Stochastic dynamic job scheduling with interruptible setup and

processing times: An approach based on queueing control

Dongnuan Tian
Department of Management Science, Lancaster University Management School, Lancaster University, Lancaster
LA1 4YW, United Kingdom. Email: d.tian2@lancaster.ac.uk.

Rob Shone*

Department of Management Science, Lancaster University Management School, Lancaster University, Lancaster
LA1 4YW, United Kingdom. Email: r.shone@lancaster.ac.uk.

Online Appendices

A Proof of Theorem 2.2.

Proof. Consider a modified MDP in which the state space is

S ={(v,w,(z1,...,2q)) |veV, we D, z; >0 forie D}, (A.1)

where the extra variable w represents the most recent demand point at which the server wit-
nessed no jobs present. More precisely, if w = ¢ then this indicates that at a certain time step
to in the history of the process the system was in a state with v = ¢ and z; = 0, and none
of the states visited in the more recent time steps (between ¢y and the present time) had the
server at another demand point j € D\ {i} at which there were no jobs present. (We can set
w to an arbitrary value when the process is initialized.) All other aspects of the modified MDP
formulation (e.g. actions and costs) are the same as in the original version. The transitions
of the process do not lose their memoryless property when w is included, since the knowledge
that w = i at a particular time step is sufficient to specify the probability distribution for its
value at the next step; specifically, w is guaranteed to remain unchanged unless either of the

following two cases applies:

1. The server is at a demand point j € D \ {i} with z; = 1 and chooses action j, in which
case there is a probability of ;1; that we have w = j at the next time step and a probability
of 1 — pu; that we still have w = .

2. The server is at an intermediate stage k € N adjacent to a demand point j € D\ {¢} with

*Corresponding author

Tian and Shone: Stochastic dynamic job scheduling with interruptible setup and processing times 2

x; = 0 and chooses action j, in which case there is a probability of 7 that we have w = j

at the next time step and a probability of 1 — 7 that we still have w = 4.

Consider a ‘polling system’ policy 871 under which the server visits the demand points in
a repeating sequence (1,2,...,d,1,2,....,d,1,2,...) and, upon arriving at any demand point i,
remains there until the number of jobs has been reduced to zero (x; = 0) before moving to the
next demand point in the sequence. If we already have x; = 0 when the server arrives at node
i, then the server immediately moves to the next demand point. It should be noted that, since
switches require an exponentially distributed amount of time, it may happen that the server
decides to move away from demand point ¢ when x; = 0 but a new job arrives at ¢ while the
server is still located at ¢. In this case, under our proposed policy, the server continues trying to
move to the next demand point rather than processing the new job. We assume that the server
always chooses the shortest path (in terms of the number of intermediate stages that must be
traversed) between two demand points and, in the case where two or more paths are tied for
the shortest length, the path is selected according to some fixed priority ordering of the nodes.
This policy can be represented as a stationary policy in our modified MDP by specifying actions
according to the simple rule that if w = ¢ < d — 1 then the server attempts to move towards
demand point ¢+ 1 by taking the next step on the shortest path to that node; or, if it is already
at i + 1, then it remains there. Similarly if w = d then the server attempts to move to demand
point 1 (or remains there).

Under the proposed policy 87, the system behaves as a polling system with an exhaustive
polling regime (meaning that demand points are served until they are empty). Given that
p < 1, Lemma 3.1 in |Altman et al|(1992) implies that the system is stable and there exists a
probability distribution {my(r|(x)}, g such that mypi(x) is the long-run proportion of time spent
in state x € S. In the next part of the proof we show that it is possible to use value iteration to
compute an optimal policy for the modified MDP. Given that the state space S is infinite, this
requires the use of the ‘approximating sequences’ method developed in [Sennott| (1999). Let W
denote the modified MDP with state space S defined in and let (¥, ¥y, ¥y, ...) denote
a sequence of MDPs that are defined on finite spaces, so that the MDP W¥,,, (for m € Ny) has

state space Sy, given by

Sm = A{(v,w, (x1,...,zq)) |[veEV, we D, 0<x; <mforieD}.

Thus, in the MDP W,,, we do not allow the number of jobs at any node ¢ € D to be greater
than m. We do this by modifying the transition probabilities so that if x is a state with z; = m
for some i € D, then the arrival of a new job at node ¢ is impossible and instead the ‘self-
transition’ probability px x(a) is increased by A;. Let 8}, be an optimal policy for the MDP W,,.
We can show that the sequence (6§, 67, ...) converges to an optimal policy for the infinite-state
MDP V¥, but this requires certain conditions to be verified. Specifically, we must show that
the assumptions (AC1)-(AC4) described on p. 169 of |Sennott| (1999) hold for the sequence
(Up, Uy, Uy, ...). (See also |Sennott| (1997)), pp. 117-118 for an equivalent set of assumptions.)
Assumption (AC1) in [Sennott| (1999) states that, for the finite-state MDP W,,, there exists

Tian and Shone: Stochastic dynamic job scheduling with interruptible setup and processing times 3

a constant g,, and a function hy, : S,, — R satisfying

Im + him(x) = f(x) + ;211411 pr,y Vx € S, (A.2)
yES

We can easily show that, given any two states x,y € S,,, there exists a stationary policy 0
such that y is accessible from x in the Markov chain induced by 6. This can be achieved
by considering arbitrary states x,y € Sy, and identifying a sequence of random transitions
that would cause the system to transition from x to y under policy § (which can be specified
differently for each pair of states (x,y)). It then follows from Puterman (1994) (p. 478) that
W,, belongs to the ‘communicating’ class of multichain MDP models, and the constant g,, in
is the optimal long-run average cost for ¥,,,. Moreover, the values h,,(x) for states x € S
can be computed using the well-known method of value iteration, in which we define ’U,(,lf) (x) as
the optimal (minimal) total cost in a finite-horizon problem with k stages initialized in state x

(*) (x) — ’Ugf)(z)), with the reference state z € S,, chosen

and then compute A, (x) = limg_ o0 (U,
arbitrarily.
In order to verify assumptions (AC2)-(AC4) we will need to use several properties of the
(k)

functions vy’ (x). Let x'* denote a state identical to x except that one extra job is present at

demand point ¢ € D. The required properties are:

L oM (x) <o (x) Vm, keNy, x €8, (A.3)
2. vﬁ,’f)(X) < vﬁ,’f)(xH) Vm,keNy, i €D, x €S, such that z; < m. (A.4)
3. v (x) < vwlgrl(x) Vm,k €Ny, x € Sp. (A.5)
4. Fix m € Ny and let x = (v, w, (1, ...,24)) and X' = (v/,w’, (&, ..., ;) be two states in S,

with v =/ and @; = @, for i = 1, ..., d, but w # w'. Then v (x) = v (x') for k € No.
(A.6)

All of the properties above are logical and can be proved using induction on k. We have omitted
details of the induction arguments in order to avoid making this proof excessively long, but they
are quite straightforward and only require some care in considering the different possible actions
that might be chosen by the relevant finite-horizon optimal policies. Property states that
the optimal expected total cost is increasing with the number of stages remaining, k. Property
states that this cost is increasing with the number of jobs initially present at any demand
point. Property states that this cost is increasing with the maximum number of jobs, m,
allowed to be present at any demand point. Finally, property states that the variable w
has no effect on the optimal expected total cost, which makes sense as it does not impose any
constraints on the actions that may be chosen in the k remaining stages.

