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Summary

� There is uncertainty in whether there is a common pattern of nestedness and modularity in

plant–arbuscular mycorrhizal (AM) fungi associations, partly because of limitations arising

from the use of null models that randomly rewire the observed connections to test for

non-random patterns in the network.
� Here, we overcome these limitations by generating null association matrices using maxi-

mum entropy network modelling, and specifically the bipartite binary configuration model

(BiCM) with degree distributions as soft constraints. This was used to test the hypothesis that

nestedness and modularity are prevalent in plant–AM fungi associations.
� In contrast to past findings, we found most plant–AM fungi associations were anti-nested

and modular. This pattern was almost universal, being consistent across habitat types, multi-

ple spatial scales, and multiple levels of plant node aggregation, from communities and spe-

cies to populations. Anti-nestedness can easily emerge from modularity when network

patterns are determined by the identity of the plant and AM fungal nodes.
� Our findings emphasize the need for experiments that test the factors that cause the

observed network structure and how that structure determines the function and stability of

plant–AM fungi association networks.

Introduction

High-throughput sequencing techniques have shown that arbus-
cular mycorrhizal (AM) fungi form intricate, multi-species com-
munities associated with plants (Öpik et al., 2009; Hart
et al., 2015; Morgan & Egerton-Warburton, 2017; Luo et al.,
2020). These techniques have also demonstrated that AM fungi
form dynamic and complex associations with plants at multiple
scales and levels of biological aggregation (e.g. taxonomic, local vs
metapopulations, individual plant species, fungal strains). The
associations are influenced by environmental factors (Melo
et al., 2019; Lu et al., 2022; Han et al., 2023), geographic loca-
tion (Ujvári et al., 2021), and various biological factors such as
the developmental stage of the host plant (Liu et al., 2023). There
is, therefore, increasing interest in how AM fungi and plant com-
munities come together to form ecological associations (Moora
& Zobel, 1996; Horn et al., 2017; Wagg & McKenzie-
Gopsill, 2023; Ahammed & Hajiboland, 2024; Marrassini
et al., 2024), and to understand the benefits that AM fungi confer

on plants, including phosphorus (P) acquisition (Smith
et al., 1997), resistance to diseases (Adeyemi et al., 2023; Kaur
et al., 2023; Wahab et al., 2023), defence against herbivory (Babi-
kova et al., 2013a,b, 2014), and the broader ecological services of
soil carbon accumulation (Hawkins et al., 2023; Wu et al., 2024)
and agricultural sustainability (Rillig et al., 2019). Besides bene-
fits, plants and AM fungi also interact along a mutualism–
parasitism continuum (Johnson et al., 1997), and along that con-
tinuum, individual AM fungal (AMF) species, populations, and
strains can colonize numerous host plants (Sanders, 2002), which
contributes to the complexity of these associations.

Such ecological complexity lends itself to the application of
network analysis to describe and quantify patterns in the associa-
tions between plants and AM fungi at multiple levels of organiza-
tion (population, species, community), which has led to several
influential studies (Chagnon et al., 2012; Montesinos-Navarro
et al., 2012, 2019; Sepp et al., 2019; Garrido et al., 2023). These
studies have demonstrated the potential of network approaches
to reveal complex association structures and their ecological
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significance. Note that we prefer the more neutral word ‘associa-
tion’ to ‘interaction’, given the complexity of inferring interac-
tions from association matrices (Caruso et al., 2012), but also
acknowledging that a number of those associations may also be
interactions. Given the symbiotic nature (along the mutualism–
parasitism continuum) of plant–AM fungi associations, a com-
mon way to model them is bipartite networks (Fig. 1), in which
one layer represents AM fungi and the other represents plants,
with each node typically, but not necessarily, representing a spe-
cies (e.g. Bascompte et al., 2003; Bascompte & Jordano, 2007).
In fact, the very first step to detect any pattern in a network is a
decision on the level of taxonomic resolution at which the nodes
should be defined, which is a well-known point in the analysis of
networks such as food webs (Martinez, 1993). However, this
might be very difficult for AM fungi, given the complexity of
their biology and taxonomy and in cases where AM fungi are
identified using DNA sequencing. In the latter case, nodes may
represent virtual taxonomic units (VTs), which are defined
through molecular data and allow a finer resolution of fungal
diversity (Davison et al., 2015). The plant layer, too, can be
described across all levels of biological aggregation: The nodes
may represent multiple populations of the same species (one node
per population), with multiple species in the network. They can
even represent an individual plant, with multiple individuals

from multiple populations of multiple plant species, and with all
of those levels of organization replicated across different condi-
tions (e.g. control and treatments in manipulative experiments).
In other words, there is no limit to the levels of biological aggre-
gation at which the nodes can be defined, both for the plant and
the AMF layer (Caruso et al., 2022), and network models can
offer information at all of those levels (Neal et al., 2024).

Once bipartite network matrices describing plant–AM fungi
associations are constructed at the desired level of biological
aggregation, they can be analysed with tools from network
science. The first goal of the analysis is the search for patterns in
the network structure, for example, topological patterns linked to
the degree distribution and mesoscale motifs, or also at the global
scale or macroscale of highly aggregated properties such as con-
nectance. Two other important goals are understanding the pro-
cesses behind those structures and the functional implications of
those structures (Newman, 2018). Here, we concentrate on the
first goal and ask whether there are very common patterns in
the structure of plant–AM fungi association networks or whether
these patterns are context-dependent and not generalisable. Some
studies suggest that there are very common patterns (e.g. Chag-
non et al., 2012; Montesinos-Navarro et al., 2012). For example,
nestedness has been proposed as a common feature of mutualistic
networks (Bascompte et al., 2003; Bascompte & Jordano, 2007),

Fig. 1 The two possible structures of plant–AM
(arbuscular mycorrhizal) fungi association
bipartite networks analysed in this work. There
are two sets or layers of nodes (plant species/
populations in green and AM fungal taxa in
purple). The left panels illustrate nestedness and
anti-nestedness, the right panels illustrate
modularity.
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including plant–AM fungi association networks (Chagnon
et al., 2012; Montesinos-Navarro et al., 2012). Nestedness
describes subsets of associations in a network. For example, spe-
cialized AM fungi associate with a small number of plant species,
and generalist AM fungi associate with a large number of plant
species (Fig. 1). At the same time, the number of plant species
associated with specialized AM fungi is a subset of the large num-
ber of plant species associated with generalist AM fungi. Clearly,
real bipartite plant–AM fungi associations, as well as any bipartite
ecological network, are never perfectly nested, and this generates
the question of how to quantify nestedness and assess whether an
association network can be defined as nested or not (Neal
et al., 2024). Another feature that has been proposed as typical of
plant–AM fungi associations is modularity (Montesinos-Navarro
et al., 2012; Garrido et al., 2023), in which species form groups,
and the number of associations within a group is greater than that
between groups (Newman, 2006, 2018). As for nestedness, the
question arises of how modularity can be quantified to identify
modules and assess whether a network is modular or not.

