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Abstract 83 

A reliable response of bioindicators to environmental variation is a cornerstone for 84 

effective bioassessment and biomonitoring. Fish and aquatic macroinvertebrates are 85 

widely used as bioindicators of different human impacts in freshwater ecosystems, but 86 

the cost-effectiveness of their usage can be improved through the use of surrogates. 87 

We investigated congruence patterns between using different taxonomic and numeric 88 

resolutions for aquatic macroinvertebrates and fish to assess community-environment 89 

relationships. We also tested whether dataset characteristics (e.g., area sampled, 90 

species pool) could explain the variation in the effectiveness of using different 91 

taxonomic and numerical resolutions. We used a Brazilian nationwide database 92 

encompassing multiple datasets with a gradient of riparian deforestation each. Our 93 

findings suggest that families and genera can effectively represent macroinvertebrate 94 

genera and fish species, respectively, when using community matrices for assessing 95 

community-environment relationships, with an acceptable loss of information. EPT 96 

(Ephemeroptera, Plecoptera, and Trichoptera) and Characiformes or Siluriformes may 97 

be used as a surrogate, in some cases, for the entire assemblages of 98 

macroinvertebrates and fish, respectively, but their use may result in higher loss of 99 

information. Presence-absence data also presented a minimal loss of information 100 

compared to abundance data, for both macroinvertebrates and fish. The variation in 101 

congruence levels among macroinvertebrate datasets was less predicted by dataset 102 

characteristics than fish. Across distinct resolutions, on average, 10% and 19% of the 103 

variation in community composition of macroinvertebrates and fish, respectively, was 104 

explained by broad-scale environmental variables, and the effect size was negatively 105 

106 

at species (fish) and genus (macroinvertebrates) level and quantification of all 107 



 6 

individuals still provide the best scenario, we provide evidence that coarser 108 

taxonomical resolution and presence-absence data can be used as cost-effective 109 

alternatives to facilitate biomonitoring and bioassessment of freshwaters in the 110 

Neotropical region impacted by deforestation. 111 

 112 

Keywords: Amazon, Atlantic Forest, Aquatic insects, Correlation, Fish, Surrogates.113 
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1. Introduction 114 

Freshwater ecosystems are species-rich and provide multiple ecosystem services to 115 

human society, such as water for drinking and irrigation, food provision and 116 

recreation (Lynch et al., 2023). These ecosystems have been widely modified by 117 

human activities for a long time, resulting in negative effects on biological 118 

communities (Reid et al., 2019). Biological monitoring and assessment are essential 119 

for managing and controlling water quality, which rely on the detection of strong 120 

associations between metrics used to describe bioindicators and environmental 121 

variables related to anthropogenic impacts (Bonada et al., 2006). Bioassessment and 122 

biomonitoring have a long history in the evaluation of freshwater environments 123 

(Doledec and Statzner, 2010; Ruaro and Gubiani, 2013) and have been included in a 124 

recent global agenda for advancing freshwater biodiversity research (Maasri et al., 125 

2022). There is an urgent demand to define indicators and monitor ecosystems from 126 

the United Nations 2030 agenda for sustainable development and the 2030 targets of 127 

the Convention on Biological Diversity (Leadley et al., 2022). However, our capacity 128 

to efficiently assess and monitor freshwaters is still challenging, mainly in highly 129 

diverse tropical regions, due to multiple and interacting human impacts, high costs, 130 

lack of basic knowledge on taxonomy and species distribution, and uncertainty and 131 

variability in biological responses 132 

Firmiano et al., 2021; Siqueira et al., 2020; Sousa et al., 2023). 133 

Riparian loss has led to changes in community composition and pronounced 134 

declines in biodiversity (Albert et al., 2021; Dornelas et al., 2014; Jähnig et al., 2021; 135 

Pelicice et al., 2017). Aquatic macroinvertebrates and fish are regarded as reliable 136 

indicators of the effects of riparian vegetation loss and are commonly used in 137 

bioassessment and monitoring studies 138 
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2021; Ruaro and Gubiani, 2013; Valente-Neto et al., 2021). Aquatic 139 

macroinvertebrates are generally assumed to be more sensitive to the effects of 140 

riparian vegetation loss than fish (e.g., Dala Corte et al., 2020; Martins et al., 2022; 141 

Valente-Neto et al., 2021), but no consensus has been reached. In addition to reliable 142 

bioindicator response, low costs for sampling, sorting, and identifying the biological 143 

group are critical factors for improving the cost-effectiveness of bioassessment and 144 

biomonitoring (Bonada et al., 2006; Ruaro et al., 2024; Valente-Neto et al., 2021). 145 

The use of different taxonomic (Lopes et al., 2021; Martins et al., 2022; Melo, 146 

2005; Santos et al., 2022) and numerical resolutions (Lopes et al., 2021; Martins et al., 147 

2022; Melo, 2005; Ribas and Padial, 2015; Santos et al., 2022; Valente-Neto et al., 148 

2018), and the use of biodiversity surrogates (Faquim et al., 2021; Roque et al., 2017; 149 

Siqueira et al., 2012a; Valente-Neto et al., 2018) can be cost-effective measures in 150 

bioassessment and biomonitoring. Taxonomic resolution can be defined as the level of 151 

detail at which organisms are identified, while numeric resolution is the detail in 152 

representing numeric values, i.e., abundance or presence-absence data. The existence 153 

of strong relationship (correlations greater than 0.7  Heino, 2010) between 154 

taxonomic (e.g., species vs. family) and numerical resolution (abundance vs. 155 

presence-absence), or taxonomic groups (e.g., Ephemeroptera, Plecoptera, and 156 

Trichoptera  EPT, hereafter  vs. macroinvertebrates) indicate that one taxonomic 157 

level, numerical resolution or taxonomic group can be use as surrogate in some cases 158 

when a detailed assessment is unfeasible. Such strong associations are assumed to 159 

indicate minimal loss of crucial information, ensuring reliable biomonitoring (Heino, 160 