We proceed to verify (AC2)-(AC4). Assumption (AC2) states that lim sup,,,_,. hm(x) < 0o
for each x € S. Consider the polling-type policy 0] described earlier. It is clear that the
Markov chain induced by 6] has a unichain structure on the state space S, since the state
z = (1,1,(0,0,...,0)) is accessible from any other state under this policy (this can be seen from

the fact that, in between consecutive visits to demand point 1, it is always possible for no new

Tian and Shone: Stochastic dynamic job scheduling with interruptible setup and processing times 4

jobs to arrive at any demand points). Let Jyr)(x,2) denote the expected total cost incurred
until the system enters state z, given that it is initialized in state x and follows policy A1,
Since z is positive recurrent, it follows from standard theory (see Sennott (1999), pp. 298-302)
that Jyr (x,2) < oo for all x € S. Next, for m € N, let J 0171 (X, 2) be defined in an analogous
way to Jyp)(x,2z) except that we consider applying the policy 9[F) to the finite-state MDP U,
instead of the infinite-state MDP W. It can easily be shown that J,, gr(x,2) < Jyr(x,2)
for all m € N, since the amount of time that the server spends at any demand node (and,
hence, the cost incurred) is stochastically smaller under ¥, than under ¥. We now follow
similar arguments to those in the proof of Proposition 8.2.1, p. 171 in |Sennott| (1999)). By
using property and the fact that u,(ff) (x) is defined as the expected k-stage cost under an

optimal policy, we have

oW (x) < 0P (x) < vg?e(x) vxe S, meNy, p>k, (A.7)
where Uf:)e is the expected k-stage cost under an arbitrary policy 6. Let 8 be defined to mimic

policy 8] until the system reaches state z and then follow an optimal finite-horizon policy for
k steps. Then, from (A.7)) it follows that vgf)(x) < Jp e (X,2) + k) (z). Hence, using the

previous arguments, we have

o) (x) — 0P (z) < Imor1(X,2) < Jppi(x,2) Vm € Ny, x € S.

m

Since h,(x) = limk%oo(vgf) (x) — k) (z)), this establishes that the sequence {h,(X)}men iS

bounded above and hence limsup,,, ., hm(x) < 0o as required.
Assumption (AC3) states that there exists a constant @) > 0 such that —Q < liminf,,, o0 i (X)
for all x € S. By using property 1) and taking limits as k — oo, we obtain

hn (%) < hyn(x™F) Vi e D, x € Sy, such that z; < m. (A.8)

This shows that the function A, attains a minimum on the subset of states with no jobs present,

which we denote as U. That is,

arg min h,,(x) € {(v,w, (z1,...,xq)) |[v €V, we D, ;=0 forall i € D} = U.
XESm
Let u* be a state that attains the minimum above. We will assume that u* is positive recurrent
under 071, However, this requires some justification. Recall that the server visits the demand

[Pl Therefore, at

points according to the sequence (1,2,...,d,1,2,...,d,1,2,...) under policy 0
any given time, the server’s current node v must lie somewhere on the path between demand
points w and w+ 1 (if w <d —1) or d and 1 (if w = d). Using property , we can assume
that the variables v and w associated with state u* do indeed satisfy these constraints, as it is
always possible to change the value of w without making any difference to the optimal finite-
stage expected cost. Also, if u* is a state with v ¢ D (i.e. the server is at an intermediate
stage rather than a demand point), it is reasonable to assume that node v is visited during the
server’s cyclic route under policy 0¥, since if this is not the case, we can always modify the

policy 1 slightly so that node v is visited at some point during the server’s route.

Tian and Shone: Stochastic dynamic job scheduling with interruptible setup and processing times 5)

Using similar arguments to those given for (AC2), we then have that u* is positive recurrent
under 01 and Im.oip1 (%, 0°) < Jpip(x,u") < oo for any x € S,n. In particular let us consider
the state z = (1, 1, (0,0, ...,0)). Repeating previous arguments, we have vﬁ,{f) (z) < Jyipy(z,u*) +
vﬁ,{f)(u*). Taking limits as k — oo, we obtain hp,(u) > hp(u*) > —Jyp(z,u*) for all u €
U. This establishes the required lower bound for states in U, and it follows from that
the same lower bound also works for all x € S,,. Since this argument can be repeated for
each m € N (establishing a uniform lower bound independent of m), we have —Jyr(z,u*) <
lim inf,,, o0 hm(x) for all x € S as required.

Assumption (AC4) states that limsup,, . gm =: ¢* < o0 and g* < g(x) for x € S, where
gm is the constant that appears in (A.2)) and the notation g(x) allows for a possible dependence
of the long-run average cost on the initial state x. By Proposition 8.2.1, Step 3(i) in |Sennott
(1999)), it is sufficient to show that

oM (x) < pli_{go vl()k) (x) Vm,k €Ny, x €8, (A.9)
which follows immediately from property .

Having verified that assumptions (AC1)-(AC4) hold for the modified MDP ¥, we can use
the results in |Sennott| (1999) to conclude that any limit point of a sequence of stationary
optimal policies for the finite-state MDPs (W, ¥, Wo, ...) is optimal for ¥ (Theorem 8.1.1) and
furthermore a limit point is guaranteed to exist (Proposition B.5). By the previous arguments,
we can compute an optimal policy for any finite-state MDP W, using value iteration. During

(k)

the process of value iteration, the functions vy’ (x) for x € S, are computed using the rule

o V00 = £+ min ¢ 3 pey(@ui) (v) o0 k€ No.

YESm
Property implies that if x and x’ are two states in S, that differ from each other only
in the variable w, then any action a € Ax that attains the minimum in the equation above for
state x is also a feasible action that attains the minimum in the corresponding equation for
state x’. Essentially, this means that it is possible to find an optimal stationary policy for ¥,,
that chooses actions independently of the variable w. By the previous arguments, the same
property also applies to an optimal stationary policy for the infinite-state MDP W (obtained as
a limit of the optimal finite-state policies). However, if we have an optimal stationary policy
that chooses actions independently of w, then the same policy must also be admissible for the
MDP formulated in Section 2 with state space S. From (AC4) we also know that the long-run

average cost under such a policy is finite, implying stability. This completes the proof. O

B DVO Heuristic

In this appendix we describe the steps of the DVO heuristic as presented in [Duenyas and
Van Oyen| (1996]). Note that, where appropriate, we adapt the authors’ notation so that it is

consistent with the notation used in our paper.

Tian and Shone: Stochastic dynamic job scheduling with interruptible setup and processing times 6

1. If the server has just finished processing a job at some demand point ¢ € D then there are

two possible cases: either (a) there are still some jobs remaining at i (x; > 0) or (b) there

are no jobs remaining at ¢ (x; = 0).

