DOI: 10.1002/ppp3.70133

REVIEW

Potential drivers of fast growth in Paulownia

Yang Zhao^{1,2} | Marjorie R. Lundgren²

¹Chinese Academy of Forestry, Research Institute of Non-Timber Forestry, Zhengzhou, China

²Lancaster Environment Centre, Lancaster University, Lancaster, UK

Correspondence

Marjorie R. Lundgren, Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK.

Email: m.lundgren@lancaster.ac.uk

Funding information

United Kingdom Research and Innovation (UKRI) Future Leaders Fellowship via the Medical Research Council to MRL, Grant/Award Numbers: MR/T043970/1, MR/Z000424/1; Chinese Academy of Forestry, Grant/Award Numbers: CAFYBB2022MA004, CAFYBB2020GC019

Societal Impact Statement

Trees in the genus *Paulownia* play a crucial role in sustainable forestry, rural economic development, and carbon mitigation due to their rapid growth, exceptional hardwood properties, and prominent carbon sequestration capacity. This review highlights the societal value of *Paulownia* trees and synthesizes several potential drivers of extraordinarily fast growth in these trees. These insights are valuable for maximizing *Paulownia*'s potential for timber production and carbon sequestration, and they also provide a valuable model for studying mechanisms of rapid growth in hardwood trees.

Summary

Paulownia is a genus of fast-growing deciduous hardwood trees that are economically and ecologically important. Originally from East Asia, Paulownia are grown globally for their robust timber, agroforestry, and effective carbon dioxide drawdown, services that arise from their remarkably fast growth. Despite their clear value, the underlying drivers of fast growth in this genus remain poorly understood. Here, we review potential causes of fast growth in Paulownia and identify several potential adaptations, including photosynthetic metabolism, non-foliar photosynthesis, tree habit, leaf structure, and hydraulic investment, that may contribute to fast growth in these trees. Our review highlights the paucity of evidence that would enable evaluation of these properties of Paulownia species and makes recommendations for future research needed to help explain drivers of fast growth in these important trees. In doing so, this review establishes a promising model system to study rapid growth in hardwood trees, their benefits to plantation cultivation, and potential for bioengineering.

KEYWORDS

agroforestry, facultative Crassulacean acid metabolism (CAM), growth rate, hydraulic efficiency, non-foliar photosynthesis, *Paulownia*, resource allocation

1 | INTRODUCTION

Paulownia (Paulowniaceae) is an economically and ecologically important genus that includes some of the fastest-growing broad-leaved deciduous hardwood tree species in the world (Zhao et al., 2022). The genus *Paulownia* includes between six and thirteen species, the number of which has varied over time with taxonomic reclassifications (Table 1). The *Paulownia* genus has a broad geographic range. Most

Disclaimer: The New Phytologist Foundation remains neutral with regard to jurisdictional claims in maps and in any institutional affiliations.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

© 2025 The Author(s). Plants, People, Planet published by John Wiley & Sons Ltd on behalf of New Phytologist Foundation.

 TABLE 1
 The taxonomic classifications of Paulownia species across time.

Year	Species	Variation	Reference
1959	P. tomentosa		(Hu, 1959)
	P. fortunei		
	P. fargesii		
	P. kawakamii		
	P. elongata		
	P. glagrata		
1976	P. tomentosa	P. tomentosa var. tsinlingensis	(Gong, 1976)
	P. fortunei		
	P. fargesii		
	P. elongata		
	P. australis		
	P. kawakamii		
	P. catalpifolia		
1981	P. tomentosa	P. tomentosa var. tsinlingensis	(Zhu, 1981)
	P. fortunei		
	P. fargesii		
	P. elongata		
	P. australis		
	P. taiwaniana		
	P. catalpifolia		
	P. albiphloea	P. albiphloea var. chengduensis	
	P. kawakamii		
1990	P. tomentosa	P. tomentosa var. tsinlingensis P. tomentosa var. lanata P. tomentosa var. lucida	(Jiang, 1990)
	P. fortunei		
	P. fargesii		
	P. elongata		
	P. australis		
	P. taiwaniana		
	P. catalpifolia		
	P. albiphloea	P. albiphloea var. chengduensis	
	P. lampropylla		
1992	P. tomentosa	P. tomentosa var. tsinlingensis P. tomentosa var. lanata P. tomentosa var. lucida	(Xiong & Chen, 1992)
	P. fortunei		
	P. fargesii		
	P. elongata		
	P. australis		
	P. taiwaniana		
	P. catalpifolia		
	P. albiphloea	P. albiphloea var. chengduensis	
	P. lampropylla		
	P. recurva		
	P. jianshiensis		
	P. ichangensis		

TABLE 1 (Continued)

Year	Species	Variation	Reference
2000	P. tomentosa	P. tomentosa var. tsinlingensis P. tomentosa var. lanata P. tomentosa var. lucida	(Chen et al., 2000)
	P. fortunei		
	P. fargesii		
	P. kawakamii		
	P. elongata		
	P. lamprophylla		
	P. ichangensis		
	P. jianshiensis		
	P. albiphloea	P. albiphloea var. chengduensis	
	P. recurva		
	P. australis		
	P. catalpifolia		
	P. henanensis		
2013-onward	P. tomentosa	P. tomentosa var. tsinlingensis P. tomentosa var. lanata P. tomentosa var. lucida	(F. Li et al., 2013)
	P. fortunei		
	P. fargesii		
	P. kawakamii		
	P. elongata		
	P. lamprophylla		
	P. ichangensis		
	P. jianshiensis		
	P. albiphloea	P. albiphloea var. chengduensis	
	P. taiwaniana		
	P. catalpifolia		

Paulownia species have largely remained in their native East Asian range, where they have been cultivated for over 3,000 years (Hu, 1959). However, three species (Paulownia tomentosa (Thunb.) Steud., Paulownia fortunei (Seem.) Hemsl., and Paulownia elongata S. Y. Hu), as well as some interspecific hybrids (e.g., Clone in vitro 112, Shantong, Sundsu11, and Cotevisa 2) have reached global distributions, with P. tomentosa being the most broadly distributed species in the genus (Sławińska et al., 2023; Young & Lundgren, 2023).

Paulownia trees provide critical and valuable ecosystem services. Their wood has excellent properties, such as lightness, high dimensional stability, and good acoustic resonance, and thus is widely used for making furniture, decorative materials, musical instruments, handicrafts and other products (Rodríguez-Seoane et al., 2020). The genus has attracted widespread attention for use in ecological engineering projects, including ecological restoration and afforestation in areas with difficult terrain, due to its developed root system, barrenness tolerance, adaptability, and heavy metal adsorption by leaves, stems, and roots (Doumett et al., 2008; Rodríguez-Seoane et al., 2020; Wang

et al., 2009). *Paulownia* leaves, flowers, fruits, roots, and bark are used as medicine, being specifically effective in curing upper respiratory tract infections, bronchitis, and mumps (Zheng et al., 2009) and, as such, *Paulownia* are considered traditional medicinal plants whose chemical composition, bioactivity, and pharmacological activity are becoming a research hotspot (Škovranová et al., 2024; Xiao et al., 2024; Yang et al., 2024). Thus, *Paulownia* is a lucrative alternative to traditional crops, due to its relatively low resource requirements, high market demand, and significant financial returns (Negruşier et al., 2024).

Paulownias are excellent agroforestry trees. They effectively reduce wind damage, increase biodiversity, and enrich soil organic matter (Testa et al., 2022), without significantly shading agricultural fields at times when sunlight is needed most by key crops. For example, Paulownia leaves emerge late in the spring and drop early in the autumn, which allows high light penetration through the canopy to maximize intercropping potential with winter wheat (Figure 1). Furthermore, our previous research in the North China Plain found that the average shading effect in Paulownia intercropping decreased

intercropping system. Paulownia elongata trees are effectively intercropped with wheat (Triticum aestivum Zhengmai 379) at the ground level in Lankao County, Henan Province, China. Photograph taken by Jie Qiao.

exponentially with the total area of the agroforestry systems, which have a consistent tree belt design (i.e., the same tree variety, age, rows, and spacing) (Zhao et al., 2019). Moreover, competition for nutrients and water within the soil is minimized between deep-rooted Paulownia trees and shallow-rooted intercrops, giving Paulownia a significant advantage compared to most other tree species used in agroforestry (Bojesen Jensen, 2016; F. Li et al., 2008; Zhu et al., 1986). For these reasons, agricultural areas along the broad central and northern plains of China have transformed into exemplary agroforestry zones of Paulownia intercropping (Zhu et al., 1986), along with, for example, bamboo (Phyllostachys heteroclada) (Chen, 2003), Chinese fir (Cunninghamia lanceolata) (Xu et al., 2000), and tea plant (Camellia sinensis) (Ni et al., 1990), enabling diversified land use while enhancing the growth of mixed forest components. Furthermore, Paulownia plantations sustain relatively abundant understory vegetation, promoting biodiversity across scales.

