

1 **Ultraviolet B radiation improves salt-induced responses in the facultative
2 halophyte *Chenopodium quinoa***

3

4 Giorgia Guardigli¹, Francesca Alderotti^{2,3}, Ilaria Colzi¹, Cristina Gonnelli¹, Stefano Mancuso²,
5 Mauro Centritto³, Filippo Micheletti⁴, Giovanni Agati⁴, Federico Vita⁵, Hao Zhou⁶, Ian C.
6 Dodd⁶, Cecilia Brunetti^{2,3§} and Nadia Bazihizina^{1§}

7

8 ¹Department of Biology, University of Florence, via Micheli 1, 50121 Florence

9 ²Department of Agriculture, Food, Environment and Forestry, University of Florence, via
10 Micheli 1, 50121 Florence; Viale delle Idee, 30, 50019 Sesto Fiorentino, Florence

11 ³National Research Council of Italy, Institute for Sustainable Plant Protection (IPSP), 50019
12 Sesto Fiorentino

13 ⁴National Research Council, Institute of Applied Physics “Nello Carrara” (IFAC), 50019 Sesto
14 Fiorentino

15 ⁵Department of Bioscience, Biotechnology and Environment, University of Bari Aldo Moro,
16 Bari, Italy

17 ⁶Lancaster Environment Centre, Lancaster University, Lancaster, United Kingdom

18 [§] co-last authors

19

20 Corresponding author:

21 giorgia.guardigli@unifi.it

22 stefano.mancuso@unifi.it

23 The authors responsible for distribution of materials integral to the findings presented in
24 this article in accordance with the policy described in the Instructions for Authors
25 (<https://academic.oup.com/plphys/pages/General-Instructions>) are (Stefano Mancuso,
26 Giorgia Guardigli).

27 **Short title:** UV-B improves quinoa salt-induced response

28

29

30

31

32

33

34

35

36 **Abstract**

37

38 In natural environments, plants are continuously exposed to multiple abiotic stresses,
39 such as high salinity and excess ultraviolet (UV-B) radiation. While responses to
40 individual stresses are well understood, less is known about their combined impact.
41 To investigate response to combined salt and UV-B stress, *Chenopodium quinoa*
42 seedlings were salt treated (0 and 200 mM NaCl) under either photosynthetic active
43 radiation (PAR), or PAR supplemented with UV-B radiation (313 nm, 1 hour/day,
44 1.71 W/m²). While salinity had minimal effects on plant growth, it decreased both
45 stomatal conductance and photochemical efficiency by 36-47%. UV-B
46 supplementation mitigated the negative effects of salinity, enhancing photosynthetic
47 efficiency and water relations in UV-B and salt treated plants. Enhanced leaf water
48 relations in the combined treatment were associated with altered ion translocation
49 and shoot compartmentalization, especially for K⁺. Indeed, UV-B decreased K⁺
50 accumulation in epidermal bladder cells, suggesting a redistribution from epidermal
51 bladder cells to other leaf tissues. UV-B treatment shifted plant metabolism towards
52 producing specific hydroxycinnamic acid, while quercetin levels remained unchanged,
53 indicating minimal stress. This study describes a novel protective mechanism in
54 *Chenopodium quinoa*, where UV-B radiation enhances ion translocation, water
55 relations, and metabolic adjustments, mitigating salinity stress. This offers key
56 insights into plant resilience and physiological adaptation in salt-affected
57 environments under elevated UV-B exposure.

58

59

60

61

62

63

64

65

66

67

68 **Introduction**

69

70 The growing global population and ongoing climate change pose critical challenges
71 to agriculture. While population growth increases the demand for food, climate
72 change intensifies the environmental stresses affecting crop productivity (Godfray et
73 al., 2010; Ray et al., 2013; Suzuki et al., 2014; Pereira, 2016; Malhi et al., 2021).
74 Emerging evidence indicates that the combined impact of multiple stresses can lead
75 to unexpected outcomes that are not predictable by studying single stresses separately
76 (Mittler, 2006; Suzuki et al., 2014; Pascual et al., 2022; Zandalinas and Mittler, 2022).
77 Soil salinization is a widespread environmental challenge that affects *circa* 10% of
78 the worlds' land area (FAO, 2024). This issue often co-occurs with elevated
79 ultraviolet (UV-B) radiation, a significant environmental stressor driven by
80 stratospheric ozone depletion (Barnes et al., 2019). Climate change models predict
81 that both UV-B irradiance and salinity will concurrently increase in many regions
82 worldwide (Barnes et al., 2019; Corwin, 2021; Hassani et al., 2021; Barnes et al.,
83 2022). Although plant responses to either salinity or UV-B as individual stressors are
84 well-documented, their combined effects are less studied. Salinity negatively affects
85 plant growth primarily through: (i) disrupting water relations because of osmotic
86 stress; (ii) direct cellular damage caused by ion toxicities (mainly sodium (Na^+) and
87 chloride (Cl^-)) and nutrient imbalances (e.g, potassium (K^+) deficiency)), and (iii)
88 oxidative damage induced by excessive reactive oxygen species (ROS) production
89 (Shabala and Pottosin, 2014; Zelm et al., 2020; Melino and Tester, 2023). Conversely,
90 UV-B radiation functions both as a regulatory signal and a stressor according to the
91 dose. Although negative synergistic interactions between stresses can exacerbate plant
92 stress (Zlatev et al., 2012; Ma et al., 2016), combined salt and UV-B exposure can
93 have antagonistic effects, with less severe impact than the sum of their individual
94 effects (Ouhibi et al., 2014; Ma et al., 2016; Mohamed et al., 2023). At the same time,
95 negative synergistic interactions that exacerbate plant stress responses have also been
96 reported (Zandalinas and Mittler, 2022; Fitzner et al., 2023). Despite these contrasting
97 results, a critical aspect that so far remains unexplored is the impact of UV-B radiation
98 on ion relations. Since radiation quality, such as red and blue light, modulates root ion
99 uptake and translocation (Mankotia et al., 2024), and ion regulation is crucial for plants
100 to survive under saline conditions, it is important to investigate whether UV-B
101 radiation affects ion (particularly K^+ , Na^+ , and Cl^-) relations, in salt-treated plants.

102

103 Halophytes have evolved to thrive in extreme and inhospitable environments where
104 multiple stress factors, such as high UV-B radiation and drought, co-occur with
105 salinity (Nikalje et al., 2019; Lopes et al., 2023). They represent promising candidates
106 to understand the mechanisms underpinning cross-tolerance to multiple stresses
107 (Hamed et al., 2013; Shabala, 2013; Nikalje et al., 2019). Among halophytes,
108 *Chenopodium quinoa* Willd. (quinoa), a tetraploid annual pseudocereal crop, has
109 attracted significant attention as it can adapt to diverse environmental conditions and
110 has high nutritional value (Angeli et al., 2020). As a facultative halophyte, quinoa
111 has a good tolerance to salinity, with optimal growth around 100 mM NaCl (Hariadi
112 et al., 2011). Its salt tolerance mechanisms are primarily associated with efficient Na⁺
113 exclusion and enhanced regulation of tissue-specific and ROS-specific K⁺ retention
114 in roots (Cai and Gao, 2020; Bazihizina et al., 2022; Tanveer et al., 2024).
115 Additionally, quinoa seems tolerant to elevated UV-B radiation (e. g. 7.5 W/m²),
116 likely due to constitutive traits such as stable pigment composition, accumulation of
117 UV-screening compounds, and anatomical adaptations such as EBCs (González et
118 al., 2009; Perez et al., 2015).

119 Halophytes achieve salt tolerance by coordinating various physiological, anatomical
120 and morphological traits. One of the most striking adaptations contributing to salt
121 tolerance in many halophytes, including quinoa, is the ability to secrete salt out of
122 leaf tissues through epidermal bladder cells (EBCs) and salt glands (Supplementary
123 Fig. S1). This mechanism is considered a critical determinant of salt tolerance.
124 Although removing quinoa EBCs impairs responses to high salinities by decreasing
125 growth, disrupting ion homeostasis, and altering levels of key osmolytes and
126 metabolites (Kiani-Pouya et al., 2017), the precise role of EBCs in salt tolerance
127 remains unclear and is still a subject of debate (Moog et al., 2022). They are proposed
128 to store metabolites and act as external reservoirs for water and/or ROS scavenging
129 compounds and organic osmoprotectants (Hasegawa et al., 2000; Agarie et al., 2007;
130 Kiani-Pouya et al., 2017; Kiani-Pouya et al., 2019; Kiani-Pouya et al., 2020;
131 Bazihizina et al., 2022). Additionally, EBCs have also been identified as crucial for
132 protecting leaves against UV-B radiation damage, acting as a secondary epidermal
133 layer that provides physical shielding and serves as reservoirs for UV-screening
134 metabolites and ROS-scavenging compounds (Kiani-Pouya et al., 2017; Imamura et

135 al., 2020). Alternatively, bladder cells may function as an ABA-producing factory
136 (Zou et al., 2017), thus playing a pivotal role in mediating plant responses to
137 combined abiotic stresses such as salinity and UV-B radiation. Although the
138 functional significance of EBCs in plants exposed to concurrent UV-B and salinity has
139 not been considered, they could contribute to the maintenance of ion homeostasis and
140 osmotic balance under stress conditions via ABA-regulated stomatal closure or by
141 altering ion compartmentation in the leaves.

142 In this study, we examined the physiological responses of quinoa seedlings to salinity
143 in combination with high UV-B radiation, with a particular focus on how these
144 concurrent stresses affect water and ion relations. Since Na^+ and K^+ dynamics are
145 critical in salt-treated plants and radiation quality may influence ion uptake and
146 translocation potentially via modulation of transcription factors (Mankotia et al.,
147 2024), we hypothesized that UV-B radiation could modify K^+ and Na^+ homeostasis
148 and compartmentalization within salt-stressed leaves and EBCs, thereby affecting
149 overall plant performance under saline conditions.

150

151

152 **Materials and methods**

153 *Plant material and growth conditions*

154 *Chenopodium quinoa* (accession Q20) plants were grown from seeds with universal
155 potting soil composed of neutral sphagnum peat, composted green soil improver, and
156 expanded perlite (less than 5%). The pots were placed in a growth chamber with
157 day/night temperature set at 25 and 22°C, respectively. The photoperiod was
158 maintained at 12 hours per day using time-controlled LED lights (LumiGrow Pro 650)
159 providing an average photosynthetically active radiation (PAR) of 210 $\mu\text{mol photons}$
160 $\text{m}^{-2} \text{s}^{-1}$.

161

162 *Salt and UV-B treatments*

163 After initial measurements confirmed homogeneity of the seedlings, twenty 10-day-
164 old plants were divided into four groups ($n=5$). Each group was assigned to a different
165 treatment to investigate the effect of UV-B radiation, soil salinity, and their interaction.
166 Plants were treated with PAR and tap water (PAR-0), PAR and 200 mM NaCl saline

167 water (PAR-200), UV-B and tap water (UV-0), and UV-B and 200 mM NaCl saline
168 water (UV-200).

