10

11

12

13

14

15

16

17

18

19

20

21

22

Stream degradation: direct and indirect impacts of Amazonian deforestation
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ABSTRACT

The increasing demand for natural resources has accelerated deforestation in the tropics,
resulting in impacts on freshwater ecosystems. The extent of deforestation is a critical factor in
determining the stream’s physical habitat status condition. We evaluated the direct and indirect
impacts of catchment and riparian deforestation on stream physical habitat conditions. To do
so, we assessed how deforestation reduces allochthonous inputs, altering channel morphology,
and ultimately leading to a decline in physical habitat condition. We used Structural Equation
Modeling to evaluate the effects of deforestation on physical habitat variables in 269 stream
sites across Eastern Amazonia. We found that sites exhibiting higher physical habitat integrity
- were associated with greater forest cover in both the catchment and the riparian zone. The loss
of riparian vegetation reduced organic matter inputs, decreasing the amounts of organic
substrates and dead wood. Those changes resulted in increased sand deposits and lower physical
habitat condition scores. However, natural variation in catchment morphology also played an
important role, especially in predicting stream morphology features. The effects of
deforestation are complex and depend on its extent. Nonetheless, riparian vegetation proved to
be an important buffer against the effects of catchment deforestation, and its preservation is

essential for maintaining good physical habitat conditions.

Keywords: riparian vegetation; anthropogenic pressure; water security; catchment

morphology; channel structure; allochthonous resources.

HIGHLIGHTS

e Deforestation affects stream physical habitat structure.
e [ ocal deforestation has greater impact than at the catchment scale.

e Stream slope and altitude correlate with habitat conditions.
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INTRODUCTION

Deforestation is the primary driver of habitat loss and fragmentation in many terrestrial
ecosystems and is also a major threat to freshwater biodiversity and ecosystem functioning
(Almond and others, 2021). Rapid human population growth and the increasing demand for
food and raw materials have accelerated deforestation, leading to the conversion of large areas
of natural forest to agriculture and livestock farming (Barbier and Burgess, 2001; Hosonuma
and others, 2012; Maja and Ayano, 2021). In regions rich in natural resources, such as Amazon,
the expansion of activities like crop monoculture (Yanai and others, 2022), livestock farming
(Cantanhéde and others, 2021), logging (Jacob and others, 2021), and mining (Bastos and
others, 2021) have transformed forests into highly altered landscapes (Fearnside, 2021). These
activities have escalated rapidly over the past decade, leading to approximately 110,000 km? of
deforestation in the Brazilian Amazon between 2011 and 2022 (MapBiomas, 2024), with a peak
of 11,088 km? of forest loss recorded in 2020 (Silva-Junior and others, 2021). Similar trends
have been reported in other biodiversity-rich tropical forests, such as the Congo Basin and the
forests of Southeast Asia, particularly in Borneo and Sumatra (Megevand and Monsier, 2013;
Gaveau and others, 2014; Margono and others, 2014).

The Amazon basin is the largest in the world, serving as a crucial source of freshwater
and biodiversity (Cantonati and others, 2020). However, the rapid expansion of deforestation
is altering various aspects of the physical habitat structure in lotic ecosystems, especially small
streams (e.g., Leal and others, 2018; Maués-Silva and others, 2024). Those small streams are
estimated to comprise approximately 90% of its total drainage network (McClain and
Elsenbeer, 2001; Tonkin and others, 2018). Deforestation can directly reduce the availability
of organic matter such as leaves, branches, and dead wood, which are important resources for
aquatic biota and act as retention structures, creating hydraulic resistance within the stream

channel (Vannote and others, 1980; Faria and others, 2017; Lima and others, 2022). Reduced
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large wood inputs directly modify stream morphology and hydraulics by increasing width,
decreasing depth, and reducing habitat complexity and heterogeneity (Kaufmann and others,
1999; Montag and others, 2019; Moi and others, 2024). These combined impacts in stream
physical structure decrease the amount of available habitats for biodiversity (Moi and others,
2024), undermining ecological processes and the forest and freshwater essential ecosystem
services (Dodds and others, 2013). Additionally, an alarming data from Plataforma MapBiomas
(MapBiomas, 2024) indicates a 32% reduction in the extent of surface water in the Amazon
over the past 35 years, based on satellite-detected water pixels. This decline reflects the
contraction of the visible dendritic network, threatening freshwater availability.