2010).  161 

The detection of significant and highly correlated relationships is required for 162 

using simplifications in biomonitoring programs, and indicate that different 163 
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taxonomic and numerical resolutions respond similarly to anthropogenic impacts 164 

(Heino, 2010). A coarser taxonomic level (e.g., family) is easier and faster to identify 165 

compared to a refined taxonomic level (e.g., species or genera). Additionally, 166 

presence-absence data do not require counting all individuals sampled, speeding up 167 

data acquisition, or even reducing the need for sampling large number of animals in 168 

the field. Therefore, these approaches save time and funds in biomonitoring efforts. 169 

However, studies assessing these simplifications for biomonitoring impacts of riparian 170 

vegetation loss on streams are limited to local or regional scales (Brito et al., 2018; 171 

Landeiro et al., 2012; Ribas and Padial, 2015; Santos et al., 2022; Valente-Neto et al., 172 

2018). Evaluating a nationwide database that encompasses multiple biomes would 173 

enable the identification of robust patterns and broader generalizations. This is 174 

particularly important in Brazil, one of the most biologically diverse countries, 175 

including six terrestrial biomes, two of which are biodiversity hotspots (Atlantic 176 

Forest and Cerrado). 177 

To advance in the use of congruence patterns in bioassessment and 178 

biomonitoring, it is important to understand the factors contributing to wide variations 179 

in correlations between taxonomic and numerical resolutions (Lopes et al., 2021; 180 

Ribas and Padial, 2015) and community-environment relationships (Heino et al., 181 

2015). Dataset characteristics significantly influence species composition patterns 182 

(e.g., matrix fill) and the processes driving them. For example, increasing the regional 183 

species pool, particularly through the inclusion of rare species, adds complexity to the 184 

ecological data and reduces the clarity of congruence patterns and the strength of 185 

associations between species composition and environmental variables (Heino et al., 186 

2015; Podani and Schmera, 2011; Siqueira et al., 2012b). Additionally, sample size, 187 

spatial extent, and environmental variability are positively correlated, with larger 188 
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sample size and broader spatial extents generally enhancing community-environment 189 

relationship (Leibold and Chase, 2018). The range of environmental gradients 190 

assessed also affects congruence, with wider gradients better capturing species 191 

responses compared to narrower ones (Viana and Chase, 2019). Despite other studies 192 

have synthesized cross-taxon congruence in terrestrial (Westgate et al., 2014) and 193 

marine (Mellin et al., 2011) ecosystems, a synthesis on the potential drivers of 194 

congruence and variation across freshwater ecosystem datasets is still lacking. Such 195 

an understanding is needed for improving the use of surrogates in monitoring and 196 

assessing rivers and streams, especially when evaluating human impacts.  197 

Our study had three main objectives. First, we investigated the congruence 198 

patterns in using different taxonomic and numerical resolutions for aquatic 199 

macroinvertebrates and fish of Neotropical streams. Considering that species within  200 

taxonomic levels often share similar ecological preferences (Warwick, 1993), we 201 

hypothesized that coarse taxonomic resolution is congruent with refined taxonomic 202 

resolution. Specifically, we expected stronger congruence between closely related 203 

taxonomic levels (e.g., higher correlation between genus and family than between 204 

genus and order). Given the high species turnover in the neotropics, we expected a 205 

high congruence between abundance and presence-absence data. Second, we assessed 206 

the relationship between community composition and environmental variables to 207 

understand how much of the variation in composition is explained by environmental 208 

variables. We expected that environmental variables partially explain a portion of the 209 

variation in aquatic biodiversity composition, with the refined taxonomic resolution 210 

and abundance data showing greater explanatory power. Third, we evaluated how the 211 

datasets characteristics (e.g., area sampled, taxa rarity and dominance, and regional 212 

taxa pool) could influence the variation in the congruence patterns and community-213 
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environment relationships. We hypothesized that these characteristics help explain the 214 

variation observed between datasets. To investigate these objectives, we used a 215 

comprehensive database of aquatic macroinvertebrates and fish sampled along a 216 

gradient of riparian vegetation loss in four biomes of Brazil, including three of the 217 

largest biomes (Amazon, Atlantic Forest, and Cerrado) and the comparatively smaller 218 

Pampa (Dala Corte et al., 2020). 219 

 220 

2. Methods 221 

2.1 Database 222 

We used a recent database compiled by Dala Corte et al. (2020) comprising aquatic 223 

macroinvertebrate and fish communities sampled in streams across Brazil. This 224 

database consists of datasets specifically designed to capture variation in riparian 225 

vegetation loss. Streams included in the datasets are subject to the effects of riparian 226 

vegetation loss within forest-agriculture landscapes, with other anthropogenic impacts 227 

less evident. From the database, we selected 10 aquatic macroinvertebrate and 17 fish 228 

datasets following the criteria described below, comprising 700 and 1,290 stream 229 

communities, respectively (Fig. S1). We included datasets that i) had abundance data; 230 

ii) had at least 20 sampling sites; iii) sampled small streams (10-m wide or less) and 231 

iv) assessed the entire community composition, i.e., all taxonomic groups belonging 232 

to macroinvertebrates and fish. Additional specific criteria were used according to the 233 

taxonomic group. For macroinvertebrates, we included datasets that v) met the 234 

criterion of identifying at least 50% of individuals, as well as all the EPT taxa, to the 235 

genus level, with the remaining macroinvertebrate taxa identified at least to the family 236 

level. The genus level represents the most refined taxonomic resolution commonly 237 

achievable in Neotropical freshwater studies because reliable identification to species 238 
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level often requires the adult stage (Hamada et al., 2018). Some datasets used family 239 

level because of restricted taxonomic knowledge for some groups (Hamada et al., 240 

2018) and/or because the refined identification was focused on a subset of 241 

macroinvertebrates only (e.g., EPT, EPT + Coleoptera). On average 78% of 242 

macroinvertebrate taxa were identified to genus level in all the datasets compiled 243 

