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Abstract

For a bar-joint framework (G, p), a subgroup I' of the automorphism group of G, and a sub-
group of the orthogonal group isomorphic to I', we introduce a symmetric averaging map which
produces a bar-joint framework on G with that symmetry. If the original configuration is “al-
most symmetric”, then the averaged one will be near the original configuration. With a view on
structural engineering applications, we then introduce a hierarchy of definitions of “localised” and
“non-localised” or “extensive” self-stresses of frameworks and investigate their behaviour under
the symmetric averaging procedure. Finally, we present algorithms for finding non-degenerate
symmetric frameworks with many states of self-stress, as well as non-symmetric and symmetric
frameworks with extensive self-stresses. The latter uses the symmetric averaging map in combina-
tion with symmetric Maxwell-type character counts and a procedure based on the pure condition
from algebraic geometry. These algorithms provide new theoretical and computational tools for
the design of engineering structures such as gridshell roofs.
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1. Introduction

A bar-joint framework is, loosely speaking, a collection of rigid bars that are joined at their ends by
freely-rotating joints. The mathematical field of Geometric Rigidity Theory is concerned with the
rigidity and flexibility analysis of bar-joint frameworks [8, 4T} [56]. This theory has many applications
in science, technology and design, since bar-joint frameworks are useful models of a variety of real-
world structures. See [22], BIl, B2, [39, [44], for example, for some recent applications in structural
engineering.

The reader is referred to [8] for a more detailed mathematical development of the core notions used
in this paper, including the definition of the rigidity matrix (or compatibility matrix, the transpose
of the equilibrium matrix in engineering terminology). There has historically been a divergence
of terminology between the engineering and mathematical communities investigating highly related
topics; here, we follow the mathematical conventions, referring to the engineering terms where helpful.
The formal definitions of these concepts are given precisely in Section

Each bar-joint framework (G,p) in R? with n vertices and m edges has an s-dimensional space
S(p) of self-stresses (also known as equilibrium stresses) and an f-dimensional space of non-trivial
infinitesimal motions. Self-stresses are defined as a collection of bar forces that self-equilibrate within
the framework without the application of external loads. Similarly, infinitesimal motions of the frame-
work are nodal motions which do not cause bar extensions (of the first order). These are related by

the Maxwell index theorem A1
sz—SZdn—m—%. (1)
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Once p is fixed, all of these numbers are easy to compute with linear algebra through the investigation
of the rank and kernel of the rigidity matrix. Moreover, it is well-known that, for each fixed G and d,
there is a typical value for s, which is achieved at almost every p (if & = 0 then typically f =s =0,
if £ > 0 then typically f = k,s =0, and if k& < 0 then typically f = 0,s = —k). Within engineering
communities, this is often written for 2D frameworks as 2n—m —3 = f—s = k and is used to consider
if a framework is statically and kinematically determinant or indeterminant.

Recently, a number of different applications, including the theory of generic global rigidity, graph
realisation, statistics, and gridshell design, have suggested a different line of investigation. Here, we
allow p to vary, and instead, ask about the collection of vectors w € R™ that are a self-stress for some
(G, p). Research along these lines has antecedents in Connelly’s work on universal rigidity [7, [I7] in
the early 1980’s, and has been active over the past decade or so [1} 10, 111 [18].

This note is motivated by a specific type of question, which is

For a fized graph G and dimension d, what is the maximum number of independent self-stresses a
framework (G,p) can have?

Our specific motivation is gridshell design [23] B1], 44]. Here we imagine a framework as the 1-
skeleton of a 3-dimensional polyhedral surface that models a roof made of flat glass panels supported
by a steel skeleton (a gridshell). When we consider vertical loads applied at the joints of the skeleton,
axial resolutions in the bars correspond to self-stresses in the 2-dimensional planar framework (also
known as the form diagram) obtained by orthogonally projecting the 3D structure to the xy-plane.
(The actual shape of the polyhedral surface is also related to the self-stresses in the projection via
Maxwell-Cremona liftings [13, 26, 27, 54].) A central design constraint for a gridshell is that it
axially resolves a certain set of dominant vertical loads. To ensure this, designers work in reverse,
starting from the 2-dimensional form diagram, and build it to have enough independent self-stresses.
(In general, the gridshell will not be able to axially resolve every load, and possibly not even every
vertical load. Modern gridshells have too few members to be statically rigid. This is a source of
subtlety in the problem.)

Figure [1| shows a hypothetical gridshell on a rounded rectangle boundary with dihedral symmetry
of order 4. The gridshell has been designed so that it has axial forces only (is funicular) under its
self-weight. It can also be thought of as a hanging cable net which has been inverted - “As hangs
a flexible cable so, inverted, stand the touching pieces of an arch”. Many of these structures are
considered to be undercounted. Gridshells are often quad-dominant as quadrilateral glass panels are
more economical (reduced offcut wastage) and surfaces with planar quad discretisations are eminently
realisable. Due to their undercounting, efficiently carrying unbalanced loads, such as wind and snow
drifts, can be challenging. By considering states of self-stress in the form diagram (each state of
self-stress corresponds directly to a funicular load case for the gridshell) and their symmetry types, it
is possible to design a gridshell to use material efficiently. This paper builds on previous efforts from
rigidity theory to offer engineers concrete methods and illustrative examples for designing structures
with a mathematically informed approach.

It is not hard to see that, in order to make the above question about maximising the number of self-
stresses substantial, we need some restriction on p. Otherwise, we just make p; = p; for all points 7
and j in the configuration p. Then s = m, which by the Maxwell index theorem is the largest possible.
One direction, which we will not pursue, is to try and enumerate a large set of application-specific
desiderata. These might include, for example, planar embedding, convex faces, no small angles, and
so on. Conditions like these are semi-algebraic, i.e., involving polynomial inequalities, which are not
present in rigidity-theoretic formalisms. They are also typically difficult to analyse mathematically,
and computationally harder than algebraic considerations.

Instead, we will focus on a specific issue, namely how symmetry affects the parameter s. Symme-
try arises very naturally for problems like this in several ways: symmetric designs are aesthetically
pleasing and have appeared in the architectural pattern language for thousands of years; there is also
a robust mathematical and engineering toolbox for designing and analysing symmetric structures and
their responses to different real-world conditions. Decomposing loads and self-stresses into different



Figure 1: Hypothetical gridshell design with form diagram (plan/top view) inset.
Note that this gridshell is not self-tied and relies upon pin supports along the boundary.

symmetry types can be useful when designing gridshells and other engineering structures (see e.g.
[30L 36, [39]). Moreover, symmetry often leads to additional states of self-stress that are not present in
non-symmetric realisations (see e.g. [14} [31) 44]). Our interest here is to understand, given some (typ-
ically non-symmetric) framework (G, p) (which we imagine to be provided by either an optimisation
procedure or a designer), what the properties of (typically nearby) symmetric frameworks are.

A given graph G has an automorphism group of combinatorial symmetries. If we fix a specific
subgroup isomorphic to a point group, and then associate it to the corresponding geometric symmetries
of the plane, we have fixed a class of symmetric placements of G. Inside of this smaller space, we
may then seek to maximise s. Because there are fewer total degrees of freedom, the symmetry
approach can be more computationally tractable. Because self-stresses are preserved under projective
transformations, it is also possible to use symmetry methods to construct self-stressed form diagrams
that are not themselves symmetric.

In this article we will first review the definition of a symmetric framework, pointing out some
subtleties (Section [2)), and some basic terminology and results from Geometric Rigidity Theory (Sec-
tion [3). In Section [4] we then describe how to find a symmetric framework to any framework (G, p)
with non-trivial combinatorial symmetries via a novel symmetric averaging procedure. This procedure
is inspired by the averaging method popularised by Whiteley in the last century [41]. If the original
framework (G, p) is “almost” symmetric, then the symmetrically averaged framework will be “nearby”
(G, p). However, this procedure can also be applied to frameworks that are far from being symmetric,
but whose graphs have non-trivial combinatorial symmetries. In Section [5| we show that the sym-
metric averaging function actually has the nice property that it is the orthogonal projection onto the
space of symmetric configurations; hence it provides the closest symmetric framework to any given
framework. We then introduce a hierarchy of notions of “localised” and “extensive” self-stresses (with
respect to a given combinatorial symmetry) and illustrate, with examples and theorems, the kinds of
behaviours that symmetric averaging can induce (Section @ Moreover, in Section E we introduce
a symmetry-independent notion of an “extensive” self-stress, and present a new algebraic approach
for identifying such stresses in sparse graphs. Loosely speaking, (symmetry-)extensive self-stresses
are the ones that are most relevant to gridshell design, as they have larger support and do not arise
from linear combinations of localised self-stresses. Section [8] is dedicated to the description of three
heuristic algorithms, which for a given graph with combinatorial symmetries, allow us to:

(1) systematically explore, for a given graph G, the symmetries that provide the largest number of
independent self-stresses in symmetric realisations of G in 2- or 3-space under symmetry-generic



conditions. This relies on the symmetry-adapted Maxwell counts given in [14] BT] 44] and also
provides information about the symmetry types of the self-stresses;

(2) for an isostatic (i.e. rigid and self-stress-free) graph G, check for extensive self-stresses in (not
necessarily symmetric) realisations of G in d-space via a novel approach (described in Section @
based on the pure condition developed by White and Whiteley [53]; for d = 2, we also describe an
alternative test based on the force-density method [37], which is also known as “rubber-banding”
in Geometric Rigidity Theory [24] 25] 52];

(3) for an isostatic graph G, check for the existence of symmetric realisations in R? that have an
extensive self-stress. Such realisations can then be constructed with the symmetric averaging
method. This heuristic combines the “symmetry-adapted Maxwell counting method” with the
“pure condition method” mentioned above. For simplicity, we focus on the case where the
underlying graph is isostatic. Extensions to more general graphs are left for future work.

Finally, in Section [9] we point out some subtleties in the relationship between self-stresses in planar
form diagrams and the ability of the corresponding 3-dimensional roof structures to resolve vertical
loads. Moreover, in Section we analyse how errors in the configurations propagate to resolving
vertical loads. These discussions are important for practical applications. Some avenues for further
work are presented in Section

2. Symmetric graphs and frameworks

Let G = (V, E) be a finite simple graph. We will assume that |V| = n and |E| = m, i.e., that G has
n vertices and m edges. A framework in dimension d, (G,p), is a graph G and a configuration p of
n points in R%. (G, p) is also called a realisation of the graph G in R?. (We will come back to the
indexing of V and p shortly.)

