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Lightweight Federated Learning for
Terminal-Edge-Cloud with Two-Step Privacy

Protection in Consumer Electronics
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Abstract— With the rapid development of Internet of
Things (IoT) technology, consumer electronics increasingly
integrate edge computing to improve real-time decision-
making in applications such as smart cities and intelligent
transportation. The protection of user privacy has become
a critical concern due to the vast amounts of sensitive data
generated and processed in consumer electronics. Existing
privacy-preserving methods primarily address two aspects:
safeguarding sensitive user data during offloading from
devices to edge servers, and protecting model parameters
in cloud processing. However, these approaches often fail
to comprehensively address privacy risks in terminal-edge-
cloud collaboration, including challenges arising from data
heterogeneity, risks of user privacy leakage, and parameter
reverse inference attacks. To address these challenges, we
propose a lightweight privacy-preserving federated learn-
ing algorithm with two-step differential privacy for con-
sumer electronics, integrated into a terminal-edge-cloud
architecture (TECDP). TECDP utilizes edge computing and
differential privacy to reduce data transmission and per-
form local preprocessing and encryption, balancing privacy
protection with data utility. Lightweight CNN models run on
edge devices, while more complex models are deployed in
the cloud for improved accuracy. We conducted extensive
experiments on the MNIST and CIFAR datasets and eval-
uated the impact of varying privacy budgets and parame-
ters on model performance. The results demonstrate that
TECDP maintains high accuracy while reducing the risk of
data leakage.

Index Terms— Lightweight Artificial Intelligence (AI), In-
ternet of Things (IoT), edge computing, federated learning,
differential privacy, privacy protection.

I. INTRODUCTION

IN recent years, the integration of Artificial Intelligence
(AI) into consumer electronics has accelerated with ad-

vancements in Machine Learning (ML) and the Internet of
Things (IoT) [1]. Smart home appliances, wearable gadgets,
and intelligent cameras are using AI more and more to make
judgments in real time and give personalized services at the
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edge [2]. But it’s still impossible to employ typical AI models
on edge devices with few resources because they demand
a lot of memory and processing power [3]. This has led
to the creation of lightweight AI systems that use methods
like model compression, pruning, and knowledge distillation
to keep important features while still letting edge devices
work well [4]. Lightweight AI solutions make the consumer
electronics industry work better by letting edge devices process
data in real time [5].

Data breaches [6], latency, and single points of failure [7]
are some of the challenges that cloud-based AI processing
faces. Federated Learning (FL) enables collaborative model
training on edge devices while keeping raw data localized,
thus mitigating some privacy risks [8]. FL still has problems,
though, such as too much communication, data that isn’t
always the same, and the fact that enemies can attack it [9].
Edge computing solves these problems by moving computing
tasks to the edge of the network. This makes cloud services
work better and keeps data safer and more organized [10].
Edge computing can make consumer electronics applications
safer and more private when used with FL [11]. However,
sending all raw data from consumer devices to edge servers is
also not safe because edge servers can potentially be attacked
by untrusted third parties, which adds more privacy risks [12].

A lot of personal information, like biometric data and
patterns of how individuals use their gadgets, is stored on
consumer devices. This makes it hard to keep privacy safe in
decentralized edge systems [13]. Existing privacy-preserving
methods [14–17] primarily focus on data anonymization, en-
cryption, and secure data-sharing protocols. Even with these
steps, it is still hard to find a balance between data usefulness
and privacy protection. When people share and use consumer
data, it can put their privacy at jeopardy because it generally
contains very private information [18].Traditional data protec-
tion methods frequently have a hard time finding the right
balance between protecting privacy and using data efficiently.
Using untrusted third-party service providers makes privacy
leaks more likely [19].

This paper presents a lightweight privacy-preserving feder-
ated learning algorithm featuring two-step differential privacy
for consumer electronics, incorporated within a terminal-edge-
cloud architecture (TECDP), to mitigate the substantial privacy
concerns related to consumer electronics data. This method is
specifically designed for consumer electronics, with a focus
on the application of lightweight AI. TECDP employs edge



2 IEEE TRANSACTIONS AND JOURNALS TEMPLATE

computing and differential privacy to speed up data transport
and do local encryption and preprocessing. This finds a middle
ground between keeping data private and making it helpful.
Consumer devices like personal computers, sensors, and wear-
able electronics use local differential privacy (LDP). The level
of privacy protection is set based on how private the data is
and what the user wants. Lightweight Convolutional Neural
Network (CNN) models work on edge devices, while more
complicated models are put in the cloud to make them more
accurate. In this way, not only can user privacy be protected
during data transmission, but edge computing resources can
also be effectively utilized, and the privacy of the system can
be enhanced. The contributions of this paper can be concluded:
•We designed a new terminal-edge-cloud privacy protection

