wöhler L, Hoekstra AY, Hogeboom RJ, Brugnach M, Krol MS. Alternative societal solutions to pharmaceuticals in the aquatic environment. <i>J Clean Prod.</i> 2020;277. doi:10.1016/j.jclepro.2020.124350
656	49.	Meadows D. <i>Thinking in Systems</i> . Earthscan; 2008.
657 658 659	50.	Saviano M, Barile S, Farioli F, Orecchini F. Strengthening the science–policy–industry interface for progressing toward sustainability: a systems thinking view. <i>Sustain Sci.</i> 2019;14(6):1549-1564. doi:10.1007/s11625-019-00668-x
660 661	51.	Voulvoulis N, Giakoumis T, Hunt C, et al. Systems thinking as a paradigm shift for sustainability transformation. <i>Global Environmental Change</i> . 2022;75. doi:10.1016/j.gloenvcha.2022.102544
662 663 664	52.	Secretary-General UN, on Environment WC, Development. Report of the World Commission on Environment and Development: Our Common Future.; 1987. https://sustainabledevelopment.un.org/content/documents/5987our-common-future.pdf
665 666 667 668	53.	Hochrainer-Stigler S, Deubelli-Hwang TM, Parviainen J, Cumiskey L, Schweizer PJ, Dieckmann U. Managing systemic risk through transformative change: Combining systemic risk analysis with knowledge co-production. <i>One Earth.Cell Press</i> . 2024;7(5):771-781. doi:10.1016/j.oneear.2024.04.014
669 670	54.	Littmann J, Viens AM, Silva DS. The Super-Wicked Problem of Antimicrobial Resistance. In: 2020. doi:10.1007/978-3-030-27874-8_26
671 672 673	55.	Kirschke S, Kosow H. Designing policy mixes for emerging wicked problems. The case of pharmaceutical residues in freshwaters. <i>Journal of Environmental Policy and Planning</i> . 2022;24(5). doi:10.1080/1523908X.2021.1960808
674 675 676	56.	World Health Organisation. People-Centred Approach to Addressing Antimicrobial Resistance in Human Health: WHO Core Package of Interventions to Support National Action Plans.; 2023. Accessed November 6, 2025. https://www.who.int/publications/i/item/9789240082496
677 678 679 680	57.	Mudgal S, De Toni A, Lockwood S, Salès K, Halling Sorensen B, Backhau T. Study on the Environmental Risks of Medicinal Products, Final Report Prepared for Executive Agency for Health and Consumers.; 2013. Accessed January 16, 2024. https://health.ec.europa.eu/system/files/2016-11/study_environment_0.pdf
681 682 683	58.	BIO Intelligence Service. Study on the Environmental Risks of Medicinal Products, Final Report Prepared for Executive Agency for Health and Consumers.; 2013. Accessed May 8, 2025. https://health.ec.europa.eu/system/files/2016-11/study_environment_0.pdf
684 685 686	59.	Observatory of Economic Complexity. Which countries import Pharmaceutical products? (2023). Observatory of Economic Complexity. 2023. Accessed April 7, 2025. https://oec.world/en/visualize/tree_map/hs92/import/show/all/630/2023
687 688 689 690	60.	Department for Business & Trade. Critical imports and supply chains strategy. GOV.UK. 2024. Accessed January 30, 2025. https://www.gov.uk/government/publications/uk-critical-imports-and-supply-chains-strategy/critical-imports-and-supply-chains-strategy-html-version#next-steps-delivering-the-strategy-and-measuring-our-success
691 692 693	61.	Mitchell AD. The Geography of Health: Onshoring Pharmaceutical Manufacturing to Address Supply Chain Challenges. <i>World Trade Review</i> . 2024;23(4):519-531. doi:10.1017/S1474745624000387

- 694 62. Valabhji J, Barron E, Pratt A, et al. Prevalence of multiple long-term conditions (multimorbidity) in England: a whole population study of over 60 million people. *J R Soc Med*. 2024;117(3):104-117. doi:10.1177/01410768231206033
- 697 63. Office for National Statistics. Healthy life expectancy at birth and age 65 by upper tier local authority and area deprivation: England, 2012 to 2014ocal authority and area deprivation. Office for National Statistics. 2016. Accessed February 21, 2024.