2 | PAULOWNIA GROWTH ENVIRONMENT

Optimal growth temperature for *Paulownia* ranges between 24 and 30°C; however, these trees can withstand temperatures down to -20° C and above 40° C (Woods, 2008). Their optimum soil water content is approximately 50% of field capacity (Wang et al., 2020). In regions without artificial irrigation, annual precipitation as low as 500 mm can meet their soil water content needs, although annual rainfall up to 1,000 mm is more suitable (Wang et al., 2020). In fact, *Paulownia* persists in semi-arid Mediterranean regions with low irrigation levels (Testa et al., 2022). *Paulownia* trees, however, are intolerant to flooding and, in stands without effective drainage, prolonged waterlogging or flooding limits growth and can be fatal (Wang

et al., 2020). These trees are characterized by a deep rooting system, extensive lateral roots, and a fleshy root cortex, all of which are key adaptations for avoiding water stress. They prefer sandy loam or gravelly soils that are deep and well-aerated, with an ideal soil porosity of over 50% (Woods, 2008). *Paulownia* broadly tolerates soil pH between 5.0 and 8.9, but is more sensitive to soil salinity than most tree species (Chinnusamy et al., 2005; Zeng et al., 2002), with its growth being severely hindered when the total salt concentration of the soil rises above 1 % (Zhu et al., 1986).

Paulownia are light-demanding trees with very poor shade tolerance, especially during their sensitive sapling stage when even slight shade can cause deformation (Barbu et al., 2023; Wang et al., 2015). This extreme light sensitivity means that *Paulownia* rarely form uniform forests naturally, and instead usually co-occurs with *Acer*, *Quercus*, and *Juglans mandshurica* hardwood trees to form an upper canopy, or occurs in forest gaps and along forest edges with little shade (Jiang, 1990). In plantations, lateral shading causes crown deviation and narrows the annual rings on the shaded side of the trunk by more than 30% in heavily shaded areas, which significantly reduces wood yield and quality (Jiang, 1990).

3 | PAULOWNIA HAVE REMARKABLY FAST GROWTH

Compared to conventional hardwood and softwood tree species, *Paulownia* exhibits remarkably fast growth (Ayrilmis & Kaymakci, 2013). *P. tomentosa* particularly stands out, with a biomass production of 50 t/(ha·year), which far surpasses traditionally recognized fast-growing species, such as *Populus* spp., *Salix* spp., *Panicum virgatum*, and *Miscanthus* x *giganteus* 'Nagara' that typically yield between

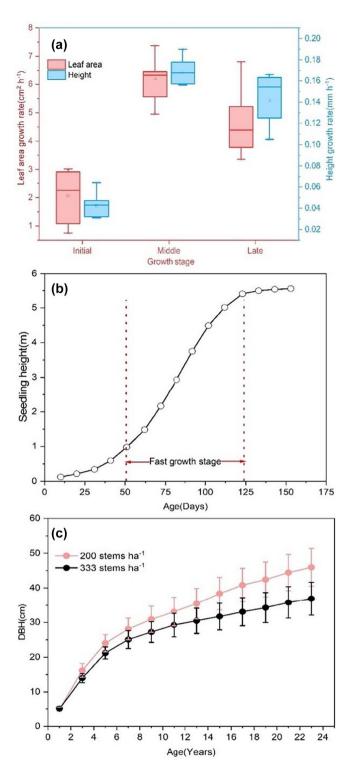


FIGURE 2 Growth patterning in *Paulownia*. (a) Comparison of leaf area (red) and height (blue) growth rates across initial, middle, and late phenological stages of cloned *Paulownia* seedlings. Modified from (Wang et al., 1993). (b) *Paulownia* tree height curves over the first six months. Modified from (Zhou et al., 1996). (c) Growth in diameter at breast height (DBH) in *Paulownia fortunei* 'Yulinensis 1' at two plantation planting densities over 24 years in Liangyuan Forest farm in Shangqiu City, Henan province, China (34°33′18″N and 115°34′44″E). Data show that higher planting density is associated with reduced trunk diameter growth, and this density-dependent growth difference becomes more pronounced with age (*unpublished data*). Error bars are the standard error of the mean.

6 and 17 t/(ha-year) (Domínguez et al., 2017; Marsal et al., 2016). A study on the diurnal growth rhythm across saplings of seven Paulownia clones indicated that the leaf area expansion rate can reach over 7 cm² per hour, while the stem elongation rate reaches up to nearly 0.2 mm per hour (Figure 2a; Wang et al., 1993). Under suitable growth conditions, one-year-old root cutting Paulownia trees may attain leaf lengths up to 80 cm (Owfi, 2017), 8 m in height, and up to 12 cm in root collar diameter (RCD) (Zhu et al., 1986). A study of growth patterning in one-year-old saplings found that Paulownia's growth (in terms of sapling height) follows a logistic curve, with approximately 80% of the total height increment occurring within a two-and-a-halfmonth fast-growth stage, as shown in Figure 2b (Zhou et al., 1996). Furthermore, Paulownia has strong coppicing ability, such that new growth accumulates at a faster rate after being harvested compared to new sapling growth from seed (Bojesen Jensen, 2016). If Paulownia trees are left unharvested, they can attain a life expectancy of up to 80 years, reaching a height of 49.5 m, a diameter at breast height (DBH) of 224 cm, and a wood volume of 34 m³ (Jakubowski, 2022). By forming hollow trunks, Paulownia may have developed an adaptive strategy that optimizes mass distribution, increases resistance to gravitational loading, and thus avoids self-buckling even at great heights (Kanahama & Sato, 2023). Paulownia can be harvested for purlin or rafter timber after seven growing seasons (Z. Li et al., 2012). If the cultivation objective is plywood or furniture timber, however, the ideal felling age of Paulownia is between13 and 20 years, respectively. These young felling times are in stark contrast to most hardwood trees, which take approximately 60 to 80 years to mature and be economically useful (Ayrilmis & Kaymakci, 2013).

4 | POTENTIAL DRIVERS OF FAST GROWTH IN PAULOWNIA

In the following sections, we propose potential drivers of fast growth in *Paulownia*, linking traits typically associated with fast growth in trees with the available current literature on *Paulownia* and highlighting where more research is needed.

4.1 | Specialised photosynthetic metabolism

Photosynthetic capacity is an important factor in plant growth that is primarily driven by photosynthetic metabolism. Plants are generally divided into four main types of photosynthetic carbon metabolism, including C_3 , C_4 , C_2 , and Crassulacean Acid Metabolism (CAM) (Lundgren, 2020; Paulus et al., 2013). Over the past few decades, there have been mixed reports about the type of photosynthesis used by *Paulownia*. Like most trees, *Paulownia* species have traditionally been classified as C_3 plants, primarily due to the absence of Kranz anatomy in their leaves (Su et al., 1993). This classification was recently supported by transcriptomics evidence that was consistent with C_3 carbon assimilation in the mesophyll (Cao et al., 2021). Despite these lines of evidence, however, many studies have attributed *Paulownia's* fast growth and exceptional carbon sequestration

capacity to C_4 photosynthesis (e.g., Ghazzawy et al., 2024; Jakubowski, 2022; Sławińska et al., 2023; Świechowski et al., 2019; Woźniak et al., 2018). C_4 photosynthesis is a carbon concentrating mechanism (CCM) that spatially separates CO_2 fixation across mesophyll and bundle sheath cell types within the leaf to effectively reduce photorespiration and consequently boost photosynthetic efficiency and ultimately growth under hot and bright environments (Atkinson et al., 2016; Pearcy et al., 1987). The C_4 pathway is a highly convergent complex trait that has evolved in \sim 70 plant lineages independently; however, it is very rarely found in true trees and is not associated with rapid growth rates in the few tree species that do use this CCM (Young et al., 2020).

A recent investigation of photosynthetic phenotypes in P. tomentosa, P. fortunei, and Paulownia kawakamii strongly suggests that these Paulownia species do not use C4 photosynthesis (Young & Lundgren, 2023). Indeed, key leaf traits used to define photosynthetic type, such as the CO₂ compensation point - the CO₂ concentration at which the rate of CO₂ uptake through photosynthesis equals the rate of CO₂ release through respiration and photorespiration (55.7-63.8 µmol mol⁻¹)- and leaf interveinal distance - the average distances between adjacent longitudinal veins (156-225 µm)- were significantly higher in *Paulownia* than values typically measured in C₄ plants, while carboxylation efficiency (0.04-0.09 mol m⁻² s⁻¹) and δ^{13} C stable isotope signatures (-25.59 to -22.22 %) in Paulownia fell well below values typically measured in C₄ plants under similar growth environments (Young & Lundgren, 2023). Furthermore, the same study found very few chloroplasts localized to the bundle sheath tissue of Paulownia leaves, suggesting the spatial separation of atmospheric CO₂ fixation would be nearly impossible via the dual-cell C₄ system used by most C₄ plants. These results indicate that Paulownia does not employ the C₄ CCM.

