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Abstract. Palatini F (R,X) gravity, withX the inflaton kinetic term, proved to be a powerful framework for
generating asymptotically flat inflaton potentials. Here we show that a quadratic Palatini F (R,X) restores
compatibility with the observational data of the Peebles-Vilenkin quintessential inflation model. Moreover,
the same can be achieved with an exponential version of the Peebles-Vilenkin potential if embedded in a
Palatini F (R,X) of order higher than two.
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1 Introduction

The ΛCDM model represents today the Standard Cos-
mological Model. The main ingredients of the model are
a relativistic matter component (radiation), some non-
relativistic matter (cold dark matter, baryonic matter)
and a cosmological constant, Λ, associated with dark en-
ergy. The latter drives the current accelerated expansion
of the Universe.

ΛCDM, while being a simple model, requires extreme
fine tuning. The most popular way of improving ΛCDM
is by introducing a scalar field, called quintessence in the
literature (e.g. [1,2] and refs. therein), that in contrast to
Λ is a dynamical field. If the field varies slowly and has
the appropriate energy density today then it can lead to
the aforementioned accelerated expansion at present.

At the same time, observations of the cosmic microwave
background radiation (CMB) support the idea of a spa-
tially flat and isotropic Universe at large scales, which
can be explained by assuming cosmic inflation, i.e. an-
other accelerated expansion of the Universe but during its
very early stages [3–6]. In its simplest realization the in-
flation is driven by another scalar field, the inflaton, with
an almost flat potential energy.

Although similar in principle, inflation and dark en-
ergy late-time acceleration happen at very different en-
ergy scale, respectively around 1016 GeV and 10−12 GeV.
Hence, the two phenomena are usually considered to have
different origin. At the same time having an extra
quintessence field introduces the coincidence problem: one
has to require specific initial conditions so that the cur-
rently energy density of the scalar field matches the ob-
served value of the cosmological constant.

Building a model of quintessential inflation overcomes
this issue, by realizing the initial condition for quintessence

through inflation [7]. However, a working model of the
quintessential inflation must satisfy several conditions. First
of all it has to provide a graceful exit from inflation, pro-
viding good predictions for the CMB observables. Second,
the scalar field has to survive until present days, this im-
plies that a reheating mechanism that does not rely on
its decay has to be provided such as instant preheating
[8,9], curvaton reheating [10,11], gravitational reheating
[12–14], Ricci reheating [15–17], reheating by primordial
black hole evaporation [18,19], warm quintessential infla-
tion [20,21], to name but some. Finally, the scalar field
potential needs to be very steep in order to bridge the en-
ergy gap between inflation and quintessence, allowing for
a period of kination, which eventually ends due to reheat-
ing. This will eventually lead to the freezing of the scalar
field at a value such that its energy density matches the
value corresponding to the observed dark energy density.

Several models of quintessential inflation have been
built by embedding a scalar field in General Relativity
(e.g. [7,22–25] and references therein). On the other hand,
Palatini modifications of Einstein gravity proved to be
very powerful tools in quintessential inflation model build-
ing (e.g. [26–30] and the references therein). In the stan-
dard metric formulation, the only dynamical degree of
freedom is the metric tensor, while the affine connection is
assumed a priori to be the Levi-Civita one. In the Palatini
formulation instead, both the metric and the connection
are considered independent dynamical degrees of freedom,
and their relation is set by their corresponding equations
of motion (EoM). If the action is given by the simple
Einstein-Hilbert term, the two formulations are equiva-
lent while in non-minimal theories of gravity they lead to
substantially different phenomenological predictions, e.g.
[31,32].
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In this article, we are interested in a particular class of
non-minimal Palatini models: the F (R,X) models, withX
the inflaton kinetic term. Inflation in this class of theories
has been extensively studied in [33–35] as a an extended
generalization of the F (R) models already explored in [36,
34]. The F (R,X) models allow to simplify the structure of
the scalar field kinetic term in the Einstein frame and con-
sequently heal the dynamical issues of the F (R)>2 (that is
those containing terms diverging faster than R2) theories
out of the slow-roll regime. Remarkably, the F (R,X)>2

theories, once the consistency criteria are satisfied, univer-
sally provide potential apparently suitable for quintessen-
tial inflation [33,34].

Quintessential inflation was first introduced in Ref. [7]
by Peebles and Vilenkin in order to model both early
and late universe expansion utilising a single scalar field
with scalar potential which behaves as a quartic potential
in the early universe, and as an inverse quartic poten-
tial at present times. The model successfully reproduces
the quintessential inflation behavior however it predicts
a tensor-to-scalar ratio r and spectral index ns which
are currently excluded by the current CMB observations
[37,38], while also featuring tracker quintessence with too
large barotropic parameter. Since this pioneering work, a
number of successful quintessential inflation models have
been constructed (for recent reviews see Refs. [25,23]).
More recently, quintessential inflation has been modelled
in the context of modified gravity. For example, quintessen-
tial inflation models have also been studied in the con-
text of Palatini F (R) gravity for the quadratic choice
F (R) = R + αR2. In Ref. [26] the Peebles-Vilenkin po-
tential is discussed, while in Ref. [28] the case of the expo-
nential tail is studied in presence of non-minimal coupling
with the Ricci scalar. Both models provide the correct be-
havior for quintessence and predict r, ns compatible with
the current data. In this paper we embed the generalized
version of the Peebles-Vilenkin potential and the exponen-
tial tail in the extended framework of F (R,X) models and
show that in the former case a viable model for quintessen-
tial inflation can be achieved, while the same cannot be
achieved with an exponential tail.

