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Exploring the mechanism of Stephania tetrandra 
S. Moore in the treatment of cisplatin resistance 
against ovarian cancer through integration of 
network pharmacology and molecular docking
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Abstract 
Cisplatin resistance is a major contributor to treatment failure in ovarian cancer (OC). This study investigates the mechanisms of 
action and therapeutic targets of Stephania tetrandra S. Moorefor cisplatin-resistant OC. OC datasets were obtained from the 
gene expression omnibus database, and differentially expressed genes were identified through weighted gene co-expression 
network analysis. Cisplatin resistance-related targets were screened using the GeneCards, OMIM, and MsigDB databases, 
while active components of S tetrandra were retrieved from the TCMSP, ETCM, and BATMAN databases. Commonly shared 
genes between these 2 sets were selected for further analysis. A protein–protein interaction network was constructed using the 
STRING database, and 4 machine learning algorithms were integrated to identify core targets. Binding affinities were evaluated by 
molecular docking with AutoDock Vina. Molecular dynamics simulations were then conducted to assess the stability of the ligand-
target complexes. We performed ADMET analysis to assess the pharmacokinetic properties and drug-likeness of S tetrandra. 
Machine learning algorithms further identified 8 core targets including threonine tyrosine kinase (TTK), AURKA, B-cell lymphoma 
2, vitamin D receptor, NFKB1, cyclin dependent kinase 1, DNMT1, and SMAD7. Gene ontology and Kyoto Encyclopedia of 
Genes and Genomes pathway enrichment analyses revealed that these targets were significantly enriched in pathways such as 
the PI3K-AKT, cell cycle regulation, p53 signaling pathway, and platinum resistance pathway. Receiver operating characteristic 
curve analysis demonstrated diagnostic potential for all genes except SMAD7 (AUC = 0.603 < 0.7). Immune infiltration analysis 
indicated a positive correlation between AURKA/TTK expression and M0/M1 macrophage infiltration (P <.05). Molecular dynamics 
simulations demonstrated that hesperidin, cissamine and tetrandrine exhibited strong binding affinities toward AURKA, vitamin D 
receptor, and TTK. Future studies are encouraged to focus on the experimental validation of these compounds and delve deeper 
into the possible mechanisms of drug resistance, aiming to improve their therapeutic effectiveness and real-world applicability.

Abbreviations: BCL2 = B-cell lymphoma 2, CDK1 = cyclin dependent kinase 1, DEG = differentially expressed gene, GO = 
gene ontology, HBonds = hydrogen bonds, KEGG = Kyoto Encyclopedia of Genes and Genomes, MDS = molecular dynamics 
simulation, OC = ovarian cancer, Rg = radius of gyration, RMSD = root mean square deviation, RMSF = root mean square 
fluctuation, ROC = receiver operating characteristic, SASA = solvent accessible surface area, TTK = threonine tyrosine kinase, 
VDR = vitamin D receptor, WGCNA = weighted gene co-expression network analysis.

Keywords: cisplatin resistance, machine learning, molecular dynamics simulation, network pharmacology, ovarian cancer, 
Stephania tetrandra S. Moore
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1. Introduction
Ovarian cancer (OC) represents a leading gynecologic malig-
nancy globally, with disproportionately high incidence rates 
observed across Eastern/Northern Europe and Southeast 
Asia.[1] Although its incidence has been gradually declining, OC 
remains associated with the highest mortality rate among gyne-
cologic cancers.[2] It is characterized by rapid progression, low 
survival rates, high heterogeneity,[3] and a significant propensity 
for drug resistance. Patients often present with nonspecific clin-
ical symptoms such as abdominal discomfort and bloating. At 
first clinical presentation, 70% of OC patients already manifest 
regionally advanced or metastatic disease,[4] highlighting con-
siderable challenges in early detection. Once diagnosed at an 
advanced stage, the disease frequently progresses to metastasis 
and develops drug resistance.[5]

The primary treatment strategies for OC include tumor 
cytoreductive surgery and platinum-based combination che-
motherapy,[6] with cisplatin typically serving as the first-line 
chemotherapeutic agent.[7] Cisplatin exerts its cytotoxic effects 
primarily through the formation of DNA adducts,[8] causing 
cell cycle arrest in the G2 phase, followed by the suppression of 
growth and the induction of apoptotic cell death. However, the 
development of resistance to platinum-based drugs, the main-
stay of OC therapy has significantly hindered effective tumor 
eradication,[9] creating a major bottleneck in treatment and 
necessitating improvements in the 5-year survival rate among 
OC patients.[10] Following an initial favorable response to  
platinum-based regimens, the majority of patients ultimately 
acquire secondary resistance, typically after experiencing several 
recurrences,[11] resulting in progressively shorter progression- 
free survival. Ultimately, platinum resistance profoundly affects 
the overall prognosis of all OC patients.

Natural compounds derived from animals, plants, and 
microorganisms have attracted increasing attention due to 
their potent antitumor activity,[12] low toxicity,[13] and multi- 
targeting[14] properties. Preclinical evidence confirms their capac-
ity to suppress metastatic dissemination, trigger programmed 
cell death, and reverse radio-chemotherapy resistance.[15,16]

Stephania tetrandra S. Moore, a perennial vine of the 
Menispermaceae family, contains abundant alkaloidal compo-
nents.[17] This plant exhibits anti-inflammatory, neuroprotective, 
and antiviral properties and possesses a long-standing history 
of therapeutic application for multiple disorders, including can-
cer, edema, rheumatoid arthritis, rheumatism, hypertension, 
and hyperglycemia.[18,19] These therapeutic attributes provide a 
scientific basis for considering S tetrandra as a potential can-
didate for treating cisplatin-resistant OC. However, the precise 
molecular mechanisms underlying its role in reversing cisplatin 
resistance remain poorly understood, necessitating further mul-
tidisciplinary and analytical investigations.

In this study, machine learning-assisted network pharma-
cology was implemented to discern bioactive constituents in 
S tetrandra and their molecular targets relevant to overcoming 
cisplatin resistance in OC. Molecular docking validation was 
also performed. The purpose of this study is to establish a solid 
theoretical foundation for the clinical application of S tetrandra, 
while also putting forward new, efficient, and low-toxicity com-
bination treatment strategies for OC.

