PUBLISHED FOR SISSA BY 4) SPRINGER

RECEIVED: July 24, 2025
REVISED: October 8, 2025
ACCEPTED: October 20, 2025
PUBLISHED: November 24, 2025

Searches for hidden sectors using K+ — 7T X decays

The NAG62 collaboration

E-mail: francesco.brizioli@cern.ch, mauro.raggi@cern.ch,
joel.christopher.swallow@cern.ch

ABSTRACT: Results from the study of the rare decays K™ — ntvy, Kt — ntutu~ and
KT — 7ty at the NA62 experiment at CERN are interpreted in terms of improved limits
for B(K™ — 7" X) and coupling parameters of hidden-sector models, where X is a mediator.
World-leading limits are achieved for dark photon, dark scalar and axion-like particle models.

KEYWORDS: Beyond Standard Model, Fixed Target Experiments

ARX1v EPRINT: 2507.17286

OPEN AccEss, © The Authors.

Article funded by SCOAP® https://doi.org/10.1007/JHEP11(2025)143


mailto:francesco.brizioli@cern.ch
mailto:mauro.raggi@cern.ch
mailto:joel.christopher.swallow@cern.ch
https://doi.org/10.48550/arXiv.2507.17286
https://doi.org/10.1007/JHEP11(2025)143

Contents

1 Introduction 1
2 Searches for Kt — 7t X with invisible X 2
2.1 Interpretation of K™ — 7t results 2
2.2 Search for 7° decays to invisible final states 5
3 Searches for KT — 7+ X with prompt X decays to visible final states 5
3.1 Interpretation of K™ — 7w u™ ™ results 5
3.2 Interpretation of K™ — 7T~ results 6
4 Constraints on benchmark hidden-sector models 6
4.1 Massive dark vector 9
4.2 Dark scalar mixing with the Higgs boson 9
4.3 Axion portal with coupling to SM fermions 11
4.4 Axion portal with coupling to SM gluons 13
5 Conclusions 14
The NAG62 collaboration 19

1 Introduction

The NA62 experiment, described in detail in [1], is a fixed-target experiment at the CERN
SPS, designed to perform a stringent test of the Standard Model (SM) by measuring the
ultra-rare K™ — wtvw decay, which offers sensitivity to physics beyond the SM (BSM) up
to a mass scale of O(100 TeV). Within the SM, this decay is highly suppressed and precisely
calculated. Using tree-level measurements of the CKM matrix elements as external inputs,
the SM branching ratio is predicted to be B(K+ — ntvi) = (8.4 4 1.0) x 10~ [2], while
using only meson mixing processes to eliminate the dependence on |V|, the branching ratio
is predicted to be (8.60 4+ 0.42) x 107! [3]. Using a full CKM parameter fit, a value of
(7.86 £ 0.61) x 107! is predicted [4]. The NA62 experiment reported the measurement
B(K* — ntvw) = (13.0733) x 107! using data collected in 2016-2022 [5-8]. Additionally,
studies of the rare decays K+ — 7t~ [9] and KT — 7t~y [10] were performed using
2017-2018 data. In this context, BSM contributions, though suppressed by small coupling
constants, may still lead to significant enhancement of the decay rate with respect to the SM
expectation via the process KT — 77X, where X is a feebly-interacting BSM particle [11].

In the following, the K+ — 7tvw study performed using the 2016-2022 dataset [8] is
interpreted as a search for the K™ — 7t X decay. Additionally, the K+ — 7" u "~ decay
analysis from the 2017-2018 dataset [9] is interpreted as a search for the prompt decay chain
KT — 7tX, X — u"p~. For completeness, the previously published results related to the



Benchmark | BSM particle (X) Type Coupling to SM | Search

BC1 dark photon (A’) vector £ phtp~

BC2 dark photon (A’) vector £ invisible

BC4 dark scalar (.5) scalar 0 invisible, u*pu~
BC4-inv dark scalar (.5) scalar 0 invisible

BC10 axion-like particle (a) | pseudoscalar | Cys (to fermions) | invisible, p*p~

BC10-inv | axion-like particle (a) | pseudoscalar | C¢s (to fermions) | invisible

BC11 axion-like particle (a) | pseudoscalar | Cga (to gluons) | invisible, vy

Table 1. Summary of new physics benchmark models relevant to NA62 searches for decays of the
form K+ — 7+t X, where X is a vector, scalar or pseudoscalar particle. The last column lists the
experimental signature(s) of the X particle considered in each case.