Unlike C_4 photosynthesis, CAM is a CCM that temporally separates CO_2 fixation across the day and night, such that CAM plants take in CO_2 via open stomatal pores during the night when it is cool and store it in vacuoles until the daytime when it can be mobilized and converted into sugars in the Calvin-Benson-Bassham cycle. In doing so, this pathway effectively saves water, making CAM photosynthesis particularly advantageous in very dry environments. In some plants, CAM is *facultative*, meaning that it can turn on and off depending on the environment, often being induced under water-limited conditions (Cushman & Borland, 2002). Unlike obligate CAM species, which trade off fast growth for exceptional water-saving potential, facultative CAM can facilitate fast growth (Winter & Holtum, 2024).

Two recent studies have suggested that Paulownia may fix CO_2 via a facultative CAM pathway that supplements C_3 metabolism (Cao et al., 2021; Wang et al., 2019). First, Wang et al. (2019) found that genes encoding enzymes used in CAM metabolism for CO_2 residue delivery were upregulated in Paulownia. Then, Cao et al. (2021) found that the stomata dotted along Paulownia leaves remain open through both the day and night, suggesting that active gaseous exchange may be taking place through their stomata at night, which is a common phenotype of CAM plants. Furthermore, they identified differential

expression and regulation of photosynthesis genes during the daytime versus the nighttime that were consistent with patterns of carbon assimilation taking place during the night as is typically found in CAM plants. The findings of these two studies are compelling, but not conclusive. Indeed, nocturnal stomatal opening has been observed in several C₃ species without association with CAM (Resco De Dios et al., 2019). Furthermore, Paulownia leaves are not succulent, which is a morphological prerequisite for vacuolar storage capacity of organic acids in obligate CAM plants, but may not exclude the possibility of facultative CAM in Paulownia (Holtum et al., 2016; Sage et al., 2023; Winter & Holtum, 2024). Taken together, patterns are emerging that point to Paulownia potentially having evolved a specialized photosynthetic mechanism that remains elusive. Further research is needed to fully elucidate the photosynthetic phenotype of Paulownia and determine the extent to which it may contribute to fast growth. For example, 24-hour diurnal gas exchange measurements would confirm or not whether Paulownia leaves assimilate CO2 during the night and therefore perform facultative CAM (Cenciareli et al., 2025; Mok et al., 2023). Following this, the degree to which putative facultative CAM then contributes to fast growth with Paulownia would require additional experimental validation. In addition, the benefits of respiration for rapid growth should be considered, as it functions as a process complementary to, rather than opposing, photosynthesis (Amthor, 2025).

4.2 | Non-foliar photosynthesis in saplings

While photosynthesis is typically associated with leaves, it can also occur in any chlorophyll-rich tissues throughout a plant, such as green stems, bracts, petals, pods, and seeds, to effectively boost whole plant carbon assimilation (Aschan & Pfanz, 2003; Simkin et al., 2020). One distinctive feature of non-foliar photosynthesis is its dual origin of CO₂. First, internal leaf CO₂ can originate from atmospheric CO₂ that has diffused from the atmosphere into the cells through stomatal pores, where it can be fixed by ribulose-1,5-bisphosphate carboxylase (Rubisco) in leaf tissue via the Calvin–Benson–Bassham (CBB) cycle. Additionally, CO₂ can also be released from respiration or photorespiration into the leaf, which can then be refixed via the CBB cycle (Millar et al., 2011; Simkin et al., 2020).

The relative contributions of non-foliar photosynthesis to whole plant photosynthetic carbon assimilation remain contentious and appear to be strongly species-dependent (Lawson & Milliken, 2023). Photosynthesis in cucumber (*Cucumis sativus*) fruits, for example, provides nearly one tenth of the whole plant carbon assimilation and nearly 90 % CO₂ released by respiration is refixed in these fruits (Sui et al., 2017). Indeed, non-foliar photosynthetic tissue may be particularly important for refixing respired CO₂, which is likely to become critical when the diffusion and supply of external CO₂ are limited (Lawson & Milliken, 2023). Foliar and non-foliar photosynthesis may have distinct photosynthetic characteristics. For example, photosynthetic efficiency within the rind of Satsuma Mandarins (*Citrus unshiu*) is approximately fivefold higher than that of its leaves under a low

FIGURE 3 Photosynthetic stems in Paulownia saplings. Photographs showing (a) green stems; (b) lenticels along the main stem; and (c) lenticels and vertical cracks in maturing trees. Photographs taken by Jie Qiao, Baoping Wang, and Chaowei Yang, respectively.

FIGURE 4 Monoaxial growth and pseudo-dichotomous branching in *Paulownia* saplings and mature trees. Photographs showing
(a) monoaxial growth in saplings and (b) the terminal bud dies in winter, and the lateral bud near the top forms a pair of lateral branches, and the growth of the stem exhibits pseudo-dichotomous branching. One of the two pseudo-dichotomous branches is often stronger (red arrow) than the other (black arrow). In *Paulownia fortunei*, the former grows upwards in the direction of the main stem and thus contributes to the extension of the stem, while the latter gradually dies back due to light/nitrogen/water competition. Panel (c) shows two balanced branches in *Paulownia tomentosa*, which limits the extension of the main stem. Photographs taken by Yang Zhao.

light intensity of $13.5 \text{ mol m}^{-2} \text{ s}^{-1}$ (Hiratsuka et al., 2015). Indeed, photosynthesis in green non-foliar tissues is widely accepted to have a similar photosynthetic pathway to that of mesophyll (Henry et al., 2020; Hiratsuka et al., 2015; Trainin et al., 2022). However, foliar and non-foliar tissues have also been documented to use different photosynthetic pathways. In the C_3 crop tobacco, for instance, cells surrounding the xylem and phloem within the stems and petioles exhibit biochemical and anatomical characteristics of C_4 photosynthesis (Hibberd & Quick, 2002).

In trees, photosynthesis in green, non- or low-lignified trunk and stem tissue can contribute significantly to carbon fixation and stem growth, while also improving hydraulic function and drought survival (Ávila-Lovera et al., 2024; Chen et al., 2021; Kocurek et al., 2020; Sun et al., 2021). Previous studies indicate that stem photosynthesis in desert shrubs operates between 16 and 60% of leaf photosynthetic rates (Ávila et al., 2014), and this strong stem photosynthetic capacity is largely maintained throughout the dry season (Ávila-Lovera et al., 2017), and can reach more than 70% of leaf photosynthetic rates in the arid-adapted wild cherry (Prunus arabica) (Brukental et al., 2021). In addition to the main trunk/stems of saplings and green-barked trees, current-year branches can also effectively contribute to whole plant net carbon assimilation (Berveiller et al., 2007). Studies have quantified the importance of stem photosynthesis in trees, finding that it contributes approximately 11% to branch tissue growth in Eucalyptus miniata (Cernusak & Hutley, 2011), 24% to stem growth in Populus nigra (Bloemen et al., 2013), and up to 56% to trunk diameter in Arctostaphylos manzanita (Saveyn et al., 2010).

In non-succulent plants, stem photosynthesis can be divided into two types: direct stem net photosynthesis and indirect stem CO₂ recycling photosynthesis (Ávila et al., 2014). Direct stem net photosynthesis is characterized by the presence of stomata or lenticels along the stem epidermis, which allow an entry point for atmospheric CO₂ into the photosynthetic cells of green tree trunks, stems, and branches (Cernusak & Cheesman, 2015). Here, chlorophyll-rich trunks/stems/branches engage in active CO2 assimilation via the CBB cycle to increase whole plant carbon assimilation and water-use efficiency. By contrast, the more common indirect stem CO2 recycling photosynthesis occurs in shrub and tree species with smooth bark surfaces, which effectively trap respired CO₂ and allow for higher light penetration, and involves the refixation of CO₂ produced by underlying respiratory processes or from released CO2 transported during transpiration. This indirect stem recycling photosynthesis reduces carbon respiratory losses to boost whole plant net carbon assimilation (Berveiller et al., 2007; Cernusak & Cheesman, 2015; De Roo et al., 2020).