(minimum = 53%; maximum = 100%). The database used here does not allow testing 244 

cross-taxon congruence (EPT vs. fish), because each dataset collected exclusively one 245 

group. For fish, we included datasets that vii) identified all taxa to species level. All 246 

the fish species were included in the analysis, and we did not exclude non-native 247 

species. 248 

 The following biomes were represented in the database used here: 249 

Macroinvertebrates: Amazon (four datasets), Cerrado (three), Atlantic Forest (three); 250 

Fish: Amazon (four datasets), Cerrado (seven), Atlantic Forest (five), Pampa (one)  251 

see Table S1 for the list of datasets included. 252 

 253 

2.2 Congruence between taxonomic and numerical resolutions 254 

We used the Mantel correlation to investigate the congruence among community 255 

matrices reorganized into different numeric and taxonomic resolutions for both 256 

macroinvertebrates and fish (Fig. 1). Numeric resolution comprised the community 257 

matrix filled either with abundance data (i.e., number of individuals per taxa) or with 258 

presence-absence (i.e., 0-1) data. Correlations between the numeric resolution 259 

matrices were only performed comparing presence-absence data to fish abundance 260 

matrices identified at species level and to macroinvertebrate abundance matrices 261 

identified at genus level. Taxonomic resolution comprised matrices filled with taxon 262 

individuals (i.e., abundance data) clustered into different taxonomic levels. For 263 
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macroinvertebrates, genus was clustered into family, order, or EPT (Ephemeroptera, 264 

Plecoptera, and Trichoptera) matrices. EPT is a bioindicator group commonly used in 265 

stream assessment and biomonitoring (Barbour et al., 1999; Buss et al., 2015), 266 

although other groups may better indicate anthropogenic impacts in certain contexts 267 

(Serra et al., 2017). For EPT subset, we tested correlations for genus as taxonomic 268 

resolution only. For fish, the species were grouped into genus, family, order, or were 269 

subset into Characiformes or Siluriformes. The last two orders were used because 270 

they are the most common fish taxa in the Neotropical region (Reis et al., 2016), and 271 

were frequently used as indicators of stream system conditions, especially related to 272 

landscape alterations (e.g., Carvalho et al., 2017). Given that we had 10 aquatic 273 

macroinvertebrate and 17 fish datasets, we calculated 10 and 17 Mantel correlations 274 

between all the matrices reorganized into different resolutions. Then, the values were 275 

averaged to obtain a single overall correlation for each comparison, but the variation 276 

was used in subsequent analyses. We used the mantel function from the vegan 277 

package within the R environment. 278 
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 279 

Fig. 1. Diagram depicting the statistical analyses employed in this study. We used 280 

multiple datasets of aquatic macroinvertebrates and fish to assess congruence patterns 281 

between different taxonomic resolutions and between abundance and occurrence data 282 

(first aim). We also investigate community-environment relationship (second aim) 283 

and dataset characteristics that could account for the variation in the effectiveness of 284 

using different taxonomic and numerical resolutions, and the community-environment 285 

relationships (third aim). To address the first aim, we used the Mantel test. The 286 

analysis was conducted separately for each dataset and for each comparison of 287 

composition matrices (e.g., macroinvertebrates genus x family), resulting in a 288 

correlation value for each comparison. Since multiple datasets were analyzed, the 289 

outcome was a vector containing correlation values for each composition matrix 290 

comparison. For understanding community-environment relationship, we employed 291 

redundancy analysis (RDA). The composition matrix (e.g., fish species) was the 292 

response variable, and predictors were composed by landscape and climatic variables. 293 

This analysis resulted in a vector with values of variation explained by the RDA 294 

models (adjusted R2) for each composition matrix. Regarding the third aim, we fitted 295 

multiple linear models using either the correlation values or the RDA explanation 296 

variance for different taxonomic and numeric resolutions as the response variables 297 
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and the dataset features as predictors. We assessed the importance of these dataset 298 

features in the models using AICc and variable importance. 299 

 300 

2.3 Community composition analysis 301 

Subsequently, we used redundancy analysis (RDA, hereafter) to evaluate how 302 

environmental variables (predictors) explain the variation in community composition 303 

(response variables) (Fig. 1). RDA is a constrained ordination and a multivariate 304 

extension of multiple regression, making it well-suited for analyzing community-305 

environment relationships. We previously transformed the abundance data using 306 

Hellinger transformation, which is suited to species abundance data as it gives low 307 

weights to variables with low counts and zero-inflated (Legendre and Gallagher, 308 

2001). To assess the consistence of community-environment relationships across 309 

datasets, we used landscape and climate environmental variables as explanatory 310 

variables, and each matrix derived from the different numeric and taxonomic 311 

resolution matrices as response variables. Local environmental factors, such as water 312 

chemistry and instream habitat conditions were not available for all datasets and so 313 

we included only broad scale environmental variables that could be used across all 314 

datasets. We included 10 exploratory variables in the RDA models, (Table 1; Table 315 

S1), and selected them based on their ecological relevance to stream biodiversity 316 

(Table 1) and to ensure comparability across all datasets. In addition, to avoid model 317 

inflation, we excluded climate variables with correlation values higher than 0.8. 318 

Overall, a wide range of values were present in the landscape and climate predictors 319 

within each dataset (Table S1). For instance, the percentage of native vegetation cover 320 

within a 500-m radius buffer around sampled sites varied significantly, ranging from 321 

between deforested (0-17%) to fully forested streams (~100%) (Table S1). We used 322 

the rda function from the vegan package within the R environment. 323 
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2.4 Variation between datasets 327 

To assess the sources of variation observed among datasets in terms of the 328 

correlations of distinct taxonomic and numeric resolutions, as well as in the variation 329 

explained by the RDA models, we considered six features describing the datasets: i) 330 

number of sites sampled in the dataset (Samp.Size); ii) extension of the area sampled 331 

calculated as the convex hull (Area in km2); iii) variation in the environmental 332 

variables of the sites sampled, calculated as the summed coefficient of variation (CV) 333 

for all environmental variables used in the RDA models (Env.CV); iv) species pool 334 

size of the dataset, expressed as species richness for fish and family richness for 335 

macroinvertebrates (Nspp or Nfam); v) proportion of rare species in the dataset 336 

represented by singletons and doubletons (Rares); vi) species dominance (Domin) was 337 

calculated using the Simpson index (D) with the vegan package (Oksanen et al., 338 