70 — invisible decay search [12] and the study of KT — 7t~y decays [10] are discussed.
Constraints are set on benchmark hidden-sector models as limits of B(K* — 77 X)), where:

o X is invisible (Xiny), meaning it is not detected experimentally: it may decay to dark
matter particles (or neutrinos), or to visible SM particles but with a sufficiently long
lifetime to escape the detector;

e X decays to SM wisible particles which are detected.

Relevant new physics benchmark models [13] are summarised in table 1, with additional
details given in section 4. Constraints are set on the BC2, BC4, BC10 and BC11 models
of [13], in which the mediator is a vector, scalar or pseudoscalar particle. In addition,
minimally modified BC4-inv and BC10-inv scenarios are considered, which are equivalent
to BC4 and BC10 except that the mediator only decays to hidden-sector particles. Other
models where the hidden-sector particle is a heavy neutral lepton (N) are investigated at
NAG62 in dedicated searches for KT — (TN (¢ = p,e) [14, 15] and 7+ — et N decays [16].
Hidden-sector searches at NA62 with kaon decays are complementary to those performed
in beam dump mode [17-19].

2 Searches for Kt — 77X with invisible X

2.1 Interpretation of KT — wTvi results

The measurement of the K — 7w decay rate by the NA62 experiment is described in
detail in [8]. It relies on precise momentum and time measurements of the incident K™
and downstream 7, charged particle identification and hermetic veto of other particles
produced in abundant K+ decay modes, using a variety of techniques and detectors specially
designed for this purpose [1]. The resulting analysis allows reaching sensitivity to branching
ratios as low as 107! to 10712,

Because the v pair is not detected, the signal signature of the SM process is identical to
that of the K+ — 7+ X,y decay. A peak search is performed in the K+ — 7" v signal regions



of the m2 .. = (Pg — Pr)? distribution, where Py (Py) is the reconstructed four-momentum
of the kaon (pion) in the initial (final) state. The SM K+ — 7" vw background is evaluated
using B(K+t — 7Tvv) = 8.4 x 10711, Applying the procedure described in [20], model-
independent upper limits for B(K* — 77 X) at 90 % confidence level (CL) were established
in the mass ranges 0-110 MeV /c? and 150-260 MeV /c? using the 20162018 dataset which
includes 4.3 x 10'2 collected K+ decays [7].

Here the search is extended to include the 2021-2022 dataset which consists of 2.9 x 10'2
collected K decays [8]. The m2,  spectrum of expected and observed events satisfying
the K™ — T vi signal selection in the 2016-2022 dataset is shown in figure 1-a. A scan
is performed, searching for peaks in this spectrum, considering mx hypotheses separated
by 1.4 MeV /c?, which is less than the corresponding resolution for any mass hypothesis [20].
For each mass hypothesis a search window is defined, centered on mg( and with a width
of 30,2, where 0,2 is the m2 . resolution (established with simulations) which varies

from 1.2 x 1073 GeV?/c* at mx = 0 to 0.7 x 1073 GeV?/c* at mx = 260MeV/c? [20]. In
2

each search window the expected number of background events is calculated using the mz ;.

spectrum shown in figure 1-a, and the number of observed events is counted. An upper limit
for the number of K™ — 77X events in this search window, N{})L( , is evaluated using the
CLs method [21]. A model-independent limit of B(Kt — 7t X) = B,x, in the scenario
where X is invisible, is established according to

UL(Bxx(mx)) = Ni} (mx) - Big(mx) - (2.1)