169

170 UV-B was applied by supplementing PAR for one hour daily at midday, using two
171 tubular Philips UV-B Narrowband PL-L 36 W/01 lamps (Signify NV, Eindhoven,
172 Netherlands), which emit at a peak wavelength of 313 nm. The mean irradiance of the
173 UV-B radiations throughout the experiment was 1.71 W/m², as measured by a PD300-
174 UV Ophir® (Ophir Optronics Solutions Ltd., Jerusalem, Israel) radiometer set at 313
175 nm and previously calibrated with a portable spectroradiometer (model SR9910-PC;
176 Macam Photometrics Ltd., Livingstone, UK) on the used UV-B lamp. To prevent light
177 contamination between treatments, the seedlings treated with PAR and UV-B were
178 placed in two separate containers made of UV-blocking LEE 226 plastic film (Lee
179 Filters, Andover, UK) (Supplementary Fig. S2).

180

181 *Plant growth*

182 Plants were sampled 26 days after the start of treatments to assess shoot and root fresh
183 and dry mass. Throughout the treatment period, plant growth was monitored weekly
184 by measuring stem and leaf extension with a ruler, and the number of leaves on the
185 primary stem. At the end of the experiment, plants were separated into leaves, stems,
186 and roots, and their fresh and dry weights were measured. Using leaf discs collected
187 to estimate leaf relative water contents (as described in the section below) we also
188 estimated leaf specific area (SLA) calculated as the fresh area (cm²) divided by dry
189 mass (g).

190

191 *Leaf gas exchanges*

192 A LI-COR 6400XT photosynthesis system (Li-6400-40; Li-Cor Inc.), equipped with a
193 LI-6400-40 leaf chamber fluorometer, measured the following parameters: net
194 photosynthetic rate (P_n), stomatal conductance (g_s), intercellular CO₂ concentration
195 (C_i), maximum quantum efficiency of the PSII (F_v/F_m), capture efficiency of excitation
196 energy by the open (oxidized) PSII reaction center under light (F_v'/F_m'), PSII
197 efficiency in light-adapted leaves (Φ_{PSII}), electron transport rate (ETR), and non-
198 photochemical quenching (NPQ). Measurements ($n=5$ per treatment) were taken on

199 the youngest fully expanded leaf from 9:00 to 11:30 am on day 26. These
200 measurements were conducted at ambient relative humidity, with a reference CO₂
201 concentration of 400 $\mu\text{mol mol}^{-1}$, a flow rate of 500 $\mu\text{mol s}^{-1}$, a PAR of 1000 $\mu\text{mol m}^{-2} \text{s}^{-1}$, and a leaf chamber temperature set to 25°C. Chlorophyll fluorescence parameters
202 were measured on both light- and dark-adapted leaves by covering the same leaf with
203 foil for at least 30 minutes (Netondo et al., 2004; Bazihizina et al., 2016).

205

206 *Water relations*

207 Leaf relative water content (RWC) was calculated for each plant ($n=5$ per treatment)
208 using leaf discs according to the following formula:

$$209 \quad RWC = \frac{FW - DW}{TW - DW} \times 100$$

210

211 where TW stands for turgid weight (measured after 4 h in deionized (DI) water in
212 darkness), FW for fresh weight, and DW for dry weight.

213

214 Midday leaf water potential (Ψ_{Leaf} , MPa) was measured on two leaves per plant (i.e.,
215 the second or third pair of youngest fully expanded leaves) using a pressure chamber
216 (Model 1000, PMS, USA) at the end of the experiment. After Ψ_{Leaf} measurements, the
217 leaves were immediately snap-frozen in liquid nitrogen and subsequently used to
218 measure leaf osmotic potential (OP) in the leaf sap. The sap was extracted by placing
219 the thawed leaves in a custom-built separation column and centrifuging at 8000 rpm
220 for 2 minutes. Leaf sap OP was measured with a psychrometer (PSY1; ICT
221 International, Armidale, NSW, Australia) with relative contributions of the different
222 osmolytes (K⁺, Na⁺, Cl⁻, glucose, fructose, and sucrose, as described in the following
223 paragraphs) calculated using the Van't Hoff equation with the molar concentration:

$$224 \quad \pi = -RTC$$

225 where R is the universal gas constant, T is the temperature (Kelvin), and C is the molar
226 concentration of the solutes (Alarcón et al., 1993; Gori et al., 2023a). The calculated
227 OP, based on the sum of each solute OP, closely matched the measured OP (98%).
228 This consistency suggests that the measured ions and soluble carbohydrates were the
229 primary contributors to leaf osmolality.

230 *Tissue ion concentrations*

231 To better understand ion accumulation in the leaf versus EBCs, ion concentrations
232 ($n=5$ per treatment) were measured in both non-brushed and brushed leaves. Hard
233 brushing with a small paintbrush removed the EBCs from the leaves, while non-
234 brushed leaves retained intact EBCs (Bazihizina et al., 2022; Kiani-Pouya et al. 2017).
235 The two youngest fully expanded leaves per plant were sampled, and each was divided
236 into two halves along the midrib; one half was brushed to remove the EBCs (brushed
237 leaves) and the other left intact (non-brushed leaves). The leaf tissues were then snap-
238 frozen in liquid nitrogen and freeze-dried. Additionally, young leaves were collected
239 as above to have leaves with and without EBCs. These young leaves were immediately
240 frozen and stored at -80°C until further analysis.

241

242 K^+ , Na^+ , and Cl^- concentrations were measured in both non-brushed and brushed
243 leaves, as well as in stems. Ion concentrations in stems and young fully expanded
244 leaves were measured by extracting ground tissues with 0.5M HNO_3 as previously
245 described (Bazihizina et al., 2012). In young leaves ion concentrations were instead
246 measured using the leaf sap (Shabala et al., 2013). The diluted extracts or leaf sap were
247 analyzed for K^+ and Na^+ using an atomic absorption spectrophotometer (PinAAcle
248 500, Perkin Elmer, Waltham, Massachusetts, USA) as previously described (Dainelli
249 et al., 2023). Cl^- concentrations were measured using the Sigma Chloride Assay Kit
250 (MAK023, Sigma-Aldrich, St. Louis, MO) according to the manufacturer's protocol.
251 Briefly, 75 μL of reagent was added to 25 μL of sample in a 96-well plate, incubated
252 for 15 minutes at room temperature, protected from light, and then measured at 620
253 nm (A620) using a spectrophotometer (Tecan Infinite M200). The reliability of the
254 methods was confirmed by analyzing a reference tissue sample (Rye Grass ERM-
255 CD281, Certified Reference Material) processed through the same procedure.

256

257 The K^+/Na^+ ratio was calculated for both young leaves and the youngest fully
258 expanded leaves using the ion concentrations from non-brushed leaves. Additionally,
259 the following formula was used to estimate the ion concentrations within the EBCs:

260
$$EBCs\ concentration = \frac{NBr - (Br * LW)}{EW}$$

261

262 where NBr is the ion concentration in non-brushed leaves, Br is the ion concentration
263 in brushed leaves, LW is the percentage of weight contributed by the leaf without

264 EBCs, and *EW* is the percentage of weight contributed by the EBCs in the entire leaf.
265 The *EW* was determined by weighing leaves before and after the EBCs removal. If the
266 calculated ion concentration in EBCs was negative, the ion concentration was assumed
267 to be 0 mM. Finally, ion concentration of youngest fully expanded leaves was used to
268 determine the relative contribution to the leaf OP, as described in the “Water relations”
269 paragraph.

270

271 *Pigment quantification*

272 Leaf pigments were also quantified in the non-brushed youngest fully expanded leaves
273 collected for ion concentration analysis. To determine chlorophyll a (Chl a),
274 chlorophyll b (Chl b), and carotenoids (Car), 20 mg of dried and ground leaves were
275 extracted with 1.2 mL of methanol following the method described by Wellburn
276 (1994). After 30 minutes of extraction in the dark and shaking, the supernatant was
277 measured at 665 nm, 652 nm, and 470 nm using a spectrophotometer (Tecan Infinite
278 M200). The absorbance values were used to calculate the concentrations of Chl a, Chl
279 b, and Car ($n=5$ per treatment).

280

281 *Sugar quantification*

282 Leaf sap used to measure OP was diluted 2.5-fold with distilled water ($n=4$ per
283 treatment). A 10 μ L aliquot of each sample was injected into a Series 200 high-
284 performance liquid chromatography (HPLC) system equipped with a 200-RI detector
285 (PerkinElmer, Bradfrod, CT, USA) and a 7.7 \times 300 mm, 8 μ m Hi-Plex Ca column
286 (Agilent Technologies, USA) maintained at $85 \pm 1^\circ\text{C}$, following the method described
287 by Gori et al. (2023). Glucose, fructose, and sucrose were identified by comparing the
288 retention times with those of carbohydrate standards (Sigma-Aldrich, Milano, Italy).
289 Quantification was performed using a four-point calibration curve for each standard
290 (0.05, 0.1, 0.25, and 0.5 mg/mL) (Supplementary Table S1). The concentrations of
291 soluble sugars (glucose, fructose, and sucrose) were then used to calculate their relative
292 contribution to the leaf OP, as described in the “water relations” paragraph.

293

294 *Analysis of polyphenols*

295 One youngest fully expanded leaf per plant was used for water potential measurements
296 and then rapidly snap-frozen for polyphenols analysis ($n=5$ per treatment). Briefly,

297 polyphenols were extracted from frozen leaves using 60% ethanol for three times as
298 previously described (Sillo et al., 2022). The supernatants from the samples were
299 partitioned and defatted using *n*-hexane to remove chlorophylls and other substances
300 that could interfere with chromatographic analysis. The hydroethanolic phase was then
301 dried using a Concentrator plus (Eppendorf, Italy), and the residue redissolved in a
302 MeOH: Milli-Q water solution (1:1 v/v, pH 2.5 adjusted with formic acid). Polyphenol
303 separation and quantification were performed using a Perkin Elmer Flexar liquid
304 chromatography system (Perkin Elmer®, Bradford®, CT, USA), equipped with a
305 quaternary 200Q/410 pump and an LC 200 diode array detector (DAD). The
306 resuspended samples were injected into an Agilent® Zorbax® C18 analytical column
307 (250 mm 4.6 mm, 5 m), maintained at 30°C, to achieve separation and quantification
308 of the polyphenols. The mobile phase consisted of (A) Milli-Q water and (B)
309 acetonitrile, both acidified with 0.1% formic acid. The flow rate was set to 0.4 mL
310 min⁻¹, using the following gradient program: 0–1 minute: 3% B, 1–55 minutes: 40%
311 B, 55–60 minutes: 40% B, and 60–61 minutes: 3% B. A 10-minutes conditioning step
312 was used to return to the initial conditions. Chromatograms were recorded at 280 nm
313 and 350 nm, while spectral data from all peaks were collected over a wavelength range
314 210–590 nm. Polyphenols were identified by comparing the UV-vis spectral
315 characteristics and retention times with those of authentic standards and data from the
316 literature (Paško et al., 2008; Gawlik-Dziki et al., 2013; Universidad Veracruzana et
317 al., 2019; Al-Qabba et al., 2020). Quantification of the peaks was performed using
318 calibration curves prepared with the following standards: gallic acid, caffeic acid,
319 kaempferol-3-O-glucoside, rutin, and apigenin-7-O-glucoside (all from
320 SigmaAldrich®—Merck® KGaA, Darmstadt, Germany). Polyphenols were extracted
321 from fresh leaves, and their content was calculated as milligrams per gram of dry
322 weight by normalizing the data based on the leaf water content.