- https://www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/healthandlifeexp
 ectancies/bulletins/healthylifeexpectancyatbirthandage65byuppertierlocalauthorityandareadepr
 ivation/england2012to2014
- 703 64. Anandaciva S. How Does the NHS Compare to the Health Care Systems of Other Countries?;
 704 2023. Accessed May 19, 2025. https://www.kingsfund.org.uk/insight-and-analysis/reports/nhs-compare-health-care-systems-other-countries
- NHS England. Delivering a 'Net Zero' National Health Service.; 2020. Accessed May 13, 2025.
 https://www.england.nhs.uk/greenernhs/wp-content/uploads/sites/51/2022/07/B1728-delivering-a-net-zero-nhs-july-2022.pdf
- 709 66. Scottish Government. NHS Scotland climate emergency and sustainability strategy: 2022-2026.
 710 2022. Accessed October 30, 2024. https://www.gov.scot/publications/nhs-scotland-climate-emergency-sustainability-strategy-2022-2026/
- 712 67. Nobles JD, Radley D, Mytton OT. The Action Scales Model: A conceptual tool to identify key points
 713 for action within complex adaptive systems. *Perspect Public Health*. 2022;142(6):328-337.
 714 doi:10.1177/17579139211006747
- 715 68. Meadows D. Leverage Points: Places to Intervene in a System. The Sustainability Institute; 1999.
 716 Accessed February 24, 2025. https://www.donellameadows.org/wp-content/userfiles/Leverage_Points.pdf
- 718 69. Hall E. Beyond Culture. Anchor; 1976.
- 719 70. Dobson R. DIAGNOSING CURRENT AND FUTURE WATER RISKS FACING THE PHARMACEUTICAL
 720 SECTOR.; 2021. Accessed March 12, 2024.
- https://wwfint.awsassets.panda.org/downloads/case_study__diagnosing_water_risks_for_the_pharmaceutical_sector_1.pdf
- 723 71. Belkhir L, Elmeligi A. Carbon footprint of the global pharmaceutical industry and relative impact of its major players. *J Clean Prod.* 2019;214:185-194. doi:10.1016/j.jclepro.2018.11.204
- 725 72. Persson L, Carney Almroth BM, Collins CD, et al. Outside the Safe Operating Space of the
 726 Planetary Boundary for Novel Entities. *Environ Sci Technol*. 2022;56(3):1510-1521.
 727 doi:10.1021/acs.est.1c04158
- 73. Burns EE, Carter LJ, Snape J, Thomas-Oates J, Boxall ABA. Application of prioritization approaches to optimize environmental monitoring and testing of pharmaceuticals. *Journal of Toxicology and Environmental Health, Part B.* 2018;21(3):115-141. doi:10.1080/10937404.2018.1465873
- 731 74. Commission E. COMMISSION IMPLEMENTING DECISION (EU) 2025/439 of 28 February 2025
 732 establishing a watch list of substances for Union-wide monitoring in the field of water policy
 733 pursuant to Directive 2008/105/EC of the European Parliament and of the Council (notified und.
 734 Official Journal of the European Union. Preprint posted online 2025.

- 735 75. Parliament E, Council E. Directive (EU) 2024/3019 of the European Parliament and of the Council
 736 of 27 November 2024 concerning urban wastewater treatment (recast). Official Journal of the
 737 European Union. Preprint posted online 2024.
- 738 76. Murray CJ, Ikuta KS, Sharara F, et al. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. *The Lancet*. 2022;399(10325):629-655. doi:10.1016/S0140-6736(21)02724-0
- 740 77. Cissé G, McLeman R, Adams H, et al. Health, Wellbeing and the Changing Structure of
 741 Communities. Cambridge University Press; 2023. doi:10.1017/9781009325844.009
- 742 78. Pereira Gray D, White E, Russell G. Medicalisation in the UK: changing dynamics, but still ongoing.