Here BEXg(mx) is the single event sensitivity (SES) for the KT — 77X search evaluated
at the mx value, shown in figure 1-b, given by
TV

T A7r1/17
Bsgs(mx ) = B3gs A

Ax (mx) (2.2)

where BT/ and A, are the SES and acceptance for the SM K — 7t vi decay [5-8], and
Arx(mx) is the acceptance of a Kt — 77X decay, which depends on mx. The inclusion
of the 2021-2022 data leads to an improvement in the SES by approximately a factor of 2
(figure 1-b). However the background, in particular from the SM K — 7T v decay, becomes
significant, with up to 2 events expected per search window. This restricts the improvement
in the upper limit to a factor of 1-3 depending on the mass hypothesis, as shown in figure 2-a.
The effect of the SM B(K+ — 7nvw) value chosen when extracting B(K™ — 7+ X) limits is
checked using alternative values in the range (7.2—9.0) x 10~*!, which covers the uncertainties
quoted in [3, 4]. The change in the B(K* — 7 X) limits is found to be negligible.

The search for peaks in the m?2

2 iss distribution uses the K™ — 77vi candidate events,

which pass comprehensive veto criteria rejecting any pair of final state particles in addition
to the 7+. Therefore, if the X particle decays to visible SM particles within the detector, the
event is rejected from this search with inefficiency below 107 [5-8]. As a consequence, the
highest sensitivity is obtained for X particles with proper lifetime 7x > 1ns, or scenarios
where X decays invisibly. Model-independent constraints for B(Kt — 7t X) are also
established for decays of X into visible particles and with small 7x values, as shown in
figure 2-b. Simulations of KT — 77X, X — T/~ prompt decay chains are used to evaluate
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Figure 1. (a): combined m2,; ; distributions for the 2016-2022 dataset, including the SM K+ — ntvi

decay using B(K+ — ntvi) = 8.4 x 107! [2], and background expectations. (b): SES of the
K+ — 7t X, decay search as a function of mx. The SES obtained with the analysis of the 2016
2018 dataset [7] is also shown for comparison.
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Figure 2. Model-independent constraints on B(K*™ — 7+ X) as function of my, from interpretation
of the 2016-2022 measurement of the K™ — 7T vi decay. (a): expected and observed upper limits at
90 % CL for B(K™ — m" X) as function of mx for invisible X, with comparison to observed upper
limits from 20162018 data [7]. (b): observed upper limits at 90 % CL of B(K*™ — 7t X) as function
of mx, for several Tx hypotheses, assuming X decays to visible SM particles.

the selection acceptance, and therefore the SES according to equation (2.2), for X particles
of mass mx and lifetime 7x. Equation (2.1) is used to establish an upper limit for the
branching ratio corresponding to each combination of mx and 7x. For 7x > O(10ns) the X
particles become sufficiently long-lived to escape the detector, making them indistinguishable
from invisibly decaying X. For 7x < O(100ps) the X particles decay in the detector so
that this search has negligible sensitivity.
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Figure 3. Upper limits at 90 % CL for B(K+ — 77 X) as a function of mx for several 7x hypotheses,
from searches for ¥ decays to invisible final states [12].

2.2 Search for 7% decays to invisible final states

A search for 7¥ decays to invisible final states was performed on 2017 data [12], selecting a
sample of KT — 7170 decays using criteria similar to those used for the K+ — 7T v study.
This search is interpreted to provide model-independent upper limits for B(Kt — 7+ X),
where mx is close to the 7 mass in the range 110-155MeV/c?. Limits are placed for a
range of 7x values, as shown in figure 3.

3 Searches for Kt — 7t X with prompt X decays to visible final states

3.1 Interpretation of K+ — 7Tyt pu~ results

Based on 2017-2018 data, NA62 conducted a study of the K™ — ntutu~ decay [9]. In
scenarios allowing X — p7p~ decays, a peak search in the di-muon mass (my,) spectrum
allows constraints to be set on B(KT — 7 X) x B(X — u*pu™), presented in this work
for the first time.