architecture for consumer electronics that combines smart
devices, edge servers, and cloud aggregation servers to protect
user data in consumer electronics environments.
• We built a lightweight CNN model that uses depthwise

separable convolutions and is specifically designed to work
well on edge layers with limited resources. We make the
model better for consumer electronics edge devices with low
processing power by substituting ordinary convolutions with
depthwise separable convolutions. This cuts down on the
number of parameters and the amount of computation needed.
• Taking into account user preferences for privacy data, we

installed a local differential privacy algorithm on consumer
electronics devices. This lets consumers change the level of
privacy protection to match their own needs. The updated
model parameters are also protected on the edge servers.
• We analyzed the impact of privacy budget and parameters

on model accuracy under different data distribution methods.
The suggested solution protects privacy very well while still
making sure that the model training is quick and correct, which
lowers the chance of data leaks.

II. RELATED WORK

This section reviews existing literature in lightweight AI
for IoT, edge computing in consumer electronics, federated
learning, and integrative privacy protection methods.

A. Lightweight AI for IoT Applications
Recent improvements in lightweight AI frameworks have

made it possible to use AI on IoT devices that don’t have
a lot of resources. This lets them digest data quickly and
make decisions in real time. As IoT systems become more
common in many fields, there is a greater need for AI solutions
that work well within the restricted computing and energy
resources of edge devices. These lightweight AI models try
to make the computer work less hard without losing a lot
of accuracy. Fouda et al. [20] developed a lightweight AI
framework for the early identification of forest fires with
drone-acquired data, integrating machine learning with con-
volutional neural networks (CNNs). Malibari [21] suggested a
lightweight AI model enhanced by the Equilibrium optimizer
(EO) for forecasting chronic diseases utilizing patient sensor
data inside an IoT healthcare framework. To address traffic
management in densely deployed IoT networks, Ateya et al.

[22] developed a lightweight AI framework based on a CNN
model to predict traffic, aiding in congestion avoidance.

Even though these methods indicate how lightweight AI
could operate in different IoT circumstances by making de-
vices smart, the fact that numerous consumer gadgets can
handle sensitive data is a big privacy problem.

B. Edge Computing for Consumer Electronics

Edge computing can make smart cameras, wearables, and
home automation systems work better by letting them handle
data faster in the consumer electronics field. This cuts down
on the amount of communication that needs to happen, which
speeds up processing times and protects privacy by keeping
sensitive data on the device, which lowers the risk of data
breaches.

For instance, edge computing makes it possible to track
video in real time and find vehicles in video surveillance
and intelligent transportation systems. This solves problems
like limited bandwidth and heavy processing needs. Wang
et al. [23] introduced a multicamera multihypothesis tracking
(MC-MHT) framework for real-time video tracking in edge-
based Industrial Internet of Things (IIoT) systems. It reduces
communication bottlenecks and enhances privacy by allocating
the tracking work across edge cameras. Yang et al. [24]
put forward the Edge-empowered Cooperative Multi-camera
Sensing (ECoMS) system. The system uses edge computing to
improve vehicle identification, tracking, and feature extraction
in real time. This cuts down on the requirement for high-
bandwidth data transfer and a lot of post-processing. Li et
al. [25] also came up with Polly, a technology that lets you
analyze footage from different cameras on edge devices. Polly
lets cameras with overlapping fields of vision (FoVs) share
inference results, which cuts down on unnecessary calculations
and makes things run more smoothly. Even with these benefits,
it is still hard to manage edge devices with limited resources
and make sure that performance is always good in distributed
networks.

C. Federated learning for Consumer Electronics

Federated Learning (FL) offers a distributed and collabora-
tive AI model, enabling model training across multiple devices
without necessitating the sharing of original data. This method
of keeping data locally and updating models in a coordinated
way is safer and more efficient for consumer electronics appli-
cations. For example, Song et al. [26] proposed FedBEVT, a
federated learning-based method to enhance Bird’s Eye View
(BEV) perception in autonomous driving, addressing data
heterogeneity. Similarly, Xie et al. [27] proposed a federated
framework using semantic communication for real-time li-
cense plate recognition, aiming to improve traffic management
while preserving privacy.

FL still has problems including high communication over-
head, different data distribution, scalability, and the risk of
privacy leaks through model modifications. TECDP builds
upon FL’s distributed paradigm by implementing a terminal-
edge-cloud architecture specifically designed to mitigate these
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issues. The addition of a two-step differential privacy mecha-
nism at both the user device and the edge server gives better
security to both raw data and model parameters. This makes
it better for the sensitive and variable nature of consumer
electronics data.

