
Stochastic dynamic job scheduling with interruptible setup and

processing times: An approach based on queueing control

Dongnuan Tian
Department of Management Science, Lancaster University Management School, Lancaster University, Lancaster

LA1 4YW, United Kingdom. Email: d.tian2@lancaster.ac.uk.

Rob Shone*

Department of Management Science, Lancaster University Management School, Lancaster University, Lancaster

LA1 4YW, United Kingdom. Email: r.shone@lancaster.ac.uk.

Online Appendices

A Proof of Theorem 2.2.

Proof. Consider a modified MDP in which the state space is

S̃ := {(v, w, (x1, ..., xd)) | v ∈ V, w ∈ D, xi ≥ 0 for i ∈ D} , (A.1)

where the extra variable w represents the most recent demand point at which the server wit-

nessed no jobs present. More precisely, if w = i then this indicates that at a certain time step

t0 in the history of the process the system was in a state with v = i and xi = 0, and none

of the states visited in the more recent time steps (between t0 and the present time) had the

server at another demand point j ∈ D \ {i} at which there were no jobs present. (We can set

w to an arbitrary value when the process is initialized.) All other aspects of the modified MDP

formulation (e.g. actions and costs) are the same as in the original version. The transitions

of the process do not lose their memoryless property when w is included, since the knowledge

that w = i at a particular time step is sufficient to specify the probability distribution for its

value at the next step; specifically, w is guaranteed to remain unchanged unless either of the

following two cases applies:

1. The server is at a demand point j ∈ D \ {i} with xj = 1 and chooses action j, in which

case there is a probability of µj that we have w = j at the next time step and a probability

of 1− µj that we still have w = i.

2. The server is at an intermediate stage k ∈ N adjacent to a demand point j ∈ D \{i} with

*Corresponding author

1

Tian and Shone: Stochastic dynamic job scheduling with interruptible setup and processing times 2

xj = 0 and chooses action j, in which case there is a probability of τ that we have w = j

at the next time step and a probability of 1− τ that we still have w = i.

Consider a ‘polling system’ policy θ[P] under which the server visits the demand points in

a repeating sequence (1, 2, ..., d, 1, 2, ..., d, 1, 2, ...) and, upon arriving at any demand point i,

remains there until the number of jobs has been reduced to zero (xi = 0) before moving to the

next demand point in the sequence. If we already have xi = 0 when the server arrives at node

i, then the server immediately moves to the next demand point. It should be noted that, since

switches require an exponentially distributed amount of time, it may happen that the server

decides to move away from demand point i when xi = 0 but a new job arrives at i while the

server is still located at i. In this case, under our proposed policy, the server continues trying to

move to the next demand point rather than processing the new job. We assume that the server

always chooses the shortest path (in terms of the number of intermediate stages that must be

traversed) between two demand points and, in the case where two or more paths are tied for

the shortest length, the path is selected according to some fixed priority ordering of the nodes.

This policy can be represented as a stationary policy in our modified MDP by specifying actions

according to the simple rule that if w = i ≤ d − 1 then the server attempts to move towards

demand point i+1 by taking the next step on the shortest path to that node; or, if it is already

at i+ 1, then it remains there. Similarly if w = d then the server attempts to move to demand

point 1 (or remains there).

Under the proposed policy θ[P], the system behaves as a polling system with an exhaustive

polling regime (meaning that demand points are served until they are empty). Given that

ρ < 1, Lemma 3.1 in Altman et al. (1992) implies that the system is stable and there exists a

probability distribution {πθ[P](x)}x∈S̃ such that πθ[P](x) is the long-run proportion of time spent

in state x ∈ S̃. In the next part of the proof we show that it is possible to use value iteration to

compute an optimal policy for the modified MDP. Given that the state space S is infinite, this

requires the use of the ‘approximating sequences’ method developed in Sennott (1999). Let Ψ

denote the modified MDP with state space S̃ defined in (A.1) and let (Ψ0,Ψ1,Ψ2, ...) denote

a sequence of MDPs that are defined on finite spaces, so that the MDP Ψm (for m ∈ N0) has

state space S̃m given by

S̃m := {(v, w, (x1, ..., xd)) | v ∈ V, w ∈ D, 0 ≤ xi ≤ m for i ∈ D} .

Thus, in the MDP Ψm, we do not allow the number of jobs at any node i ∈ D to be greater

than m. We do this by modifying the transition probabilities so that if x is a state with xi = m

for some i ∈ D, then the arrival of a new job at node i is impossible and instead the ‘self-

transition’ probability px,x(a) is increased by λi. Let θ
∗
m be an optimal policy for the MDP Ψm.

We can show that the sequence (θ∗0, θ
∗
1, ...) converges to an optimal policy for the infinite-state

MDP Ψ, but this requires certain conditions to be verified. Specifically, we must show that

the assumptions (AC1)-(AC4) described on p. 169 of Sennott (1999) hold for the sequence

(Ψ0,Ψ1,Ψ2, ...). (See also Sennott (1997), pp. 117-118 for an equivalent set of assumptions.)

Assumption (AC1) in Sennott (1999) states that, for the finite-state MDP Ψm, there exists

Tian and Shone: Stochastic dynamic job scheduling with interruptible setup and processing times 3

a constant gm and a function hm : S̃m → R satisfying

gm + hm(x) = f(x) + min
a∈Ax

∑
y∈S̃

px,y(a)hm(y)

 ∀x ∈ S̃m. (A.2)

We can easily show that, given any two states x,y ∈ S̃m, there exists a stationary policy θ

such that y is accessible from x in the Markov chain induced by θ. This can be achieved

by considering arbitrary states x,y ∈ S̃m and identifying a sequence of random transitions

that would cause the system to transition from x to y under policy θ (which can be specified

differently for each pair of states (x,y)). It then follows from Puterman (1994) (p. 478) that

Ψm belongs to the ‘communicating’ class of multichain MDP models, and the constant gm in

(A.2) is the optimal long-run average cost for Ψm. Moreover, the values hm(x) for states x ∈ S̃m

can be computed using the well-known method of value iteration, in which we define v
(k)
m (x) as

the optimal (minimal) total cost in a finite-horizon problem with k stages initialized in state x

and then compute hm(x) = limk→∞(v
(k)
m (x)− v

(k)
m (z)), with the reference state z ∈ S̃m chosen

arbitrarily.

In order to verify assumptions (AC2)-(AC4) we will need to use several properties of the

functions v
(k)
m (x). Let xi+ denote a state identical to x except that one extra job is present at

demand point i ∈ D. The required properties are:

1. v(k)m (x) ≤ v(k+1)
m (x) ∀ m, k ∈ N0, x ∈ S̃m. (A.3)

2. v(k)m (x) ≤ v(k)m (xi+) ∀ m, k ∈ N0, i ∈ D, x ∈ S̃m such that xi < m. (A.4)

3. v(k)m (x) ≤ v
(k)
m+1(x) ∀ m, k ∈ N0, x ∈ S̃m. (A.5)

4. Fix m ∈ N0 and let x = (v, w, (x1, ..., xd)) and x′ = (v′, w′, (x′1, ..., x
′
d)) be two states in S̃m

with v = v′ and xi = x′i for i = 1, ..., d, but w ̸= w′. Then v(k)m (x) = v(k)m (x′) for k ∈ N0.

(A.6)

All of the properties above are logical and can be proved using induction on k. We have omitted

details of the induction arguments in order to avoid making this proof excessively long, but they

are quite straightforward and only require some care in considering the different possible actions

that might be chosen by the relevant finite-horizon optimal policies. Property (A.3) states that

the optimal expected total cost is increasing with the number of stages remaining, k. Property

(A.4) states that this cost is increasing with the number of jobs initially present at any demand

point. Property (A.5) states that this cost is increasing with the maximum number of jobs, m,

allowed to be present at any demand point. Finally, property (A.6) states that the variable w

has no effect on the optimal expected total cost, which makes sense as it does not impose any

constraints on the actions that may be chosen in the k remaining stages.