The quantification of network structures such as nestedness and
modularity is the first step to move the field of research forward.
Patterns in these network features can shed light on both the pro-
cesses that generate the network and the dynamic or functional
aspects of the network. For example, theory shows that certain net-
work structures can enhance the stability of the populations repre-
sented by the network nodes, promoting resilience against
environmental fluctuations and species loss (Pimm, 1984; Stouffer
et al., 2005; Montoya et al., 2006; Allesina & Tang, 2012). Net-
work approaches are thus a useful tool to investigate ecological and
evolutionary dynamics of association patterns, including plant–
fungal associations (Toju et al., 2014). However, the quantification
of network structure is itself challenging. For example, intuitively,
one might expect that the specialized associations implied by mod-
ularity could lead to anti-nestedness rather than a set of specialist
species nested in a set of generalist ones. Yet this is not necessarily
the case (Valverde et al., 2020), and some studies show that correla-
tions between nestedness and modularity can be mediated by other,
basic, network features such as connectance (Fortuna et al., 2010);
high connectance leads to modular but anti-nested sets, and low
connectance leads to the opposite. Similarly, the relationship
between nestedness and more dynamic properties, such as stability,
can also be complex, with studies suggesting either positive (Bas-
compte & Jordano, 2007) or negative (Staniczenko et al., 2013)
effects. Other authors have also suggested that plant–AM fungi
association networks can be anti-nested and non-modular
(Encinas-Viso et al., 2016), which was interpreted as a ‘lack of sub-
stantial structure’. That would imply that factors conferring stabi-
lity to these associations should be researched by investigating other
structural aspects of the association (Toju et al., 2015).

To address these uncertainties, we ask whether there is any very
common pattern of nestedness and modularity in plant–AM
fungi associations. We emphasise that the model chosen to
describe and quantify plant–AM fungi association networks is
essential. Current techniques rely on null models (Harvey
et al., 1983; Gotelli & Ulrich, 2012), which are mostly derived
from numerical algorithms that ‘randomly’ rewire the observed

adjacency matrix that codes the information of who is associated
with whom. The rewiring of the observed matrix is constrained
to features such as the marginal sums (by rows, columns, or both)
of the matrix so that the random matrices retain some key aspects
of the observed data while randomising all other features
related to the identity of the nodes (Bascompte et al., 2003;
Blüthgen et al., 2007; Dormann et al., 2009). The choice of con-
straints in the null model rewiring algorithm, as well as in any
null model technique, is of fundamental importance for detecting
a structural pattern in the network because that choice represents
the model assumptions, which affect the results (Neal
et al., 2024). We argue that in the case of existing plant–AM
fungi association datasets amenable to bipartite network analysis,
the choice of the constraint and how they are modelled should
reflect the fact that there is a degree of uncertainty in the mea-
surements of plant–AM fungi associations, which propagates to
the constraints used to create the null models. The uncertainty,
typical of ecological datasets, is due to a combination of experi-
mental errors such as those inherent in molecular approaches, but
also natural fluctuations in populations and associations, both in
space and time at multiple scales (Moora et al., 2011; Sánchez-
Castro et al., 2012; Davison et al., 2015, 2018; Polme
et al., 2016; Zhao et al., 2021). Yet, the fact that there is uncer-
tainty does not invalidate the dataset itself because, as a matter of
fact, there are well-documented associations and interactions
between plants and AM fungi, and the existing datasets seek to
approximate those associations and interactions in the form of a
network matrix. The goal then becomes the estimation of struc-
tures in that matrix, taking into account unavoidable experimen-
tal errors and natural variability in the matrix entries.

Classic rewiring null models are very well benchmarked for
certain types of ecological datasets, but are neither the only
option nor the best option when there are natural fluctuations
and experimental uncertainty in the data used to constrain the
null models, which, in our opinion, is almost always the case for
ecological networks (Caruso et al., 2022; Neal et al., 2024). In
this work, we propose that the null model best suited to plant–
AM fungi association datasets should account for fluctuations in
the constraints. That can be done using maximum entropy net-
work models with soft constraints (Squartini & Gar-
laschelli, 2017) rather than the fixed, so-called ‘hard’ constraints
of classic rewiring models, which assume no or negligible uncer-
tainty in the constraints. In this work, we specifically apply the
maximum entropy bipartite configuration model (BiCM) with
soft constraints (Saracco et al., 2015). We concentrate on the bin-
ary version (presence–absence data) to work on the co-occurrence
matrix that associates plants and AM fungi, and the degree
sequence constraint (i.e. the number of links to each node), node
by node. In classic ecological null models with hard constraint
(Neal et al., 2024), the rewiring of the observed matrix is most
often constrained to the observed number of associations, node
by node. That way, of all possible randomised matrices, only
those that respect the degree sequence (or matrix marginals)
exactly are accepted. That construction equates to a uniform
probability distribution (Neal et al., 2024). A desired number of
null random matrices (say 999) need to be generated with
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algorithms that simulate the sampling of the ensemble by recon-
structing each random matrix. That is needed because it is impos-
sible to actually generate the set of all possible matrices for
moderately large and realistically heterogeneous datasets and then
randomly sample a desired number of matrices from the full set
of all possible ones. That fundamental limitation causes major
statistical issues as it is hard or impossible to guarantee an
unbiased sampling of the ensemble, as discussed thoroughly in
the more technical literature (e.g. Squartini & Garlaschelli, 2017).
In the case of BiCM, random matrices are not constructed by
rewiring. Rather, given the degree sequence, we search for the
probability distribution of pij, which is the probability that node i
in one layer (say the plant one) is connected to node j in the other
layer (say the AMF one), for every possible pair ij. The model
outcome is, therefore, a probability matrix. This probability
matrix or distribution is found by searching for the one that max-
imises the entropy of the network, subject to two constraints, as
we explained in more detail in the method section. As described
in the methods, only the average degree of each node across the
random matrices will be equal to the observed degree. That is
why the constraint is defined as ‘soft’, compared to the ‘hard’
constraint of rewiring models. The various realisations of the
ensemble of random matrices of the BiCM represent fluctuations
around the observed configuration (Caruso et al., 2022). The sta-
tistical virtues of this modelling approach and its advantages over
the classic ones have been demonstrated elsewhere (Squartini &
Garlaschelli, 2017; Parisi et al., 2020). Here, we stress that there
are no right or wrong models; we only have assumptions about
models that fit different situations. We propose here that the best
benchmarking null model to assess whether plant–AM fungi
associations are nested and modular is the BiCM in reason of the
soft constraints, the statistical robustness (unbiased estimates and
maximised randomness), and the computational efficiency (a
PYTHON package as well as a Python code based on that package
already exist to fit this model, but here we also offer a new R code
to fit the model, also including some useful data wrangling func-
tions that facilitate the analyses).

