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1 Introduction

There exists a consensus in the financial literature that modeling asset price dynamics requires

the specification of different components. In addition to the stochastic volatility component,

which accounts for the persistence of volatility, “jumps” in asset prices serve as an explanation for

abnormally large variations that play an important role for the tail behavior of return distributions.

Jumps are believed to contain predictive information, so correctly identifying them often leads to

improved price or volatility forecasts and better portfolio outcomes (see, e.g., Yan, 2011, Jiang and

Yao, 2013, Cremers et al., 2015, for empirical applications using daily or monthly financial data, and

Andersen et al., 2007a, Corsi et al., 2010, Nolte and Xu, 2015, Bollerslev et al., 2015, 2020, Pelger,

2020, for those using high-frequency intraday data). The increased availability of high-frequency

financial data has further motivated the development of methodologies designed to test the model

specification based on a discretely observed semimartingale.

Over the past two decades, a number of nonparametric jump tests have been developed. Starting

from the seminal work of Barndorff-Nielsen and Shephard (2004), most of these tests are constructed

on jump-robust measures of returns or their variations, see, e.g., Huang and Tauchen (2005),

Barndorff-Nielsen and Shephard (2006), Andersen et al. (2007b), Jiang and Oomen (2008), Lee and

Mykland (2008), Aı̈t-Sahalia and Jacod (2009b), Corsi et al. (2010), Podolskij and Ziggel (2010),

Andersen et al. (2012), Lee and Mykland (2012), and Äıt-Sahalia et al. (2012), among others. Some

recent works focus on modified versions of these tests when conventional assumptions are violated,

see, e.g., Laurent and Shi (2020) and Kolokolov and Renò (2024), and tests for co-jumps in a

collection of assets, see, e.g., Bibinger and Winkelmann (2015) and Caporin et al. (2017).

Despite the theoretical developments in the literature, these jump tests can sometimes deliver

inconsistent results in practice. Unlike the noiseless theoretical framework, the presence of market

microstructure noise in real-world high-frequency data requires practitioners to either sample sparsely

or pre-average the tick-level data. Although the literature establishes asymptotic consistency of

calendar-grid tests under both the null and alternative hypotheses, their finite-sample performance

deteriorates markedly at commonly used sampling frequencies in practice (Dumitru and Urga, 2012;

Maneesoonthorn et al., 2020). Under sparse, exogenous and typically equidistant sampling, many

tick-level returns are bundled into one sampling interval, which dilutes the relative contribution

of jumps and thus reduces finite-sample power of those tests. This practical tension motivates

a key question: Can we sample in a way that retains more jump information than equidistant

calendar-time sampling?

In this paper, we introduce an innovative nonparametric method to test for jumps in a discretely

observed semimartingale based on endogenous sampling. Different from the conventional equidistant

calendar-time sampling, our methodology adopts a stochastic and endogenous approach that

recursively samples tick-by-tick observations at first exit times from a symmetric double barrier,

inspired by Engle and Russell (1998), Andersen et al. (2008), Fukasawa and Rosenbaum (2012),

Vetter and Zwingmann (2017), and Hong et al. (2023), among others. This endogenous sampling
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scheme is tailored to be sensitive to jumps. Jumps of size larger than the barrier width will terminate

the sampling interval immediately and produce large “overshoots”, i.e., threshold exceedances. By

stopping the sampling interval when the barrier is breached, the sampled return captures the jump in

a clean way, without mixing it with post-jump diffusion increments, which amplifies the jump signal.

To distinguish between threshold exceedances caused by discrete Brownian steps and those by jumps,

we censor the returns between consecutive sampling times with a specific threshold,1 and construct

a standardized test statistic to measure the potential distortion caused by disproportionately large

overshoots in the sample moment of returns. While our approach is in the spirit of the standard

truncation technique of Mancini (2009), the objects are first-exit ladder increments rather than

Brownian increments over equidistant calendar-time intervals, so the relevant limit theorems differ

and require new asymptotic results under the first-exit framework. Furthermore, we develop a

two-step noise reduction method based on the pre-averaging approach of Jacod et al. (2009) and

the wild bootstrap to mitigate the impact of weakly dependent market microstructure noise in the

pre-sampling tick-level observations, which helps to bridge the gap between real-world features and

the theoretical framework.