In the analysis of [9], 27679 candidate K™ — 7" u*u™ events are selected, with negligible
background. The m,,, spectrum observed in the data is shown in figure 4-a. The selection
acceptance of the decay chain K+ — 77X, X — uTpu~ as a function of mx is evaluated
with simulations assuming isotropic X — p*u~ decays and several 7x hypotheses. The
acceptance obtained for 7x = 0 is shown in figure 4-b as a function of myx, and is found
to decrease as a function of 7x approximately as

Amx, 7x) = A(mx, 7 = 0) - (1= 7/ (3.1)

where 79 = 0.07ns. A peak search is performed for 298 di-muon mass hypotheses between
215.3 and 326.7 MeV/c?. This range is determined by the availability of sidebands with
sufficient statistics. The distance between adjacent mass hypotheses is equal to the di-muon
mass resolution o,,, shown in figure 5-a. For each hypothesis, a search window of +1 g, is
considered. The background in each window is evaluated from data, using + 9 o, sidebands,
and excluding the search window. A linear fit to the sideband data provides the expected
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Figure 4. (a): di-muon mass spectrum of selected K™ — 7"t~ events from 2017-2018 data. (b):
selection acceptance for the decay chain K+ — 7t X, X — pTp~ from simulations with 7 = 0.

background in the search window and its statistical uncertainty; the systematic uncertainty is
evaluated using alternative quadratic and cubic polynomial fits. The expected and observed
numbers of events in each window are shown in figure 5-b.

No significant excess is observed above the background for any mass hypothesis, with
NKer,X,u,u
UL )

the number of events of the decay chain K™ — 77X, X — putu~ for each mass hypothesis
(figure 5-b), using the CLg method [21]. These limits are converted to upper limits for the
branching ratio product according to

a maximum local significance of 3 standard deviations. Upper limits are set on

KrnX,Xpp
ULBE® — 77 X) x B(X = u* ™)) (my, 7x) = UL

- NKA(mx,Tx) ’ (3.2)

where A(mx,7x) is given by equation (3.1) and Ni = (3.48 4 0.09) x 10'2 is the effective
number of K+ decays in the fiducial decay volume [9]. Figure 6-a displays the expected
and observed limits in the scenario 7x = 0, while figure 6-b shows observed limits for
several Tx values.

3.2 Interpretation of K+ — 7wT~~ results

Using 2017-2018 data, NA62 performed a measurement of the SM K™ — 7t~y decay [10].
A peak search in the m., spectrum obtained limits for B(K+t — 7t X) x B(X — ~7), shown
in figure 7-a. These limits become weaker for larger 7x, as shown in figure 7-b, since the
acceptance decreases with a more displaced X — ~ vertex. The sensitivity of this search
is limited to 7x < 3ns.

4 Constraints on benchmark hidden-sector models

Using the model-independent limits described in sections 2 and 3, constraints are established
on benchmark hidden-sector models. Depending on the scenario, the X particle may decay
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Figure 6. (a): expected and observed upper limits at 90 % CL for B(KT — 7 X) x B(X — putu™)
as a function of mx for 7x = 0. (b): observed upper limits for B(K+ — 7t X) x B(X — utu~) at
90 % CL as a function of my for several Tx values.

invisibly to dark-sector particles or neutrinos, or visibly to a pair of SM particles. The
lifetime expected for a given mass is determined by the coupling strength to SM fields, and
the number of available decay channels. Since the model-independent constraints depend
on Tx, a certain range of coupling strengths are excluded for a given myx. Constraints on
B(K* — 7t X) from studies of K™ — 7t uTp~ and KT — 7y decays also depend on the
model-dependent branching ratios of the X — u™p~ and X — v decays.
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Figure 7. (a): upper limits at 90 % CL for B(K+ — 77 X) x B(X — 7v) as a function of mx for
7x = 0 [10]. (b): upper limits at 90 % CL for B(K™ — 77 X) x B(X — vv) for several Tx values.