2. Materials and methods

2.1. OC dataset collection

The gene expression omnibus (https://www.ncbi.nlm.nih.gov/
geo/) served as the source for the OC datasets, which were 
retrieved employing the query criteria “ovarian cancer, Homo 
sapiens.” Two datasets were selected: GSE14407, which includes 
12 normal control samples and 12 OC samples, and GSE38666, 
which contains 20 normal samples and 25 OC samples. The 2 

datasets mentioned above were merged and standardized using 
the Sva R package.

2.2. Construction of a WGCNA

The R package “WGCNA” was utilized to carry out weighted 
gene co-expression network analysis (WGCNA).[20] First, hier-
archical clustering was applied to detect and remove outlier 
samples. Subsequently, the pickSoftThreshold function was 
employed to determine the optimal soft threshold for estab-
lishing a scale-free network. An adjacency matrix was created 
and subsequently converted into a topological overlap matrix. 
Constructed gene tree diagrams and module colors using dif-
ferent degrees. Module-trait associations were quantified by 
correlating eigengene values with differential expression profiles 
across sample cohorts.

2.3. Identification of genes with differential expression in 
OC

Normalization of the GSE63142 expression matrix was per-
formed with the “Sva” package in R. Differentially expressed 
genes (DEGs) were detected with the “limma” package in R, 
applying thresholds of |log2 Fold Change| > 1 and P < .05. 
Heatmaps were constructed utilizing the “pheatmap” R pack-
age. Volcano plots were generated with the “ggplot2” package.

2.4. Acquisition of cisplatin resistance-related targets in 
OC

To identify cisplatin resistance-related targets, we conducted 
a search on the GeneCards website (https://www.genecards.
org/)[21] and OMIM (https://omim.org/) databases using the 
keyword “cisplatin resistance.” The MsigDB database (https://
www.gsea-msigdb.org/gsea/msigdb) provided additional target 
information. The target genes were identified as the intersection 
of OC DEGs, WGCNA hub genes, and cisplatin resistance- 
related genes using the Venn2.2.1 online tool (https://bioin-
fogp.cnb.csic.es/tools/venny/index.html). It is important to 
note that the criteria for screening DEGs were set as |log2 
Fold Change| > 1 and P < .05. The WGCNA gene set primar-
ily included the modules MEbrown, MEpink, MEred, and 
MEturquoise. Only genes present in all 3 sets proceeded to 
subsequent analysis.

2.5. Acquisition of active components and targets from S 
tetrandra

BATMAN-TCM (https://bionet.ncpsb.org.cn/batman-tcm/#/
home) is a comprehensive database of traditional Chinese 
medicine (TCM), aiming to collect known and predicted 
connections between the components of TCM and target 
proteins.[22] It is specifically designed to understand the phar-
macological mechanisms of TCM and identify active ingredi-
ents for disease treatment. The BATMAN-TCM 2.0 database 
was employed to screen active ingredients of S tetrandra with 
a score cutoff >0.84. Additionally, compounds were screened 
from the TCMSP database (https://www.tcmsp-e.com/) using 
selection criteria of oral bioavailability (OB ≥ 30%) and 
drug-likeness (DL ≥ 0.18). The ETCM repository[23] (https://
www.tcmip.cn/ETCM/index.php/Home/) was systematically 
searched to retrieve bioactive constituents of S tetrandra. 
Putative biological targets of these phytochemicals were iden-
tified using SwissTargetPrediction (https://www.swisstarget-
prediction.ch/), a web-based prediction platform. In the end, 
all predicted targets underwent integration and deduplication 
processes to yield the definitive list of targets associated with 
S tetrandra.

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://www.genecards.org/
https://www.genecards.org/
https://omim.org/
https://www.gsea-msigdb.org/gsea/msigdb
https://www.gsea-msigdb.org/gsea/msigdb
https://bioinfogp.cnb.csic.es/tools/venny/index.html
https://bioinfogp.cnb.csic.es/tools/venny/index.html
https://bionet.ncpsb.org.cn/batman-tcm/#/home
https://bionet.ncpsb.org.cn/batman-tcm/#/home
https://www.tcmsp-e.com/
https://www.tcmip.cn/ETCM/index.php/Home/
https://www.tcmip.cn/ETCM/index.php/Home/
https://www.swisstargetprediction.ch/
https://www.swisstargetprediction.ch/
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2.6. Intersection target acquisition for cisplatin-resistant 
OC treated with S tetrandra

The overlapping targets between S tetrandra-related targets and 
cisplatin-resistant OC-related targets were identified using a Venn 
diagram (available at https://www.bioinformatics.com.cn), and 
these intersecting targets were selected for further analysis.

2.7. The construction of protein–protein interaction (PPI) 
network

Overlapping targets were analyzed via the STRING platform[24] 
(https://string-db.org/), with species specification to Homo sapi-
ens and interaction score cutoff set at 0.4. Network visualiza-
tion was performed with cytoscape (version 3.10.2). Topological 
analysis was conducted using the CytoNCA plugin. The size of 
the text, the shade of the color, and the size of the nodes were 
adjusted based on the degree value. The larger the degree value, 
the larger the text, the darker the color, and the larger the node, 
which also indicates that the importance of this node in the pro-
tein interaction network is higher.

2.8. Integrated GO term and KEGG pathway enrichment

Enrichment profiling for gene ontology (GO) terms and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathways was con-
ducted with configured R packages (org.Hs.e.g.db, colorspace, 
stringi, DOSE, clusterProfile, pathview, ggplot2, limma), utilizing 
significance thresholds of P value cutoff = .05 and q value cut-
off = 0.05. The GO function analysis mainly encompassed 3 cat-
egories of biological process (BP), cellular component (CC) and 
molecular function (MF). Significantly enriched terms (P < .05) 
were ranked by P-value, with the top ten entries visualized.

2.9. Machine learning model construction

The intersecting gene expression matrix from GSE14787 was 
utilized to develop a machine learning model via the “caret” 
“radom Forest” “kernlab” “xgboost”package in R. Algorithms 
included random forest, support vector machine, generalized 
linear model, and eXtreme Gradient Boosting. The dataset was 
partitioned into a training set (70%) and test set (30%) via 
stratified sampling using createDataPartition. A 5-fold repeated 
cross-validation was implemented to minimize overfitting and 
optimize hyperparameters. Key tuned parameters were detailed 
in Table S1, Supplemental Digital Content, https://links.lww.
com/MD/Q637. Model performance was evaluated using resid-
ual analysis and receiver operating characteristic (ROC) curves, 
leading to the identification of the top 10 variables as key genes.