Simulation results reveal that our new high-frequency jump test exhibits reliable finite-sample

size and power performance across various aggregation levels, and its performance is robust to

measurement errors simulated with a realistically calibrated specification. A comparison with

commonly used tests constructed from equidistantly sampled observations and some noise-robust

versions based on ultra-high-frequency data is conducted thereafter. We find that (i) most calendar-

time-sampled tests exhibit less consistent performance across different sampling frequencies and

are poorly sized in the presence of noise, which is in line with the Monte Carlo results of Dumitru

and Urga (2012) and Maneesoonthorn et al. (2020), (ii) while noise-robust tests achieve reliable

sizes in the presence of noise, their power performance is still inferior to our test across a wide

range of simulation settings, and (iii) the truncation-based jump filtering and detection techniques

commonly applied in the recent literature suffer from spurious detections and become unreliable

when noise is substantial at high frequencies, which echoes the findings in Aı̈t-Sahalia et al. (2025).

In an empirical application, our test is applied to transaction data of 10 selected stocks listed on

the New York Stock Exchange (NYSE). Clear statistical evidence of jumps is found for all selected

stocks, with jumps occurring on approximately 10% to 15% of trading days. Furthermore, the

test rejections are highly robust to the correction of spurious detections based on the method of

Bajgrowicz et al. (2016).

The remainder of this paper is structured as follows: Section 2 lays out the basic setup and key

assumptions. Section 3 discusses the test statistic and its asymptotic theory, along with the noise

reduction technique. Section 4 assesses the finite-sample performance of our new test with Monte

Carlo simulations. After discussing the empirical application for selected NYSE stocks in Section 5,

we conclude in Section 6. All proofs and additional simulation and empirical results are relegated to

1Related works about the boundary crossing problems for random walks, especially those with Gaussian steps,
include Rogozin (1964), Lorden (1970), Lotov (1996), and Khaniyev and Kucuk (2004).
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the Online Appendix.

2 Setting and Assumptions

On a filtered probability space (Ω,F ,F = (Ft)t≥0,P), let the one-dimensional process X = (Xt)t≥0

denote the efficient logarithmic price of a financial asset. We assume that X follows a possibly

discontinuous Itô semimartingale of the following form:

X = X ′ +X ′′,

X ′t = X0 +

∫ t

0
µsds+

∫ t

0
σsdWs,

X ′′t =

∫ t

0

∫

R
δ(s, x)1{|δ(s,x)|≤1}(p− q)(ds, dx) +

∫ t

0

∫

R
δ(s, x)1{|δ(s,x)|>1}p(ds, dx),

(1)

where t stands for time, W is a standard Brownian motion, p(dt, dx) is a Poisson random measure

on R+ × R with a compensator q(dt, dx) = dt ⊗ λ(dx), and λ is a σ-finite measure on R+. We

assume that X satisfies the following regularity conditions:

Assumption 1. The following properties hold for the processes in Eq. (1):

(i) The process µ is optional and locally bounded;

(ii) The process σ is càdlàg (i.e., right-continuous with left limits), adapted, and strictly positive;

(iii) There exists a sequence (τm)m≥1 of stopping times increasing to ∞, and a sequence (Km)m≥1

of finite constants, such that it holds for each m ≥ 1 that E[|σt∧τm − σs∧τm |2] ≤ Km|t− s| for

all s, t ∈ [0, T ] with some finite T ;

(iv) The function δ(ω, t, x) on Ω× R+ × R is predictable;

(v) There is a localizing sequence (τn)n≥1 of stopping times increasing to ∞, and a sequence

(fn)n≥1 of deterministic nonnegative functions on R, which satisfies |δ(ω, t, x)| ∧ 1 ≤ fn(x) for

all (ω, t, x) with t ≤ τn(ω), and
∫
R |fn|rλ(dx) <∞ for some r ∈ [0, 1).

Remark 1. Assumption 1 entails some very mild technical conditions that the processes in Eq. (1)

should meet. Conditions (i), (ii) and (iv) are standard in the literature. Condition (iii) states that

the spot volatility process is locally 1/2-Hölder continuous under the L2-norm. The smoothness

condition is satisfied whenever σ is an Itô semimartingale, or a long-memory process driven by a

fractional Brownian motion (Li and Liu, 2021). The parameter r in Condition (v) sets a bound on the

degree of jump activity, which can be interpreted as a generalized version of the Blumenthal-Getoor

index for a Lévy process (Äıt-Sahalia and Jacod, 2009a; Jing et al., 2012). With some r ∈ [0, 1), we

consider jumps of both finite and infinite activities, but restrict them to be of finite variation, i.e.,

they are absolutely summable, such that in Eq. (1) we dispense with the integral with p− q; see

Jacod et al. (2019) for more details.

