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The contact network structure resulting from social interaction between
people is a key aspect of epidemic dynamics and control. While many
studies have measured first‑order network characteristics such as degree,
measuring higher order properties of these networks, such as clustering,
remains a challenge. Here, we present the results of a study of first‑ and
second‑order network structure from a representative cohort of individuals
in Guangdong province, China. The number of reported daily contacts
is similar across individuals aged 2 to 55 years, except for young adults
(ages 16–25) who have relatively fewer daily contacts, while the number of
contacts declines with age above 55 years old. The association between age
and contact rate persisted after adjusting for mediating factors. Individuals
living in higher population density areas made more contacts outside the
home than individuals in low‑density areas. Contacts of young children
and older adults were more locally clustered than middle‑aged adults.
Individuals living in high population density areas had lower levels of local
clustering compared with individuals from low‑density areas. Adjustment
for characteristics of the contacts themselves reduces the variation in local
clustering between participants of different ages; however, the strong
association with population density remains.

1. Introduction
Recommendations for non‑pharmaceutical interventions, characterization of
community groups at high risk for super‑spreading events and mathematical
modelling of disease spread all rely on underlying assumptions about social
contact [1,2]. Contact networks, where individuals are depicted as nodes and
their contacts as links between nodes, are a key tool for characterizing patterns
of interaction and their impact on epidemic dynamics [3]. Because respira‑
tory pathogens, such as influenza or SARS‑CoV‑2, are spread predominantly
through close interpersonal contacts [4], measuring the networks formed by
such interactions is essential for understanding and predicting the spread of
these diseases.

Fully enumerated contact networks, where all links that could potentially
result in pathogen transmission between individuals are known, provide the
most insight into overall network structure. Such detailed contact data, how‑
ever, are all but impossible to collect for most infectious diseases and settings
and are usually limited to smaller, well‑defined communities or limited defini‑
tions of contact. In the case of small, closed populations, the use of wearable

©2025TheAuthors. Publishedby theRoyal Society under the termsof the Creative CommonsAttribution License
http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original author and
source are credited.

https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1098/rsif.2025.0232&domain=pdf&date_stamp=
https://doi.org/10.1098/rsif.2025.0232
mailto:cpsmit@unc.edu
https://doi.org/10.6084/m9.figshare.c.8096965
https://orcid.org/
http://orcid.org/0000-0003-1069-9460
http://orcid.org/0000-0002-9697-0962
http://orcid.org/0000-0002-2804-5433
http://creativecommons.org/licenses/by/4.0/


2

royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

22:
20250232

..................................................................................................................

proximity sensors has allowed for a detailed description of face‑to‑face contact patterns in settings such as schools [5] and hospi‑
tals [6]. Focusing on a narrow subset of contacts, such as sexual encounters, also facilitates a more complete characterization of
contact networks. For example, it was possible to enumerate a nearly complete network of sexual contacts in the community of
Likoma Island, Malawi, enabling researchers to understand variation in HIV prevalence throughout the network [7].

Characterizing the distribution of contacts in the general population relevant to respiratory pathogen transmission is difficult
given the number and heterogeneity of such contacts. The definition of a contact relevant for transmission may even vary between
respiratory pathogens (e.g. influenza and measles), depending on the specifics of their transmission dynamics [4,8]. Despite these
uncertainties, efforts have been made to capture critical properties of these networks for face‑to‑face interactions, the contacts that
are probably most important to respiratory pathogen transmission. Many studies have used surveys of contact behaviour to col‑
lect information on the number (degree) and nature of face‑to‑face interactions individuals have over some period of time [9–12].
This provides information on ‘first‑order’ network properties, such as the degree distribution of individual nodes in the network
(i.e. the distribution of the number of direct contacts). However, this approach provides limited information on the structure of
the overall network.

To understand how pathogens might spread among populations, it is often useful to characterize the interconnectedness of
an individual’s contacts [13]. ‘Second‑order’ network properties, which encompass both the interconnectedness of an individ‑
ual’s first‑order contacts and the broader structure of the network in which that individual resides, have been shown to have
implications for pathogen spread. Clustering (also termed transitivity), in particular, is a second‑order network property that is
an important driver of epidemic dynamics. In general, higher levels of clustering tend to decrease both the overall speed of an
epidemic and the probability of a large final outbreak size [14–16], although this may vary if other network properties differ,
particularly the variance in the degree distribution [14,15,17,18]. Simulation studies have shown that when clustering and de‑
gree heterogeneity increase simultaneously, epidemics can take off more quickly [14,15]. Additionally, network clustering has
important consequences for pathogen evolution and infection control efforts [19,20].