While *Paulownia* may engage one or both types of this non-foliar photosynthesis in their trunk/stems/branches throughout their life, it may be particularly important during the sapling stage for these trees. Unlike most trees, *Paulownia* stems remain green and non-lignified throughout the first year of growth (Figure 3a), with numerous lenticels developing along the stem during this year-long sapling stage. As *Paulownia* trees mature in their second year of growth, their epidermis gradually transitions from green to grey-brown or black (Figure 3b),

stem lignification increases, and lenticels transform into vertical cracks (Figure 3c) along the bark surface (Jakubowski, 2022). These traits suggest that active stem net photosynthesis occurs along the main trunk of *Paulownia* during their first year of growth, which would give an initial boost to the whole-plant carbon acquisition, allowing these trees to grow tall quickly. While stem photosynthesis has been characterized in other fast-growing trees, including *Eucalyptus urophylla* (Chen et al., 2021), *Poplar tremula* (De Roo et al., 2020), and *Salix matsudana* (Liu et al., 2019), it remains uncharacterized in *Paulownia*. Understanding whether *Paulownia* effectively performs direct stem net and/or indirect recycling photosynthesis and their implications for growth requires further investigation.

Further research is needed to address these questions around the potential contribution of non-foliar photosynthesis to rapid growth in *Paulownia* trees. For example, one simple approach to start to answer these questions would be to characterize the presence or absence of stomata along the non-foliar green surfaces. If stomata are indeed present, then gas exchange measurements could confirm or not CO₂ flux in these non-foliar tissues. Furthermore, long-term light-exclusion experiments, for example by covering stems in aluminum foil (Valverdi et al., 2023) or performing leaf defoliation (Natale et al., 2023), would directly quantify the contribution of stem photosynthesis to seedling growth. Finally, patterns of carbon- and oxygen-isotope discrimination may shed light on the fraction of woody biomass produced by net stem photosynthesis and refixation (Cernusak & Hutley, 2011).

4.3 | Growth habit

The monoaxial growth strategy, which is characterized by a single. strictly unbranched stem, is associated with rapid height growth in trees (Kohyama, 1987). Monoaxial trees typically adjust the petiole length of leaves within the crown to reduce self-shading (Aoyagi et al., 2024). Together, the monoaxial growth strategy allows trees to grow vertically at a fast rate and with cheap extension costs, so that they can rapidly take advantage of canopy gaps and minimize competition (Aiba & Nakashizuka, 2007). Paulownia saplings are monoaxial, exhibiting the specialized leafing pattern, with their petiole length decreasing from the top to the bottom of the stem (Figure 4a). As Paulownia trees age, however, they gradually transition to a pseudodichotomous branching pattern (Zhao et al., 2021), whereby the terminal axis stops growing and growth only continues via lateral branches (Figure 4c). Similar to petiole length in young Paulownia saplings, branch lengths that form in older saplings also increase from the top to the base, as do the angles between branches and stems (Figure 4b,c). The shift from monoaxial to pseudo-dichotomous growth habit after the first year of growth suggests that Paulownia prioritizes rapid and inexpensive height growth during its first year of life to quickly outcompete and escape its neighbors. Further study is required to determine how the crown architecture of this growth habit, including total leaf area, the distribution of leaf and branch angles, and the resulting patterns of canopy light transmission, interception, and light use efficiency (Aoyagi et al., 2024; De Mattos

Structure favors rapid, tall growth - Monoaxial habit - Thin, inexpensive leaves - Hollow, inexpensive stems Late phenological shift to maturity Escape from competition Strategies maximize carbon, nutrient, and water availability - Facultative CAM photosynthesis - Contributions from stem photosynthesis - Deep and broad root systems - Prioritizes hydraulic efficiency over safety + Effective resource acquisition Rapid growth In Paulownia trees

FIGURE 5 Conceptual diagram collating the topics discussed in this review. *Paulownia* present several traits that facilitate their escape from competition via specific habit, structure, and phenological strategies (blue). Potential use of specialist photosynthetic metabolism and non-foliar photosynthesis would maximize carbon-use efficiency, whilst a deep root system and large vascular structures could enhance nutrient and water acquisition (green). Together, strategies that effectively evade competition coupled to effective resource acquisition appear to underpin fast growth in paulownia trees. However, structured, hypothesis-driven experiments are needed to validate these proposed drivers of fast growth in *Paulownia*.

et al., 2020) at both sapling and mature stages, efficiently contributes to overall tree growth.

4.4 | Leaf structure

The leaf structure of *Paulownia* may contribute to its high photosynthetic capacity and rapid growth. For example, *P. elongata* exhibits a high stomatal density of 630.06 mm⁻² (Fan et al., 2006), well above those values reported for several *Populus* species (Sakoda et al., 2020; Wang et al., 2024), another well-known rapid-growth tree species. Because stomatal density is positively correlated with CO₂ exchange, net photosynthesis, and biomass production (Sakoda et al., 2020; Tanaka et al., 2013), having high stomatal density could provide an anatomical advantage to growth. In addition, mesophyll architecture can be tuned to raise mesophyll conductance by expanding the surface area of mesophyll cells exposed to the intercellular airspace (Baillie & Fleming, 2020; Lehmeier et al., 2017). *Paulownia* leaves have been shown to possess unusually large mesophyll air spaces (Jiang, 1990), which could enhance internal CO₂ diffusion and, consequently, photosynthetic performance.

Specific leaf area (SLA), or the light-capturing surface area per unit dry mass investment, is an important factor in photosynthetic-nitrogen relations (Milla & Reich, 2007; Reich et al., 1998). Indeed, *Paulownia* saplings have remarkably large, thin leaves that can exceed one meter in length and have high SLA (Zhu et al., 1986), like many monoaxial trees, which typically have large leaves with low construction costs (Aiba & Nakashizuka, 2007). Leaves with high SLA increase light interception in saplings and younger trees (Augspurger & Bartlett, 2003), and greater light interception has been linked to greater water and resource allocation leading to improved photosynthesis, growth rates and, ultimately, woody mass production (De Mattos et al., 2020; Pongpattananurak et al., 2025; Ruiz-Robleto &

Villar, 2005; Steppe et al., 2011). After the first year of growth, however, *Paulownia* leaves transition to become smaller and thicker (lower SLA) (Icka et al., 2016), which may indicate an evolutionary adaptation to cope with greater water limitation in mature trees (Aparecido et al., 2017; England & Attiwill, 2006).

Leaf structural costs are influenced by multiple leaf traits in addition to SLA. For example, trade-offs between photosynthesis and respiration and between structural and non-structural carbon accumulations, and plant nutrient characteristics (i.e., plant elemental stoichiometry, such as N allocation trade-off). Despite their recognized importance for plant performance, these interacting determinants of construction cost have yet to be examined in *Paulownia*. Therefore, dedicated studies are still needed to clarify how each factor shapes the leaf economic strategy of this genus.

4.5 | Reduced investment in hydraulic safety

As discussed above, *Paulownia* is renowned as tall, fast-growing trees. In one remarkable example, a *P. fortunei* tree in Sichuan Province, China, grew to 21.7 m high and with a volume of 6.65 m³ over just 18 years (Zhu et al., 1986). This significant vertical growth rate requires the production of additional xylem conduits to maintain vascular continuity from where water is absorbed in the roots to where it is transpired from the crown foliage. Some have hypothesized that this vascular connectivity can create a context-dependent trade-off between hydraulic efficiency (i.e., water transport capacity) and safety (i.e., resistance to embolism) (Hacke et al., 2006; Prendin et al., 2018; Sperry, 2003). In support of this theory, Van Der Sande et al. (2019) found that enhanced hydraulic *safety* was associated with higher wood density, greater leaf dry mass content, lower stomatal conductance, and lower photosynthetic efficiency across a study of 18 tree species, which suggests that high-cost dense wood and leaves with

lower photosynthetic activity play key roles in enhancing hydraulic safety in trees (van der Sande et al., 2019). In further support, Santiago et al. (2004) found that greater hydraulic efficiency was associated with higher rates of gas exchange in the leaves of 20 canopy-forming trees, facilitating an acquisitive life history strategy of fast resource acquisition and growth. Therefore, one could conclude that Paulownia may prioritize hydraulic efficiency over safety. Indeed, Paulownia trees have low wood density ranging from 220 to 350 kg m^{-3} (Jakubowski, 2022); compared to a typical range of $300-600 \text{ kg m}^{-3}$ across most tree species (Saranpää, 2003) which is linked to greater hydraulic efficiency and rapid height growth (Aiba Nakashizuka, 2007; Van Der Sande et al., 2019). However, trade-offs between hydraulic safety and efficiency are not inevitable (Maherali et al., 2004), and some tree species can evolve phenotypes that balance both safety and efficiency (Gleason et al., 2016; Liu et al., 2021). If trade-offs between hydraulic safety and efficiency exist, then natural selection should favor high efficiency in wet environments and high safety in arid environments (Sperry et al., 2008). A 7-year multisite clonal test at three sites spanning the temperate to subtropical regions of China indicated that Paulownia typically grows best in wet environments with a mean annual precipitation of 1,690 mm (Zhao et al., 2022), Furthermore, one site in Hubei province experienced a severe meteorological drought in 2022—the worst in 60 years—which led to dieback in Paulownia branch tips while neighboring slowergrowing Chinese fir plantation trees appeared unaffected throughout the drought period (personal observation). These examples lend support to the idea that Paulownia prioritizes hydraulic efficiency over safety. However, the details behind the hydraulic strategy of Paulownia and its role in rapid growth remain unclear. Future studies should therefore investigate how biomass allocation, leaf water relations. stem xylem anatomy and function, and the coordination of these traits (Medeiros et al., 2016) function together to shape overall hydraulic performance.