(a) In the first case, the server can either continue processing jobs at i or switch to some

other demand point j # i. We carry out the following steps:

i.

ii.

iii.

Initialize an empty set o = ().
For each demand point j with cju; > c;ui, calculate the reward rate 1; that
would be earned by switching to node j, serving it exhaustively, then switching

back to node %, using

. -%'j—i-)\j(S(i,j)/T
Txj 4 10 (i, 5) /7 + (ug — Xg)o(G,0) /7

v =cip

If ; > cjpjp + cipi(1 — p), then add j to the set o.
If o is non-empty, then switch to the demand point j with the highest index ;

(with ties broken arbitrarily). Otherwise, process one more job at node .

(b) In the second case, the server can either remain idle at i or switch to some other

demand point j # i. We carry out the following steps:

i.

ii.

iii.

iv.

Initialize three empty sets: o0y =0, o9 = () and o = (.
For each demand point j # 4, calculate the reward rate ¢; in a similar way to

part (a) but without including the time taken to switch back from j to i, using

@+ X000)/
Txj 4 pgd (i, g)/ T

O = cjp

If ¢; > cju;p, then add j to oq; otherwise, add j to os.
If o1 is non-empty, let ¢ = 01. Otherwise, let 0 = os.
Let j* denote the demand point in o with the highest reward rate ¢;«, with ties

broken arbitrarily. If xj« > X;j+d(j5%,7)/7, then switch to j*. Otherwise, remain
idle at 1.

2. If the server has just arrived at a demand point then it immediately begins processing

jobs there if there is at least one job waiting. This ensures that, after switching to a new

demand point, it must process at least one job there before switching somewhere else. If

there are no jobs waiting, then the rule for idling described in step 1(b) is used.

3. If the server is idle at a demand point and a new job arrives in the system, then the rule

for idling described in step 1(b) is used.

As mentioned in Section 3, there is no need to specify the rule used by the DVO heuristic

when the server is at an intermediate stage ¢ € N, since the server is required to continue moving

towards a particular demand point (chosen at the previous decision epoch) in this case. Simi-

larly, if the server is at a non-empty demand point ¢ € D and has not just finished processing a

Tian and Shone: Stochastic dynamic job scheduling with interruptible setup and processing times 7

job, then this indicates that a service is in progress and the server is required to remain at node 3.

C Proof of Theorem 3.3.

Proof. Let x = (v, (x1,...,24)) be the current state of the system, where v € N. We will use
Tarr to denote the random amount of time until the next job arrives in the system, and Tywitch
to denote the amount of time until the server reaches a demand point. According to the rules
of the K-stop heuristic, a sequence s can only be added to the set o if it satisfies the condition
%w(x, s,t)‘ o < 0. We begin by showing that there always exists at least one sequence that
satisfies this condition, and therefore o9 (and, hence, o) must be non-empty. Indeed, the set S
is defined to include all sequences of length m, for each 1 < m < K. Therefore it includes the
sequences of length one, (j), for each j € D. Let s = (j), where j € D is arbitrary. Then, using
(11), we have

00 00 = i { s

t+5(v,j)/T+T1(X7 (])7t)

S B L% T [L.
T 80,3) 7+ g + 0+ 00 0) /0] (1=)

oy J B XA, 5)/T)
a juj{wj+uj(t+5(v7j)/7)}'

After differentiating, we obtain

S0 ()u0) = —eypy {)

xw+w@+5@jﬂﬂp}’ (€

which equals zero if x; = 0, and is negative otherwise. Hence, the sequence s = (j) satisfies
e 9
the condition g;9(x, s,1) ‘t:O

to proceed we must consider two possible subcases: either (a) the set o1 is non-empty and we

< 0. We can therefore be sure that oo is non-empty, but in order

choose the sequence in o7 with the highest value of ¥(x,s,0), or (b) the set o1 is empty, but
o9 is non-empty and we choose the sequence in oo with the highest value of 1(x,s,0). In the

remainder of this proof we consider these two subcases separately.

Subcase (a): o0; is non-empty
For convenience, we will use £(x, s,t) to denote the proportion of time spent processing jobs

(as opposed to switching between nodes or idling) while following sequence s. That is:

E‘;:‘l T‘j(xa S, t)

E(x,s,t) = % ,
t+ i1 [0(si-1,85) /7 + Tj(x, 5, 1)]

t>0. (C.2)

Given that Tj(x, s,t) = R;(x,s,t)/(cs, us;) for each j = 1,...,|s[, we can use identical arguments

to those in the proof of Lemma 3.2 to show that {(x, s,) is a monotonic function of . Observe

Tian and Shone: Stochastic dynamic job scheduling with interruptible setup and processing times 8

that the condition 9 (x,s,0) > y(x,s,0) is equivalent to
£(x,5,0) > p. (C.3)

Let s* denote the sequence in o; that maximizes 1(x,s,0). In this case, according to the rules
of the heuristic, the server attempts to take one step along a shortest path to demand point s7,
where s is the first element of s*. Let (io, 41, ..., i) denote a shortest path from v to s7, where
k = 6(v,s7), ip := v and i := s]. Also let x; denote a state identical to x except that the

server is located at node i;, for j = 1,2,..., k. It is useful to note that

£(x4,5%,0) = &(xp, 8", (k—J)/17) Vje{l,2,...k—1}. (C.4)

This is because £(xj,s*,0) represents the proportion of time spent processing jobs given that
the server begins at node i; and immediately begins traveling along a path of length (k — j)
in order to reach node sj, while {(xg, s*, (k — j)/7) is the corresponding proportion given that
the server begins at node iy = s} but waits for (k — j)/7 time units before beginning to process
jobs there. In terms of the proportion of time spent processing jobs while following sequence

s*, these two quantities are the same. In the case |s*| =1 (that is, s* = (j) for some j € D) we

infer from (C.1]) that
1 0

cjp; O

a (X, (]),t) = (X’ (.])7t) <0, (05)

and hence, using , we can be assured that the condition £(x,s*,0) > p (equivalent to
P(x,s*,0) > y(x,s% 0)) remains satisfied as the server moves towards sj. Therefore, according
to the rules of the heuristic, s* remains included in o7 at all stages while the server moves from
v to s}. On the other hand, consider the case |s*| > 2. In this case the rules of the heuristic
imply that the extra condition {(y, s*,0) > p must be satisfied, where y is equivalent to xj in
the notation of this proof. By the same reasoning used to derive , we have

&(x,s%,0) = &{(xk, ™, k/T). (C.6)
Since &(xg, s*,t) is a monotonic function of ¢, we can infer from (C.4)) and (C.6|) that

min {{(x, s*,0), &(xx,5,0)} < &(x4,5%,0) <max{£(x,5%,0), {(xx,8%,0)} Vje{l,2,... k}.

