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Abstract—Mobile edge computing (MEC) enables efficient
computation offloading for mission-critical applications in
resource-constrained vehicles, while reconfigurable intelligent
surface (RIS) help address connectivity challenges for vehicles in
urban environments with severe signal blockages. Non-orthogonal
multiple access (NOMA) is an appealing technique that improves
spectral efficiency while mitigating multi-user interference. This
work proposes the RIS-assisted NOMA-MEC in vehicular net-
works, considering dynamic challenges such as heterogeneous
vehicle processing capability, time-varying channel from high-
mobility and dynamic task workloads. We formulate a system
latency minimization problem by jointly optimizing the task
offloading ratio, edge server resource allocation and RIS passive
beamforming, while satisfying the task deadline and Signal to
Interference plus Noise Ratio (SINR) requirements. To overcome
the limitations of conventional optimization methods in such
dynamic environments, we propose a soft actor critic (SAC)-
based deep reinforcement learning (DRL) framework, which
dynamically adapts to real-time channel state information (CSI),
task workload and vehicle processing capability of all vehicles.
Simulation results demonstrate that our approach achieves lower
latency performance compared with the Deep Deterministic
Policy Gradient (DDPG) baselines. Moreover, the proposed SAC
method exhibits robustness and adaptivity to various levels of
uncertainty in the CSI.

Index Terms—Vehicle-to-everything (V2X), vehicular net-
works, MEC, RIS, NOMA, DRL.

I. INTRODUCTION

Autonomous driving requires real-time sensing and envi-
ronmental perception to maintain operational safety under dy-
namic and uncertain road conditions [1]. Such mission-critical
applications demand substantial computational resources for
real-time sensor data processing, posing significant challenges
for vehicles with limited processing capability. To meet strin-
gent computational demands, mobile edge computing (MEC)
has been introduced to vehicular networks as a promising
solution [2], [3]. MEC enables the offloading of computational
tasks from resource-constrained vehicles to proximate edge
servers, deployed at road side units (RSUs) or base stations
(BSs). By leveraging the superior computation capability of
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edge servers, MEC can significantly reduce task process-
ing latency for delay-sensitive tasks. In [4], the cloud-edge-
vehicle computing architecture is established to reduce the
task offloading latency. Moreover, in [5] and [6], unmanned
aerial vehicles (UAVs) are deployed to assist MEC resource
scheduling within vehicular networks.

In dense urban environments, the signals of vehicles are
often blocked by various obstacles, such as high buildings,
trees, and dense traffic flows. In such scenarios, reconfigurable
intelligent surface (RIS) has emerged as a promising technol-
ogy for next-generation wireless systems, providing energy-
efficient dynamic control for signal propagation through pas-
sive beamforming [7]–[9]. RIS is a planar electromagnetic
meta-surface composed of sub-wavelength passive elements,
each capable of independently modulating the phase shift
and amplitude of incident waves to reflect signals in desired
directions. Consequently, RIS can establish virtual line-of-
sight (LOS) propagation paths for vehicles under non-line-
of-sight (NLOS) conditions, enhancing the received signal
strength [7].

In addition to signal blockage commonly faced in ur-
ban environments, another practical challenge in vehicular
networks comes from the high mobility of vehicles, which
demands real-time optimization capable of adapting to highly
dynamic and complex environments. Many studies have fo-
cused on static devices, failing to capture the critical issues
introduced by vehicle mobility in dynamic environments [5],
[6], [10], [11]. Moreover, conventional optimization methods
are computationally intensive and difficult to support real-
time optimization in rapidly changing environments [1]–[4],
[6], [7]. For example, Zhang et al. [12] investigate signal-
to-noise ratio (SNR) maximization for mobile vehicles but
their work does not address mission-critical tasks in MEC. In
this paper, we adopt deep reinforcement learning (DRL) as an
effective solution for real-time optimization in such dynamic
and complex scenarios [9]–[13].

Motivated by the aforementioned works, this paper investi-
gates the DRL-based framework for the RIS-assisted NOMA-



Fig. 1. The RIS-assisted NOMA-MEC vehicular Network.

MEC system in vehicular networks. The main contributions
are summarized as follows:

• The proposed system considers three critical time-varying
components in vehicular networks, including dynamic
task load, time-varying wireless channels from high
mobility, heterogeneous vehicle processing capability.
This dynamic environment necessitates the real-time re-
optimization at each time slot, which is a challenge for
conventional optimization methods.