Deforestation extent is a key factor in determining the stream’s physical habitat
condition because riparian vegetation helps maintain bank stability, limnological conditions,
and buffers anthropogenic impacts in the channel (Juen and others, 2016; Kaufmann and others,
2022; Faria and others, 2023). However, deforestation in stream catchments beyond the riparian
zone can create a mosaic of land uses that potentially affect the input of organic resources and
sediments, as well as other stream physical habitat features across different spatial scales
(Frissell and others, 1986; Leal and others, 2016; Paiva and others, 2021; Brito and others,
2024). Previous studies have examined anthropogenic effects on local stream structure (Juen
and others, 2016) and catchments (Cruz and others, 2022), but these relationships remain
complex and can operate across multiple spatial scales, as shown for benthic insects in the
Eastern Amazon (Monteles and others, 2021). This complexity arises from the indirect
influence of intermediate structural features, such as channel morphology and the input of
allochthonous resources, which mediate the effects of deforestation (Leal and others, 2016;
Leitdo and others, 2018). In addition, these effects can vary depending on broader landscape
features such as catchment morphology and land-use patterns (Almeida and others, 2023;

Fahrig, 2024). Furthermore, the scope of observations in ecological studies is often too limited
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to fully address conservation policy needs (Herlihy and others, 2020; Almeida and others, 2023;
Fahrig and others, 2024). Given the hierarchical nature of catchment and stream predictor
variables, assessments of anthropogenic impacts solely on riparian vegetation are insufficient
to evaluate the potential effects of deforestation on lotic ecosystems (Leal and others, 2018;
Leitdo and others, 2018; Tonkin and others, 2018; Herlihy and others, 2020).

Ecological integrity, in its strictest sense, refers to an unmodified natural environment
(Cairns, 1977; Karr, 1991). However, in human-modified landscapes such as the Amazonian
frontier, truly pristine conditions are increasingly rare or extremely remote. Therefore, we
considered physical habitat structure as a continuum from nearly pristine to highly altered
environments. This approach is essential to understand the effects of deforestation on
Amazonian streams, thereby influencing the continuity of key ecosystem services, including
organic matter processing, water purification, and habitat provision (Dodds and others, 2013).
Here, our objective is to evaluate how deforestation, across multiple spatial scales, directly and
indirectly influences the physical habitat structure of Amazonian streams. We further
investigate how anthropogenic impacts interact with natural variation in catchment morphology
— an aspect that has received limited attention in broad-scale assessments. To address these
questions, we applied a hierarchical modeling approach that disentangles spatially structured
processes and assesses multiple stressors within a unified framework, thereby revealing how
the impacts of deforestation accumulate and propagate across stream physical characteristics.
Specifically, we hypothesize that deforestation triggers a series of changes in stream physical
characteristics, beginning with 1) a reduction in allochthonous input, leading to ii) changes in
stream morphological features (e.g., width and depth), and ultimately resulting in iii) a decline
in physical habitat condition — here understood as lower habitat integrity, reflecting the

combined degradation of streams structural features.
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MATERIAL AND METHODS

Study area

We studied 269 Ist- to 3rd-order stream sites distributed across Eastern Amazonia
(Fig. 1). The predominant climate in the region is humid tropical, with precipitation ranging
from 1,800 to 2,200 mm and average air temperatures between 24.2 and 27.2°C (Peel and
others, 2007). Catchment deforestation ranged from O to 100%. Physical habitat was
characterized once in each stream site between 2010 and 2023, always during dry season, June
to November, when stream conditions tend to be more stable and representative of the
underlying habitat structure. This study design minimized the influence of high wet season

flows on stream physical habitat and maximized site access (Hughes and Peck, 2008).