The benchmark hidden-sector models considered in this work are portal models where an
additional Lagrangian term, Lportal, is introduced to define interactions between hidden-sector
and SM fields.

e In BC1 and BC2 a new U(1) symmetry gauge boson A’, called the dark photon,
interacts with the SM fields through kinetic mixing: Lyortal = —(g/(2 cos Ow)) Fy,, B*,
where F, ;/w and B, are the field strength tensors of the dark photon and SM hypercharge
gauge boson, respectively; Oy is the Weinberg angle; and the mixing parameter € defines
the interaction strength.

e In BC4 a new scalar singlet S, called the dark scalar, interacts with the SM Higgs
doublet H: Lyortal = —pSH YH, where 1 is a coupling constant. Below the electroweak
symmetry breaking scale, S mixes with the SM Higgs boson h in proportion to the
parameter § ~ pv/(m3 —m%), where v is the vacuum expectation value of the Higgs
field.

¢ BC10 and BC11 belong to a class of models where an axion-like particle, a, couples
to SM fermions, f, and gauge bosons, V: Lpyortalf = (Cff/(QA))auaf’y“75f and
Loortaly = ¢*(Cyv/ A)aVW‘N/"”, where g is the corresponding SM gauge boson coupling
constant, A is the new physics energy scale (assumed to be 1TeV) and Cs and Cyy
are the coupling constants.

In all the scenarios considered, the branching ratio of the K™ — 77X decay is given by

bx 2
B(KT - 7ntX)= ————|M|?, 4.1
(K =7 X) = M) (1)
where ' = 5.32 x 107" MeV is the Kt decay width, px is the momentum of X in the
kaon rest frame, and mg is the KT mass [22]. The matrix element M depends on the
hidden-sector scenario and is proportional to the coupling strength.



4.1 Massive dark vector

In QED-like theories [23], a new vector particle (the dark photon A’) is introduced, which
couples to the electromagnetic current. This particle with mass m 4. mediates interactions
both with the SM fields, through a kinetic mixing coupling € < 1, and with the hidden-sector
fields, through a coupling constant ap of O(1).

In the minimal vector portal implementation, the BC1 model [13], A’ is the only light
BSM particle, and is forced to decay exclusively to SM particles. In this case KT — 71 Xjyy
searches have no sensitivity because A’ is short-lived and K™ — 7 u* ™ searches, which
provide limits of € of O(1073), are not competitive [24, 25]. In contrast, in the BC2 model a
dark fermion x with mass m, < m//2 is introduced, and therefore A" decays predominantly
to invisible particles, A" — xx. The dark fermion is considered to be stable or extremely
long-lived and can contribute to the dark matter abundance. Results from K+ — 7+ A’
searches are independent of ap and m,, and are therefore presented in the (ma, €) plane.

The radiative decay K+ — 77 violates angular momentum conservation because the
photon is massless. However, the KT — 7t A’ decay is allowed if m4 > 0, although the
decay rate is suppressed for small values of m 4. In this scenario, the branching ratio of the
Kt — 7T A’ decay is given by equation (4.1) with a matrix element [26, 27]

ee|W(z)|m

M| = YN, m2,m?,) | (4.2)

167m2m3,
where e is the elementary charge, A is the triangle function, m, is the charged pion mass,
and |W(z)|, introduced in [28], is evaluated at z = (ma/mg)? using the model derived
from the NA62 study of the K™ — wtutu~ decay [9]. Figure 8-a displays values of
B(Kt — 7t A")/e? as a function of m .

Using upper limits for B(K+ — 77 X) described in section 2 and equations (4.1) and (4.2),
new regions are excluded at 90 % CL in the (mas,¢) plane. For mx < mjo and mx ~ mo
limits have also been established in this scenario by the NA62 searches for 70 — yA’ [29] and
70 — invisible (section 2.2), respectively. The results are displayed in figure 8-b, together
with limits from other experiments, and provide the strongest limits of the A’ invisible decays
in the m4 range 160230 MeV /2.