4



The quadratic variation (QV) of X over a finite interval [0, t] is defined as

〈X,X〉t =

∫ t

0
σ2
sds+

∑

0≤s≤t
(∆Xs)

2, with ∆Xt = Xt −Xt−, (2)

where the integrated variance (IV),
∫ t

0 σ
2
sds, summarizes the variation from X ′.

Testing for jumps is a procedure to answer the fundamental question of whether the realized

sample path X(ω) is continuous or not over a finite time interval, e.g., (0, 1).2 Technically speaking,

we decompose the sample space Ω into two complementary subsets:

Ω′ = {ω : Xt(ω) is continuous on (0, 1)} ,
Ω′′ = {ω : Xt(ω) is discontinuous on (0, 1)} ,

(3)

where Ω′ (resp. Ω′′) represents the null hypothesis (alternative hypothesis) for a jump test, which

assesses the plausibility of these two hypotheses based on discrete observations of X(ω).

2.1 Observation Scheme

We now describe how observations take place.3 At stage n, we assume that the successive observations

of X(ω) occur at times 0 = tn,0 < tn,1 < . . . for a sequence (tn,i) of discrete times over a fixed

interval (such as a trading day), which is normalized to the unit interval [0, 1]. We set

Nn
t =

∑

i≥1

1{tn,i≤t} and ∆n,i = tn,i − tn,i−1, (4)

where N ≡ Nn
1 stands for the number of observations on (0, 1], and ∆n,i is the i-th inter-observation

lag at stage n. It is easily seen from the empirical tick-level data that the observation times are

far from evenly spaced and usually dependent on X(ω) itself. Our assumption for the observation

scheme over [0, 1] is outlined as follows:

Assumption 2. Let ∆n be a positive sequence of real numbers satisfying ∆n → 0 as n→∞. We

define an intensity process of observations λ = (λt)0≤t≤1 with λt = Kσ2
t for some K > 0. There

exists a localizing sequence (τm)m≥1 of stopping times and positive constants Km,p and κ such that:

(i) With (Fnt )t≥0 the smallest filtration containing (Ft)t≥0 and with respect to which all observa-

tion times tn,i are stopping times, for each i = 1, 2, . . . , the variable ∆n,i is, conditionally on

Fni−1 ≡ Fntn,i−1
, independent of F∞ =

∨
t≥0Ft.

2We restrict the alternative hypothesis to contain at least one jump on (0, 1) as it is not feasible for a test to
identify jumps occurring right at both endpoints of the interval.

3We would like to distinguish the terms “observation scheme” and “sampling scheme” in this paper. We allow both
tick-level and sampled observations to form discrete-time processes, and the term “sampling” refers to a subsampling
or subset selection procedure for the discrete observations at the highest frequency.
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(ii) With the restriction {ti−1 < τm}, we have for all p ≥ 2,

E[|∆n,iλtn,i−1 −∆n||Fni−1] ≤ Km,1∆2+κ
n ,

E[|∆n,iλtn,i−1 |p|Fni−1] ≤ Km,p∆
p
n.

(5)

A useful consequence of this Assumption is the following convergence in probability:

∆nN
n
t

P−→ τ(t) =

∫ t

0
σ2
sds. (6)

Remark 2. Assumption 2 is inspired by Assumption (O) of Jacod et al. (2017) and Assumption

(O-ρ, ρ′) of Jacod et al. (2019). The process λ controls for the “spot” observation arrival rates, and

the unobserved ∆n can be interpreted as an “average mesh size” between successive observations in

an alternative time scale that evolves with volatility (see Remark 3). Our choice of the intensity

λ = Kσ2 implies higher observation frequencies of X(ω) during periods of high local volatility, which

captures the diurnal patterns of transaction activities and intraday volatility. This is motivated

by the empirical evidence of the E-mini S&P 500 futures contract in Andersen et al. (2018),

which illustrates a notable similarity in the intraday U-shaped patterns of one-minute transaction

counts and return variation, where the pronounced spikes, typically align with market openings or

announcements, roughly coincide. Note that λ is defined up to scale, which allows K = 1 to be

set without loss of generality (by scaling ∆n correspondingly), as further discussed in Jacod et al.