We analysed 36 publicly available plant–AM fungi association
datasets derived from different ecosystems and at varying levels of
biological organization (individual, population, and species)
using the maximum entropy BiCM. We quantified nestedness
and modularity of observed and null model ensemble matrices to
test if nestedness and modularity in plant–AM fungi association
networks across multiple scales and levels of biological organisa-
tion are common and widespread. We then interpreted the impli-
cations of results in terms of community assembly and dynamics
(e.g. stability and resilience) to suggest how the field of research
can move forward in the light of emerging methods of network
analysis and the results they are offering.

Materials and Methods

Datasets

The datasets used in the current study were obtained from open
access peer-reviewed publications searched in Web of Science,

Scopus, and Google Scholar as per the documentation in the
Prisma Flow Diagram (Supporting Information Fig. S1). We also
explored all the studies available in the MaarjAM database
(https://maarjam.ut.ee) (Öpik et al., 2010). In summary, for our
searches in Web of Science and Google Scholar, we used the key-
words ‘plant-AMF association’, ‘AMF abundance’, and ‘AMF
sequencing in plants’. We retrieved the results and removed too
small datasets defined as AMF nodes < 5 and at least one plant
species (datasets with only one plant were considered if we had
other factors in the experiment that could be used as plant nodes,
like treatments/genotypes/time points, etc.). The 36 different stu-
dies were finalised based on the availability of data of AMF spe-
cies in plant roots or plant root-associated rhizosphere soil. AMF
Virtual Taxon (VTs)/Operational Taxonomic Unit (OTUs) were
treated as nodes unless species-level identification was given by
the authors. (The VT/OTUs were linked to AMF classification
through MaarjAM in the datasets where VT/OTU information
about fungi was not available in the respective paper.) Some of
the datasets were subsets for AM fungi when other groups
of fungi were involved in the study, or where AM fungi were stu-
died in both plant and soil samples. In terms of selection criteria
to finalise the choice of the datasets (see Prisma Flow Diagram in
the Fig. S1), the key principle was that we looked for studies
in which the AMF strain, population, or more generally taxon
datum (most commonly OTU or VT) was associated with a
plant-level datum, either individual, population, or species (for
plants, species was the most common case by far). We thus relied
on the authors’ definition of the association between the AM fun-
gus and the plants, and we used the word ‘association’ to signify
that the definition is broad, covering association at a range of
scales, from the broadscale of meta-networks to the very local
associations between individual plants and the AM fungi found
in their roots or rhizosphere soil (as described later in more
detail). Also, given this approach, we did not undertake bioinfor-
matic analysis of the original sequences of the AMF datasets, but
instead relied on the original associations. We therefore consid-
ered studies providing association matrices rather than rebuilding
new association matrices. This is important because we removed
one potential layer of confounding factors (e.g. different bioin-
formatic approaches and definition of AMF taxa) in the compari-
son of our results with the results previously published. For the
abundance data (e.g. number of reads per OTU) were converted
to presence–absence data, and for the same reasons explained
above (consistency with the published association matrices), we
did not apply any threshold criterion in terms of the level of
abundance required to assign a link between an AMF node and a
plant node. In other words, as long as the original, published
matrix defined an AMF node as associated with a plant node (i.e.
a nonzero entry), we accepted that published datum as a
valid link.

Range of conditions encompassed by the datasets

The datasets chosen possessed a range of AMF VTs (8–277) and
plant species (1–245) (Table 1). In the dataset with one plant
species, as well as in others, the plant layer consisted of multiple
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individuals or populations of the same plant species, in which
case the plant layer nodes would represent individuals or popula-
tions, depending on the study. This approach enabled us to
explore how AMF associations might be structured within popu-
lations and individuals of the same plant species as well. The
sequencing methods used in the chosen studies also varied. There
were 20 studies based on cloning and sequencing, ranging from
2009 to 2018. The other 16 studies were based on Illumina MiS-
eq/HiSeq/Novaseq, rDNA sequencing, and 454 sequencing plat-
forms. The datasets comprised plants from diverse vegetation
categories and habitats, including grasslands, cropland, forests,
and deserts. Various studies considered here were conducted at
multiple spatial scales and in some cases with multiple scales
within the same study. To explore the role of scale we thus con-
sidered three levels: global to very broadscale lists of species that
may be aggregating plants from different biogeographic regions;
more local datasets including the same species but with popula-
tions or individual plants under different environmental condi-
tions (e.g. experimental treatments); and very local datasets
representing physical biological communities as they may be

operating on a small scale. For example, a single plant species
study was of this kind, in which case network analysis can reveal
the degree of specialized association in AM fungi across the plant
species populations. More generally, the case of very local datasets
representing physical biological communities can be considered a
realization of associations that are known to be possible given the
meta-network of associations in the relevant regional pool of spe-
cies (Rollin et al., 2024). At the same time, the complementary
view is also possible, that is, the meta-network can be constructed
from the collection of local networks, which is what is typically
done in the inference of metacommunity dynamics and metapo-
pulation dynamics (Hanski, 1999; Leibold et al., 2004). More
operationally here, to further address in detail the potential effect
of data aggregation (scale-wise and biologically in terms of multi-
ple populations of the same plant species), we focused on a speci-
fic dataset (Garrido et al., 2023, available at Garrido Sánchez
et al., 2024) to validate observed patterns at multiple levels of
data aggregation within a single study. This dataset was collected
in two different Mediterranean mountain systems in southern
Spain, separated by c. 100 km. In each system, the plant–AM

Table 1 Plant–arbuscular mycorrhizal fungal (AMF) association metadata of the datasets considered in this work.