4.2 Dark scalar mixing with the Higgs boson

In the minimal scalar portal model BC4 [13, 35], hidden-sector particles are coupled to the SM
Higgs field. A massive scalar particle S, with mass mg, mixes with the SM Higgs boson, and
both its production and decay (to SM particles) are driven by the mixing parameter sin? 6.
The K™ — 7+S branching ratio is given by equation (4.1), with a matrix element [36, 37]

1 (m2 — m72r mg 3vV2G . . .
M| = 5 (mK—md> (1)5167T2Fm§]VtSV}d|> sinf =/ (8n'gmyg) C sinf | (4.3)

where Gr is the Fermi constant, mg ,; are the masses of the down, strange and top quarks,
respectively, and V;; are elements of the CKM matrix. For this analysis C' = 3 x 1073 is
used [35], while similar values are used elsewhere [37-39]. The resulting values of B(K* —
n+8)/sin? 0 as a function of mg are shown in figure 9-a.
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In the BC4-inv model, the dark scalar production phenomenology is identical to BC4
(figure 9-a), however the dark scalar is stable or decays invisibly to a pair of hidden-sector
particles. Upper limits for B(KT — 7+ X) (section 2) are converted to upper limits for sin® @
according to equations (4.1) and (4.3). Results are shown in figure 9-b.

In the BC4 model, where the dark scalar decays to SM particles only and has a mass
below the di-pion mass threshold, S decays to lepton pairs £T¢~ with a proper lifetime g,
shown in figure 9-c and given by

h
75(mg,sin® ) = — | (4.4)
L's
where the decay width is
Iy — ['(S—ete) 2me < mg < 2my, (4.5)
[(S—ete)+T(S— ptp) ms > 2my, ,
and
m2mg Am? 8/2
+p-y = My ¢ 2
DS —070) = S (1 = m%) sin” 6 . (4.6)

For a given mg value the excluded range of sin? @ values depends on 75. Excluded regions
from NA62 searches for K+ — 7+ Xj,, (figure 2), 7° — inv [12] and K+ — 7+8, S — putp~
(figure 6) are displayed in figure 9-d. As discussed in section 3, the sensitivity of NA62
searches is limited by lifetime effects. For mg > 2m,, the decay width is dominated by the
di-muon decay, therefore the lifetime decreases significantly and the excluded region of the
parameter space (mg,sin? ) is correspondingly reduced (figure 9-d).

,10,
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4.3 Axion portal with coupling to SM fermions

In the axion portal scenario, a is a light pseudoscalar axion-like particle (ALP) which acts as a
mediator between the SM and the hidden sector. A scenario with universal coupling to charged
fermions [13], parameterized by Cyy, is considered. In this case, unlike the benchmark vector
and scalar portal models discussed above, UV completion is required below a certain mass
scale, and the renormalization group evolution can introduce additional couplings [13, 52, 53].
The branching ratio divided by (Cys/A)? as a function of the ALP mass assuming A = 1TeV,
based on [54] and evaluated using the ALPINIST framework [47], is displayed in figure 10-a.
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Figure 10. (a): branching ratio of the K™ — 7t a decay divided by (Cys/A)?, as a function of my,
assuming A = 1TeV [47]. (b): excluded regions, at 90 % CL, of the parameter space (mq, Cys/A) for
an ALP q, in the BC10-inv model, evaluated assuming A = 1TeV. (c): lifetime (colour scale, 7, in s)
of an ALP a, in the BC10 model [13], as a function of mass and coupling strength [47]. (d): excluded
regions, at 90 % CL, of the parameter space (mq,Crs/A) for an ALP a, in the BC10 model [13],
evaluated assuming A = 1TeV. Excluded regions from NA62 searches for K+ — 7% Xj,, (figure 2),
70 — inv [12] and K+ — 7ta,a — ptp~ (figure 6), and in beam dump mode [19] are shown in red,
purple, green and brown, respectively. Other bounds, shown in grey, are derived from the experiments
£949 [31], K2 [48], CLEO [49], CHARM [50], KTeV [51], NA48/2 [40], LHCb [41, 42] and from Big
Bang nucleosynthesis (BBN) [13].