D. Integrative Methods for Privacy Protection

Recent research has begun exploring the synergistic effects
of the aforementioned technologies to enhance data privacy
and security. Fang et al. [28] put up a secure network coding
(GS-SNC) technique based on Gold sequences. The goal was
to improve safe and efficient data transmission in cloud-
edge-terminal collaboration for artificial intelligence of things
(AIoT).Wei et al. [29] created a lightweight, generic network
intrusion detection system (NIDS) that works best on devices
with limited resources to make IoT security better against
botnet attacks. This technique uses 21 statistical features and
then turns packet-length sequences into RGB images to find
botnets using a lightweight CNN. Kim et al. [30] considered
using the Gaussian mechanism to protect local differential
privacy in federated learning models using stochastic gradient
descent. By establishing suitable metrics for FL with LDP, they
illustrated the balance between user privacy, global utility, and
transmission rate.

Even though the approaches talked about are useful, many
people don’t see how federated learning, edge computing,
and special privacy needs in consumer devices come together.
Current research frequently delineates performance trade-offs
or fails to comprehensively handle the extensive privacy re-
quirements for data transfer and model parameter safeguarding
in these contexts.

Our TECDP technique, on the other hand, is perfect for
this case. It has a terminal-edge-cloud design and a two-
step mechanism for differential privacy. This keeps both user
data and model parameters safe while yet letting users set
their own privacy settings. This method naturally deals with
problems like data diversity and growth. TECDP is different
from other solutions that only focus on things like secure
transmission. It adds differential privacy straight into the
federated learning process. This approach uses edge computing
to lower the danger of data leaks and speed up processing. It
is also very important to find a balance between protecting
privacy and making data useful. Focusing solely on model
accuracy without considering the security of sensitive data is
inappropriate. In the same way, if the privacy protection is
too high, it makes data less useful when sent to edge devices,
which makes the system less successful. So, a good balance
needs to be struck between protecting privacy and keeping the
data useful for making good decisions at the edge.

III. PRILIMINARIES

To effectively build our proposed architecture that strikes
this crucial balance, we must first define the key technologies
involved.

A. Edge Computing

Edge computing is a decentralized approach that processes
data near its source, improving response times and reducing
bandwidth usage. This technology is highly crucial for keeping
data safe and private on consumer devices since it cuts down
on the quantity of sensitive information that is sent [31].
Processing data locally on IoT devices and sensors lowers the
chance of privacy breaches when data is sent. This method
keeps personal information in a safe place, which solves
privacy issues that come up with consumer gadgets.

B. Federated Learning

Federated learning (FL) is a decentralized machine learning
method that lets several clients train a global model together
while keeping their local training data private [32]. FL is
different from standard centralized machine learning methods
since it lets models learn from different and dispersed datasets
without sending raw data. This makes the data safer and more
private. The core of FL is the distributed optimization problem,
typically represented as:

min
w

f(w) =

K∑
k=1

pkfk(w), (1)

where w is the global model parameter, K is the number of
participating clients, pk is the weight of client k, usually the
proportion of data at client k to the total data, fk(w) is the loss
function at client k. The goal is to minimize the loss function.

Local updates and global aggregation are also quite im-
portant. In each iteration, each client k updates the model
parameters w on local data, represented as:

wt+1
k = wt

k − η∇fk(wt
k), (2)

where wt
k is the model parameter at client k in the t-th round,

η is the learning rate, fk(wt
k) is the gradient at client k in the

t-th round.
Then, the server aggregates the updates from all clients to

generate the new global model:

wt+1 =

K∑
k=1

pkw
t+1
k . (3)

The aggregation server sends the new global model param-
eters to each client. Upon receiving the latest global model,
each client uses it as the starting point for the subsequent
training round. Through this distributed training method, fed-
erated learning can fully utilize the computational and data
resources of each client while ensuring data privacy, thereby
collaboratively training an efficient global model.

C. Differential Privacy

Differential privacy is a widely adopted privacy-preserving
framework, it has been an actual standard for various data
types in the privacy protection field over the past decade,
owing to its robust privacy guarantees and minimal compu-
tational cost [33]. It introduces mathematical noise into the
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data analysis process to ensure that the results of the analysis
do not significantly depend on the presence or absence of any
single data point. In other words, the impact of any single data
point is minimized, thereby protecting individual privacy.

Differential privacy contains two important privacy pro-
tection definitions, namely ϵ-differential privacy and (ϵ, δ)-
differential privacy [34].

The definition of ϵ-differential privacy is a mechanism M
satisfies ϵ-differential privacy, if for any two adjacent data sets
D and D′ (D and D′ only differ by one record), and any
possible output S ⊆ Range(M), both have:

Pr[M(D) ∈ S] ≤ eϵPr[M(D′) ∈ S]. (4)

The definition of (ϵ, δ)-differential privacy is a mechanism
M satisfies (ϵ, δ)-differential privacy, and any possible outputs
S ⊆ Range(M) include:

Pr[M(D) ∈ S] ≤ eϵPr[M(D′) ∈ S] + δ. (5)

Here, ϵ is the privacy budget, which controls the strictness
of privacy protection: the smaller ϵ is, the stronger the privacy
protection. δ allows for a small probability of failure, meaning
the mechanism output may violate the ϵ-differential privacy
condition under certain circumstances, but this probability
is controlled by δ. A smaller δ provides stronger privacy
protection. Together, ϵ and δ control the overall strictness of
privacy protection.