• A system latency minimization problem is formulated
through jointly optimizing RIS beamforming, task of-
floading decision, and edge server resource allocation.
The problem is modelled as a Markov Decision Process
(MDP) and is solved using the soft actor-critic [14] (SAC)
algorithm that dynamically adapts to real-time channel
conditions, task workload, and heterogeneous vehicle
processing capability.

• The SAC method shows about 15% reduction in la-
tency compared to baseline algorithm in the 20-element
RIS scenario. Moreover, the SAC method achieves near-
optimal performance under low-uncertainty condition of
5% channel state information (CSI) error while maintain-
ing performance stability under severe uncertainty of 25%
CSI error through policy adaptation to channel variations.

II. SYSTEM MODEL

A. Uplink Channel Model

As illustrated in Fig. 1, we consider a RIS-assisted NOMA-
MEC system within a vehicular network, consisting of a base
station (BS) integrated with an edge server, a RIS with N
passive elements, and K vehicles (K = {1, 2, . . . ,K}). Both
BS and vehicles are equipped with single antenna. In this
system, vehicles adopt uplink NOMA protocol for partial task
offloading to the edge server through M orthogonal channels
(M = {1, 2, . . . ,M}). Each channel supports up to L vehicles
to increase the spectral efficiency. We assume that the direct
vehicles-BS link experiences severe signal attenuation due to
environmental obstacles. Therefore, the RIS forms a cascaded
vehicle-RIS-BS communication link, dynamically adjusting its
phase shifts to direct signals from the vehicles to the BS.

The system operates in the discrete time slot t ∈ T =
{1, 2, . . . , T}. We assume quasi-static channels that remain
invariant within each time slot, but varying across slots.

The perfect CSI is available at both BS and RIS. At time
slot t, the RIS beamforming matrix is expressed as: ψt =
diag

(√
β1,te

jθ1,t ,
√
β2,te

jθ2,t , . . . ,
√
βN,te

jθN,t
)
, where βn,t

and θn,t represent reflection amplitude and phase shift of the
n-th element, respectively. We assume ideal reflection in this
work, and thus βn,t = 1 for all elements.

The direct channel from vehicle k to the BS is expressed
as hk,B,t ∈ C1×1. The channel from vehicle k to RIS is
expressed as hk,R,t ∈ C1×N . The channel from RIS to the
BS is given as GR,B,t ∈ CN×1. All channels follow Rician
fading channel model, consisting of line-of-sight (LOS) and
Non-line-of-sight (NLOS) components. The vehicle k-RIS link
can be expressed as:

hk,R,t =
√

PL0d
−α
k,R,t

(√
η

1 + η
hLOS
k,R,t +

√
1

1 + η
hNLOS
k,R,t

)
,

(1)
where PL0 is the reference pathloss at distance of 1 meter.
dk,R,t, α and η denote the time-varying distance between the
vehicle k and the RIS, the pathloss exponent, and the Rician
factor, respectively. The quantities hLOS

k,R,t and hNLOS
k,R,t indicate

the LOS and NLOS components, respectively. In the RIS-
assisted uplink transmission, vehicle k transmits the signal
xk,t to the BS with E[|xk,t|2] = 1. Therefore, the received
signal at BS is:

yt =

K∑
k=1

M∑
m=1

ρk,m,t

√
Pkhk,txk,t + nB , (2)

where Pk is the transmit power of vehicle k. hk,t =
GH

R,B,tψthk,R,t + hk,B,t is the composite channel, including
the direct vehicle-BS link and the cascaded vehicle-RIS-BS
link. nB ∼ CN (0, σ2) is the Additive White Gaussian Noise
(AWGN). ρk,m,t ∈ {0, 1} denotes the channel allocation
indicator, where ρk,m,t = 1 indicates that channel m is
allocated to vehicle k at time slot t, and ρk,m,t = 0 otherwise.
At time slot t, the achievable rate of vehicle k is given by:

Rk,t =

M∑
m=1

B

M
log2

(
1 +

ρk,m,tPk|hk,t|2

δk,m,t + σ2

)
, (3)

where δk,m,t =
∑

πm(k)≥πm(k̂) ρk̂,m,tPk̂,t|hk̂,t|
2, k̂ ∈ K \ {k}

is the inter-user interference. πm(k) is the given decoding
order of vehicle k on the mth channel. The BS employs
successive interference cancellation (SIC) to decode superim-
posed signals from multiple vehicles.