Study No. of plants No. of AMF species/OUT/VT Sequencing methodology Plots/replicates/sampling units (n)

Galván et al. (2009) 1 14 rDNA sequencing 6
Öpik et al. (2009) 10 48 454 sequencing 10
Tchabi et al. (2009) 1 49 Cloning and sequencing 12
Wilde et al. (2009) 3 24 rDNA sequencing 7
Alguacil et al. (2011a) 6 12 Cloning and sequencing 12
Alguacil et al. (2011b) 4 8 Cloning and sequencing 4
Baar et al. (2011) 5 23 Cloning and RFLP 6
Davison et al. (2011) 11 40 Cloning and sequencing 11
Isobe et al. (2011) 1 24 Cloning and sequencing 10
Liu et al. (2011) 2 16 Cloning and RFLP 10
Moora et al. (2011) 1 71 454 sequencing 14
Sasvári et al. (2011) 1 33 Cloning and sequencing 6
Wang et al. (2011) 3 23 Cloning and sequencing 9
Alguacil et al. (2012) 3 20 Cloning and sequencing 3
Sánchez-Castro et al. (2012) 5 37 Cloning and sequencing 5
Merckx et al. (2012) 33 56 Cloning and sequencing 33
Guo & Gong (2014) 17 22 Cloning and RFLP 17
Li et al. (2014) 2 29 Cloning and RFLP 16
Davison et al. (2015) 245 247 454 sequencing 247
Dieng et al. (2015) 3 13 Cloning and sequencing 17
Grilli et al. (2015) 1 59 454 sequencing 3
Varela-Cervero et al. (2015) 5 81 Cloning and sequencing 5
Moora et al. (2016) 1 47 454 sequencing 5
Polme et al. (2016) 5 38 Cloning and sequencing 5
Campos et al. (2018) 3 92 Illumina MiSeq 30
Davison et al. (2018) 218 277 454 sequencing 277
Muneer et al. (2019) 3 52 Cloning and sequencing 3
Higo et al. (2020) 1 148 Illumina MiSeq 6
Lara-Pérez et al. (2020) 1 21 Illumina MiSeq 7
Deepika & Kothamasi (2021) 12 18 Cloning and sequencing 35
Feng et al. (2021) 2 24 Cloning and sequencing 2
Zhao et al. (2021) 10 17 Illumina HiSeq 67
Fernández et al. (2022) 2 16 Illumina MiSeq 96
Garrido et al. (2023) 18 87 Illumina MiSeq 63
Djotan et al. (2023) 2 321 Illumina MiSeq 2
Wang et al. (2024) 12 207 Illumina NovaSeq 59
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fungi assemblies were characterized by repeatedly sampling plant
roots of several species in different locations of the same ecosys-
tem (between 6 and 24 samples per plant species and mountain
system; see Garrido et al., 2023 for details). Therefore, to further
test the impact of data aggregation on the detection of structural
patterns and interpretation of those patterns, we considered the
following levels of aggregation: plant species meta-network (all
locations lumped together), plant species but with the two main
mountain systems separately, and population of the same plant
species across multiple locations.

Network modelling –metrics

Bipartite networks with two sets of nodes – plant and AM fungi
– were used to describe plant–AM fungi associations. The abun-
dance (based on what was originally reported in the primary stu-
dies) of each AM fungus was converted to a binary matrix (0 or 1
for absence or presence, respectively). The BIPARTITE R package
(Dormann et al., 2009) was used to compute the metrics of nest-
edness and modularity using the network-level and computeMo-
dules functions. In these functions, nestedness was measured with
the nested overlap and decreasing fill (NODF) as per
Almeida-Neto et al. (2008). Modularity was measured using the
classic approach originally proposed by Newman (2006) and
applied to the bipartite case using Beckett’s algorithm, which is
available as one of the modes of the computeModules function in
the R BIPARTITE package (Beckett, 2016). The approach uses a
configuration model to maximize the modularity metric Q. The
maximum value of the metric is achieved for the partition of the
graph into groups of nodes (the modules) that maximize
the number of connections within each module relative to the
configuration model.

Network modelling – the maximum entropy BiCM as
null model

We used the maximum entropy bipartite binary configuration
model (BiCM) as a null model to assess the level of nestedness
and modularity in the AM fungi–plant association networks. The
model revolves around two key ideas. First, we search for pij,
which is the probability of connection between a node in the fun-
gal layer (say i) and one in the plant layer, say j. Second, the set
of probabilities for every possible pair ij forms a probability dis-
tribution, and the one to use is the one that maximises the
entropy metrics (Squartini & Garlaschelli, 2017) subject to
the null model constraints. The constraints are aspects of the
observed data that need to be preserved to formulate a meaning-
ful null model. The constraint, in our case, is the degree
sequence, which is the number of observed links to each node,
node by node (in other words, the row and column marginals).
Different from classic rewiring algorithms, the constraint is not
to be met exactly by the random matrices of the null models.
Indeed, it should not, because there is uncertainty or fluctuations
in the degree sequence itself. The constraints should therefore be
met just on average by the collection of random matrices in the
null model ensemble. For the general case, the key formulas are:

S Pð Þ≡�∑
E

P Eð ÞlogeP Eð Þ Eqn 1

Ch i=∑
E

C Eð ÞP Eð Þ=C� Eqn 2

In which Eqn 1 is the entropy of the network matrix E, and
C* in Eqn 2 is the constraint as observed in the matrix (in our
case, the degree sequence, a vector). In our approach, we search
for the expression of the probability P(E) that maximises the
entropy metric S. As shown in Squartini & Garlaschelli (2017)
and references therein, the specific solution for the general, binary
configuration model in which the network E is represented by
the adjacency matrix A (with elements aij, which code for the net-
work links with 0 or 1) is

P Ajθð Þ=
Y

i

Y

j < i

p
aij
ij 1�pij

� �1�aij
Eqn 3

In Eqn 3, it can be shown that the probability pij =
x i x j

1þx i x j
.