In this paper, it is convenient to assume that V' = {1,...,n} so that the symmetric group Sym(n)
acts on V in the usual way by relabeling the vertices. Most vertex relabelings are not very interesting,
because they change G. A relabeling v € Sym(n) is called a graph automorphism if it preserves G in
the following sense:

JEE =  AnG)eE

If v and 4" are both graph automorphisms, then so is the composition y o 4" (which we usually write
~v7'). The set of all the automorphisms of G is called Aut(G), and with function composition as the
product it becomes a subgroup of Sym(n). So Aut(G) < Sym(n) is the (combinatorial) symmetry
group of G. Note that since G doesn’t have any geometry, Aut(G) can be quite large, but it won’t
be Sym(n), unless G is complete or has no edges. Before leaving combinatorial symmetries, we need
to look at how v € Aut(G) moves the edges of G. Since v sends edges to edges, it induces a map
4 : E — E, by the defining property

§(ij) = (i) forallij € E
So there is a naturally associated subgroup of Sym(FE) that has the same structure as Aut(G), namely
{¥:v € Aut(G)} < Sym(E)

We usually don’t write 4 and follow the convention that (ij) = 4(ij). (We note that the choice of ¥
is not the only one we could make, but we will always use this recipe.)

The next step towards symmetric frameworks is to define symmetric point configurations. Let p
be a configuration of n distinct points in R%. In this note, configurations are ordered, so we have

p=(P1,pP2,---,Pn) € Can



where Cy,,, is the configuration space of all d-dimensional configurations of n points. (We give it a
name different from R9" because we ruled out coincident points.)
Next we fix some finite group
T=A{n,....,7} <O(d)

of (necessarily linear) isometries of R? that fix the origin. (These are also known as point groups and
are classified in dimensions 2 and 3, see e.g. [2, B, [12].) We say that p is T-symmetric if every element
of T sends points in p to other points in p; in symbols

for all p; and 7; € T there exists py such that 7;p; = ps.

We notice that k is determined by ¢ and j, and that the assertion of the displayed equation is that
k has to exist. Because all the 7; are bijections on R?, the induced relabeling of the points will be a
bijection on the labels. For example, in Figure [2] the group T acting on the point configuration given
by the vertices of the frameworks in (a), (b) is T = {Id, o}, where o is the mirror reflection in the
y-axis. The relabelings of the points are different between them, since ps and pg are exchanged in
(a), but fixed in (b). In Figure[2] (c) the symmetry group is {id, C>}, where C is the half-turn around
the origin. The induced relabeling of the points is, again, different, because, e.g., p1 is mapped to p4
in (c) and to pg in (a), (b).

(e) (f)
Figure 2: The triangular prism graph can be realised as a bar-joint framework in the plane with
reflection symmetry Cs (a,b), half-turn symmetry Cy (c), dihedral symmetry Ca, of order 4 (d), three-
fold rotational symmetry Cs (e) and dihedral symmetry Cs, of order 6 (f). The symmetry types shown
here correspond to the choices of the combinatorial group I' and point group representation 7 that
lead to planar realisations. Other choices exist, but the associated drawings have crossings.

Finally, we combine the two concepts to say what a symmetric framework is. The notation is
(G,T,7,p) which we call a (T, 7)-symmetric framework. We sometimes also just write (G, p) in short.
The data are I' < Aut(G), a subgroup of the combinatorial symmetry group of G, and 7 : I' — O(d)
a faithful representation of I' by origin-fixing isometries. This means that, if

P={v,....,%} and T ={r(n),...,7(7)}

then T' = 7(T') is a finite subgroup of isometries that has the same structure as I'. In symbols, we
have, for all i, j

T(%"Yj) = T(’Yi)T(’Yj)



and also that
7(y) =1d implies that v=1d

Notice that this puts a lot of restrictions on what I" can be, since there are not very many finite
subgroups of O(d), at least when d is small relative to n. To complete the definition, we add a
compatibility condition between what I" does to G and what T" does to p (it is not enough to just say
that p is T-symmetric in some way). What we need is that

T(Y)Pi = Py(s) forallyelandieV

In words, this says that, for each element v of I" and point p;, if we apply the geometric operation
7(7) to the point p; we get the point p,; that corresponds to how v moves the vertex i. We can
now consider Figure [2 in more detail. In Figure a), T is the group {Id, (12)(56)(34)}, and 7(I')
is the group {Id, o}, as described above. The compatibility conditions are quickly checked to be
met. In Figure 2(b), 7(T') is the same group as in (a), but T' is different, namely {Id, (12)(34)};
this shows why the compatibility condition asks for more than p being T-symmetric in some way.
Figure[(c) is an example where I' and 7(T') are both different from what we have seen in (a) and (b):
I={Id,(14)(23)(56)} and 7(I") = {Id, C}.

Note that for any 2-dimensional framework, 7(7y) is either the identity, denoted by Id, a rotation
by 27”, k € N, about the origin, denoted by C}, or a reflection in a line through the origin, denoted
by o. The point groups 7(I') that can be created from these operations are the infinite sets Cj, and
Ciy for all £ € N. The group Cy is the cyclic group generated by Cy, and Cg, is the dihedral group
generated by a pair {Cf, o}. The reflection group Cy, is usually denoted by Cs. See [2],[3], for example,
for further details and a corresponding classification in 3-space.

We conclude this section with Figure which shows additional examples of (T', 7)-symmetric
frameworks on the same underlying graphs as I' and 7 vary. Since the methods used to analyse
symmetric frameworks need I' and 7 fixed before they can be used, examples like these show that
these early choices constrain what kinds of frameworks are possible. We will also see later that the
different choices of I' and 7 can give rise to different rigidity properties and not just look different.

Figure 3: (T, 7)-symmetric frameworks in the plane, where I' has order 2. For (a) and (b), I' =
{14, (1,2)(3,4)(5,6) }. However, in (a) the non-trivial element of I' is mapped to a reflection, whereas
in (b) it is mapped to the half turn. For (c) and (d), I" = {Id, (1,4)(2, 3)(5,6)}, where in (c) and (d)
the non-trivial element of I" is again mapped to a reflection and the half turn, respectively.

Now that we have the formal set-up, we make a first observation:

If we want to know whether G has “some symmetric realisation” without a “combinatorial symmetry
type” T in mind, then we first have to compute Aut(G), enumerate its subgroups, and then identify
the ones that have a faithful representation 7 : T' — O(d).

In general, this is a difficult computational problem, but it is tractable for small and medium-
sized examples using state-of-the art computational algebra systems, such as Magma, GAP, Oscar,
and Mathematica. These incorporate optimised heuristic algorithms for computing Aut(G) and for
identifying point groups. When the graph is informed through engineering or design decisions, this can
often be done through observation as the desired symmetry group is well known by the practitioner.



3. Background on rigidity theory

An infinitesimal motion of a framework (G, p) in R? is a function u : V — R? such that
(pi—pj) - (u;—u;) =0 forallijekF, (2)

where p; = p(i), u; = u(i) for each i and the - symbol denotes the standard inner product on R?. We
note that an infinitesimal motion can be thought of as an element of the space R,

An infinitesimal motion u of (G, p) is trivial if there exists a skew-symmetric matrix S and a
vector t such that u; = Sp;+t for all ¢ € V, i.e., if u corresponds to a rigid body motion in the plane.
A non-trivial infinitesimal motion is also called an infinitesimal flex.

The matrix of size m x dn corresponding to the linear system in with the u; being the unknowns,
is the rigidity matriz (or equilibrium matriz), denoted R(p). If the points p; affinely span R?, the
infinitesimal rigidity is equivalent to the rank of R(p) being dn — (d;rl). (When a framework has few
vertices, it will be infinitesimally rigid if and only if G is complete and p is affinely independent. In
applications, this situation rarely arises.)

A self-stress of a framework (G, p) is a function w : E — R such that for each vertex i of G the
following vector equation holds:

> w(ij)(pi — p;) = 0.
JujeER

In structural engineering, w(ij)(p; —p;) is the signed axial force in the bar ij and the stress-coefficient
w(ij) is called the force-density (scalar force divided by the bar length) of the bar ij. The summation
above says that the tensions and compressions in the bars balance at each node i, and hence a self-
stress is also known as an equilibrium stress. For the engineer, a self-stress is often considered as a
set of axial forces within a framework which are in equilibrium in the absence of external loads. Note
that w € RIZ! is a self-stress of (G, p) if and only if w” R(p) = 0 (i.e. it lies in the left null space of
R(p)). A framework is called independent if it has no non-zero self-stress, and it is called isostatic
if it is infinitesimally rigid and independent. The term w is called the force density by engineers
and the stress by rigidity theorists — please refer to Connelly and Guest [§] for further details on the
engineering and mathematical terms.

A framework (G,p) in R? is generic if rankR(p) = max{rankR(p’)|p’ € RUVI}. Tt is easy to
see that the set of configurations p of generic frameworks (G,p) in R? forms an open dense subset
of RUVI. Moreover, all generic d-dimensional frameworks on a graph G share the same infinitesimal
rigidity properties, i.e. they are either all infinitesimally rigid, or none of them are. Thus, we say that
a graph G is d-rigid (d-isostatic, d-independent) if any (or equivalently every) generic realisation of
G as a framework in R? is infinitesimally rigid (isostatic, independent).

4. Symmetric averaging

If we want to understand the effect of symmetry on rigidity properties, such as the number of inde-
pendent self-stresses, a starting point is to ask when a given framework (G, p) has a nearby (I, 7)-
symmetric framework. As we have already seen, a rigidity analysis depends on the (I', 7) data, so we
need to make that choice in advance. Once we have, a natural next step for a local search procedure
is to find the closest (T', 7)-symmetric framework to (G, p).