We proceed to verify (AC2)-(AC4). Assumption (AC2) states that lim supm→∞ hm(x) <∞
for each x ∈ S̃. Consider the polling-type policy θ[P] described earlier. It is clear that the

Markov chain induced by θ[P] has a unichain structure on the state space S̃, since the state

z = (1, 1, (0, 0, ..., 0)) is accessible from any other state under this policy (this can be seen from

the fact that, in between consecutive visits to demand point 1, it is always possible for no new

Tian and Shone: Stochastic dynamic job scheduling with interruptible setup and processing times 4

jobs to arrive at any demand points). Let Jθ[P](x, z) denote the expected total cost incurred

until the system enters state z, given that it is initialized in state x and follows policy θ[P].

Since z is positive recurrent, it follows from standard theory (see Sennott (1999), pp. 298-302)

that Jθ[P](x, z) <∞ for all x ∈ S̃. Next, for m ∈ N0, let Jm,θ[P](x, z) be defined in an analogous

way to Jθ[P](x, z) except that we consider applying the policy θ[P] to the finite-state MDP Ψm

instead of the infinite-state MDP Ψ. It can easily be shown that Jm,θ[P](x, z) < Jθ[P](x, z)

for all m ∈ N, since the amount of time that the server spends at any demand node (and,

hence, the cost incurred) is stochastically smaller under Ψm than under Ψ. We now follow

similar arguments to those in the proof of Proposition 8.2.1, p. 171 in Sennott (1999). By

using property (A.3) and the fact that v
(k)
m (x) is defined as the expected k-stage cost under an

optimal policy, we have

v(k)m (x) ≤ v(p)m (x) ≤ v
(p)
m,θ(x) ∀x ∈ S̃, m ∈ N0, p ≥ k, (A.7)

where v
(k)
m,θ is the expected k-stage cost under an arbitrary policy θ. Let θ be defined to mimic

policy θ[P] until the system reaches state z and then follow an optimal finite-horizon policy for

k steps. Then, from (A.7) it follows that v
(k)
m (x) ≤ Jm,θ[P](x, z) + v

(k)
m (z). Hence, using the

previous arguments, we have

v(k)m (x)− v(k)m (z) ≤ Jm,θ[P](x, z) ≤ Jθ[P](x, z) ∀m ∈ N0, x ∈ S̃.

Since hm(x) = limk→∞(v
(k)
m (x) − v

(k)
m (z)), this establishes that the sequence {hm(x)}m∈N is

bounded above and hence lim supm→∞ hm(x) <∞ as required.

Assumption (AC3) states that there exists a constantQ ≥ 0 such that−Q ≤ lim infm→∞ hm(x)

for all x ∈ S̃. By using property (A.4) and taking limits as k → ∞, we obtain

hm(x) ≤ hm(xi+) ∀i ∈ D, x ∈ S̃m such that xi < m. (A.8)

This shows that the function hm attains a minimum on the subset of states with no jobs present,

which we denote as U . That is,

arg min
x∈S̃m

hm(x) ∈ {(v, w, (x1, ..., xd)) | v ∈ V, w ∈ D, xi = 0 for all i ∈ D} =: U.

Let u∗ be a state that attains the minimum above. We will assume that u∗ is positive recurrent

under θ[P]. However, this requires some justification. Recall that the server visits the demand

points according to the sequence (1, 2, ..., d, 1, 2, ..., d, 1, 2, ...) under policy θ[P]. Therefore, at

any given time, the server’s current node v must lie somewhere on the path between demand

points w and w + 1 (if w ≤ d− 1) or d and 1 (if w = d). Using property (A.6), we can assume

that the variables v and w associated with state u∗ do indeed satisfy these constraints, as it is

always possible to change the value of w without making any difference to the optimal finite-

stage expected cost. Also, if u∗ is a state with v /∈ D (i.e. the server is at an intermediate

stage rather than a demand point), it is reasonable to assume that node v is visited during the

server’s cyclic route under policy θ[P], since if this is not the case, we can always modify the

policy θ[P] slightly so that node v is visited at some point during the server’s route.

Tian and Shone: Stochastic dynamic job scheduling with interruptible setup and processing times 5

Using similar arguments to those given for (AC2), we then have that u∗ is positive recurrent

under θ[P] and Jm,θ[P](x,u∗) ≤ Jθ[P](x,u∗) < ∞ for any x ∈ S̃m. In particular let us consider

the state z = (1, 1, (0, 0, ..., 0)). Repeating previous arguments, we have v
(k)
m (z) ≤ Jθ[P](z,u∗) +

v
(k)
m (u∗). Taking limits as k → ∞, we obtain hm(u) ≥ hm(u∗) ≥ −Jθ[P](z,u∗) for all u ∈
U . This establishes the required lower bound for states in U , and it follows from (A.8) that

the same lower bound also works for all x ∈ S̃m. Since this argument can be repeated for

each m ∈ N (establishing a uniform lower bound independent of m), we have −Jθ[P](z,u∗) ≤
lim infm→∞ hm(x) for all x ∈ S̃ as required.

Assumption (AC4) states that lim supm→∞ gm =: g∗ < ∞ and g∗ ≤ g(x) for x ∈ S̃, where

gm is the constant that appears in (A.2) and the notation g(x) allows for a possible dependence

of the long-run average cost on the initial state x. By Proposition 8.2.1, Step 3(i) in Sennott

(1999), it is sufficient to show that

v(k)m (x) ≤ lim
p→∞

v(k)p (x) ∀ m, k ∈ N0, x ∈ S̃m, (A.9)

which follows immediately from property (A.5).

Having verified that assumptions (AC1)-(AC4) hold for the modified MDP Ψ, we can use

the results in Sennott (1999) to conclude that any limit point of a sequence of stationary

optimal policies for the finite-state MDPs (Ψ0,Ψ1,Ψ2, ...) is optimal for Ψ (Theorem 8.1.1) and

furthermore a limit point is guaranteed to exist (Proposition B.5). By the previous arguments,

we can compute an optimal policy for any finite-state MDP Ψm using value iteration. During

the process of value iteration, the functions v
(k)
m (x) for x ∈ S̃m are computed using the rule

v(k+1)
m (x) = f(x) + min

a∈Ax

 ∑
y∈S̃m

px,y(a)v
(k)
m (y)

 , k ∈ N0.

Property (A.6) implies that if x and x′ are two states in S̃m that differ from each other only

in the variable w, then any action a ∈ Ax that attains the minimum in the equation above for

state x is also a feasible action that attains the minimum in the corresponding equation for

state x′. Essentially, this means that it is possible to find an optimal stationary policy for Ψm

that chooses actions independently of the variable w. By the previous arguments, the same

property also applies to an optimal stationary policy for the infinite-state MDP Ψ (obtained as

a limit of the optimal finite-state policies). However, if we have an optimal stationary policy

that chooses actions independently of w, then the same policy must also be admissible for the

MDP formulated in Section 2 with state space S. From (AC4) we also know that the long-run

average cost under such a policy is finite, implying stability. This completes the proof. □

B DVO Heuristic

In this appendix we describe the steps of the DVO heuristic as presented in Duenyas and

Van Oyen (1996). Note that, where appropriate, we adapt the authors’ notation so that it is

consistent with the notation used in our paper.

Tian and Shone: Stochastic dynamic job scheduling with interruptible setup and processing times 6

1. If the server has just finished processing a job at some demand point i ∈ D then there are

two possible cases: either (a) there are still some jobs remaining at i (xi > 0) or (b) there

are no jobs remaining at i (xi = 0).