In particular, the purpose of this work is to find, within
the Palatini F (R,X) framework, quintessential inflation
setups that describe both inflation in the early Universe
and the current accelerated expansion in agreement with
the current observational data. While inflation has been
extensively studied for this class of models, a description of
both early and late universe acceleration is only achieved
here for the first time. In particular we restore the com-
patibility with data of the Peebles-Vilenkin model with
inflation and show how the same potential can lead to a
dark-energy dominated phase in the late universe. We dis-
cuss the whole evolution of the scalar field, compute the
predicted inflationary observables and consider a kination
period after the inflationary phase, typical of quintessen-
tial inflation models. We then consider reheating. Without
specifying the reheating mechanism, we constrain the pa-
rameter space by taking into account the bounds coming
from overproduction of gravitational waves during the ki-

nation phase. We finally consider a late-time dark-energy
phase, modeled by the tail of the Peebles-Vilenkin poten-
tial, and show that it manages to satisfy the coincidence
requirement. Morever, we further constrain the parame-
ter space of this class of models by imposing a barotropic
parameter within the observational bounds. The full anal-
ysis is carried out for both a quadratic choice of F (R,X)
and for higher-order models denoted by F (R,X)>2.

The paper is organized as follows. In section 2 we intro-
duce the formalism of Palatini F (R,X) theories. In sec-
tion 3 we consider the quadratic choice and compute the
observables of the model for the Peebles-Vilenkin (PV) po-
tential [7], for inflation, reheating and dark energy, show-
ing the parameter space for which quintessential inflation
is viable. At the end of the same section we briefly consider
an exponential tail and prove that, while giving very good
predictions for the inflation CMB observables, it cannot
predict a good quintessential tail for dark energy. In sec-
tion 4, for the sake of completeness, we repeat the same
analysis of section 3 for a specific higher-order F (R,X)>2

model. We compute once again the observables for infla-
tion, reheating and dark energy by using an exponential
version of the Peebles-Vilenkin potential and constrain the
parameter space for this model as well, proving that also
higher-order F (R,X) can account for quintessential infla-
tion. Finally, in section 5, we summarize the results of the
paper and draw our conclusions.

We use geometric units where c = ℏ = kB = 1 and
8πG = m−2

P = 1, while the signature of the metric is space-
like.

2 Palatini F (R,X) framework

The starting point for the Palatini F (R,X) models is the
following action:

S =

∫
d4x
√
−gJ

(
1

2
F (RX)− V (ϕ)

)
, (1)

with F is an arbitrary function of its argument, RX ≡ R+
X where X = −gµνJ ∂µϕ∂νϕ is the scalar field kinetic term
and R = gµνJ Rµν(Γ ) is the Palatini Ricci scalar built from
the metric-independent Ricci tensor, with Γ denoting the
connection. We can rewrite the action (1) by introducing
an auxiliary field ζ as follows:

S =

∫
d4x
√
−gJ

(
F (ζ) + F ′(ζ)(RX − ζ)

2
− V (ϕ)

)
. (2)

One can easily check that by taking the variation of the
action with respect to the auxiliary field ζ, the action in
(1) is recovered (given that F ′′(ζ) ̸= 0.) By means of a
conformal transformation gEµν = F ′(ζ)gJµν , we can rewrite
the action in the Einstein frame, where the theory is linear
in R and minimally coupled to the metric gEµν :

S =

∫
d4x
√

−gE
(
R

2
− 1

2
gµνE ∂µϕ∂νϕ− U(ζ, ϕ)

)
, (3)
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with

U(ζ, ϕ) =
V (ϕ)

F ′(ζ)2
− F (ζ)

2F ′(ζ)2
+

ζ

2F ′(ζ)
. (4)

By taking the variation with respect to ζ we get the cor-
responding equation of motion:

G(ζ) ≡ 1

4
(2F (ζ)− ζF ′(ζ)) = V (ϕ) , (5)

which can be solved to get ζ(ϕ). Equation (5) was already
introduced in [36] where it holds as an approximation valid
in the slow-roll regime. However, in this case, eq. (5) is
exact and valid even in the presence of large kinetic terms
for the canonical scalar field. In other words, the auxiliary
field ζ = ζ(ϕ) is a function of the canonically normalized
field only and not of its derivatives. By using eq. (5) one
can rewrite U(ζ, ϕ) in eq. (4) in terms of ζ only, obtaining

U(ζ) =
ζ

4F ′(ζ)
. (6)

This implies that even in the cases for which G(ζ) cannot
be explicitly solved in terms of ζ, it can still be exploited
for computing the inflationary observables [36]. In all the
other (few) cases, ζ = ζ(ϕ) can be explicitly determined,
allowing computations to proceed in the standard way.

In the following, we study two types of F (ζ) functions.
First we consider a quadratic F (ζ) which has the property
to automatically flatten any diverging V (ϕ) when ζ →
+∞ (see eqs. (5) and (6)). Then, we study a F (ζ)>2 i.e.
a F (ζ) of order higher than two. This is a very special
case because, first of all, in order to have a viable solution
of eq. (5), V (ϕ) must be negative [33,34]. Secondly, even
though V (ϕ) < 0, the Einstein frame potential U(ζ) in
eq. (6) is positive as long as ζ, F ′(ζ) > 0. Finally, since
F (ζ) is of order higher than two, F ′(ζ) is of order higher
than one, implying that at ζ → +∞, U(ζ) automatically
develops a tail approaching zero, which is exactly one of
the requirements for quintessence.