2.10. Single-gene analysis

ROC curves were generated for each pivotal gene to assess diag-
nostic accuracy. Genes exhibiting an AUC value exceeding 0.7 
were deemed potentially valuable for disease diagnosis purposes. 
To visualize the differential expression patterns of the previ-
ously identified key genes between patient and control cohorts, 
we employed boxplots created using the R package “ggplot2.”

2.11. Analysis of immune infiltration

For the purpose of ascertaining the relative abundance of 
immune cells within the samples, the OC expression data were 
analyzed using CIBERSORT. The mRNA expression matrix was 
examined via the CIBERSORT R script, which was retrieved 
from the CIBERSORT website and utilized CIBERSORT L22 
as the reference. To compare immune cell proportions between 
groups, the Wilcoxon rank-sum test was applied, defining statis-
tical significance at P < .05.

2.12. Molecular docking validation

All small-molecule 3D conformations utilized in this work 
originated from PubChem. This publicly available resource can 
be accessed at https://pubchem.ncbi.nlm.nih.gov/. SYBYL-X 
2.0 was utilized to perform molecular optimization under the 
following conditions: tripos force field application, Gasteiger-
Hückel charge calculation, 10,000-iteration maximum, and 
0.005 kcal/(mol A) energy convergence criterion; all other 
parameters maintained default configurations. The RCSB 
PDB repository (https://www.rcsb.org/) served as the source 
for the target macromolecule’ s 3-dimensional atomic coordi-
nates. Molecular preparation of receptors was conducted in 
MGLTools 1.5.6 (Windows version), involving water molecule 
elimination, metal ion removal, and other essential preprocess-
ing steps prior to PDBQT format conversion. AutoDock Vina 
1.1.2 (https://vina.scripps.edu/) was used to evaluate docking 
affinity between ligands and proteins. Structural renderings of 
docking complexes were generated with discovery studio in 
conjunction with PyMOL.

2.13. Molecular dynamics simulation

Molecular dynamics simulation (MDS) were implemented in 
GROMACS 2022 to investigate. Force field topology derivation 
employed dual resources: GROMACS-native pdb2gmx tool, 
AutoFF web server for ligand parameterization. During the simula-
tion, the molecular parameters of the receptor protein were based 
on the CHARMM36m force field,[25] while those of the ligand were 
based on the CGenff force field. A 1 nm TIP3P-type cubic water 
box was added around the system for solventization. Ions were 
added to the system using the gmx genion tool to achieve electri-
cal neutrality. Long-range electrostatic interactions were handled 
using the particle mesh Ewald method, with a cutoff distance of 
1 nm. All bonds were constrained using the SHAKE algorithm, and 
the MDS was performed using the Verlet leapfrog algorithm with 
an integration step size of 1 fs. The system was energy-optimized 
prior to the MDS. The energy minimization process included 3000 
steps of steepest descent optimization followed by 2000 steps of 
conjugate gradient optimization. The optimization steps are as fol-
lows: first, the solute is constrained, and the water molecules are 
minimized; then, the counterions are constrained, and the system 
is minimized; finally, the entire system is minimized without con-
straints. The simulation was conducted at a temperature of 310 K 
under constant pressure in an NPT system, with a simulation time 
of 100 ns. During the simulation, the tools g-root mean square 
deviation (RMSD), g-root mean square fluctuation (RMSF), g- 
hydrogen bonds (HBonds), g-radius of gyration (Rg), and g-solvent 
accessible surface area (SASA) were applied to compute the RMSD, 
RMSF, HBonds, Rg, and SASA in a respective manner.

2.14. ADMET properties prediction

To predict the ADMET properties of S tetrandra components, 
we utilized the SwissADME online database (https://swissadme.
ch) to evaluate their pharmacokinetic characteristics, including 
absorption, distribution, metabolism, and excretion, as well as 
potential toxicity risks. This database offers comprehensive pre-
dictions of key pharmacokinetic parameters, drug-likeness, and 
pharmacological properties. Compounds exhibiting favorable 
ADMET profiles were prioritized for further investigation and 
potential experimental validation.

3. Results

3.1. WGCNA analysis of OC

Hierarchical clustering was performed on the study samples 
using WGCNA to detect outliers and remove abnormal sam-
ples. Next, a scale-free network was constructed by selecting 

https://www.bioinformatics.com.cn
https://string-db.org/
https://links.lww.com/MD/Q637
https://links.lww.com/MD/Q637
https://pubchem.ncbi.nlm.nih.gov/
https://www.rcsb.org/
https://vina.scripps.edu/
https://swissadme.ch
https://swissadme.ch
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an optimal soft threshold (β = 20, R² = 0.946), as shown in 
Figure 1A. Subsequently, the adjacency matrix was constructed 
and transformed into a topological overlap matrix. Gene den-
drograms and module colors were produced according to vary-
ing degrees (Fig. 1B). In total, all genes were clustered into 13 
modules. Modules colored blue indicated negative correlation 
with OC traits, while red modules showed positive correlation; 
the strength of the correlation was mirrored by the intensity of 
the color. Among them, MEblack, MEblue, MEgreen, MEgrey, 
and MEtan exhibited significantly positively correlated with 
OC, but their correlation coefficients were all <0.5, whereas 
MEbrown, MEpink, MEred, MEturquoise, and MEyellow were 
significantly negatively correlated with OC; the correlation 
coefficients of MEbrown, MEpink, MEred, and MEturquoise 
were −0.77, −0.54, −0.8, and −0.85 in decibels, so these 4 mod-
ules were selected for subsequent analysis (Fig. 1C).

Filtering the individual module genes by gene importance 
and gene-module correlation, with filtering thresholds set 
at geneSigFilter = 0.5 and moduleSigFilter = 0.8. The results 
showed that MEbrown was a gene cluster related to 234 
core genes including ACTR10, CRNDE, FAM213A, GCA, 
PPAP2A, etc (Fig. 1D); MEpink was a gene cluster related 
to 146 core genes including LIPT1, VPS37A, ZC3H14, 

SELT, ZZZ3, KLHL7, etc (Fig. 1E); MEred was a gene clus-
ter related to 209 core genes including B-cell lymphoma 2 
(BCL2), SPAG9, MAGI2-AS3, ATG2B, DTWD1, etc (Fig. 1F); 
METurquoise was a gene cluster related to 341 core genes 
including SH3BP5, ARMCX1, CAV1, GAS1, RTN4, SNX3, 
PLSCR4, etc (Fig. 1G). In summary, a total of 1619 module 
genes were obtained.