A first proposal draws inspiration from the classic averaging technique of Whiteley [4I]. This
takes two frameworks (G, p) and (G, q) that have the same edge lengths and produces a framework
(G, %(p + q)). Whiteley showed that if the pair of original frameworks are non-congruent, then
the averaged framework has a non-trivial infinitesimal motion. By the index theorem, if (G, p) and
(G, q) infinitesimally rigid, then the averaged framework must have an unexpected self-stress. Let us
specialise our setting even more, and assume that I' has order two and 7(I') = {Id, o'} consists of the
identity and a single mirror reflection. The proposal would be to take the average of the frameworks



(G,p) and (G,op) (we apply o to each p;). Unfortunately, this procedure isn’t useful, because the
average of p; and o(p;) must lie on the mirror line. We will always get a highly degenerate framework
this way. Instead, we will describe a method to find the closest (T, 7)-symmetric framework to (G, p)
via orthogonal projection.

4.1. Symmetric averaging for the reflection group

We stick with the example from above. Let the given framework (G, p) have vertex set {1,...,n} and
an involution v € Aut(G) < Sym(n). As before, I' = {Id, v} and 7(vy) = 0. We define

(v-p) by the relation (v P)i = a(Py())

which is different from what we had before, because we use the permutation v and the reflection o
together. The relabeling is formal, but it is motivated by the idea that, if (G, p) was already symmetric
with respect to the reflection o, then o(p,(;)) would equal p;, for all i. Since the “symmetrically
averaged” framework (G,1(p +~ - p)) is, in fact, (I', 7)-symmetric (we will check this soon), this
procedure has two good properties: its output is symmetric; it fixes symmetric frameworks. Moreover,
unlike the more naive proposal, it does not collapse its input. Interestingly, this “relabel, reflect,
average” procedure can have a surprising number of behaviours with respect to infinitesimal flexes
and self-stresses, as we will discuss in Section [f] The symmetric averaging procedure is illustrated
in Figure (4| for the graph of the triangular prism. Here I' < Aut(G) is of order 2 and generated by

7= (1,2)(3)(4,5)(6)-

Figure 4: Generating a symmetrically averaged framework (G,x) from a non-symmetric framework
(G, p) for the case of the reflection group Cy in the plane: (G, p) in (b) is obtained from (G, p) in (a)
by relabelling. (G, q) in (c) is obtained from (G, p) in (b) by reflecting in the vertical mirror line, so
that g = (- p). Finally, (G,x) in (d) is the average of (a) and (c) and has mirror symmetry.

4.2. Symmetric averaging in general

Now we generalise the symmetric averaging procedure to any group. We begin with a framework
(G, p), not necessarily symmetric. Since our target is a symmetric framework, we need to fix the data
(T',7), where T' < Aut(@) is a subgroup of the combinatorial symmetry group of G that admits a
faithful representation 7 : I' — O(d). Let v € T" be given. We define a new configuration + - p by the
relation

(v-p)i= T('y_l)p,y(i) foralli eV

The geometric intuition underlying the definition is from the reflection example, and also the idea
that, if p was already (I, 7)-symmetric, then 7 - p should be equal to p. This is indeed the case,
because the compatibility relation 7(v)p; = p~(;) implies

(v-p)i=7(v ")7T(v)pi = pi



With this, we are ready to define the symmetric averaging operator A for a general pair (I', 7). It is
defined by the relation
1
Ap = ] Z Y-P
yel

We illustrate the general symmetric averaging procedure with the example shown in Figure[5] Here
I' < Aut(@G) is isomorphic to Z3 and generated by the automorphism (1, 2, 3)(4, 5, 6). Moreover, 7(T") is
the three-fold rotational group C3 generated by a rotation about the origin by 27 /3 in counterclockwise
direction.

Figure 5: Generating a symmetrically averaged framework (G,x) with C3 symmetry from a non-
symmetric framework (G, p): the framework in (b) is (G, q), where q = (7 - p); the framework in (c)
is (G,q’), where ' = (72 - p). Finally, the framework (G,x) in (d) is the average (G, Ap) of the ones
in (a), (b) and (c¢) and clearly has C5 symmetry.

5. Properties of the averaging map

Now we are ready to show that the map A does, in fact, find the closest (T, 7)-symmetric framework to
(G, p), in a sense we now make precise. We show that A is the orthogonal projection onto the subspace
of configurations that are (T', 7)-symmetric. To discuss orthogonality, we need an inner product on
configurations of n points. We use the one induced by the Euclidean inner product on R%:

n

(p,q) = Z (Pi, i)

i=1

That A is an orthogonal projection follows from the facts that: A is an idempotent linear map (this
establishes that A is a linear projection to its image) and, moreover, self-adjoint (which implies that
its kernel and image are orthogonal complements).

Let us start with linearity. This is quick from the linearity of the isometries 7(y). Indeed, if « € R,
and configurations p and q are given, we have, for each :

(Alap+a))i = > 7(v Moy +aym) = | @Y7y Py |+ D 7(v Dy | = aAp)i+A(q)
yer y€er ver

Now we show that A is the identity on symmetric configurations. Recall that if p is already (T, 7)-
symmetric, then v - p = p for each v € I". So we get, for a (I, 7)-symmetric p:

1 1
APZEZ%p:mZp:p

yel ~ver



This verification, in particular, implies that every symmetric configuration is in the image of A.

For the reverse inclusion, we need to show that Ap is, for any p, (T, 7)-symmetric. With the
previous observation, this tells us that A is idempotent and that its image is exactly the (T, 7)-
symmetric configurations. To this end, let n € I and a vertex ¢ be given. Now compute

() = 7 T PG = 7 2 T e = ) 7 e = 7(0)(Ap),

~el n—1lel ~yeTl

where we used the “group action” property v(n(i)) = (yn)(¢) and that I'n = T to reindex the sum. As
1 and ¢ were arbitrary, we see that Ap is (T', 7)-symmetric (fulfilling a promise from the motivating
discussion in the process). Thus, A is indeed a linear projection.

The remaining step is to show that, for arbitrary configurations p and q,

(Ap,q) = (p, 4q)

Letting p and q be given, we compute

M:

(Ap,q) = ((Ap)i, ai)

<|F Z p’y )7ql>
~el’

1 1
\F| Z <T(7_ )p'y(i)7(h'>

yel

|F| ZZ p’Y(i)’ >

i=1~el

1

-
Il

i M: i M:

where we have repeatedly used bilinearity of the inner product and, in the last step, that 7(v) is
orthogonal, so that

(TP ai) = (TN P, (M) = (P, T(1) )

because 7(7)7(y~!) must be the identity. Continuing our main computation, we reorder sums and
reindex

\F| ZZ Pr (i) ql |F| ZZ P (i) >

i=1~vyel vyel i=1

|Z Z (Py(r-1() TGy -1(3))

yely=1(i)=

|Z Z Pi, 7(7)Ay-1(3))

yel y—1(i)=1

| |ZZ pi, T(v" qW()>

=1 ~vel'

<p, Z Z Dy ) >

'yer



This computation shows that A is self-adjoint, so we have verified all the properties we needed to
make it an orthogonal projection.

5.1. Connections to representation-theoretic approaches

We have given a direct derivation of the averaging procedure, since it has a geometric intuition from
frameworks and doesn’t require any theory. That said, we can interpret what happens above in a
very general setting. If G is a finite group and p : G — GL(V) is any linear representation for some
F-vector space V and |G| is invertible in F, then the averaging operator A, defined by

v |G plg)
geG
is well-known to be a linear projection onto the invariant subspace
VG ={v:p(glv=0 forall geG}
To apply the general theory, we observe that the map
n
p— Z €; & Pi,
i=1

where e; is the ith canonical basis vector, is a linear isomorphism between the space of n-point
configurations in R? and the tensor product R” ® R%. The inner product is defined on the basis
vectors of R” @ R? by

(e;®@ejep®ep =1 if and only if it=k and j=1/

and linear extension. Finally, from I' and 7, we end up with a linear action p : I' — GL(R? @ R")
defined by
p(7)(€i @ pi) = €4y © T(7)Pi

It’s a quick check that this preserves the inner product, so averaging over this p gives an A, which is
an orthogonal projection, which is what we verified above. With respect to the standard basis, the
matrices of the operators p(y) are

Mat(p(v)) =V, @ 7(7) € R

where the “®” is the Kronecker product, and V,, is the vertex permutation matrix

Vi=(exm e - eym)-
These are the “external representation matrices” introduced in [I4, 20]. Finally, we have
@)
= — T
|F| Y ’7 )

~ver

Mat(A)
which is consistent with our previous derivation.

6. Types of I'-symmetric self-stress: I'-local vs. ['-extensive

In this section we establish mathematically rigorous definitions of I'-symmetric self-stresses that play
an important role in practical engineering applications, such as gridshell design. In these applications,
self-stresses that are localised, i.e., have non-zero stress coefficients only on some isolated part of the
framework, are of significantly less interest than self-stresses with more “extensive support”.
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We therefore introduce precise definitions of I'-symmetric localised and extensive self-stresses,
where the notions of locality and extensiveness depend on the symmetry group I' < Aut(G) (see
Section. In Section we then investigate the effect of the symmetric averaging map on these I'-
symmetric self-stresses. The corresponding general, symmetry-independent notions will be developed
later in Section [

6.1. I'-localised and I'-extensive self-stresses

In the sequel, we fix a graph G and T' < Aut(G). For the moment, 7 plays less of a role. We propose
the following natural notion of a “I'-localised” self-stress.

The (stress) support of a self-stress w of a framework (G, p) is the set of edges e of G that have a
non-zero stress-coefficient w,. Given a graph G and I' < Aut(G), the I'-orbit (or just orbit) of a vertex
i (edge e) of G is I'i = {~(7)|y € T} (Te = {~(e)|y € T'}, respectively). The I'-orbit (or simply orbit)
of a subgraph H of G is the subgraph I'H of G consisting of the elements of the orbits of vertices and
edges of H.

Definition 1. (Strongly I'-localised self-stress) Given a graph G with I' < Aut(G) and a framework
(G,p), a self-stress is called strongly I'-localised if it is only supported on a subgraph H of G whose
T-orbit consists of |T'| vertex-disjoint copies of H.

Informally, a strongly I'-localised self-stress is supported on only one of the “copies” of H. Different
copies may have the same self-stress, possibly different self-stresses, or none at all, depending on the
properties of H and the induced frameworks on the copies.

With an eye to defining “I'-extensive”, we describe a natural relaxation of I'-local that includes
strongly I'-local.

Definition 2. (Weakly I'-localised self-stress) Given a graph G with I' < Aut(G) and a framework
(G,p), a self-stress is called weakly T'-localised if for every edge orbit, the stress support does not
contain all the edges of the orbit.