3 Quintessential inflation for
F (RX) = RX + αR2

X

This setup has been introduced in the context of fractional
attractors in [33]. In such a scenario, from eq. (5) we have
G(ζ) = 1

4ζ = V (ϕ). Hence, by using eq. (6), we obtain an
Einstein frame potential:

U(ζ(ϕ)) =
ζ(ϕ)

4(1 + 2αζ(ϕ))
=

V (ϕ)

1 + 8αV (ϕ)
, (7)

where we can immediately see that U → 0 ( 1
8α ) when V →

0 (+∞). Therefore, in order to have a quintessential tail
for the potential we need to consider a form of V (ϕ) with
a decreasing tail. The simplest example is the Peebles-
Vilenkin (PV) potential, the first model made to describe
quintessential inflation [7]. The Jordan frame potential has
then following form:

V (ϕ) =

{
λk(ϕk +Mk) ϕ ≤ 0

λk Mk+q

ϕq+Mq ϕ > 0 ,
(8)

★★
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Fig. 1: The PV potential (black), and the modified PV
potential (blue) with α = 2 · 108, q = k = 4, predicting
viable CMB observables r = 0.017, ns = 0.966 (at Ne =
60) and a quintessential tail the solves the coincidence
problem at the mass scale M = 1.38 ·10−13. We also show
ϕN (star) and ϕend (dot) in the same color code. ϕN is not
visible for the original PV potential as it lays at V (ϕN ) ∼
10−8. We notice that while the potential is modified at
the inflation scale, it remains unchanged in the tail.

with k an even number. We stress that such a configu-
ration shares a similar form for the Einstein frame scalar
potential as in ref. [26]. However, in ref. [26] the scalar field
also needs to undergo a canonical normalization, while in
our set-up ϕ is already canonical normalized. This implies
different phenomenological results with respect to ref. [26].

3.1 Inflation

The original PV potential does not satisfy the experimen-
tal bounds from the CMB observations [37]. In our case in-
stead, by starting from a Jordan frame potential with the
form of the PV potential we obtain an Einstein frame po-
tential with a plateau in the inflationary region, as shown
in Fig. 1.

We plot the original PV potential (black), and the
modified PV potential in eq. (7) (blue) with α = 2 · 108,
q = k = 4, predicting viable CMB observables r = 0.017,
ns = 0.966 (at Ne = 60) and a quintessential tail that
solves the coincidence problem with the mass scale M =
1.38 ·10−13. We also show ϕN (star) and ϕend (dot) in the
same color code. ϕN is not visible for the original PV po-
tential as it lies at V (ϕN ) ∼ 10−8. The qualitative shape of
the potential does not depend on the specific parameters.
The value ϕend is such that ϵ(ϕend) = 1 which corresponds
to the end of slow-roll inflation, while ϕN is fixed by im-
posing Ne ∼ 60−70, i.e. the number of e-folds between the
time at which the CMB pivot scale k = 0.05 Mpc leaves
the horizon, and the end of inflation.

We notice that, while the potential is modified at the
inflation scale, it remains unchanged in the tail. This is
indeed expected. By taking the limit ϕ → −∞ of eqs. (7)
and (8), we see that U(ϕ) → 1

8α which sets the height of
the inflationary plateau. On the other hand, for ϕ → ∞
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Fig. 2: r vs. ns (a), r vs. alpha (b), α vs. ns (c), λ vs. α (d) for the PV potential with k = 2 (blue), k = 4 (red),
k = 8 (green) for Ne = 60 (thick) and Ne = 70 (dashed). The dots represents the predictions of the of the original
PV potential in the same color code. For each value of k the plot is obtained fixing λ by imposing the condition on
the observed amplitude of the scalar perturbations As = 2.1 · 10−9 and varying α in the range 0 < α < 1013 (i.e. from
small to large couplings of the higher order term). The gray regions indicate the 95% (dark-gray) and 68% (light-gray)
confidence levels (CL), respectively, based on the latest combination of Planck, BICEP/Keck, and BAO data [37].

we get U(ϕ) ∼ V (ϕ), which reproduces the behavior of
the original potential.

We now study the details of the inflationary phenomenol-
ogy.

We compute the CMB observables in the slow-roll ap-
proximation by means of the slow roll parameters:

ϵ(ϕ) ≡ 1

2

(
U ′(ϕ)

U(ϕ)

)2

, (9)

η ≡ U ′′(ϕ)

U(ϕ)
. (10)

In this approximation we can compute the tensor-to-scalar
ratio r, the spectral index ns, the amplitude of the scalar
perturbations As and the number of e-folds Ne as:

r = 16ϵ(ϕN ) (11)

ns = 1− 2η(ϕN ) + 6ϵ(ϕN ) (12)

As =
U(ϕN )

24π2ϵ(ϕN )
(13)

Ne =

∫ ϕN

ϕend

dϕ
U(ϕ)

U ′(ϕ)
(14)

For our choice of the Einstein frame potential, we obtain:

ϵ(ϕN ) =
k2ϕ2k−2

N

2
(
Mk + ϕk

N

)2 (
8αλkϕk

N + 8αλkMk + 1
)2
(15)

η(ϕN ) =
kϕk−2

N(
Mk + ϕk

N

) (
8αλkϕk

N + 8αλkMk + 1
)2×

×
(
−8αkλkϕk

N − 8αλkϕk
N + 8αkλkMk

−8αλkMk + k − 1
)

(16)

Ne =

[
ϕ2−k

2k

(
ϕk
(
16αλkϕk + k + 2

)
k + 2

− 16αλkM2k

k − 2
+

2Mk

(
8αλkϕk +

1

2− k

))]ϕN

ϕend

. (17)

In the strong coupling limit for α → ∞, ϕN → −∞, and
neglecting the contribution of ϕend the inflationary ob-
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servables can be approximated as:

Ne ≃
8αλkϕN

k+2

k(k + 2)
, (18)

r ≃ 1

12π2αAs
, (19)

ns ≃ 1− k + 1

k + 2

2

Ne
, (20)

As ≃
k + 2

12π2k
λkNe

(
k(k + 2)Ne

8αλk

) k
k+2

. (21)