2022). Since the vegan diversity function computes 1 - D, we adjusted the result to 339 

obtain D. In general, these six features varied significantly for both 340 

macroinvertebrates and fish datasets (Table S2; Table S3). For example, the number 341 

of sampled sites ranged from 35 to 110 for the macroinvertebrate dataset (Table S2) 342 

and from 24 to 232 for the fish dataset (Table S3).  343 

The variation among datasets was investigated using both the results from the 344 

congruence values expressed as correlations (subsection 2.2) and adjusted R2 from 345 

RDA models (subsection 2.3) as effect sizes. Thus, we fitted multiple linear models 346 

using as response variables either the correlation values of the distinct taxonomic and 347 

numeric resolutions or the RDA explanation variance for the distinct datasets (Fig. 1). 348 

349 

we evaluated the variance inflation factor (vif) of the models with the car package 350 

(Fox and Weisberg, 2019) to remove multicollinearity in the models, ensuring that 351 
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selected variables contribute independently to explain variation in correlations and 352 

adjusted R2 from RDA models. Models for fish had no variables with high vif (all vif 353 

values were <5), while for macroinvertebrates the proportion of rare species had a vif 354 

greater than 5 and was therefore excluded from the analysis. We then assessed the 355 

importance of these dataset features in the models using Akaike Information Criterion 356 

for small sample size (AICc) and variable importance. For this, we used the dredge 357 

function of the MuMIn package  to generate all possible combinations 358 

of predictors, allowing us to estimate the most plausible models. We then calculated 359 

the averaged effect size (standardized beta coefficient), which represents the weighted 360 

mean effect size of each predictor across all models in which it appeared, with 361 

weights determined by the Akaike Information Criterion (AIC). Additionally, we 362 

assessed predictor importance by summing Akaike weights for each predictor across 363 

all models. Models with AICc < 2.0 and greater values of weight were considered 364 

the most plausible. We also obtained adjusted R2 of the models as another measure of 365 

model goodness-of-fit. 366 

 367 

3. Results 368 

3.1 Taxonomic and numerical correlations 369 

For aquatic macroinvertebrates, the congruence between genus and family was high 370 

(mean correlation = 0.88, range = 0.71  0.99; Table S4; Fig. 2A). Family and order 371 

(mean correlation = 0.76, range = 0.60  0.90) were more strongly correlated than 372 

genus and order (mean correlation = 0.66, range = 0.54  0.78). Mean correlation 373 

between macroinvertebrate genera and EPT subset was high, but varied greatly 374 

between datasets (mean correlation = 0.72, range = 0.40  0.90) (Table S4; Fig. 2A). 375 
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Abundance and presence-absence (PA, hereafter) data, identified at the genus level, 376

were also highly correlated (mean correlation = 0.83, range = 0.67 0.95). 377

378

Fig. 2. Variation in Mantel correlations values across taxonomic and numeric 379

resolutions for macroinvertebrates (A) and fish (B), as well as the community-380

environment relationship captured by adjusted R2 of redundancy analysis models 381

(RDA) for stream macroinvertebrates (C) and fish (D). Box-plots show the median 382

(horizontal black line), interquartile range (colored rectangles), minimum (line below 383

the interquartile range), maximum (line above the interquartile range) and outliers384

(values greater or lower than 1.5 times the interquartile range). Spp = Species; Gen = 385

Genus; Fam = Family; Ord = Order; Abu = Abundance data; PA = presence-absence 386

data; EPT = Ephemeroptera, Plecoptera, Trichoptera subset; Cha = Characiformes; Sil 387

= Siluriformes.388

389
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For fish, the correlation between species and genus was high (mean correlation 390 

= 0.85, range = 0.60  0.98), but there was a low mean correlation between species 391 

and family (mean correlation = 0.58, range = 0.30  0.92), and between species and 392 

order (mean correlation = 0.43, range = 0.16  0.87; Fig. 2B; Table S5). Genus and 393 

family (mean correlation = 0.68, range = 0.38  0.95) and genus and order (mean 394 

correlation = 0.52, range = 0.17  0.90) had also low mean correlations. Total species 395 

in the fish assemblage were more correlated with Characiformes (mean correlation = 396 

0.81, range = 0.41  0.97) than with Siluriformes species (mean correlation = 0.59, 397 

range = 0.32  0.84). Fish species abundance and PA data were usually highly 398 

correlated (mean correlation = 0.87, range = 0.54  1.00). 399 

 400 

3.2 Community-environment relationships 401 

Overall, the relationship between macroinvertebrate composition and environmental 402 

variables was similar regardless of the different taxonomic and numeric resolutions 403 

tested (mean adjusted R2 = 9.0-11.6%; Table 2; Fig. 2C; Table S6). Environmental 404 

variables related to deforestation were the mains drivers of the macroinvertebrate 405 

community-environment relationship (Fig. S2). For fish communities, the amount of 406 

variation explained by the environmental variables did not differ clearly between the 407 

taxonomical and numerical resolutions (mean R2 = 17.1  21.99%; Table 2; Fig. 2D; 408 

Table S7). Climate, landscape, and environmental variables related to deforestation 409 

were the mains drivers of the fish community-environment relationship (Fig. S3). 410 
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Table 2. Redundancy Analysis (RDA) of environmental variables explaining stream 411 

macroinvertebrate or fish communities identified at species, genus, family or order, all 412 

using abundance data, and presence-absence data (PA). Mean adjusted R2 is the mean 413 

explanation obtained from 17 datasets for fish and 10 datasets for macroinvertebrates 414 

from Brazilian Amazon, Atlantic Forest, Cerrado, and Pampa biomes. Max = 415 

Maximum; Min = Minimum; EPT = Ephemeroptera, Plecoptera, and Trichoptera. 416 

Response variables Mean adj-R2 (%) Min adj-R2 Max adj-R2 
Macroinvertebrate genus 10.0 1.1 25.5 
Macroinvertebrate family 11.2 3.5 26.4 
Macroinvertebrate order 11.0 0 27.2 
Macroinvertebrate PA 11.6 3.0 27.0 
EPT 9.0 0.7 20.9 
Fish species 20.0 7.0 45.2 
Fish genus 20.1 7.76 44.8 
Fish family 17.1 6.3 42.6 
Fish order 18.4 0 49.1 
Fish PA 17.8 6.0 37.4 
Characiformes 17.5 3.3 32.6 
Siluriformes 21.9 7.6 51.6 