B. Mobile Edge Computing

Assume that each time slot has a fixed duration of td. In time
slot t, the vehicle k generates a computation task characterized
by {Dk,t, Fk,t}, where Dk,t is the task size (in bits) and
Fk,t is the vehicle’s CPU frequency (in cycles/second). Using
partial offloading, each vehicle offloads a portion of its task
(αk,tDk,t, with αk,t ∈ [0, 1]) to the edge server, while
processing remaining part (1 − αk,t)Dk,t locally. The edge
server allocates a fraction (fk,t ∈ [0, 1]) of its computing
resources to vehicle k. The edge server’s computing resources



follow completeness of resource allocation constraint, i.e.∑K
k=1 fk,t = 1. The local computation time at vehicle k is

lloc
k,t =

(1−αk,t)Dk,tCk,t

Fk,t
, where Ck,t represents the computing

intensity (in CPU cycles/bit). The task offloading time from
vehicle k to BS is τ off,e

k,t =
αk,tDk,t

Rk,t
, where Rk,t is the uplink

data rate (Eq. (3)).
The edge server processes the offloaded task with allo-

cated resource, leading to the task execution latency: lek,t =
αk,tDk,tCe

fk,tFe
, where Ce and Fe represent server’s computing

intensity (in CPU cycles/bit) and total computation resources,
respectively. Since the computation results are typically small
in size, the downlink transmission time is neglected. Therefore,
the total edge latency is τek,t = τ off,e

k,t + lek,t. The vehicle’s task
latency Lk,t is determined by the slowest between local and
edge latency: Lk,t = max(lloc

k,t, τ
e
k,t). Assuming independent

tasks, the server feedbacks the computation result immediately
after completing each task, without waiting for other tasks.
Thus, the total system latency is the worst-case among all
vehicle latencies: Lsys,t = max

K
Lk,t,K = {1, 2, . . . ,K}.

III. PROBLEM FORMULATION

This paper aims to minimize the average long-term sys-
tem latency in the RIS-assisted NOMA-MEC vehicular net-
works, through jointly optimizing the offloading ratio, edge
computing frequency allocation, and RIS beamforming. The
optimization problem is formulated as follows:

(P1) min
α,f,θ

1

T

T∑
t=1

Lsys,t (4a)

s.t. 0 ≤ αk,t ≤ 1, ∀k, t (4b)

K∑
k=1

fk,t = 1, 0 ≤ fk,t ≤ 1, ∀k, t (4c)

θn,t ∈ [0, 2π], ∀n ∈ {1, . . . , N} (4d)

|ejθn,t | = 1, ∀n ∈ {1, . . . , N} (4e)

Lsys,t ≤ td, ∀k, t (4f)

ρk,m,tPk|hk,t|2

δk,m,t + σ2
≥ Γ, ∀k,m, t (4g)

The objective function (4a) minimizes the average latency
over T time slots. Constraint (4b) specifies the offloading ratio
range for each vehicle. Constraint (4c) ensures the complete-
ness of resource allocation in edge server, while preventing
over-allocation. Constraints (4d) and (4e) enforce RIS phase
shift range and unit-modulus reflection requirements for pas-
sive beamforming. (4f) imposes the task deadline, requiring all
tasks to be completed within time slot duration td. (4g) is the
minimum SINR requirements for reliable NOMA operation.

Here we employ a simple channel allocation scheme for
vehicles. All vehicles are sorted based on their channel gains
and evenly divided into two groups: One with high channel
gains and the other with low gains. Then, the NOMA clusters

are formed by pairing high-gain and low-gain vehicles. Within
each channel, the decoding order follows the descending order
of vehicles’ channel gains (|hk,m,t|2). The optimization of
channel allocation and decoding order will be investigated in
the future work.