Stream physical habitat and forest cover

We followed the U.S. Environmental Protection Agency (EPA) wadeable streams
protocol (Kaufmann and others, 1999; 2022; Peck and others, 2006; Hughes and Peck, 2008),
adapted to the Neotropics (Callisto and others, 2014) to characterize physical habitat. In each
stream, we delimited a continuous 150 m reach, subdivided into 10 longitudinal sections of 15
m, which were delimited by 11 cross-channel transects labeled from A (downstream) to K
(upstream). This design allows the collection of variables from two complementary
perspectives: along the longitudinal dimension of the stream and across channel transects. This
full evaluation protocol generates approximately 240 environmental variables describing
multiple aspects of stream habitat. To address our objective, we retained a smaller subset of
variables most directly related to the ecological mechanisms through which deforestation alters
stream habitats - such as reductions in allochthonous input, loss of retention structures, and
changes in channel morphology (e.g., Juen and others, 2016; Leal and others, 2018). In addition,

the retained variables are based on straightforward and replicable visual observations, which
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makes them particularly suitable for large-scale assessments (Maués-Silva and others, 2024).
From the longitudinal dimension, we retained stream depth (cm), large wood (m?), and fast flow
(%). From the channel transects, we retained organic substrates (%), stream width (m), and sand
(%) (Table 1, Fig. 2).

We measured forest cover at two spatial extents — riparian zone and catchment — for
each stream site as a proxy for deforestation (Table 1). For the riparian zone, we used a convex
densiometer to measure channel shading (hereafter “canopy cover”) (Fig. 2, Table 1), which is
considered a cost-efficient proxy for forest cover (e.g., Peck and others, 2006; Cruz and others,
2022). For the catchment scale, we used QGis geoprocessing software (version 3.34) to measure
the catchment forest proportion. Initially, we delineated the catchment upstream from each
stream site (Section A, see below Fig. 2) using a digital elevation model (DEM, with a spatial
resolution of 30 m), obtained from the Instituto Nacional de Pesquisas Espaciais (INPE,

http://www.webmapit.com.br/inpe/topodata/) and the QGis algorithms r.watershed and

r.outlet. We then extracted the forest proportion for each catchment from MapBiomas

Collection 8 land use and cover raster (MapBiomas, https://brasil.mapbiomas.org/map/colecao-

8/), considering the year each site was sampled.

Finally, we calculated the Habitat Integrity Index (HII, Nessimian and others, 2008),
which provides a composite measure of physical habitat condition. The HII is independent of
the U.S. EPA protocol and integrates 12 items grouped in four main categories: i) land use
patterns (dominant land use type surrounding the stream reach), ii) riparian vegetation (e.g.,
riparian buffer width and composition), iii) channel structure (e.g., bank stability and flow
heterogeneity), and iv) organic matter (e.g., aquatic vegetation and detritus availability). The
12 items are visually evaluated and scored, and the index is calculated as the mean of all items,
ranging from 0 to 1, with higher values indicating more intact habitats (Nessimian and others,

2008). This index has been successfully used in Amazonian aquatic biomonitoring studies
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(Brasil and others, 2020). Additionally, we included catchment morphology features — area,
slope, and altitude — derived from DEM data (Table 1) as natural controls, because these
geomorphological characteristics can influence stream physical habitat independently of
anthropogenic disturbance (Leal and others, 2016; Benone and others, 2017) (Fig. 3). Including
these variables allowed us to distinguish the effects of natural variation from those of
deforestation on stream habitat conditions.

Details on variable definitions, measurement units, and procedures are provided in
Table 1 and follow the methods of Kaufmann and others (1999, 2022) and Peck and others

(2006).

Data analysis

Each stream site represented a sampling unit. We performed a Principal Component
Analysis (PCA; Peres-Neto and others, 2006) to visualize the stream site physical habitat
considering the relationships among deforestation and the other variables. Before the analysis,
we standardized variables using the z-score method (Legendre and Legendre, 2012) and
inspected multicollinearity among them; all Pearson coefficients were || < 0.65, so no variables
were excluded.