 417 

3.3 Predictors of variation in taxonomic and numerical correlations  418 

For macroinvertebrates, the variation in the correlation levels across different 419 

taxonomical and numerical resolutions was poorly explained by the predictors, with 420 

most models not differing from the null expectation (Fig. 3A; Table S8). However, 421 

the variation in correlations between genus and family, as well as between abundance 422 

and PA data was explained by species dominance in the community (Domin) within 423 

each dataset (Fig. 3A; Table S9). The effect was positive for genus vs. family 424 

correlations (average coefficient = 0.74; summed weight = 0.84) and negative for 425 

abundance vs. PA data (average coefficient = -0.87; summed weight = 0.99) (Fig. 3A; 426 

Table S9). 427 
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428

Fig 3. Effect size and direction (average coefficients) for predictors (dataset 429

characteristics) of the variation in congruence patterns for A) macroinvertebrates and 430

B) fish, and in adjusted R2 of redundancy analysis for C) macroinvertebrates and D) 431

fish. The circle size represents the strength of the correlation, while the color (purple-432

brown gradient) indicates the direction of the correlation. Samp.Size = number of 433

sites sampled in the dataset; Area = extension of the area sampled calculated as the 434

convex hull; Env.Cv = variation in the environmental variables of the sites sampled 435

calculated as the summed coefficient of variation calculated for all environmental 436

variables used in the RDA models; Nspp = species pool size of the dataset, expressed 437

as total number of families; Rare = proportion of rare species in the assemblages 438

represented by singletons and doubletons; Domin = species dominance in terms of 439

abundance in the assemblage calculated as the Simpson index.440

441
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For fish datasets, the variation in the correlation levels was better explained by 442 

models including different predictors, although some models were not well supported 443 

(Fig. 3B; Table S10; Table S11). Domin was negatively related to matrix correlation 444 

between species vs. genus. Likewise, an overall negative effect was observed for 445 

rarity (Rare) and species pool size (Nspp) within each dataset on the matrix 446 

correlation between most taxonomic levels (Fig. 3B; Table S11). A different result 447 

was observed for species abundances vs. PA data, where increased Samp.Size (i.e., 448 

number of sites sampled) and environmental variation (Env.CV) were related to 449 

higher correlations. Also, for fish species vs. Characiformes matrices, Nspp was 450 

positively related to correlation values (Fig. 3B; Table S11). 451 

3.4 Predictors of variation in community-environment relationship 452 

For macroinvertebrates, the variation in the community-environment relationships 453 

using different taxonomical and numerical resolutions was poorly explained by 454 

predictors and most models did not differ from the null expectation (Fig. 3C; Table 455 

S12). The variation in the EPT community-environment relationship was explained 456 

by the extension of the area sampled (Area) (Fig. 3C; Tables S12; S13). For fish, Area 457 

and Samp.Size were selected in the most plausible models to explain variation in the 458 

community-environment relationship effect sizes (Table S14). Increased number of 459 

sampling sites and decreased extension of sampled area were associated with a low 460 

and high percentage of variance explained by environmental factors on fish 461 

community composition, respectively, and these effects were consistent across 462 

taxonomical and numerical resolutions, except order level (Fig. 3D; Table S15).  463 

 464 

4. Discussion 465 

4.1 Cost-effective alternatives for taxonomic and numeric resolutions 466 
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Overall, our results support that bioassessment studies and biomonitoring programs in 467 

Neotropical streams focused on monitoring the effects of riparian deforestation can be 468 

simplified by using different taxonomical and numerical resolutions, according to our 469 

first hypothesis. This was supported for both aquatic macroinvertebrates and fish, 470 

which are commonly used in bioassessment and biomonitoring approaches 471 

Corte et al., 2020; Feio et al., 2023, 2021; Melo, 2005; Valente-Neto et al., 2021). Our 472 

second hypothesis was partially supported, as around one fifth and one tenth of the 473 

variation in the composition of macroinvertebrates and fish, respectively, was 474 

explained by environmental variables, and there was no increased explanation gain 475 

when tested finer taxonomical or numerical resolutions. Additionally, datasets 476 

characteristics explained the variability in correlation values between taxonomic and 477 

numerical resolutions, and in community-environment relationships, mainly for fish 478 

datasets, partially supporting our third hypothesis. We discuss below the 479 

implementation of cost-effective strategies in bioassessment and biomonitoring, 480 

considering the economic and personnel constraints, and the implications of the 481 

drivers of variation in correlation values. 482 

In general, we found that taxonomic resolutions coarser than genus for aquatic 483 

macroinvertebrates and coarser than species for fish can be used with an acceptable 484 

loss of information to represent overall community patterns in the megadiverse 485 

Neotropical region. For macroinvertebrates, the family level can be used as a 486 

surrogate for the genus level due to the high correlation values between them (88%, 487 

on average) and similar community-environment relationship (10% and 11.2% on 488 

average for genus and family, respectively). Likewise, for fish, genus and species 489 

were highly correlated (85% on average) and showed similar associations with 490 

environmental variables (~20% for both species and genus). These results agree with 491 
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previous studies assessing the congruence of distinct taxonomic resolutions for 492 

macroinvertebrates and fish based on local or regional data (e.g., Brito et al., 2018; 493 