The optimization of Problem (4) is challenging due to
several inherent complexities. The first issue is the variable
coupling effects. The offloading ratio α affects both commu-
nication latency and computation latency. Each phase shift
element θn has coupled effects on all vehicular channels
through beamforming. The second issue is the non-convex
constraints. The RIS element unit-modulus constraint in (4e)
creates a non-convex feasible set. In constraint (4f), fractional
latency terms lek,t and τ off,e

k,t introduce non-linearity. Thirdly,
the objective function with max operator creates a non-
differentiable surface, which makes the conventional convex
optimization methods ineffective. Although some approaches
can obtain sub-optimal solutions, they suffer from high compu-
tational complexity and intolerable execution time for practical
deployments (e.g., K > 20 vehicles). To overcome these
challenges, we develop a DRL framework to enable real-time
optimization after offline training and deployment.

IV. DRL FRAMEWORK FOR OPTIMIZATION

In this section, we present the DRL-based framework to
address the formulated optimization problem. Firstly, the prob-
lem (4) is modelled as a Markov Decision Process (MDP)
with designed state, action and reward. Then, the SAC-based
method is proposed to maximize the reward [14]. The SAC
algorithm has several advantages over DDPG algorithm [15].
SAC generates the action probability distribution instead of
deterministic outputs which means the agent learns both the
mean performance and variance during the policy training
process. Furthermore, by introducing an entropy term in Q
value function, SAC can automatically balance exploration
and exploitation. Besides, double critic networks are used to
prevent the overestimation problem of Q value.

A. DRL Design

State space: The state space consists of four components:
the task size for all vehicles Dt = [D1,t, . . . , DK,t], vehicle
CPU frequencies Ft = [F1,t, . . . , FK,t], the cascaded vehicle-
RIS-BS channel gains Hcas

t = [hcas
1,t, . . . , h

cas
k,t] with hcas

k,t =

GH
R,B,tψthk,R,t, the direct vehicle-BS channel gains Ht =

[h1,B,t, . . . , hk,B,t]. Thus, the state space is expressed as: st =
{Dt,Ft,H

cas
t ,Ht}. The dimension of the state space is 4K.

Action space: The action space consists of all optimiza-
tion variables in problem (4): at = {αt, ft, θt}, where
αt = {α1,t, α2,t, . . . , αK,t} represents the offloading ratio
for all vehicles. ft = {f1,t, f2,t, . . . , fK,t} denote the edge
server resource allocation. θt = {θ1,t, θ2,t, . . . , θN,t} indicates
the phase shift of all RIS elements. Notably, the actions
generated by SAC cannot be directly used for RIS-aided
NOMA-MEC system. αt and ft are scaled into range [0, 1]
to satisfy constraints (4b) and (4c). The resource allocation
vector ft is processed through the softmax normalization



Algorithm 1 Update of Each Step in SAC Training Process
1: Initialize: Actor network πϕa

, Critic networks Qϕ1
, Qϕ2

,
Target networks Q̃ϕ̃1

, Q̃ϕ̃2
, Replay buffer B

2: Input: mini-batch D, entropy coefficient αe, discount
factor γ, learning rate l, target update rate τ

3: Output: offloading ratio αt, edge resource allocation ft,
RIS phase shift θt

4: for episode=1 to Episodemax do
5: Observe st from environment.
6: for step t = 1, ...T do
7: Sample action at by actor’s network via Eq. (6).
8: Execute at, get reward rt and next state st+1 from

environment.
9: Store transition (st, at, rt, st+1) in Buffer B.

10: if |B| > |D| then
11: Sample D = {(sd, ad, rd, sd+1)}Dd=1 ∼ B
12: Sample action at+1 with st+1 via Eq.(6)
13: Critic Networks Update:
14: Compute target Q-Value yt via Eq.(9)
15: Compute Critic loss L(ϕi) by Eq. (8)
16: Update Critic networks ϕi by Eq. (10)
17: Actor Network Update:
18: Compute policy loss L(ϕa) by Eq. (12)
19: Update Actor network ϕa via Eq. (13)
20: Target Network Soft Update:
21: Update Target network ϕ̃i via Eq. (11)
22: Entropy Coefficient Adjustment:
23: Compute temperature loss L(αe) via Eq. (14)
24: Adjust entropy coefficient αe via Eq. (15)
25: end if
26: end for
27: end for

f̃k,t = efk,t∑K
k=1 efk,t

to satisfy the completeness of resource

allocation in constraint (4c):
∑K

k=1 f̃k,t = 1. The phase shifts
θt are scaled into range [−π, π] instead of [0, 2π] to align with
the actor’s tanh output, which maintains gradient continuity by
eliminating discontinuous transition at 2π → 0 boundary. The
total dimension of action space is 2K +N .