(C.7)
Given that s* € o1, the rules of the heuristic imply that £(x, s*,0) > p and £(xg, s*,0) > p, so
from it follows that {(x;,s*,0) > p for each j = 1,2,...,k. Also, given that s* € oy, the

heuristic rules imply %@b(x, s*t < 0. Applying the same reasoning to the function v that

Nimo
we used for &, we have

P(x4,5%,0) = Y(xg, s*, (k—7)/7) Vje{l,2,.. k}, (C.8)
P(x,s%,0) = P(xp, s, k/T). (C.9)

From the proof of Lemma 3.2 we know that %w(x, s*,t) has the same sign for all ¢ > 0.
Hence, from 1} it follows that %¢(xk,s*,t)‘ i—o < 0 and then from 1' it follows that

Tian and Shone: Stochastic dynamic job scheduling with interruptible setup and processing times 9

%w(xj, S*’t)‘t:O < 0 for each j = 1,2,..., k. By collating the arguments given thus far, we can
say that as the server travels from v to s} along the shortest path (ig, 1, ..., %), the sequence s*
always satisfies the necessary conditions to be included in o;.

Now suppose that the server arrives at node i; before time Ty If i3 = s} (i.e. the
shortest path from v to sj is of length 1), then there is nothing further to prove, as the server
has completed its journey to demand point s] via the shortest possible path. On the other
hand, if i; # s} (i.e. the shortest path from v to s has length greater than 1), then we must
continue. Given that %d}(x, s*, t)‘tzo < 0 and using Lemma 3.2 again, it must be the case that
P(x,s*,0) < P(x1,s%,0); in other words, the average reward does not decrease after the server
takes a step along the shortest path to sj. By the previous arguments, s* is still included in o
when the server is located at ¢;. However, we cannot be sure that s* is chosen by the heuristic
at state xj.

If s* is chosen by the heuristic at x;, then the server continues attempting to move along
the shortest path to node sj. On the other hand, suppose the heuristic chooses an alternative
sequence § € o at x1, and let §; be the first demand point in sequence §. If §; = s}, then (once
again) we have no difficulties, as the server continues attempting to move along the shortest
path to s]. In the rest of this subcase we assume a non-trivial case where 5; # s7.

We can show that although 5; # s], the server’s movement from node v to 4y still qualifies
as a step along a shortest path from v to §;. In other words, even if the server now prefers
to move towards a different demand point, the step from v to i1 was still a step in the right

direction. To see this, first note that
¢(X, §7 0) < ¢(X7 S*a 0) < ¢(X17 8*7 0) < w(xh §7 0)7 (ClO)

where the first inequality is due to the fact that s* is preferred to § at state x, the second

inequality is due to the fact that %w(x, s*t < 0 (as stated earlier) and the third inequality

)
is due to the fact that § is preferred to s* undetr tohe new state x1. The rules of the heuristic state
that if the average rewards for two sequences are equal, then a sequence is chosen according
to a fixed priority ordering of the demand points in D. Therefore either the first inequality or
the third inequality in must be strict, as if they both hold with equality then the same

sequence (either s* or §) must be chosen at both x and x;. We conclude that
P(x,5,0) < ¢(x1,5,0), (C.11)

implying that the average reward for sequence s has increased after moving from v to ;. Let
X% denote a state identical to x except that the server is located at node 5; instead of v. By

definition, we have

P(x,3,0) = (X, 5,6(v,51)/7), (C.12)
¥(x1,5,0) = (%, 38,0(i1,81)/7). (C.13)

Suppose (for a contradiction) that (i1, 51) > (v, 51). If these two distances are equal then

from (C.12)-(C.13|) we have ¥ (x, §,0) = ¢)(x1, §,0), giving a contradiction with (C.11]). On the

Tian and Shone: Stochastic dynamic job scheduling with interruptible setup and processing times 10

other hand, if the inequality is strict (that is, d(i1,51) > (v, 51)) then using Lemma 3.2 we
infer that %¢(X1, §,t)|t:0

could not have been chosen under state x;. We conclude that §(i1, §1) < d(v, §1) and therefore

> 0. Hence, according to the rules of the heuristic, the sequence §
the server’s step from v to i represents a step along a shortest path from v to §;.

Subcase (b): o1 is empty

From the arguments at the beginning of the proof we know that even if o; is empty, o9
must be non-empty. As in case (a), let s* denote the sequence chosen by the heuristic under
state x, and let (ig,41,...,7;) denote a shortest path from v to sj, where k = d(v, s7), iop = v
and 7, = s]. Also let x; denote a state identical to x except that the server is located at node
ij, for j = 1,2, ..., k. After the server moves from node v to i1, there are two possible scenarios:
either o1 remains empty, or it becomes non-empty. In the first scenario, we can simply repeat
the relevant arguments used in subcase (a) to show that, even if the heuristic chooses some
alternative sequence § € o9 under state xp, it must be the case that §(i1,$1) < (v, §1), and
therefore the server’s movement from v to i; qualifies as a step along a shortest path from v
to 51. This is due to the fact that %@b(xl,é,t)’tzo must be non-positive in order for § to be
chosen. In the rest of this part we consider the second scenario, where o1 becomes non-empty.

Suppose § € o1 and the heuristic chooses sequence s under state x;. It may be the case that
51 = s], in which case the server simply keeps following the same path. However, if 5; # s}, we
can again show that 0(i1, 51) < d(v, §1). To see this, let X denote the state identical to x except

that the server is located at node §;. Due to the rules of the heuristic, we must have
£(x1,8,0) > p (C.14)

and additionally, if |§| > 2, then
£%,5,0)> p. (C.15)

Note that £(x1,5,0) = £(x, 5,0(i1,51)/7). Suppose (for a contradiction) that §(i1,51) > (v, 51).
Given that sequence s was not included in o1 when the server was at state x, at least one of the
)‘t:O <0, &(x,5,0) > p and &(%,5,0) > p (where the latter only applies if
|3] > 2) must fail to hold. However, given that § is chosen at x; and (%1, §,0) = ¥(x,3,1/7), it

conditions %w(x, 5.t

must be the case (using Lemma 3.2) that %w(xl, 3, t)‘t:O has the same sign as %w(x, s, t)‘t:O’
so the derivative condition holds. We also have £(%,§,0) > p when |§| > 2 from (C.15]), so we
can proceed to assume that £(x, §,0) < p, which is equivalent to £(x, §,d(v, $1)/7) < p. Hence,
we have

&(x,5,0(v,81)/71) < p<&(x,8,0(i1,51)/T) (C.16)

but also (by assumption)
O<(5(’U,§1) S(S(il,gl), (C17)

implying that £(X, §,t) is increasing with ¢. If |§| = 1 then this gives a contradiction, since it
was shown in ((C.5)) that £(-) is non-increasing with t for sequences of length one. On the other
hand, if |§] > 2, we modify the right-hand side of (C.16) and combine (C.14)-(C.15) to give

§(%,5,6(v,51)/7) < p <min{{(x,5,0), £(x,5,0(i1,51)/7)},

Tian and Shone: Stochastic dynamic job scheduling with interruptible setup and processing times 11

which, along with (C.17), contradicts the fact that (X%, 5,¢) is a monotonic function of t. We

conclude that d(i1, 1) < d(v, §1) as required.