3.2. Differential gene analysis for OC

Using the “limma” R package, DEGs in OC were identified 
under the criteria of |log2 Fold Change| > 1 and P < .05. A total 
of 3173 DEGs were detected (Fig. 2A), with 132 upregulated 
ones among them, for instance, PTH2R, SOX17, ZIC1, and 
MUC1, as well as 1848 downregulated genes such as ITLN1, 
TCEAL7, SGCG, ADH1B, and OGN (Fig. 2B).

3.3. Acquisition of cisplatin-resistant targets in OC

The keyword “Cisplatin resistance” was used to search the 
GeneCards database, resulting in 4868 candidate genes. Among 
these, 331 targets with a relevance score >10 were selected. 
Additionally, 50 cisplatin-resistant targets were retrieved from 

Figure 1.  Weighted gene co-expression network analysis of OC. (A) Soft threshold plot in WGCNA. (B) WGCNA gene dendrogram. (C) Module-trait heatmap 
illustrating correlations between modules and OC. (D–G) Significant gene screening maps for the MEbrown, MEpink, MEred, and MEturquoise modules, respec-
tively. OC = ovarian cancer, WGCNA = weighted gene co-expression network analysis.
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the OMIM database. In the MsigDB database, gene sets asso-
ciated with cisplatin resistance were collected based on the 
following terms: BRACHAT_RESPONSE_TO_CISPLATIN, 
KANG_CISPLATIN_RESISTANCE_DN, KANG_CISPLATIN_
RESISTANCE_UP, KERLEY_RESPONSE_TO_CISPLATIN_DN, 
KERLEY_RESPONSE_TO_CISPLATIN_UP, LI_CISPLATIN_
RESISTANCE_DN, LI_CISPLATIN_RESISTANCE_UP, 
TSUNODA_CISPLATIN_RESISTANCE_DN, WANG_
CISPLATIN_RESPONSE_AND_XPC_DN, WANG_CISPLATIN_RESPONSE_
AND_XPC_UP, WHITESIDE_CISPLATIN_RESISTANCE_DN, 
and WHITESIDE_CISPLATIN_RESISTANCE_UP. A total of 628 
cisplatin-resistant genes were obtained from MsigDB.

After consolidating gene entries from 3 distinct databases and 
eliminating redundant entries, a total of 952 unique cisplatin- 
resistant genes were identified. Subsequently, an intersection 
analysis was performed among these 952 cisplatin-resistant 
genes, 173 OC DEGs, and 1619 modular genes derived from 
WGCNA. This process yielded 194 OC-associated cisplatin- 
resistant genes (Fig. 2C).

3.4. Protein–protein interaction network construction for 
cisplatin resistance in OC

PPI network was constructed based on the 194 identified  
cisplatin-resistant genes using the STRING database and visu-
alized with Cytoscape. In this network, nodes were color coded 
according to their degree values: blue for low-degree nodes, 
light yellow for medium-degree nodes, and yellow for high- 
degree hub targets. The resulting network consisted of 167 
nodes and 1110 interactions, with EGFR, TNF, BCL2, CCND1, 
and NF-κB1 identified as the top-ranked hub genes based on 
degree value (Fig. 2D).

3.5. Functional enrichment analysis of cisplatin resistance 
in OC

To delineate molecular mechanisms underlying cisplatin resistance 
in OC, we performed functional enrichment analyses using GO 
and KEGG pathway databases. GO analysis revealed a total of 

Figure 2.  Mechanistic analysis of cisplatin resistance in OC. (A) Volcano plot of differentially expressed genes in OC. (B) Heatmap of differentially expressed 
genes in OC. (C) Identification of cisplatin-resistant targets in OC. (D) Protein–protein interaction network of cisplatin-resistant targets in OC. (E) GO enrichment 
analysis of cisplatin-resistant genes in OC (biological process). (F) GO enrichment analysis of cisplatin-resistant genes in OC (cellular component). (G) GO enrich-
ment analysis of cisplatin-resistant genes in OC (molecular function). (H) KEGG pathway enrichment analysis of cisplatin-resistant genes in OC. GO = gene 
ontology, KEGG = Kyoto Encyclopedia of Genes and Genomes, OC = ovarian cancer.
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1468 BP terms, including response to xenobiotic stimulus, response 
to steroid hormone, response to extracellular stimulus, response to 
nutrient levels, response to corticosteroid, and gland development 
(Fig. 2E). CC analysis identified 75 entries, such as focal adhesion, 
cell-substrate junction, collagen-containing extracellular matrix, 
blood microparticle, and nuclear membrane (Fig. 2F). MF anal-
ysis included 96 categories, with key terms such as phospholi-
pase inhibitor activity, extracellular matrix structural constituent, 
enzyme inhibitor activity, growth factor inhibitor activity, growth 
factor binding, and organic acid binding (Fig. 2G).

KEGG pathway enrichment identified 93 significantly 
enriched pathways, including MicroRNAs in cancer, bladder 
cancer, fluid shear stress and atherosclerosis, focal adhesion, 
HIF-1 signaling pathway, Hepatocellular carcinoma, PI3K-Akt 
signaling pathway, AGE-RAGE signaling pathway in diabetic 
complications, human cytomegalovirus infection, Platinum drug 
resistance, and p53 signaling pathway (Fig. 2H).

3.6. Acquisition of active components and targets from S 
tetrandra

Relevant potential active ingredients along with their respec-
tive target molecules were gathered from a variety of databases, 
including TCMSP (2 compounds, 40 targets), ETCM (4 com-
pounds, 29 targets), and BATMAN-TCM (4 compounds, 43 tar-
gets). A total of 10 unique bioactive compounds were identified. 
SwissTargetPrediction was used to predict additional targets, 
and after integrating all data sources and removing duplicates, a 
final list of 402 targets for S tetrandra was obtained.

3.7. Identification of cisplatin-resistant targets regulated by 
S tetrandra in OC

An intersection analysis was performed between the 194 cisplatin- 
resistant targets in OC and the 402 targets of S tetrandra, yielding 
21 overlapping targets that may represent potential therapeutic tar-
gets for reversing cisplatin resistance in OC (Fig. 3A).