This is the correct form of the connection probability between
nodes i and j, with x i ≡ e�θi being a conveniently transformed
Lagrange multiplier (the θ), which comes from the procedure
of entropy maximisation. The method of Lagrange multipliers
is indeed used to find the probability P(E) that maximises the
entropy S(P ), which is a classic statistical mechanics recipe.
The knowledge of the functional form of P Ajθð Þ allows the
calculation of the expected degree kih i as a function of the
transformed Lagrange multipliers. This means that the prob-
ability can now be estimated if we equate the expected degree
kih i to the empirical degree ki Oð Þ, where O is the observed
matrix. This equality is the constraint enforced as an average.
Specifically:

kih i=∑
i≠j

x ix j
1þ x ix j

= ki Oð Þ 8i: Eqn 4

The values of x i solving the above equations also coincides
with the values that maximise the log-likelihood L θð Þ. Therefore,
we can estimate the expected pij from the degree sequence by
combining maximum entropy and maximum likelihood. That
ensures an unbiased estimate, which is a major statistical virtue of
the model. The extension of this model to the bipartite case is
straightforward, as it simply involves a reparameterisation that
considers the two sets of nodes in the two layers (e.g. plants and
fungi) of the bipartite graph (Saracco et al., 2015), with links pos-
sible only between the two layers, and never within layers. The
probability of connection between node i in the plant layer x and
node j in the fungal layer y now becomes

pij =
x iyj

1þ x iyj
Eqn 5

with xi and yj as the new parameters to be estimated for every
combination node i and node j between layers x and y (say plants
and AM fungi in our case).
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The estimation of all the pij returns a matrix of the probabil-
ity of connection. This is effectively a probability distribution
that can be sampled to draw a particular, realised matrix.
The null model ensemble consists of any desired number of
these matrices, say 999 or 9999. This model can be fitted using
either the original Python code (see Caruso et al., 2022) or with
the R code (Notes S1 that we provide in the supporting
information together with an exemplar dataset file
Dataset S1(bi_species).csv, which is a subset derived from the
dataset in Campos et al., 2018, and on which the code can be
run directly to generate: the probability matrix with the pij and
an ensemble of 999 random matrices. These matrices will look
similar to the observed one in terms of degree sequence, but the
position of the links would be fully randomised, subject to the
constraint that nodes that were observed to be highly connected
will, on average, be highly connected, and vice versa. Specifi-
cally, the average of all the random realisations is such that the
average degree sequences will exactly equal the observed degree
sequences, as per Eqn 4. This can be verified numerically to
check that the model fit was successful. The ensemble of the
null model matrices represents fluctuations around the average
matrix, which is assumed to be equal to the observed matrix,
but only for the degree sequence, or any other properties that
depend on that. Otherwise, the matrices are completely random
and, indeed, maximally random according to the maximum
entropy principle (Squartini & Garlaschelli, 2017).

Therefore, any deviation of the observed matrix from the dis-
tribution of the null model matrices implies that aspects of spe-
cies identity not captured by the constraint (the degree sequence
in the BiCM) significantly shape network structure. Specifically,
the ecological interpretation of the BiCM is that it fully rando-
mises species identity, or more generally node identity, while pre-
serving the number of associations for each species or node. That
model is, therefore, a full alternative to classic ecological null
models that use the degree sequence as a constraint but rando-
mise the observed links through a hard constraint and rewiring
algorithms to generate a probability null distribution (Neal
et al., 2024).

To compare the observed levels of nestedness and modularity
to the null model and make a statement on whether plant–AM
fungi associations are nested, modular, or both, we computed
nestedness and modularity for each observed matrix. We then
fitted the null model to every dataset and calculated nestedness
and modularity for the resulting null model matrices (999).
Finally, the Z-score of each of the two metrics was computed as
(NODFobserved � NODFnull model)/SDNODFnull model for nest-
edness and (Qobserved � Qnull model)/SDQnull model for the modu-
larity metrics. In both cases, 999 sampled random matrices were
used to compute the NODFnull model and Qnull model, which,
respectively, were the average nestedness and modularity of the
null model ensemble. We computed the corresponding SD of
those averages (i.e. SDNODFnull model and SDQnull model).

The Z-score measures the deviation of the observed metric
from the null model distribution of the metric. For example, if
the Z-score of nestedness is negative, the network is anti-nested
relative to the average of the null model, while if positive, it

would be nested. In the case of modularity, a negative Z-score
would result in a non-modular network, while a positive one
would result in a modular network. In other words, our descrip-
tive definition of a nested/anti-nested and modular/non-modular
network is relative to the baseline of the null distribution. The
classic expectation of plant–AM fungi associations is that they
form nested and modular association networks, and we thus
tested the collection of datasets for this expectation. For simpli-
city, we describe a network as nested/anti-nested and
modular/non-modular on the basis of the sign of the Z-score.
But to answer our main question in terms of a formal test, about
whether an AM fungi–plant association network is nested and
modular, we computed the null model P-value for both metrics
(Gotelli & Ulrich, 2012; Caruso et al., 2022) under the null
hypothesis that the observed deviation, quantified by the Z-score,
is a random fluctuation from the null distribution. The concept
of the null model P-value is the classic one: A structural pattern
can be considered statistically robust if the observed deviation
from the average of the null model has a small probability of
occurrence (in our case, we chose the widely used P-value of
0.05).

Finally, to visualize network structures, we utilized the Gephi
software (v 0.10.1). Network topology was arranged using the
ForceAtlas2 layout algorithm. Within the resulting graph, nodes
were scaled according to their degree (number of connections).
Following export from Gephi, specific modules of interest were
manually highlighted using polygon overlays created in INKSCAPE

(v.1.3).

Results

Nestedness

NODF ranged from 6.33 to 69.19 (Table S1), where the mini-
mum value was found for Merckx et al. (2012) and the maximum
value was in Öpik et al. (2009). The values of NODFobserved were
lower than the mean and median of NODFnull model in all except
four datasets (Alguacil et al., 2012; Grilli et al., 2015; Higo
et al., 2020; Djotan et al., 2023), where NODFobserved was higher.
Standard deviation and variances are summarized in Table S1. The
Z-score ranged from 3.27 (nested) to �7.09 (anti-nested), illu-
strated in Fig. 1. A total of 28 out of 36 datasets deviated from the
null model (P-value< 0.05), with 26 datasets anti-nested and two
(Grilli et al., 2015; Higo et al., 2020) nested (see Table S1 for a full
summary of these results).