A particularly important driver of heterogeneity in contact network structure is age. Prior work has shown that there is consid‑
erable variability in both the number and type of contacts made by individuals of different ages [11,21], leading some age groups
to have a disproportionate impact on epidemic dynamics. For example, school‑aged children tend to have higher numbers of
daily contacts than adults [9,11,12], and schools have been repeatedly shown to play an important role in driving epidemics [22].
Additionally, contacts tend to be assortative by age, with individuals more likely to interact with others in the same age group
[11]. The degree to which contacts are assortative has also been shown to vary with age, with the youngest and oldest age groups
having themost pronounced assortativemixing rates [23]. The relationship between age and contact network structure is probably
mediated by factors such as occupational status, household structure and community type.

A more detailed understanding of local contact network structure is essential for a more accurate modelling of transmission
dynamics and better characterization of groups at heightened risk for pathogen introduction and spread. Here we use contact
survey data from the Fluscape study to examine variations in local contact networks over age and location in southern China, and
what factors mediate these relationships.

2. Methods and material

2.1. Study population
The Fluscape cohort included 40 communities sampled along a spatial transect extending fromGuangzhou city centre, with target
enrolment of 20 households per community. In cases where households withdrew from the study, replacements were introduced
in subsequent visits. Efforts were made by study staff to enrol all residents aged 2 years or older within each household. Overall,
3454 unique individuals from 1251 households participated in the Fluscape study across visits 1 to 5. The present analysis focuses
on the subset of 3184 participants who participated in study visits 2–5 and for whom complete contact and participant surveys
are available. For more information on the Fluscape study, refer to Jiang et al. [24].

The Fluscape study was approved by institutional review boards of Johns Hopkins Bloomberg School of Public Health,
University of Florida, University of Liverpool, University of Hong Kong, Guangzhou No. 12 Hospital and Shantou University.

2.2. Data collection
Five study visits were completed from 2009 to 2017, with visits spaced one to two years apart. At each visit, three survey in‑
struments were administered via face‑to‑face interviews (the household, participant and contact surveys). The household survey
collected information on household composition, animal ownership and travel history of household members. The participant
survey collected information on individual sociodemographic characteristics and health status. The contact survey asked partici‑
pants to report about all social interactions from the prior day with whom they had a face‑to‑face conversation or which involved
touch.

Contacts could be reported individually or as groups (e.g. everyone a cafeteria worker serves in a day). Each entry in the contact
survey, whether an individual or a group, is defined as a single ‘contact event’. Each contact event has an associated group size
(one for individual contacts), and the sum of these group sizes gives each participant’s total number of reported contacts. Indi‑
viduals included in multiple contact events were flagged as repeats by participants on the contact survey and were only counted
once when calculating the total number of reported contacts. For each contact event, the participant was asked its location, setting
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(home, work, school, social or other), duration and whether it involved touch. Participants were also asked the frequency with
which they contacted those involved in the event and their age(s).

The contact survey also attempted to measure the connectivity between contacts. For each participant, two contact events were
randomly selected from all reported contacts (the ‘randomly selected primary contacts’). The participant was asked how likely it
was that each randomly selected primary contact also interacted with each of their other reported contacts (the ‘secondary con‑
tact’) during the week prior, with participants able to respond ‘yes’, ‘probably yes’, ‘probably no’ or ‘no’. In themain analysis here,
responseswere dichotomized, with ‘yes’ and ‘probably yes’ grouped together as an affirmative response. Sensitivity analyseswere
conducted to assess the impact of different certainty cut‑offs for an affirmative response (electronic supplementarymaterial, tables
S7 and S8).

Participants aged 16–75 were categorized into 10 year age groups. Children aged 2–15 were categorized together due to the
low number of participants under age 5. Likewise, participants aged 76 and older were grouped together. Occupation status was
categorized as ‘employed’, ‘student’ or ‘other’, with ‘other’ including children not in school and participants who reported being
unemployed or retired. Population density at each household location was obtained from LandScan [25], and defined as the av‑
erage of the estimated density of the square‑kilometre tile that included the household and the eight bordering tiles in the year of
the study visit. When including population density in hierarchical models, the population density at the first analysed study visit
was used as a household‑level covariate.

Respondents were asked to categorize contacts into one (or more in the case of groups) of five age groups: 0–4, 5–19, 20–39,
40–64 and 65 and over. Starting at the third visit, participants could also give a guess of the contact’s exact age. In the absence
of a response for the age categorization, the age guess was used to infer the age category. The setting in which reported contacts
were made was categorized as home, work, school, social or other. The social category included contacts reported as occurring in
a location where the participant went to eat or drink, play games or sport or to see someone. Contacts reported as occurring on
transportation or while shopping were classified as other. Respondents also reported the number of times per week they met a
reported contact (less than once per week, 1–3 times per week or 4+ times per week) and the duration of the contact event (less
than 10 min, 10–59 min or 60+ min), both of which are measures of contact intimacy. The total amount of time that a participant
spends with a contact each week quantifies where a contact falls on the intimacy spectrum and is calculated as contact frequency
multiplied by duration, with the values for each set to the midpoint of the category.