323

324 *Gene expression analysis*

325 Using the available transcriptome of brushed and non-brushed quinoa leaves
326 (Bazihizina et al., 2022), five genes expressed in quinoa leaves and EBCs and linked
327 to water and ion transport and ABA regulation were selected: (A) *AKT1*, voltage-gated
328 K⁺ channel, (B) *PIP1A*, plasma membrane aquaporin, (C) *ABA1*, zeaxanthin epoxidase
329 involved in the first step of ABA biosynthesis, and (D) *CqCYP707A4*, cytochrome
330 P450 monooxygenase encoding ABA 8'-hydroxylase. After 26 d of treatments, two

331 young leaves per plant were harvested, one was brushed and the other one left intact,
332 and then immediately frozen in liquid nitrogen and kept at -80 °C for further analysis.
333 Subsequently, total RNA was extracted using the Plant/Fungi Total RNA Purification
334 Kit (Norgen Biotek Corp) according to the manufacturer's protocol from 50 mg of leaf
335 tissue grinded in liquid nitrogen. On-column DNase treatment was assessed using
336 Norgen's RNase-Free DNase I Kit (Norgen Biotek Corp). Electrophoresis using 1%
337 agarose gel was performed for all RNA samples to check for RNA integrity, followed
338 by spectrophotometric quantification. RNA was then reverse transcribed using
339 SuperScript® IV Reverse Transcriptase kit (Life Technologies, UK) with oligo(dT)20
340 primers. Gene expression analysis was performed using the CFX Connect™ Real-
341 Time PCR detection system (Bio-Rad, Hercules, CA, USA) employing 30 ng of cDNA
342 for each reaction and SsoAdvanced Universal SYBR Green Supermix (Bio-Rad),
343 according to the manufacturer's instructions for the detection system (Bio-Rad).
344 EF1alpha was used as housekeeping gene, and three technical replicates were
345 performed for each biological replicate (n=3). Primers were designed by using Primer3
346 software (<http://primer3.ut.ee/>) and double-checked using net primer software
347 (<http://www.premierbiosoft.com/netprimer/>), except for the housekeeping primers
348 (Böhm et al., 2018). A complete list of primers used for quantitative PCR (qPCR)
349 analyses is given in Supplementary Table S1. Relative gene expression levels were
350 calculated according to Livak and Schmittgen (2001).

351

352 *ABA quantification*

353 Leaves were freeze-dried and ground into powder. Samples (approx. 20 mg dry
354 weight) were mixed with deionized water (1:50 extraction ratio) and shaken at 4°C
355 overnight to extract ABA. After centrifuging the extracts at 15,000 rpm for 5 min, the
356 ABA concentration of the supernatant was directly measured via radioimmunoassay
357 using the monoclonal antibody AFRC MAC 252 (Quarrie et al., 1988).

358

359 *Data analysis*

360 All statistical analyses were performed using GraphPad Prism 9.5.1 for Windows
361 (GraphPad Prism Inc., San Diego, CA, USA). The data were assessed for normal
362 distribution through a Shapiro-Wilk test and homogeneity distribution of variance
363 through Bartlett's test, before a two-way ANOVA. Additionally, a three-way ANOVA
364 was performed to examine potential interactions between salt, light, and tissue ion

365 concentration. Treatment differences (p -value ≤ 0.05) were identified using Tukey's
366 multiple comparison test.

367

368 **Results**

369 *Plant growth*

370 While leaf elongation measurements did not differ between treatments (data not
371 shown), salt addition decreased stem height and leaf number by 40% and 17%,
372 respectively, compared to the relative controls (Figs. 1A-C). UV-B treatment did not
373 affect these variables. Shoot dry weight was similar across the four treatments (Fig.
374 1D). However, salt treatment increased biomass allocation to leaves and decreased
375 allocation to stems and roots (Table S2). Consequently, leaf/stem dry weight ratio
376 increased by 1.5-fold and 1.7-fold in PAR-200 and UV-200, respectively, compared
377 to their controls (Fig. 1E). Similarly, the shoot/root ratio in PAR-200 increased by 1.6-
378 fold and in UV-200 by 1.3-fold compared to the relative controls. The UV treatment
379 did not significantly affect the leaves/stem ratio. Salinity only decreased root dry
380 weight by 44% in the PAR-200 treatment (Table S2). Under control conditions, UV-
381 B exposure also increased the specific leaf area (SLA), with changes significant only
382 when compared with UV-200 (Table S2). By contrast in all other treatments SLA
383 values remained within the 440–470 $\text{cm}^2 \text{ g}^{-1}$ range.

384

385 *Water relations*

386 Compared to controls, salt treatment significantly decreased RWC by 28% in the PAR
387 treatment but by 11% in the UV treatment (Fig. 2A), resulting in a leaf RWC in UV-
388 200 plants 1.2 times higher than in PAR-200 plants. Similar changes were also
389 observed for Ψ_{Leaf} , with this value decreasing only in the PAR-200 treatment (Fig. 2B).

390

391 *Chlorophyll fluorescence*

392 Neither salinity nor UV exposure significantly affected F_v/F_m (data not shown). On the
393 other hand, salinity differentially affected chlorophyll fluorescence parameters in
394 light-adapted leaves in UV and PAR plants. In PAR plants, adding 200 mM NaCl
395 decreased F_v'/F_m' by 13% (Fig. 3). By contrast, no salt-induced reduction occurred in

396 UV-treated plants, where F_v'/F_m' values were comparable to those in PAR-0 and UV-
397 0 plants and 15% higher than those in PAR-200 plants (Fig. 3A). Similarly, Φ_{PSII} and
398 ETR decreased (36%) only in PAR-200 plants (Fig. 3B, C). Finally, NPQ significantly
399 decreased in UV-200 plants, decreasing by 31% compared to UV-0 and by 38%
400 compared to PAR-200 (Fig. 3D). Photosynthetic performance aligned with chlorophyll
401 fluorescence data, with more pronounced P_n declines in PAR-200 plants. Indeed, salt
402 treatment decreased P_n by 61% under PAR treatment but by only 38% under UV
403 treatment (Fig. S3A). Stomatal conductance showed salt-induced reductions in the
404 PAR treatment (Fig. S3B). In contrast, UV treatment alone did not significantly affect
405 P_n or g_s when compared to PAR-0 plants.

406

407 *Pigment concentration*

408 The combined salt and UV treatment affected chlorophyll (chl) *a*, chl*b*, and carotenoid
409 concentrations. Chl*a* and chl*b* concentrations increase in UV-200 plants by 2.1- and
410 3.3-fold, respectively, compared to the other treatments (Fig. 4A, 4B). Despite a
411 significant increase in carotenoid concentration (1.6-fold, Fig. 4C), in UV-200 plants
412 car/chl*a+b* ratio declined by 23% (Fig. 4D).

413

414 *Tissue ion concentrations*

415 Ion concentrations were measured in intact (i.e. non-brushed) young leaves and
416 youngest fully expanded leaves, and stems (Table 1). Salt stress increased K⁺
417 concentrations of young leaves by 1.5- and 1.2-fold in the PAR and UV treatments
418 respectively. Without salt, UV treatments increased leaf K⁺ concentrations of the
419 youngest fully expanded leaves by 1.2-fold. Salt-treated plants further increased leaf
420 K⁺ concentrations by 1.6-fold and 1.3-fold in PAR-200 and UV-200 plants
421 respectively.

422 Leaf Na⁺ concentrations also increased in salt-treated plants under both PAR and UV
423 light, albeit to a much lower extent. While K⁺ values in salt-treated plants always
424 exceeded 300 mM, Na⁺ values ranged between 17 and 117 mM. Nevertheless, values
425 in non-brushed salt-treated young leaves increased by 8.8- and 4.8-fold respectively in
426 PAR-200 and UV-200 compared to the relative controls (Table 1). Likewise, in
427 youngest fully expanded leaves, Na⁺ concentrations increased by 7.1 to 7.3-fold in

428 PAR-200 and UV-200 compared to the relative controls. Both in young leaves or
429 youngest fully expanded leaves there were no significant differences between PAR-0
430 and UV-0, or between PAR-200 and UV-200. The three-way ANOVA reveals a
431 significant interaction between the type of tissue, salt, and UV treatment, but only for
432 Na^+ (Table S3). Conversely, there was no significant interaction between these factors
433 for Cl^- concentration; however, for K^+ , a significant interaction was observed between
434 the UV and salt treatment.

435

436 The salt treatment affected the Cl^- concentration in both non-brushed young leaves and
437 youngest fully expanded leaves. Indeed, in young leaves, in PAR-200 and UV-200
438 plants, salinity respectively led to a 2.1- and 3.3-fold increase in leaf Cl^- compared to
439 the relative controls. In youngest fully expanded leaves values increased by 4.8- and
440 5.2-fold respectively (Table 1). No differences in Cl^- were found between PAR-0 and
441 UV-0, or between PAR-200 and UV-200, for both young leaves and youngest fully
442 expanded leaves (Table 1).

443 Compared to controls, salinity increased stem K^+ concentrations by 1.5-fold in both
444 PAR and UV-treated plants while stem Na^+ increased by 8.4-fold and 5.8-fold in PAR-
445 and UV-plants respectively. Similar salt-induced increases were observed for stem Cl^-
446 , with values 3-fold greater than the relative controls in both PAR and UV-treated
447 plants.

448 Both salt and UV treatments decreased K^+/Na^+ ratio in young leaves compared to
449 PAR-0 plants (Table S4). In particular, salt treatment decreased this ratio by 83% and
450 75% in PAR-200 and UV-200 plants compared to their respective controls (PAR-0
451 and UV-0). By contrast, in youngest fully expanded leaves, only the salt treatment
452 reduced K^+/Na^+ ratio, with a 79-82% decrease in both PAR-200 and UV-200 plants.

453 As quinoa uses EBCs to sequester ions (Bazihizina et al. 2022), K^+ , Na^+ and Cl^-
454 concentrations between intact/non-brushed (i.e. leaf including bladders) and brushed
455 (i.e. the leaf without the bladders) leaves (*cf.* Bazihizina et al. 2022, Kiani-Pouya et al.
456 2017) were compared to estimate ion concentrations with and without EBCs. While
457 Na^+ and Cl^- concentrations did not significantly differ between non-brushed and
458 brushed leaves in both young and youngest fully expanded leaves (data not shown),
459 this comparison highlighted different patterns in K^+ compartmentalization between the

460 EBCs and the leaf tissues (i.e. with no EBCs, Fig. 5). Indeed, while no significant
461 differences were observed in PAR-0, in UV-0 estimated K^+ concentrations were
462 always greater in EBCs compared to the brushed leaf tissues (Figs. 5A, B). In salt-
463 treated plants, two contrasting accumulation patterns emerged. Indeed, in PAR-200
464 plants the estimated K^+ concentration in EBCs was 2.9- and 2.0-fold greater than the
465 values in brushed leaves, in young leaves and youngest fully expanded leaves,
466 respectively. By contrast, in UV-200, K^+ concentrations in EBCs dramatically
467 declined, with no significant difference found between EBCs and leaf concentration in
468 youngest fully expanded leaves, and a 19% decline compared to concentrations in the
469 brushed leaves in young leaves.