Common noise mechanisms in differential privacy generally
include the Exponential mechanism, Laplacian mechanism,
Gaussian mechanism and Hybrid mechanism. The Laplacian
mechanism is suitable for scenarios that meet ϵ-differential
privacy requirements. The Gaussian mechanism is suitable
for scenarios that meet the requirements of (ϵ, δ)-differential
privacy. It is usually necessary to introduce a failure term with
a small probability when protecting strong privacy. This paper
uses a Gaussian mechanism to add noise to protect user data
privacy.

In Federated Learning, differential privacy can be achieved
by adding noise to the local model updates, represented as:

wt+1
k = wt

k − η∇fk(wt
k) +N(0, σ2), (6)

where N(0, σ2) is Gaussian noise with a mean of 0 and a
variance of σ2.

Table I summarizes the key symbols and their meanings in
the aforementioned formulas. Understanding these symbols is
essential for analyzing the underlying mechanisms of privacy-
preserving techniques. The trade-off between privacy and data
utility, together with the incorporation of DP into intricate
machine learning algorithms, presents considerable problems.

IV. PRIVACY PROTECTION METHOD BASED ON
TERMINAL-EDGE-CLOUD ARCHITECTURE

A. System Architecture

This paper proposes a system architecture focused on
safeguarding user data privacy within a terminal-edge-cloud
framework. There are three layers in the structure: the IoT

TABLE I
SUMMARY OF KEY NOTATIONS

Math Symbols Descriptions
w Global Model Parameters
K Number of Clients
p Client Weights

f(w) Client Loss Function
wt

k Model Parameters of Client k at Round t
η Learning Rate

∇fk(w
t
k) Gradient

ϵ Privacy Budget
δ Failure Probability
D Data Set

Fig. 1. A typical scenario of applying federated learning in consumer
electronics environment.

device layer, the edge server layer, and the cloud aggregation
server layer. Each layer has its own jobs and traits when it
comes to processing data and protecting privacy. Hierarchical
processing and user data protection make sure that the system
is safe, reliable, and has low latency. Fig. 1 illustrates a typical
terminal-edge-cloud architecture in a consumer electronics
environment.

IoT Device Layer (Terminal Layer): This layer is made up
of IoT devices including cameras, environmental sensors, and
smart wearables that have raw user data. Before any data is
transmitted, each IoT device applies LDP to the user’s raw
data. This is achieved by adding Gaussian noise directly on
the device. Users can adjust a privacy level λ, influencing the
noise scale, based on the sensitivity of their data. This crucial
step ensures that the original sensitive data is perturbed at
the source, minimizing privacy risks even before it leaves the
user’s device.

Edge Server Layer (Edge Layer): Edge servers are set up in
base stations near IoT devices and have a lot of computational
power. These servers put together the data they get and do
the first steps of training or updating their own local models.
The edge server adds another layer of differential privacy
before sending model parameters to the cloud aggregation
server. These local model parameters have Gaussian noise
added to them. This process keeps the aggregated model
information safe from any inference attacks. It also makes
sure that contributions from single devices or small groups of
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Fig. 2. Depthwise separable convolutions.

devices stay private while they are being sent to the cloud.
Cloud Aggregation Server Layer (Cloud Layer): The edge

servers provide the privacy-protected model parameters to the
cloud aggregation server. Then it changes the global model
by putting these parameters together. This global model uses
the data from all the devices that are part of it, but it does
not have direct access to raw user data or unprotected model
parameters from specific edge servers.

To achieve the desired lightness, we replace standard con-
volutional layers in our baseline edge CNN architecture with
depthwise separable convolutions, as shown in Fig. 2. A
standard Dk×Dk convolution operation processes spatial and
cross-channel correlations simultaneously, the parameter cost
is represented as:

P = N ×Dk ×Dk ×M, (7)

where M is the number of input channels, N is the number
of output channels, and Dk is the kernel size.

A depthwise separable convolution, on the other hand, splits
the normal convolution into two independent, more efficient
operations. The first step is a depthwise convolution, which
uses one spatial filter on each of the M input channels. This
operation only learns spatial features in each channel and gives
an output of M channels in between. The parameter cost for
this step can be expressed as:

Pdw = M ×Dk ×Dk, (8)

Following the depthwise convolution, a pointwise convolution
is applied. This step uses 1 × 1 convolutions to project the
M channels from the depthwise step homens output channels.
The pointwise convolution combines the channel-wise charac-
teristics learnt in the depthwise step in a linear way, which
helps control cross-channel correlations. Its parameter cost is
given by:

Ppw = N × 1× 1×M, (9)

Thus,the total parameter cost for a depthwise separable con-
volution is the sum of the parameters from these two steps:

Pds = (M ×Dk ×Dk) + (N ×M). (10)

Fig. 3. The process of TECDP.