2.3. Statistical analysis
Uni‑ and multi‑variate hierarchical quasi‑Poisson regression models [26] were fitted to the number of reported contacts. All
models included random effects at location (village or neighbourhood), household, participant and observation levels, with the
observation‑level random effects capturing the overdispersion in the number of daily reported contacts (i.e. making this quasi‑
Poisson regression). The study visit was considered a fixed effect. Household, participant and observation‑level covariates were
considered in analyses.

Each combination of a participant, a randomly selected primary contact and a secondary contact forms a potential contact tri‑
angle. The contact triangle is ‘connected’ if the participant reports that contact probably occurred between the random primary
contact and the secondary contact in the prior week. Triangle connectedness is one measure of local clustering, or the degree to
which the people connected to an individual in a network are also connected to each other. Hierarchical logistic regression mod‑
els were fit to this data to estimate how contact‑, individual‑ and household‑level factors were associated with the probability of
triangle connection. All models included random effects at the location (village or neighbourhood), household and participant
levels. The study visit was considered a fixed effect.

Because both primary and secondary contacts could be groups, there are instances where a single potential contact triangle
could represent multiple possible underlying contact triangles involving individual members of the group(s). In instances where
two groups are selected, the number of underlying triangles can be very large (e.g. there would be 100 possible underlying trian‑
gles for two groups of 10). If the participant reports a connected contact triangle involving a group, the likelihood contribution
for this observation is the probability that at least one of the underlying contact triangles within this observation is connected.
Similarly, if the participant reports that such an observation is not connected, the likelihood contribution is the probability that
none of the underlying contact triangles are connected, see electronic supplementary material, Methods. Observations in the top
0.5% of the number of individual triangles embedded within a group observation were trimmed prior to the analysis due to the
undue influence these large sets of possible triangles could have on the likelihood. Further, in analyses which adjusted for contact
characteristics, the possible different nature of group contacts was accounted for by including an indicator of group status and
the number of possible underlying triangles as covariates.

Three nested models were fit to the data (electronic supplementary material, table S3). The ‘participant‑only model’ included
only characteristics of the study participant and their household. The ‘individual contact model’ included participant‑ and
household‑level covariates as well as the characteristics of each of the two contacts in the potential contact triangle. The ‘shared
contact model’ included all participant‑, household‑ and contact‑level covariates as well as indicators for the relationship between
the two contacts (e.g. whether both contacts occurred in the same setting). Models were compared using the Watanabe–Akaike
information criterion (WAIC).

All models were run in Stan [27] and are fit using four Markov chain Monte Carlo (MCMC) chains with 2000 iterations each,
with the first 1000 iterations discarded as warm‑up. Convergence was assessed using the Gelman–Rubin statistic [28] and visu‑
alization of the trace plots. We had high confidence that the last 1000 iterations gave a high effective sample size for all results
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Table 1. Number of unique participants and participant visits stratified by participant characteristics.

unique
participants

participant
visits

participant visits stratified by number of reported contacts

(n= 3184) (n= 7904) 1–5 (n= 1947) 6–10 (n= 2134) 11–15 (n= 1377) 16+ (n= 2446)

age

2–15 346 (11%) 684 (9%) 102 (5%) 198 (9%) 117 (8%) 267 (11%)

16–25 427 (13%) 733 (9%) 181 (9%) 207 (10%) 123 (9%) 222 (9%)

26–35 420 (13%) 953 (12%) 140 (7%) 251 (12%) 178 (13%) 384 (16%)

36–45 529 (17%) 1283 (16%) 234 (12%) 321 (15%) 239 (17%) 489 (20%)

46–55 566 (18%) 1605 (20%) 336 (17%) 418 (20%) 296 (21%) 555 (23%)

56–65 479 (15%) 1383 (17%) 401 (21%) 376 (18%) 250 (18%) 356 (15%)

66–75 258 (8%) 797 (10%) 300 (15%) 254 (12%) 120 (9%) 123 (5%)

75+ 145 (5%) 436 (6%) 231 (12%) 105 (5%) 52 (4%) 48 (2%)

unknown 14 (0%) 30 (0%) 22 (1%) 4 (0%) 2 (0%) 2 (0%)

sex

male 1628 (51%) 4039 (51%) 950 (49%) 1069 (50%) 717 (52%) 1098 (45%)

female 1541 (48%) 3834 (49%) 973 (50%) 1062 (50%) 658 (48%) 1346 (55%)

unknown 15 (0%) 31 (0%) 24 (1%) 3 (0%) 2 (0%) 2 (0%)

population per sq. km

≤100 198 (6%) 435 (6%) 133 (7%) 116 (5%) 76 (6%) 110 (4%)