(a) In the first case, the server can either continue processing jobs at i or switch to some

other demand point j ̸= i. We carry out the following steps:

i. Initialize an empty set σ = ∅.
ii. For each demand point j with cjµj ≥ ciµi, calculate the reward rate ψj that

would be earned by switching to node j, serving it exhaustively, then switching

back to node i, using

ψj = cjµj
xj + λjδ(i, j)/τ

xj + µjδ(i, j)/τ + (µj − λj)δ(j, i)/τ
.

If ψj ≥ cjµjρ+ ciµi(1− ρ), then add j to the set σ.

iii. If σ is non-empty, then switch to the demand point j with the highest index ψj

(with ties broken arbitrarily). Otherwise, process one more job at node i.

(b) In the second case, the server can either remain idle at i or switch to some other

demand point j ̸= i. We carry out the following steps:

i. Initialize three empty sets: σ1 = ∅, σ2 = ∅ and σ = ∅.
ii. For each demand point j ̸= i, calculate the reward rate ϕj in a similar way to

part (a) but without including the time taken to switch back from j to i, using

ϕj = cjµj
xj + λjδ(i, j)/τ

xj + µjδ(i, j)/τ
.

If ϕj > cjµjρ, then add j to σ1; otherwise, add j to σ2.

iii. If σ1 is non-empty, let σ = σ1. Otherwise, let σ = σ2.

iv. Let j∗ denote the demand point in σ with the highest reward rate ϕj∗ , with ties

broken arbitrarily. If xj∗ > λj∗δ(j
∗, i)/τ , then switch to j∗. Otherwise, remain

idle at i.

2. If the server has just arrived at a demand point then it immediately begins processing

jobs there if there is at least one job waiting. This ensures that, after switching to a new

demand point, it must process at least one job there before switching somewhere else. If

there are no jobs waiting, then the rule for idling described in step 1(b) is used.

3. If the server is idle at a demand point and a new job arrives in the system, then the rule

for idling described in step 1(b) is used.

As mentioned in Section 3, there is no need to specify the rule used by the DVO heuristic

when the server is at an intermediate stage i ∈ N , since the server is required to continue moving

towards a particular demand point (chosen at the previous decision epoch) in this case. Simi-

larly, if the server is at a non-empty demand point i ∈ D and has not just finished processing a

Tian and Shone: Stochastic dynamic job scheduling with interruptible setup and processing times 7

job, then this indicates that a service is in progress and the server is required to remain at node i.

C Proof of Theorem 3.3.

Proof. Let x = (v, (x1, ..., xd)) be the current state of the system, where v ∈ N . We will use

Tarr to denote the random amount of time until the next job arrives in the system, and Tswitch

to denote the amount of time until the server reaches a demand point. According to the rules

of the K-stop heuristic, a sequence s can only be added to the set σ if it satisfies the condition
∂
∂tψ(x, s, t)

∣∣
t=0

≤ 0. We begin by showing that there always exists at least one sequence that

satisfies this condition, and therefore σ2 (and, hence, σ) must be non-empty. Indeed, the set S
is defined to include all sequences of length m, for each 1 ≤ m ≤ K. Therefore it includes the

sequences of length one, (j), for each j ∈ D. Let s = (j), where j ∈ D is arbitrary. Then, using

(11), we have

ψ(x, (j), t) = cjµj

{
T1(x, (j), t)

t+ δ(v, j)/τ + T1(x, (j), t)

}

= cjµj

{
[xj + λj(t+ δ(v, j)/τ)]/(µj − λj)

t+ δ(v, j)/τ + [xj + λj(t+ δ(v, j)/τ)]/(µj − λj)

}

= cjµj

{
xj + λj(t+ δ(v, j)/τ)

xj + µj(t+ δ(v, j)/τ)

}
.

After differentiating, we obtain

∂

∂t
ψ(x, (j), t) = −cjµj

{
xj(µj − λj)

[xj + µj(t+ δ(v, j)/τ)]2

}
, (C.1)

which equals zero if xj = 0, and is negative otherwise. Hence, the sequence s = (j) satisfies

the condition ∂
∂tψ(x, s, t)

∣∣
t=0

≤ 0. We can therefore be sure that σ2 is non-empty, but in order

to proceed we must consider two possible subcases: either (a) the set σ1 is non-empty and we

choose the sequence in σ1 with the highest value of ψ(x, s, 0), or (b) the set σ1 is empty, but

σ2 is non-empty and we choose the sequence in σ2 with the highest value of ψ(x, s, 0). In the

remainder of this proof we consider these two subcases separately.

Subcase (a): σ1 is non-empty

For convenience, we will use ξ(x, s, t) to denote the proportion of time spent processing jobs

(as opposed to switching between nodes or idling) while following sequence s. That is:

ξ(x, s, t) :=

∑|s|
j=1 Tj(x, s, t)

t+
∑|s|

j=1 [δ(sj−1, sj)/τ + Tj(x, s, t)]
, t ≥ 0. (C.2)

Given that Tj(x, s, t) ≡ Rj(x, s, t)/(csjµsj) for each j = 1, ..., |s|, we can use identical arguments

to those in the proof of Lemma 3.2 to show that ξ(x, s, t) is a monotonic function of t. Observe

Tian and Shone: Stochastic dynamic job scheduling with interruptible setup and processing times 8

that the condition ψ(x, s, 0) ≥ γ(x, s, 0) is equivalent to

ξ(x, s, 0) ≥ ρ. (C.3)

Let s∗ denote the sequence in σ1 that maximizes ψ(x, s, 0). In this case, according to the rules

of the heuristic, the server attempts to take one step along a shortest path to demand point s∗1,

where s∗1 is the first element of s∗. Let (i0, i1, ..., ik) denote a shortest path from v to s∗1, where

k := δ(v, s∗1), i0 := v and ik := s∗1. Also let xj denote a state identical to x except that the

server is located at node ij , for j = 1, 2, ..., k. It is useful to note that

ξ(xj , s
∗, 0) = ξ(xk, s

∗, (k − j)/τ) ∀j ∈ {1, 2, ..., k − 1}. (C.4)

This is because ξ(xj , s
∗, 0) represents the proportion of time spent processing jobs given that

the server begins at node ij and immediately begins traveling along a path of length (k − j)

in order to reach node s∗1, while ξ(xk, s
∗, (k − j)/τ) is the corresponding proportion given that

the server begins at node ik = s∗1 but waits for (k− j)/τ time units before beginning to process

jobs there. In terms of the proportion of time spent processing jobs while following sequence

s∗, these two quantities are the same. In the case |s∗| = 1 (that is, s∗ = (j) for some j ∈ D) we

infer from (C.1) that
∂

∂t
ξ(x, (j), t) =

1

cjµj

∂

∂t
ψ(x, (j), t) ≤ 0, (C.5)

and hence, using (C.4), we can be assured that the condition ξ(x, s∗, 0) ≥ ρ (equivalent to

ψ(x, s∗, 0) ≥ γ(x, s∗, 0)) remains satisfied as the server moves towards s∗1. Therefore, according

to the rules of the heuristic, s∗ remains included in σ1 at all stages while the server moves from

v to s∗1. On the other hand, consider the case |s∗| ≥ 2. In this case the rules of the heuristic

imply that the extra condition ξ(y, s∗, 0) ≥ ρ must be satisfied, where y is equivalent to xk in

the notation of this proof. By the same reasoning used to derive (C.4), we have

ξ(x, s∗, 0) = ξ(xk, s
∗, k/τ). (C.6)

Since ξ(xk, s
∗, t) is a monotonic function of t, we can infer from (C.4) and (C.6) that

min {ξ(x, s∗, 0), ξ(xk, s
∗, 0)} ≤ ξ(xj , s

∗, 0) ≤ max {ξ(x, s∗, 0), ξ(xk, s
∗, 0)} ∀j ∈ {1, 2, ..., k}.