Reward: Based on the current state st from environment,
the SAC agent generates action set at, which is executed to
obtain reward rt. Since the DRL algorithm operates with as-
cending gradient to maximize cumulative rewards, the reward
function is designed as the negative of objective function in
(4a). To satisfy the task deadline (4f) and SINR constraint
(4g), the reward function is defined as:

rt =

{
−1 if (4f) or (4g) is violated,

max
{
lloc
k,t, τ

e
k,t

}
otherwise.

(5)

B. Training Process

The update of each training step for the SAC method is
shown in Algorithm 1. In each step, the actor decides the
actions (αt, ft, θt) based on the observed state st. All actions

need to be processed as explained in the action space design
above. Given the RIS phase shift θt, NOMA clustering are
performed with the simple allocation scheme. After that, the
system latency of all vehicles are obtained based on the
decided offloading ratio αt and the softmax-normalized edge
CPU frequency allocation ratio f̃t. After that, environment
feedbacks the reward rt and next state st+1. The transition
(st, at, rt, st+1) is stored in the replay buffer, which is used
to update network. The details of the SAC updating framework
are presented below.

SAC agent consists of an actor and two critic networks,
each with a corresponding target network. The parameters of
the actor network and critic networks are denoted by ϕa, ϕ1

and ϕ2, respectively. The target critic network parameters use
ϕ̃1 and ϕ̃2, respectively. Given the observed state st, the action
at is sampled from the Gaussian distribution generated by the
actor network:

at ∼ πϕa
(at|st) = N (µϕa

(st), σϕa
(st)), (6)

where µϕ(·) and σϕ(·) represent the mean and standard
deviation (See line 7 in Alg. 1). The critic networks evaluate
the actor’s policy through estimating Q value (Qϕi

(st, at), i =
1, 2), which is the expected long-term reward under current
policy πϕa . SAC augments the Bellman function by adding
an entropy term, defining the modified target Q function as:

Qϕi
(st, at) = rt + γEst+1∼P,at+1∼πϕa[

min
i=1,2

Q̃ϕ̃i
(st+1, at+1)− αe log πϕa

(at+1|st+1)
]
,

(7)
where γ ∈ [0, 1] is the discount factor, and αe is the
entropy temperature coefficient. the min operation represents
the minimum Q-value from target networks. The entropy
term −αe log πϕa

(at+1|st+1) provides automatic exploration
control and improved policy robustness against local optima.
where αe is the entropy weight to adjust the importance
of the entropy. A large αe increases the exploration and
policy stochasticity, while a small αe leads to the reward
maximization.

During the training process, two critic networks update
their parameters ϕ1, ϕ2 in parallel through the Bellman error
minimization between the predicted Q value and target Q value
(See lines 14-16 in Alg. 1). For each critic network (i=1,2),
the loss function is:

L(ϕi) =
1

|D|
∑
D

(Qϕi
(st, at)− yt)

2, (8)

where D = (st, at, rt, st+1)
D
d=1 is the mini-batch with size

|D| sampled from experience replay buffer B. The target Q
value yt is computed using the transition from buffer B:

yt = rt(st, at) + γ[min
i=1,2

Q̃ϕ̃i
(st+1, at+1)

−αe log πϕa
(at+1|st+1)],

(9)

where Q̃ϕ̃i
denotes target Q networks. The min operator over

two target Q values can mitigate the overestimation issue. Two



critic network update their parameters via the gradient descent
of critic loss:

ϕi ← ϕi − l ∗ ∇ϕi
L(ϕi), i = 1, 2, (10)

where l is the learning rate for all networks.
To maintain the training stability, the target network param-

eters ϕ̃i are softly updated with the critic parameters ϕi (See
line 21 in Alg. 1):

ϕ̃i ← τ ϕ̃i + (1− τ)ϕi, i = 1, 2, (11)

where τ ∈ (0, 1) is the polyak averaging coefficient that
controls the update rate.