101–500 1175 (37%) 2882 (36%) 735 (38%) 808 (38%) 490 (36%) 849 (35%)

501–5000 1329 (42%) 3379 (43%) 748 (38%) 914 (43%) 627 (46%) 1090 (45%)

5000+ 358 (11%) 1072 (14%) 300 (15%) 258 (12%) 161 (12%) 353 (14%)

unknown 124 (4%) 136 (2%) 31 (2%) 38 (2%) 23 (2%) 44 (2%)

occupation status

employed 1608 (51%) 4107 (52%) 745 (38%) 1009 (47%) 751 (55%) 1602 (65%)

student 425 (13%) 831 (11%) 154 (8%) 226 (11%) 132 (10%) 319 (13%)

unemployed or retired 1138 (36%) 2934 (37%) 1025 (53%) 895 (42%) 492 (36%) 522 (21%)

unknown 13 (0%) 32 (0%) 23 (1%) 4 (0%) 2 (0%) 3 (0%)

Number of unique participants and participant visits stratified by age, sex, population density and occupation status at first visit. Participant visits are further stratified
by the number of contacts reported at the visit. Column percentages may not sum to exactly 100% due to rounding error.

presented here, with the bulk and tail effective sample sizes for coefficients exceeding 200 in all models (electronic supplementary
material, table S9). Model estimates are the mean of the posterior sampling distribution. All other analysis was done in R v. 4.1.3.

3. Results
The Fluscape study was a longitudinal cohort conducted in Guangdong, a province of southern China, which spanned from 2009
to 2017 and involved five complete visits [24]. There were 3184 unique individuals who participated in visits 2–5 of follow‑up
(2nd visit: 2017; 3rd: 2025; 4th: 2043; 5th: 1819) with 924 individuals participating in all four visits. Participants were 51%male and
43% lived in lower population density areas (less than 500 people per square kilometre). At baseline, 51%were employed and 13%
were students, with the remainder being unemployed, retired, children not in school or of unknown occupation status (table 1).
The age distribution of participants is generally reflective of the age distribution of the local population, with the exception of the
youngest age groups, which are under‑represented [24].

Across all follow‑up visits, participants reported 39 386 contact events, 33% (12 969) of whichwere group contacts, representing
145 660 total contacts. Participants reported a median of 10 daily contacts in any given visit. The age distribution of reported daily
contacts roughly mirrors the age distribution of participants, with approximately two‑thirds of contacts in the 20–64 age range
(excluding group contacts with multiple age groups). The majority (57%) of contact events occurred in the home (electronic sup‑
plementary material, table S1), but the majority of contacts (81%) were extra‑household (table 2). Individuals aged 5–19 make the
majority (59%) of their contacts at school, while working‑age adults make the majority (56% for ages 20–39, 52% for ages 40–64) of
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Figure 1. Variation in reported daily contacts by participant characteristics. Top panel: distribution of the number of all reported contacts stratified by age group, gen-
der, household size, occupation status and population density. The box spans from the 25th to the 75th percentile, with the solid black line indicating the median. The
whiskers extend to the largest and smallest values no more than 1.5 times the interquartile range from the hinge. The orange point shows the mean. Outliers are not
shown. Bottom panel: the relative number of all reported contacts and 95% confidence intervals from unadjusted (red) and adjusted (blue) hierarchical quasi-Poisson
regression. The fully adjusted model includes age, gender, household size, occupation status and log10 population density.

their contacts in the workplace. Adults aged 65 and older make most of their contacts at home (31%) or in social (35%) and other
(25%) settings. Nineteen per cent of reported contacts involved touch. The majority of contacts (73%) were with individuals the
participant reported contacting four or more times per week. Likewise, most (51%) contacts were of long duration, lasting for an
hour or more.

The total number of individual contacts remains relatively steady through childhood and into middle age and then appears
to decline among older adults (figure 1). The median number of daily contacts ranged from 10 to 13 in age groups 55 and
younger, compared with 6 in adults over age 65. These trends hold when restricting to contacts made outside the home (electronic
supplementary material, figure S1).

After adjusting for other individual‑ and household‑level characteristics, there remains a clear association between age and the
total number of daily contacts (figure 1; electronic supplementary material, table S2). Compared with adults aged 36–45, children
under 16 have a similar number of contacts (relative rate (RR): 1.06, 95% CI: 0.89–1.25), while those aged 16–25 have a lower num‑
ber of contacts (RR: 0.84, 95% CI: 0.76–0.92). There are no significant differences from the reference group in daily contacts for
adults aged 26–35 (RR: 0.98, 95% CI: 0.89–1.07; figure 1; electronic supplementary material, table S2). Rates of daily contact begin
to decline after age 55, with those aged 56–65 having 14% fewer daily contacts (RR: 0.86, 95% CI: 0.79–0.94), those 66–75 having
24% fewer contacts (RR: 0.76, 95% CI: 0.69‑0.84) and those aged 76+ having 40% fewer contacts (RR: 0.60, 95% CI: 0.53–0.69).