470

471 Salt treatment almost doubled ion contribution to leaf OP in both PAR-200 and UV-
472 200 plants. Among the inorganic solutes, K^+ was the major contributor, accounting for
473 62-77% of the total leaf OP across all treatments (Table 2). The OP attributed to K^+
474 was significantly affected by the salt treatment, with a 1.6-fold increase in PAR-200
475 compared to PAR-0 and a 1.3-fold increase in UV-200 compared to UV-0.
476 Additionally, UV-0 plants showed a 1.2-fold higher K^+ OP than in PAR-0 plants.
477 While UV radiation treatment alone did not affect Na^+ OP, salinity increased Na^+ OP
478 by 12-fold in PAR-200 and by 7-fold in UV-200 compared to the relative controls.
479 Finally, as for K^+ and Na^+ , the OP due to Cl^- was significantly affected by the salt
480 treatment, with a 4.8-fold increase in PAR-200 and a 5.4-fold increase in UV-200
481 compared to relative controls.

482

483 While compared to relative controls, salinity did not significantly affect the total sugar
484 OP (Table 2 and S5), the total sugar OP of PAR-200 was 1.8 times higher than UV-
485 200. When examining individual sugars, the OP of fructose was 2.5-fold higher in
486 PAR-200 compared to PAR-0. By contrast for glucose OP, there were no significant
487 effects observed due to the UV radiation exposure or the combined salt and UV
488 treatment. In terms of sucrose OP, both salt and UV treatments had significant
489 individual effects. In PAR-200, sucrose OP decreased by 50% compared to PAR-0,
490 and in UV-0, it was reduced by 67% compared to PAR-0.

491

492 *Secondary metabolites*

493 From the polyphenols analysis, 12 principal peaks were identified in youngest fully
494 expanded leaves (Table S6). To provide an overview of the plant secondary
495 metabolism, the compounds separated by HPLC were grouped by classes:
496 hydroxycinnamic acids (sinapic acid and coumaric acid derivatives), quercetin
497 derivatives (rutin and an unidentified quercetin derivative), and kaempferol derivatives
498 (Table 3). Overall, UV treatment shifted the metabolism towards the production of
499 hydroxycinnamic compounds, with concentrations 1.7-fold higher in UV-0 compared
500 to PAR-0 and 1.5-fold higher in UV-200 compared to PAR-200. No significant
501 differences were found in the concentrations of quercetin and kaempferol derivatives.

502

503 *Gene expression analysis*

504 The gene expression mainly highlighted an UV-dependent changes in the expression
505 levels of *PIP1A* in salt-treated plants, with a 3-fold increase in brushed UV-200 leaves
506 compared to brushed PAR-200 leaves (Fig. 6A). While the trend remained the same
507 for non-brushed leaves, differences were not significant. While similar increases were
508 observed for *AKT1* expression levels in brushed leaves, differences were not
509 significantly (Fig. 6B). When comparing brushed and non-brushed leaves, expression
510 levels of both *PIP1A* and *AKT1* were generally higher in brushed leaves across all
511 treatments, although these differences were not statistically significant. The exception
512 was *AKT1* in UV-200 plants, where expression in brushed leaves was three times
513 higher than in non-brushed leaves. For all other analysed genes (*ABA1*, *CYP707A4*,
514 Fig. S4), no significant differences emerged across all treatments.

515

516 *ABA quantification*

517 Abscisic acid (ABA) concentrations were quantified in young leaves with (non-
518 brushed) and without (brushed) EBCs under all treatment conditions (Fig. S4C). Salt
519 treatment markedly increased ABA concentrations under both PAR and UV
520 conditions, with values reaching up to a 3.2-fold increase in non-brushed leaves. A
521 similar trend was observed in brushed leaves, although the increase was not
522 statistically significant. No significant differences were found between brushed and
523 non-brushed leaves within the same treatment.

524 **Discussion**525 **UV-B radiation improved leaf photochemistry of salt-treated plants**

526 While both individual stresses and their combination had limited effects on plant
527 growth, salinity increased the leaf/stem dry weight ratio especially in UV-200 plants
528 (Fig. 1E). Together with the observed decreased shoot elongation under saline
529 conditions, this suggests that resource allocation shifted towards the leaves, likely to
530 sustain transpiration and maintain physiological activity under osmotic stress (Munns
531 and Tester, 2008; Jaramillo Roman et al., 2021). An antagonistic interaction occurred
532 between salt and UV-B treatments, with the presence of UV-B improving PSII
533 efficiency while decreasing NPQ in UV-200 plants compared to PAR-200 plants. The
534 substantially decreased NPQ in UV-200 plants was unexpected as it plays a crucial
535 photoprotective mechanism for dissipating excess energy following excessive
536 radiation absorption (Kromdijk et al., 2023). Nevertheless, this reduced NPQ,
537 combined with similar Φ_{PSII} of UV-200 and control (PAR and UV-treated) plants
538 suggests that the combined stress did not increase photooxidative damage or
539 photoinhibition under our experimental conditions. This improved leaf photochemistry
540 was linked with increases in both chlorophyll and carotenoids concentrations in UV-
541 200 plants, albeit at different extent and thus resulting in a reduced car/chl ratio. As
542 carotenoids are involved in dissipating excess energy and chlorophylls play a central
543 role in absorbing radiation and facilitating electron transport (Guidi et al., 2016;
544 Simkin et al., 2022), this decrease in car/chl ratio of UV-200 plants might explain the
545 simultaneous decline in NPQ declined and improved photosystem efficiency.
546 Nevertheless, the enhanced photochemical capacity in UV-200 plants did not translate
547 into a greater biomass accumulation, which suggests that a greater portion of fixed C
548 was used for stress tolerance mechanisms (e.g. altered ion compartmentation or altered
549 solute transport, as described below). This view is further supported by the lack of
550 photoinhibition or ROS-related damage. By contrast, all measured chlorophyll
551 fluorescence parameters declined in light-adapted PAR-200 leaves. Although total
552 chlorophyll concentration remained unchanged, alterations in chloroplast
553 ultrastructure may have reduced photosynthetic efficiency and energy capture.
554 Although total chlorophyll concentration was not affected, chloroplast ultrastructural
555 alterations may have reduced photosynthetic efficiency or energy capture. These
556 changes, commonly associated with salinity stress, could impair organization and

557 functionality of the photosynthetic apparatus, thereby diminishing photochemical
558 performance (Parida et al., 2003; Shu et al., 2012).

559

560 **UV-B improved osmotic adjustment and altered K⁺ compartmentalization**

561 Combined UV-B and salt treatment improved quinoa water relations. While 200 mM
562 NaCl reduced both RWC and Ψ_{Leaf} in PAR-treated plants, the combined treatment
563 mitigated these effects, with UV-200 and PAR-0 plants showing comparable values.
564 Similarly, previous studies have shown that UV-B can improve drought tolerance by
565 enhancing leaf hydration, associated with osmolyte accumulation, stomatal closure,
566 and shoot anatomical and morphological modifications (Poulson et al., 2002; Robson
567 et al., 2015; Shoaib et al., 2024). These modifications include increased leaf thickness,
568 increased trichome density and altered shoot structure, such as plant height and
569 root/shoot ratio. In the present study, without root-zone salinity, UV-B and PAR-
570 treated plants maintained similar photosynthetic rates, despite lower stomatal
571 conductance of the former. While decreased g_s was probably caused by ABA
572 increments (Fig. S4), attenuated mesophyll limitations could improve CO₂ diffusion
573 to the chloroplasts of control plants. This hypothesis is supported by SLA data (Table
574 S2), with UV-0 plants having a higher SLA than all other treatments. As greater SLA
575 has been associated with thinner leaves and shorter CO₂ diffusion paths that facilitate
576 CO₂ transfer to the chloroplasts (Xu et al., 2013), this may explain high P_n values
577 despite lower g_s of UV-0 plants. As a result, while salt addition to PAR-treated plants
578 approximately halved stomatal conductance, UV plants showed no further declines in
579 g_s . This aligns with previous studies demonstrating that stomatal closure and/or
580 reduced stomatal density decreased stomatal conductance of UV-B treated plants
581 (Schumaker et al., 1997; Correia et al., 1999; Nogués et al., 1999; Poulson et al., 2002;
582 Reyes et al., 2018; Williams et al., 2022). Additionally, the protective function of UV-
583 B under osmotic stress was associated with greater osmotic adjustment, likely due to
584 increased concentrations of soluble sugars and compatible solutes (Puniran-Hartley et
585 al., 2014).

586 Foliar osmotic adjustment after salt treatment was primarily driven (82-96%) by the
587 accumulation of inorganic ions (K⁺, Na⁺, Cl⁻) rather than organic (fructose, glucose,
588 and sucrose) solutes, with K⁺ playing a dominant role (62-77%). This contribution of
589 inorganic solutes was even greater in UV-treated plants representing a critical energy-

590 saving mechanism. Using abundant inorganic ions is preferable to spending energy to
591 synthesize new organic osmolytes. Thus, salinity and, to a lesser extent, UV decreased
592 leaf sucrose levels compared to PAR-0 plants. As EBCs exhibit low photosynthetic
593 performance, they depend on sugar transporters, like SUCs and SWEETs, for solute
594 transport activity and metabolite production (Kiani-Pouya et al., 2017; Böhm et al.,
595 2018; Bazihizina et al., 2022; Moog et al., 2022). Thus it could be argued that the
596 decreases in sucrose concentrations and concomitant increases in fructose and glucose
597 in UV, UV-200 and PAR-200 enhanced sucrose breakdown, possibly through the
598 degradative activity of sucrose synthase and/or invertase. This, in turn, would facilitate
599 the breakdown of sucrose into glucose and fructose, providing energy to increase
600 activity in EBCs, either for solutes transport activity (e.g. K^+ movement from EBCs to
601 leaf tissues as discussed below) and/or produce metabolites (e.g. GABA, Kiani-Pouya
602 et al. 2017).

603 The different salt and UV-B treatments altered foliar K^+ compartmentalization.
604 Adding salt to the root zone substantially increased shoot K^+ concentrations,
605 independently of the UV treatment (Moog et al., 2022; Palacios et al., 2024). In
606 particular, the combined salt and UV-B treatment influencing K^+ allocation between
607 young leaves and youngest fully expanded leaves, specifically between EBCs and leaf
608 tissues (Fig. 5). When applied individually (PAR-200, UV-0), K^+ primarily
609 accumulated in EBCs of both young leaves and youngest fully expanded leaves, as
610 estimated by comparing brushed and non-brushed leaves. As no significant differences
611 occurred between brushed and non-brushed leaves in the UV-200 treatment, this
612 suggests either similar K^+ concentrations between the leaf tissues and EBCs (putative
613 K^+ relocation from the EBCs to leaf tissues) or a reduced K^+ accumulation in EBCs,
614 indicating that K^+ may not have been loaded into the EBCs.