We can repeat the arguments given in subcases (a) and (b) to show that any movement of
the server from one intermediate stage to another (prior to min{Tyy, Tswitch}) qualifies as a
step along a shortest path from v to some particular demand point j*. The key point is that
even though the sequences chosen at the various intermediate stages may not always begin with
node j*, the distance from the currently-occupied node to j* is always reduced after each step,
so the complete path is indeed a shortest path from v to j*. Given that the number of nodes
in the network is finite, the demand point j* must eventually be reached if no new jobs arrive

in the meantime. This completes the proof. O

D Proof of Corollary 3.4.

Proof. We assume that the server is initially located at some intermediate stage v € N and
use M = maxy;cn, jep} 0 (,7) to denote the maximum distance between an intermediate stage
and a demand point. Let a denote the number of new jobs that arrive in the system before the
server reaches a demand point, given that the K-stop heuristic is followed. By conditioning on

«a, we have

E(Tuwiten] = Y ElTwiten | o = k] P(a = k). (D.1)
k=0

Due to Theorem 3.3 we know that if the server is at an intermediate stage, then until the next
new job arrives it attempts to move along a shortest path to some particular demand point
j*. Since (prior to Tywiten) the server is always attempting to move, the expected amount of
time until the next event (either a switch or the arrival of a new job in the system) is always
(A+7)7%, where A =3, ;. In the worst case, the number of nodes that must be traversed

in order to reach j* is M. Hence, we can form an upper bound for E[T yiten | = 0]:

E[Tswiten | @ = 0] < A]\fT'

Extending this argument, we can obtain an upper bound for E[Tyyitch | @ = k] (for & > 1) by
supposing that every time a new job arrives in the system, the server changes direction and
attempts to move to a demand point M nodes away, and manages to complete (M — 1) of these
switches before a new job arrives in the system and forces it to change direction again. Suppose
this pattern continues until k£ arrivals have occurred, at which point it manages to complete M
switches without interruption and reaches a demand point. In this scenario, the total number
of switches made is k(M — 1) + M and the total number of new jobs arriving is k, so the total

number of system events is (k + 1)M. Hence:

(k+1)M

IET’swic :kS
Tawiten | o] AT

. k>0

Tian and Shone: Stochastic dynamic job scheduling with interruptible setup and processing times 12

Next, consider the probabilities P(a = k). Each time a system event occurs (prior to Tywitch),
there is a probability of 7/(A 4 7) that this is a switch rather than the arrival of a new job. We
can obtain an upper bound for P(a = 0) by supposing that the server only needs to complete

one switch in order to reach its intended demand point. Hence:

-
A7

Pla=0) <

On the other hand, the largest possible probability of an arrival occurring before the server
reaches a demand point is 1 — (7/(A 4 7))™, since this represents the case where the server

must complete M switches in order to reach its intended demand point. Putting these arguments
together, we have the following upper bound:

ramn<i- ()] (535) e

Let p:=1— (7/(A +7))M for notational convenience. Then, using (D.1)), we have

o0

k+1 k) T
sw1tch A+T A+T

_ (A:]_WTP <A+r>2M

(s T)”M_” | (D.2)

T

T T

This completes the proof. We also note that the bound holds with equality if and only if M = 1.
O

E Proof of Theorem 3.5.

Proof. We will use A, p and ¢ to denote the common arrival rate, service rate and holding cost
(respectively) for all job types. Firstly, let x be a state under which the server is located at a
demand point i € D with x; > 1. Recall from step 1(a) of the K-stop heuristic algorithm that
S is the set of sequences of the form s = (s1,s92,...,5p), where 1 < m < K, s; € D for each

Jj€A{1,2,...,m}, s1 # v and s; # s; for any pair of elements s;,s; € s with i # j. For any

Tian and Shone: Stochastic dynamic job scheduling with interruptible setup and processing times 13

sequence s € S, t > 0 and j =€ {1,...,|s|} it is clear from (12) that

I Ri(x,s,t I Th(x,s,t
¢j(X,S,t) < Z/;:1 k(% 5,1) _ %k:l k(%,5,t) = cl.
> g Th(x,s,t) > e Ti(x, 5, 1)

On the other hand, the quantity §;(x,s,t) in (13) is equal to cu. Therefore the condition
¢j(x,s,t) > B(x,s,t) is not satisfied for any s € S, and according to the rules of the heuristic
the server should remain at node 7. The intuitive explanation for this is that the server earns
rewards at the maximum possible rate cu by remaining at its current node, so there is no reason
to switch to another node. It follows that, under the K-stop policy, the server always remains
at a demand point until all jobs have been processed.

We can also show that the server visits all demand points infinitely often under the K-stop
policy. Indeed, suppose (for a contradiction) that there exists some non-empty subset Dy C D
such that demand points in Dy are visited only finitely many times. We also define Dy := D\ Dy
as the subset of demand points that are visited infinitely often. The subset D; must be non-
empty because, as noted in the proof of Theorem 3.3, sequences s of length one always satisfy
the condition %w(x, s,t) |t:0

algorithm must be non-empty, which implies that if the server is at an intermediate stage then

< 0, and therefore the set o constructed in step 2 of the heuristic

it will move towards a demand point. Each time the server selects a demand point in 7 € D;
to move to, there is a positive probability that no new jobs arrive at any of the other demand
points j € Dp \ {i¢} while it switches to ¢ and processes jobs there. Therefore the system must
eventually reach a state in which there are no jobs at any of the demand points in D;. Let x
be a state with z; = 0 for all j € D; and let S; denote the set of all sequences in S that involve

visiting only demand points in D;. Also, define

X = gézgl(i/)(x, s,0).

It is clear from the definition of ¥ (x, s,0) in (11) that ¢"** is strictly smaller than cu. Next,
consider an arbitrary demand point j € Dy and consider the sequence of length one, s = (j).
We have assumed that demand point j is visited only finitely many times and therefore, in the
long run, z; tends to infinity. From (11) it follows that the index (x, (j),0) tends towards
Ri(x,(j),0)/T1(x,(j),0) = cu. Hence, at some point ¢(x, (j),0) must exceed ¥"**. Similar
reasoning can be used to show that any sequence s that begins by visiting a demand point in
Dy must eventually become inferior (in terms of index value) to the sequence (j), where j € Dy.
The rules of the heuristic then imply that the server selects a sequence which begins by visiting
one of the demand points in Dy, which yields a contradiction. We conclude that all demand
points must be visited infinitely often under the K-stop policy. Standard arguments based on
stability in polling systems (see the comments following the statement of Theorem 2.2) then
imply that the system is stable, which proves the first statement in the theorem.

Next, we make the additional assumption that V' is a complete graph, which implies that
the server can move between any two demand points ¢,j € D by traversing a single edge of
the network, without having to pass through any intermediate stages. We will show that, with

this extra assumption (in addition to the homogeneity assumptions made already), the K-stop

Tian and Shone: Stochastic dynamic job scheduling with interruptible setup and processing times 14

policy causes the server to act in the following way:
(i) If the server is at a non-empty demand point ¢ € D, then it remains there.