3.8. Protein–protein interaction network analysis of S 
tetrandra-regulated cisplatin resistance in OC

The 21 overlapping target molecules were uploaded to the STRING 
database, and a PPI network was constructed via visualization with 
Cytoscape. Topological analysis revealed that CCND1, NF-κB1, 
and BCL2 exhibited high connectivity and centrality in the net-
work, implying that they play key roles in regulating the impacts of 
S tetrandra on cisplatin resistance (Fig. 3B).

3.9. Identification of core components in S tetrandra for 
treating cisplatin-resistant OC

To explore the relationships among herbal components, targets, 
pathways, and disease mechanisms, a herb-component-target- 
pathway-disease network was constructed using cytoscape. This 
network contained 93 nodes and 260 edges (Fig. 3C). Topological 
analysis identified PRKCA, NF-κB1, and BCL2 as key regulatory 
hubs involved in the reversal of cisplatin resistance by S tetran-
dra (Fig. 3D). Among the active components, tetrandrine, thal-
rugosine, β-sitosterol, hesperetin, and (+)-2-N-methyltetrandrine 
interacted with the highest number of targets, with 10, 7, 6, 6, 6, 6, 
6 target associations, respectively (Fig. 3E).

3.10. Functional enrichment analysis of cisplatin resistance 
in OC regulated by S tetrandra

To further clarify the biological roles linked to the 21 inter-
secting genes that are modulated by S tetrandra, functional 

enrichment analysis was performed. GO analysis revealed 864 
BP terms, including gland development, peptidyl-threonine 
phosphorylation, peptidyl-threonine modification, reproductive 
structure development, and reproductive system development, 
etc (Fig. 4A). CC analysis identified 35 categories, such as spin-
dle, cyclin-dependent protein kinase holoenzyme complex, spin-
dle microtubule, serine/threonine protein kinase complex, and 
protein kinase complex, etc (Fig. 4B). MF analysis included 82 
entries, with key terms such as histone kinase activity, protein 
serine/threonine/tyrosine kinase activity, nuclear receptor activ-
ity, ligand-activated transcription factor activity and steroid 
binding, etc (Fig. 4C).

KEGG pathway enrichment identified 62 significantly 
enriched pathways, primarily including MicroRNAs in can-
cer, Prostate cancer, AGE-RAGE signaling pathway in diabetic 
complications, chemical carcinogenesis-receptor activation, 
PI3K-Akt signaling pathway, gastric cancer, EGFR tyro-
sine kinase inhibitor resistance, small cell lung cancer, focal 
adhesion, HIF-1 signaling pathway, cell cycle, measles, hepa-
tocellular carcinoma, melanoma, non-small cell lung cancer, 
p53 signaling pathway, glioma, chronic myeloid leukemia, 
gap junction, and Epstein-Barr virus infection, etc (Fig. 4D). 
Detailed information for each enrichment term is presented in 
Figure 4E.

3.11. Machine learning identification of core targets of S 
tetrandra in reversing cisplatin resistance in OC

Four distinct machine learning algorithms were utilized to screen 
for key regulatory targets from among the 21 intersecting genes. 
The models were constructed using the R package “caret,” and 
model performance was evaluated using residual analysis and 
ROC curves. Results showed that all 4 models exhibited low 
residuals (Fig. 5A, B), and the area under the ROC curve (AUC) 
exceeded 0.7 for each method. Notably, random forest and sup-
port vector machine achieved AUC values of 1 (Fig. 5C). The 
top 10 features from each model were selected as candidate core 
genes (Fig. 5D).

3.12. Expression and diagnostic value analysis of core 
targets

Since all 4 machine learning models demonstrated acceptable 
performance, an intersection analysis was conducted among the 
top-ranked genes from each model. Genes present in at least 3 
models were defined as core targets: threonine tyrosine kinase 
(TTK), AURKA, SMAD7, BCL2, DNMT1, vitamin D recep-
tor (VDR), NF-κB1, and cyclin dependent kinase 1 (CDK1; 
Fig. 6A). The center coordinates of the core target points are 
presented in Table 1. Expression analysis revealed that SMAD7 
showed no significant difference between OC and normal tis-
sues, whereas AURKA, CDK1, DNMT1, TTK, and VDR were 
upregulated in OC samples. In contrast, BCL2 and NF-κB1 
were downregulated (Fig. 6B). ROC analysis indicated that all 
core genes except SMAD7 had diagnostic potential (AUC > 0.7; 
Fig. 6C). Line graphs displaying expression trends of core genes 
as shown in Figure 6D.

3.13. Core targets immune infiltration correlation analysis

Figure 7A demonstrates the percentage of 22 immune cell 
types within the samples, the highest percentage was T cells 
CD4 memory resting. Figure 7B demonstrates the difference in 
expression abundance of 22 immune cells in normal and OC 
groups. Figure 7C demonstrated the difference in expression of 
22 immune cells in normal and OC groups, for example, mac-
rophage M1 and 0 expression was significantly upregulated in 
the OC group. Figure 7D demonstrates the correlation between 
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immune cells, red is negative correlation, * indicates significant 
difference, you can select the immune cells you are interested 
in analyzing. Figure 7E shows the correlation analysis between 
core targets and immune cells, for example, AURKA showed 
significant positive correlation with macrophage M0 and 1.

3.14. Molecular docking validation of core target and 
components

Based on machine learning results, the following 8 core targets 
were selected for molecular docking validation: TTK, AURKA, 
SMAD7, BCL2, DNMT1, VDR, NF-κB1, and CDK1. Binding 
affinity between these targets and active components of S tetran-
dra was assessed. Generally, binding energy <–7 kcal/mol indi-
cates strong interaction. Results showed that all targets, except 
VDR and BCL2, exhibited binding energies below this thresh-
old. Among the compounds tested, (+)-2-N-methyltetrandrine, 
hesperidin, menisidine, tetrandrine, and thalrugosine displayed 
strong binding affinities to multiple targets. The binding ener-
gies of the respective compounds are presented in Figure 8A. 
We have visualized the interactions between hesperidin and 
AURKA, VDR and cissamine, as well as TTK and tetrandrine.