Many factors included in the model, such as employment status and household size, are strongly associated with age and
probably mediate the relationship between age and the number of daily contacts; however, the age trend remains after adjust‑
ment (figure 1; electronic supplementary material, table S2). Employed individuals have the highest number of daily contacts,
especially outside the home. Compared with those who are employed, students make 27% fewer extra‑household contacts (RR:
0.73, 95% CI: 0.58–0.91), and unemployed or retired individuals make 51% fewer extra‑household contacts (RR: 0.49, 95% CI:
0.45–0.53; figure 1; electronic supplementary material, table S2). Looking across all contacts, those in larger households have more
contacts, and the number of daily contacts increases with population density (figure 1; electronic supplementary material, table
S2). The impact of population density is more pronounced for extra‑household contacts, where we see a significant increase in
contacts occurring outside the home with increasing population density (RR: 1.20 per 10‑fold increase in population density, 95%
CI: 1.07–1.33; electronic supplementary material, figure S1 and table S2). The distribution of the number of daily contacts does not
appear to differ significantly by gender.

Limiting to observations with complete covariate information and after trimming, there were 52 448 potential contact triangles
across all four follow‑up visits (2nd visit: 16 330; 3rd: 14 235; 4th: 12 018; 5th: 9865). Of these, 67% were connected (2nd visit: 66%;
3rd: 66%; 4th: 67%; 5th: 71%).

The odds of potential triangles being connected follow a U‑shaped curve by age, with the probability of triangles being con‑
nected ranging from 10 to 20% and hitting its lowest point among working adults aged 36–55 (figure 2). Those aged 2–15 have
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Table 2. Characteristics of reported contacts by age group.

age group

total
(n= 145 660)

2–4
(n= 152)

5–19
(n= 15 185)

20–39
(n= 38 098)

40–64
(n= 78 911)

65+
(n= 13 199)

unknown
(n= 115)

group size

1 26 417 (18%) 101 (66%) 4003 (26%) 8054 (21%) 10 780 (14%) 3445 (26%) 34 (30%)

2–5 25 652 (18%) 32 (21%) 2527 (17%) 5463 (14%) 13 555 (17%) 4042 (31%) 33 (29%)

6–10 23 838 (16%) 19 (13%) 2144 (14%) 6329 (17%) 12 881 (16%) 2417 (18%) 48 (42%)

11–20 15 559 (11%) 0 (0%) 1830 (12%) 4595 (12%) 7948 (10%) 1186 (9%) 0 (0%)

21+ 54 194 (37%) 0 (0%) 4681(31%) 13 657 (36%) 33 747 (43%) 2109 (16%) 0 (0%)

contact age

0–4 2732 (2%) 8 (5%) 196 (1%) 1119 (3%) 1208 (2%) 196 (1%) 5 (4%)

5–19 15 238 (10%) 24 (16%) 9515 (63%) 2060 (5%) 2911 (4%) 714 (5%) 14 (12%)

20–39 21 040 (14%) 58 (38%) 1953 (13%) 9539 (25%) 8146 (10%) 1309 (10%) 35 (30%)

40–64 29 488 (20%) 32 (21%) 1541 (10%) 4992 (13%) 19 238 (24%) 3638 (28%) 47 (41%)

65+ 5146 (4%) 8 (5%) 436 (3%) 694 (2%) 1665 (2%) 2342 (18%) 1 (1%)

multiple 70 918 (49%) 21 (14%) 1408 (9%) 19 530 (51%) 45 430 (58%) 4516 (34%) 13 (11%)

unknown 1098 (1%) 1 (1%) 136 (1%) 164 (0%) 313 (0%) 484 (4%) 0 (0%)

contact setting

home 27 753 (19%) 88 (58%) 3235 (21%) 7514 (20%) 12 825 (16%) 4047 (31%) 44 (38%)

work 63 756 (44%) 0 (0%) 447 (3%) 21 289 (56%) 40 993 (52%) 1008 (8%) 19 (17%)

school 9235 (6%) 18 (12%) 8970 (59%) 64 (0%) 27 (0%) 150 (1%) 6 (5%)

social 25 234 (17%) 39 (26%) 1625 (11%) 4958 (13%) 13 901 (18%) 4675 (35%) 36 (31%)

other 19 677 (14%) 7 (5%) 908 (6%) 4270 (11%) 11 163 (14%) 3319 (25%) 10 (9%)

unknown 5 (0%) 0 (0%) 0 (0%) 3 (0%) 2 (0%) 0 (0%) 0 (0%)

contact involves
touch?