(ii) If the server is at an empty demand point @ € D, then it switches to the demand point
j # 1 with the largest number of jobs present. (If there is a tie, an arbitrary choice of j

can be made.)

Note that the rules (i)-(ii) are sufficient to completely specify the actions chosen by the K-
stop policy, since it cannot ever visit an intermediate stage. Property (i) was already established
in the first part of the proof (the additional assumption that V is a complete graph does not
alter the argument given previously). To establish property (ii), we again recall the previous
argument and note that the set o constructed in step 2 of the heuristic algorithm is non-empty,
because it includes sequences of length one. It follows that, given some state x under which
the server is at an empty demand point, it selects the sequence s that maximizes 1(x, s,0). In
general, the sequence selected by the K-stop policy could be of any length between 1 and K.
However, we can show that if a sequence of length greater than one is selected, then the demand
points in the sequence must be visited in descending order of x;; that is, the server prioritizes
the demand point with the greatest number of jobs. To see this, note that for a sequence s of

length m (where 1 < m < K), the index 9 (x, s,0) can be expressed as

cud o Ti(x,s,0)
m/T+ Y ey Th(x,s,0)

P(x,s,0) = (E.1)
where the index k corresponds to the position of demand point s in the sequence, so T} (x, s, 0)
is the amount of time spent at the first demand point in the sequence (under the fluid model),
etc. Suppose we have a sequence in which the demand points are not ordered in descending
order of x;. This implies that there must be some k € {1,...,m — 1} such that x5, < Ty, - We
will show that the index in would increase if we swapped the positions of demand points s
and sj41 in the sequence. Indeed, let y = x,, , —x,, > 0. After performing the swap, Tj(x, s, 0)
increases by y/(u— \) since, under the fluid model, the amount of time taken to process a single
jobis 1/(1—). On the other hand, Ty 1(x, s,0) increases by A\y/((1—\)?) —y/(pu— A), where
the first term Ay/((z—\)?) is due to the extra arrivals that occur during the extra y/(u—\) time
units spent at node s and the second term —y/(u — \) is due to the fact that there are y fewer
jobs at siy1 after performing the swap. Hence, the overall increase in Tj(x, s,0)+Tj11(xX, s,0) is
Ay/((1—A)?), which is non-negative. Furthermore, Tj(x, s,0) increases for all | > k+2 following
the swap, due to the fact that Tj(x,s,0) + Tk1+1(x,s,0) increases and therefore extra arrivals
occur at these nodes before the server arrives. The result is that the sum >)" | Ti(x,s,0)
increases following the swap, and therefore the index in also increases. By extending this
argument, we can claim that if s is a sequence in which the demand points are not visited in
descending order of x;, then it is beneficial to perform a sequence of swaps until they are in
descending order. It follows that the sequence that maximizes (E.I)) must be a sequence in
which the first node visited has the greatest number of jobs.

Having established that properties (i) and (ii) hold under the K-stop policy, the next task is
to show that these properties also hold under an optimal policy, and thus the K-stop policy is

Tian and Shone: Stochastic dynamic job scheduling with interruptible setup and processing times 15

optimal. We can show this using a sample path argument. To establish (i), suppose the system
is in state x with v(x) =i € D, x; > 1. Consider two continuous-time processes, referred to as
P, and P, for convenience, both initialized in state x. In the continuous-time setting, an action
a(t) € D must be specified by the server for each time point ¢ € R>¢. In P; we suppose that the
server follows a policy whereby the action at t = 0 is to switch to demand point j # i. In P5,
on the other hand, the server remains at node 7 until a service completion occurs there, then
copies the same sequence of actions that P; chose starting from ¢ = 0, except that it does not
choose i again (skipping these actions as necessary) until P; has completed its first service at
1. Using standard stochastic coupling arguments, we assume that new job arrivals occur at the
same times under both processes, and furthermore the times required for service completions
and switch completions are the same under both processes, although (due to the difference in
server behaviors) a particular service or switch that begins at time ¢ > 0 in P may begin at
a different time ¢’ # ¢ under P». As an example, suppose the trajectory of (action, duration,

completion) pairs under P; evolves as follows:
(jswitch’ TD; ‘/)7 (jsorv’ Tl’ X)7 (Z-switch7 sz ‘/), (iscrv’ T3, X), (kswitch’ T4, \/)7 s (Z-scrv’ Tm, \/)’

which indicates that the server begins by switching to j for Tj time units and this action is
completed (denoted by ‘v’), then it serves a job at node j for T} time units but this service
is not completed (denoted by ‘x’) because it interrupts the service to switch to node i, and
the switch to 7 takes T units and is successfully completed, etc. We use m to represent the
sequence position of the first completed service at ¢. Then the corresponding trajectory under

P, would begin with
(%, T, v), (G0, To,), (55, Tt <), (KRR, Ty, V), e

Let 7' denote the total amount of time that the server spends switching to demand point ¢
(whether the switches are completed or not) in P; before it eventually completes a service there.
In P, we assume that, after the server has finished copying the non-i actions of the server in
P, prior to Ty + ... + T},_1, it then chooses action ¢ for a further T time units. This ensures
that both processes are in the same state at time Ty + ... + 15, and they continue to evolve
identically from that point onwards.

We can compare the total costs incurred by P; and P, under the above coupling construction.
We note that:

(a) Any service completion that occurs in P; at time ¢ > 0, except for the first job at demand
point 4, occurs with a delay of no more than 7}, time units in P,. Therefore P incurs extra
holding costs of (at most) ¢ X R x T}, due to the delayed processing of these jobs, where R

is the total number of jobs processed in P; before processing the first job at node i.

(b) The first job at demand point ¢ is processed at time T}, in P, but is not processed until
time Ty + ... + T}, in Py. Therefore P; incurs an extra holding cost of ¢ x (T + ... + Ty—1)
due to the delayed processing of this job.

Tian and Shone: Stochastic dynamic job scheduling with interruptible setup and processing times 16

Note that the set {1, ..., T)—1} includes the times needed to process R jobs at other demand
points before the first job is processed at ¢ under P;. Hence, given that the service times of all
jobs are independent and identically distributed, we have E[Ty + ... + T,—1] > E[R x T),], so
the extra costs incurred in P; are indeed higher than those in P». Therefore, switching away
from a non-empty demand point is a suboptimal action in the context of minimizing total costs
over a long time horizon. Intuitively, the suboptimality occurs because the server is forced to
perform extra switching actions in P;.

Next, we move on to property (ii) and aim to show that if the server is at an empty demand
point then it is optimal to switch to the demand point with the largest number of jobs. It is
sufficient to show that for any state x = (4, (21, ..., zq)) with z; < z; for some j € D, the minimal
expected total cost (over a long time horizon) starting from state x is greater than it would be
if ; and x; were swapped. We will again use a sample path argument. Let P, and P be two
continuous-time processes initialized at in states x = (i, (21, ...,24)) and x' = (i, (2, ..., 2)))
respectively, where x’ is identical to x except that z; = z; and z; = z;, and we assume x; < z;.
The two processes are coupled in the same way as in (i), so that new job arrivals occur at
the same times under both processes and the times needed for successful service and switch
completions are also equivalent.