615 The similar stomatal conductance, ABA concentrations and expression levels of ABA-
616 related genes in PAR-200 and UV-200 leaves (Fig. S4) likely reflect a salt-induced
617 response independent of the light treatment. While it was not possible to exclude that
618 the improved leaf water relations might be linked with increased ABA levels in UV-
619 200 plants, the improved leaf water relations observed only in this treatment suggest
620 additional mechanisms are involved. In this context, the differential K^+
621 compartmentalization between EBCs and leaf tissues in these two treatments raises
622 some interesting questions regarding the potential role of K^+ and the improved water

623 relations in UV-200 plants. Indeed, given the observed differences in K⁺
624 concentrations and the differential *CqAKT1* expression levels between leaf tissues and
625 EBCs, we hypothesize that the combined UV and salt stress upregulated genes
626 encoding the voltage-gated K⁺ channel and the plasma-membrane aquaporin in
627 epidermal cells in UV-200 plants. This would catalyze K⁺ movement from the basal
628 side of EBCs stalk cells into the epidermal cells, thereby creating a K⁺ gradient driving
629 water movement from EBCs to leaf cells. Increased expression of *CqPIP1A* in UV-
630 200 plants would further enhance this process. Overall, EBCs might act as an external
631 reservoir of water for the leaf cells (Shabala and Mackay, 2011; Shabala et al., 2014;
632 Shabala and Pottosin, 2014).

633 Adding UV-B radiation did not alter salt-induced changes in Na⁺ and Cl⁻
634 concentrations or their compartmentalization between EBCs and leaf tissues. Although
635 salt treatment increased these ions by up to 9-fold compared to the values in control
636 plants, their concentrations (particularly Na⁺) were always lower than K⁺
637 concentrations, as previously observed in salt-treated quinoa (Moog et al., 2022;
638 Palacios et al., 2024). Moreover, leaf Na⁺ and Cl⁻ concentrations were lower than those
639 generally reported for other halophytes and more comparable to those in salt-sensitive
640 glycophytes (e.g., Kim et al., 2021). For instance, in the obligate halophytes *Atriplex*
641 *mummularia* and *Suaeda dolichostachys* grown with 200 mM NaCl, leaves
642 accumulated 350-400 mM Na⁺ (Bazihizina et al., 2009; Katschnig et al., 2013), which
643 is 10 to 20 times higher than the values observed in the present study. Furthermore,
644 most Na⁺ in salt-treated shoots was concentrated in the stems, with concentrations up
645 to 6.8-fold higher than those in young leaves. This therefore explains the relatively low
646 Na⁺ concentrations calculated in EBCs, as only a limited amount of Na⁺ appears to
647 reach the leaf tissues. These results indicate that foliar Na⁺ and Cl⁻ concentrations in
648 quinoa did not reach toxic levels under saline conditions, with their accumulation
649 unlikely to be the primary factor limiting plant growth under our experimental
650 conditions.

651 **Salt and UV-B effects on secondary metabolism**

652 Rather than uniformly increasing the production of hydroxycinnamic acids with a
653 simple chemical backbone with high UV-B screening efficacy (Table 1) (Stelzner et
654 al., 2019), UV-B treatment significantly increased the production of a specific
655 hydroxycinnamic acid derivative with peak absorbance at the irradiation wavelength

656 (313 nm). However, salinity minimally affected polyphenol concentrations, with only
657 kaempferol derivatives slightly increasing under single-stress conditions (PAR-200).
658 Although quercetin derivatives with an antioxidant function typically accumulate
659 under osmotic stress in plants (Di Ferdinando et al., 2012; De Souza et al., 2018; Xu
660 et al., 2020), concentrations of these compounds remained remarkably stable across
661 all treatments. Collectively, these results suggest that moderate salinity did not
662 significantly challenge quinoa, as it maintained ionic homeostasis and overall biomass
663 accumulation to some extent.

664

665 **Conclusions**

666 This study expands our understanding of halophyte physiological responses to salinity,
667 demonstrating how UV-B radiation and salinity interact to shape plant stress responses
668 and highlighting that investigating the combined effects of these stresses is important
669 to understand the potential agricultural implications. Overall, combined salt and UV-
670 B treatment enhanced the physiological performance of quinoa plants compared to
671 those exposed to salt alone, by increasing photosynthetic efficiency and enhancing
672 water and ion relations. Together, these adaptations mitigated the osmotic component
673 of salinity stress. Understanding whether such interactions modify ion and water
674 relations of different species across the salt tolerance continuum is essential to predict
675 and improve crop performance in salt-affected fields.

K ⁺ concentrations (mM)				Na ⁺ concentrations (mM)				Cl ⁻ concentrations (mM)				
YL	285. 5 ±13.	418. 5 ±14.	313. 4 ±7.9	378. 6 ±20.	2.0 ±0. 3b	17.3 ±2.5a	3.5 ±0. 5b	17. 0 ±2.	103 .9 ±2.	222. 6 ±33.	79. 7 ±4.	261. 5 ±12.
YF	267. 6 ±4.2	428. 2 ±5.0	310. 0 ±8.3	414. 4 ±13.	6.8 ±1. 0b	48.2 4.0a	8.5 ±1. 0b	62. 2 ±5.	34. 4 ±1.	164. 1 ±18.	30. 3 ±1.	157. 1 ±8.0
EL	261. 4 ±3.4	392. 9 ±13.	280. 2 ±3.1	415. 5 ±6.0	13. 9 ±0.	117.3 a* 8b	14. 4 ±1.	84. 3 ±1.	80. 0 ±7.	234. 1 ±13.	86. 2 ±4.	260. 3 ±3.3
Ste m	b* b	a 2a	b* b	4a a					2b	4a 0a	9b 4b	a
	PAR 0	PAR 200	UV 0	UV 200	PA R 0	PAR 200	UV 0	UV 200	PA R 0	PAR 200	UV 0	UV 200

676

677 **Table 1** Concentration of K⁺, Na⁺, and Cl⁻ in the different plant tissues: young leaves
678 (YL), youngest fully expanded leaves (YFEL), and stem. The treatments listed at the
679 bottom of the table include PAR with tap water (PAR-0), PAR with 200 mM saline
680 water (PAR-200), UV-B radiation with tap water (UV-0), UV-B radiation with 200
681 mM saline water (UV-200). The table shows significant differences ($p \leq 0.05$) between
682 salt treatments (PAR-0 vs. PAR-200, and UV-0 vs. UV-200) using lowercase letters,
683 and between radiation treatment (PAR-0 vs. UV-0, and PAR-200 vs. UV-200) using
684 an asterisk. Data are presented as means (n=5).

685

Contribution of solutes	PAR-0 MPa	%	UV-0 MPa	%	PAR-200 MPa	%	UV-200 MPa	%
K ⁺	-0.66 b*	72.0	-0.78 b*	77.4	-1.07 a	61.7	-1.02 a	64.1
Na ⁺	-0.01 b	1.3	-0.02 b	2.2	-0.12 a	6.0	-0.14 a	8.4
Cl ⁻	-0.08 b	8.4	-0.07 b	7.8	-0.38 a	21.9	-0.38 a	23.1
Σ ion	-0.75 b	81.8	-0.88 b	87.3	-1.56 a	89.7	-1.53 a	93.7
Fructose	-0.02 a	1.7	-0.05 a	4.5	-0.05 b	3.1	-0.03 a	1.7
Glucose	-0.03 b	3.8	-0.04 b	4.4	-0.06 a	3.3	-0.04 b	2.6
Sucrose	-0.12 a*	12.7	-0.04 b*	3.8	-0.06 b	3.9	-0.03 b	2
Σ sugar	-0.17 a	18.2	-0.13 a	12.7	-0.18 a*	10.3	-0.10 a*	6.3
Ψ _s (Σ solutes)	-0.92		-1.01		-1.74		-1.63	

686

687 **Table 2.** Osmotic potential of solutes (Ψ_s) and their percentage contributions in leaf
 688 tissues. The calculated Ψ_s values were consistent with the Ψ_s measured with the
 689 psychrometer (data not shown). Data are presented as means (n=4). Graphs (A, B)
 690 show significant differences ($p \leq 0.05$) between salt treatments (PAR-0 vs. PAR-200,
 691 and UV-0 vs. UV-200) using lowercase letters, and between radiation treatments
 692 (PAR-0 vs. UV-0, and PAR-200 vs. UV-200) using an asterisk.

693

Class of compounds (mg/g DW)	PAR-0	UV-0	PAR-200	UV-200
Hydroxycinnamic acids	9.8 ± 1.6 *	16.7 ± 0.5 *	9.3 ± 0.3 *	13.9 ± 0.9 *
Quercetin derivatives	8.6 ± 1.3	7.3 ± 1.0	5.5 ± 1.2	6.5 ± 0.5
Kaempferol derivatives	0.4 ± 0.1	0.8 ± 0.2	1.4 ± 0.4	0.9 ± 0.3

694 **Table 3.** Secondary metabolites concentration in youngest fully expanded leaves of
 695 *Chenopodium quinoa* after 26 days of treatment. Data are presented as means ± SE
 696 (n=5). The table shows significant differences ($p \leq 0.05$) between salt treatments
 697 (PAR-0 vs. PAR-200, and UV-0 vs. UV-200) using lowercase letters, and between
 698 radiation treatment (PAR-0 vs. UV-0, and PAR-200 vs. UV-200) using an asterisk.

699

700 **Figure legends**

701 **Fig. 1.** Growth of *C. quinoa* under four treatments over 26 days: PAR with tap water
 702 (PAR-0), PAR with 200 mM saline water (PAR-200), supplemental UV-B radiation
 703 with tap water (UV-0), and supplemental UV-B radiation with 200 mM saline water.
 704 (A) Visible effects of treatments on representative plants from each group. (B) Stem
 705 height, (C) number of leaves on the primary stem, (D) shoot dry weight, and (E)
 706 leaf/stem dry weight ratio. In B and C, data are presented as means ± SE (n=5).
 707 Asterisks (* $p \leq 0.05$, ** $p \leq 0.01$, *** $p \leq 0.001$, **** $p \leq 0.0001$) indicate significant
 708 differences based on a two-way ANOVA followed by Tukey's multiple comparison
 709 test. In D and E the top and bottom of each box represent the 25th and 75th percentiles,
 710 respectively. The horizontal line inside each box represents the median, the “+” symbol
 711 indicates the mean (n=5), and the whiskers show the minimum and maximum values.