(C.7)

Given that s∗ ∈ σ1, the rules of the heuristic imply that ξ(x, s∗, 0) ≥ ρ and ξ(xk, s
∗, 0) ≥ ρ, so

from (C.7) it follows that ξ(xj , s
∗, 0) ≥ ρ for each j = 1, 2, ..., k. Also, given that s∗ ∈ σ1, the

heuristic rules imply ∂
∂tψ(x, s

∗, t)
∣∣
t=0

≤ 0. Applying the same reasoning to the function ψ that

we used for ξ, we have

ψ(xj , s
∗, 0) = ψ(xk, s

∗, (k − j)/τ) ∀j ∈ {1, 2, ..., k}, (C.8)

ψ(x, s∗, 0) = ψ(xk, s
∗, k/τ). (C.9)

From the proof of Lemma 3.2 we know that ∂
∂tψ(x, s

∗, t) has the same sign for all t ≥ 0.

Hence, from (C.9) it follows that ∂
∂tψ(xk, s

∗, t)
∣∣
t=0

≤ 0 and then from (C.8) it follows that

Tian and Shone: Stochastic dynamic job scheduling with interruptible setup and processing times 9

∂
∂tψ(xj , s

∗, t)
∣∣
t=0

≤ 0 for each j = 1, 2, ..., k. By collating the arguments given thus far, we can

say that as the server travels from v to s∗1 along the shortest path (i0, i1, ..., ik), the sequence s∗

always satisfies the necessary conditions to be included in σ1.

Now suppose that the server arrives at node i1 before time Tarr. If i1 = s∗1 (i.e. the

shortest path from v to s∗1 is of length 1), then there is nothing further to prove, as the server

has completed its journey to demand point s∗1 via the shortest possible path. On the other

hand, if i1 ̸= s∗1 (i.e. the shortest path from v to s∗1 has length greater than 1), then we must

continue. Given that ∂
∂tψ(x, s

∗, t)
∣∣
t=0

≤ 0 and using Lemma 3.2 again, it must be the case that

ψ(x, s∗, 0) ≤ ψ(x1, s
∗, 0); in other words, the average reward does not decrease after the server

takes a step along the shortest path to s∗1. By the previous arguments, s∗ is still included in σ1

when the server is located at i1. However, we cannot be sure that s∗ is chosen by the heuristic

at state x1.

If s∗ is chosen by the heuristic at x1, then the server continues attempting to move along

the shortest path to node s∗1. On the other hand, suppose the heuristic chooses an alternative

sequence s̃ ∈ σ1 at x1, and let s̃1 be the first demand point in sequence s̃. If s̃1 = s∗1, then (once

again) we have no difficulties, as the server continues attempting to move along the shortest

path to s∗1. In the rest of this subcase we assume a non-trivial case where s̃1 ̸= s∗1.

We can show that although s̃1 ̸= s∗1, the server’s movement from node v to i1 still qualifies

as a step along a shortest path from v to s̃1. In other words, even if the server now prefers

to move towards a different demand point, the step from v to i1 was still a step in the right

direction. To see this, first note that

ψ(x, s̃, 0) ≤ ψ(x, s∗, 0) ≤ ψ(x1, s
∗, 0) ≤ ψ(x1, s̃, 0), (C.10)

where the first inequality is due to the fact that s∗ is preferred to s̃ at state x, the second

inequality is due to the fact that ∂
∂tψ(x, s

∗, t)
∣∣
t=0

≤ 0 (as stated earlier) and the third inequality

is due to the fact that s̃ is preferred to s∗ under the new state x1. The rules of the heuristic state

that if the average rewards for two sequences are equal, then a sequence is chosen according

to a fixed priority ordering of the demand points in D. Therefore either the first inequality or

the third inequality in (C.10) must be strict, as if they both hold with equality then the same

sequence (either s∗ or s̃) must be chosen at both x and x1. We conclude that

ψ(x, s̃, 0) < ψ(x1, s̃, 0), (C.11)

implying that the average reward for sequence s̃ has increased after moving from v to i1. Let

x̃ denote a state identical to x except that the server is located at node s̃1 instead of v. By

definition, we have

ψ(x, s̃, 0) = ψ(x̃, s̃, δ(v, s̃1)/τ), (C.12)

ψ(x1, s̃, 0) = ψ(x̃, s̃, δ(i1, s̃1)/τ). (C.13)

Suppose (for a contradiction) that δ(i1, s̃1) ≥ δ(v, s̃1). If these two distances are equal then

from (C.12)-(C.13) we have ψ(x, s̃, 0) = ψ(x1, s̃, 0), giving a contradiction with (C.11). On the

Tian and Shone: Stochastic dynamic job scheduling with interruptible setup and processing times 10

other hand, if the inequality is strict (that is, δ(i1, s̃1) > δ(v, s̃1)) then using Lemma 3.2 we

infer that ∂
∂tψ(x1, s̃, t)

∣∣
t=0

> 0. Hence, according to the rules of the heuristic, the sequence s̃

could not have been chosen under state x1. We conclude that δ(i1, s̃1) < δ(v, s̃1) and therefore

the server’s step from v to i1 represents a step along a shortest path from v to s̃1.

Subcase (b): σ1 is empty

From the arguments at the beginning of the proof we know that even if σ1 is empty, σ2

must be non-empty. As in case (a), let s∗ denote the sequence chosen by the heuristic under

state x, and let (i0, i1, ..., ik) denote a shortest path from v to s∗1, where k = δ(v, s∗1), i0 = v

and ik = s∗1. Also let xj denote a state identical to x except that the server is located at node

ij , for j = 1, 2, ..., k. After the server moves from node v to i1, there are two possible scenarios:

either σ1 remains empty, or it becomes non-empty. In the first scenario, we can simply repeat

the relevant arguments used in subcase (a) to show that, even if the heuristic chooses some

alternative sequence s̃ ∈ σ2 under state x1, it must be the case that δ(i1, s̃1) < δ(v, s̃1), and

therefore the server’s movement from v to i1 qualifies as a step along a shortest path from v

to s̃1. This is due to the fact that ∂
∂tψ(x1, s̃, t)

∣∣
t=0

must be non-positive in order for s̃ to be

chosen. In the rest of this part we consider the second scenario, where σ1 becomes non-empty.

Suppose s̃ ∈ σ1 and the heuristic chooses sequence s̃ under state x1. It may be the case that

s̃1 = s∗1, in which case the server simply keeps following the same path. However, if s̃1 ̸= s∗1, we

can again show that δ(i1, s̃1) < δ(v, s̃1). To see this, let x̃ denote the state identical to x except

that the server is located at node s̃1. Due to the rules of the heuristic, we must have

ξ(x1, s̃, 0) ≥ ρ (C.14)

and additionally, if |s̃| ≥ 2, then

ξ(x̃, s̃, 0) ≥ ρ. (C.15)

Note that ξ(x1, s̃, 0) = ξ(x̃, s̃, δ(i1, s̃1)/τ). Suppose (for a contradiction) that δ(i1, s̃1) ≥ δ(v, s̃1).