The actor network updates its parameters ϕa by minimizing
the policy loss (See lines 18-19 in Alg. 1):

L(ϕa) = −
1

|D|
∑
D

(min
i=1,2

Qϕi(st, at)− αe log πϕa(at|st))

(12)
The gradient descent is performed as:

ϕa ← ϕa − l ∗ ∇ϕaL(ϕa), (13)

where l and ∇ϕa
J(ϕa) are the step size and gradient of policy

loss L(ϕa).
Finally, the entropy temperature coefficient αe is adaptively

adjusted via minimizing the temperature loss (See lines 23-24
in Alg. 1):

L(αe) = −
αe

|D|
∑
D

(log πϕa(at|st) +Htarget), (14)

where Htarget = −dim(at) is the target entropy. The adjust-
ment of αe is:

αe ← αe − l ∗ ∇αeL(αe) (15)

V. NUMERICAL RESULTS

In this section, the performance of the proposed algorithm
for RIS-assisted NOMA-MEC systems is evaluated through
numerical simulations. As shown in Fig. 1, we consider 3-D
urban vehicular network scenario. The BS is located at (0, 0,
20) m, while the RIS is deployed at (0, 50, 20) m. Vehicles are
distributed in two regions, near the BS and far from BS, with
equal numbers in each region. All vehicles move in opposite
directions along a bidirectional street with random speeds.
Their positions are updated per time slot according to their
speed. Additional simulation parameters are summarized in
Table I.

A. Convergence Performance of Proposed Algorithm

Fig. 2 demonstrates the convergence under different learning
rates (lr). When the lr is set to 0.1, the SAC model fails to
converge due to the gradient explosion in policy and critic
networks, leading to random action outputs. Among different
learning rates, lr = 0.0001 exhibits instability and the slowest
convergence, which requires more training steps to converge.
Although lr = 0.01 achieves rapid initial convergence, but
shows unstable oscillations after episode 500. This prevents
it converging to the optimal value. In contrast, lr = 0.001

Table I
SIMULATION PARAMETERS

Parameters Values
Maximum transmit power, Pk,max 0.1 W
Noise power, σ2 -97 dBm
Bandwidth, B 20 MHz
Path loss factor, α 2.2
SINR threshold, Γ 2
Time duration, td 100 ms
Vehicle speed [5, 10] m/s
Server computation resource, Fe 10 GHz
Computation intensity, Ck, Ce 550 Cycle/bit
Task size, Dk [20-100] Kbit
Vehicular CPU frequency, Fk [0.8,1] GHz
Discount factor, γ 0.99
Batch size 256
Buffer size 100000

Fig. 2. The convergence performance of proposed method.

shows slower initial convergence than lr = 0.01, but it keeps
steady improvement and surpasses the performance of lr =
0.01 after episode 600. It indicates that a suitable learning
rate can thoroughly explores the solution space. Based on
results above, the most suitable learning rate for subsequent
simulations should be lr = 0.001.

B. Impact of Imperfect CSI

This section investigates the impact of imperfect CSI on
system latency. The wireless channels suffer from estima-
tion inaccuracies due to vehicular mobility and practical
CSI acuisition techniques. The imperfect CSI is modelled as
Gaussian distributions: Ĥt ∼ CN (Ht, σCSIHt) and Ĥcas

t ∼
CN (Hcas

t , σCSIH
cas
t ), with variances σCSIHt and σCSIH

cas
t .

Fig. 3 illustrates the convergence characteristics (average
reward with corresponding variance) of the proposed algo-
rithm under different learning rate (lr) and CSI uncertainty
levels (σCSI). For lr = 0.001 with σCSI = 0.05, the model
converges rapidly within 500 episodes, and steadily improves
performance in subsequent training episodes. The SAC method
shows robustness to low CSI inaccuracies. Under higher noise
case (lr = 0.001 and σCSI = 0.25), although the convergence is
slower with increased variance, the continuous performance
improvement verifies its adaptivity to noisy environment.



Fig. 3. The impact of CSI uncertainty over system latency.

Conversely, when using an unsuitable learning rate (lr = 0.1),
the model diverges for both σCSI = 0.05 and 0.25, though the
low-uncertainty case (σCSI = 0.05) shows comparatively better
stability. The analysis above demonstrates that the proposed
method is robust and adaptive to imperfect CSI environment
under a suitable learning rate.