Hesperidin formed HBonds with ASP274, LYS162, and 
LYS258 of AURKA, along with van der Waals interactions 
with GLY140, LYS141, LEU129, and Pi-alkyl interactions with 
LEY263 and VAL147 (Fig. 8B). Cissamine formed van der 
Waals with ILE271, SER237, and PHE150 of VDR, Pi-alkyl 
interactions with VAL300, LEU230, and LEU233, and Pi-sigma 
interactions with HIS305 and TRP286 (Fig. 8C). Additionally, 
tetrandrine formed van der Waals with ASP664, GLY534, and 
ASN652 of TTK, Pi-alkyl interactions with VAL539, ILE633, 
ALA651 (Fig. 8D).

3.15. Molecular dynamics simulation

RMSD is a good indicator of the conformational stability of 
proteins and ligands, as well as a measure of the degree of 
deviation of atomic positions from their initial positions. The 
smaller the deviation, the better the conformational stability. 
Therefore, RMSD was used to evaluate the equilibrium of the 
simulated system. As shown in Figure 9A, the VDR-cissamine, 
TTK-tetrandrine, and AURKA-hesperidin complex systems all 
reached equilibrium after 5 ns, with final values fluctuating 
around 2.94, 2.26, and 2.20 Å, respectively. Therefore, the small 

Figure 3.  Core components of S tetrandra defense against cisplatin-resistant OC. (A) Venn diagram showing the intersection of cisplatin-resistant genes and S 
tetrandra-related targets in OC. (B) Protein–protein interaction network of cisplatin-resistant targets regulated by S tetrandra. (C) The network of herbs, compo-
nents, targets and pathways of S tetrandra in the treatment of cisplatin-resistant OC. (D) Ranking of degree values for target proteins in the network. (E) Ranking 
of degree values for herbal components in the network. OC = ovarian cancer.



8

Zhong et al.  •  Medicine (2025) 104:46� Medicine

molecules cissamine, tetrandrine, and hesperidin exhibit high 
stability when bound to the target proteins VDR, TTK, and 
AURKA, respectively.

Rg quantifies alterations in the global conformation and mea-
sures the compactness of protein structures, larger Rg changes 
indicate greater system expansion. The VDR-cissamine, TTK-
tetrandrine, and AURKA-hesperidin complex systems exhibit 
slight fluctuations during motion, indicating that the small  
molecule-target protein complexes undergo conformational 
changes during motion (Fig. 9B).

SASA is an indicator for assessing protein surface area. In 
this simulation, the solvent-accessible surface area between the 
target protein and small molecules was calculated (Fig. 9C). The 
results showed that after the VDR-cissamine, TTK-tetrandrine, 
and AURKA-hesperidin receptors bound to their ligands, the 
SASA of the complexes did not change significantly, indicating 
that ligand binding has a minimal impact on protein structure.

HBonds play a crucial role in ligand-protein binding. The 
number of HBonds between small molecules and target proteins 
during the kinetic process is shown in Figure 9D. The number 
of HBonds between the VDR-cissamine small molecule and the 
target protein ranges from 0 to 4, with most complexes hav-
ing approximately 2 HBonds. In most cases, there is 1 HBond 
between the TTK-tetrandrine small molecule and the target pro-
tein. The number of HBonds between the AURKA-hesperidin 
small molecule and the target protein ranges from 0 to 4, with 
most complexes having approximately 3 HBonds. This indicates 
that this ligand has good hydrogen bonding interactions with 
the target protein.

RMSF can indicate the flexibility of amino acid residues in a 
protein. As shown in Figure 9E, the RMSF values of the VDR-
cissamine, TTK-tetrandrine, and AURKA-hesperidin complexes 
are relatively low (mostly below 2.2 Å), indicating lower flexi-
bility and higher stability.

To conclude, the VDR-cissamine, TTK-tetrandrine, and 
AURKA-hesperidin complex systems exhibit stable binding, and 
the complexes demonstrate good hydrogen bonding interac-
tions. Consequently, the small molecules cissamine, tetrandrine, 
and hesperidin exhibit good binding interactions with VDR, 
TTK, and AURKA.

3.16. ADMET profile analysis

We conducted a comprehensive assessment of the ADMET 
profiles of the compounds identified in our study. The detailed 
data were presented in Table S2, Supplemental Digital Content, 
https://links.lww.com/MD/Q637. The evaluation of drug- 
likeness using Lipinski’s rule of 5 revealed distinct profiles 
among the compounds. For hesperidin, its molecular weight 
was 302.28 Da, the log P value was 1.91, indicating appropriate 
lipophilicity. It had 6 hydrogen bond acceptors and 3 donors, 
which were also within the defined limits. The topological polar 
surface area was 96.22, suggesting good oral bioavailability 
potential. Tetrandrine, its molecular weight was 622.75 Da, 
which was slightly above the typical limit. The log P value was 
5.49, it had 8 hydrogen bond acceptors and 0 donors, and had 
poor solubility.

Figure 4.  Functional enrichment analysis of cisplatin resistance in OC regulated by S tetrandra. (A) GO enrichment analysis (biological process). (B) GO 
enrichment analysis (cellular component). (C) GO enrichment analysis (molecular function). (D) KEGG pathway enrichment analysis. (E) Summary of significant 
enrichment results. GO = gene ontology, KEGG = Kyoto Encyclopedia of Genes and Genomes, OC = ovarian cancer.

https://links.lww.com/MD/Q637
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4. Discussion
Although progress has been made in the early detection and 
multimodal treatment of OC, chemoresistance remains a major 
contributor to disease recurrence and mortality. Therefore, iden-
tifying novel agents that can restore tumor sensitivity to cisplatin 
without inducing significant toxicity to normal tissues is crucial 
for improving patient outcomes. Recently, natural compounds 
have shown promise in suppressing tumor invasion, metastasis, 
and resistance to therapy.[26,27] Hence, exploring bioactive com-
ponents from natural products represents a viable approach to 
surmounting cisplatin resistance in OC.

In this study, we systematically investigated the molecular 
mechanisms underlying S tetrandra-mediated reversal of cisplatin 
resistance by integrating network pharmacology, bioinformatics, 
and molecular docking approaches. Initially, to identify potential 

targets associated with S tetrandra, we adhered to database pro-
tocols and compiled target molecules from 5 distinct reposito-
ries, resulting in 402 unique S tetrandra-associated targets after 
eliminating duplicates. To explore therapeutic targets for OC, we 
selected the GSE14407 and GSE38666 datasets from the gene 
expression omnibus database as they cover OC samples. Using 
WGCNA, we identified key molecules associated with OC progres-
sion. To obtain cisplatin-resistant targets and mitigate biases from 
single-dataset reliance, we integrated 952 cisplatin-resistant genes 
from GeneCards, OMIM, and MsigDB databases. Through Venn 
diagram analysis, we identified 21 potential therapeutic targets of 
S tetrandra in cisplatin-resistant treatment of OC. Subsequent PPI 
network construction, cytoscape-based topological analysis, and 
machine learning algorithms led to the identification of 8 core tar-
gets involved in the reversal of cisplatin resistance.