no 117 614 (81%) 18 (12%) 7085 (47%) 28 729 (75%) 69 763 (88%) 11 929 (90%) 90 (78%)

yes 27 850 (19%) 133 (88%) 8065 (53%) 9343 (25%) 9056 (11%) 1228 (9%) 25 (22%)

unknown 196 (0%) 1 (1%) 35 (0%) 26 (0%) 92 (0%) 42 (0%) 0 (0%)

contact frequency

<1 time per week 24 304 (17%) 2 (1%) 528 (3%) 6370 (17%) 15 977 (20%) 1425 (11%) 2 (2%)

1–3 times per
week

15 370 (11%) 1 (1%) 533 (4%) 5675 (15%) 7972 (10%) 1182 (9%) 7 (6%)

4+ times per week 105 938 (73%) 149 (98%) 14 121 (93%) 26 040 (68%) 54 939 (70%) 10 583 (80%) 106 (92%)

unknown 48 (0%) 0 (0%) 3 (0%) 13 (0%) 23 (0%) 9 (0%) 0 (0%)

contact duration

<10 minutes 50 158 (34%) 3 (2%) 1373 (9%) 12 742 (33%) 32 563 (41%) 3471 (26%) 6 (5%)

10–59 min 21 643 (15%) 13 (9%) 2137 (14%) 4981 (13%) 12 298 (16%) 2188 (17%) 26 (23%)

60+ min 73 830 (51%) 136 (89%) 11 672 (77%) 20 373 (53%) 34 028 (43%) 7538 (57%) 83 (72%)

unknown 29 (0%) 0 (0%) 3 (0%) 2 (0%) 22 (0%) 2 (0%) 0 (0%)

Total number of reported contacts stratified by group size, age of contact, setting in which the contact occurred, whether the contact involved touch, contact frequency
and contact duration. Total contacts are further stratified by the age of the participant. Column percentages may not sum to exactly 100% due to rounding error.
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Figure 2. Variation in contact triangle connectedness by participant characteristics. Top panel: the expected probability of a contact triangle being connected stratified
by participant characteristics for all contacts. Probabilities are obtained fromunadjusted non-hierarchical logistic regression incorporating group size. Bottompanel: asso-
ciation between participant-level characteristics and odds of triangle connection for triangles involving all contacts. Estimates are from unadjustedmodels (red), models
including only participant- and household-level characteristics (blue) andmodels including participant- and household-level characteristics, contact-level characteristics
and indicators of shared characteristics between contacts (green).

1.38 (95% CI: 1.11–1.76) times the odds of being part of a connected triangle compared with those aged 36–45 (figure 2; electronic
supplementary material, table S4), and those aged 76+ have 2.67 times the odds (95% CI: 2.03–3.51) on an unadjusted basis.

Our analysis suggests that the U‑shaped pattern by age can be explained by the characteristics of the contacts themselves, such
as the settings in which they occur. Adjusting for individual‑ and household‑level characteristics has little impact on the rela‑
tionship between key covariates, including age, and the odds of a triangle being connected (figure 2; electronic supplementary
material, table S4). However, adjusting for contact characteristics (e.g. contact setting) alters the relationship between age and lo‑
cal clustering, eliminating the U‑shaped pattern seen in univariate analyses. This suggests that age‑specific contact characteristics,
such as setting and intimacy, explain the majority of increased local clustering of contacts in younger individuals. Other patterns
by gender, occupation and population density are mitigated but remain largely unchanged (figure 2; electronic supplementary
material, table S4).

Being female, living in a large household, and being a student or unemployed/retired were also associated with increased local
clustering (i.e. a higher probability of potential triangles being connected). Local clustering was also higher in more rural commu‑
nities, with a 0.57‑fold (95%CI: 0.48–0.69) decrease in the odds of a triangle being connected for each 10‑fold increase in population
density (figure 2; electronic supplementary material, table S4).

When we examine the nature of the contacts themselves, more intimate contacts—those that are higher duration, occur more
frequently, or involve touch—are more likely to be part of a connected triangle (figure 3; electronic supplementary material, table
S4). Such high‑intimacy contacts make up a larger proportion of contacts in the youngest and oldest age groups as compared
with working‑age adults (figure 4; electronic supplementary material, table S5). In the shared contact model, which includes all
participant‑, household‑ and contact‑level characteristics, as well as indicators for shared characteristics between the contacts, po‑
tential triangles involving contacts that take place in a social setting are most likely to be connected, while those involving school
or work contacts are least likely to be connected (odds ratio (OR): 0.23, 95% CI: 0.20–0.27 for school versus social and OR: 0.30,
95% CI: 0.27–0.32 for work versus social; figure 3; electronic supplementary material, table S4). This contributes to, but does not
fully explain, the increased levels of clustering observed in older adults, for whom most contacts occur in social or other settings
(figure 4). If the two contacts in the potential triangle occur in the same setting (e.g. both at work or both in a social setting), they
have 7.37 times (95% CI: 6.85–7.95) the odds of forming a connected triangle (electronic supplementary material, table S4).