(2017).

Remark 3. With the convergence result in Eq. (6), Assumption 2 implies a time-changed regular

observation scheme under infill asymptotics: As n → ∞, the observation time tn,i converges to

t̆n,i = inf{t ∈ [0, 1] : τ(t) = i∆n}. This limiting observation scheme corresponds to Example

2.2 in Jacod et al. (2017). In contrast to the calendar time t, the “intrinsic time” τ(t) evolves

endogenously with respect to the variation from X ′. The time change induces a certain level of

endogeneity, and extends the commonly assumed equidistant observation scheme in high-frequency

financial econometrics literature (Li et al., 2014; Dimitriadis and Halbleib, 2022). With the irregular

calendar-time mesh sizes ∆n,i regulated by Condition (ii), the deviation of (tn,i) from (t̆n,i) vanishes

as n→∞. Importantly, this discrepancy does not affect the limit theorems developed in the next

section, a conclusion supported by strong approximation results in the spirit of Chernozhukov et al.

(2013, 2019). Further details can be found in Remark 6 and Online Appendix A.1.

2.2 Price Duration Sampling

Sparse sampling is widely adopted in both the financial econometrics literature and by practitioners

to mitigate the impact of market microstructure noise, with some popular choices like 1-minute

and 5-minute sampling in calendar time (Aı̈t-Sahalia et al., 2005; Liu et al., 2015). However, such

sparse sampling aggregates a substantial amount of tick-level returns exogenously, which dilutes the

relative size of jumps and inevitably reduces the power of jump tests. This phenomenon is evident
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in the Monte Carlo results of Dumitru and Urga (2012) and Maneesoonthorn et al. (2020): Nearly

all traditional tests constructed from calendar-time-sampled returns exhibit rapid power loss as

sampling becomes sparser.4

In response to this issue, a path-dependent sampling scheme seems a natural solution. We

consider a stochastic and endogenous sampling scheme for all observations of X(ω) on [0, 1]: Let

(Xi)0≤i≤N collect all observations under Assumption 2. With a selected barrier width c > 0, the

price duration sampling (PDS) is defined as the following sampling algorithm:

1. Set Π
(c)
0 = 0.

2. For j = 1, 2, . . . , sample Xi for all i = Π
(c)
j that are decided recursively by

Π
(c)
j = inf

{
Π

(c)
j−1 < i ≤ N :

∣∣∣Xi −XΠ
(c)
j−1

∣∣∣ ≥ c
}
. (7)

We therefore obtain a subsequence X(c) = (X
Π

(c)
j

)0≤j≤N(c) , where N (c) = maxj≥1{Π(c)
j ≤ N} counts

the total number of sampled observations. Moreover, we define the PDS returns as the increments

of X(c), i.e., r
(c)
j = X

Π
(c)
j

−X
Π

(c)
j−1

for all j ∈ {1, 2, . . . , N (c)}.

Remark 4. The above sampling algorithm is a discrete-time version of PDS in Hong et al. (2023).

The idea of sampling financial observations based on hitting or exit times was initially proposed by

Engle and Russell (1998), and has been further developed since then, see, e.g., Gerhard and Hautsch

(2002), Andersen et al. (2008), Tse and Yang (2012), Fukasawa and Rosenbaum (2012), Potiron and

Mykland (2017), Vetter and Zwingmann (2017), and Hong et al. (2023). While previous studies

have primarily focused on volatility estimation based on this alternative sampling scheme, our

contribution stands out as the first to demonstrate that this scheme can be exploited to construct

more effective high-frequency jump tests.

From a technical standpoint, our design belongs to the broader class of stochastic and endogenous

sampling in high frequency, see, e.g., Fukasawa (2010), Li et al. (2014), and Koike (2017). We work

with a symmetric first-exit scheme on the intrinsic-time clock, a tractable special case under which

asymptotic properties for realized variance (RV) estimators follow directly from Fukasawa (2010).

However, further theoretical developments are needed for a jump test based on this sampling scheme;

see Remark 6 for further details.

This endogenous sampling scheme is designed to be highly sensitive to the presence of jumps.