For instance, in the first convolutional block of our edge
CNN, which initially processes M = 1 input channel to
produce N = 10 output channels with a Dk = 5 kernel, a
standard convolution would require 250 parameters. Using a
depthwise separable convolution cuts the number of parame-
ters down to 35, which is almost 86% less for this layer.

This architecture is meant to make use of the computing
power of edge servers while using fewer cloud resources.
This will fix latency problems and improve data privacy. The
method reduces the risk of exposing raw data by processing
it locally on IoT devices and edge servers before transmitting
it to the cloud. This is critical for consumer electronics that
care about privacy. The hierarchical design also strikes a
balance between computational efficiency and privacy security
by spreading workloads across several layers.

B. Implementation Steps
The proposed terminal-edge-cloud privacy protection archi-

tecture includes the following specific steps, as shown in Fig.
3:
• Set up global model parameters on the cloud server

and provide each edge server its own set of initial model
parameters.
• IoT devices pre-process user data. Before sending the

user’s raw data to the edge servers deployed in base sta-
tions, the devices apply differential privacy techniques, adding
Gaussian noise to protect data privacy. They assign different
privacy budgets based on data sensitivity, and then transmit
the processed data to the edge servers. While ensuring that
users’ personal privacy data remains confidential, the overall
utility of their data must also be guaranteed.
• Edge servers receive processed data from the IoT devices.

Edge servers aggregate the data and perform initial model
training and parameter updates. Differential privacy techniques
are applied to the model parameters, adding Gaussian noise
to ensure the privacy of the parameters during transmission
and prevent inference of individual data points from model
updates.
• The cloud server receives model parameters from the edge

servers. It updates and optimizes the global model, generating
and storing the final version. The updated model is then
disseminated to each edge server for the subsequent round
of training and refinement.
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The Gaussian noise mechanism mentioned in this paper
adds noise N(0, σ2) according to the following formula:

A(D) = f(D) +N(0, σ2), (11)

where A(D) represents the query result with noise, and f(D)
denotes the original query result.

The incorporation of Gaussian noise in differential privacy
introduces a trade-off between privacy and model accuracy.
Higher noise intensity enhances privacy protection but de-
grades model convergence by distorting gradient updates.
Conversely, lower noise levels improve convergence speed but
reduce privacy protection. The variance σ2 in the Gaussian
mechanism is typically determined by the privacy parameters
ϵ, δ, and the sensitivity △ f of the query. Standard deviation
σ is defined as:

σ =

√
2ln(1.25/δ) △ f

ϵ
, (12)

where the sensitivity △ f is defined as the maximum change
of the query result on any neighboring dataset. This equation
demonstrates that increasing ϵ reduces noise variance, leading
to improved convergence while sacrificing privacy.

△ f = maxD,D′ ∥f(D)− f(D′)∥ . (13)

Additionally, we have analyzed the Gaussian noise mech-
anism within the framework of differential privacy. Although
the Gaussian noise mechanism introduces a small probability
parameter δ, which allows the privacy protection mechanism
to fail with a very low probability, this design actually
enhances the practicality of differential privacy. In pure ϵ-
differential privacy, the output distributions of data must be
almost identical in all cases, which can result in the addition
of excessive noise when dealing with complex and high-
dimensional data, thereby affecting the usability and accuracy
of the data. In contrast, (ϵ, δ)-differential privacy allows for
a very small failure probability δ, and in most cases, it can
still provide protection levels close to ϵ-differential privacy,
but with significantly reduced noise, thereby improving data
usability. Especially for high-dimensional data and multiple
query scenarios, the Gaussian mechanism, while satisfying
(ϵ, δ)-differential privacy, is more effective than the pure ϵ-
differential privacy mechanism. Therefore, although δ intro-
duces a minimal risk of privacy leakage, this risk can be
set to an extremely low level, almost negligible, while the
overall effectiveness of privacy protection and data usability
is significantly enhanced.

C. TECDP Algorithms
This workk presents two-step differential privacy algorithms

designed to safeguard data privacy in edge servers and IoT
devices. Algorithm 1 shows a way for IoT devices to use
differential privacy, where users can set a privacy level λ
to control how much noise there is. Based on user data and
privacy settings set by the user, the algorithm figures out the
noise scale σ. The noise scale has a direct effect on how much
noise is introduced to each data point. A bigger σ protects

privacy better but may make the data less useful. A smaller σ
gives more accurate data but less privacy protection. Gaussian
noise is introduced to each data point, which makes the data
noisy and protects the privacy of the data.

Algorithm 1 Differential Privacy in IoT Device.