We assessed the effect of deforestation on stream physical habitat condition by using
Structural Equation Modeling (SEM) (Arhonditsis and others, 2006). The SEM approach is
based on linear models. It allows for evaluating direct and indirect effects between predictor
and response variables. This approach requires the prior formulation of a conceptual model
(Arhonditsis and others, 2006). Our conceptual model was developed based on results observed
in previous studies (e.g., Juen and others, 2016; Leitdo and others, 2018; Montag and others,
2019), field observations of environmental changes, and it represents our hypotheses (Fig. 3).
To capture the cascading effects of deforestation on stream physical habitat, variables were

organized into six hierarchical levels, each one influenced by those above (except for
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deforestation): i) catchment morphology — area, slope, and altitude, exogenous to deforestation
effects; i1) deforestation — catchment forest and canopy cover, the main driver of habitat change;
ii1) flow dynamics — fast flows, potentially shaped by catchment morphology and deforestation,
driving sediment and allochthonous retention; iv) allochthonous input — large wood and organic
substrates, contributing to v) channel morphology — width, depth, and sand; and vi) habitat
integrity — HII, reflecting the cumulative effects of all preceding levels.

Our conceptual model specifically considers organic substrates affecting sand, as sand
is the dominant inorganic substrate in Amazonian lowland streams. In these streams, sand is
often buried beneath the accumulated organic matter, rather than the reverse, as consistently
observed during field sampling (Fig. 3). To account for the spatial arrangement of the sampled
streams (Fig. 1), we considered the possibility of spatial nesting. Therefore, we constructed our
SEM by including the mesoscale basin in which each stream is embedded (i.e., Baixo Tocantins,
Gurupi, Tapajoés, Trombetas, and Xingu rivers) as a random effect. This approach allowed us
to control for potential spatial dependence among streams within the same mesobasin and to
reduce the risk of pseudoreplication.

The adequacy of the conceptual model to the collected data was assessed using an
iterative method considering the global D-separation p-value and model parsimony, based on
global Akaike Information Criterion (AIC) (Shipley, 2009; Lefcheck, 2016). Our conceptual
model (model-0) already included all theoretically plausible paths among variables from
different defined hierarchical levels. The possible relationships among variables within the
same hierarchical level are then tested and modeled as correlations. Next, model refinement
followed a stepwise procedure restricted to the removal of non-significant paths (based on their
individual p-values), one at a time, starting with the least significant. A path was removed only
when its exclusion reduced the global AIC, while maintaining model plausibility (i.e., global

D-separation p-value > 0.05). Through this stepwise pruning, progressively simpler models
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were generated (i.e., model-1, model-2, etc.). The final model was selected as both plausible
and the most parsimonious among candidates. In addition, we assessed potential indirect
pathways linking deforestation across spatial scales to physical habitat integrity. Indirect effects
were quantified as the product of standardized path coefficients along the causal pathways
linking forest cover to HII through mediator variables (Murphy, 2022). As mediators, we
retained only variables that exhibited significant direct associations with forest cover.

We performed all analyses using R software version 4.1.2 (R Development Core Team,
2021), the vegan package (Oksanen and others, 2023) for PCA, piecewiseSEM (Lefcheck,
2016) and /me4 (Bates and others, 2015) for structural equation modeling, and semEff (Murphy,

2024) for indirect effect analysis.

RESULTS

Stream sites exhibited high variation in catchment forest (0-100%, mean 68.3%) and
canopy cover (0-100%, mean 81.9%). Stream depth ranged from 4.5 to 116 cm, and stream
width from 0.5 to 12.4 m. Additionally, catchment morphology, flow dynamics, allochthonous
input, channel morphology, and physical habitat integrity features showed high variation (Table
2). Sites with higher HII scores had greater catchment forest and canopy cover. Channel
morphology features like width and depth were strongly related to catchment area, whereas
sand and fast flows were related to catchment altitude (Fig. 4). Additionally, organic substrates
were negatively associated with sand and catchment altitude.

Deforestation negatively altered the HII scores both directly and indirectly (D-
separation: p = 0.478, Fig. 5; Table S1). Our results indicate that the cumulative effects of
deforestation on HII were considerable, with a conditional R’ = 0.58. At the upper level, canopy
cover exerted a positive effect on organic substrates (f = 0.24). Organic substrates, in turn,
strongly reduced sand cover (f = -0.62), while sand was also negatively affected by large wood

(#=-0.29) and positively influenced by canopy cover (f =0.11). Ultimately, organic substrates,
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sand, and canopy cover all had direct positive effects on HII (f = 0.17, 0.16, and 0.49,
respectively). Catchment forest, on the other hand, influenced HII only directly, with a medium
effect (f = 0.28), but without mediation by other variables.