Given that sequence s̃ was not included in σ1 when the server was at state x, at least one of the

conditions ∂
∂tψ(x, s̃, t)

∣∣
t=0

≤ 0, ξ(x, s̃, 0) ≥ ρ and ξ(x̃, s̃, 0) ≥ ρ (where the latter only applies if

|s̃| ≥ 2) must fail to hold. However, given that s̃ is chosen at x1 and ψ(x1, s̃, 0) ≡ ψ(x, s̃, 1/τ), it

must be the case (using Lemma 3.2) that ∂
∂tψ(x1, s̃, t)

∣∣
t=0

has the same sign as ∂
∂tψ(x, s̃, t)

∣∣
t=0

,

so the derivative condition holds. We also have ξ(x̃, s̃, 0) ≥ ρ when |s̃| ≥ 2 from (C.15), so we

can proceed to assume that ξ(x, s̃, 0) < ρ, which is equivalent to ξ(x̃, s̃, δ(v, s̃1)/τ) < ρ. Hence,

we have

ξ(x̃, s̃, δ(v, s̃1)/τ) < ρ ≤ ξ(x̃, s̃, δ(i1, s̃1)/τ) (C.16)

but also (by assumption)

0 < δ(v, s̃1) ≤ δ(i1, s̃1), (C.17)

implying that ξ(x̃, s̃, t) is increasing with t. If |s̃| = 1 then this gives a contradiction, since it

was shown in (C.5) that ξ(·) is non-increasing with t for sequences of length one. On the other

hand, if |s̃| ≥ 2, we modify the right-hand side of (C.16) and combine (C.14)-(C.15) to give

ξ(x̃, s̃, δ(v, s̃1)/τ) < ρ ≤ min{ξ(x̃, s̃, 0), ξ(x̃, s̃, δ(i1, s̃1)/τ)},

Tian and Shone: Stochastic dynamic job scheduling with interruptible setup and processing times 11

which, along with (C.17), contradicts the fact that ξ(x̃, s̃, t) is a monotonic function of t. We

conclude that δ(i1, s̃1) < δ(v, s̃1) as required.

We can repeat the arguments given in subcases (a) and (b) to show that any movement of

the server from one intermediate stage to another (prior to min{Tarr, Tswitch}) qualifies as a

step along a shortest path from v to some particular demand point j∗. The key point is that

even though the sequences chosen at the various intermediate stages may not always begin with

node j∗, the distance from the currently-occupied node to j∗ is always reduced after each step,

so the complete path is indeed a shortest path from v to j∗. Given that the number of nodes

in the network is finite, the demand point j∗ must eventually be reached if no new jobs arrive

in the meantime. This completes the proof. □

D Proof of Corollary 3.4.

Proof. We assume that the server is initially located at some intermediate stage v ∈ N and

use M = max{i∈N, j∈D} δ(i, j) to denote the maximum distance between an intermediate stage

and a demand point. Let α denote the number of new jobs that arrive in the system before the

server reaches a demand point, given that the K-stop heuristic is followed. By conditioning on

α, we have

E[Tswitch] =
∞∑
k=0

E[Tswitch | α = k] P(α = k). (D.1)

Due to Theorem 3.3 we know that if the server is at an intermediate stage, then until the next

new job arrives it attempts to move along a shortest path to some particular demand point

j∗. Since (prior to Tswitch) the server is always attempting to move, the expected amount of

time until the next event (either a switch or the arrival of a new job in the system) is always

(Λ + τ)−1, where Λ =
∑

i∈D λi. In the worst case, the number of nodes that must be traversed

in order to reach j∗ is M . Hence, we can form an upper bound for E[Tswitch | α = 0]:

E[Tswitch | α = 0] ≤ M

Λ + τ
.

Extending this argument, we can obtain an upper bound for E[Tswitch | α = k] (for k ≥ 1) by

supposing that every time a new job arrives in the system, the server changes direction and

attempts to move to a demand point M nodes away, and manages to complete (M −1) of these

switches before a new job arrives in the system and forces it to change direction again. Suppose

this pattern continues until k arrivals have occurred, at which point it manages to complete M

switches without interruption and reaches a demand point. In this scenario, the total number

of switches made is k(M − 1) +M and the total number of new jobs arriving is k, so the total

number of system events is (k + 1)M . Hence:

E[Tswitch | α = k] ≤ (k + 1)M

Λ + τ
, k ≥ 0.

Tian and Shone: Stochastic dynamic job scheduling with interruptible setup and processing times 12

Next, consider the probabilities P(α = k). Each time a system event occurs (prior to Tswitch),

there is a probability of τ/(Λ+ τ) that this is a switch rather than the arrival of a new job. We

can obtain an upper bound for P(α = 0) by supposing that the server only needs to complete

one switch in order to reach its intended demand point. Hence:

P(α = 0) ≤ τ

Λ + τ
.

On the other hand, the largest possible probability of an arrival occurring before the server

reaches a demand point is 1 − (τ/(Λ + τ))M , since this represents the case where the server

must completeM switches in order to reach its intended demand point. Putting these arguments

together, we have the following upper bound:

P(α = k) ≤

[
1−

(
τ

Λ + τ

)M
]k (

τ

Λ + τ

)
, k ≥ 0.

Let p := 1− (τ/(Λ + τ))M for notational convenience. Then, using (D.1), we have

E[Tswitch] ≤
∞∑
k=0

(k + 1)M

Λ + τ
pk

(
τ

Λ + τ

)

=
τM

(Λ + τ)2

∞∑
k=0

(k + 1)pk

=
τM

(Λ + τ)2
· 1

(1− p)2

=
τM

(Λ + τ)2

(
Λ + τ

τ

)2M

=
M

τ

(
Λ + τ

τ

)2(M−1)

. (D.2)

This completes the proof. We also note that the bound holds with equality if and only ifM = 1.

□

E Proof of Theorem 3.5.

Proof. We will use λ, µ and c to denote the common arrival rate, service rate and holding cost

(respectively) for all job types. Firstly, let x be a state under which the server is located at a

demand point i ∈ D with xi ≥ 1. Recall from step 1(a) of the K-stop heuristic algorithm that

S is the set of sequences of the form s = (s1, s2, ..., sm), where 1 ≤ m ≤ K, sj ∈ D for each

j ∈ {1, 2, ...,m}, s1 ̸= v and si ̸= sj for any pair of elements si, sj ∈ s with i ̸= j. For any

Tian and Shone: Stochastic dynamic job scheduling with interruptible setup and processing times 13

sequence s ∈ S, t ≥ 0 and j =∈ {1, ..., |s|} it is clear from (12) that

ϕj(x, s, t) <

∑j
k=1Rk(x, s, t)∑j
k=1 Tk(x, s, t)

=
cµ

∑j
k=1 Tk(x, s, t)∑j

k=1 Tk(x, s, t)
= cµ.

On the other hand, the quantity βj(x, s, t) in (13) is equal to cµ. Therefore the condition

ϕj(x, s, t) ≥ β(x, s, t) is not satisfied for any s ∈ S, and according to the rules of the heuristic

the server should remain at node i. The intuitive explanation for this is that the server earns

rewards at the maximum possible rate cµ by remaining at its current node, so there is no reason

to switch to another node. It follows that, under the K-stop policy, the server always remains

at a demand point until all jobs have been processed.

We can also show that the server visits all demand points infinitely often under the K-stop

policy. Indeed, suppose (for a contradiction) that there exists some non-empty subset D0 ⊂ D

such that demand points in D0 are visited only finitely many times. We also define D1 := D\D0

as the subset of demand points that are visited infinitely often. The subset D1 must be non-

empty because, as noted in the proof of Theorem 3.3, sequences s of length one always satisfy

the condition ∂
∂tψ(x, s, t)

∣∣
t=0

≤ 0, and therefore the set σ constructed in step 2 of the heuristic

algorithm must be non-empty, which implies that if the server is at an intermediate stage then

it will move towards a demand point. Each time the server selects a demand point in i ∈ D1

to move to, there is a positive probability that no new jobs arrive at any of the other demand

points j ∈ D1 \ {i} while it switches to i and processes jobs there. Therefore the system must

eventually reach a state in which there are no jobs at any of the demand points in D1. Let x

be a state with xj = 0 for all j ∈ D1 and let S1 denote the set of all sequences in S that involve

visiting only demand points in D1. Also, define

ψmax
1 := max

s∈S1

ψ(x, s, 0).