C. Impact of Number of RIS Elements

This section investigates the effect of different RIS element
numbers on system latency. We compare four schemes: (1)
SAC-NOMA: The proposed SAC-based method is combined
with non-orthogonal multiple access (NOMA), in which two
vehicles share a single channel (i.e., K/2 total channels); (2)
SAC-FDMA: The SAC method is applied with frequency-
division multiple access that allocates orthogonal channels
to each vehicle (i.e., number of channels is K); (3) DDPG-
NOMA. The conventional Deep Deterministic Policy Descent
(DDPG) algorithm [15] is used with NOMA channel sharing;
(4) DDPG-FDMA, combining DDPG with FDMA channel
allocation. The evaluation considers both DRL algorithms
(SAC and DDPG) and multiple access techniques (NOMA’s
channel sharing and FDMA’s orthogonal channel allocation),
which demonstrates the contributions of each component to
system performance across different RIS elements.

Fig. 4 demonstrates the effects of varying RIS element
numbers on system latency. As the number of RIS elements
increases, the latency decreases across all schemes because
of enhanced passive beamforming in the vehicles-RIS-BS
cascaded channel. This confirms that larger RIS element
numbers provide higher enhancement for uplink communica-
tion. Among the evaluated schemes, the SAC-NOMA scheme
achieves the lowest latency, outperforming the other three
schemes. DDPG-NOMA ranks the second in performance,
while SAC-FDMA and DDPG-FDMA schemes exhibit higher
latency. Notably, with 20 RIS elements, the SAC-NOMA
scheme reduces system latency by 24% compared to SAC-
FDMA. This result demonstrates that NOMA provides better
spectral efficiency than FDMA. Additionally, our proposed
SAC-based approach outperforms the DDPG in both NOMA

Fig. 4. The impact of different RIS elements on system latency.

Fig. 5. The impact of number of vehicles on system latency.

and FDMA schemes. Particularly, with 20 RIS elements, the
SAC-NOMA shows about 15% latency reduction compared
with DDPG-NOMA scheme. The advantage come from SAC’s
double-critic architecture and entropy-regulated policy, which
automatically balances the exploration and exploitation, lead-
ing to more stable training and faster convergence.

D. Impact of the Number of Vehicles

In this section, we investigate the impact of vehicle density
on system latency. The proposed SAC-based method is eval-
uated under four configurations, combining different NOMA
user capacities (L-2: 2 vehicles per channel, L-4: 2 vehicles
per channel) and various RIS scales (R-8: 8 elements, R-12: 12
elements). In uplink NOMA, multiple users share the spectrum
through Successive Interference Cancellation (SIC) decoding
at BS. The BS subsequently decodes and removes the strongest
signal from the composite received signal, before processing
remaining signals. Therefore, four schemes are examined (L-
2-R-8, L-2-R-12, L-4-R-8, and L-4-R-12) to evaluate their
latency performance under different vehicle densities.

As shown in Fig. 5, when the testing with 2 vehicles, both
L-2-R-8 and L-4-R-8 show identical latency, and the same as
L-2-R-12 and L-4-R-12. This occurs because only two vehicles



utilize all bandwidth, regardless of NOMA channel capacity
settings. The RIS configurations with same element (either R-
8 or R-12) provide equivalent channel enhancement, resulting
in the same latency for schemes with same number of RIS
elements. Therefore, channel capacity of NOMA has no effect
when the vehicle numbers equals to the minimum channel
capacity (L-2).

For L-2 scenario, R-8 setup shows the near-linear latency
growth, but deviates at 10 vehicles due to insufficient RIS
elements. RIS with 8 elements cannot effectively enhance 10
vehicle channels. In contrast, the R-12 configuration maintains
linearity, although its advantage diminishes with increasing
vehicle density. For L-4 scenario (4 users per channel), both
R-8 and R-12 maintain linear trends. L-4-R-8 performance
outperforms L-2-R-8 due to higher spectral efficiency. The
performance gap between R-8 and R-12 in L-4 scenario
is narrower than in L-2 scenario, which proves that higher
channel capacity reduces system sensitivity to RIS element
numbers.

VI. CONCLUSION

This paper investigates joint communication-computation
resource allocation in RIS-assisted NOMA-MEC vehicular
networks. A SAC-based framework is proposed to minimize
the system latency via jointly optimizing the task offloading
ratio, edge server resource allocation and RIS beamforming.
The framework dynamically adapts to environment challenges,
such as time-varying task workloads, heterogeneous vehicle
processing capability, dynamic channels and high-mobility of
vehicles. The SAC-based method demonstrates the robustness
and adaptivity to various CSI uncertainties. Besides, through
simulations comparing with the DDPG baselines, our SAC-
based method achieves lower average latency and faster con-
vergence.
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