5 | CONCLUSION

Paulownia are remarkable hardwood deciduous trees with significant economic and ecological value that have among the fastest recorded growth rates in the plant kingdom. Despite their societal value, the drivers of fast growth in these trees remain unknown. Here we propose several possible underlying facilitators of fast growth in the genus, including potential use of facultative CAM photosynthetic metabolism, non-foliar sapling stem photosynthesis, a sapling monoaxial growth habit, inexpensive structural costs, and prioritized hydraulic efficiency, which may all function together to convey extraordinarily fast growth in these trees (Figure 5). Furthermore, we conclude that Paulownia trees prioritize rapid growth via a combination of these factors, specifically during the first 12 months of growth, to effectively outcompete or escape their neighbors. Comprehensive investigations are required to gain a more holistic understanding of the mechanisms behind the rapid growth of Paulownia. Elucidating these drivers could yield a physiological model system of the rapid

growth in hardwood tree species and provide pivotal insights that would be broadly applicable to sustainable plantation management, conservation, bioenergy production systems, and plant biotechnology.

AUTHOR CONTRIBUTIONS

MRL and YZ conceived and wrote the manuscript.

ACKNOWLEDGEMENTS

This work was supported by Fundamental Research Funds for the Central Non-profit Research Institution of the Chinese Academy of Forestry to YZ [CAFYBB2022MA004 and CAFYBB2020GC019] and a United Kingdom Research and Innovation (UKRI) Future Leaders Fellowship via the Medical Research Council to MRL [MR/T043970/1 and MR/Z000424/1]. Additionally, the authors thank Kevin Martin and Dr Jehová Lourenço Jr. of the Royal Botanical Gardens, Kew, for insightful discussion of hydraulic safety in trees, Dr Samuel Taylor for feedback on the manuscript, and Dr Baoping Wang, Jie Qiao and Chaowei Yang of the Chinese Academy of Forestry for supplying photographs.

CONFLICT OF INTEREST STATEMENT

No conflict of interest declared.

DATA AVAILABILITY STATEMENT

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

ORCID

Yang Zhao https://orcid.org/0000-0003-3637-6731

Marjorie R. Lundgren https://orcid.org/0000-0002-2489-3646

REFERENCES

Aiba, M., & Nakashizuka, T. (2007). Differences in the dry-mass cost of sapling vertical growth among 56 woody species co-occurring in a bornean tropical rain forest. *Functional Ecology*, 21, 41–49. https://doi.org/10.1111/j.1365-2435.2006.01217.x

Amthor, J. S. (2025). After photosynthesis, what then: Importance of respiration to crop growth and yield. *Field Crops Research*, *321*, 109638. https://doi.org/10.1016/j.fcr.2024.109638

Aoyagi, H., Nakabayashi, M., & Yamada, T. (2024). Newly found leaf arrangement to reduce self-shading within a crown in Japanese monoaxial tree species. *Journal of Plant Research*, 137, 203–213. https://doi.org/10.1007/s10265-024-01524-5

Aparecido, L. M. T., Miller, G. R., Cahill, A. T., & Moore, G. W. (2017). Leaf surface traits and water storage retention affect photosynthetic responses to leaf surface wetness among wet tropical forest and semi-arid savanna plants. *Tree Physiology*, 37, 1285–1300. https://doi.org/10.1093/treephys/tpx092

Aschan, G., & Pfanz, H. (2003). Non-foliar photosynthesis – A strategy of additional carbon acquisition. Flora - Morphol. Distribution, Functional Ecology of Plants, 198, 81–97. https://doi.org/10.1078/0367-2530-00080

Atkinson, R. R. L., Mockford, E. J., Bennett, C., Christin, P.-A., Spriggs, E. L., Freckleton, R. P., Thompson, K., Rees, M., & Osborne, C. P. (2016). C₄ photosynthesis boosts growth by altering physiology, allocation and size. *Nature Plants*, *2*, 16038. https://doi.org/10.1038/nplants.2016.38

Augspurger, C. K., & Bartlett, E. A. (2003). Differences in leaf phenology between juvenile and adult trees in a temperate deciduous forest. *Tree Physiology*, 23, 517–525. https://doi.org/10.1093/treephys/23.8.517

- Ávila, E., Herrera, A., & Tezara, W. (2014). Contribution of stem CO₂ fixation to whole-plant carbon balance in nonsucculent species. *Photosynthetica*, 52, 3–15. https://doi.org/10.1007/s11099-014-0004-2
- Ávila-Lovera, E., Haro, R., Choudhary, M., Acosta-Rangel, A., Pratt, R. B., & Santiago, L. S. (2024). The benefits of woody plant stem photosynthesis extend to hydraulic function and drought survival in *Parkinsonia Florida*. *Tree Physiology*, 44, tpae013. https://doi.org/10.1093/treephys/tpae013
- Ávila-Lovera, E., Zerpa, A. J., & Santiago, L. S. (2017). Stem photosynthesis and hydraulics are coordinated in desert plant species. *New Phytologist*, 216, 1119–1129. https://doi.org/10.1111/nph.14737
- Ayrilmis, N., & Kaymakci, A. (2013). Fast growing biomass as reinforcing filler in thermoplastic composites: *Paulownia elongata* wood. *Industrial Crops and Products*, 43, 457–464. https://doi.org/10.1016/j.indcrop. 2012.07.050
- Baillie, A. L., & Fleming, A. J. (2020). The developmental relationship between stomata and mesophyll airspace. New Phytologist, 225, 1120–1126. https://doi.org/10.1111/nph.16341
- Barbu, M. C., Tudor, E. M., Buresova, K., & Petutschnigg, A. (2023). Assessment of physical and mechanical properties considering the stem height and cross-section of *Paulownia tomentosa* (thunb.) steud. X *elongata* (S.Y.hu) wood. *Forests*, 14, 589. https://doi.org/10.3390/f14030589
- Berveiller, D., Kierzkowski, D., & Damesin, C. (2007). Interspecific variability of stem photosynthesis among tree species. *Tree Physiology*, 27, 53–61. https://doi.org/10.1093/treephys/27.1.53
- Bloemen, J., Overlaet-Michiels, L., & Steppe, K. (2013). Understanding plant responses to drought: How important is woody tissue photosynthesis? Acta Horticulturae, 991, 149–155. https://doi.org/10.17660/ ActaHortic.2013.991.18
- Bojesen Jensen, J. (2016). An investigation into the suitability of Paulownia as an agroforestry species for UK & NW european farming systems [Master of Science Thesis, Scotland's Rural College]. https://doi.org/10.13140/RG.2.2.31955.78882
- Brukental, H., Doron-Faigenboim, A., Bar-Ya'akov, I., Harel-Beja, R., Attia, Z., Azoulay-Shemer, T., & Holland, D. (2021). Revealing the genetic components responsible for the unique photosynthetic stem capability of the wild almond *Prunus arabica* (Olivier) Meikle. *Frontiers in Plant Science*, 12, 779970. https://doi.org/10.3389/fpls.2021. 779970
- Cao, Y., Sun, G., Zhai, X., Xu, P., Ma, L., Deng, M., Zhao, Z., Yang, H., Dong, Y., Shang, Z., Lv, Y., Yan, L., Liu, H., Cao, X., Li, B., Wang, Z., Zhao, X., Yu, H., Wang, F., ... Fan, G. (2021). Genomic insights into the fast growth of *Paulownias* and the formation of *Paulownia* witches' broom. *Molecular Plant*, 14, 1668–1682. https://doi.org/10.1016/j.molp.2021.06.021
- Cenciareli, L. C., Justi, M. S., Ferreira-Silva, S. L., De Almeida, L. F. R., Naidoo, S. & Lima Neto, M. C. (2025). Physiological and biochemical changes associated with the induction of facultative CAM in *Pereskia aculeata* under drought stress and recovery. *Plant Physiology and Biochemistry*, 222, 109681. https://doi.org/10.1016/j.plaphy.2025. 109681
- Cernusak, L. A., & Cheesman, A. W. (2015). The benefits of recycling: How photosynthetic bark can increase drought tolerance. *New Phytologist*, 208, 995–997. https://doi.org/10.1111/nph.13723
- Cernusak, L. A., & Hutley, L. B. (2011). Stable isotopes reveal the contribution of corticular photosynthesis to growth in branches of *Eucalyptus miniata*. *Plant Physiology*, 155, 515–523. https://doi.org/10.1104/pp. 110.163337
- Chen, C. (2003). A study on the mixed effect of the mixed *Paulownia fortu*nei-Phyllostachys heterocycla plantation. *Journal of Southwest Forestry University*, 23, 31–33.
- Chen, X., Zhao, P., Zhao, X., Wang, Q., Ouyang, L., Larjavaara, M., Zhu, L., & Ni, G. (2021). Involvement of stem corticular photosynthesis in hydraulic maintenance of eucalyptus trees and its effect on leaf gas