It is clear from the definition of ψ(x, s, 0) in (11) that ψmax
1 is strictly smaller than cµ. Next,

consider an arbitrary demand point j ∈ D0 and consider the sequence of length one, s = (j).

We have assumed that demand point j is visited only finitely many times and therefore, in the

long run, xj tends to infinity. From (11) it follows that the index ψ(x, (j), 0) tends towards

R1(x, (j), 0)/T1(x, (j), 0) = cµ. Hence, at some point ψ(x, (j), 0) must exceed ψmax
1 . Similar

reasoning can be used to show that any sequence s that begins by visiting a demand point in

D1 must eventually become inferior (in terms of index value) to the sequence (j), where j ∈ D0.

The rules of the heuristic then imply that the server selects a sequence which begins by visiting

one of the demand points in D0, which yields a contradiction. We conclude that all demand

points must be visited infinitely often under the K-stop policy. Standard arguments based on

stability in polling systems (see the comments following the statement of Theorem 2.2) then

imply that the system is stable, which proves the first statement in the theorem.

Next, we make the additional assumption that V is a complete graph, which implies that

the server can move between any two demand points i, j ∈ D by traversing a single edge of

the network, without having to pass through any intermediate stages. We will show that, with

this extra assumption (in addition to the homogeneity assumptions made already), the K-stop

Tian and Shone: Stochastic dynamic job scheduling with interruptible setup and processing times 14

policy causes the server to act in the following way:

(i) If the server is at a non-empty demand point i ∈ D, then it remains there.

(ii) If the server is at an empty demand point i ∈ D, then it switches to the demand point

j ̸= i with the largest number of jobs present. (If there is a tie, an arbitrary choice of j

can be made.)

Note that the rules (i)-(ii) are sufficient to completely specify the actions chosen by the K-

stop policy, since it cannot ever visit an intermediate stage. Property (i) was already established

in the first part of the proof (the additional assumption that V is a complete graph does not

alter the argument given previously). To establish property (ii), we again recall the previous

argument and note that the set σ constructed in step 2 of the heuristic algorithm is non-empty,

because it includes sequences of length one. It follows that, given some state x under which

the server is at an empty demand point, it selects the sequence s that maximizes ψ(x, s, 0). In

general, the sequence selected by the K-stop policy could be of any length between 1 and K.

However, we can show that if a sequence of length greater than one is selected, then the demand

points in the sequence must be visited in descending order of xi; that is, the server prioritizes

the demand point with the greatest number of jobs. To see this, note that for a sequence s of

length m (where 1 ≤ m ≤ K), the index ψ(x, s, 0) can be expressed as

ψ(x, s, 0) =
cu

∑m
k=1 Tk(x, s, 0)

m/τ +
∑m

k=1 Tk(x, s, 0)
, (E.1)

where the index k corresponds to the position of demand point sk in the sequence, so T1(x, s, 0)

is the amount of time spent at the first demand point in the sequence (under the fluid model),

etc. Suppose we have a sequence in which the demand points are not ordered in descending

order of xi. This implies that there must be some k ∈ {1, ...,m− 1} such that xsk < xsk+1
. We

will show that the index in (E.1) would increase if we swapped the positions of demand points sk

and sk+1 in the sequence. Indeed, let y = xsk+1
−xsk > 0. After performing the swap, Tk(x, s, 0)

increases by y/(µ−λ) since, under the fluid model, the amount of time taken to process a single

job is 1/(µ−λ). On the other hand, Tk+1(x, s, 0) increases by λy/((µ−λ)2)− y/(µ−λ), where
the first term λy/((µ−λ)2) is due to the extra arrivals that occur during the extra y/(µ−λ) time

units spent at node sk and the second term −y/(µ−λ) is due to the fact that there are y fewer

jobs at sk+1 after performing the swap. Hence, the overall increase in Tk(x, s, 0)+Tk+1(x, s, 0) is

λy/((µ−λ)2), which is non-negative. Furthermore, Tl(x, s, 0) increases for all l ≥ k+2 following

the swap, due to the fact that Tk(x, s, 0) + Tk+1(x, s, 0) increases and therefore extra arrivals

occur at these nodes before the server arrives. The result is that the sum
∑m

k=1 Tk(x, s, 0)

increases following the swap, and therefore the index in (E.1) also increases. By extending this

argument, we can claim that if s is a sequence in which the demand points are not visited in

descending order of xi, then it is beneficial to perform a sequence of swaps until they are in

descending order. It follows that the sequence that maximizes (E.1) must be a sequence in

which the first node visited has the greatest number of jobs.

Having established that properties (i) and (ii) hold under the K-stop policy, the next task is

to show that these properties also hold under an optimal policy, and thus the K-stop policy is

Tian and Shone: Stochastic dynamic job scheduling with interruptible setup and processing times 15

optimal. We can show this using a sample path argument. To establish (i), suppose the system

is in state x with v(x) = i ∈ D, xi ≥ 1. Consider two continuous-time processes, referred to as

P1 and P2 for convenience, both initialized in state x. In the continuous-time setting, an action

a(t) ∈ D must be specified by the server for each time point t ∈ R≥0. In P1 we suppose that the

server follows a policy whereby the action at t = 0 is to switch to demand point j ̸= i. In P2,

on the other hand, the server remains at node i until a service completion occurs there, then

copies the same sequence of actions that P1 chose starting from t = 0, except that it does not

choose i again (skipping these actions as necessary) until P1 has completed its first service at

i. Using standard stochastic coupling arguments, we assume that new job arrivals occur at the

same times under both processes, and furthermore the times required for service completions

and switch completions are the same under both processes, although (due to the difference in

server behaviors) a particular service or switch that begins at time t ≥ 0 in P1 may begin at

a different time t′ ̸= t under P2. As an example, suppose the trajectory of (action, duration,

completion) pairs under P1 evolves as follows:

(jswitch, T0,✓), (jserv, T1,×), (iswitch, T2,✓), (iserv, T3,×), (kswitch, T4,✓), ..., (iserv, Tm,✓), ...

which indicates that the server begins by switching to j for T0 time units and this action is

completed (denoted by ‘✓’), then it serves a job at node j for T1 time units but this service

is not completed (denoted by ‘×’) because it interrupts the service to switch to node i, and

the switch to i takes T2 units and is successfully completed, etc. We use m to represent the

sequence position of the first completed service at i. Then the corresponding trajectory under

P2 would begin with

(iserv, Tm,✓), (jswitch, T0,✓), (jserv, T1,×), (kswitch, T4,✓), ...

Let T̂ denote the total amount of time that the server spends switching to demand point i

(whether the switches are completed or not) in P1 before it eventually completes a service there.

In P2 we assume that, after the server has finished copying the non-i actions of the server in

P1 prior to T0 + ... + Tm−1, it then chooses action i for a further T̂ time units. This ensures

that both processes are in the same state at time T0 + ... + Tm, and they continue to evolve

identically from that point onwards.

We can compare the total costs incurred by P1 and P2 under the above coupling construction.

We note that:

(a) Any service completion that occurs in P1 at time t ≥ 0, except for the first job at demand

point i, occurs with a delay of no more than Tm time units in P2. Therefore P2 incurs extra

holding costs of (at most) c×R× Tm due to the delayed processing of these jobs, where R

is the total number of jobs processed in P1 before processing the first job at node i.

(b) The first job at demand point i is processed at time Tm in P2, but is not processed until

time T0 + ...+ Tm in P1. Therefore P1 incurs an extra holding cost of c× (T0 + ...+ Tm−1)

due to the delayed processing of this job.