712

713 **Fig. 2.** Water relations under the four treatments. (A) Leaf relative water content
 714 (RWC; %) and (B) leaf water potential (Ψ_l , MPa). A two-way ANOVA followed by
 715 Tukey's multiple comparisons test was conducted to assess significant differences (*
 716 $p \leq 0.05$, ** $p \leq 0.01$, *** $p \leq 0.001$, **** $p \leq 0.0001$). Top and bottom of each box
 717 represent the 25th and 75th percentiles, the horizontal line inside each box represents

718 the median, the «+» inside each box represents the average (n=5), and the whiskers
719 represent the minimum and maximum values.

720

721 **Fig. 3.** Responses of the chlorophyll fluorescence parameters to the four treatments.
722 Measurements were made on the youngest fully expanded leaves on day 26. (A) F_v'/F_m' (capture efficiency of excitation energy by the open, oxidized PSII reaction
723 center in the light), (B) Φ_{PSII} (PSII efficiency in light-adapted leaves), (C) ETR (electron transport rate), and (D) NPQ (non-photochemical quenching). Data are
724 presented as means ± SE (n=5). All treatments showed an average F_v/F_m of 0.81 (not
725 shown in the figure). A two-way ANOVA followed by Tukey's multiple comparisons
726 test was performed. The graph shows significant differences (* p ≤ 0.05, ** p ≤ 0.01,
727 *** p ≤ 0.001, **** p ≤ 0.0001). The top and bottom of each box represent the 25th
728 and 75th percentiles, the horizontal line within each box represents the median,
729 and the “+” symbol indicates the average, and the whiskers show the minimum and maximum
730 values.

731

732

733 **Fig. 4.** Pigments concentration in the youngest fully expanded leaves under the four
734 treatments. (A) chlorophyll *a* (chl *a*) concentration, (B) chlorophyll *b* (chl *b*)
735 concentration, (C) carotenoids (car) concentration, (D) ratio of carotenoids to total
736 chlorophyll (car/chl). A two-way ANOVA followed by Tukey's multiple comparisons
737 test was performed. The graph shows significant differences (* p ≤ 0.05, ** p ≤ 0.01,
738 *** p ≤ 0.001, **** p ≤ 0.0001). The top and bottom of each box represent the 25th
739 and 75th percentiles, the horizontal line inside each box represents the median, the «+»
740 inside each box represents the average (n=5) and the whiskers represent the minimum
741 and maximum values.

742

743

744 **Fig. 5.** Comparison of K⁺ concentration between EBCs and leaf tissue in both young
745 leaves (YL) and youngest fully expanded leaves (YFEL). K⁺ concentration in YL (A)
746 and YFEL (B) in plants irrigated with tap water. (C) Microscopic view of EBCs. K⁺
747 concentration in YL (D) and YFEL (E) in plants treated with salt. Data are presented
748 as means ± SE (n=5). A two-way ANOVA followed by Tukey's multiple comparisons
749 test was performed and the graph shows only significant difference (* p ≤ 0.05, **
750 p ≤ 0.01, *** p ≤ 0.001, **** p ≤ 0.0001) between EBCs and leaf tissue. The x-axis of
751 the boxplot represents the light and salt treatments, with the top and bottom of each
752 box representing the 25th and 75th percentiles. The horizontal line inside each box
753 indicates the median, the “+” symbol represents the average, and the whiskers show
754 the minimum and maximum values.

755

756 **Fig. 6.** Gene expression patterns in non-brushed (i.e. intact) and brushed young leaves
757 of *Chenopodium quinoa* after 26 days of treatment. (A) PIP1A, plasma membrane
758 aquaporin and (B) AKT1, voltage-gated K⁺ channel. Two-way ANOVA with Tukey's
759 multiple comparisons test was performed and only differences between EBCs and leaf
760 tissues and between treatment within the same tissue (Brushed or Non brushed) are
761 shown (* p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001, **** p ≤ 0.0001). The x-axis of the
762 boxplot represents the light and salt treatment. The top and bottom of each box

763 represent the 25th and 75th percentiles, respectively. The horizontal line inside each
764 box represents the median, the «+» inside each box represents the average, and the
765 whiskers represent the minimum and maximum values.

766

767

768 **Supplementary data**

769

770 **Supplementary Figure S1.** (A) 36-day-old *Chenopodium quinoa* plants, (B) detail
771 of a quinoa seedling, with surface epidermal bladder cells (EBCs) visible as small
772 white dots on the leaves and petioles, (C) Image of EBCs, showing key structures: B
773 - bladder, S -stalk cell, E - epidermal cells.

774

775 **Supplementary Fig. S2.** The experiment set up for the study: (a) Division of plants
776 into two custom-built chambers for the different radiation and salt treatments. The
777 “UV” chamber, designated for UV-treated plants, measures 40cm in width, 50cm in
778 length, and 60cm in height. “T” represents the UV-B lamp, and “F” indicates the
779 physical filters placed under the lamp to reduce the irradiance. The “PAR” chamber,
780 designated for control plants, measures 30 cm in width, 50 cm in length, and 60 cm in
781 height. In each chamber, plants are further divided into two groups: “0” for tap water
782 irrigation, and “200” for irrigation with 200mM saline water. The PAR lamps are
783 labelled “L” above the two chambers. (b) Detail of the UV-B tubular lamps and
784 physical filters. (c) Emission spectrum of the UV-B lamp, with a main peak is at 313
785 nm.

786

787 **Supplementary Fig. S3.** Responses of leaf gas exchange parameters of *Chenopodium*
788 *quinoa* plants to the four treatments on day 26. (A) P_n (net photosynthetic rate), (B) g_s
789 (stomatal conductance), and (C) C_i (intercellular CO_2). Asterisks (* $p \leq 0.05$, **
790 $p \leq 0.01$, *** $p \leq 0.001$, **** $p \leq 0.0001$) indicate significant differences based on a
791 two-way ANOVA followed by Tukey’s multiple comparison test. Data are presented
792 as means \pm SE (n=5). The top and bottom of each box represent the 25th and 75th
793 percentiles, the horizontal line inside each box represents the median, the “+” symbol
794 indicates the average, and the whiskers show the minimum and maximum values.

795

796 **Supplementary Fig. S4.** Gene expression patterns of *CqABA1* and *CqCYP707A4*
797 (cytochrome P450 monooxygenase) and ABA levels in non-brushed (i.e. intact) and
798 brushed young leaves of *Chenopodium quinoa* after 26 days of treatment. (A) *ABA1*,
799 encoding for zeaxanthin epoxidase, which is involved in generating the
800 epoxycarotenoid precursor of the ABA biosynthetic pathway (B) *CqCYP707A4*,
801 cytochrome P450 monooxygenase encoding ABA 8'-hydroxylase, the key step in the
802 oxidative catabolism of ABA, and (C) ABA leaf content. In (A) and (B) no significant
803 differences were found among treatments. The x-axis of the boxplot represents the
804 light and salt treatment. The top and bottom of each box represent the 25th and 75th
805 percentiles, respectively. The horizontal line inside each box represents the median,

806 the «+» inside each box represents the average, and the whiskers represent the
807 minimum and maximum values (n=5). In (C) table shows, where present, significant
808 differences ($p \leq 0.05$) between salt treatments (PAR-0 vs. PAR-200, and UV-0 vs. UV-
809 200) using lowercase letters, and between radiation treatments (PAR-0 vs. to UV-0,
810 and PAR-200 vs. UV-200) using an asterisk. Data are presented as means \pm SE (n=3).

811

812 **Supplemental Table S1:** List of primer pairs used for qPCR analysis of gene
813 expression.

814 **Supplementary Table S2.** Dry weight of leaves, stem, and roots, shoot/root ratio and
815 specific leaf area (SLA) of the youngest fully expanded leaves of *Chenopodium quinoa*
816 after 26 days with the four treatments. The table shows only statistically significant
817 differences ($p \leq 0.05$) between salt treatments (PAR-0 vs. PAR-200, and UV-0 vs. UV-
818 200) using lowercase letter. Data are presented as means \pm SE (n=5 for leaves and
819 stem, and n=3 for roots and shoot/root).

820 **Supplementary Table S3.** Three-way ANOVA results of K⁺, Na⁺, and Cl⁻
821 concentrations across tissue type, radiation treatment, and salt treatment. Significant
822 p-values have been highlighted in bold.

823 **Supplementary Table S1.** K⁺/Na⁺ ratio in *Chenopodium quinoa* young leaves (YL)
824 and youngest fully expanded leaves (YFEL). The ratio was calculated using the
825 concentration from non-brushed leaves. The table shows only statistically significant
826 differences ($p \leq 0.05$) between salt treatments (PAR-0 vs. PAR-200, and UV-0 vs. UV-
827 200) using lowercase letters, and between light treatments (PAR-0 vs. UV-0, and PAR-
828 200 vs. UV-200) using an asterisk. Data are presented as means \pm SE (n=5).

829 **Supplementary Table S5.** Concentration of soluble sugars in the sap of youngest fully
830 expanded leaves. The table shows significant differences ($p \leq 0.05$) between salt
831 treatments (PAR-0 vs. PAR-200, and UV-0 vs. UV-200) using lowercase letters, and
832 between radiation treatments (PAR-0 vs. to UV-0, and PAR-200 vs. UV-200) using
833 an asterisk. Data are presented as means \pm SE (n=4).

834 **Supplementary Table S6.** Secondary metabolite concentration in the youngest fully
835 expanded leaves of *Chenopodium quinoa* after 26 days of treatment. The table shows
836 only statistically significant differences ($p \leq 0.05$) between salt treatments (PAR-0 vs.
837 PAR-200, and UV-0 vs. UV-200) using lowercase letters, and between radiation
838 treatments (PAR-0 vs. UV-0, and PAR-200 vs. UV-200) using an asterisk.

839 **Funding**

840 NB received funding from Biodiversa+, the European Biodiversity Partnership, in
841 the context of the SaltyBEATS project under the 2023-2024 BiodivNBS joint call. It
842 was co-funded by the European Commission (GA No. 101052342) and the following
843 funding organisations: MUR, NWO, NCN, FCT, MESRS, CDTI.

844 **Author Contributions**

845 NB, CB, SM, GG designed the research. GG, FA, HZ and FV performed research. FM
846 and GA contributed the UV-B light set up and specific instrument to measure the UV-
847 B intensity. CG and IC contributed specific analytical tools for ion measurement. GG,

848 FV and FA analyzed data. GG, NB, CB, FA, MC, CG wrote the article. All authors
849 discussed and reviewed the manuscript.