- exchange. Environmental and Experimental Botany, 186, 104451. https://doi.org/10.1016/j.envexpbot.2021.104451
- Chen, Z., Yao, C., Hu, H., & Liang, Z. (2000). The origin phylogeny and distribution of *Paulownia*. Journal of Wuhan Botanical Research, 18, 325–328.
- Chinnusamy, V., Jagendorf, A., & Zhu, J. (2005). Understanding and improving salt tolerance in plants. Crop Science, 45, 437–448. https:// doi.org/10.2135/cropsci2005.0437
- Cushman, J. C., & Borland, A. M. (2002). Induction of crassulacean acid metabolism by water limitation. *Plant, Cell & Environment*, *25*, 295–310. https://doi.org/10.1046/j.0016-8025.2001.00760.x
- De Mattos, E. M., Binkley, D., Campoe, O. C., Alvares, C. A., & Stape, J. L. (2020). Variation in canopy structure, leaf area, light interception and light use efficiency among eucalyptus clones. Forest Ecology and Management, 463, 118038. https://doi.org/10.1016/j.foreco.2020.118038
- De Roo, L., Salomón, R. L., & Steppe, K. (2020). Woody tissue photosynthesis reduces stem CO₂ efflux by half and remains unaffected by drought stress in young *Populus tremula* trees. *Plant, Cell & Environment*, 43, 981–991. https://doi.org/10.1111/pce.13711
- Domínguez, E., Romaní, A., Domingues, L., & Garrote, G. (2017). Evaluation of strategies for second generation bioethanol production from fast growing biomass *Paulownia* within a biorefinery scheme. *Applied Energy*, 187, 777–789. https://doi.org/10.1016/j.apenergy.2016. 11.114
- Doumett, S., Lamperi, L., Checchini, L., Azzarello, E., Mugnai, S., Mancuso, S., Petruzzelli, G., & Del Bubba, M. (2008). Heavy metal distribution between contaminated soil and *Paulownia tomentosa*, in a pilot-scale assisted phytoremediation study: Influence of different complexing agents. *Chemosphere*, 72, 1481–1490. https://doi.org/10.1016/j.chemosphere.2008.04.083
- England, J. R., & Attiwill, P. M. (2006). Changes in leaf morphology and anatomy with tree age and height in the broadleaved evergreen species, *Eucalyptus regnans* F. Muell. *Trees*, 20, 79. https://doi.org/10.1007/s00468-005-0015-5
- Fan, G., Yang, Z., Cao, Y., Liu, F., & Jia, F. (2006). Autitetraploid induction of *Paulownia elongata* with colchione. *Journal of Nuclear Agricultural Sciences*, 20, 473–476.
- Ghazzawy, H. S., Bakr, A., Mansour, A. T., & Ashour, M. (2024). *Paulownia* trees as a sustainable solution for CO₂ mitigation: Assessing progress toward 2050 climate goals. *Frontiers in Environmental Science*, 12, 1307840. https://doi.org/10.3389/fenvs.2024.1307840
- Gleason, S. M., Westoby, M., Jansen, S., Choat, B., Hacke, U. G., Pratt, R. B., Bhaskar, R., Brodribb, T. J., Bucci, S. J., Cao, K., Cochard, H., Delzon, S., Domec, J., Fan, Z., Feild, T. S., Jacobsen, A. L., Johnson, D. M., Lens, F., Maherali, H., ... Zanne, A. E. (2016). Weak tradeoff between xylem safety and xylem-specific hydraulic efficiency across the world's woody plant species. *New Phytologist*, 209, 123– 136. https://doi.org/10.1111/nph.13646
- Gong, T. (1976). Studies on Chinese *Paulownia SIEB*. ET ZUCC. Acta Phytotaxon. *Sinica*, 14, 37–50.
- Hacke, U. G., Sperry, J. S., Wheeler, J. K., & Castro, L. (2006). Scaling of angiosperm xylem structure with safety and efficiency. *Tree Physiology*, 26, 689–701. https://doi.org/10.1093/treephys/26.6.689
- Henry, R. J., Furtado, A., & Rangan, P. (2020). Pathways of photosynthesis in non-leaf tissues. *Biology*, 9, 438. https://doi.org/10.3390/ biology9120438
- Hibberd, J. M., & Quick, W. P. (2002). Characteristics of C₄ photosynthesis in stems and petioles of C₃ flowering plants. *Nature*, 415, 451–454. https://doi.org/10.1038/415451a
- Hiratsuka, S., Suzuki, M., Nishimura, H., & Nada, K. (2015). Fruit photosynthesis in *Satsuma mandarin*. *Plant Science*, 241, 65–69. https://doi.org/10.1016/j.plantsci.2015.09.026
- Holtum, J. A., Hancock, L. P., Edwards, E. J., Crisp, M. D., Crayn, D. M., Sage, R., & Winter, K. (2016). Australia lacks stem succulents but is it depauperate in plants with crassulacean acid metabolism (CAM)?

- Current Opinion in Plant Biology, 31, 109-117. https://doi.org/10.1016/j.pbi.2016.03.018
- Hu, S. Y. (1959). A monograph of the genus Paulownia. Quarterly Journal of the Taiwan Museum. 12. 1–54.
- Icka, P., Damo, R., & Icka, E. (2016). Paulownia tomentosa, a fast growing timber. Annals of "Valahia" University of Targoviste - Agriculture, 10, 14–19. https://doi.org/10.1515/agr-2016-0003
- Jakubowski, M. (2022). Cultivation potential and uses of *Paulownia* wood: A review. Forests, 13, 668. https://doi.org/10.3390/f13050668
- Jiang, J. (1990). Cultivation of Paulownia. China Forestry Publishing House.
 Kanahama, T., & Sato, M. (2023). Plant strategies for greatest height:
 Tapering or hollowing. Scientific Reports, 13, 18158. https://doi.org/10.1038/s41598-023-45468-7
- Kocurek, M., Kornas, A., Wierzchnicki, R., Lüttge, U., & Miszalski, Z. (2020). Importance of stem photosynthesis in plant carbon allocation of *Clusia minor*. Trees, 34, 1009–1020. https://doi.org/10.1007/s00468-020-01977-w
- Kohyama, T. (1987). Significance of architecture and allometry in saplings. Functional Ecology, 1, 399. https://doi.org/10.2307/2389797
- Lawson, T., & Milliken, A. L. (2023). Photosynthesis Beyond the leaf. New Phytologist, 238, 55–61. https://doi.org/10.1111/nph.18671
- Lehmeier, C., Pajor, R., Lundgren, M. R., Mathers, A., Sloan, J., Bauch, M., Mitchell, A., Bellasio, C., Green, A., Bouyer, D., & Schnittger, A. (2017). Cell density and airspace patterning in the leaf can be manipulated to increase leaf photosynthetic capacity. *Plant Journal*, 92, 981–994. https://doi.org/10.1111/tpj.13727
- Li, F., Meng, P., Fu, D., & Wang, B. (2008). Light distribution, photosynthetic rate and yield in a *Paulownia*-wheat intercropping system in. *China*, 74, 163–172. https://doi.org/10.1007/s10457-008-9122-9
- Li, F., Qiao, J., Wang, B., & Li, R. (2013). Atlas of Paulownia germplasm resources in China. China Forestry Publishing House.
- Li, Z., Li, F., Wang, B., Zhou, D., Wen, R., & Zhang, C. (2012). Study on optimum management density and crop age of plywood-oriented *P. Elongata* plantation. *Forest Research*, *9*, 227–233.
- Liu, H., Ye, Q., Gleason, S. M., He, P., & Yin, D. (2021). Weak tradeoff between xylem hydraulic efficiency and safety: Climatic seasonality matters. New Phytologist, 229, 1440–1452. https://doi.org/10.1111/ nph.16940
- Liu, J., Gu, L., Yu, Y., Huang, P., Wu, Z., Zhang, Q., Qian, Y., Wan, X., & Sun, Z. (2019). Corticular photosynthesis drives bark water uptake to refill embolized vessels in dehydrated branches of Salix matsudana. Plant, Cell & Environment, 42, 2584–2596. https://doi.org/10.1111/pce.13578
- Lundgren, M. R. (2020). C₂ photosynthesis: A promising route towards crop improvement? New Phytologist, 228, 1734–1740. https://doi. org/10.1111/nph.16494
- Maherali, H., Pockman, W. T., & Jackson, R. B. (2004). Adaptive variation in the vulnerability of woody plants to xylem cavitation. *Ecology*, 85, 2184–2199. https://doi.org/10.1890/02-0538
- Marsal, F., Thevathasan, N. V., Guillot, S., Mann, J., Gordon, A. M., Thimmanagari, M., Deen, W., Silim, S., Soolanayakanahally, R., & Sidders, D. (2016). Biomass yield assessment of five potential energy crops grown in southern Ontario, Canada. Agroforestry Systems, 90, 773–783. https://doi.org/10.1007/s10457-016-9893-3
- Medeiros, J. S., Tomeo, N. J., Hewins, C. R., & Rosenthal, D. M. (2016).
 Fast-growing Acer rubrum differs from slow-growing Quercus alba in leaf, xylem and hydraulic trait coordination responses to simulated acid rain. Tree Physiology, 36, 1032–1044. https://doi.org/10.1093/treephys/tpw045
- Milla, R., & Reich, P. B. (2007). The scaling of leaf area and mass: The cost of light interception increases with leaf size. *Proceedings of the Royal Society B: Biological Sciences*, 274, 2109–2115. https://doi.org/10.1098/rspb.2007.0417
- Millar, A. H., Whelan, J., Soole, K. L., & Day, D. A. (2011). Organization and regulation of mitochondrial respiration in plants. *Annual Review of Plant*