We plot in Fig. 2 the numerical results for slow-roll infla-
tion using this model. Notice that the number of e-folds
is chosen in the range Ne = 60 − 70 instead of the usual
Ne = 50 − 60, due to kination contribution during the
Universe expansion, which is absent in models that con-
sider an oscillatory reheating mechanism. The extra con-
tribution to the number of e-folds can be computed as in
ref. [39]:

∆N =
1− 3w

12(1 + w)
ln

(
ρreh
ρend

)
≃ 1

3
ln

(
U

1/4
end

Treh

)
, (22)

where ρreh and ρend are respectively the energy density
of the universe at the time of reheating and the end of
inflation, Uend is the potential energy density at the end
of inflation and Treh the reheating temperature. In the
last expression, we used the fact that w ≡ P/ρ = 1 during
kination. Notice, moreover, that ∆N is zero in standard
Big Bang cosmology because w = 1/3 during radiation
domination. For kination, the above gives ∆N ∼ 10 for

U
1/4
end ∼ 1016 GeV and Treh ∼ 103 GeV, which justifies

the choice Ne ∼ 60 − 70. The relation between λ, α is
imposed by fixing As = 2.1 · 10−9 [38]. From Fig. 2 we
can see that agreement with data can easily be achieved
with α ≳ 108. To conclude, we note that the asymptotic
results given in eqs. (19) and (20) are exactly the same as
the ones obtained in [33] because in the inflationary region
the models are equivalent in the large α region.

3.2 Kination

Right after the end of inflation the equation of motion for
the Einstein frame scalar field:

ϕ̈+ 3Hϕ̇+ V ′(ϕ) = 0 , (23)

becomes dominated by kinetic energy and can be approx-
imated as:

ϕ̈+ 3Hϕ̇ ≃ 0 . (24)

It is evident that the evolution of the scalar field is now
oblivious of the potential, and hence it is in essence model
independent. The behaviour of the rolling field is therefore
generic.

The solution of the above for ϕ̇ is given by

ϕ̇ =

√
2

3

1

t
. (25)

Hence, by assuming that the scalar field behaves as a per-
fect fluid we have:

ρϕ =
1

2
ϕ̇2 + V (ϕ) ∼ 1

2
ϕ̇2 ∝ a−6 , (26)

with a ∝ t1/3, the scale factor of the universe during ki-
nation. Since from the Friedmann equations we have that
ρ ∝ a−3(1+w), the scalar field in this epoch behaves as a
barotropic fluid with w = 1. By direct integration we have
from eq. (25):

ϕ(t) = ϕend +

√
2

3
ln

(
t

tend

)
. (27)

We show in Fig. 3(a) the evolution of the of the barotropic
parameter in terms of the e-folds numberNe for the bench-
mark potential in Fig. 1 with α = 2 · 108, q = k = 4 and
M = 1.38 · 10−13. The plot shows the natural appearance
of a kination phase w = 1 right after the end of inflation.

Kination finally needs to end in order to let the Hot
Big Bang (HBB) take place. This has to happen before Big
Bang Nucleosynthesis (BBN), so to reproduce the correct
abundances of primordial nuclei. Since the radiation en-
ergy density scales as ρr ∝ a−4, as the Universe expands
radiation will eventually become the dominant source of
the energy-matter content of the Universe. This process
is called reheating, and it can happen right after inflation
ends or later on depending on the energy density of radi-
ation at the end of inflation. The main constraint is that
transition from kination to radiation domination has to
happen before BBN takes place.

3.3 Reheating

We consider that radiation first appears at the end of in-
flation. We define:

Ωgrav
r |end ≡ ρgravr

ρ
|end (28)

the density parameter for radiation at the end of inflation.
Its specific value will depend on the choice of the reheating
mechanism, and in particular the following general condi-
tion holds:

Ωgrav
r |end ≤ Ωr|end ≤ 1 , (29)

where the upper bound is found by choosing prompt re-
heating, while the lower bound is set by gravitational re-
heating which is the weakest reheating mechanism and
hence produces the lowest possible value for the density
parameter of radiation. The HBB starts with reheating
and takes place at time given by:

treh =
tend

(Ωr|end)3/2
, (30)

which implies:

ϕreh = ϕend −
√

3

2
ln (Ωr|end) . (31)
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(a) (b)

Fig. 3: a) Evolution of the barotropic parameter of the universe in terms of the elapsing e-folds number Ne for the
benchmark potential in Fig.1 with α = 2 ·108, q = k = 4 and M = 1.38 ·10−13. The plot shows the natural appearance
of a kination phase w = 1 right after the end of inflation (Kin). As radiation domination (RD) begins w drops to 1/3.
After that we have matter domination (MD) with w = 0. Finally in the recent time the scalar field energy density
becomes again the dominant source of energy-density in the universe (DE). Today we have w = −ΩΛ ≃ −0.7. The
vertical lines denote the corresponding e-folds number Ne for transitions between different epochs. b) Evolution of
the energy densities for the scalar field ρϕ, the radiation fluid ρr and the matter fluid ρM in units of m4

P = 1. The
vertical lines denote the corresponding e-folds number Ne for the transitions between different epochs. It is assumed
that radiation is originally generated at the end of inflation (e.g. by Ricci reheating [15–17]).