If the ALP is stable or decays invisibly (to a pair of hidden-sector particles, BC10-inv),
upper limits for Cy; are established according to ALPINIST from the model-independent
B(K* — mtX) limits discussed in section 2, as shown in figure 10-b. Alternatively, if the
ALP decays to SM particles only (BC10 model) and is light (m, < 2m;), the a lifetime is

h
Ta(ma,Cff) = Fa +1_‘(a — ’7’7) y (47)
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as shown in figure 10-c. The total a — ¢t~ decay width is given by

I'(a —ete 2me < mg < 2m
Lo = ( _) - e g (4.8)
Fla—ete )+ T(a— ptu) me > 2my,
where .
C m;m
T(a— 0t07) = (ff> tLag, 4.9
(@ ey = (G2 e, (1.9)

my is the lepton mass and By = /1 — 4m§/m§. The width of the decay to a photon pair
is given by

2

>2 042777,2

C

> NeQiCrsFa(B7)

f:e7u7u7d78

, (4.10)

where: f labels a fermion; « is the fine-structure constant; No = 1(3) for leptons (quarks);
Q7 is the fermion charge; 82 = 83 = (1 — 4m2/m2) and 82 = (1 — 4m3/m?2); and

arcsin? ( 1 ) B2 <0
Fy = p2 v zﬁfc , (4.11)
+85 .

Excluded regions in the (mq, Crr/A) plane from NA62 searches for K — 71 Xj,, (figure 2),
70 — inv [12] and K+ — 7+S, S — ptu~ (figure 6) are displayed in figure 10-d.

4.4 Axion portal with coupling to SM gluons

In the BC11 model [13] a is an ALP with gluon coupling Cgg. For m, < 3m,, the ALP
decays almost exclusively to photon pairs due to the assumption of vanishing lepton coupling.
The branching ratio divided by (Cgg/A)? as a function of the ALP mass, assuming A = 1 TeV,
based on [54] and evaluated using the ALPINIST framework [47], is displayed in figure 11-a.

Figure 11-b shows the ALP lifetime as a function of mass and coupling. Excluded
regions established in the (mg, Cag/A) parameter space from the searches for K+ — 71 Xjp,
(figure 2), 7% — inv [12] and K+ — 7ta, a — vy [10] are displayed in figure 11-c.

Within a more specific QCD axion model, constraints on the vectorial axion-down-strange
coupling were established [55], using an independent analysis procedure of the public NA62
data [56] from the search for the K™ — 7t X decay with mx = 0.
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Figure 11. (a): branching ratio of the K+ — 77 a decay divided by (Cag/A)?, as a function of my,
assuming A = 1TeV [47]. (b): lifetime (colour scale, 7, in s) of an ALP a, in the BC11 model [13] as a
function of mass and coupling strength [47]. (c¢): excluded regions, at 90 % CL, of the parameter space
(ma, Caa/A) for an ALP a, of the BC11 model [13], evaluated assuming A = 1 TeV. Excluded regions
from NA62 searches for K+ — 7t Xy, (figure 2), 7° — inv [12], KT — 77a, a — vy [10], and in
beam dump mode [19] are shown in red, purple, blue and brown, respectively. Other experimental
limits [46, 57, 58] are shown in grey.

5 Conclusions

Constraints on the production of a hidden-sector particle X are derived from studies of the
rare kaon decays K+ — ntvv, KT — ntutpu~™ and K™ — 7+97. The scenarios where X is
invisible or visible (decaying to a pair of SM particles) are considered. New limits are obtained
for a vector particle decaying to invisible final states, as well as for scalar and axion-like
particles. Interpretation of the K+ — 7w measurement to search for K+ — 7t Xj,,, now
extended to the 2016-2022 dataset, provides world-leading constraints in the mx ranges
0-100 MeV /c? and 150-260 MeV /c?.
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