- Biology, 62, 79–104. https://doi.org/10.1146/annurev-arplant-042110-103857
- Mok, D., Leung, A., Searles, P., Sage, T. L., & Sage, R. F. (2023). CAM photosynthesis in *Bulnesia retama* (Zygophyllaceae), a non-succulent desert shrub from South America. *Annals of Botany*, 132, 655–670. https://doi.org/10.1093/aob/mcad114
- Natale, S., Tomasella, M., Gargiulo, S., Petruzzellis, F., Tromba, G., Boccato, E., Casolo, V., & Nardini, A. (2023). Stem photosynthesis contributes to non-structural carbohydrate pool and modulates xylem vulnerability to embolism in *Fraxinus ornus* L. *Environmental and Experimental Botany*, 210, 105315. https://doi.org/10.1016/j.envexpbot.2023.105315
- Negruşier, C., Buzan, L.-R., Păcurar, I., Sîngeorzan, S. M., Ceuca, V., Colişar, A., Andreica, I., Rózsa, S., & Borsai, O. (2024). Economic sustainability assessment of *Paulownia* farms in a dual production system—Case studies in temperate climates. *Sustainability*, 17, 21. https://doi.org/10.3390/su17010021
- Ni, S., Zhu, Z., & Fang, Y. (1990). Studies on the ecological and economic benefit of tea plantation inercropped by *Paulownia. Scientia Silvae Sinica*, 26, 561–566.
- Owfi, R. E. (2017). Ecophysiological study of Paulownia tomentosa. International Journal of Current Research, 9, 63582–63591.
- Paulus, J. K., Schlieper, D., & Groth, G. (2013). Greater efficiency of photosynthetic carbon fixation due to single amino-acid substitution. *Nature Communications*, 4, 1518. https://doi.org/10.1038/ncomms2504
- Pearcy, R. W., Tumosa, N., & Williams, K. (1987). Relationships between growth, photosynthesis and competitive interactions for a C₃ and a C₄ plant. *Oecologia*, 48, 371–376. https://doi.org/10.1007/BF00346497
- Pongpattananurak, N., Chowtiwuttakorn, K., Leksungnoen, N., Phumsathan, S., Sonjaroon, W., Ladpala, P., Rungwattana, K., Anantaprayoon, N., & Kraichak, E. (2025). Understanding growth strategies from functional and photosynthetic traits of tree seedlings in southeast asian seasonally dry evergreen forest. *Biotropica*, *57*, e13394. https://doi.org/10.1111/btp.13394
- Prendin, A. L., Mayr, S., Beikircher, B., Von Arx, G., & Petit, G. (2018).
 Xylem anatomical adjustments prioritize hydraulic efficiency over safety as Norway spruce trees grow taller. *Tree Physiology*, 38, 1088–1097. https://doi.org/10.1093/treephys/tpy065
- Reich, P. B., Ellsworth, D. S., & Walters, M. B. (1998). Leaf structure (specific leaf area) modulates photosynthesis-nitrogen relations: Evidence from within and across species and functional groups. Functional Ecology, 12, 948-958. https://doi.org/10.1046/j.1365-2435.1998.00274.x
- Resco De Dios, V., Chowdhury, F. I., Granda, E., Yao, Y., & Tissue, D. T. (2019). Assessing the potential functions of nocturnal stomatal conductance in C₃ and C₄ plants. New Phytologist, 223, 1696–1706. https://doi.org/10.1111/nph.15881
- Rodríguez-Seoane, P., Díaz-Reinoso, B., Moure, A., & Domínguez, H. (2020). Potential of *Paulownia* sp. for biorefinery. *Industrial Crops and Products*, 155, 112739. https://doi.org/10.1016/j.indcrop.2020.112739
- Ruiz-Robleto, J., & Villar, R. (2005). Relative growth rate and biomass allocation in ten woody species with different leaf longevity using phylogenetic independent contrasts (PICs). *Plant Biology*, 7, 484–494. https://doi.org/10.1055/s-2005-865905
- Sage, R. F., Edwards, E. J., Heyduk, K., & Cushman, J. C. (2023). Crassulacean acid metabolism (CAM) at the crossroads: A special issue to honour 50 years of CAM research by Klaus Winter. *Annals of Botany*, 132, 553–561. https://doi.org/10.1093/aob/mcad160
- Sakoda, K., Yamori, W., Shimada, T., Sugano, S. S., Hara-Nishimura, I., & Tanaka, Y. (2020). Higher stomatal density improves photosynthetic induction and biomass production in Arabidopsis under fluctuating light. Frontiers in Plant Science, 11, 589603. https://doi.org/10.3389/ fpls.2020.589603
- Santiago, L. S., Goldstein, G., Meinzer, F. C., Fisher, J. B., Machado, K., Woodruff, D., & Jones, T. (2004). Leaf photosynthetic traits scale with

- hydraulic conductivity and wood density in panamanian forest canopy trees. *Oecologia*, 140, 543–550. https://doi.org/10.1007/s00442-004-1624-1
- Saranpää, P. (2003). Wood quality and its biological basis. Blackwell Publishing & CRC Press.
- Saveyn, A., Steppe, K., Ubierna, N., & Dawson, T. E. (2010). Woody tissue photosynthesis and its contribution to trunk growth and bud development in young plants. *Plant, Cell & Environment*, 33, 1949–1958. https://doi.org/10.1111/j.1365-3040.2010.02197.x
- Simkin, A. J., Faralli, M., Ramamoorthy, S., & Lawson, T. (2020). Photosynthesis in non-foliar tissues: Implications for yield. *The Plant Journal*, 101, 1001–1015. https://doi.org/10.1111/tpj.14633
- Škovranová, G., Molčanová, L., Jug, B., Jug, D., Klančnik, A., Smole-Možina, S., Treml, J., Tušek Žnidarič, M., & Sychrová, A. (2024). Perspectives on antimicrobial properties of *Paulownia tomentosa* steud. Fruit products in the control of staphylococcus aureus infections. *Journal of Ethnopharmacology*, 321, 117461. https://doi.org/10.1016/j.jep. 2023.117461
- Sławińska, N., Zając, J., & Olas, B. (2023). Paulownia organs as interesting new sources of bioactive compounds. International Journal of Molecular Sciences, 24, 1676. https://doi.org/10.3390/ijms24021676
- Sperry, J. S. (2003). Evolution of water transport and xylem structure. International Journal of Plant Sciences, 164, S115-S127. https://doi. org/10.1086/368398
- Sperry, J. S., Meinzer, F. C., & McCULLOH, K. A. (2008). Safety and efficiency conflicts in hydraulic architecture: Scaling from tissues to trees. Plant, Cell & Environment, 31, 632–645. https://doi.org/10.1111/j. 1365-3040.2007.01765.x
- Steppe, K., Niinemets, Ü., & Teskey, R. O. (2011). Tree size- and age-related changes in leaf physiology and their influence on carbon gain. In F. C. Meinzer, B. Lachenbruch, & T. E. Dawson (Eds.), Size- and age-related changes in tree structure and function (pp. 235–253). Springer. https://doi.org/10.1007/978-94-007-1242-3_9
- Su, J., Cheng, S., & Sun, Q. (1993). The anatomic comparison of leaf structure in *Paulownia* varieties with white flowers. *Journal of Henan Agricultural Sciences*, 27, 5.
- Sui, X., Shan, N., Hu, L., Zhang, C., Yu, C., Ren, H., Turgeon, R., & Zhang, Z. (2017). The complex character of photosynthesis in cucumber fruit. *Journal of Experimental Botany*, 68, 1625–1637. https://doi.org/10.1093/jxb/erx034
- Sun, W., Ma, N., Huang, H., Wei, J., Ma, S., Liu, H., Zhang, S., Zhang, Z., Sui, X., & Li, X. (2021). Photosynthetic contribution and characteristics of cucumber stems and petioles. *BMC Plant Biology*, 21, 454. https://doi.org/10.1186/s12870-021-03233-w
- Świechowski, K., Stegenta-Dąbrowska, S., Liszewski, M., Bąbelewski, P., Koziel, J. A., & Białowiec, A. (2019). Oxytree pruned biomass torrefaction: Process kinetics. *Materials*, 12, 3334. https://doi.org/10.3390/ ma12203334
- Tanaka, Y., Sugano, S. S., Shimada, T., & Hara-Nishimura, I. (2013). Enhancement of leaf photosynthetic capacity through increased stomatal density in Arabidopsis. *The New Phytologist*, 198, 757–764. https://doi.org/10.1111/nph.12186
- Testa, R., Schifani, G., Rizzo, G., & Migliore, G. (2022). Assessing the economic profitability of *paulownia* as a biomass crop in southern Mediterranean area. *Journal of Cleaner Production*, 336, 130426. https://doi.org/10.1016/j.jclepro.2022.130426
- Trainin, T., Brukental, H., Shapira, O., Attia, Z., Tiwari, V., Hatib, K., Gal, S., Zemach, H., Belausov, E., Charuvi, D., Holland, D., & Azoulay-Shemer, T. (2022). Physiological characterization of the wild almond *Prunus arabica* stem photosynthetic capability. *Frontiers in Plant Science*, 13, 941504. https://doi.org/10.3389/fpls.2022.941504
- Valverdi, N. A., Acosta, C., Dauber, G. R., Goldsmith, G. R., & Ávila-Lovera, E. (2023). A comparison of methods for excluding light from stems to evaluate stem photosynthesis. *Applications in Plant Sciences*, 11, e11542. https://doi.org/10.1002/aps3.11542