Input: User Privacy Data D, Privacy Budget ϵ, Failure
Probability δ, Sensitivity △ f , User-defined Privacy Level
λ
Output: Noisy Privacy Data D′

1.Initialize empty list D′ for noisy data

2.σ ←
√

2ln(1.25/δ)△f

λϵ // σ is the noise scale
3.for each data point x in D do
4. η ← N(0, σ2) // η is the Gaussian noise
5. x′ ← x+ η // Add noise
6. D′ ← x′

7.end for
8.return D′

Algorithm 2 Differential Privacy in Edge Servers.

Input: Local Dataset D, Local Model M , Privacy Budget
ϵ, Failure Probability δ, Sensitivity △ f , Global Model G
Output: Model parameters with added Gaussian noise wG

1.Initialize Local model M , Global model G
2.σ ←

√
2ln(1.25/δ)△f

ϵ // σ is the noise scale
3.for each local epoch do
4. for each minibatch b in D do
5. g ← ∇M(Db) // g is the gradient
6. η ← N(0, σ2) // η is the Gaussian noise
7. g′ ← g + η // Update gradient with noise
8. Update local model M with noisy gradient g′

9. end for
10.end for
11.Aggregate local model parameters to update global
model G
12.return G,wG

In Algorithm 2, local and global models are initialized, and
the noise scale δ is calculated based on the privacy budget ϵ,
failure probability δ, and sensitivity ∆f . The privacy budget
ϵ controls the overall privacy protection level, with smaller
values of ϵ providing stronger privacy protection at the cost of
increased noise. The sensitivity △ f determines the maximum
possible change in the output. This change is observed in
the model gradient when a single data entry is modified.
The approach calculates the gradient for each minibatch of
data during each local training epoch, adds Gaussian noise to
the gradient, and then uses the noisy gradient to update the
local model. Finally, the parameters from the local models are
combined to make the global model better. This adds Gaussian
randomness to the model parameters. These two algorithms
effectively achieve differential privacy protection by adding
Gaussian noise, allowing for the protection of sensitive data
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during training and enabling users to control the level of
privacy protection according to their needs.

The selection of data distribution during the training of
user privacy data substantially influences model efficacy and
privacy safeguarding. We looked at both Independent and Iden-
tically Distributed (IID) and Non-Independent and Identically
Distributed (NIID) data sets to deal with the fact that real-
world data is not always the same. The differential privacy
method described in this paper protects privacy during training
by adding Gaussian noise. This allows for effective model
training while keeping user data safe. A detailed explanation
of IID and NIID distributions is provided in the experimental
section.

V. EXPERIMENTAL RESULTS AND PERFORMANCE
EVALUATION

A. Experimental Setup and Datasets

We conducted our experiments on a server equipped with
a 12th Gen Intel(R) Core (TM) i7 processor and an NVIDIA
GeForce RTX 4090 GPU, using Python 3.10 and the PyTorch
library as development tools. This experiment considered
a terminal-edge-cloud system architecture, including clients,
edge servers, and a cloud aggregation server. There were 50
clients, 5 edge servers, and 1 cloud aggregation server in the
edge-cloud system. We made sure that each edge server had
the same number of clients, which kept the amount of data on
each edge server the same.

We used the standard MNIST and CIFAR-10 datasets to test
our strategy. These are standard choices in machine learning
research. They are straightforward yet effective for evaluating
a model’s generalization capabilities. MNIST is well-known
for handwritten digit recognition. CIFAR-10 is harder because
it contains small color images from many different classes.
We chose these specifically to simulate scenarios common
in consumer electronics. MNIST represents simple Optical
Character Recognition (OCR) tasks on resource-constrained
devices like smartwatches or small sensors. CIFAR-10 covers
more complex image classification and object recognition.
This complexity is crucial for functions in smart cameras and
smart home devices.

We used the MNIST and CIFAR-10 datasets to do our
tests. MNIST has 60,000 training photos and 10,000 test
images of 28x28 pixel grayscale handwritten digits. CIFAR-10
has 60,000 training images and 10,000 test images of 32x32
pixel colour images across 10 classes. In the edge layer, we
employed a lightweight convolutional neural network (CNN)
with two convolutional layers and two fully connected layers,
chosen for its simplicity and efficiency in edge deployment. At
the cloud layer, a more complex CNN with three convolutional
blocks was used to enhance performance. Table II shows the
experimental hyperparameters. Each client performed local
computation using mini-batch Stochastic Gradient Descent
(SGD) with a batch size of 20 and an initial learning rate
of 0.01 for MNIST and 0.1 for CIFAR-10, decaying exponen-
tially per epoch at rates of 0.995 and 0.992, respectively. The
centralized training of this model achieved over 90 percents
test accuracy. Table III presents key information about the

TABLE II
TRAINING HYPERPARAMETERS

Hyperparameter Notation Value
Client Number Nc 50
Edge Number Ne 5

Batch Size B 20
Learning Rate η 0.01
Local Epoch E 1

Epsilon ϵ 20
Delta δ 1e-5

Learning Rate Decay γ 0.995
Communication Number K 100

TABLE III
DATASET

Dataset Image Size Training
Samples Test Samples

MNIST 28×28 60000 10000
CIFAR-10 32×32 50000 10000

MNIST and CIFAR-10 datasets, including image size and
the number of training and test samples, providing a clearer
comparison of their characteristics.