Faquim et al., 2021; Martins et al., 2022; Ribas and Padial, 2015). In addition, a 494 

recent meta-analysis showed that coarser taxonomic levels, such as genus and family, 495 

yielded more responsive bioassessment tools when using community-level data 496 

(Ruaro et al., 2024). Employing coarser taxonomic resolution can significantly reduce 497 

time and costs when studying the entire community or an assemblage, as their 498 

determination is more readily accomplished than refined taxonomic resolution (Koch 499 

et al., 2021; Williams and Gaston, 1994) (Fig. 4). This optimization is particularly 500 

beneficial for biomonitoring programs and bioassessment initiatives aiming to detect, 501 

for instance, the impacts of riparian vegetation loss on community diversity. In highly 502 

biodiverse regions, such as the Neotropics, the use of higher taxonomical resolution 503 

could be important in some cases due to the knowledge gap regarding described 504 

species (referred to as the taxonomic gap, or Linnean shortfall) and the shortage of 505 

taxonomists (taxonomic impediment) (Raposo et al., 2021). Such optimization can 506 

enhance and expedite data acquisition, thereby aiding decision-making processes 507 

regarding conservation and restoration efforts in megadiverse tropical regions like 508 

Brazil, which face threats from intensive and rapid land use changes (Pelicice et al., 509 

2017; Souza et al., 2020; Strassburg et al., 2017). 510 
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511

Fig. 4. Decision tree on the use of aquatic macroinvertebrates and fish in 512

bioassessment studies and biomonitoring programs to detect the effects of riparian 513

vegetation loss. The ideal scenario considers sufficient funds and taxonomic expertise 514

to identify all organisms of each taxon to the most refined taxonomic resolution 515

(macroinvertebrate genus and fish species). The simplifications that we recommend 516

included taxonomic resolution, subsets of each taxonomic group, and numerical 517

resolution. The adoption of one strategy would depend on the pros and cons of each 518

simplification, which is mainly related to time and personnel trained to identify 519

individuals.520

521

We also found support for using presence-absence data for both aquatic 522

macroinvertebrates and fish due to the high correlation between abundance and 523

presence-absence data in the community-level matrices (83% and 87% on average for 524

macroinvertebrates and fish, respectively) and the similar explanatory power of 525
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environmental variables on community composition (~12% for macroinvertebrates 526 

and ~18% for fish presence-absence on average). These results provide further 527 

support to previous studies in tropical regions that suggested the effectiveness of 528 

using presence-absence data for both groups in biomonitoring and bioassessment of 529 

aquatic systems (Brito et al., 2018; Faquim et al., 2021; Martins et al., 2022; Ribas 530 

and Padial, 2015). The similar explanatory power of environmental variables on 531 

abundance and presence-absence community composition differs from studies 532 

conducted in high latitude regions, where environmental variables have better 533 

explained abundance-weighed community composition than presence-absence data 534 

(Heino, 2014). This difference may be related to the higher species richness and 535 

spatial species turnover encountered in the tropics (Soininen et al., 2018). These 536 

processes contribute to a complex composition matrix, where species composition 537 

varies significantly between sites, reducing the explanatory power of environmental 538 

variables. 539 

Presence-absence data are easier to process than abundance data, especially 540 

for abundant and diverse groups such as macroinvertebrates and fish. Presence-541 

absence data only requires recording the presence of species, simplifying the counting 542 

process (Fig. 4). Although estimates of the monetary costs involved in collecting, 543 

counting, and identifying abundance data of aquatic macroinvertebrates and fish exist, 544 

this information is scarce for presence-absence data. For example, the average 545 

monitoring cost per genus of EPT (including collecting, sorting, and identification) is 546 

estimated in US$94, while for each fish species, it is estimated in US$48 for streams 547 

located in the Cerrado and Atlantic Forest transition in Brazil (Valente-Neto et al., 548 

2021), and these costs should be lower to get presence-absence data. It is important to 549 

note that presence-absence data provide less detailed ecological information 550 
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compared to abundance data, as they treat rare and common species equally. 551 

However, in terms of cost-effectiveness, presence-absence data require less 552 

processing time. The time and resources saved by using this simpler resolution can be 553 

redirected to increase sampling coverage in bioassessment studies and biomonitoring 554 

programs (Joseph et al., 2006). The use of presence-absence data can also reduce the 555 

need to collect unnecessarily large numbers of individuals in the field, particularly for 556 

fish, when species can be identified and counted on-site. 557 

On average, the amount of variation in community composition explained by 558 

environmental variables was higher for fish than for macroinvertebrates, and this 559 

pattern remained consistent regardless of the taxonomic and numerical resolution. 560 

Some studies have shown that fish are more consistently related to environmental 561 

variables than aquatic macroinvertebrates (Herlihy et al., 2020; Picard et al., 2022), 562 

while others have indicated the inverse trend, including earlier detection of the effects 563 

of native riparian vegetation loss on macroinvertebrates (Dala Corte et al., 2020; 564 

Valente-Neto et al., 2021). On average, environmental variables explained 565 

approximately 10% of the variation in macroinvertebrates composition and 19% in 566 

fish composition. This finding is not surprising, given that we used only landscape 567 

and climate variables as predictors due to the lack of comparable local environmental 568 

data across datasets. In general, the explanatory power of landscape and climate 569 

variables for aquatic fauna is relatively low (Heino et al., 2008; but see Junqueira et 570 

al., 2016; Montag et al., 2019; Roque et al., 2010). The varying responses of 571 

freshwater species to deforestation, as indicated by the percentage of native vegetation 572 

cover -Neto et al., 2021), can obscure the detection of 573 

clear community-environment relationships. 574 
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Local environmental variables, such as water dissolved oxygen and pH, are 575 

known to significantly influence aquatic macroinvertebrate biodiversity (Allan and 576 

Castillo, 2007; Tonkin et al., 2016) and may enhance the predictive power of 577 

environmental variables for macroinvertebrate and fish composition (e.g., Tonkin et 578 

al., 2016). However, some studies found that local environmental variables have 579 

limited explanatory power in predicting stream macroinvertebrates (Heino et al., 580 

2015, 2008; Mykrä et al., 2008) and fish composition (Leal et al., 2018), even using 581 

global and standardized datasets (Heino et al., 2015). Additionally, studies 582 

incorporating climate, landscape and local environmental variables have still reported 583 

weak community-environment relationships (Heino et al., 2008; Siqueira et al., 584 