Note that ϕreh only depends on the potential U(ϕ) im-
plicitly through the end of inflation, but its derivation is
model-independent. Now if we assume that radiation has
the time to thermalize by the beginning of radiation dom-
ination then we can compute the reheating temperature
as:

Treh =

(
30

π2greh∗
(Ωend

r )3ρendϕ

)1/4

, (32)

where greh∗ are the effective relativistic degrees of freedom
at the time of reheating. In the following we keep Ωend

r as
a free parameter, i.e. we do not assume any specific reheat-
ing mechanism and proceed to find a lower bound for the
reheating temperature from the constraints on overpro-
duction of gravitational waves during the kination phase,
as explained in appendix A. It is, in fact, well-known that
a kination phase induces a peak in the amplitude of the
gravitational wave background [40]. This peak has to be
constrained in order to do not spoil the observations on
Big Bang Nucleosynthesis. If detected in the future this
would represent a confirmation of physics beyond ΛCDM
and an hint for the viability of quintessential inflation
models.

3.4 Quintessence

During radiation domination as the Universe keeps ex-
panding; the field loses its kinetic energy while rolling
down the field until it freezes. Since the potential is still
negligible the EoM for the scalar field is still given by
eq. (24), but H is now determined by the radiation con-
tent of the Universe so the equation yields:

ϕ̇ =

√
2

3

treh
t3

. (33)

Hence, by integrating it we get:

ϕ(t) = ϕreh + 2

√
2

3

(
1− treh

t

)
. (34)

By using eqs. (31) and (34), we get that the scalar field
freezes at t ≫ treh at the value:

ϕF = ϕend +

√
2

3

(
2− 3

2
lnΩend

r

)
. (35)

In order to have a working quintessential inflation mecha-
nism, we need to satisfy two more requirements. The first
one is that the value of the scalar field potential energy-
density at freezing must match the value of the observed
energy density of dark energy today (coincidence require-
ment), that is:

U(ϕF ) = λk Mk+q

ϕq
F +Mq

= ρ0 ∼ 7 · 10−121. (36)

Second, we need to check that the barotropic parameter at
present w0 for the quintessential tail is within the Planck
observational bounds [41]. In order for this to happen we
need to make sure that the scalar field unfreezes only at
the time of matter-dark energy equality. In other words,
the field stays frozen until recent times and only unfreezes
when it becomes dominating.

It is a well-known fact that in quintessence models, a
competitor attractor behavior can appear. This attractor
behavior is referred to in the literature as a tracker, if it
leads to eventual quintessence domination. The condition
for the tracker to appear is given by:

Γ ≡ UU ′′

(U ′)2
> 1. (37)
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α Mmin[GeV ] ϕmin
F Tmax

reh [GeV ] T ∗
reh[GeV ]

108 2.0 · 105 4.01 4.6 · 102 1.3 · 107
1012 2.7 · 104 4.01 2.3 · 103 1.9 · 105
1016 2.7 · 103 4.01 0.27 5.9 · 102

Table 1: Results for reheating for the PV potential (8)
with q = k = 4. The estimated maximum reheating tem-
perature for the model Tmax

reh is below the lower bound
T ∗
reh for every choice of α, this implies that in general the

model cannot account for the BBN constraints on overpro-
duction of GWs (see appendix A). However compatibility
with observations is restored if one assumes production of
heavy particles in the early universe [14].

Note that, for an inverse-power-law potential like the one
we have chosen, the tracker condition gives Γ = q+1

q which

implies that the tracker is always present. For the case
q = 4 the energy density of the tracker solution scales as:

ρT ∼
(
M8

αt4

)1/3

, (38)

which scales slower than a matter-dominated background.
While the field is frozen at ϕF it has a constant contri-

bution to the energy-density. However, if it hits the tracker
before becoming dominant it unfreezes and starts follow-
ing the tracker solution. Eventually,the scalar field be-
comes dominant with a barotropic parameter w = − 1

3 ,
which is not acceptable given the observational bound
wDE < −0.95 [41]. If, on the other hand, the value of
U(ϕF ) is small enough i.e.

U(ϕF (teq)) < ρT (teq), (39)

then the scalar field unfreezes only at the matter-dark en-
ergy equality. After dominating, the field thaws and starts
slow-rolling down its potential. The slow-rolling quintessence
evolves as a fluid with a barotropic parameter given by:

wϕ =
1
2 ϕ̇

2 − U(ϕ)
1
2 ϕ̇

2 + U(ϕ)
≃ −1 , (40)

since the field changes very slowly with time. Note that,
while close to −1, the barotropic parameter would be
slightly larger, which, if confirmed by observations, would
distinguish the model from ΛCDM.1

Imposing (39) is equivalent to impose a lower bound
on the mass scale M = Mmin in our potential (see Table
1). It can be checked that field does not evolve substan-
tially from matter-dark energy equality to the present day.
Therefore, it is safe to consider ϕ0 ≃ ϕF and wϕ ≈ −1. We
show in Table 1 the results for the case k = q = 4. We only
report the values of α that allow good predictions for the
CMB observables. The value Mmin is the minimum value
of the mass scale for the potential in eq. (8) necessary to
avoid the tracker solution and let the field unfreeze only

1 Indeed, recent DESI observations seem to suggest that
quintessence is favoured over ΛCDM [42].

at matter-dark energy equality. The corresponding ϕmin
F

is obtained by imposing the solution of the coincidence
problem in eq. (36). The reheating temperature Tmax

reh is
computed by means of eq. (32) by setting M = Mmin and
ϕ = ϕmin.

Finally, we need to check if the model can satisfy the
constraints on Treh coming from gravitational-wave (GW)
overproduction. During kination, the w = 1 stiff period
induces a spike in the density of the GWs, potentially
spoiling BBN. This can be avoided if Treh is large enough.
The details on the calculation can be found in appendix A
(see eq. (74)-(78)) , while we show in Table 1 an estimate
of the lower bound T ∗

reh (depending on the value of α)
that avoids GW overproduction.