We can see that if T' is non-trivial, then strongly I'-localised implies weakly I'-localised, since a
strongly I'-localised self-stress can contain only one edge per orbit. (If the orbit is a single edge, then
the |T'| copies of H are not disjoint, provided that I' is non-trivial, which is why that condition was in
the definition of strongly I'-localised self-stress.)

The preceding definition lets us bootstrap a notion of a I'-extensive self-stress, which is one that
cannot be obtained by linear combinations of weakly I'-localised self-stresses.

Definition 3. (I'-extensive self-stress) Given a graph G with I' < Aut(G) and a framework (G, p), a
self-stress is called I'-extensive if it is not in the linear span of its weakly I'-localised self-stresses.

It is important to keep in mind here that the notions of (weakly or strongly) I'-localised and I'-
extensive self-stress depend on the group I'. If the group I' gets larger, then we typically have fewer
edge orbits and larger sizes of orbits. So by increasing the size of the group, we can turn extensive to
weakly or strongly localised self-stresses. (In the extreme but uninteresting case when T is the trivial
group, every non-zero self-stress is trivially I'-extensive.)

In practical applications, such as gridshell design, one often deals with an initial form diagram
(i.e. planar framework) which exhibits no symmetry, but whose configuration of points is “close” to
a symmetric configuration. This then suggests a I (and 7) for carrying out the self-stress analysis.

6.2. Self-stress behaviour under the averaging map

We will now investigate the changes in I'-localised and I'-extensive self-stresses under the symmetric
averaging map. We will see that the averaging procedure can have a large variety of different effects
on the self-stresses.
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Theorem 6.1 (I'-localised self-stress behaviour). Let G be a graph withT' < Aut(G), and let A denote
the symmetric averaging map associated with a faithful representation 7 : T — O(2).

Then the action of A on the space of self-stresses of a framework (G, p) can both create and destroy
D-localised self-stresses. In particular, there exist frameworks (G, p) for which:

1. (G,p) has no self-stress, but its symmetrically averaged realisation (G, Ap) has a non-trivial
strongly T'-localised self-stress; and

2. (G,p) has a strongly T'-localised self-stress which is annihilated under symmetric averaging, i.e.,
the framework (G, Ap) is independent.

Proof. Consider the frameworks shown in Figure[6] For these examples, the group I' is the group Zs of
order 2 and 7(T") is the reflection group C; in the plane. The first statement holds, since the framework
in (a) has no self-stresses but its symmetrically averaged framework under reflection symmetry in (b)
has two strongly Zs-localised self-stresses due to the two collinear triangles.

The second statement holds, since the framework in (¢) has a strongly Zo-localised self-stress due
to the collapsed triangle, but its symmetrically averaged framework with reflection symmetry in (d)
is independent. O

N

(a) (b) (c) (d)
Figure 6: An illustration of Theorem |6.1} Zs-localised self-stresses may appear or disappear under

symmetric averaging. The frameworks shown in (b) and (c) include collapsed triangles, whose central
vertex is drawn slightly offset for visibility.

Similar and less degenerate examples to the ones in the proof of Theorem can easily be con-
structed by replacing the two triangles in Figure |§| by prism graphs (such as the planar cube graph
Qs3, for example, whose self-stressed configurations in the plane are well known [33], 53]).

The following result shows that “generically” I'-symmetric averaging cancels all strongly I'-localised
self-stresses.

A (T, 7)-symmetric framework (G, p) is called (T, 7)-generic if rankR(p) = max{rankR(p’)|p’ €
R4V and (G, p’) is (I, 7)-symmetric}. It is easy to see that “almost all” realisations of G that are
(T, 7)-symmetric are (T, 7)-generic (in the sense that the (T, 7)-generic frameworks are open and dense
in the set of (T, 7)-symmetric frameworks).

Theorem 6.2. Let I" be a non-trivial group and let G be a graph whose (T, T)-generic realisations as a
framework have no non-trivial self-stress. Suppose the (not necessarily symmetric) framework (G, p)
has a strongly T'-localised self-stress w which is supported on a subgraph H of G. Then for almost all
positions of the vertices of a copy of H from the I'-orbit of H, the averaging map for T' and T will
yield a (T', 7)-symmetric framework that no longer has any non-trivial self-stress.

Proof. Let H' be an element from the I'-orbit of H. When we perturb the positions p|y () of the
vertices of H' within an open neighbourhood N, then the symmetric averaging map A for I and 7
yields a corresponding open neighbourhood N’ of (T, 7)-symmetric configurations of the vertices of
I'H, which includes the (T, 7)-symmetric configuration Ap|y(rgy. Any perturbation of the vertices
outside V(H') does not effect the self-stress properties of a realisation of H'. Thus, since (T, 7)-generic
realisations of G have no non-trivial self-stress, almost all configurations q of V(H’) in N have the
property that A applied to q and p[y\y (g yield frameworks with no non-trivial self-stress. O
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It is natural to ask how I'-localised self-stresses typically appear in realisations of independent and
non-rigid graphs with non-degenerate configurations (say configurations in general position). This
seems to be worthy of further investigation in the future.

Next we show that the averaging map can also create or destroy I'-extensive self-stresses.

Theorem 6.3 (T-extensive self-stress behaviour). Let G be a graph with T < Aut(G), and let A
denote the symmetric averaging map associated with a faithful representation T : T — O(2).

Then the action of A on the space of self-stresses of a framework (G, p) can both create and destroy
D-extensive self-stresses. In particular, there exist frameworks (G,p) for which:

1. (G,p) has no self-stress, but its symmetrically averaged realisation (G, Ap) has a non-trivial
I'-extensive self-stress; and

2. (G,p) has a T'-extensive self-stress which is annihilated under symmetric averaging, i.e., the
framework (G, Ap) is independent.

Proof. Consider the frameworks shown in Figure a) and (b). For this example, the group I" is
again the group Zs of order 2 and 7(T") is the reflection group C; in the plane. The first statement
holds, since the framework in (a) has no self-stresses but its symmetrically averaged framework under
reflection symmetry in (b) has a Zs-extensive self-stress. (This well-known example of Figure [7[b)
shows the triangular prism graph in a Desargues configuration.)

For the second statement, consider the framework shown in Figure[7j(c). This is a realisation (G, p)
of the triangular prism graph G in the plane with a Zs-extensive self-stress, where Zy is generated
by the automorphism (1,4)(2,5)(3,6) of G. This self-stress arises since the three bars p1ps, papa,
and p3pe meet in a point. After symmetric averaging with the group 7(Zs2) = Cs, the three bars
connecting the triangles no longer meet in a point, and hence the averaged framework (G, x) in (b) is
independent.

Figure 7: An illustration of Theorem Zo-extensive self-stresses may appear or disappear under
symmetric averaging.

Remark 6.4. Note that the configuration in Figure m(c) is not close to being mirror-symmetric (in
particular, the y-coordinates of ps and pg are far away from each other). However, the self-stress may
also be lost for configurations that are close to being mirror-symmetric, as we see as follows.
Consider the framework in Figure c). Choose p1, p2, P4, P5 So that ps and ps are the respective
mirror-symmetric copies of p; and p2, and the edges p1ps and paps meet on the mirror line at
the origin. Further, for » > 0 choose an arbitrarily small ¢ > 0 so that with ps = (—e, —r) and
Ps = (2¢,2r), the edge psps also goes through the origin. So the framework (G,p) does not quite
have reflection symmetry, but has a (Zs-extensive) self-stress. Since “£2¢ = 3¢ and =“}2* = Z in the

symmetrically averaged framework (G,x), the points x3 and xg will have coordinates (—=5, %) and

( %, 5), so that the edge p3ps no longer goes through the origin and the self-stress is lost. We may

now choose r arbitrarily close to zero so that the original framework comes arbitarily close to being
mirror-symmetric. &
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Figure 8: (a) A framework in the plane with exactly one self-stress, which is Zs-extensive. (b) The
symmetrically averaged framework also has exactly one self-stress, which is Zs-extensive. The self-
stress of the framework in (b) is anti-symmetric with respect to the reflection symmetry (i.e., the
reflection reverses the sign of the stress coefficients).

Remark 6.5. In applications such as gridshell design, it is often desirable to obtain self-stresses of par-
ticular symmetry types, corresponding to the symmetry described by the irreducible representations
of the underlying point group [3I], B9} [44]. For instance, for any point group of order 2 (such as a
reflection or half-turn symmetry group in the plane), one is interested in fully-symmetric and anti-
symmetric self-stresses. Formally, these correspond to the invariant subspaces of RIZI under the edge
permutation representation of the graph with respect to Zs, associated with the trivial and non-trivial
irreducible representations of Zq, respectively [14] 20, 211 [38].

In a fully-symmetric self-stress, the stress coefficients on edges within the same orbit are identical,
whereas in an anti-symmetric self-stress they differ by a sign. The symmetric averaging procedure
can generate self-stresses of either symmetry type, not only the fully-symmetric ones. In particular,
the averaged frameworks may exhibit Zs-extensive self-stresses that are fully-symmetric (as in the
classical example of Figure (b), showing the triangular prism graph in a Desargues configuration) or
anti-symmetric (as in Figure [§(b)). O

Note that if we had averaged the framework in Figure EKC) with the group 7(Zs) = Cs, where
Zs is generated by the automorphism (1,5)(2,4)(3,6) of G, then the averaged framework would have
three bars that are perpendicular to the mirror line, resulting in a Desargues configuration (as in
Figure [2{(a)) that still has a Zs-extensive self-stress. So the choice of the group I is crucial when
applying the symmetric averaging procedure. Further, for a fixed I', different choices of the faithful
representation 7 of I" can also result in frameworks with different self-stress properties (although there
exist group pairings, such as C; and Cy in the plane, where under suitable conditions these properties
are equivalent for a given fixed I' < Aut(G), as shown in [6]).

In Section [8| we will present an algorithm which, for a given graph G, yields the subgroup(s) T
of Aut(G) and the corresponding representations 7 of I' for which the symmetry-extended Maxwell
counting rule [I4] detects the maximum number of self-stresses in non-degenerate (T, 7)-generic real-
isations of G. The pairs (', 7) provided by this algorithm are natural choices for the application of
the symmetric averaging procedure when trying to maximise states of self-stress.