Catchment morphology features also played a significant role in shaping habitat
integrity through both direct and indirect pathways. The catchment area had a strong positive
effect on stream depth (f = 0.47), which in turn negatively affected HII (f =-0.17). Catchment
altitude positively influenced fast flows (8 = 0.15) and large wood (f = 0.31), while negatively
affecting organic substrates (5 = -0.35). In addition, large wood also directly influenced HII (S
= 0.12). Catchment altitude also showed a direct positive relationship with HII (f = 0.21),
whereas catchment slope had no significant relationships retained in the final model. To aid
interpretation, we highlight only the main pathways, whereas the complete set of direct effects
is provided in Figure 5 and Table S1 (Supplementary Material).

Regarding the indirect effects of deforestation (here represented solely by canopy
cover, since catchment forest affected HII only directly), these reflect how changes in one
variable propagate through mediators to influence HII. Organic substrates were the primary
mediator, followed by sand. Canopy cover influenced HII indirectly through three pathways: 1)
via organic substrates directly (4 = 0.012), ii) via organic substrates and subsequently through

sand (f =-0.135), and iii) via sand alone, independent of organic substrates (5 = -0.004).

DISCUSSION

Our results support the hypothesis that deforestation generates cascading impacts on
the physical habitat structure and condition on Amazonian streams. These impacts occurred
both indirectly (i.e., mediated by changes in habitat structure) and directly. However, the
canopy cover had an impact almost twice as big as the catchment forest on stream physical
habitat conditions, highlighting that local riparian vegetation plays a stronger role than

catchment-scale forest in maintaining stream integrity (Brejao and ohters, 2021). This
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emphasizes that the effects of deforestation depend on the location and spatial scale at which it
occurs (Jackson and Fahrig, 2015; Leal and others, 2016).

The increase in organic substrates is primarily influenced by the input of allochthonous
organic matter from the riparian vegetation (Vannote and others, 1980; Paula and others, 2011).
Our results highlight that maintaining riparian vegetation ensures an important supply of
organic substrates to streams. Interestingly, we did not find a direct relationship between large
wood and catchment forest or canopy cover. Given that forests are the primary natural source
of wood (Paula and others, 2011), this result suggests a possible threshold response (Baker and
King, 2010), in which a minimum level of forest cover may be required before wood input is
significantly affected. This nonlinearity illustrates the complexity of wood dynamics in
Amazonian streams. While riparian vegetation is key to maintaining resource availability,
catchment-scale forest cover contributes to regulating hydrological regimes, modulating local
climate, and reducing sediment and nutrient inputs, all of which are essential for stream
resilience (Creed and others, 2011; Sun and others, 2016; Martins and others, 2021).

Large wood and organic substrates are well-known drivers of habitat complexity,
providing shelter and food resources for aquatic biota (Cantanhéde and others, 2021; Cruz and
others, 2022). Our results further demonstrate that these components mediate the effects of
deforestation, shaping channel morphology and enhancing physical heterogeneity. The
accumulation of woody debris, leaves, and other plant fragments in the streambed, reduces the
exposed sand and increases physical complexity and environmental heterogeneity (Leal and
others, 2016; Benone and others, 2017), creating a greater diversity of microhabitats. Greater
physical heterogeneity, in turn, has been shown to buffer anthropogenic impacts on fish and
insect diversity (Leitdo and others, 2018; Moi and others, 2024). The accumulation of these

allochthonous materials also contributes to bank stabilization and reduces siltation (Juen and
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others, 2016; Montag and others, 2019), supporting physical habitat integrity, as we observed
in our study.