Modularity

Modularity ranged from 0.06 to 0.72 (Table S1), with the mini-
mum value in maize (Higo et al., 2020) and the maximum value
in wild herbs (Merckx et al., 2012). Out of the 36 datasets, 24
deviated from the null models (P-value< 0.05), all showing lar-
ger modularity (Fig. 2). Depending on the datasets, the magni-
tude of deviation from the null model varied considerably. For
example, the two largest datasets (Davison et al., 2015, 2018),
encompassing a broad range of ecosystems and biogeographical
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regions, were highly modular with a Z-score above 63
(P-value< 0.001).

Patterns of nestedness and modularity across vegetation
categories

Four datasets with plants distributed across multiple vegetation
categories were all anti-nested (the largest Z-score was �1.53, all
P-values ≪ 0.05) and modular (the smallest Z-score was 1.88;
all P-values< 0.05). The same results were found in the two
aquatic plant datasets from lakes (Baar et al., 2011; Moora
et al., 2016), being highly anti-nested (the largest Z-score was
�2.61, P-value< 0.01) and modular (the smallest Z-score was
2.92, P-value< 0.001). The three datasets from coastal areas

(Wilde et al., 2009; Guo & Gong, 2014; Deepika & Kotha-
masi, 2021) were anti-nested and modular as well (smallest Z-
score NODF was �3.04; P-value< 0.01 and largest Z-score
modularity= 8.05; P-value< 0.01). The dataset from the desert
(Wang et al., 2011) and the two from Mediterranean scrublands
(Varela-Cervero et al., 2015; Polme et al., 2016) were also anti-
nested and modular (Z-score NODF<�2.78; and Z-score
modularity > 2.53; P-value< 0.01; see Table S1 for a full sum-
mary of these results).

Nine datasets were from forests, and the nestedness Z-score
values for these ranged from 7.09 to 2.18, where seven datasets
(Öpik et al., 2009; Moora et al., 2011; Merckx et al., 2012; Li
et al., 2014; Zhao et al., 2021; Garrido et al., 2023; Wang
et al., 2024) were significantly anti-nested (P-value< 0.01). The

Fig. 2 Nestedness (a, c) and modularity (b, d) at different scales of study (rows) and across different ecosystems (colours) to profile arbuscular mycorrhizal
fungal communities in plants. (a) Z-score nestedness is calculated based on Nobserved, average Nnull model, and SD of Nnull model and (b) Z-score modularity is
calculated from Mobserved, average Mnull model, and standard Deviation of Mnull model. The green area represents a Z-score of 0� 2 SE, which, under the
assumption of a normal distribution of the metric under investigation, would represent c. 95% of the null distribution: In other words, an observed Z-score
falling within the green area is within the 95% confidence interval of the null model expectation for that metric. However, we used this interval in this
figure only for visualisation purposes. For statistical tests on each dataset, we used the actual null model P-values from the sampled distribution of each
dataset-specific model fit, without assuming a normal distribution of the metrics. For nestedness (a, c), a positive Z-score to the right of the green area, that
is > 2, implies a nested network (and so <�2 means anti-nestedness, as observed for most datasets). For modularity (b, d), a positive Z-score> 2 means a
modular network, which is what was observed for all networks. The figure thus overall illustrates that almost all datasets were anti-nested and all of them
were modular. See Table S1 for the P-values used in our analysis, and Z-score value distribution.
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modularity Z-score in these datasets ranged from 1.07 to 8.88,
where six datasets (Moora et al., 2011; Merckx et al., 2012; Grilli
et al., 2015; Zhao et al., 2021; Garrido et al., 2023; Wang
et al., 2024) were significantly modular (P-value< 0.04).

The cropland vegetation category consisted of four datasets
(Galván et al., 2009; Isobe et al., 2011; Sasvári et al., 2011) that
were anti-nested (the largest Z-score NODF was �1.76,
P-value< 0.05) and modular (the smallest Z-score was 2.19, P-
value< 0.02). Only one dataset (Higo et al., 2020) was nested
(Z-score= 3.27, P-value= 1), while its modularity did not
depart from random expectations.

Plants from grassland were from seven different datasets, two
of them (Campos et al., 2018; Muneer et al., 2019) anti-nested
(the smallest Z-score was �4.91; P-value< 0.001) and modular
(the largest Z-score was 3.95; P-value< 0.001). The three data-
sets from both forest and grassland varied in their anti-nested pat-
tern and modularity scores: one (Fernández et al., 2022) was
anti-nested (Z-score=�2.36; P-value< 0.01) and modular (Z-
score= 6.00; P-value< 0.01), while one dataset (Davison
et al., 2011) was anti-nested (Z-score=�2.36; P-value< 0.01),
and the other (Liu et al., 2011) was modular (Z-score= 2.40; P-
value< 0.01).

Patterns of nestedness and modularity at different levels of
aggregation of the same dataset

We initially pooled the whole Garrido et al. (2023) dataset by
plant species, regardless of location or habitat differences, effec-
tively constructing a meta-network of all potential associations a
plant species might have (Figs 3, 4). The aggregated dataset was
found to be anti-nested (Z-score NODF=�4.10, P-value -
< 0.05) and modular (Z-score= 3.61, P-value< 0.05). The sec-
ond level of aggregation aimed at identifying local biological
communities of plants and AM fungi effectively associated with
specific geographic locations. This was achieved by building one
adjacency matrix per mountain system (i.e. Sierra Sur de Jaen
and Sierra de Segura). In both mountain systems, plant–AM
fungi association networks were anti-nested (Z-score<�2.18, P-
value< 0.01) and modular (Z-score> 2.42, P-value< 0.01;
Fig. 3). The third level of aggregation accounted for
habitat/dispersal differentiation and local communities associated
with different populations of the same plant species, and for that,
we generated adjacency matrices for four individual plant species
(Thymus zygis, Thymus mastichina, Cistus albidus, and Crataegus
monogyna), where each population was treated as a different asso-
ciating node (Fig. 4). All four networks were anti-nested (the lar-
gest Z-score was �2.03, P-value< 0.02) and modular (the
smallest Z-score was 2.41, P-value< 0).