- Van Der Sande, M. T., Poorter, L., Schnitzer, S. A., Engelbrecht, B. M. J., & Markesteijn, L. (2019). The hydraulic efficiency-safety trade-off differs between lianas and trees. *Ecology*, 100, e02666. https://doi.org/10. 1002/ecv.2666
- Wang, B., Qiao, J., Yang, Z., & Li, P. (2020). Paulownia, in: Silvicultural techniques for major tree species in China. China Forestry Publishing House.
- Wang, J., Renninger, H. J., & Ma, Q. (2024). Labeled temperate hardwood tree stomatal image datasets from seven taxa of *Populus* and 17 hardwood species. *Scientific Data*, 11, 1. https://doi.org/10.1038/ s41597-023-02657-3
- Wang, J., Wang, H., Deng, T., Liu, Z., & Wang, X. (2019). Time-coursed transcriptome analysis identifies key expressional regulation in growth cessation and dormancy induced by short days in *paulownia*. *Scientific Reports*, 9, 16602. https://doi.org/10.1038/s41598-019-53283-2
- Wang, J., Zhang, C. B., & Jin, Z. X. (2009). The distribution and phytoavailability of heavy metal fractions in rhizosphere soils of *Paulowniu fortunei* (seem) hems near a Pb/Zn smelter in Guangdong, PR China. *Geoderma*, 148, 299–306. https://doi.org/10.1016/j.geoderma.2008.
- Wang, N., Li, F., & Ye, J. (2015). Effects of light intensity on photosynthetic physiology and chlorophyll fluorescence characteristics of hybrid Paulownia. Chinese Journal of Ecology, 34, 3118–3124.
- Wang, S., Zhao, D., & Xiong, X. (1993). Study on the diurnal growth rhythm of *Paulownia* clones. *Scientia Silvae Sinicae*, 29, 207–212.
- Winter, K., & Holtum, J. A. M. (2024). Shifting photosynthesis between the fast and slow lane: Facultative CAM and water-deficit stress. *Journal* of *Plant Physiology*, 294, 154185. https://doi.org/10.1016/j.jplph. 2024.154185
- Woods, V. B. (2008). Paulownia as a novel biomass crop for Northern Ireland?: A review of current knowledge, occasional publication. Agri-Food and Biosciences Institute, Global Research Unit.
- Woźniak, M., Gałązka, A., Grządziel, J., & Frąc, M. (2018). Microbial diversity of *Paulownia* spp. leaves A new source of green manure. *BioResources*, 13, 4807–4819. https://doi.org/10.15376/biores.13.3.4807-4819
- Xiao, Y., Tan, J., Yu, Y., Dong, J., Cao, L., Yao, L., Zhang, Y., & Yan, Z. (2024). Phytotoxic effects and potential allelochemicals from water extracts of *Paulownia tomentosa* flower litter. Agronomy, 14, 367. https://doi.org/10.3390/agronomy14020367
- Xiong, J., & Chen, Z. (1992). A study on numerical taxonomy of the genus *Paulownia*. *Bulletin of Botanical Research*, 12, 185–188.
- Xu, F., Wei, T., & Liu, A. (2000). Studies on physical characters of soil in mixed forest of Chinese fir and *Paulownia*. Journal of Zhejiang Forestry College, 17, 285–288.
- Yang, H., Li, B., Fan, G., Zhai, X., Song, W., & Tang, X. (2024). A comprehensive study on the bioactive flavonoids in paulownia flowers: Uncovering metabolic pathways, effective components, and regulatory genes for industrial applications. *Industrial Crops and Products*, 222, 119786. https://doi.org/10.1016/j.indcrop.2024.119786
- Young, S. N., & Lundgren, M. (2023). C₄ photosynthesis in *Paulownia*? A case of inaccurate citations. *Plants, People, Planet*, 5, 292–303. https://doi.org/10.1002/ppp3.10343
- Young, S. N. R., Sack, L., Sporck-Koehler, M. J., & Lundgren, M. R. (2020). Why is C₄ photosynthesis so rare in trees? *Journal of Experimental Botany*, 71, 4629–4638. https://doi.org/10.1093/jxb/eraa234
- Zeng, L., Shannon, M. C., & Grieve, C. M. (2002). Evaluation of salt tolerance in rice genotypes by multiple agronomic parameters. *Euphytica*, 127, 234–245. https://doi.org/10.1023/A:1020262932277
- Zhao, Y., Feng, Y., Sun, P., Wang, B., Qiao, J., Duan, W., Zhang, J., Zhou, H., & Yang, C. (2021). Responses of phytohormones, carbon and nitrogen status to the trunk-extension pruning in three-year-old *Paulownia* plantation. *Journal of Animal and Plant Sciences*, 31, 450–458. https://doi.org/10.36899/JAPS.2021.2.0234
- Zhao, Y., Feng, Y., Yang, C., Qiao, J., Zhou, H., Li, F., & Wang, B. (2022). Genetic parameters and genotype-environment interactions in

- Paulownia clonal tests intemperate and subtropical regions of China. Forests, 13, 2113. https://doi.org/10.3390/f13122113
- Zhao, Y., Qiao, J., Feng, Y., Wang, B., Duan, W., Zhou, H., Wang, W., Cui, L., & Yang, C. (2019). The optimal size of a *Paulownia*-crop agroforestry system for maximal economic return in North China plain. *Agricultural and Forest Meteorology*, 269–270, 1–9. https://doi.org/10.1016/j.agrformet.2019.01.043
- Zheng, M., Wei, Y., & Gu, Y. (2009). Analysis of volatile compounds from the flower of *P. tomentosa* by SPME-GC/MS. *Journal of Chinese Mass Spectrometry Society*, 30, 88–93.
- Zhou, Y., Song, S., & Fan, J. (1996). The analysis of high growing curve in seedling period of *Paulownia*. *Shananxi Forestry of Science and Technology*, 1-4, 11.

- Zhu, Z. (1981). A discussion on the distribution centre and flora of *Paulownia* genus. *Scientia Silvae Sinica*, 17, 271–280.
- Zhu, Z., Chao, C., Lu, X., & Xiong, D. (1986). *Paulownia in China: Cultivation and utilization*. Asian Network of Biological Sciences, Singapore and International Developmental Research Center, Canada.

How to cite this article: Zhao, Y., & Lundgren, M. R. (2025). Potential drivers of fast growth in *Paulownia. Plants, People, Planet*, 1–14. https://doi.org/10.1002/ppp3.70133