2012b) or context dependency in biodiversity patterns, where the variation explained 585 

by environmental factors depends on the dataset analyzed (Tonkin et al., 2016). 586 

Beyond environmental selection, other processes such as ecological drift and dispersal 587 

also shape community patterns (Leibold and Chase, 2018). Some studies suggest that 588 

Neotropical stream communities are more strongly influenced by ecological drift 589 

compared to temperate streams due to their smaller community sizes (Saito et al., 590 

2021; Siqueira et al., 2020). Community size, defined as the number of individuals 591 

sampled, affects the strength of ecological drift, which is more pronounced in smaller 592 

communities. This is because a lower number of individuals increases their 593 

susceptibility to random births and deaths (Orrock and Watling, 2010). Despite these 594 

various potential explanations for the unexplained variation in composition, it is 595 

important to note that we selected the most relevant environmental variables related to 596 

deforestation, specifically the percentage of native vegetation cover and tree cover 597 

percent, both of which are known to influence species occurrence, persistence 598 

community structure and forest resource availability (Fahrig, 2013, 2003). Thus, the 599 
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inclusion of additional variables would likely not improve the composition variation 600 

related to deforestation. As a result, trends observed across taxonomic and numerical 601 

resolution in this study are expected to remain consistent, regardless of additional 602 

predictors or an increase in the overall community-environment relationship variation.  603 

The mean correlation between the EPT subset and the entire macroinvertebrate 604 

community in the datasets was moderately high (r = 0.72), albeit lower than 605 

correlations reported in other studies, which found correlations greater than 0.90 (see 606 

Brito et al., 2018; Martins et al., 2022). Environmental variables explained a similar 607 

percentage of the variance in community composition when analyzing the EPT subset 608 

(mean R2 across datasets = 9%) compared to the entire macroinvertebrate assemblage 609 

(mean R2 across datasets = 10%). This result indicates that EPT are not more sensitive 610 

to deforestation, as represented by the percentage of native vegetation cover and tree 611 

cover percent, than other subsets of aquatic macroinvertebrates (Siqueira et al., 612 

2012a). Therefore, while our findings support the widespread use of taxonomic EPT 613 

metrics (e.g., abundance, richness, and community composition) in studies assessing 614 

stream integrity (Couceiro et al., 2012; Suriano et al., 2011) (Fig. 4), other subsets of 615 

aquatic macroinvertebrates may be equally useful. 616 

Similar to EPT and macroinvertebrate families, Characiformes fish species 617 

appear to be a good surrogate for entire stream fish assemblages, given their high 618 

correlation with fish species (mean correlation = 81%) and similar percentage of 619 

variance explained by environmental variables (17.5%) (Fig. 4). Our result are 620 

consistent with those recorded for Amazonian streams along a deforestation gradient 621 

(Martins et al., 2022). Moreover, families within the Characiformes (such as 622 

Lebiasinidae, Crenuchidae, and Characidae) have been identified as effective 623 

surrogates for entire stream fish assemblages in Amazon basins (Santos et al., 2022). 624 
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In general, Characiformes species dominate fish communities in Neotropical streams, 625 

displaying diverse habitat preferences and responses to environmental changes 626 

(Brejão et al., 2018). In addition, although Siluriformes were not strongly correlated 627 

with entire fish assemblage (mean correlation = 59%), environmental variables 628 

similarly accounted for variation in both Siluriformes and Characiformes (21.9% and 629 

17.5%). One possible reason for this result is that Siluriformes encompass a great 630 

proportion of benthic species highly reliant on substrate heterogeneity, which may be 631 

adversely affected early by siltation of the stream bottom due to land use changes and 632 

riparian vegetation loss (Dala-Corte et al., 2016). Therefore, although Characiformes 633 

better represented the variance of the entire fish assemblage, Siluriformes may 634 

provide important insights into the impacts of riparian deforestation (Fig. 4). 635 

 636 

4.2 What explains the variation across datasets? 637 

Spatial extent and grain size have been reported to affect different types of 638 

congruence (cross-taxon, higher levels or subset) in terrestrial and marine ecosystems 639 

(Mellin et al., 2011; Westgate et al., 2014). Using predictors to elucidate the variation 640 

in congruence values is helpful in discerning scenarios where surrogates are more 641 

appropriate (Mellin et al., 2011). The variation in most congruence levels among 642 

macroinvertebrate datasets was not effectively explained by dataset characteristics, 643 

with exceptions noted for comparisons between genus and family, and between 644 

abundance and presence-absence. One possible explanation is the lower variation in 645 

correlation values for macroinvertebrates compared to fish (Table S2), which may 646 

hinder the detection of significant effect. On the other hand, the variation in 647 

congruence levels among fish datasets was effectively explained by dataset 648 

characteristics. Datasets of fish assemblages exhibiting high dominance, low rarity, 649 
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and low species pool size may employ coarser taxonomic resolutions (e.g., replacing 650 

species by genus level) in a bioassessment and biomonitoring context with minimal 651 

information loss. These results suggest that the variation in congruence levels among 652 

macroinvertebrate datasets is less predictable than among fish datasets, at least for the 653 

database available and studied here.  654 

The variation in community-environment relationships was high among 655 

datasets (around 4-fold for macroinvertebrates and 6-fold for fish) (Fig. 2). 656 

Understanding the factors that determine our capacity to explain freshwater 657 

communities is crucial for the effective use of bioindicators. For macroinvertebrates, 658 

the variation in community-environment relationships was poorly explained by 659 

datasets characteristics. Similar to congruence patterns, the lower variation in adjusted 660 