Discussion

We tested whether there was any common pattern in the level of
nestedness and modularity of plant–AM fungi associations across
multiple spatial scales and levels of biological aggregation of the
plant nodes. Our results show consistent evidence of a common
set of structural features, namely anti-nestedness and modularity,

found at all the spatial scales and habitat types, and also at
multiple levels of biological aggregation. This result is to be
explained taking into consideration that plants and fungi interact
along a complex mutualism–parasitism continuum (Johnson
et al., 1997) so that along that continuum, individual AMF spe-
cies, populations, and strains can associate with numerous host
plants (Sanders, 2002), and similarly, plants may host particular
AMF species, populations, and strains (Kiers & Heijden, 2006).
In fact, the degree of association between plant populations/
species/communities and AM fungi can vary greatly in space and
time at various scales (e.g. Vályi et al., 2016), and some evidence
suggests that stochastic processes may also be a major driver of
plant–AM fungi community assembly (Dumbrell et al., 2010;
Lekberg et al., 2012) and may also shape interactions (Cirtwill
et al., 2019; Parisy et al., 2024; Toju et al., 2024). That means
that the number of species per sampled location or of AM fungi
associated with a plant species or, vice versa, of plant species asso-
ciated with an AM fungus will vary greatly in space but also over
time for the same sampling point. The network null model
should reflect that variation in the topological constraints, namely
the degree sequence in our case. There are also unavoidable
experimental errors such as those inherent to molecular methods
and field sampling, which further complicate the quantification
of network patterns. In light of this complexity, we propose that
our network modelling strategy could detect consistent patterns
by embracing the fluctuations we must expect in plant–AM fungi
associations. Specifically, the fluctuations need to be modelled at
the level of the null model constraints, node by node (Caruso
et al., 2022), which in our case was the classic degree sequence.

Do the observed patterns align with or contradict the results
obtained in previous works? First, and in line with the existing lit-
erature, we observed a high and commonplace level of modular-
ity, which validates the notion that selectivity in plant–AM fungi
interactions might result in specific community structures with
sets of plant species or populations sharing relatively unique sets
of AMF taxa (Vandenkoornhuyse et al., 2002, 2003; Mony
et al., 2021). We also observed, however, that plant–AM fungi
association networks are mostly anti-nested rather than nested,
which is contrary to some past observations for mutualistic net-
works but consistent with others (Toju et al., 2014, 2015;
Encinas-Viso et al., 2016). In general, nestedness has been pro-
posed as a common feature of mutualistic networks (Bascompte
et al., 2003; Bascompte & Jordano, 2007), including plant–AM
fungi association networks (Chagnon et al., 2012; Montesinos-
Navarro et al., 2012). However, it has also been reported that
plant–AM fungi association networks can be anti-nested and
indeed non-modular (Encinas-Viso et al., 2016), opening the
possibility that a high level of nestedness might not be a feature
of AMF associations. Indeed, while we did find some nested net-
works, we found that anti-nestedness is much more common and
coupled with a modular structure in the majority of the datasets
we analysed. This finding supports the notion that networks with
a strong community structure (e.g. highly modular) could be
either nested or modular but usually not both, especially at a cer-
tain level of connectance (Fortuna et al., 2010). Almeida-Neto
et al. (2008) showed that different ecological processes can
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generate network structures that are less nested (i.e. anti-nested)
than expected from pure chance. Thus, anti-nestedness should
not be interpreted simply as the opposite of nestedness. More-
over, Almeida-Neto et al. (2008) showed that common associa-
tion structures (e.g. checkerboard) can show lower nestedness
than expected by chance. Interestingly, various structures show a
high degree of modularity: For example, a bipartite matrix with a
checkerboard pattern can be rearranged into a two-module struc-
ture. By definition, compartmented structures have several mod-
ules, while structures defined by Almeida-Neto et al. (2008) as
‘beta-diversity’ and ‘exclusive subsets’ have as many modules as
plant nodes. Felix et al. (2022) have, however, shown that modu-
larity and nestedness can coexist when compound topologies

structure the network. The main point is that, in many cases,
including this work, the observed level of nestedness (regardless
of the direction) and modularity can be interpreted as two ways
of quantifying the same type of topological structure. In other
words, in our case, modularity can induce anti-nestedness.

Because we found a consistent pattern in plant–AM fungi asso-
ciation networks, it is then natural to ask how anti-nestedness
and modularity emerge and what the ecological implications are.
We cannot resolve this question with the data at hand. But we
can offer some hypotheses, based on the strong foundation of a
statistically robust structure, that allow us to propose future direc-
tions of research. The first observation is that anti-nested net-
works can be dynamically stable (Staniczenko et al., 2013),

Fig. 3 The aggregation of Garrido et al. (2023) datasets at three scales. The first level (upper panel, level 1) represents a meta-network, where plant nodes
represent species, regardless of location or habitat differences. The second level (lower panel, level 2) represents plant communities, with plant nodes
representing species co-occurring in each mountain system, with (a) Sierra Sur de Jaen and (b) Sierra de Segura. See Fig. 4 for a further level of
aggregation. The figure shows both the matrix and graphic representation of the networks. The matrix is organized by the detected modules (red
rectangles), with the blue dots indicating an association between a plant and an arbuscular mycorrhizal fungus. In the network graph, the modules are also
highlighted by the coloured clouds surrounding the groups of nodes identified in the analysis as modules. The histograms report the results of the null
model, with the histogram bars representing the frequency (y-axis) of the network metrics (either nestedness or modularity; x-axis) in the null model, and
the vertical blue line representing the observed value of the same metric (on the x-axis).
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meaning there could be an eco-evolutionary advantage in the
emergence of this structural property in the network. To test this
hypothesis, perturbation experiments should be conducted in a
set of plant–AM fungi assemblages along a gradient of anti-
nestedness or, conversely, nestedness. Results, as the ones pre-
sented here, practically show how those gradients can first be
detected in natural communities, which could then be used to

conduct manipulative experiments. Related to that, and in terms
of mechanisms of origin, one hypothesis is that anti-nestedness in
plant–AM fungi association networks could emerge from the bal-
ance between mutualism and competition in interaction net-
works (Husband et al., 2002) or the balance in the
mutualism–parasitism continuum. For example, one more speci-
fic hypothesis is that competition between both plant and AMF