Figure 5.  Identification of key genes involved in S tetrandra-mediated reversal of cisplatin resistance in OC. (A) Residual evaluation of machine learning models. 
(B) Residual distribution across models. (C) ROC curve evaluation. (D) Ranking of feature importance for identifying core genes. OC = ovarian cancer, ROC = 
receiver operating characteristic.
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Aurora kinases are a family of serine/threonine kinases 
comprising aurora A (AURKA), aurora B (AURKB), and 
aurora C (AURKC). Overexpression of AURKA and AURKB 
has been linked to tumor progression and poor survival out-
comes in various cancers.[28] AURKA inhibitors have been 
found to be potent agents in overcoming cisplatin resistance 
in tumor cells and tumors. AURKA has been shown to be 
significantly upregulated in the majority of OC tissues and 
has an important role in mediating cellular survival after 

cisplatin treatment.[29,30] Its inhibition leads to impaired DNA 
repair, increased replication stress, and enhanced apopto-
sis.[31] Aurora kinase A is essential for cell division, and it 
serves a critical function in various stages of the mitotic pro-
cess. AURKA is essential for centrosome maturation, spindle 
assembly, and accurate chromosome segregation during mito-
sis, thereby promoting G2/M phase transition and maintain-
ing genomic stability.[32] Our findings indicated that AURKA 
was significantly upregulated in OC tissues, which correlated 

Figure 6.  Expression and diagnostic analysis of core targets. (A) Venn diagram of intersecting core genes. (B) Differential expression of core targets between 
OC and normal groups. (C) ROC curves showing diagnostic performance. (D) Line graphs displaying expression trends of core genes. OC = ovarian cancer, 
ROC = receiver operating characteristic.

Table 1

Center coordinates of core targets.

Targets name PDB X Y Z

TTK 2X9E −6.774469 21.426163 −0.948041
AURKA 1MQ4 −7.293926 27.375556 80.081778
SMAD7 7CD1 20.434752 2.67417 41.66365
BCL2 1PQ1 0.454225 −7.916631 14.025184
DNMT1 3os5 39.769538 −18.8665 −11.392423
VDR 1DB1 11.4649 22.968 34.461933
NFKB1 1IKN 44.477209 28.034454 3.010969
CDK1 6GU7 33.330846 15.432385 11.445346

BCL2 = B-cell lymphoma 2, CDK1 = cyclin dependent kinase 1, PDB = protein data bank, TTK = threonine tyrosine kinase, VDR = vitamin D receptor.
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with poor prognosis, and inhibition of AURKA enhanced the 
sensitivity of cancer cells to platinum-based drugs.

TTK, also known as monopolar spindle 1, is a bispecific 
serine/threonine kinase that plays an important role in the reg-
ulation of spindle assembly checkpoint signaling.[33] Spindle 
assembly checkpoint is a surveillance mechanism during mitosis 
that ensures the fidelity of chromosome segregation and thus 
maintains genome stability. Therefore, TTK plays a crucial role 
in promoting the formation of mitotic checkpoint complexes, 
facilitating correct chromosome alignment, regulating cell 
division, and responding to DNA damage.[34] Qi et al found 
that TTK expression is elevated in cisplatin-resistant OC cell 
lines such as A2780 and SKOV3 cells, and that proliferation 
of TTK-knocked-down OC cells was markedly reduced. TTK 
gene deficiency significantly inhibited cell cycle progression by 
interfering with the cell cycle progression significantly inhibited 
the proliferation of OC cells. TTK inhibitors led to increased 
cisplatin-induced apoptosis and increased sensitivity to cisplatin 
both in vitro and in vivo.[35]

In this study, NF-κB1 and BCL2 were found to be at the center 
of the “component-target” network. Among the key regulators 
of apoptosis, the BCL2 family of proteins plays an important 
role, and antiapoptotic BCL2 proteins are involved in apoptosis 
resistance and tumor cell invasion/migration. Chemoresistance 
data indicate that decreased tumor sensitivity to apoptosis is 
closely related to drug resistance.[11] Upregulation of BCL2 
is significantly associated with increased chemoresistance.[36] 
Nuclear NF-κB1 activates antiapoptotic genes, cell growth fac-
tors, multidrug resistance genes, angiogenesis-related genes, and 
genes related to cell adhesion and metastasis at the transcrip-
tional level, which results in uncontrolled proliferation, apop-
totic escape, and drug resistance of malignant cancer cells.[37] 
The activation of nuclear NF-κB1 acts as a crucial element in 
the emergence of apoptotic resistance within malignant cancer 

cells. NF-κB1 activation induces the expression of antiapop-
totic genes and helps cancer cells to escape cisplatin-induced 
apoptosis.

KEGG pathway enrichment highlighted significant involve-
ment of the PI3K-AKT signaling pathway, which is hyperac-
tivated in cisplatin-resistant OC. Overactivation of the PI3K/
AKT/mTOR pathway is associated with tumor progression, 
metastasis, and chemoresistance, and it is considered to be a 
potential prognostic biomarker for patients with OC.[38] S 
tetrandra components targets act on multiple nodes within this 
pathway, including NF-κB1 and CCND1, potentially restor-
ing the sensitivity of cancer cells to cisplatin. In the cell cycle 
pathway, CDK1 and AURKA jointly regulate G2/M progres-
sion, their inhibition by S tetrandra derivatives may enhance  
cisplatin-induced cell cycle arrest.

Immune infiltration analysis in this study revealed a positive 
correlation between AURKA/TTK expression and M0/M1 mac-
rophage infiltration. Given that tumor-associated macrophages 
promote chemoresistance, targeting these kinases may help 
reshape the tumor microenvironment.