Unfortunately, we always have Tmax
reh < T ∗

reh hence
the model is not viable in general. However, compatibility
with observation can be restored if we assume the gravita-
tional production of very massive particles after the infla-
tionary era [14]. How much the bound on reheating tem-
perature relaxes, depends on the exact properties of such
heavy particles, like mass, heating efficiency etc. However,
regardless of the aforementioned details, an indicative va-
lidity range can be estimated to be [14]

1 MeV ≤ Treh ≤ 5 · 107GeV , (41)

which makes the results computed in Table 1 viable.

3.5 The case of the exponential tail

Most popular quintessence models assumes an exponential
tail in the form:

V (ϕ) = M4e−λϕ. (42)

By choosing a Jordan frame potential as in eq. (42) we get
the Einstein frame potential

U(ϕ) =
M4e−λϕ

8αM4e−λϕ + 1
, (43)

and the corresponding the slow-roll parameters

ϵ(ϕ) =
λ2

2

(
1

1 + 8αM4e−λϕ

)2

, (44)

η(ϕ) =
λ2eλϕ

(
1− 8M4αe−λϕ

)
(8M4αe−λϕ + 1)

2 . (45)

From eq. (44) we see that:

ϵ(ϕ) ∼ 0, for ϕ → −∞ (46)

ϵ(ϕ) ∼ λ2

2
for ϕ → ∞ , (47)

which implies that to end slow-roll during inflation and
have a graceful exit we need λ >

√
2. While inflation works

very well for this choice of parameters, as shown in Fig. 4,
it does not provide a good tail for quintessence. The rea-
son can be seen from Fig. 5. The plot shows the change in
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Fig. 4: r vs. ns (a), r vs. α (b), α vs. ns (c), λ vs. α (d) for the quadratic model with V (ϕ) = V0e
−λϕ for Ne = 60.

The relation between α and λ is imposed by fixing As ∼ 2.1 · 10−9. The gray regions indicate the 95% (dark-gray) and
68% (light-gray) confidence levels (CL), respectively, based on the latest combination of Planck, BICEP/Keck, and
BAO data [37].
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Fig. 5: Exponential potential for M = 10−3 (blue), M =
10−5 (red), M = 10−8 (green) and α = 1010 and corre-
sponding λ = 2.05 fixed by setting As ∼ 2.1 · 10−9. We
also show ϕN (star) and ϕend (dot) in the same color code.
Changing M amounts to a shift in the potential along ϕ-
axis.

the potential by varying the parameter M . The net result
of changing M amounts to a translation along the ϕ−axis,
while ϕend − ϕN remains constant (after fixing the other
parameters α,λ,Ne), yielding the same results for the in-
flationary observables. The immediate consequence is that

M cannot be used as a parameter to fix, in order to match
the observed cosmological constant.

To see this explicitly, consider the tail of eq. (43). For
ϕ → +∞, we have:

U(ϕ) ∼ M4e−λϕ. (48)

Once again we want to understand if we can solve the
coincidence problem:

U(ϕF ) = M4e−λϕF = ρ0 ∼ 7 · 10−121, (49)

where ϕF is still given by eq. (35). For the sake of simplic-
ity, we now consider the case that maximizes eq. (35), i.e.
gravitational reheating. It can be computed that:

ϕF ∼ ϕend + 40, (50)

where ϕend is obtained by solving ϵ(ϕ) = 1. Hence, we get:

U(ϕF ) =

√
2λ− 2

16α
e−λ40. (51)

This implies that the only parameter in the model is λ
and the two scales (inflation and dark-energy) cannot be
decoupled. Even in the maximal case we cannot solve the
coincidence problem unless λ ∼ 6.3 which is too large and
cannot reproduce dark-energy behavior. It is then impos-
sible to use this model to achieve a viable quintessential
inflation scenario.
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4 Quintessential inflation for F (RX)>2

In this section, we discuss for completeness quintessential
inflation for the higher-order case F (R,X)>2. We carry
the same analysis of section 3 by computing the infla-
tion and dark-energy observables and consider the bounds
from overproduction of gravitational waves, in order to
constrain the parameter space and prove the viability of
quintessential inflation for this class as well.

For this class of functions, the behavior ofG(ζ) changes
drastically and one can see that the equation G(ζ) = 0 al-
ways admits a solution for some ζ0 > 0 (see (5)). For any
ζ > ζ0, the G(ζ) function is negative. As shown in [33],
this configuration works particularly well when consider-
ing negative and unbounded from below Jordan frame po-
tentials V (ϕ). In fact, such a choice generates an Einstein
frame potential U which is positive definite and has an
asymptotically flat plateau that allows to perform infla-
tion for ζ → ζ0 (i.e. V (ϕ) → 0). At the same time for
ζ → +∞, the potential U exhibits a tail that asymptoti-
cally approaches zero, giving the opportunity to mimic the
quintessence behavior without the necessity of introducing
a decaying tail behavior to begin with.

In order to give a concrete example, we now focus on
the case:

F (ζ) = ζ + αζ2 ln(βζ), (52)

with β > α/e, in order to ensure that F ′ > 0 for any
ζ > ζ0. This specific example allows for an exact solution
for eq. (5), which reads:

ζ − αζ2 = V (ϕ). (53)

The above equation admits two solutions:

ζ± =
1±

√
1− 4αV (ϕ)

2α
=

1±
√
1 + 4α|V (ϕ)|
2α

, (54)

but the consistency constraints ζ ≥ ζ0 = 1/α and V (ϕ) <
0, suggest

ζ = ζ+ =
1 +

√
1 + 4α|V (ϕ)|
2α

, (55)

is the only available solution. Using such a solution, we can
provide the exact expression of the Einstein frame scalar
potential:

U(ϕ) =
|V (ϕ)|

2

[
4α|V (ϕ)| ln

β
(
1 +

√
1 + 4α|V (ϕ)|

)
2α


+ 2α|V (ϕ)|+

√
4α|V (ϕ)|+ 1− 1

]−1

(56)