Fig. 1 shows examples where X(ω) is continuous and discontinuous, respectively. When X(ω) is

continuous, each sampled return under PDS (“PDS return”, i.e., first ladder height with respect to

c) consists of the barrier width c plus a small exceedance, i.e., the extra movement needed before

the next discrete observation time is stamped. By contrast, if X(ω) is discontinuous, a jump with

4Some noise-robust tests constructed from filtered data, such as those proposed by Lee and Mykland (2012) and
Aı̈t-Sahalia et al. (2012), can utilize all available observations without sampling. As alternative methods that exploit
data more sufficiently than classical approaches, we compare their finite-sample performance with our method through
simulations in Section 4.
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magnitude > c triggers the stopping rule immediately and produces an “overshoot” that is visibly

larger than the continuous returns.

Figure 1: Examples of PDS when X(ω) is continuous and discontinuous, respectively. Jumps will almost surely lead to the

sampling of the next available observation, and induce a large overshoot.

To motivate the use of PDS over exogenous sampling schemes in testing for jumps, we highlight

the intuition that, over a given sampling interval, the price return containing a jump is more easily

identified when the jump size is large relative to the aggregated continuous price increments in

that interval. This relative magnitude can be naturally interpreted as a “signal-to-noise” ratio

for jump tests. With a simple motivating Monte Carlo example, we demonstrate that the PDS

consistently generates a higher signal-to-noise ratio than equidistant sampling in finite samples

under the same sampling frequency. In each replication, we simulate a Gaussian random walk with

a fixed number of i.i.d. increments (corresponding to the limiting observation scheme in Remark 3).

Under the alternative, we insert one fixed-size jump at a uniformly chosen time index. For each

simulated path we then obtain sampled returns with both PDS and equidistant sampling across a

broad range of sampling frequencies. A (PDS or equidistantly) sampled return is labelled a jump

whenever its absolute value exceeds the 95% quantile of the corresponding null distribution, which

by construction fixes the empirical size at 5% for every sampling frequency. In our simulation, both

the PDS barrier width and the equidistant interval length are calibrated such that both sampling

schemes produce the same expected number of observations. Therefore, any discrepancy in rejection

rates under the alternative can be attributed to the effective signal-to-noise ratio achieved by the

respective sampling method.

Fig. 2 illustrates the rejection rates under both sampling schemes—under the alternative that

the tested interval contains a jump—across a continuum of expected sampling frequencies. For both

sampling methods, the rejection rates decline toward the nominal 5% size as sampling becomes

increasingly sparse. This is because each sampled return aggregates the jump with an increasing

number of Gaussian increments, thereby deteriorating the signal-to-noise ratio. However, the speed

of this convergence differs substantially between the two schemes. Intuitively, as the PDS samples
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Figure 2: Rejection rates under two different sampling schemes. We simulate 2000 random walk paths with 106 standard

normal steps (null). A jump of fixed size 10 is randomly inserted in each path. Under two different sampling schemes, the

absolute returns containing jumps are compared with the 95% quantiles of absolute sampled returns under the null.

the price observations whenever a jump-induced overshoot occurs, the price increments after the

jump are excluded from that sampling interval, thus inflating the signal-to-noise ratio. By contrast,

equidistant sampling aggregates returns exogenously at fixed intervals, where the jump size is

diluted much more rapidly as the sampling interval lengthens. This advantageous property of PDS

contributes to a diminished probability of committing a Type II error, and thereby serves as the

main motivation for the new statistical test proposed in the next section.

We now formally introduce our asymptotic setting under PDS: We let the barrier width c shrink

proportionally to
√

∆n under infill asymptotics, i.e.,

c ≡ cn = m
√

∆n, for some constant m > 0. (8)

When X(ω) is continuous, each absolute PDS return |r(c)
i | is a sum of the barrier width c and a

small threshold exceedance caused by the discreteness of observations, such that the ratio |r(c)
i |/c

is bounded in probability. In contrast, jumps of a higher asymptotic order than
√

∆n will almost

surely trigger the stopping rule in Eq. (7), and generate disproportionally large PDS returns for

which |r(c)
i |/c diverges in the limit.