To enhance privacy protection, we included a differential
privacy approach that uses Gaussian noise. We introduced
Gaussian noise to the parameters depending on the privacy
budget parameters ϵ and δ after each model update to make
sure that client private data was not leaked during training.
This mechanism protected privacy within a specific privacy
budget by adding the right amount of noise to each model
update. The standard deviation of Gaussian noise was changed
on the fly based on the privacy settings and the global learning
rate to find the ideal balance. The learning rate η set the size
of the steps that were taken to change the model parameters
during training. A higher learning rate meant that each update
had a bigger step size, which could mean that more noise was
needed to make sure privacy was protected. If the learning rate
were lower, on the other hand, the step size would be smaller,
which would make the noise less.

B. Data Distribution
In federated learning, data distribution significantly af-

fects model training and privacy protection performance.
This experiment included two data distribution methodolo-
gies: Independent and Identically Distributed (IID) and Non-
Independent and Identically Distributed (NIID).

Independent and Identically Distributed (IID): In this case,
data samples for each client are randomly taken from the
whole dataset, making sure that the data is spread out evenly
among all clients. This way of distributing helps with the speed
and uniformity of model training. In edge computing settings,
IID data distribution can make full use of edge devices’
processing power. This cuts down on the uncertainties and
extra communication costs that come with data heterogeneity
during model training.

Non-Independent and Identically Distributed (NIID): The
data samples for each client come from different data sub-
sets, which suggests that the data is not evenly distributed
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TABLE IV
ACCURACY UNDER DIFFERENT PRIVACY BUDGETS

Privacy Budgets Mnist Cifar-10
ϵ=10.0 0.3664 0.3595
ϵ=20.0 0.7322 0.7179
ϵ=30.0 0.7736 0.7623
ϵ=40.0 0.8112 0.8040
ϵ=50.0 0.8424 0.8356

out among all clients. This form of distribution is more like
how data is actually distributed in the real world, but it
also makes it harder to train the model. In edge computing
environments, federated learning under NIID data distribution
is more challenging but can better simulate the diversity and
heterogeneity of real-world data. To address this, we used
differential privacy and adaptive gradient descent strategies on
edge devices to balance data utility and privacy protection.

Federated learning can better safeguard user privacy with
diverse data dissemination methods when the edge-cloud ar-
chitecture is used. Edge devices may effectively gather local
model updates for IID data distribution. This cuts down on
the number of times data needs to be sent and lowers the
danger of data leaks. The edge-cloud design can make full
use of the dispersed computing capability of edge devices
for local data preprocessing and encryption, which improves
privacy protection for NIID data delivery. Additionally, edge-
cloud collaboration can effectively address network latency
and bandwidth limitation issues, ensuring system robustness
and efficiency, enabling the system to continue functioning
normally even if some nodes fail.

C. Metrics

To fully evaluate how well the suggested solution protects
user privacy and keeps data useful in the context of consumer
electronics, this section will introduce and use two evaluation
measures. These measures will assist us figure out how accu-
rate the procedure is and how well it protects privacy.

We chose two important assessment metrics for this exper-
iment: accuracy and privacy protection strength. Accuracy is
an important way to judge how well the model predicts things
overall. Our approach consistently achieves a high accuracy
across various datasets and privacy budgets (ϵ). The detailed
results are presented in Table III.

For privacy protection strength, we use the differential
privacy budget (ϵ) to measure the degree of privacy protection.
A smaller ϵ value indicates stronger privacy protection. This
metric is used to evaluate the effectiveness of our method
in safeguarding user data privacy. As the ϵ value decreases,
the strength of privacy protection increases, but the model’s
accuracy slightly decreases. This indicates that while ensuring
privacy, our method can still maintain satisfactory model
performance.

D. Experimental Results and Analysis

Fig. 4 respectively illustrates the model accuracy under
differential privacy settings when the privacy budget is set

Fig. 4. Accuracy with privacy budget of 10.0 and 30.0.

Fig. 5. Training loss over epochs.

to 10.0 and 30.0. With a privacy budget of 10.0, the level
of protection for user private data is too high, which greatly
lowers the model’s accuracy and makes it useless in real-
world situations. So, when the privacy budget is set to 30.0,
the model gets more accurate. This shows that it is possible
to safeguard privacy by adding noise while still making the
model work well. When using data in real life, it’s important
to find a balance between protecting consumers’ privacy and
making the data useful.