For V (ϕ) → 0, the above behaves as

U(ϕ) ≈ 1

8α
(
ln
(

β
α

)
+ 1
)
1 + αV (ϕ)

2
(
ln
(

β
α

)
+ 1
)
 , (57)

α r ns µ/M

108 0.03 0.963 0.06
1012 4 · 10−6 0.972 2.5 · 10−5

1016 4 · 10−10 0.972 2.5 · 10−9

Table 2: Results for inflation for the ePV potential in
eq. (61) with k = q = 4 at Ne = 60. Predictions for
inflation lay inside the 2σ region for r, ns. The ratio µ/M
is fixed by requiring As = 2.1 · 10−9.

while for V (ϕ) → −∞, as

U(ϕ) ≈ 1

8α ln

(
β
√

|V (ϕ)|
α

) =
1

8α
(

1
2 ln (|V (ϕ)|) + ln

(
β√
α

)) ,
(58)

where we emphasize once again that V (ϕ) < 0. We con-
clude this preliminary discussion by noting that, if we
plug-in an exponential potential with the an asymptotic
behaviour

V (ϕ) ≈ −ef(ϕ), (59)

into eq. (58), then the tail of the potential behaves as

U(ϕ) ≈ 1

f(ϕ)
. (60)

We will use this last result as a guide to construct a work-
ing model of quintessential inflation, as we will see in the
following subsection.

4.1 Exponential PV potential

Given the result of eq. (60), we choose an exponential
version2 of the Peebles-Vilenkin (ePV) potential used in
section 3

V (ϕ) = 1− eVPV (ϕ) , (61)

with

VPV (ϕ) =


µk

Mq(ϕk+Mk)
ϕ ≤ 0,

ϕk+µk

Mk+q ϕ > 0 .

(62)

It is possible to show numerically that the parameter β
appearing in eq. (56) has a negligible effect on the com-
putation of the CMB observables. Moreover, one can see
from eq. (58) that for realistic choices of α, β the dominant
term in the denominator will be given by the ln(|V |) con-
tribution. Thus, in what follows, we can safely set β = α
without loss of generality. With this setup it is possible
to produce viable predictions for the CMB observables by
fixing the two mass scales M,µ without requiring extreme
fine tuning to solve the coincidence problem. However, as
we can see from Table 2, this setup is physical only for

2 We added 1 to the definition of the potential in eq. (59) in
order to ensure that V (ϕ) → 0 for ϕ → −∞.
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α Mmin[GeV ] ϕmin
F Tmax

reh [GeV ] T ∗
reh[GeV ]

108 5.5 · 104 4.01 1.2 · 106 2.9 · 107
1012 1.7 · 105 4.01 1.5 · 102 1.1 · 105
1016 5.5 · 105 4.01 0.015 305

Table 3: Results for reheating for the ePV potential in
eq. (61) with k = q = 4. The estimated maximum reheat-
ing temperature for the model Tmax

reh is below the lower
bound T ∗

reh for every choice of α, this implies that in gen-
eral the model cannot account for the BBN constraints on
overproduction of GWs (see appendix A). However com-
patibility with observations are restored if one assumes
production of heavy particles in the early universe.

very large α. For this reason, we only compute the slow-
roll parameters in the α → ∞ regime:

ϵ(ϕN ) ∼ 1

8
α2k2µ2kϕ−2(k+1)M−2q, (63)

η(ϕN ) ∼ −1

2
αk(k + 1)µkϕ−k−2M−q , (64)

and the number of e-folds can be integrated explicitly giv-
ing:

Ne ∼
2µ−kϕk+2Mq

αk(k + 2)
. (65)

Finally, the CMB observables read:

r ∼ 1

12π2αAs
, (66)

ns ∼ 1− k + 1

k + 2

2

Ne
, (67)

As ∼
2−

5k+8
k+2 µ−2kM2q

(
αk(k + 2)Neµ

kM−q
) 2(k+1)

k+2

3π2α3k2
.(68)

We note that the limits for r and ns are the same as the
ones shown in eqs. (19) and (20). Indeed, it can be eas-
ily proven that the current setup and the one in section
3.1 are actually equivalent in the inflationary region for
α → ∞. After inflation is over, kination and reheating
follow (see sections 3.2 - 3.3). The reheating temperature
must satisfy the bound Treh > TBBN ∼ 10−2 GeV. After
reheating takes place, radiation eventually starts dominat-
ing. During the expansion, the scalar field ϕF freezes at
the value given by eq. (35).

In order to have a working quintessential inflation mech-
anism, we need to satisfy two more requirements. The first
one is that the value of the scalar field potential energy-
density at freezing must match the value of the observed
energy density of dark energy today (coincidence require-
ment). By using eqs. (58) and (61), we find:

U(ϕF ) ≈
Mk

4α(ϕk
F + µk)

= ρ0 ∼ 7 · 10−121. (69)

Second, we need to check that the barotropic param-
eter at the present day w0 for the quintessential tail is
within the Planck observational bounds [41]. In order for

this to happen we need to make sure that the scalar field
unfreezes only at the time of matter-dark energy equality.
In other words, the field stays frozen until recent times and
only unfreezes when it becomes dominating. The field then
thaws and starts slow-rolling down its potential. This hap-
pens provided that the frozen scalar field does not hit the
tracker before it starts dominating (see section 3.4). The
equation for the barotropic parameter in wϕ is given by
eq. (40). Once again the field will not substantially evolve
till the present day, with ϕ0 ≃ ϕF and wϕ ≈ −1.