Fig. 4 Third level of aggregation of Garrido et al. (2023) datasets (see Fig. 3 for the other two levels). Data were aggregated at the plant species level. (a)
Cistus albidus, (b) Crataegus monogyna, (c) Thymus mastichina, and (d) Thymus zygis, with the plant node layer representing local populations of the
species. The figure shows both the matrix (nestedness and modularity) and graphics (binary modules and binary network structure) of the network.
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species may shift communities from generalist to specialist asso-
ciations (Ricciardi et al., 2010) so as to generate the niche parti-
tioning required to stabilise coexistence. That is a very specific
process; however, that will require dedicated experiments and
also metrics (e.g. the specialisation metrics proposed by Blüthgen
et al., 2006). Also, more broadly, the processes at play must be
more complex than just niche partitioning because the multiple
scales and levels of aggregation at which we consistently observed
anti-nestedness and modularity obviously imply a number of fac-
tors at play. In glasshouse studies (Alguacil et al., 2011a; Dieng
et al., 2015; Campos et al., 2018; Fernández et al., 2022) with
good control of soil type, AMF species, host plants, moisture,
and nutrient availability, specific AM fungi–plant combinations
are likely to determine specialised modules between treatments in
the experiments. In local field experiments, the AM fungi–plant
associations occur in a more natural context under a range of spe-
cific, local biotic and abiotic conditions (Galván et al., 2009;
Öpik et al., 2009; Tchabi et al., 2009; Wilde et al., 2009; Wang
et al., 2011, 2024; Li et al., 2014; Grilli et al., 2015; Varela-
Cervero et al., 2015; Moora et al., 2016; Higo et al., 2020; Lara-
Pérez et al., 2020; Djotan et al., 2023; Garrido et al., 2023). Our
hypothesis, which needs future testing, is that in those cases the
high modularity in plant–AM fungi association networks arises
from a response to environmental heterogeneity and, possibly,
also from dispersal limitations (Paz et al., 2021; Davison
et al., 2015). Finally, in the case of continental studies (Baar
et al., 2011; Davison et al., 2011; Moora et al., 2011; Polme
et al., 2016) that encompass diverse climates, soil types, and geo-
graphic features, high modularity simply results from large-scale
biogeographical and climatic differences in biota, which group by
regions. Environmental gradients over large distances are
expected to select plant and AM fungi associations, leading to
modular structures and, indeed, anti-nestedness because commu-
nities with fewer species are not a subset of communities with
more species. Over large distances, limited dispersal and local
adaptation of plants to native AM fungi can also strengthen mod-
ularity simply because similarity in the associations within a
region will be higher than between regions. Our study also
includes global-scale studies (Davison et al., 2015, 2018; Zhao
et al., 2021), which can be explained along the same lines. Over-
all, the conclusion we can make is that the consistency of our net-
work patterns across a range of scales implies that multiple
factors and processes contribute to nestedness/anti-nestedness
and modularity at multiple scales and levels of biological organi-
sation, and only dedicated manipulative experiments at local
scales or well-designed surveys coupled with modelling can tease
apart the factors causing nestedness/anti-nestedness and modular-
ity in the associations. Such approaches would also enable assess-
ment of the effect of network structure on features such as the
stability of the associations, for example, in response to perturba-
tions.

Our null model results provide some direction for future inves-
tigations: In almost all cases, the model indicated that the
observed level of anti-nestedness and modularity highly deviated
from the null distribution, meaning that the degree sequence per
se is not a predictor of the two high-level network features we

investigated. In other words, aspects of node identity other than
the degree must play a significant role in shaping the network or
at least the two features we examined in this work (Caruso
et al., 2022). While that result cannot definitively identify the
causes that make plant–AM fungi associations anti-nested and
modular, it does offer compelling evidence that the key factors
are related to the identity of the nodes in the network rather than
the ability of a node to associate with a high or low number of
other nodes. Therefore, the processes that structure plant–AM
fugni associations must be researched within the eco-evolutionary
dynamics that generate diversity between nodes (e.g. plant species
or populations and their symbionts). These will most likely
include interactions such as competition within the root, envir-
onmental heterogeneity that may allow plant coexistence at
broadscales, and selectivity in plant–AM fungi associations that
can modulate that coexistence, as well as plant response to envir-
onmental gradients. In other words, the biological and ecological
identities of the nodes matter both for plants and AM fungi and,
more specifically, it determines anti-nestedness and high modu-
larity in the investigated networks, given the null model results.

Future research will have to identify what specific aspects of
node identity matter. One promising avenue for that is commu-
nity phylogenetics (Webb et al., 2002; Cadotte & Davies, 2016):
Past studies, including some of ours, have already shown that
AMF community display non-random phylogenetic patterns
(Horn et al., 2014, 2017), which have in some cases been linked
to phylogenetically conserved traits (Powell et al., 2009). The
same applies to plants, and there are examples of bipartite net-
work analysis linking plants and their fungal symbionts in the
context of the phylogenetic correlation between the two groups
(see Jacquemyn et al., 2011, especially their Fig. 2). In the con-
text of maximum entropy networks, the way to introduce phylo-
geny into the network model is the formulation of the node-level
constraints accounting for the phylogenetic correlation between
nodes, which would create blocks of nodes in a layer that tend to
be more connected to certain blocks of nodes in the other layer.
In other words, our pij, or probability of connection between
node i and j, would be recalculated to account for phylogenetic
correlations between i and j, which would imply updating asso-
ciation structures in the null model random matrices and, there-
fore, an updated null model distribution and, finally, potentially
different outcomes. The specific analytic formulation of this type
of maximum entropy network is a future avenue of theoretical
research (Caruso et al., 2022).

In conclusion, we are confident that our description of net-
work patterns is particularly robust given our modelling premises
and the nature of the data at hand. We propose that the next gen-
eration of network models applied to any plant–microbial inter-
action should thus embrace soft constraints and their fluctuations
in network models. Here, however, we only focused on the
degree sequence and a binary configuration model, as that was
the main focus of past studies, and quantitative information on
the links is scarce or debated. Apart from phylogenetic correla-
tions, our modelling framework is straightforward to extend to
quantitative networks with weighted links (Squartini & Gar-
laschelli, 2017), something that traditional rewiring models are
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struggling with (Caruso et al., 2022). In that case, the first prop-
erty to consider in the future is the strength sequence, which is
the sum of the weights of all links to a node. Weighted links
quantify the strength of associations between two nodes or can
also describe fluxes between nodes if the network links are direc-
ted rather than undirected. Yet, the quest to quantitatively char-
acterize the strength of association between AM fungi and plants
remains a challenge, with the exception of highly mechanistic stu-
dies investigating fluxes of matter between plants and fungi (Lek-
berg et al., 2024). The network models to analyse weighted links
already exist, and future research will have to identify robust
methods to quantify the strength of association between plant
and fungal network nodes, which will represent a significant step
forward in our understanding of these associations.
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