We detected a more subtle direct effect of deforestation on channel morphology, with
only a direct and positive effect from canopy cover to sand. This may be related to the relatively
high average percentage of canopy cover (81%) around streams, that make catchment
morphology features the main drivers of channel morphology. On the other hand, the catchment
area had a strong positive effect on stream depth and width, which is not surprising given that
larger catchment areas tend to increase the number of tributaries (e.g., Leopold and others,
1995; Montgomery and Buffington, 1997). Additionally, catchment altitude influences
allochthonous material retention in streams by increasing hydraulic forces. Higher flow speeds
favor downstream transport of small vegetative fragments, reducing organic substrates
(Grabowski and others, 2014; Sutfin and others, 2016), and can destabilize stream banks,
promoting tree fall and the input of large wood into the channel. At the same time, the positive
response of large wood to altitude may also be related to some level of anthropogenic activity.
In some Amazonian regions, large wood is commonly removed to facilitate water flow in small
streams (e.g., Faria and others, 2017), a practice more frequent in easily accessible streams,
particularly those at lower elevations, as we also observed in the field. These findings highlight
that the effects of deforestation on physical habitat structure and condition are shaped not only
by anthropogenic activities but also by natural variations in catchment morphology features
(Leal and others, 2016; Benone and others, 2017).

Lotic ecosystems are hierarchical and complex systems, where the effects of
anthropogenic changes vary depending on spatial extent. The Habitat Integrity Index (HII), a
proxy for physical habitat integrity, has been widely applied in Amazonian biomonitoring
(Brasil and others, 2020), and our study demonstrates a positive relationship between HII and

both catchment forest and site canopy cover. However, the relatively high average canopy cover
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of the stream sites likely buffered the more pronounced effects of catchment-scale
deforestation, helping to maintain higher HII scores. Moreover, the full effects of extensive
deforestation may take years to manifest, as allochthonous material (e.g., large wood) can
persist in the environment long after deforestation (Zeni and others, 2019). This persistence
could explain why the effects of catchment deforestation appeared less pronounced compared
to site-riparian deforestation.

Human-induced changes associated with deforestation are not random processes and
are often correlated with catchment morphology. Higher-altitude and/or steeper-slope regions
generally involve higher financial costs for implementing and maintaining activities such as
agriculture and livestock grazing, making them less favorable for land use. These costs stem
from factors such as road construction, irrigation, mechanization, and increased soil erosion
(Jasinski and others, 2005; Gimenes and others, 2017). In contrast, lower-altitude regions,
typically valleys or lowlands, offer reduced costs for these activities, especially near water
bodies. This aligns with our results, which showed a positive effect of catchment altitude on
HII. Therefore, while disentangling the effects of natural variation from anthropogenic
activities remains complex, our results shed new light on these interactions and advance our
understanding of their influence on stream physical habitat (Whittier and others, 2007; Stoddard
and others, 2008; Steel and others, 2010).

These findings have important implications for monitoring and conservation. In Brazil,
the Native Vegetation Protection Law (Law No. 12,651, May 25, 2012, also known as the Forest
Code) establishes Permanent Preservation Areas (APPs, in Portuguese) — riparian buffer strips
along natural watercourses, with a minimum width of 30 m on each bank. However, even when
legal requirements are met, deforestation beyond these strips can still degrade stream habitats
and threaten aquatic biodiversity (Leitdo and others, 2018; Faria and others, 2021; Monteles

and others, 2021; Rivera-Perez and others, 2024). Protected Areas (e.g., National Forests,
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National Parks, and Extractive Reserves) provide an additional safeguard by restricting land
use and preventing severe habitat loss (Azevedo-Santos and others, 2018; Brito and others,
2024). Yet, these regulations are often disregarded in regions heavily impacted by agriculture,
mining, or logging (Monteiro and others, 2016; Preto and others, 2022), emphasizing the urgent
need for stricter enforcement. Moreover, terrestrial protected areas alone are insufficient to
safeguard stream ecosystems (Azevedo-Santos and others, 2018; Leal and others, 2020). In fact,
we found deforested stream sites even within National Parks and National Forests.
Strengthening monitoring and enforcement is essential to prevent further habitat degradation
and sustain aquatic biodiversity resilience amid growing anthropogenic pressures.