We show in Table 3 the results for the case k = q = 4.
We only report the values of α for which we obtain viable
CMB observables. The value Mmin is the minimum value
of the mass scale for the potential in eq. (61) necessary to
avoid the tracker solution and let the field unfreeze only
at matter-dark energy equality. The corresponding ϕmin

F is
obtained by imposing the solution of the coincidence prob-
lem in eq. (69). The reheating temperature is computed
by means of eq. (32) by setting M = Mmin and ϕ = ϕmin.
Finally, we need to check if the model can satisfy the con-
straints on Treh coming from GW overproduction. During
kination, the w = 1 stiff period induces a spike in the
density of the GWs, potentially spoiling BBN. This can
be avoided if Treh is large enough. The details on the cal-
culation can be found in appendix A, while we show in
Table 3 an estimate of the lower bound T ∗

reh (depending
on the value of α) that avoids GW overproduction.

Unfortunately, we always have Tmax
reh < T ∗

reh hence the
model is not in general viable. As before, compatibility
with observation can be restored if we assume the grav-
itational production of very massive particles after the
inflationary era [14] which naively relaxes the reheating
temperature bound to the one showed in eq. (41), making
the results computed in Table 3 viable again.

4.2 A note on the exponential tail

Given eq. (58), one can try to reproduce an exponential
tail by choosing a Jordan frame potential in the form of a
double exponential:

V (ϕ) = 1− eσe
λϕ

. (70)

The Einstein frame tail would then behave as:

U(ϕ) ≈ e−λϕ

4αλ
. (71)

However, this setup cannot be used to generate a quintessen-
tial tail.

Consider the slow-roll parameter ϵ(ϕ) = U ′(ϕ)2

2U(ϕ)2 with

U(ϕ) given by eq. (56). It can be straightforwardly com-
puted that this function is a monotonically increasing func-
tion with the following limits:

ϵ(ϕ) ∼ 0, for ϕ → −∞ , (72)

ϵ(ϕ) ∼ λ2

2
, for ϕ → ∞ , (73)
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which implies that to end slow-roll during inflation and
have a graceful exit we need λ >

√
2. Once again the same

parameter determines the behavior at inflation and in the
tail, this implies that the two scales cannot be decoupled.
Since this setup is equivalent to the one presented in 3.5
we conclude that it is not viable.

5 Conclusions

We have studied modeling quintessential inflation in the
context of F (R,X) Palatini gravity. In particular, we con-
sidered a potential in the form of the generalized Peebles-
Vilenkin (PV) potential for a quadratic F (R,X). We proved
that the model generates viable quintessential inflation in
the case k = q = 4 with a mass scale M ∼ 103 − 105

GeV, providing the right inflationary observables, a solu-
tion for the coincidence problem and a prediction for the
barotropic parameter wϕ ≈ −1. The model predicts in
general a value of Treh < 105 GeV, which contradicts the
lower bound on Treh necessary to avoid overproduction of
GWs during kination. However, compatibility with obser-
vations can be restored if we assume production of heavy
particles ∼ 10−6mP , which later-on decay in the SM sec-
tor. This relaxes the bound to 1MeV ≤ Treh ≤ 5·107 GeV,
which is compatible with our predictions.

We also considered an example for a model F (R,X)>2,
in the form F (RX) = RX + αR2

X ln(αRX) with a Jordan
frame potential given by an exponential version of the
PV potential, characterized by two mass scales µ,M . The
model predicts viable quintessential inflation for k = q = 4
with a mass scale of order M ∼ 105 GeV which solves the
coincidence problem and 1 MeV < µ < 103 GeV fixed
by the amplitude of scalar perturbations As. As in the
previous case the model predicts in general a value of
Treh < 105 GeV which cannot be accepted if one considers
the lower bound on Treh necessary to avoid overproduction
of GWs during kination. The solution is again to assume
production of heavy particles in the early Universe.

We also showed that a quintessential tail given by a
simple exponential, although generating very good infla-
tionary results, does not provide a solution for the coinci-
dence problem (in both the F (R,X) models).

All in all, this study demonstrated that F (R,X) Pala-
tini gravity is a promising framework for constructing vi-
able quintessential inflation models, although it can be
challenging to address successfuly all the relevant con-
straints and, in particular, the overproduction of primor-
dial gravitational waves during kination.
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A Constraints from the overproduction of
GWs

In the following we briefly compute an estimate on the re-
heating temperature necessary to avoid overproduction of
GWs during kination (see for example [43] for the details).

In order to respect the bounds from BBN we need to
constraint the intensity:

Ωpeakh
2 =

∫ νend

νBBN

ΩGWh2

ν
dν ≤ 7

8

(
4

11

)4/3

Ωh2∆Neff ,

(74)
where ΩGW is the spectrum of the gravitational waves,
Ωrh

2 ∼ 2.47·10−5 is the relic density of radiation, νBBN ∼
10−11Hz and ∆Neff ∼ 0.17 the extra relativistic degrees of
freedom during BBN given by the current Planck bound
[41].

The above can be related to the reheating temperature
as follows. Consider the frequencies νend, νreh correspond-
ing to the GW modes that reenter the horizon respectively
at the end of inflation and at reheating. We have:

νend =
Hend

2π

aend
a0

, (75)

νreh = νend

(
Hend

Hreh

)2/3

, (76)

with

Hreh = π

√
g∗reh
90

T 2
reh. (77)

Finally, between the end of the inflation and reheating we
have that

Ωpeak = Ωrd
GW

νend
νreh

, (78)

where Ωrd
GW ∝ H2

end, is the GW density parameter of the
modes that reenter the horizon during radiation domina-
tion. By comparing (74) with (78) and using (75)-(77) we
get a lower bound on Treh. In this way, we can obtain
the constraint on the reheating temperature appearing in
Tables 1 and 3.
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