Finally, we show that symmetric averaging does not, in general, preserve the localisation type of
I'-symmetric self-stresses.

Theorem 6.6 (I'-localised versus I'-extensive self-stresses). Let G be a graph with T’ < Aut(G), and
let A denote the symmetric averaging map associated with a faithful representation 7 : T — O(2).

Then the action of A can transform strongly I'-localised self-stresses into I'-extensive ones, and
vice versa. In particular, there exist frameworks (G,p) for which:

1. a strongly T-localised self-stress of (G, p) becomes I'-extensive in the averaged framework (G, Ap);
and

2. a I'-extensive self-stress of (G,p) becomes strongly I'-localised under symmetric averaging.
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Proof. Consider the frameworks shown in Figure[d] For these examples, the group I' is the group Zs of
order 2 and 7(T") is the reflection group C; in the plane. The first statement holds, since the framework
in Figure [0 a) has a strongly Zs-localised self-stress, and its symmetrically averaged framework in (b)
has a I'-extensive self-stress.

The second statement holds, since the framework in Figure |§|(c) has a Zo-extensive self-stress, and
its symmetrically averaged framework in (d) has a strongly Zs-localised self-stress. O

(a) (b) (c) (d)

Figure 9: The Zs-localised self-stress of the framework in (a), which is supported on the collapsed
triangle, is turned into a Zs-extensive self-stress (which is non-zero on every edge) under symmetric
averaging with the reflection group (b). The framework in (¢) has a Zs-extensive self-stress which
is non-zero on every edge. Under symmetric averaging with the reflection group (d), this self-stress
disappears and is replaced with two strongly Zs-localised self-stresses, one for each of the collapsed
triangles.

Similar and less degenerate versions of the examples in the proof of Theorem can easily be
constructed. For statement 1, for example, consider two vertex-disjoint triangular prism graphs, one
on each side of the mirror, that are connected by three vertex-disjoint nearly parallel edges, and one of
which is realised with a strongly I'-localised self-stress. Then symmetric averaging with the reflection
symmetry can destroy the I'-localised self-stress and create a I'-extensive self-stress which is non-zero
on the three connecting edges, as they have become parallel.

The example in the proof of the second statement of Theorem (see Figure @(c,d)) illustrates that
degenerating a configuration further and further in the attempt to create additional self-stresses may
be detrimental. In a framework on a triangular prism with a I'-extensive self-stress that is non-zero
on every edge, for example, collapsing a triangle is a bad idea, as it destroys the I'-extensive property
of the self-stress. This shows the subtlety of the problem of creating I'-extensive self-stresses.

7. General localised and extensive self-stresses

7.1. Motivation and definition

In gridshell applications, members with zero coefficients in a self-stress are usually less interesting, as
they produce a “flat” dihedral angle of 7 for the two faces incident to the edge in the corresponding
polyhedral surface obtained from the Maxwell-Cremona lifting. Hence, we are often interested in
self-stresses that are “generally extensive” in the sense that all the coefficients are non-zero; i.e., they
have full support. The notion of a I'-extensive self-stress, while useful for many examples of symmetric
frameworks, is more restrictive, because for certain classes of frameworks, the support of a I'-extensive
self-stress can still be rather small, even if I' is large.

Consider, for example the framework with C3, symmetry shown in Figure [I0] This framework
has a 2-dimensional space of Cs,-extensive self-stresses, one for the “inner” triangular prism and one
for the “outer” one (each one being a Desargues configuration). Each of these self-stresses is only
supported on 9 of the 15 edges. Such a “nested” framework is not suitable as a form diagram of a
gridshell, as in any vertical Maxwell-Cremona lifting of the form diagram corresponding to such a
self-stress, the part of the framework that is unsupported by the self-stress would stay in the original
plane, which is not acceptable from an architectural point of view.
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Figure 10: A framework consisting of nested triangular prisms.

In the following, we will introduce a definition of an extensive self-stress that does not depend on
any symmetry of the structure, and is often better suited for engineering applications. In the non-
symmetric setting, there is no natural analogue of a strongly or weakly localised self-stress. However,
a naive way to define extensive would be to simply say that the self-stress has full support. The reason
this definition is also not up to the task is that, by taking linear combinations, we can change the
supports of self-stresses. Here are two extreme examples:

e For a framework (K,,, p), where K, is the complete graph on n vertices, every self-stress is in the
span of self-stresses supported on Ko subgraphs. No matter what the support of a self-stress
is, it can be decomposed into local parts.

e For a framework (C,,p), where C, is the cycle graph on n vertices, and all the points are
collinear, there is no self-stress supported on a proper subgraph, unless there is a zero-length
edge, so this self-stress has to be extensive in any reasonable definition.

A less trivial example is the nested prism framework in Figure It has a self-stress with full
support, but this self-stress is a linear combination of the self-stresses that are only supported on the
inner and outer prisms. Such a self-stress should not be considered “extensive”.

Instead we propose the following definition.

Definition 4. (Extensive self-stress) Given a framework (G, p), a self-stress is called extensive if it
has full support and it is not the linear combination of self-stresses with strictly smaller support.

A key advantage of this definition of extensiveness is that it is linear-algebraic in flavour, whereas
“full support” is not. As the examples illustrate, one can use linear combinations to change supports
without changing the underlying self-stress space. By formulating extensiveness in terms of linear
spans, we get what seems to be a more useful definition.

The example of the cycle graph realised as a framework on a line with no coincident vertices shows
that extensive self-stresses exist. Here is a more general construction. Let G be a graph so that, for
any edge ij, G — ij can be peeled to an empty graph by repeatedly removing degree < d vertices
and their incident edges. If (G, p) is a general position framework in RY, any self-stress is extensive,
because such a framework cannot support any self-stress that isn’t non-zero on every edge. To see
this, suppose that some edge ij is unstressed; the graph resulting from removing ¢5 has a vertex of
degree < d, which cannot be in equilibrium unless all its incident edges are unstressed. Removing
these exposes a new low-degree vertex, and, by induction, every edge is unstressed. The interesting
theoretical question is when there are extensive self-stresses in frameworks that do not arise this way.

Note that the definition of extensive is still somewhat restrictive. Returning to the complete graph
example, since every self-stress in any framework (K, p) can be obtained from a linear combination
of self-stresses supported on a K412 subgraph or less, no self-stress in such a framework is extensive,
unless n < d + 2. In fact, we have the following result.

Proposition 7.1. If a framework (G, p) has an extensive self-stress, then this must be its only self-
stress (up to scale).
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Proof. Suppose (G,p) has an extensive self-stress w; and another independent self-stress ws. By
scaling we may assume that the stress coefficient on an edge e of G is equal to 1 for both w; and ws.
If wo does not have full support, then w3 = wy — w; is a non-zero self-stress which is 0 on e, and since
w1 = wy — w3, we have a contradiction to the extensiveness of wy. If wy does have full support, then,
by independence of w; and ws, there must exist another edge f # e for which w; and ws have distinct
non-zero stress coefficients, say (w2)f = A(w1)s for A # 0,1. Now, the self-stress w3z = w2 — wy is
zero on e and non-zero on f, and the self-stress wy = wy — Aw is zero on f and non-zero on e. But
w3 — w4 = (A — 1)w; and so again we have a contradiction to the extensiveness of wj. O

Thus, we are mainly interested in sparse graphs, i.e., graphs G satisfying the d-dimensional Maxwell
sparsity count m’ < dn’ — @ for all non-trivial subgraphs of G with n’ vertices and m’ edges.

We note that while a framework with an extensive self-stress cannot have further self-stresses,
by Proposition a planar 2-dimensional framework with an extensive self-stress makes an ideal
candidate for an initial form diagram to design a gridshell roof. Having an extensive self-stress ensures
a well-balanced initial structure, and additional self-stresses can be introduced by strategically adding
edges to resolve the desired loads of the gridshell while maintaining structural efficiency. Moreover,
identifying graphs that admit extensive self-stress realisations is valuable, as they help designers
avoid localised self-stresses caused by over-counted or nested subgraph structures like the one in
Figure Starting from an extensive self-stress, the framework’s configuration can also be perturbed
to try to generate a larger number of self-stresses — particularly by exploiting symmetry, as discussed
in this article — although this process inherently disrupts the original extensive self-stress. This
transition is where the notion of I'-extensive self-stresses becomes relevant, as they tend to allow for
a distributed and structurally beneficial self-stress space, whereas I'-localised self-stresses typically
remain undesirable.

Remark 7.2. Extensive self-stresses are also relevant in the analysis of mechanical linkages that are
pinned down to eliminate trivial motions. As shown in [46], a minimal pinned isostatic graph G in
the plane, also known as an Assur graph [47], can be characterised based on special realisations (G, p)
that have a unique (up to scalar) self-stress, which is non-zero on all edges (and is hence extensive),
as well as a unique (up to scalar) infinitesimal flex, which is non-zero on all un-pinned vertices.

7.2. Algebraic detection of extensive self-stresses

One problem with the definition of extensive self-stresses is that finding them in sparse graphs is
difficult. (In contrast, if G is a rigidity circuit, i.e. a minimally dependent graph, then any generic
realisation of it will have an extensive self-stress.) We suggest trying to find extensive self-stresses
using a theory introduced by White and Whiteley in [53] for isostatic graphs.

Definition 5. Let G be a d-isostatic graph. Let x be a d-dimensional “configuration” of variables,
and e;; = x; —x; the “edge vector” of each edge. White and Whiteley describe a “bracket polynomial”
Cg(x) in the edge vectors e;;, called the pure condition of G. A bracket is a determinant of a d x d
matrix which has, as its rows, a d-tuple of edge vectors. The defining property of Cg is that a
framework (G, p) supports a self-stress if and only if Ce(p) = 0.

Let us quickly describe White and Whiteley’s work in context. For any graph G, the set S of
self-stressed frameworks (G, p), for any graph G, must be invariant under affine transformations of
the configuration space. The first and second theorems of invariant theory (see, e.g., [48]) imply that
the vanishing ideal of S is generated by bracket polynomials. When G is, furthermore, isostatic, this
ideal has a unique (up to scale) generator, which must be Cg, for which White and Whitely give a
combinatorial formula. The White and Whiteley formula is a “d-fan sum” over a “tie down” (the
choice of tie-down is shown to change the fan sum by a factor that can be removed).