 743 *JR Soc Med.* 2016;109(1):7-11. doi:10.1177/0141076815600908
- 744 79. Doyle L. CHANGE & COMPLEXITY: VECTOR THEORY OF CHANGE.; 2021. Accessed February 10, 2025. https://cdn.cognitive-edge.com/wp-content/uploads/2022/02/02160119/VTOC-paper-2022.pdf
- 747 80. Scerri A, James P. Accounting for sustainability: Combining qualitative and quantitative research
 748 in developing "indicators" of sustainability. *Int J Soc Res Methodol*. 2010;13(1).
 749 doi:10.1080/13645570902864145
- 750 81. Blanco-Ramírez S, van Meerveld I, Camargo A, Seibert J. "The water is murky, the water is not moving": qualitative water quality assessment by citizen scientists. *Frontiers in Water*. 2025;7.
 752 doi:10.3389/frwa.2025.1552646
- 753 82. Goldstein JE, Neimark B, Garvey B, Phelps J. Unlocking "lock-in" and path dependency: A review
 754 across disciplines and socio-environmental contexts. World Dev. 2023;161:106116.
 755 doi:10.1016/j.worlddev.2022.106116
- 756 83. Baumgartner F, Jones B. *Agendas and Instability in American Politics*. University of Chicago Press; 1993. http://choicereviews.org/review/10.5860/CHOICE.31-0574
- Rochefort D, Cobb R. The Politics of Policy Definition: Shaping the Policy Agenda. University Press
 of Kansas; 1994.
- 760 85. World Health Organisation. Safe Management of Pharmaceutical Waste from Health Care
 761 Facilities: Global Best Practices.; 2025. Accessed November 6, 2025.
 762 https://www.who.int/publications/i/item/9789240106710
- 763 86. Watkins S, Barnett J, Corbett E, Barden R, Kasprzyk-Hordern B, Hafner R. Prescribing Paradigms:
 764 Understanding General Practitioner Inclinations Towards Medical and Social Prescribing. *Health* 765 Soc Care Community. 2024;2024(1). doi:10.1155/hsc/7964343
- 766 87. Lichtenberg FR. Has pharmaceutical innovation reduced the average cost of U.S. health care episodes? *Int J Health Econ Manag.* 2024;24(1):1-31. doi:10.1007/s10754-023-09363-y
- 768 88. Giuliani M, Lamontagne JR, Hejazi MI, Reed PM, Castelletti A. Unintended consequences of
 769 climate change mitigation for African river basins. *Nat Clim Chang*. 2022;12(2):187-192.
 770 doi:10.1038/s41558-021-01262-9
- 771 89. Maertens A, Golden E, Hartung T. Avoiding Regrettable Substitutions: Green Toxicology for
 772 Sustainable Chemistry. ACS Sustain Chem Eng. 2021;9(23):7749-7758.
 773 doi:10.1021/acssuschemeng.0c09435
- Yudkin JS, Montori VM. The epidemic of pre-diabetes: the medicine and the politics. *BMJ*.
 2014;349(jul15 24):g4485-g4485. doi:10.1136/bmj.g4485

776 91. Ford P, Aveyard N, Thornber K, Southall P, Tyler C. Assessing the environmental impact of propofol 777 use in anaesthesia: a call for surveillance monitoring. Br J Anaesth. 2025;135(1):267-269. 778 doi:10.1016/j.bja.2025.03.027 779 92. Turnhout E, Metze T, Wyborn C, Klenk N, Louder E. The politics of co-production: participation, 780 power, and transformation. Curr Opin Environ Sustain. 2020;42. doi:10.1016/j.cosust.2019.11.009 781 93. Tellus Institute. Great Transition Initiative. Accessed November 8, 2025. 782 https://greattransition.org/ 783