Suppose that in P; the server remains at node ¢ until y > 0 jobs have been processed before
attempting to switch to a different demand point. In Ps, the server begins by remaining at node
1 until y 4+ 1 services have been completed before switching to another demand point, so we
force it to process an extra job before switching. It then copies the same actions as the server
in P;, but ‘skips’ any actions j chosen in P; (recall that P, has at least one extra job at j) until
eventually P; completes its first service at j. For example, if y = 1 then the trajectories under

P; and P, could be as follows:

Pl . (Z's<91“v7zv[)7 ‘/)7 (jsvvitch’T17 X)7 (ksvvitch’T27 \/), s (jserv7T1m7 \/)7
P22 (Z'serv7T07\/)’(Z‘serv7Tm,‘/)’(kswitch,T%\/)’m

for some m > 0. The important thing in this case is to make a comparison between the first
job processed at j in Py and the (y+1)™ job processed at i in P, and our coupling construction
assumes these jobs have the same service time (we can think of them as the same job, which
begins at j in P; but begins at ¢ in P»). Similarly to (i), we also let T denote the total amount
of time spent by the server switching to demand point j in P; before it completes a service there
and specify that in P, the server should spend T time units choosing action j after it finishes
copying the non-j actions of the server in P; prior to Ty + ... + T;,—1. This ensures that both
processes are in the same state at time Ty + ... + T}y,

The comparison between the costs incurred by the two processes then works in a similar
way to the comparison in (i). In P, there is a certain number of jobs that have their services
delayed by (at most) T, time units compared to P, but the extra holding costs for these are
collectively smaller than the extra holding cost incurred by P; as a result of processing the first
job at j later than the processing of the (y 4+ 1) job at i in P».

We note that the argument given above becomes most meaningful in the case where the

server in P; remains at the initial node ¢ until it is empty (which it must do under an optimal

Tian and Shone: Stochastic dynamic job scheduling with interruptible setup and processing times 17

policy, according to our previous argument). In this case the server in P can still process an
extra job at ¢, but the server in P; has to switch at least once before processing the correspond-
ing extra job at node j. We conclude that it is always beneficial for the server to be at the
demand point with the largest number of jobs present, and it follows that if the server is at an
empty demand point then it should attempt to switch to the demand point with the largest
number of jobs. We have shown that, in all cases, the actions of the K-stop policy are identical

to those selected by an optimal policy. O

F Methods for generating the parameters for the numerical ex-

periments in Section 4

For each of the 11,250 instances considered in Section 4.1, the system parameters are randomly

generated as follows:
e The size of the left-hand cluster, d;, is sampled unbiasedly from the set {1,2,3,4}.
e The size of the right-hand cluster, ds, is sampled unbiasedly from the set {1,2,3,4}.
e The number of intermediate stages, n, is sampled unbiasedly from the set {1,2,3,4,5,6}.

e The overall traffic intensity, p, is sampled from a continuous uniform distribution between
0.1 and 0.9 in 10,000 experiments, and sampled from a continuous uniform distribution
between 0.9 and 1 in the remaining 1,250 experiments. Subsequently, the job arrival rates

A; and processing rates p; for ¢ € D are generated as follows:

Each processing rate u; is initially sampled from a continuous uniform distribution
between 0.1 and 0.9.

For each demand point ¢ € D, an initial value for the job arrival rate A, is sampled

from a continuous uniform distribution between 0.1u; and ;.

For each demand point ¢ € D, the actual traffic intensity p; is obtained by re-scaling

the initial traffic intensity \,/pu;, as follows:

A/ i
pi == P
ZieD AL/ i

This ensures that) .. pi = p.

— For each demand point ¢ € D, the actual job arrival rate A; is obtained as follows:
Ai = Pifhi-

— All of the X\;, p; and 7 values are re-scaled in order to ensure that) . p A +
max{ 1, ..., 4d, 7} = 1 (as assumed in Section 2) and then rounded to 2 significant

figures.

Tian and Shone: Stochastic dynamic job scheduling with interruptible setup and processing times 18

e For each demand point ¢ € D, the holding cost ¢; is sampled from a continuous uniform
distribution between 0.1 and 0.9.

e In order to generate the switching rate 7, we first define := 7/(3_;cp M) and generate

the value of n as follows:

— Sample a value p from a continuous uniform distribution between 0 and 1.
— If p < 0.5, sample n from a continuous uniform distribution between 0.1 and 1.

— If p > 0.5, sample 7 from a continuous uniform distribution between 1 and 10.

We then define 7:=n3) ", p \i.

G Simulation methods for the numerical experiments in Section
4

In each of the problem instances considered in Sections 4.1 and 4.2, we first generate a set
of random system parameters as described in Appendix [F] Since the overall traffic intensity p
may approach 1, potentially leading to very large average queue sizes or instability under some

heuristics considered in this paper, we treat two cases separately: p < 0.9 and p > 0.9.

Case (a): Moderate traffic intensities (p < 0.9)

For moderate traffic intensities, the performances of the K-stop and (K from L)-stop heuris-
tics are estimated by simulating the discrete-time evolution of the uniformized MDP described
in Section 2. We also use a ‘common random numbers’ method to ensure that job arrivals occur
at the same times under each of these policies. More specifically, the steps of the simulation

procedure are as follows:

1. Set Ny := 10,000 as the length of the warm-up period and Nj := 1,000,000 as the length

of the main simulation.

2. Generate a list Z of length Ny + N1 = 1,010,000, consisting of uniformly-distributed

random numbers between 0 and 1.

3. Consider each of the K-stop and (K from L)-stop heuristics in turn. For each one, set
xo = (1,(0,0,...,0)) as the initial state and use the first Ny random numbers in Z to
simulate events in the first Ny time steps (this is done by sampling from the transition
probability distribution described in (2). This is the ‘warm-up period’. Let y denote the
state reached at the end of the warm-up period. Then, use the remaining N; random
numbers in Z to simulate events during the next N; time steps, with the system begin-
ning in state y, and use the statistics collected during these time steps to quantify the

heuristic’s performance.

Tian and Shone: Stochastic dynamic job scheduling with interruptible setup and processing times 19

The method for simulating the DVO heuristic is different, because (as discussed in Section
3) this heuristic is not directly compatible with the MDP formulation in the paper. To simulate

the DVO heuristic, we simulate in continuous time as follows:
1. Use the same set of randomly-generated system parameters used for the other heuristics.

2. Let Ty = 10,000A and 77 = 1,000,000A as the warm-up period length and the main

simulation length, respectively, where A is defined in (1).