White and Whiteley’s aim in their work was to generalise classical “synthetic” approaches to
spotting and designing frameworks with self-stresses. Here synthetic refers to statements that can
be formulated in terms of coincidences between projective flats and points, their spans, and their
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intersections. In the White and Whiteley setup, these statements correspond to Cg having what
is known as a factorisation in the Grassmann—Cayley algebra (for short a “Cayley factorisation”).
Whether every pure condition admits such a factorisation is open, though the answer is strongly
believed to be negative. Sturmfels and Whiteley [49], describe a bracket polynomial that does not
admit a Cayley factorization. White and Whiteley [53] show that the pure condition of the complete
bipartite graph K4 g, which is isostatic in dimension three, has an irreducible factor ) corresponding
to the statement that the ten vertices of (G, p) lie on a quadric surface. This statement is widely
believed not to admit a Cayley factorisation; see [5I] for recent progress on this question.

Going further, White and Whiteley explored factoring C¢ in the bracket and polynomial rings. The
hypersurface V(C¢), consisting of configurations on which C¢ vanishes, is, in general, reducible, so we
have that C = f{* f3? - - - fi* for some uniquely determined irreducible factors f;, corresponding to the
geometric irreducible components V(f;) of V(C¢q). They show that these f; also have a representation
as bracket polynomials, and, equivalently, that the V (f;) are affinely invariant.

Because these V(f;) are irreducible, they have generic behaviours. If X is an irreducible algebraic
set defined by rational polynomials, then x € X is called generic in X, if, whenever P is a polynomial
with rational coefficients and P(x) = 0, then P vanishes on X. This is a way of saying that x is
algebraically typical for X. We need this definition because, unless X is an affine space, x € X means
that x satisfies some rational polynomials, and being typical doesn’t mean “no polynomial”, just “no
extra polynomials”.

Theorem 7.3. Let G be a d-isostatic graph. The following quantities are the same for every p € V(f;)
that is generic in V(f;) (which makes it not generic in the configuration space):

e The dimension of the space of self-stresses of (G, p).

o The support of a self-stress of (G, p).

One might guess that the self-stress dimension of any V(f;) is always one, but White and White-
ley observed that in 3-space, the pure condition of the complete bipartite graph K4 ¢ has a factor
corresponding to the smaller part of the bipartition becoming coplanar. Such a framework has two
linearly independent self-stresses [4l, [55]. Whether there is a 2-dimensional example like this is open.
White and Whiteley also show that if r; = 1, then (G, p) with p € V(f;) generic has exactly one
self-stress up to scale. (It is, however, unclear whether it is extensive or not.) Closing the loop, in the
Ky 6 example, the factor in question appears as a square.

Remark 7.4. Tt is a conjecture of White and Whiteley [53] that in dimension 2 the pure condition has
a single factor f (possibly raised to some power) if and only if the graph has no proper rigid subgraph
on at least 3 vertices. Moreover, White and Whiteley conjecture that if there is a factor raised to
some power, then that factor must have more than one self-stress. &

We conclude this subsection by highlighting two immediate directions for applying the algebraic
approach to find extensive self-stresses:

Factor-specific extensive self-stresses: By factoring the pure condition, we can consider, factor
by factor, a typical (generic) self-stressed framework (G,p) with p € V(f;). If any such (G, p) has
only one self-stress (up to scale) and it has full support, then, by definition, every typical framework
(G,q) with q € V(f;) will have the same property. Moreover, this self-stress will be extensive, so
V(f:) yields a family of extensively self-stressed frameworks.

Averaging map invariance: By factoring the pure condition, we can check whether each V (f;)
is invariant under the averaging map, i.e., whether Ap € V(f;) for any p € V(f;). If not, typical
self-stresses associated with V(f;) disappear after averaging. This gives us a new obstruction to using
symmetrisation to increase the number of self-stresses. If V'(f;) is invariant under the averaging map,
then symmetrisation starting from a framework associated with V(f;) may well increase the number
of independent self-stresses.

In the next section (specifically Subsections and , we will pursue these directions algorith-
mically and illustrate the approach with our running example of the triangular prism graph.
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8. Heuristics for creating self-stressed symmetric frameworks

8.1. Finding symmetric realisations with large self-stress dimension

To find (symmetric or non-symmetric) realisations of a graph G in the plane with a large number
of states of self-stress, it is natural to first try to explore the self-stress dimension of (T', 7)-generic
realisations of G, for all possible I' C Aut(G) and 7 : I" — O(2).

A key tool to explore this is the symmetry-extended Maxwell rule. This rule is originally due to
Fowler and Guest [14], and has since been adapted and extended in various ways (see e.g. [9, [15], 311 143
45]). Tt relies on the fact that the rigidity matrix of a (T, 7)-symmetric framework can be block-
decomposed for suitable symmetry-adapted bases in such a way that each block matrix corresponds
to an irreducible representation p;, ¢ = 1,...,t, of the group [14, 20] [35, [B8]. Moreover, the space
of trivial infinitesimal motions decomposes into a direct sum of subspaces, each of which lies in the
kernel of one of the block-matrices [38]. This leads to a refined Maxwell count — one for each block
matrix: while Maxwell’s index theorem (recall Equation ) arises from comparing the number of
columns and rows in the entire rigidity matrix, we can now compare the number of columns and rows
of each block-matrix, leading to additonal information.

To apply the symmetry-extended Maxwell rule, one computes a number for each conjugacy class
of the group, which depends on the number of vertices and edges that are fixed by elements in that
conjugacy class [9, [14]. (Here a vertex v is fized by v € T if v(v) = v, and an edge vy v is fixed by 7 if
~v(v;) =wv; for i = 1,2, or v(v1) = vg and y(ve) = vy.) For a given ordering of the classes, this forms a
vector (a “character” in the language of group representation theory) which can be written uniquely as
a linear combination 22:1 a;x(p;) of the characters x(p;) of the irreducible representations p1, .. ., p.
The characters x(p;) can be read off from standard character tables — see e.g. [2, [3]. Remarkably,
each «; is an integer with the property that if «; > 0, then any (T, 7)-symmetric framework must
have at least «; - dim p; independent infinitesimal flexes (exhibiting the symmetry described by p;),
and if a; < 0, then any (T, 7)-symmetric framework must have at least |o;| - dim p; independent
self-stresses of symmetry type p;. Here dim p; denotes the dimension of the irreducible representation
pi. (In Example the symmetry-extended Maxwell rule is applied in detail to the examples shown
in Figure 2])

So for any pair (7,T") this provides us with a lower bound on the self-stress dimension for a (7,T")-
symmetric realisation of G. This suggests the following heuristic, which we will call Algorithm 1.

Since we are mainly interested in engineering applications such as gridshell design, we focus on
2-dimensional planar graphs. In Step (4) of Algorithm 1 we also avoid highly degenerate graph
realisations arising from combinatorial symmetries that force vertices to coincide or edges to overlap.

Algorithm 1:
1. Input: planar graph G.
2. Enumerate all possible subgroups I' < Aut(G).

3. For each T" found in Step (2), enumerate all 7 : I' — O(2) that provide a geometric realisation
of T' in R?.

4. For each pair (I', 7) identified in Step (3), discard this pair if there are two vertices u # v of G
that are fixed by v € ', where 7(7) is a rotation, or if for some v € ', where 7(7) is a reflection,
the subgraph of G induced by the vertices that are fixed by « is not a disjoint union of paths.

5. For each pair (T, 7) that remains after Step (4), compute 22:1 a;x(pi)-

6. For each of the pairs (T, 7) from Step (5), compute the total detected self-stress dimension by
adding up |a;| - dim p; over all a;; < 0.
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7. Output: list of pairs (I',7) ordered by the size of the corresponding self-stress dimensions de-
tected in Step (6). (The self-stress dimensions of each symmetry type can also be given).

Step (2) may be done using existing software packages such as NAUTY [29]. For Step (3) we
identify, for each group I' found in Step (2), the list of point groups in R? it is isomorphic to. To do
this, we may determine the generators of each I" and assign them to the generators of each possible
point group in R2. This is feasible, as for d = 2 (and for d = 3 if one is interested in extending the
heuristic to 3-space), there are well known classifications of all point groups, as described in [2, 3], for
example. Overall, Step (3) may be carried out using available computational algebra systems, such
as Magma [5], GAP [I6], Oscar [34], or Mathematica [19]. For Step (4) we simply identify, directly
from the graph automorphisms, the vertices and edges of G that are fixed by the relevant elements v
of Aut(G), and then check the corresponding isometries 7(7).

Since in applications like gridshell design, one is often interested in graph realisations without
edge crossings, one could go further here and rule out pairs (I', 7) that obviously force edge crossings:
if there exists v € T', where 7() is a reflection, and there are two distinct edges e, f of G with
~v(e) = f, then (T, 7) should be discarded, as the two edges must cross at a point on the reflection
line. The same is true if there are two distinct edges that are fixed by -, where 7(7) is the half-turn.
Similarly, if there is a vertex that is fixed by 7/, where 7(v') is a non-trivial rotation, and an edge
that is fixed by 7", where 4" is the half-turn, then (T, 7) should also be discarded, as either two
edges cross or an edge goes through a vertex at the centre of rotation (the origin). (In an extension
of Algorithm 1 to 3-space, one would simply check the analogous conditions to the ones in Step (4),
which force degenerate realisations, or realisations with obvious edge crossings in 3-space.) To further
investigate whether a pair (I', 7) forces edge crossings, one could apply the corresponding symmetric
averaging map to random realisations of G and check for planarity. Note that deciding whether a
given framework has no edge crossings can be solved in time O(nlogn) using standard methods from
classical computational geometry [8, [50], but even a naive O(n?) algorithm would not be a bottleneck.

For Step (5) one only needs to identify, again directly from the graph automorphisms, the number
of vertices and edges of G that are fixed by the relevant elements of Aut(G) and apply well-known
formulas from group representation theory to find the coefficients «; (see for example [38, Theorem
4.4]). Steps (6) and (7) are then trivial. It is important to keep in mind that the maximum self-stress
dimension found by this algorithm is only a lower bound for the maximum number of self-stresses
with the corresponding symmetries, as there might be additional self-stresses that are not detectable
with the symmetry-extended Maxwell rule.