R2 of community-environment relationships can explain this pattern (Table S6). For 661 

fish datasets, sample size and spatial extent was consistently found to affect our 662 

capacity to explain community composition using environmental variables, and this 663 

pattern was consistent across the different taxonomical and numerical resolutions 664 

evaluated. Increasing the spatial extent enhances the adjusted R² of community 665 

composition explained by environmental variables, aligning with findings from other 666 

studies (Leibold and Chase, 2018). On the other hand, increasing sample size may 667 

paradoxically decrease our ability to explain community variation through landscape 668 

and climate predictors in freshwater studies. Interestingly, environmental variability 669 

was not selected as important predictors of the community-environment relationship 670 

for fish. This suggest that increasing the number of sampling sites may add more data 671 

variation independent of the environmental variability. One possible explanation is 672 

that increasing the sample size may increase spatial turnover in species composition in 673 

highly diverse tropics (Soininen et al., 2018), leading to varied and contrasting 674 
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responses among assemblages. However, further studies are needed to investigate this 675 

hypothesis. The database used here was designed to capture variation in riparian 676 

vegetation loss. Therefore, increasing sample size may not necessarily increase 677 

environmental variability. For example, if a dataset encompasses 20 streams spanning 678 

a continuous gradient of riparian vegetation loss (ranging from 0 to 100%, in 5% 679 

increments), adding more sites might not necessarily enhance the variation of riparian 680 

vegetation loss or the associated environmental variability. Nevertheless, expanding 681 

the number of sampling sites would undoubtedly enhance confidence in the obtained 682 

results, which is crucial for accurately assessing human impacts. Therefore, our 683 

results do not indicate that stream assessment and biomonitoring studies should 684 

decrease sample size to improve the community-environment relationship for fish. 685 

Instead, a rigorous study design remains crucial for an accurate environmental 686 

diagnosis. 687 

Despite using a comprehensive database encompassing multiple biomes in a 688 

highly diverse Neotropical country, our study is subject to certain limitations, and 689 

potential caveats should be considered. Firstly, the available taxonomic knowledge 690 

and expertise in the Neotropical region limit our ability to identify aquatic 691 

macroinvertebrates beyond the genus level (Hamada et al., 2018). Consequently, we 692 

are unable to test the congruence between macroinvertebrate genus and species or 693 

determine whether genus can be used as surrogate for species. Therefore, our 694 

inference regarding the taxonomic resolution of macroinvertebrates is constrained to 695 

the genus level. Secondly, our study reveals several simplifications that can be 696 

employed to achieve the goals of bioassessment and biomonitoring. However, the 697 

implications and recommendations derived from our findings are limited to studies 698 

aimed at detecting and monitoring the effects of riparian vegetation loss on streams 699 
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and using community-level data. The most refined taxonomic resolution of aquatic 700 

biodiversity is crucial in various contexts, including monitoring temporal trends in 701 

abundance and identifying biogeographical and macroecological patterns. Thirdly, our 702 

analyses incorporated both native and non-native fish species, thereby potentially 703 

influencing fish composition. While invasive species are known to impact riverine 704 

macroinvertebrate biomonitoring scores and indices that incorporate abundance 705 

weightings (Mathers et al., 2016), the influence of non-native species on fish 706 

congruence patterns remains unclear and needs to be better explored, considering the 707 

negative impacts in aquatic megadiverse ecoregions (Vitule and Pelicice, 2023). Even 708 

if we excluded non-native fish species from the analyses, the effects of their presence 709 

on native species would persist. Therefore, future studies should investigate this issue 710 

to provide further insights.  711 

 712 

5. Conclusions 713 

Ideally, with sufficient funds and taxonomic expertise, identifying organisms to the 714 

species level is the best choice for detecting and monitoring anthropogenic impacts, 715 

but this is rarely achievable (Jones, 2008). Therefore, our study provides clear and 716 

practical recommendations for stream assessment and biomonitoring the effects of 717 

riparian deforestation of Neotropical freshwater systems (Fig. 4). The congruences 718 

evaluated here provide good alternatives, suggesting that coarser taxonomical 719 

resolution and presence-absence data can serve as surrogates for refined taxonomical 720 

resolution and abundance data, respectively, for biomonitoring programs and 721 

bioassessment using community-level metrics of aquatic macroinvertebrates and fish. 722 

In addition, EPT and Characiformes or Siluriformes subsets may be good substitutes 723 

for macroinvertebrates and fish assemblages in some cases, but using these surrogates 724 
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may result in some loss of information compared to using macroinvertebrate family or 725 

fish genera identification level. The predictors used in our analysis could only explain 726 

part of the variation in the congruence values for fish and macroinvertebrates. Our 727 

results indicate that, with a rigorous study design, both macroinvertebrates and fish 728 

were partially explained by environmental variables, but the magnitude of the effects 729 

of these variables on community composition was negatively affected by sample size 730 

and spatial extent for fish. Therefore, the choice of taxonomical resolution 731 

(macroinvertebrate family and fish genera), taxonomic subsets (e.g., EPT, 732 

Characiformes/Siluriformes) or numerical resolution (abundance or presence-absence) 733 

should depend on the budget and availability of trained personnel for sampling, 734 

sorting, and identifying individuals. 735 
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Table 2. Redundancy Analysis (RDA) of environmental variables explaining stream 

macroinvertebrate or fish communities identified at species, genera, family or order, all 

using abundance data, and presence-absence data (PA). Mean adjusted R2 is the mean 

explanation obtained from 17 datasets for fish and 10 datasets for macroinvertebrates 

from Brazilian Amazon, Atlantic Forest, Cerrado, and Pampa biomes. Max = 

Maximum; Min = Minimum; EPT = Ephemeroptera, Plecoptera, and Trichoptera. 

Response variables Mean adj-R2 (%) Min adj-R2 Max adj-R2 

Macroinvertebrate genera 10.0 1.1 25.5 

Macroinvertebrate family 11.2 3.5 26.4 

Macroinvertebrate order 11.0 0 27.2 

Macroinvertebrate PA 11.6 3.0 27.0 

EPT 9.0 0.7 20.9 

Fish species 20.0 7.0 45.2 

Fish genera 20.1 7.76 44.8 

Fish family 17.1 6.3 42.6 

Fish order 18.4 0 49.1 

Fish PA 17.8 6.0 37.4 

Characiformes 17.5 3.3 32.6 

Siluriformes 21.9 7.6 51.6 
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