3. Set xp := (1,(0,0,...,0)) as the initial state. Note that, under the DVO heuristic, the set
of decision epochs is not the same as under the other heuristics (see Section 3.1). At each
decision epoch we make a decision using the rules of the DVO heuristic and then simulate
the time until the next decision epoch, which requires simulating from an exponential
distribution (if the server processes a job or idles at an empty demand point) or an Er-
lang distribution (if the server switches to another demand point). Costs are accumulated
based on the job counts x; at the various demand points in between decision epochs. This
process continues until the total time elapsed exceeds Ty, at which point the warm-up
period ends. Let y denote the state reached at the end of the warm-up period. We then
carry out the main simulation in the same way, starting from state y and continuing for
a further 77 time units, at which point the process ends and the performance of the DVO
heuristic is estimated by dividing the total costs incurred during the main simulation by

the total time elapsed.

Case (b): High traffic intensities (p > 0.9)

For high traffic intensities, the length of the warm-up period under any heuristic considered
in this paper is determined through repeated application of the Mann—Kendall Test with the
Hamed-Rao correction (see[Hamed and Rao| (1998)), Gocic and Trajkovic| (2013))), a nonparamet-
ric method for detecting monotonic trends in time series while accounting for autocorrelation.
This assessment is performed at regular intervals during the warm-up period, up to a ceiling
length of Ny = 1,000,000 time steps (or Ty = 1,000,000A for the DVO heuristic), ensuring that
the heuristic’s performance is to be evaluated only once the system has reached a stable regime.

The procedure is as follows:

1. Sample collection: During the warm-up simulation, one new observation is collected
every 1000 time steps (or every 1000A time units for the DVO heuristic) by computing
the cumulative average cost up to that point. Once the number of observations exceeds

m (where m = 100), the latest m samples are used for trend testing.

2. Trend detection using the Mann—Kendall Test: Let {g1,...,gmn} denote the latest

m observations. The Mann—Kendall S statistic is computed as

1 y >0,
m

S=>" > sgn(gi—g), sgn(y) =40 y=0,

-1
k=1 j=k+1

-1 y<O.

Tian and Shone: Stochastic dynamic job scheduling with interruptible setup and processing times 20

The variance of S is adjusted to account for tied values. Let ¢; denote the number of tied
values in the ith tied group, and suppose there are p such groups. Then
m(m —1)(2m+5) — >0, t;(t; — 1)(2t; + 5)

Var(S) = T .

3. Hamed—Rao correction for autocorrelation: Let g; denote the rank of the kth
observation of the latest m observations, and let g be the mean rank. The sample auto-

correlation at lag ¢ is

o i (5~ 9)(Grri — 9)
' Z;;n:1(§k - 9)2 ’

Significant lags are identified when |r;| > 1.96/y/m, corresponding to a 95% confidence

1=1,....m—1.

level. The effective sample size accounting for significant autocorrelations is

m

m* =

where the summation is taken over all significant lags. The corrected variance of S is

Var*(S) = Var(95) ﬁ*,

m
and the standardized test statistic is
(S -1
> 0,
Var*(S)
z=< 0, S =0,
S+1
[/ Var*(S)

4. Decision rule: The test compares |Z| with the critical value Zyitical = 1.96, correspond-
ing to a 95% confidence level (two-tailed). If |Z| < 1.96, no significant trend is detected,
and the system is considered to have stabilized; the current state y is recorded, and the
main simulation proceeds as in Case (a), starting from y without performing an additional
warm-up period. On the other hand, if a significant trend is detected, the simulation con-
tinues, collecting new samples every 1000 time steps (or 1000A time units), and the latest
m samples are tested again. This process repeats until either stability is observed or the
ceiling length Ny (or Tp for DVO) is reached. If the system remains unstable at the ceiling

length, evaluation proceeds to the next heuristic or instance.

In our experiments, we found that the DVO, K-stop and (K from L)-stop heuristics were
able to attain system stability before reaching the time limit in the vast majority of cases.
Specifically, each of these heuristics met the stability criterion within the time limit in between
95-98% of instances with p > 0.9. In the minority of cases where the stability criterion was not

met within the time limit, the average p value was about 0.985.

Tian and Shone: Stochastic dynamic job scheduling with interruptible setup and processing times 21

H Method for testing the feasibility of dynamic programming

(DP) for the numerical experiments in Section 4

As explained in Section 4, we aim to use DP (specifically, relative value iteration) to compute
the optimal average cost ¢* whenever it is computationally feasible to do so. For a particular
problem instance, we carry out the following steps in order to classify it as either ‘feasible’ or

‘infeasible’ and (for the feasible instances only) estimate the optimal average cost:
1. If d > 4, classify this instance as infeasible.
2. Otherwise (if d < 3), carry out the following steps:

(a) Set m =10, t =0 and g* = 0.
(b) Consider a finite-state MDP in which the number of jobs present at any demand

point is not allowed to exceed m, as described in the proof of Theorem 2.2. Let M

denote the size of the state space, given by
M := (d+n)(m+ 1)%

(Recall that d and n are the numbers of demand points and intermediate stages in
the network, respectively.) If M > 1,000,000, go to step (d). Otherwise, solve the
finite-state MDP using DP, let ¢ denote the time taken (in seconds) and let g* denote

the optimal average cost.
(c) If t < 600, increase m by 10 and return to step (b). Otherwise, continue to step (d).

(d) If either (i) g* = 0, or (ii) the latest value of g* exceeds the previous value by more
than e (where we set e = 0.001), then classify this instance as infeasible. Otherwise,
classify it as feasible and let the latest value of g* be an approximation for the optimal

average cost in the infinite-state MDP.

References

Altman, E., Konstantopoulos, P., and Liu, Z. (1992). Stability, monotonicity and invariant

quantities in general polling systems. Queueing Systems, 11:35-57.

Duenyas, I. and Van Oyen, M. P. (1996). Heuristic scheduling of parallel heterogeneous queues
with set-ups. Management Science, 42(6):814-829.

Gocic, M. and Trajkovic, S. (2013). Analysis of changes in meteorological variables using Mann-
Kendall and Sen’s slope estimator statistical tests in Serbia. Global and Planetary Change,
100:172-182.

Hamed, K. H. and Rao, A. R. (1998). A modified Mann-Kendall trend test for autocorrelated
data. Journal of Hydrology, 204(1-4):182-196.

Puterman, M. (1994). Markov Decision Processes - Discrete Stochastic Dynamic Programming.
Wiley & Sons, New York.

Tian and Shone: Stochastic dynamic job scheduling with interruptible setup and processing times 22

Sennott, L. I. (1997). The computation of average optimal policies in denumerable state Markov
decision chains. Advances in Applied Probability, 29(1):114-137.

Sennott, L. I. (1999). Stochastic dynamic programming and the control of queueing systems.
John Wiley & Sons.

	Appendix Proof of Theorem 2.2.
	Appendix DVO Heuristic
	Appendix Proof of Theorem 3.3.
	Appendix Proof of Corollary 3.4.
	Appendix Proof of Theorem 3.5.
	Appendix Methods for generating the parameters for the numerical experiments in Section 4
	Appendix Simulation methods for the numerical experiments in Section 4
	Appendix Method for testing the feasibility of dynamic programming (DP) for the numerical experiments in Section 4