Note that if, for a given graph G, we detect a self-stress when we apply the symmetry-extended
Maxwell rule with a point group 7(I'), then we also detect the same self-stress if we apply the rule with
a larger group 7(I') > 7(T"). In fact, applying the rule with the larger group will reveal additional
symmetry properties of the self-stress, and it may also find additional self-stresses. If we have any
two point groups of different sizes, with neither group being contained in the other, then both groups
may still reveal the same number of self-stresses, but with different symmetry properties. Recall that
a group I may also have different geometric realisations 7 : I' — O(d), which can lead to different
self-stress properties. (In dimension 2, this only happens if " has order 2, which geometrically is either
a reflection or half-turn group. In 3-space, however, there are more examples like this.)

Ezample 8.1. Consider for example the triangular prism graph. The pairs (I, 7) with planar frame-
work realisations are illustrated in Figure[2] The half-turn and three-fold rotational group (with the
given choices of T') do not induce any self-stress under symmetry-generic conditions (Figure (c) and
(e)). The reflection symmetry, and the dihedral symmetries of order 4 and 6 ((Figure[2(a), (b), (d) and
(f)) each induce a single self-stress, which can be detected in each case with the symmetry-extended
Maxwell rule. Note that the detected self-stress is fully-symmetric for each group.

The detailed computations for the symmetry-extended Maxwell rule are given in Table [1} In this
table, v, is the number of vertices that are fixed by a rotation in the group (and hence are positioned
at the origin), and ey and e, are the number of edges that are fixed by the half-turn Cs and a reflection
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o, respectively. The character computed in the symmetry-extended Maxwell rule [9, [14] is represented
as a row vector, with one entry for each conjugacy class of the group in the following order:

(2n—m—3, 2(vc—1)cos2E — 1, —2v.—ex+1, —e, +1).

The first entry corresponds to the identity element, the second entry to any conjugacy class of rotations
Cy with k # 2 (i.e., excluding half-turns), the third entry to a half-turn Cy (rotation by =), and the
fourth entry to any conjugacy class of reflections. Here, the p; denote the irreducible representations
of the corresponding point group. For the groups Cy and C, of order 2, these are 1-dimensional, with
characters x(p1) = (1,1) and x(p2) = (1,—1). For Cq, and Csy, x(p1) = (1,1,1,1) and (1,1,1),
respectively, whereas x(p2) = (1,1,—1,—1) and (1,1, —1), respectively (i.e. we have —1 entries for
reflections). Here, a —1 coefficient of x(p;) in the character column indicates the presence of a self-
stress of symmetry type p;, whereas a +1 coefficient indicates the presence of an infinitesimal flex of
that symmetry type.

Point group | no. of fixed vertices/edges | Character | Self-stress dim.
C, (Fig. 2¢) | =0, en=1 | (0,0) | 0

Cs (Fig. 2) | ve =0 | (0,0,0) | 0

C. (Fig. 2a) | €r =3 | 0,-2) = —x(o) +x(p2) | 1

Cs (Fig. 2b) \ e =3 \ (0,-2) = =x(p1) + x(p2) \ 1
Cs, (Fig. 2d) \vc ce2=1 e, =3V | (0,0,-2,-2) = —x( p2) | 1
Cs. (Fig. 2f) | c=0,e,=3% | ( —x(p1) +x(p2) | 1

Table 1: Computations for the symmetry-extended Maxwell-rule for the frameworks in Figure 2.

Once a desired symmetry has been identified with Algorithm 1, the symmetric averaging map,
applied to some realisation of G, can be used to construct a configuration with that symmetry and
at least that number of self-stresses. The symmetric realisation may then be analysed further to see
if additional self-stresses can be detected, or to obtain extra information about the self-stresses (e.g.
regarding T'-extensiveness or even general extensiveness — see Algorithm 4 below). Of course, one
may also try to perturb the configuration (or even slightly alter the graph) to try to create additional
self-stresses (see e.g. [28, B1]).

In practice, a designer may provide an initial configuration for a given graph which is to be
optimised locally. In such cases one could simply explore the symmetries of nearby configurations
(which can easily be identified by inspection) rather than all possible symmetries. The symmetric
averaging map can again be used to produce the nearby symmetric frameworks.

8.2. Finding realisations with extensive self-stresses

In this section, we rely on the theory described in Section [7] to establish an algorithm that checks
for general extensive self-stresses in (not necessarily symmetric) realisations of a given graph. In the
following, we consider an arbitrary dimension d, but only d-isostatic graphs.

Algorithm 2:
1. Input: d-isostatic graph G.

2. Compute the pure condition Cg for G and factor it.

22



3. For each factor f; obtained in Step (2), compute the self-stress dimension and support of self-
stresses for p € V(f;) generic.

4. Output: The factors f; with an extensive self-stress and otherwise report failure.

Example 8.2. When we apply Algorithm 2 to the triangular prism graph in d = 2, the pure condition
can be factorised into three determinants, as observed in [b3]. Referring to Figure au)7 where the
framework points are labelled py, ..., pg, we denote by (z;1, x;2) the symbolic coordinates of the point
p:i- In this notation, the three factors of the pure condition may be written as

T51 T11  T31 Tel T21  T41 T51 —Te1l L1l — T21  T31 — T41
f1 = |T52 T12 T32], f2 = |Te2 T22 T42|, f3 = |T52 —Te2 L12 — T22 T32 — T42]-
1 1 1 1 1 1 1 1 1

Geometrically, f1 and fy vanish exactly when the points of the first and second triangle, respectively,
are collinear, so each triangle collapses to a line. In contrast, f3 vanishes exactly when the lines
connecting corresponding points of the two triangles meet at a single point, that is, when the bars
joining the triangles are concurrent.

The generic self-stress dimension for each factor f; (¢ = 1,2,3) is 1, which can be verified by
evaluating the rigidity matrix at a generic point in the variety V(f;) = {p : fi(p) = 0} and observing
a rank drop of one. While the first two factors have a self-stress that is only supported on a triangle,
the third factor has generically full support and hence corresponds to an extensive self-stress.

We now mention an alternative to Algorithm 2, which is based on the well-known “force density”
[37] or “rubber-band” [24] 25 [52] method. The following algorithm is not a novelty to this paper, but
we recall it just to set up the context.

Algorithm 3 (rubber-banding):
1. Input: (d + 1)-connected graph G = (V, E).
2. Partition V into “boundary” and “interior” vertices V7 U V°, where |V?| = d + 1.

Assign points p? = (p;);eve in R? to the boundary vertices so that they are in general position.

- W

Assign edge weights w® = (w;;) to the edges with at least one endpoint in V°.
5. Solve for the positions of the interior vertices, using the inhomogeneous linear system which has
an equation
> wij(pi —p;j) =0
JujeER
for each vertex ¢ € V° and variables p; for each i € V°. If there is a solution, we get a

configuration p = (p?, p°) in equilibrium at the interior vertices. If there is not, report failure
and stop.

6. Try to solve for the coefficients of a self-stress on the edges induced by the boundary using the
inhomogeneous linear system which has an equation

> wij(pi —p;j) =0

jijeE

for each vertex j € V9 and the variables are the edge weights w;j, for edges induced by Vo ie.,
both 4,j € V2.

7. Output: (w,p) if a solution exists and otherwise report failure.
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Algorithm 3 has received a lot of study in many communities (it is referred to as ‘rubber banding’
by those in the rigidity theory community and the ‘force density method’ by those in the engineering
community). Let us first comment on how the algorithm can fail. The system in Step (5) is inhomo-
geneous, since some of the p; appearing on the lhs correspond to vertices j € V9. However, if G is
(d + 1)-connected and the weights w;; in w® are positive, then the system is invertible [37, [52], so it
will have a unique solution (the number of variables and equations are both d|V°|). When the entries
of w® have both signs, then it is possible for the system to be singular, in which case, whether there
is a solution depends on the positions of the vertices in p?, since these determine the rhs. However,
for generically chosen w®, the system will be invertible [24] 37].

The system in Step (6) is also inhomogeneous, so there is a possibility that it is inconsistent. The
analysis of this step relies on the structure of the subgraph G? induced by V? and also a statics
argument. The key point is that we need the framework (G2, p?) to be able to resolve the load placed
on it by the edges connecting to interior vertices. When w® is either positive or generic and G? is
isomorphic to K it is a folklore fact that this happens (see, e.g., [IT]) when p? is in general position.
The general case, especially when G? is not generically rigid, is a complicated non-linear problem that
depends on both p? and w®. The condition of G inducing a K41 can always be made to hold for
either a 3-connected planar graph in dimension 2 or its planar dual graph, since one of them must
contain a triangle (i.e., a K3). Hence, we can apply Algorithm 3 either directly or to the dual graph,
and then recover a self-stressed framework using the Maxwell reciprocal [13] 27].

It is shown in [I1] that, when the boundary vertices induce a K411 subgraph, applying Algorithm
3 and varying w® produces an irreducible set of self-stresses for G. The generic self-stresses in this set
have maximum rank stress matrices [7]. Moreover, a generic framework satisfying a generic self-stress
from Algorithm iﬂ will be in general position, and it will have a space of self-stresses with a constant
dimension called the stressed corank of G. This, in particular, implies that Algorithm 3 produces
extensive self-stresses for either almost all or almost no choices of w®, because the output self-stress
will be extensive exactly when it is the only self-stress, up to scale, for the output framework.

Algorithm 2, while more difficult to implement, has a more refined behaviour. There can be factors
of the pure condition associated with self-stresses that do not have maximum rank stress matrices,
which Algorithm 3 does not find. Moreover, even if the stressed corank of G is greater than one, in
which case Algorithm 3 does not produce extensive self-stresses, Algorithm 2 may still be able to find
them. In general, the relationship between Algorithm 2 and Algorithm 3 is unclear. For example,
we do not know that the self-stresses from Algorithm 3 all correspond to a single factor of the pure
condition. It is left to future work to develop an explicit set of conditions for the guaranteed success
of Algorithm 3.

8.3. Finding symmetric realisations with extensive self-stresses

We now combine the heuristics from the previous two subsections to find symmetric frameworks with
extensive self-stresses. We focus on 2-isostatic graphs.

Algorithm 4:
1. Input: 2-isostatic graph G.

2. Carry out Algorithm 1 to identify possible symmetry pairs (I',7) with non-degenerate (T, 7)-
symmetric framework realisations.