Tian and Shone: Stochastic dynamic job scheduling with interruptible setup and processing times 16

Note that the set {T0, ..., Tm−1} includes the times needed to process R jobs at other demand

points before the first job is processed at i under P1. Hence, given that the service times of all

jobs are independent and identically distributed, we have E[T0 + ... + Tm−1] ≥ E[R × Tm], so

the extra costs incurred in P1 are indeed higher than those in P2. Therefore, switching away

from a non-empty demand point is a suboptimal action in the context of minimizing total costs

over a long time horizon. Intuitively, the suboptimality occurs because the server is forced to

perform extra switching actions in P1.

Next, we move on to property (ii) and aim to show that if the server is at an empty demand

point then it is optimal to switch to the demand point with the largest number of jobs. It is

sufficient to show that for any state x = (i, (x1, ..., xd)) with xi < xj for some j ∈ D, the minimal

expected total cost (over a long time horizon) starting from state x is greater than it would be

if xi and xj were swapped. We will again use a sample path argument. Let P1 and P2 be two

continuous-time processes initialized at in states x = (i, (x1, ..., xd)) and x′ = (i, (x′1, ..., x
′
d))

respectively, where x′ is identical to x except that x′i = xj and x
′
j = xi, and we assume xi < xj .

The two processes are coupled in the same way as in (i), so that new job arrivals occur at

the same times under both processes and the times needed for successful service and switch

completions are also equivalent.

Suppose that in P1 the server remains at node i until y ≥ 0 jobs have been processed before

attempting to switch to a different demand point. In P2, the server begins by remaining at node

i until y + 1 services have been completed before switching to another demand point, so we

force it to process an extra job before switching. It then copies the same actions as the server

in P1, but ‘skips’ any actions j chosen in P1 (recall that P1 has at least one extra job at j) until

eventually P1 completes its first service at j. For example, if y = 1 then the trajectories under

P1 and P2 could be as follows:

P1 : (iserv, T0,✓), (jswitch, T1,×), (kswitch, T2,✓), ..., (jserv, Tm,✓), ...

P2 : (iserv, T0,✓), (iserv, Tm,✓), (kswitch, T2,✓), ...

for some m ≥ 0. The important thing in this case is to make a comparison between the first

job processed at j in P1 and the (y+1)th job processed at i in P2, and our coupling construction

assumes these jobs have the same service time (we can think of them as the same job, which

begins at j in P1 but begins at i in P2). Similarly to (i), we also let T̂ denote the total amount

of time spent by the server switching to demand point j in P1 before it completes a service there

and specify that in P2, the server should spend T̂ time units choosing action j after it finishes

copying the non-j actions of the server in P1 prior to T0 + ... + Tm−1. This ensures that both

processes are in the same state at time T0 + ...+ Tm.

The comparison between the costs incurred by the two processes then works in a similar

way to the comparison in (i). In P2, there is a certain number of jobs that have their services

delayed by (at most) Tm time units compared to P1, but the extra holding costs for these are

collectively smaller than the extra holding cost incurred by P1 as a result of processing the first

job at j later than the processing of the (y + 1)th job at i in P2.

We note that the argument given above becomes most meaningful in the case where the

server in P1 remains at the initial node i until it is empty (which it must do under an optimal

Tian and Shone: Stochastic dynamic job scheduling with interruptible setup and processing times 17

policy, according to our previous argument). In this case the server in P2 can still process an

extra job at i, but the server in P1 has to switch at least once before processing the correspond-

ing extra job at node j. We conclude that it is always beneficial for the server to be at the

demand point with the largest number of jobs present, and it follows that if the server is at an

empty demand point then it should attempt to switch to the demand point with the largest

number of jobs. We have shown that, in all cases, the actions of the K-stop policy are identical

to those selected by an optimal policy. □

F Methods for generating the parameters for the numerical ex-

periments in Section 4

For each of the 11,250 instances considered in Section 4.1, the system parameters are randomly

generated as follows:

� The size of the left-hand cluster, d1, is sampled unbiasedly from the set {1, 2, 3, 4}.

� The size of the right-hand cluster, d2, is sampled unbiasedly from the set {1, 2, 3, 4}.

� The number of intermediate stages, n, is sampled unbiasedly from the set {1, 2, 3, 4, 5, 6}.

� The overall traffic intensity, ρ, is sampled from a continuous uniform distribution between

0.1 and 0.9 in 10,000 experiments, and sampled from a continuous uniform distribution

between 0.9 and 1 in the remaining 1,250 experiments. Subsequently, the job arrival rates

λi and processing rates µi for i ∈ D are generated as follows:

– Each processing rate µi is initially sampled from a continuous uniform distribution

between 0.1 and 0.9.

– For each demand point i ∈ D, an initial value for the job arrival rate λ′i is sampled

from a continuous uniform distribution between 0.1µi and µi.

– For each demand point i ∈ D, the actual traffic intensity ρi is obtained by re-scaling

the initial traffic intensity λ′i/µi, as follows:

ρi :=
λ′i/µi∑
i∈D λ

′
i/µi

ρ.

This ensures that
∑

i∈D ρi = ρ.

– For each demand point i ∈ D, the actual job arrival rate λi is obtained as follows:

λi := ρiµi.

– All of the λi, µi and τ values are re-scaled in order to ensure that
∑

i∈D λi +

max{µ1, ..., µd, τ} = 1 (as assumed in Section 2) and then rounded to 2 significant

figures.

Tian and Shone: Stochastic dynamic job scheduling with interruptible setup and processing times 18

� For each demand point i ∈ D, the holding cost ci is sampled from a continuous uniform

distribution between 0.1 and 0.9.

� In order to generate the switching rate τ , we first define η := τ/(
∑

i∈D λi) and generate

the value of η as follows:

– Sample a value p from a continuous uniform distribution between 0 and 1.

– If p < 0.5, sample η from a continuous uniform distribution between 0.1 and 1.

– If p ≥ 0.5, sample η from a continuous uniform distribution between 1 and 10.

We then define τ := η
∑

i∈D λi.

G Simulation methods for the numerical experiments in Section

4

In each of the problem instances considered in Sections 4.1 and 4.2, we first generate a set

of random system parameters as described in Appendix F. Since the overall traffic intensity ρ

may approach 1, potentially leading to very large average queue sizes or instability under some

heuristics considered in this paper, we treat two cases separately: ρ < 0.9 and ρ ≥ 0.9.

Case (a): Moderate traffic intensities (ρ < 0.9)

For moderate traffic intensities, the performances of the K-stop and (K from L)-stop heuris-

tics are estimated by simulating the discrete-time evolution of the uniformized MDP described

in Section 2. We also use a ‘common random numbers’ method to ensure that job arrivals occur

at the same times under each of these policies. More specifically, the steps of the simulation

procedure are as follows:

1. Set N0 := 10, 000 as the length of the warm-up period and N1 := 1, 000, 000 as the length

of the main simulation.

2. Generate a list Z of length N0 + N1 = 1, 010, 000, consisting of uniformly-distributed

random numbers between 0 and 1.

3. Consider each of the K-stop and (K from L)-stop heuristics in turn. For each one, set

x0 := (1, (0, 0, ..., 0)) as the initial state and use the first N0 random numbers in Z to

simulate events in the first N0 time steps (this is done by sampling from the transition

probability distribution described in (2). This is the ‘warm-up period’. Let y denote the

state reached at the end of the warm-up period. Then, use the remaining N1 random

numbers in Z to simulate events during the next N1 time steps, with the system begin-

ning in state y, and use the statistics collected during these time steps to quantify the

heuristic’s performance.

Tian and Shone: Stochastic dynamic job scheduling with interruptible setup and processing times 19

The method for simulating the DVO heuristic is different, because (as discussed in Section

3) this heuristic is not directly compatible with the MDP formulation in the paper. To simulate

the DVO heuristic, we simulate in continuous time as follows:

1. Use the same set of randomly-generated system parameters used for the other heuristics.

2. Let T0 = 10, 000∆ and T1 = 1, 000, 000∆ as the warm-up period length and the main

simulation length, respectively, where ∆ is defined in (1).