850

851 **References**

852 **Agarie S, Shimoda T, Shimizu Y, Baumann K, Sunagawa H, Kondo A, Ueno O, Nakahara T, Nose A, Cushman JC** (2007) Salt tolerance, salt accumulation, and ionic homeostasis in an epidermal bladder-cell-less mutant of the common ice plant *Mesembryanthemum crystallinum*. *J Exp Bot* **58**: 1957–1967

856 **Alarcón JJ, Sánchez-Blanco MJ, Bolarín MC, Torrecillas A** (1993) Water relations and
857 osmotic adjustment in *Lycopersicon esculentum* and *L. pennellii* during short-term
858 salt exposure and recovery. *Physiol Plant* **89**: 441–447

859 **Al-Qabba MM, El-Mowafy MA, Althwab SA, Alfheeaid HA, Aljutaily T, Barakat H** (2020)
860 Phenolic Profile, Antioxidant Activity, and Ameliorating Efficacy of *Chenopodium*
861 *quinoa* Sprouts against CCl4-Induced Oxidative Stress in Rats. *Nutrients* **12**: 2904

862 **Angeli V, Miguel Silva P, Crispim Massuela D, Khan MW, Hamar A, Khajehei F, Graeff-Hönninger S, Piatti C** (2020) Quinoa (*Chenopodium quinoa* Willd.): An Overview of
863 the Potentials of the “Golden Grain” and Socio-Economic and Environmental
864 Aspects of Its Cultivation and Marketization. *Foods* **9**: 216

866 **Barnes PW, Robson TM, Neale PJ, Williamson CE, Zepp RG, Madronich S, Wilson SR, Andrade AL, Heikkilä AM, Bernhard GH, et al** (2022) Environmental effects of
867 stratospheric ozone depletion, UV radiation, and interactions with climate change:
868 UNEP Environmental Effects Assessment Panel, Update 2021. *Photochem Photobiol Sci* **21**: 275–301

871 **Barnes PW, Williamson CE, Lucas RM, Robinson SA, Madronich S, Paul ND, Bornman JF, Bais AF, Sulzberger B, Wilson SR, et al** (2019) Ozone depletion, ultraviolet
872 radiation, climate change and prospects for a sustainable future. *Nat Sustain* **2**:
873 569–579

875 **Bazihizina N, Barrett-Lennard EG, Colmer TD** (2012) Plant growth and physiology under
876 heterogeneous salinity. *Plant Soil* **354**: 1–19

877 **Bazihizina N, Böhm J, Messerer M, Stigloher C, Müller HM, Cuin TA, Maierhofer T, Cabot J, Mayer KFX, Fella C, et al** (2022) Stalk cell polar ion transport provide for bladder-based salinity tolerance in *Chenopodium quinoa*. *New Phytol* **235**: 1822–1835

880 **Bazihizina N, Colmer TD, Barrett-Lennard EG** (2009) Response to non-uniform salinity in
881 the root zone of the halophyte *Atriplex nummularia*: growth, photosynthesis, water
882 relations and tissue ion concentrations. *Ann Bot* **104**: 737–745

883 **Bazihizina N, Taiti C, Serre N, Nocci C, Spinelli F, Nissim WG, Azzarello E, Marti L, Redwan M, Gonnelli C, et al** (2016) Awaiting better times: A quiescence response and
884 adventitious root primordia formation prolong survival under cadmium stress in
885 *Tetradenia riparia* (Hochst.) Codd. *Environ Exp Bot* **130**: 1–10

887 **Böhm J, Messerer M, Müller HM, Scholz-Starke J, Gradogna A, Scherzer S, Maierhofer T, Bazihizina N, Zhang H, Stigloher C, et al** (2018) Understanding the Molecular Basis

889 of Salt Sequestration in Epidermal Bladder Cells of *Chenopodium quinoa*. *Curr Biol*
890 **28**: 3075-3085.e7

891 **Cai Z-Q, Gao Q** (2020) Comparative physiological and biochemical mechanisms of salt
892 tolerance in five contrasting highland quinoa cultivars. *BMC Plant Biol* **20**: 70

893 **Correia CM, Torres-Pereira MS, Torres-Pereira JMG** (1999) Growth, photosynthesis and
894 UV-B absorbing compounds of Portuguese Barbela wheat exposed to ultraviolet-B
895 radiation. *Environ Pollut* **104**: 383–388

896 **Corwin DL** (2021) Climate change impacts on soil salinity in agricultural areas. *Eur J Soil Sci*
897 **72**: 842–862

898 **Dainelli M, Pignattelli S, Bazihizina N, Falsini S, Papini A, Baccelli I, Mancuso S, Coppi A, Castellani MB, Colzi I, et al** (2023) Can microplastics threaten plant productivity and fruit quality? Insights from Micro-Tom and Micro-PET/PVC. *Sci Total Environ* **895**: 165119

902 **De Souza MM, Mendes CR, Doncato KB, Badiale-Furlong E, Costa CSB** (2018) Growth, Phenolics, Photosynthetic Pigments, and Antioxidant Response of Two New Genotypes of Sea Asparagus (*Salicornia neei* Lag.) to Salinity under Greenhouse and Field Conditions. *Agriculture* **8**: 115

906 **Di Ferdinando M, Brunetti C, Fini A, Tattini M** (2012) Flavonoids as Antioxidants in Plants Under Abiotic Stresses. *In* P Ahmad, MNV Prasad, eds, *Abiotic Stress Responses* Plants Metab. Product. Sustain. Springer, New York, NY, pp 159–179

909 **FAO** (2024) Global status of salt-affected soils. FAO ;

910 **Fitzner M, Schreiner M, Baldermann S** (2023) Between eustress and distress: UVB induced changes in carotenoid accumulation in halophytic *Salicornia europaea*. *J Plant Physiol* **291**: 154124

913 **Gawlik-Dziki U, Świeca M, Sufkowski M, Dziki D, Baraniak B, Czyż J** (2013) Antioxidant and anticancer activities of *Chenopodium quinoa* leaves extracts – In vitro study. *Food Chem Toxicol* **57**: 154–160

916 **Godfray HCJ, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, Pretty J, Robinson S, Thomas SM, Toulmin C** (2010) Food Security: The Challenge of Feeding 9 Billion People. *Science* **327**: 812–818

919 **González JA, Rosa M, Parrado MF, Hilal M, Prado FE** (2009) Morphological and physiological responses of two varieties of a highland species (*Chenopodium quinoa* Willd.) growing under near-ambient and strongly reduced solar UV–B in a lowland location. *J Photochem Photobiol B* **96**: 144–151

923 **Gori A, Moura BB, Sillo F, Alderotti F, Pasquini D, Balestrini R, Ferrini F, Centritto M, Brunetti C** (2023a) Unveiling resilience mechanisms of *Quercus ilex* seedlings to severe water stress: Changes in non-structural carbohydrates, xylem hydraulic functionality and wood anatomy. *Sci Total Environ* **878**: 163124

927 **Gori A, Moura BB, Sillo F, Alderotti F, Pasquini D, Balestrini R, Ferrini F, Centritto M, Brunetti C** (2023b) Unveiling resilience mechanisms of *Quercus ilex* seedlings to

929 severe water stress: Changes in non-structural carbohydrates, xylem hydraulic
930 functionality and wood anatomy. *Sci Total Environ* **878**: 163124

931 **Guidi L, Brunetti C, Fini A, Agati G, Ferrini F, Gori A, Tattini M** (2016) UV radiation
932 promotes flavonoid biosynthesis, while negatively affecting the biosynthesis and
933 the de-epoxidation of xanthophylls: Consequence for photoprotection? *Environ Exp
934 Bot* **127**: 14–25

935 **Hamed KB, Ellouzi H, Talbi OZ, Hessini K, Slama I, Ghnaya T, Bosch SM, Savouré A, Abdelly
936 C** (2013) Physiological response of halophytes to multiple stresses. *Funct Plant Biol
937* **40**: 883–896

938 **Hariadi Y, Marandon K, Tian Y, Jacobsen S-E, Shabala S** (2011) Ionic and osmotic relations
939 in quinoa (*Chenopodium quinoa* Willd.) plants grown at various salinity levels. *J Exp
940 Bot* **62**: 185–193

941 **Hasegawa PM, Bressan RA, Zhu J-K, Bohnert HJ** (2000) Plant Cellular and Molecular
942 Responses to High Salinity. *Annu Rev Plant Physiol Plant Mol Biol* **51**: 463–499

943 **Hassani A, Azapagic A, Shokri N** (2021) Global predictions of primary soil salinization under
944 changing climate in the 21st century. *Nat Commun* **12**: 6663

945 **Imamura T, Yasui Y, Koga H, Takagi H, Abe A, Nishizawa K, Mizuno N, Ohki S, Mizukoshi H,
946 Mori M** (2020) A novel WD40-repeat protein involved in formation of epidermal
947 bladder cells in the halophyte quinoa. *Commun Biol* **3**: 1–14

948 **Jaramillo Roman V, van de Zedde R, Peller J, Visser RGF, van der Linden CG, van Loo EN**
949 (2021) High-Resolution Analysis of Growth and Transpiration of Quinoa Under
950 Saline Conditions. *Front Plant Sci.* doi: 10.3389/fpls.2021.634311

951 **Katschnig D, Broekman R, Rozema J** (2013) Salt tolerance in the halophyte *Salicornia*
952 *dolichostachya* Moss: Growth, morphology and physiology. *Environ Exp Bot* **92**: 32–
953 42

954 **Kiani-Pouya A, Rasouli F, Bazihizina N, Zhang H, Hedrich R, Shabala S** (2019) A large-scale
955 screening of quinoa accessions reveals an important role of epidermal bladder cells
956 and stomatal patterning in salinity tolerance. *Environ Exp Bot* **168**: 103885

957 **Kiani-Pouya A, Rasouli F, Shabala L, Tahir AT, Zhou M, Shabala S** (2020) Understanding the
958 role of root-related traits in salinity tolerance of quinoa accessions with contrasting
959 epidermal bladder cell patterning. *Planta* **251**: 103

960 **Kiani-Pouya A, Roessner U, Jayasinghe NS, Lutz A, Rupasinghe T, Bazihizina N, Bohm J,
961 Alharbi S, Hedrich R, Shabala S** (2017) Epidermal bladder cells confer salinity stress
962 tolerance in the halophyte quinoa and *Atriplex* species. *Plant Cell Environ* **40**: 1900–
963 1915

964 **Kim B-M, Lee H-J, Song YH, Kim H-J** (2021) Effect of salt stress on the growth, mineral
965 contents, and metabolite profiles of spinach. *J Sci Food Agric* **101**: 3787–3794

966 **Kromdijk J, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-
967 Champaign, USA, Walter J, University of Cambridge, UK** (2023) Relaxing non-
968 photochemical quenching (NPQ) to improve photosynthesis in crops. *Burleigh
969 Dodds Ser Agric Sci.* doi: 10.19103/AS.2022.0119.09

970 **Lopes M, Sanches-Silva A, Castilho M, Cavaleiro C, Ramos F** (2023) Halophytes as source of
971 bioactive phenolic compounds and their potential applications. *Crit Rev Food Sci*
972 *Nutr* **63**: 1078–1101

973 **Ma X, Ou Y-B, Gao Y-F, Lutts S, Li T-T, Wang Y, Chen Y-F, Sun Y-F, Yao Y-A** (2016) Moderate
974 salt treatment alleviates ultraviolet-B radiation caused impairment in poplar plants.
975 *Sci Rep* **6**: 32890

976 **Malhi GS, Kaur M, Kaushik P** (2021) Impact of Climate Change on Agriculture and Its
977 Mitigation Strategies: A Review. *Sustainability* **13**: 1318

978 **Mankotia S, Jakhar P, Satbhai SB** (2024) HY5: a key regulator for light-mediated nutrient
979 uptake and utilization by plants. *New Phytol.* doi: 10.1111/nph.19516