Sensitivity analyses show that these associations are robust to differing certainty cut‑offs for defining a triangle as connected.
In adjusted analyses, the elimination of the U‑shaped pattern with age after adjustment for contact characteristics, as well as
the significant associations of sex, population density, occupation status, contact setting, duration and intimacy, all remained
under varying levels of this assumption. Overall, a model that accounts for participant‑level as well as individual‑ and shared
contact‑level characteristics most parsimoniously explains the data, as measured by WAIC (electronic supplementary material,
table S6).

Accounting for the underlying triangles implied by groups expands the total number of potential triangles to 409 397. Con‑
tacts reported as groups are less likely to be part of a connected triangle. In the shared contact model, the presence of a group
contact in a potential triangle, regardless of group size, reduces the odds of that triangle being connected by 74% (OR: 0.26, 95%
CI: 0.24–0.28) and each additional person in a group results in a further 63% reduction (OR: 0.37, 95% CI: 0.36–0.38) in the odds of



8

royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

22:
20250232

..................................................................................................................

Figure 3. Association between contact-level characteristics and odds of triangle connection for triangles involving all contacts. Estimates from unadjustedmodels (red),
models including only participant-, household-level and contact-level characteristics (purple) and models including participant- and household-level characteristics,
contact-level characteristics and indicators of shared characteristics between contacts (green) are shown. The triangle at the upper plot limit indicates an estimate that
is greater than 10.0.

Figure 4. Decomposition of the total number of contacts by contact setting, group size andweekly time spentwith contact by age group and population density quintile.
Percentages may not sum to exactly 100% due to rounding error.

triangle connectedness (electronic supplementary material, table S4). The differential effect of group contacts is probably driven
by fundamental differences in the types of individuals who make up a group contact and how such contacts are reported. Group
contacts tend to be of shorter duration and lower frequency than individual contacts and aremore likely to occur in the workplace,
indicating such contacts are less intimate. The presence of large groups is a driver of much of the low levels of clustering observed
in the contacts of middle‑aged participants (figure 4; electronic supplementary material, figure S4).

4. Discussion
We found distinct patterns in the number and clustering of contacts by age, population density and contact type in a detailed anal‑
ysis of contact networks in southern China. Among both older individuals and those in less dense areas, the number of contacts
is reduced, and the chance that those contacts themselves know each other is increased (i.e. there is higher local clustering). More
intimate contacts are also more likely to know other contacts.
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Figure 5. Framework for the decomposition of contact network into core and peripheral contacts. Core contacts tend to occur more frequently, be longer in duration
and be more locally clustered, whereas peripheral contacts are less clustered and more likely to be reported as part of large groups. Heterogeneity in network structure
across age groups and between urban and rural settings may be explained by differences in the percentage of individuals’ networks composed of core versus peripheral
contacts.

Based on these results, we propose a framework for thinking about the structure of contact networks wherein an individual’s
contact network can be decomposed into ‘core’ and ‘peripheral’ sub‑networks (figure 5). Core contacts are more intimate, tending
to be longer duration, more frequent and more often involving touch, whereas peripheral contacts are less intimate and more
likely to be reported as part of a group. Compared with peripheral contacts, core contacts are more locally clustered. Within this
framework, differences in contact behaviour between individuals and communities can be explained in part by variation in the
number of core and peripheral contacts made. While we believe the existence of these categories is a more parsimonious expla‑
nation of our results, further exploration of this hypothesis, including the establishment of strict definitions that allow for the
categorization of contacts as core versus peripheral, is an area for future work.

The combined effect of local clustering and network degree on disease transmission will vary within communities. Prior work
has shown that increased contact duration is associated with increased infection risk for pathogens such as SARS‑CoV‑2 [29] and
influenza [30]. This indicates that core contacts pose a higher per contact risk of onward transmission compared with peripheral
contacts, which are more likely to be workplace contacts. Older adults and those living in rural areas tend to have fewer contacts
but higher levels of local clustering, indicating that core contacts make up a greater percentage of these individuals’ daily contacts.
This implies that a pathogen may be less likely to be introduced, but more likely to spread quickly within the local network of
individuals dwelling in rural areas once introduction does take place. In contrast, working‑age adults have more lower intensity
peripheral contacts and, therefore, a higher number of daily contacts but lower levels of clustering among those contacts. For these
individuals, exposure to pathogens circulating outside one’s core network may be more frequent, but transmission may not be as
intense within one’s local network.