3. Set x0 := (1, (0, 0, ..., 0)) as the initial state. Note that, under the DVO heuristic, the set

of decision epochs is not the same as under the other heuristics (see Section 3.1). At each

decision epoch we make a decision using the rules of the DVO heuristic and then simulate

the time until the next decision epoch, which requires simulating from an exponential

distribution (if the server processes a job or idles at an empty demand point) or an Er-

lang distribution (if the server switches to another demand point). Costs are accumulated

based on the job counts xi at the various demand points in between decision epochs. This

process continues until the total time elapsed exceeds T0, at which point the warm-up

period ends. Let y denote the state reached at the end of the warm-up period. We then

carry out the main simulation in the same way, starting from state y and continuing for

a further T1 time units, at which point the process ends and the performance of the DVO

heuristic is estimated by dividing the total costs incurred during the main simulation by

the total time elapsed.

Case (b): High traffic intensities (ρ ≥ 0.9)

For high traffic intensities, the length of the warm-up period under any heuristic considered

in this paper is determined through repeated application of the Mann–Kendall Test with the

Hamed–Rao correction (see Hamed and Rao (1998), Gocic and Trajkovic (2013)), a nonparamet-

ric method for detecting monotonic trends in time series while accounting for autocorrelation.

This assessment is performed at regular intervals during the warm-up period, up to a ceiling

length of N0 = 1,000,000 time steps (or T0 = 1,000,000∆ for the DVO heuristic), ensuring that

the heuristic’s performance is to be evaluated only once the system has reached a stable regime.

The procedure is as follows:

1. Sample collection: During the warm-up simulation, one new observation is collected

every 1000 time steps (or every 1000∆ time units for the DVO heuristic) by computing

the cumulative average cost up to that point. Once the number of observations exceeds

m (where m = 100), the latest m samples are used for trend testing.

2. Trend detection using the Mann–Kendall Test: Let {g1, . . . , gm} denote the latest

m observations. The Mann–Kendall S statistic is computed as

S =
m−1∑
k=1

m∑
j=k+1

sgn(gj − gk), sgn(y) =


1 y > 0,

0 y = 0,

−1 y < 0.

Tian and Shone: Stochastic dynamic job scheduling with interruptible setup and processing times 20

The variance of S is adjusted to account for tied values. Let ti denote the number of tied

values in the ith tied group, and suppose there are p such groups. Then

Var(S) =
m(m− 1)(2m+ 5)−

∑p
i=1 ti(ti − 1)(2ti + 5)

18
.

3. Hamed–Rao correction for autocorrelation: Let g̃k denote the rank of the kth

observation of the latest m observations, and let ḡ be the mean rank. The sample auto-

correlation at lag i is

ri =

∑m−i
k=1 (g̃k − ḡ)(g̃k+i − ḡ)∑m

k=1(g̃k − ḡ)2
, i = 1, . . . ,m− 1.

Significant lags are identified when |ri| > 1.96/
√
m, corresponding to a 95% confidence

level. The effective sample size accounting for significant autocorrelations is

m∗ =
m

1 + 2
m(m−1)(m−2)

∑
i(m− i)(m− i− 1)(m− i− 2) ri

,

where the summation is taken over all significant lags. The corrected variance of S is

Var∗(S) = Var(S)
m

m∗ ,

and the standardized test statistic is

Z =



S − 1√
Var∗(S)

S > 0,

0, S = 0,

S + 1√
Var∗(S)

S < 0.

4. Decision rule: The test compares |Z| with the critical value Zcritical = 1.96, correspond-

ing to a 95% confidence level (two-tailed). If |Z| < 1.96, no significant trend is detected,

and the system is considered to have stabilized; the current state y is recorded, and the

main simulation proceeds as in Case (a), starting from y without performing an additional

warm-up period. On the other hand, if a significant trend is detected, the simulation con-

tinues, collecting new samples every 1000 time steps (or 1000∆ time units), and the latest

m samples are tested again. This process repeats until either stability is observed or the

ceiling length N0 (or T0 for DVO) is reached. If the system remains unstable at the ceiling

length, evaluation proceeds to the next heuristic or instance.

In our experiments, we found that the DVO, K-stop and (K from L)-stop heuristics were

able to attain system stability before reaching the time limit in the vast majority of cases.

Specifically, each of these heuristics met the stability criterion within the time limit in between

95-98% of instances with ρ ≥ 0.9. In the minority of cases where the stability criterion was not

met within the time limit, the average ρ value was about 0.985.

Tian and Shone: Stochastic dynamic job scheduling with interruptible setup and processing times 21

H Method for testing the feasibility of dynamic programming

(DP) for the numerical experiments in Section 4

As explained in Section 4, we aim to use DP (specifically, relative value iteration) to compute

the optimal average cost g∗ whenever it is computationally feasible to do so. For a particular

problem instance, we carry out the following steps in order to classify it as either ‘feasible’ or

‘infeasible’ and (for the feasible instances only) estimate the optimal average cost:

1. If d ≥ 4, classify this instance as infeasible.

2. Otherwise (if d ≤ 3), carry out the following steps:

(a) Set m = 10, t = 0 and g∗ = 0.

(b) Consider a finite-state MDP in which the number of jobs present at any demand

point is not allowed to exceed m, as described in the proof of Theorem 2.2. Let M

denote the size of the state space, given by

M := (d+ n)(m+ 1)d.

(Recall that d and n are the numbers of demand points and intermediate stages in

the network, respectively.) If M ≥ 1, 000, 000, go to step (d). Otherwise, solve the

finite-state MDP using DP, let t denote the time taken (in seconds) and let g∗ denote

the optimal average cost.

(c) If t < 600, increase m by 10 and return to step (b). Otherwise, continue to step (d).

(d) If either (i) g∗ = 0, or (ii) the latest value of g∗ exceeds the previous value by more

than ϵ (where we set ϵ = 0.001), then classify this instance as infeasible. Otherwise,

classify it as feasible and let the latest value of g∗ be an approximation for the optimal

average cost in the infinite-state MDP.

References

Altman, E., Konstantopoulos, P., and Liu, Z. (1992). Stability, monotonicity and invariant

quantities in general polling systems. Queueing Systems, 11:35–57.

Duenyas, I. and Van Oyen, M. P. (1996). Heuristic scheduling of parallel heterogeneous queues

with set-ups. Management Science, 42(6):814–829.

Gocic, M. and Trajkovic, S. (2013). Analysis of changes in meteorological variables using Mann-

Kendall and Sen’s slope estimator statistical tests in Serbia. Global and Planetary Change,

100:172–182.

Hamed, K. H. and Rao, A. R. (1998). A modified Mann-Kendall trend test for autocorrelated

data. Journal of Hydrology, 204(1-4):182–196.

Puterman, M. (1994). Markov Decision Processes - Discrete Stochastic Dynamic Programming.

Wiley & Sons, New York.

Tian and Shone: Stochastic dynamic job scheduling with interruptible setup and processing times 22

Sennott, L. I. (1997). The computation of average optimal policies in denumerable state Markov

decision chains. Advances in Applied Probability, 29(1):114–137.

Sennott, L. I. (1999). Stochastic dynamic programming and the control of queueing systems.

John Wiley & Sons.

	Appendix Proof of Theorem 2.2.
	Appendix DVO Heuristic
	Appendix Proof of Theorem 3.3.
	Appendix Proof of Corollary 3.4.
	Appendix Proof of Theorem 3.5.
	Appendix Methods for generating the parameters for the numerical experiments in Section 4
	Appendix Simulation methods for the numerical experiments in Section 4
	Appendix Method for testing the feasibility of dynamic programming (DP) for the numerical experiments in Section 4