Although our findings indicate that riparian vegetation exerts a stronger influence on
site-scale physical habitat than catchment deforestation, the broader role of catchment forest
cover should not be underestimated. Extensive forested areas regulate climate, maintain water
balance, and support metacommunity dynamics, all of which are crucial for ecosystem
resilience and regional biodiversity (Ellison and others, 2017; Chase and others, 2020; Martins
and others, 2021). While we did not directly evaluate these processes, they are well-documented
as key factors for species persistence, recolonization, and connectivity in fragmented
landscapes (Chase and others, 2020; Riva and Fahrig, 2022; 2023). In our study, even sites with
low catchment forest cover often maintained relatively high canopy cover, which may buffer
environmental changes (Naiman and others, 1993; Hughes and Vadas, 2021; Brito and others,
2021). Canopy cover is widely recognized as a strong predictor of aquatic assemblages,
influencing fish (Leitdo and others, 2018; Cantanhéde and others, 2021), aquatic insects
(Cardoso and others, 2015; Calvao and others, 2016; Cruz and others, 2022), and aquatic
macrophytes (Fares and others, 2020; Bomfim and others, 2023), and stream physical structure
(Juen and others, 2016; Leal and others, 2016; Leitdo and others, 2018). However, riparian

vegetation in deforested catchments may not be sustainable in the long term, as large-scale
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ecological processes — such as seed bank maintenance and animal-mediated seed dispersal —

are essential for its persistence (Naiman and others, 2010).

CONCLUSION

Our results demonstrate that the effects of anthropogenic activities, particularly
deforestation, on the physical structure and HII scores of Amazonian streams depend on the
spatial scale of the disturbance. Site canopy cover emerged as a key factor in stream physical
structure, underscoring the importance of riparian vegetation in mitigating the impacts of
catchment deforestation by sustaining organic matter inputs and providing retention structures.
Additionally, these impacts are not random but are shaped by catchment morphology, including
factors such as altitude and slope, which affect the feasibility and costs of anthropogenic
alterations and environmental conservation. Such characteristics should be carefully considered
in future studies, as they may indirectly shape biodiversity patterns and the delivery of
ecosystem services. We also acknowledge that, in studies with a broad geographic scope such
as ours, climatic variables may exert significant effects on the physical structure of streams,
particularly on water volume. These factors, despite increasing the complexity of the models,

should be considered in future studies.
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Tables and captions

Table 1: Environmental features representing the physical habitat and integrity of stream sites.
Additional guidelines on the definitions can be found in Kaufmann and others (1999), Peck and

others (2006), Nessimian and others (2008), and Callisto and others (2014).

Feature Variable Definition

Catchment morphology ~ Catchment area (km?) The total drainage area of each stream was defined from
the geographic coordinates of the downstream sampling
section (Section ‘A’) and calculated from a Digital
Elevation Model (DEM) in QGIS using the r.watershed

algorithm.

Catchment slope (%) The longitudinal slope of each stream catchment was
calculated from the Digital Elevation Model (DEM),

expressed as slope% = tangent(angle) x 100.

Catchment altitude (m) Altitude of each site’s downstream section (Section ‘A”)

based on the digital elevation model.

Deforestation Catchment forest (%) Proportion of forest cover in each stream catchment,
calculated in QGIS by overlaying the catchment
boundaries (delineated for each stream) with the
MapBiomas land-use raster corresponding to the sampling

year.




Canopy cover (%)
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Measured using a convex densiometer at the center of each
transect (from A to K), oriented in four different directions
(i.e., upstream, downstream, left, and right from the
center). This resulted in 44 measurements per site, and the
final value represents the mean canopy cover (%) of these

observations for each stream.

Flow dynamics

Fast flows (%)

Water velocity was visually assessed every meter along the
thalweg (the deepest point in the channel) and classified
according to the U.S. EPA protocol (e.g., glide, pool, riffle,
rapid, cascade, waterfall). Fast-flowing sections were
defined as observations classified as riffle, rapid, cascade,
or waterfall. The percentage of fast flows was calculated as
the proportion of these fast-flowing observations out of the
total 150 measurements per stream. The final value
represents the mean percentage of fast-flowing sections

across the stream.

Allochthonous input

Large wood (m?)