Fully understanding the impact of network structure on pathogen transmission dynamics would require full enumeration of
the underlying contact network, which has largely been the gold standard approach formeasuring social contact behaviour. How‑
ever, this is generally not possible at scale for the large variety of contacts relevant to respiratory pathogen transmission. Prior
contact surveys aiming to capture such contacts have emphasized measuring first‑order contact structure [9–12]. These results
have informed assumptions of how transmission may occur throughout these networks; however, this approach neglects to ac‑
count for higher order structures that may significantly alter patterns of pathogen spread. Our work represents an intermediate
approach wherein relative metrics of a second‑order network structure can be estimated in the absence of a fully enumerated
network. Such an approach can be used in contact survey efforts globally to improve the understanding of how contact network
structure, and therefore transmission dynamics on these networks, vary within and between regions.

Prior work investigating heterogeneity in contact behaviour has emphasized the variations in the number and characteristics
of first‑order contacts across age groups. Studies have shown that the number of contacts is highest in school‑age children and
lowest in older adults, and that contacts tend to be assortative by age [9,11,12,23]. Given the association between age and other
characteristics relevant to contact behaviour, such as occupational status and household structure, it is possible that much of the
observed age‑related variation is mediated by these more proximal factors. Our analysis demonstrates that even after adjustment
for these mediating factors, a strong association remains between age and the number of contacts as well as age and local cluster‑
ing; however, the shape of these relationships does change. Furthermore, the adjusted association between age and the number
of contacts observed in this study is consistent with studies in other Asian settings [23,30,31] but deviates from that observed in
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many prior surveys of European populations [11], with school‑age children having similar numbers of contacts to working‑age
adults.

Further, previous studies often suffer from truncation issues, wherein individual contacts are too numerous to report individ‑
ually [11]. This is especially important for working‑age adults who may encounter many people in the workplace whom they do
not know personally. The use of group contacts helps to mitigate this issue. However, this approach is also subject to several limi‑
tations. Group contacts may be fundamentally different from contacts reported individually, with such contacts tending to last for
shorter amounts of time and reoccur less frequently. As less information is generally available about the individuals composing a
group contact, the inferences that can be made about groups are more limited. We are unable to analyse the association between
network properties and contacts’ age when including groups, as a single group may contain individuals of many ages.

When assessing local clustering, the definition of contact used for individual and group contacts differs. Participants are asked
whether at least one member of the group knows another reported contact. When groups are reported as being in a connected
triangle, we can only know that at least one or more of the many potential triangles involving each individual in the group is con‑
nected. Therefore, for groups in a connected triangle, as group size increases, the information contribution of these observations
decreases. Participants’ uncertainty about relationships between contacts also increases as group size increases. We therefore find
that the observed connectivity of triangles involving groups is less than what would be expected based on the size of the group(s)
involved. Given that large group contacts are more likely to occur in certain settings, such as the workplace, it is not possible to
fully disentangle the impact of group size and setting.

Contacts are self‑reported and therefore subject to recall bias. This bias may be differential across participants, especially with
regard to age, as a parent must report contacts on their child’s behalf. This study uses a structured interview process when ad‑
ministering the contact survey, which has been shown to improve recall [32]. The data in this study were collected over four
follow‑up visits spanning seven years. The turnover in study staff and other temporal trends may therefore create systematic
variation between visits. We address this concern in part by including visit‑level fixed effects in our models.

The FluScape study is a large, representative sample of a highly populous area in southern China and utilizes a definition of
contact applicable to a broad variety of respiratory pathogens. While the generalizability of these results to locations with very
different population structures may be limited, much of the world’s population lives in this region, and the population structure
of southern China is reflective of many areas throughout the region. The applicability of these results to pathogens transmitted
via other modes (for example, sexual contact) may also be limited. Additionally, although children under 5 may play a key role in
transmission dynamics [22] and are under‑represented in this study, the transition to school is an important driver of the differ‑
ential contact behaviour of children compared with adults. We expect that contact behaviour driven by school attendance is still
well captured in this study as primary school entry generally occurs after age 5.

This study characterizes variation in first‑ and second‑order contact network structures among individuals and communities
in southern China and identifies key correlates of this variation, in particular age and population density. Quantification of both
the number of contacts individuals make and the local clustering among those contacts is required to more fully assess the risk of
pathogen introduction and onward spread within community sub‑groups. Results from contact surveys as well as facility‑based
measurements using sensors have been used to parametrize contact networks for numerous large simulation models [33,34].
However, many routinely used models assume all contacts are equal and do not incorporate higher order network structure.
Prior work has shown that many aspects of network structure can be captured by modelling the number of triangles within the
network [2,35,36], one of the outcomes directlymeasured in this study. An approach that incorporates the distinction between core
and peripheral contacts may also allow for more effective targeting of measures such as social distancing (for example, the least
disruptive social distancing measures probably target peripheral contacts). Future work is needed to develop methods to best use
this information in mechanistic models of infectious disease transmission, with the goal of yielding models that will better inform
prevention and control efforts.
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