CDK1 is a central kinase in cell cycle regulation, forming a 
complex with cell cycle protein B1 (CDK1-cyclin B1) to drive 
the cell transition from the G2 phase to the M phase.[39] VDR, as 
a regulator of autophagy, is a ubiquitous nuclear receptor that 
can regulate the expression of many genes involved in cell differ-
entiation, proliferation, and calcium/phosphate homeostasis.[40] 
Studies have shown that VDR is a major transcriptional regu-
lator that plays a crucial role in chemosensitivity.[41] S tetrandra 
may have a role in enhancing tumor sensitivity to apoptosis.

Hesperidin is a vitamin P flavonoid compound with anti-
oxidant, anti-inflammatory, and antiapoptotic properties. 
Hesperidin can alleviate radiation-induced ovarian dysfunc-
tion in rats and exhibits significant anti-inflammatory activity 
by downregulating the expression of ovarian TLR-4, NF-κB, 

Figure 7.  Immune infiltration landscape and its association with core targets. (A) Histogram of immune cell proportions. (B) Heatmap of immune cell expression 
abundance. (C) Boxplot of immune cell expression. (D) Heatmap of immune cell correlations. (E) Bubble plot showing correlations between core targets and 
immune cells.
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Figure 8.  Molecular docking validation of core target and component binding ability. (A) Heatmap of docking binding energies. (B) Interaction mode of AURKA 
with hesperidin. (C) Interaction mode of VDR with cissamine. (D) Interaction mode of TTK with tetrandrine. TTK = threonine tyrosine kinase.

Figure 9.  Molecular dynamics simulation of protein–ligand complexes. (A) RMSD values of protein-ligand complexes over time. (B) Rg values of protein-ligand 
complexes over time. (C) SASA values of protein-ligand complexes over time. (D) HBonds values of protein-ligand complexes over time. (E) RMSF values of 
protein-ligand complexes. HBonds = hydrogen bonds, Rg = radius of gyration, RMSD = root mean square deviation, RMSF = root mean square fluctuation, 
SASA = solvent accessible surface area.
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and TNF-α.[42] Zhao et al identified that after treating human 
OC cells with hesperidin, the viability of A2780 cells decreases 
in a time- and dose-dependent manner, and apoptosis can be 
induced.[43] Li et al demonstrated that cissamine enhances the 
sensitivity of bladder cancer cells to cisplatin by inhibiting the 
phosphorylation of JAK2 and STAT3. Cissamine markedly sup-
presses the proliferation, migration, and invasion of cisplatin- 
resistant bladder cancer cells, promotes apoptosis, and induces 
cell cycle arrest at the G0/G1 phase.[44]

Tetrandrine had the widest range of target modulation in 
this study. It has been reported to synergize with adriamycin 
in reversing drug resistance in breast cancer cells[45] and syn-
ergistically induce apoptosis, inhibit the proliferation of lung 
cancer cells in combination with cisplatin.[46] Zhang et al 
demonstrated that tetrandrine can induce apoptosis in OC cells. 
Tetrandrine significantly enhances the cell growth inhibition 
and apoptosis induced by cisplatin, leading to a redistribution 
of the cell cycle.[47] Molecular docking confirmed strong binding 
between TTK and tetrandrine, suggesting its potential role in 
TTK-mediated resistance via enzymatic inhibition. In summary, 
through the application of molecular docking and MDS tech-
nology, we have provided preliminary evidence to confirm the 
accuracy of our target predictions.

The identified active components of S. tetrandra, particularly 
tetrandrine, hold promise for clinical translation as adjuvants 
to overcome cisplatin resistance in OC. However, several for-
mulation challenges must be addressed. Consistent with our 
ADMET analysis results, tetrandrine exhibit low oral bioavail-
ability due to poor aqueous solubility, which may limit their in 
vivo efficacy.[48] Nanoformulation strategies, such as encapsula-
tion in liposomes or polymeric micelles, have shown potential 
to improve solubility and targeted delivery to tumor tissues.[49] 
Additionally, high-dose tetrandrine has been associated with 
hepatotoxicity in animal models,[50] necessitating dose optimi-
zation and toxicity monitoring in preclinical studies. Future 
research should focus on developing stable, low-toxicity formu-
lations and evaluating pharmacokinetic profiles in OC models 
to facilitate clinical translation.

Although this study provides compelling evidence to sup-
port the potential of S tetrandra in cisplatin-resistant OC and 
lays a theoretical foundation for its clinical application, its 
inherent limitations must be recognized. The reliability of tar-
get identification is highly dependent on the accuracy of the 
database used. In order to improve the effectiveness of the 
clinical development and application of S tetrandra, rigor-
ous in vitro and in vivo experimental validation is necessary 
in future studies to confirm our findings. In vitro studies, we 
will validate the expression of core targets in cisplatin-resistant 
OC cell lines such as A2780/DDP and SKOV3/DDP by using 
qPCR and Western blot. Functional experiments including  
siRNA-mediated knockdown of TTK/AURKA will be per-
formed to assess changes in cell viability, apoptosis, and cispla-
tin sensitivity via CCK-8 assay and flow cytometry. Additionally, 
the regulatory effects of key compounds on PI3K-AKT signaling 
and cell cycle pathways will be verified through Western blot 
analysis of downstream proteins. In vivo studies, nude mouse 
xenograft models bearing cisplatin-resistant OC will be used to 
evaluate the in vivo efficacy of tetrandrine in reversing cispla-
tin resistance, including tumor growth inhibition and survival 
rate analysis. Immunohistochemistry will be applied to detect 
the expression of core targets and pathway-related proteins in 
tumor tissues. These experiments are designed to confirm the 
predicted molecular mechanisms and lay a solid foundation for 
the clinical application of S tetrandra.

5. Conclusion
In summary, the present study demonstrated through network 
pharmacology, bioinformatics analysis, and MDSs that multiple 

active ingredients – (+)-2-N-methyltetrandrine, hesperidin, 
menisidine, tetrandrine, and thalrugosine in S tetrandra act on 
key targets involved in OC cisplatin resistance, such as TTK, 
AURKA, BCL2, VDR, NF-κB, and CDK1. These interactions 
may modulate the PI3K-AKT signaling pathway, thereby inhib-
iting cell cycle progression, regulating cell proliferation, and 
enhancing drug sensitivity. Notably, tetrandrine exhibit the 
highest number of target interactions, suggesting its consider-
able potential in preventing and treating cisplatin resistance in 
OC. This research establishes a robust basis for deeper explora-
tions into the intrinsic mechanisms through which S tetrandra 
exerts its therapeutic effects on OC.
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