The mean wood volume in the streambed and along the
banks was estimated by counting all woody fragments
(branches or trunks) in each longitudinal section. Each
fragment was visually assigned to one of 12 size
categories, ranging from diameter > 10 cm and length > 1.5
m to diameter > 80 cm and length > 15 m. Only fragments
meeting these minimum size criteria were included. The
final value for each stream represents the sum of estimated

volumes across all 12 categories.
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Organic substrates (%)

Substrate composition was visually assessed at fixed points
along each transect (at both banks and at 1/4, 1/2, and 3/4
of the channel width) and at the midpoints between
transects, totaling 105 observations per stream. At each
point, the dominant substrate type on the streambed surface
was classified following the U.S. EPA protocol. Whenever
possible, a small portion of the substrate was collected by
hand to confirm the visual classification. Observations
classified as leaf litter, small wood fragments (smaller than
the “large wood” threshold), roots, or particulate organic
matter were grouped as organic substrates. The final value
represents the mean percentage of organic substrate

observations per stream.

Channel morphology

Depth (cm)

The thalweg depth (the deepest point between the banks)
was measured every meter along the 150-m transect from
downstream to upstream using a graduated rod. The final
value represents the mean depth across all 150

measurements for each stream.

Width (m)

Wetted channel width was measured with a graduated rod
at 11 transects and at the midpoint between consecutive
transects. The final value represents the mean width across

all measurements for each stream.

Sand (%)

Measured in the same way as organic substrates (105 visual
observations per stream). Substrates were classified
according to granulometric categories in the U.S. EPA
protocol; here, we focused on sand, which was by far the

most common inorganic substrate in the study area. The
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final value represents the mean percentage of sand

observations per stream.

Physical habitat integrity Habitat Integrity Index

(HID)

Composite index of physical habitat condition, ranging
from 0 (degraded) to 1 (well-preserved). Integrates 12
items grouped into four categories: land use, riparian
vegetation, channel structure, and organic matter. Each
item is scored ordinally (0-3 or 0-5, depending on the
item) based on theoretical impact levels defined in
Nessimian and others (2008). The score for each item is
divided by its maximum possible value, so all items
contribute equally to the final index. The HII is calculated

as the average of the 12 normalized items.
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Table 2: Site environmental characteristics.

Feature Minimum Maximum Mean SD Cv
Catchment area (km?) 0.11 64.81 8.64 11.55 133.74
Catchment slope (%) 0.01 0.37 0.12 0.07 54.77
Catchment altitude (m) 13.99 568.38 101.23 96.19 95.02
Catchment forest (%) 0.00 100.00 68.34 33.31 48.74
Canopy cover (%) 0.00 100.00 81.86 23.09 28.20
Fast flows (%) 0.00 100.00 27.89 28.43 101.94
Large wood (m®) 0.00 83.64 4.43 11.96 269.95
Organic substrates (%) 0.00 100.00 44.62 23.30 52.22
Depth (cm) 4.49 115.88 36.92 19.34 52.39
Width (m) 0.49 12.35 3.08 1.65 53.43
Sand (%) 0.00 87.62 29.48 23.17 78.61
HII 0.07 0.99 0.68 0.19 28.31

34
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710  Figure 1: Locations of the 269 stream sites in Eastern Amazonia across different deforestation

711  intensities (a) and in a representative stream site catchment (b).
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Figure 2: Site sampling design. Solid red lines labeled “A” to “K” represent the transects, and
dashed red lines represent the midpoint between two transects. Dotted black lines indicate the
positions where depth measurements and flow-type assessments were made. CU = upstream;
CD = downstream; CL = left bank; CR = right bank. Left and right banks are relative to flow

direction.
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Figure 3: Conceptual model of the relationships between forest cover and site physical habitat.

Solid black arrows represent hypothesized causal effects between hierarchical levels of

variables, while dashed black arrows represent effects spanning multiple levels. Dotted gray

arrows indicate the variables grouped within each hierarchical level. We expect direct effects

from higher- to lower-level variables across the hierarchy; however, not all possible paths are

shown to simplify visualization. Deforestation influences all lower-level processes but is not

affected by anyone. HII = Habitat Integrity Index.
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Figure 5: Structural Equation Models considering the effects of deforestation on the physical
habitat of Amazonian streams sites. Continuous arrows indicate linear relationships (cause and
effect), and double and dotted arrows indicate Pearson correlations. Blue and red indicate
positive and negative relationships, respectively. Arrow thickness and values indicate the effect
size (standardized-f, or Pearson-r). Only direct and significative relationships are shown. Org.

subs. = Organic substrates. HII = Habitat Integrity Index. cR’ = conditional R-squared.