980 **Melino V, Tester M** (2023) Salt-Tolerant Crops: Time to Deliver. *Annu Rev Plant Biol* **74**:
981 671–696

982 **Mittler R** (2006) Abiotic stress, the field environment and stress combination. *Trends Plant
983 Sci* **11**: 15–19

984 **Mohamed E, Kasem AMMA, Ghanem A-MFM, Ansari N, Yadav DS, Agrawal SB** (2023)
985 Effects of salinity and UV-B on seed germination behaviour of the *halophyte*
986 *Zygophyllum album L.*: Enforced dormancy and trade-off strategy. *Flora* **309**:
987 152408

988 **Moog MW, Trinh MDL, Nørrevang AF, Bendtsen AK, Wang C, Østerberg JT, Shabala S,
989 Hedrich R, Wendt T, Palmgren M** (2022) The epidermal bladder cell-free mutant of
990 the salt-tolerant quinoa challenges our understanding of halophyte crop salinity
991 tolerance. *New Phytol* **236**: 1409–1421

992 **Munns R, Tester M** (2008) Mechanisms of Salinity Tolerance. *Annu Rev Plant Biol* **59**: 651–
993 681

994 **Netondo GW, Onyango JC, Beck E** (2004) Sorghum and Salinity. *Crop Sci* **44**: 806–811

995 **Nikalje GC, Yadav K, Penna S** (2019) Halophyte Responses and Tolerance to Abiotic
996 Stresses. *In* M Hasanuzzaman, K Nahar, M Öztürk, eds, *Ecophysiol. Abiotic Stress
997 Responses Util. Halophytes*. Springer, Singapore, pp 1–23

998 **Nogués S, Allen DJ, Morison JIL, Baker NR** (1999) Characterization of Stomatal Closure
999 Caused by Ultraviolet-B Radiation. *Plant Physiol* **121**: 489–496

1000 **Ouhibi C, Attia H, Rebah F, Msilini N, Chebbi M, Aarrouf J, Urban L, Lachaal M** (2014) Salt
1001 stress mitigation by seed priming with UV-C in lettuce plants: Growth, antioxidant
1002 activity and phenolic compounds. *Plant Physiol Biochem* **83**: 126–133

1003 **Palacios MB, Rizzo AJ, Heredia TB, Roqueiro G, Maldonado S, Murgida DH, Burrieza HP**
1004 (2024) Structure, ultrastructure and cation accumulation in quinoa epidermal
1005 bladder cell complex under high saline stress. *Protoplasma*. doi: 10.1007/s00709-
1006 023-01922-x

1007 **Parida AK, Das AB, Mittra B** (2003) Effects of NaCl Stress on the Structure, Pigment
1008 Complex Composition, and Photosynthetic Activity of Mangrove *Bruguiera
1009 parviflora* Chloroplasts. *Photosynthetica* **41**: 191–200

1010 **Pascual LS, Segarra-Medina C, Gómez-Cadenas A, López-Climent MF, Vives-Peris V, Zandalinas SI** (2022) Climate change-associated multifactorial stress combination: A present challenge for our ecosystems. *J Plant Physiol* **276**: 153764

1013 **Paško P, Sajewicz M, Gorinstein S, Zachwieja Z** (2008) Analysis of selected phenolic acids and flavonoids in Amaranthus cruentus and Chenopodium quinoa seeds and sprouts by HPLC. *Acta Chromatogr* **20**: 661–672

1016 **Pereira A** (2016) Plant Abiotic Stress Challenges from the Changing Environment. *Front. Plant Sci.* **7**:

1018 **Perez ML, González JA, Prado FE** (2015) Efectos de la radiacion UVB sobre diferentes 1019 variedades de quinoa. I:efectos sobre la morfologia en condiciones controladas. *Bol 1020 Soc Arg Botánica* **50**: 337–347

1021 **Poulson ME, Donahue RA, Konvalinka J, Boeger MRT** (2002) Enhanced tolerance of 1022 photosynthesis to high-light and drought stress in *Pseudotsuga menziesii* seedlings 1023 grown in ultraviolet-B radiation. *Tree Physiol* **22**: 829–838

1024 **Puniran-Hartley N, Hartley J, Shabala L, Shabala S** (2014) Salinity-induced accumulation of 1025 organic osmolytes in barley and wheat leaves correlates with increased oxidative 1026 stress tolerance: *In planta* evidence for cross-tolerance. *Plant Physiol Biochem* **83**: 1027 32–39

1028 **Quarrie SA, Whitford PN, Appleford NEJ, Wang TL, Cook SK, Henson IE, Loveys BR** (1988) A 1029 monoclonal antibody to (S)-abscisic acid: its characterisation and use in a 1030 radioimmunoassay for measuring abscisic acid in crude extracts of cereal and lupin 1031 leaves. *Planta* **173**: 330–339

1032 **Ray DK, Mueller ND, West PC, Foley JA** (2013) Yield Trends Are Insufficient to Double 1033 Global Crop Production by 2050. *PLOS ONE* **8**: e66428

1034 **Reyes TH, Scartazza A, Castagna A, Cosio EG, Ranieri A, Guglielminetti L** (2018) 1035 Physiological effects of short acute UVB treatments in *Chenopodium quinoa* Willd. 1036 *Sci Rep* **8**: 371

1037 **Robson TM, Hartikainen SM, Aphalo PJ** (2015) How does solar ultraviolet-B radiation 1038 improve drought tolerance of silver birch (*Betula pendula* Roth.) seedlings? *Plant 1039 Cell Environ* **38**: 953–967

1040 **Schumaker MA, Bassman JH, Robberecht R, Radamaker GK** (1997) Growth, leaf anatomy, 1041 and physiology of *Populus* clones in response to solar ultraviolet-B radiation. *Tree 1042 Physiol* **17**: 617–626

1043 **Shabala S** (2013) Learning from halophytes: physiological basis and strategies to improve 1044 abiotic stress tolerance in crops. *Ann Bot* **112**: 1209–1221

1045 **Shabala S, Bose J, Hedrich R** (2014) Salt bladders: do they matter? *Trends Plant Sci* **19**: 687– 1046 691

1047 **Shabala S, Hariadi Y, Jacobsen S-E** (2013) Genotypic difference in salinity tolerance in 1048 quinoa is determined by differential control of xylem Na⁺ loading and stomatal 1049 density. *J Plant Physiol* **170**: 906–914

1050 **Shabala S, Mackay A** (2011) Chapter 5 - Ion Transport in Halophytes. *In* I Turkan, ed, Adv.
1051 Bot. Res. Academic Press, pp 151–199

1052 **Shabala S, Pottosin I** (2014) Regulation of potassium transport in plants under hostile
1053 conditions: implications for abiotic and biotic stress tolerance. *Physiol Plant* **151**:
1054 257–279

1055 **Shoaib N, Pan K, Mughal N, Raza A, Liu L, Zhang J, Wu X, Sun X, Zhang L, Pan Z** (2024)
1056 Potential of UV-B radiation in drought stress resilience: A multidimensional
1057 approach to plant adaptation and future implications. *Plant Cell Environ* **47**: 387–
1058 407

1059 **Shu S, Guo S-R, Sun J, Yuan L-Y** (2012) Effects of salt stress on the structure and function of
1060 the photosynthetic apparatus in *Cucumis sativus* and its protection by exogenous
1061 putrescine. *Physiol Plant* **146**: 285–296

1062 **Sillo F, Brunetti C, Marroni F, Vita F, dos Santos Nascimento LB, Vizzini A, Mello A,**
1063 **Balestrini R** (2022) Systemic effects of *Tuber melanosporum* inoculation in two
1064 *Corylus avellana* genotypes. *Tree Physiol* **42**: 1463–1480

1065 **Simkin AJ, Kapoor L, Doss CGP, Hofmann TA, Lawson T, Ramamoorthy S** (2022) The role of
1066 photosynthesis related pigments in light harvesting, photoprotection and
1067 enhancement of photosynthetic yield in *planta*. *Photosynth Res* **152**: 23–42

1068 **Stelzner J, Roemhild R, Garibay-Hernández A, Harbaum-Piayda B, Mock H-P, Bilger W**
1069 (2019) Hydroxycinnamic acids in sunflower leaves serve as UV-A screening
1070 pigments. *Photochem Photobiol Sci* **18**: 1649–1659

1071 **Suzuki N, Rivero RM, Shulaev V, Blumwald E, Mittler R** (2014) Abiotic and biotic stress
1072 combinations. *New Phytol* **203**: 32–43

1073 **Tanveer M, Wang L, Huang L, Zhou M, Chen Z-H, Shabala S** (2024) Understanding
1074 mechanisms for differential salinity tissue tolerance between quinoa and spinach:
1075 Zooming on ROS-inducible ion channels. *Crop J.* doi: 10.1016/j.cj.2024.03.001

1076 **Universidad Veracruzana, Vázquez-Luna A, Pimentel Cortés V, Fuentes Carmona F,**
1077 **Pontificia Universidad Católica de Chile, Díaz-Sobac R** (2019) Quinoa leaf as a
1078 nutritional alternative. *Cienc E Investig Agrar* **46**: 137–143

1079 **Wellburn AR** (1994) The Spectral Determination of Chlorophylls a and b, as well as Total
1080 Carotenoids, Using Various Solvents with Spectrophotometers of Different
1081 Resolution. *J Plant Physiol* **144**: 307–313

1082 **Williams TB, Dodd IC, Sobeih WY, Paul ND** (2022) Ultraviolet radiation causes leaf warming
1083 due to partial stomatal closure. *Hortic Res* **9**: uhab066

1084 **Xu G, Huang TF, Zhang XL, Duan BL** (2013) Significance of mesophyll conductance for
1085 photosynthetic capacity and water-use efficiency in response to alkaline stress in
1086 *Populus cathayana* seedlings. *Photosynthetica* **51**: 438–444

1087 **Xu Z, Zhou J, Ren T, Du H, Liu H, Li Y, Zhang C** (2020) Salt stress decreases seedling growth
1088 and development but increases quercetin and kaempferol content in *Apocynum*
1089 *venetum*. *Plant Biol* **22**: 813–821

1090 **Zandalinas SI, Mittler R** (2022) Plant responses to multifactorial stress combination. *New
1091 Phytol* **234**: 1161–1167

1092 **Zelm E van, Zhang Y, Testerink C** (2020) Salt Tolerance Mechanisms of Plants. *Annu Rev
1093 Plant Biol* **71**: 403–433

1094 **Zlatev ZS, Lidon FJC, Kaimakanova M** (2012) PLANT PHYSIOLOGICAL RESPONSES TO UV-B
1095 RADIATION. *Emir J Food Agric* 481–501

1096 **Zou C, Chen A, Xiao L, Muller HM, Ache P, Haberer G, Zhang M, Jia W, Deng P, Huang R, et
1097 al** (2017) A high-quality genome assembly of quinoa provides insights into the
1098 molecular basis of salt bladder-based salinity tolerance and the exceptional
1099 nutritional value. *Cell Res* **27**: 1327–1340

1100