Fig. 5 shows how the model’s loss values changed during
training from the 1st to the 100th epoch. In the first 20 epochs,
the loss values drop quickly, which means that the model is
learning and optimizing quickly at this time. After the 20th
epoch, the loss values gradually stabilize, signifying that the
model is progressively achieving convergence.

(a) Edge Test Accuracy on MNIST (b) Edge Test Accuracy on CIFAR-10

Fig. 6. Accuracy Comparison under different epsilon values within the
edge layer.

Fig. 6 and Fig. 7 analyze the performance of our method
on the dataset using Gaussian noise for differential privacy
protection, tested under both IID and NIID data distributions.
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(a) Cloud Test Accuracy on MNIST (b) Cloud Test Accuracy on CIFAR-10

Fig. 7. Accuracy Comparison under different epsilon values within the
cloud aggregation layer.

Fig. 8. Comparison of accuracy across different methods.

The figures show the accuracy under different privacy budgets
(ϵ) set to 1.0, 10.0, 20.0, 30.0, and 50.0. As the privacy budget
ϵ increases, the model accuracy gradually improves. This is
because a higher ϵ value corresponds to less noise addition,
thereby preserving more useful information. Fig. 6 shows the
model test accuracy after privacy-protected data aggregation at
the edge layer. This accuracy reflects the performance of the
edge layer only. The model accuracy in this figure is based on
the different privacy budgets applied at the user IoT devices.
Fig. 7 illustrates the model test accuracy after the cloud
aggregation layer aggregates the updated model parameters
from the edge servers. The accuracy at the cloud aggregation
layer is adjusted by changing the privacy budget during the
transmission of parameters from the edge layer, while the
privacy budget at the terminal layer remains unchanged. It can
be observed that the accuracy at the cloud aggregation layer
is relatively higher because it benefits from a more powerful
model for classification. This demonstrates that our method
can maintain high accuracy while satisfying user privacy
protection needs.

In the experiment, we compared the accuracy performance
of TECDP in model training with three different methods,
which include the traditional Federated Averaging (FedAvg)
algorithm, Fed Select [35], and the differential privacy method
with Laplace noise. Among these, Fed Select is a new privacy-
preserving federated learning method. FedAvg averages model
updates from clients without differential privacy, serving as
a baseline to assess privacy protection’s impact on accuracy.
Fed Select optimizes client selection to improve convergence

while maintaining privacy. Laplace Noise Differential Privacy
adds Laplace noise to protect data privacy. TECDP leverages
the edge layer to perform lightweight local training and inter-
mediate aggregation. This architectural choice is intended to
reduce communication overhead and lower the computational
burden on user IoT devices. The experimental results show
that TECDP performed the best.

Fig. 8 shows that TECDP, FedAvg, and Fed Select all had
very high accuracy. The differential privacy approach with
Laplace noise, on the other hand, had the lowest accuracy of
the four methods. Further investigation shows that TECDP and
FedAvg approaches have about the same level of accuracy, but
TECDP is far better at protecting privacy. When we compared
TECDP to Fed Select, we observed that Fed Select’s conver-
gence time was slower and its accuracy at the 100th round was
not as good as TECDP’s. We examined Gaussian noise with
Laplace noise with the same privacy budget. We observed that
the Laplace noise approach should ensure privacy in theory,
but it doesn’t work as well in practice since it isn’t accurate
enough. Our method keeps a high level of accuracy while also
safeguarding user privacy by adding noise in the right way.

The experimental results show that TECDP works better
than baseline methods because it strikes a good balance
between protecting privacy and getting accurate models. The
solution employs local differential privacy on IoT devices
and further security on the edge server. The architecture
significantly improves edge-cloud collaboration by reducing
latency and resource utilization compared to FedAvg. TECDP
works well with both IID and non-IID data distributions, which
makes sure that convergence is steady. Also, utilizing Gaussian
noise keeps excellent privacy protections with very little loss
of accuracy. These things make TECDP better at privacy-
preserving federated learning for consumer electronics.

In summary, our TECDP approach not only works well,
but it also has some distinct benefits when it comes to
protecting privacy. This is a good way to preserve privacy
in situations when rigorous privacy protection is needed, like
in the consumer electronics area, while also making sure that
data is useful.

VI. CONCLUSION

This study presents an innovative way for enhancing privacy
and security in consumer electronics through the integration
of a terminal-edge-cloud federated learning architecture with
two-step differential privacy. We added depthwise separable
convolutions to address the need for a lightweight CNN at
the edge layer. This method adds a multi-layered privacy
protection system, which makes sure that data is safe while
keeping the model’s accuracy and efficiency high. Experiments
performed on diverse datasets and varying data distributions
illustrate its efficacy across varied privacy budget contexts.
The findings suggest that the equilibrium between privacy
safeguarding and data functionality is essential for the effective
implementation of federated learning in consumer electronics.
Future work will concentrate on enhancing the equilibrium
between privacy and utility, while investigating supplementary
applications across various consumer electronics.
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