3. Carry out Algorithm 2 to determine the factors f; of the pure condition of G with an extensive
self-stress.

4. For each factor f; found in Step (3), and for each symmetry pair from Step (2), check, for some
generic p € V(f;), if Ap € V(f;) for the corresponding symmetric averaging map A. This
identifies symmetries that induce an extensive self-stress.

1This notion has meaning from irreducibility.
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5. Output: symmetries (T, 7) providing an extensive self-stress and otherwise report failure.

Example 8.3. We again consider the triangular prism graph. If we apply Algorithm 1 to this graph,
we find that the reflectional symmetry Cs indicated in Figure au)7 for instance, yields a (fully-
symmetric) self-stress (recall Example . Moreover, Algorithm 2 concludes that if the graph is
realised generically with respect to one of the factors of the pure condition (specifically, f3), then it
has an extensive self-stress (recall Example . Applying Algorithm 4 to this graph, we find that
V(fs) is invariant under the averaging map for Cy:

Using the same notation as in Example applying the symmetric averaging map A (using the
reflection symmetry Cs indicated in Figure [2[a)) to p yields the configuration X := Ap with the
following coordinates (where 7(v) represents the reflection of C, i.e. 7(v) = diag(—1,1)):

- 11 — T21 — T21 — T11
X1 = %(pl + T(’Y)p2) BEAERE T X2 = %(pz + T(’Y)pl) T2 |29y + 210
_ _1831 - :1?41_ _ _3741 - xSl_
X3 =3 (Ps +7(7)Ps) = 3 e P s(Pa+7(V)Ps) = 3 Taz -+ Tu
_ _I51 — 1‘61— — _1:61 - £C51_
x5 = %(p‘r’ + T(’y)pg) - % Ts2 + Te2| X6 = %(pﬁ + 7(7)1)5) = % Te2 + Ts2|

Thus, if we plug the configuration X into f3 (using the notation X; = [T;1,Zi2] '), we obtain

T51 —Xe1  T11 — T21 T3l — T41 Ts1 — Tel T11 — T2l T31 — T4l
Tso —Tez Ti12 — Toz T3z — T4z| = 0 0 0
1 1 1 1 1 1

It follows that X € V(f3). According to Step (4) of Algorithm 4, this shows that the averaging map
A maps the configuration into the algebraic variety corresponding to an extensive self-stress. In other
words, the imposed reflection symmetry C, induces an extensive (fully-symmetric) self-stress in the
averaged framework.

To illustrate the algorithms and their effectiveness, we have deliberately chosen small examples,
such as the triangular prism graph, which allow the computations and underlying ideas to be pre-
sented clearly. While larger graphs — such as those arising in practical applications like the form
diagram of the gridshell in Figure [1| — involve more complex combinatorial and algebraic structures,
the same procedure of symmetry analysis, pure condition factorisation, and symmetric averaging can
be applied. The main increase in complexity for larger examples lies in computing and factorising
the pure condition, as its determinant grows rapidly with the size of the graph. Once the pure condi-
tion is factorised (for which one may use software packages such as Magma, Mathematica or Oscar),
each factor can be analysed for extensive self-stresses (with and without symmetry) using the same
principles as in the small examples.

9. Modelling notes

The intended application of the methods and results of this paper is to a problem in efficient roof
design. The modeling step has some subtleties that are well-understood by engineers, but less so by
rigidity theorists, so we briefly note them.

The basic setup is that we have a framework (G, p) in R? that is the 1-skeleton of a polyhedral
surface. Moreover, we assume that (G,p) is, in fact, a Maxwell-Cremona lifting of some planar
drawing (G, p) of its 1-skeleton. In particular, we have that (G, p) must have, at least, the self-stress
that gives rise to the flat faces of its lifting to (G, p).

Let us now consider applying a “downward” load f to (G,p). This means that each f; is of the
form

fi = Bies (some 3; € R)
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with e3 = (0,0,1)7 and not all the 3; = 0. If (G, p) resolves f, we have an equation of the form

for some w € R™. The form of f now implies that
w'R(p) =0

In other words: resolutions of downward (or upward) forces by (G, p) give rise to self-stresses of the
projected framework (G, p).
This correspondence works in reverse as well, but there is a subtlety. Given some arbitrary self-
stress w of (G, p), it is true that
w R(p) = g
has the form
gi = B;es3 (some f; € R).

However, the construction reveals that we do not have very much control over g. In the worst case,
w is also a self-stress of (G, p) itself, and g is even the zero load.

More generally, the modeling problem of resolving application-relevant loads is only partially cap-
tured by the question of maximising the number of self-stresses in (G,p). To describe the general
version, let us define D to be the subspace of f € R3" so that f; = ;e3 for all 4, and T to be the space
of trivial infinitesimal motions at p in 3-space. We then have a space

FCD/T
of target loads to resolve. Then we need that
(ker R(p) ")R(D)/T 2 F/T

In other words, we need that for each £ € F, there is a self-stress w of (G, p) which can hit f when we
put it to the left of the rigidity matrix of (G, p).

To expand on why this is interesting, we are not requiring that (G, p) is infinitesimally rigid as a
3-dimensional framework. If that were the case, as happens with a triangulated surface, we would be
able to hit any load orthogonal to the trivial motions at p with some w. Looking at the zero pattern,
this implies that the pre-image of F' under this map contains the self-stresses of (G, p). Our situation
is more interesting: since (G, p) doesn’t resolve every load, whether or not it does resolve the ones in
F depends on the geometry of (G, p) and not just the dimension of the space of self-stresses of (G, p).

10. Practical considerations

When we fabricate a framework, there will be some error relative to an idealised design. In our setting,
this poses problems, again, as in the previous section, our frameworks (G, p) are not infinitesimally
rigid. Even if (G,P) is generic (i.e., its rigidity matrix has maximum rank over all 3-dimensional
configurations), it may be that a small perturbation, while also generic, cannot resolve a specific load
f. The guarantee of genericity is only about the dimension of the space of resolvable loads, and, in
the case where this is strictly less than the dimension of all equilibrium loads, changing p can change
which loads are resolvable. (Things are even more complicated when (G, P) is not generic.)

From the discussion above, it is too much to assume that a less-than-ideal realisation of the design
perfectly resolves the target load f. Instead, we present here a simple linear analysis of how error in
the configuration propagates to resolving f. The approach is very simple: we use the same w from the
ideal design and see how close a perturbed framework comes to resolving the target load using this w.
(We don’t try to find the best w for the perturbed structure and the target load f, which requires a
non-linear analysis.)
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Suppose that we have some w € R™ so that
w R(p) =f"

and that we have some tolerance € in the sense that the structure can resolve loads of norm ¢ in
some other way (e.g., stiffness in the joints through moment-resistant connections or other elastic
considerations). Let us consider replacing p by p + e. We can compute

w'R(p+e)=Ff" +w'R(e).

The norm of the error vector is at most
[R(e)|llell

and we can estimate the norm of a rigidity matrix explicitly by picking a unit vector u in R%" and
computing

u'Re) Rleju= Y  (ei—eju—u)’< Y le; —ej|*[ui — uy® < 4mdiam(e)*.
ijEE(G) ijEE(G)

It now follows that
|R(e)|| < 2v/mdiam(e)

where the diameter of e is
max [le; — e;||.
i#]

So if we pick e so that
diam(e) < S
2y/m||w||
then the error is bounded by €. This seems plausible for use in practice, but a more refined linear
analysis might improve the numbers. It is interesting that the dependence on p is expressed through
w and that we get a bound in terms of how much edge lengths changed, which seems more natural
than absolute changes in the positions of the vertices.

11. Further work

The algebraic approach developed in Section for identifying extensive self-stresses (and the corre-
sponding algorithms in Section |8]) provide useful new methods, but several avenues remain open for
exploration to extend and complement these techniques:

Representation-theoretic analysis. For a d-isostatic graph G with I' < Aut(G), and a faithful
representation 7 : I' — O(d), there is a (I', 7)-action on the polynomial and bracket rings, and so we
can use representation theory on it. It is unclear whether we get anything beyond what we can see
with the block-diagonalisation of the rigidity matrix (see [14} 20, B35}, [38]), but we also don’t know that
there isn’t. We will leave this for future investigation.

Extension to non-isostatic graphs. We can consider an extension of the White and Whiteley
pure condition to non-isostatic graphs, i.e. to a pure ideal of unexpectedly self-stressed graphs, and
replicate the key elements of the theory. Again, we will leave this for future work. We do note that
the over- and under-counted cases have a different character, and we would mainly be interested in
the under-counted case.
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Symmetry-adapted pure conditions. The interaction between representation-theoretic symme-
try methods embodied by Algorithm 1 and the algebraic ones in Algorithm 2 can be quite subtle. The
example in Figure [11] has the property that a generic framework of its symmetry type will be self-
stress free. However, there is (a necessarily non-generic) framework with this symmetry type that has
an extensive self-stress. Algorithm 2 will predict that there is an extensively self-stressed framework
but, since the symmetric frameworks are non-generic even in the relevant “V'(f;)”, Algorithm 4 will
fail to find the symmetric, extensively self-stressed framework. In order to overcome this limitation,
we will need to develop a specialisation of White and Whiteley’s theory that applies to symmetric
configuations.

To find special self-stressed configurations within sets of frameworks with specified symmetries (like
the one in Figure, it is natural to look for a symmetry-adapted version of the pure condition for the
phase-symmetric orbit rigidity matrices corresponding to the block matrices of the block-diagonalised
rigidity matrix [40, 42]. In the non-symmetric setting, the pure conditions were extracted by using
“tie-downs” to square up the rigidity matrix. While we expect a similar approach to work for the orbit
rigidity matrices, it will require a detailed analysis to determine, for each pair (I, 7), the tie-downs
that eliminate all trivial infinitesimal motions of each symmetry type corresponding to an irreducible
representation of the group.

Figure 11: A generically 2-isostatic graph which is also C,s-generically isostatic. So Algorithm 1 does
not detect any self-stress. Algorithm 2 finds a a factor corresponding to an extensive self-stress. As
shown in the figure, the graph can be realised with C; symmetry so that it satisfies the pure condition
(points A, B and C' are collinear), but this is not the case for a Cs-generic realisation. Hence Algorithm
4 will not lead us to the realisation in the figure.
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