To distinguish between the “small” overshoots induced by continuous price increments and the

“big” overshoots caused by genuine jumps, we censor the (absolute) PDS returns with a threshold

ϕε(c) that shrinks to zero at the same rate
√

∆n as the barrier width c, i.e., for all i ∈ {1, 2, . . . , N (c)},

|r(c)
i | = |r

(c)
i | ∧ ϕε(c), where ϕε(c) = c (1 + ε) for some constant ε > 0. (9)

Remark 5. The idea of censored returns is inspired by the standard truncation techniques of

Mancini (2009). However, the key difference is that the sampled returns we work with are first-exit
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ladder increments, rather than Brownian increments over equidistant calendar-time intervals, for

which Mancini’s threshold is calibrated with local volatility estimates and justified by the Lévy

modulus of continuity. Therefore, the relevant limit theorems are different and require additional

theoretical development in the first-exit framework. Furthermore, the fixed choice of ε in Eq. (9) is

unconventional in the literature. Unlike the standard calendar-time threshold of order slightly higher

than
√

∆n, our chosen threshold ϕε(c) �
√

∆n affects increments from both X ′ and X ′′ under infill

asymptotics. This circumvents the “perfect correlation” issue of censored and uncensored returns

under the null (Podolskij and Ziggel, 2010), and allows the construction of feasible test statistics.5

3 Main Results

In this section, we introduce and analyze our new test statistic, which is constructed from the PDS

returns between sampled observations collected by X(c). Then we augment the test with an effective

noise reduction method to mitigate the impact of market microstructure noise.

3.1 Test Statistic

To prepare for the construction of our test statistic, we first introduce the notation for the moments

of PDS returns from a standard Gaussian random walk (Zi)i=0,1,... with a barrier width m, which is

denoted as Z
(m)
1 :

(i) Absolute moment of Z
(m)
1 : µγ(m) = E[|Z(m)

1 |γ ],

(ii) Absolute moment of censored Z
(m)
1 : µγ,ε(m) = E[|Z(m)

1 |γ ] = E[(|Z(m)
1 | ∧ ϕε(m))γ ],

(iii) Absolute cross moment of censored and uncensored Z
(m)
1 : ργ,ε(m) = E[|Z(m)

1 |γ |Z(m)
1 |γ ],

and two first-order differentiable and invertible functions:

h2(m) =
µ2(m)

m2
and h2,ε(m) =

µ2,ε(m)

m2
, (10)

with the first-order derivatives h′2(m) and h
′
2,ε(m), and the inverse functions h−1

2 (x) and h
−1
2,ε (x).6

We will now proceed to define the testing procedures. For all observations (Xi)0≤i≤N under

Assumption 2, we obtain the sampled observations in X(c) with the barrier width c that satisfies

Eq. (8). To assess the distortion resulting from “large” overshoots, we compare two estimates from

(normalized) sample moments of uncensored and censored PDS returns, respectively, i.e.,

Mc = h−1
2 (S2) and M c,ε = h

−1
2,ε

(
S2,ε

)
. (11)

5In this paper, we can also adopt the truncation technique and discard all absolute PDS returns that are larger
than ϕε(c). However, the censoring approach does not change the total number of PDS returns and is therefore more
convenient for both our theoretical derivation and empirical implementation.

6The invertibility and differentiability of h2(m) and h2,ε(m) are proved in Online Appendix A.2. In practice, we

compute the required moments and functionals of Z
(m)
1 by simulation of standard Gaussian random walks, and obtain

numerically the inverses and first-order derivatives of h2(m) and h2,ε(m) with local polynomial interpolation and local
linear regression, respectively.
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where

S2 =
1

N (c)

N(c)∑

i=1

( |r(c)
i |
c

)2
and S2,ε =

1

N (c)

N(c)∑

i=1

( |r(c)
i |
c

)2
. (12)

Theorem 1 (Consistency). Under Assumptions 1 and 2, it holds as n→∞ that

(M c,ε,Mc)
′ P−→ (m,m)′, if ω ∈ Ω′,

(M c,ε,Mc)
′ P−→ (m,m∗)′, if ω ∈ Ω′′,

(13)

where m∗ = h−1
2 (κ · h2(m)) with κ the ratio between QV and IV over [0, 1].

Both M c,ε and Mc are jointly asymptotically normal under the null with a known variance-

covariance matrix, which naturally leads to a well-defined ratio test.

Theorem 2 (Asymptotic normality). Under the same conditions as in Theorem 1, the estimators

M c,ε and Mc are jointly normally distributed when ω ∈ Ω′:

√
N

(
M c,ε −m
Mc −m

)
L−→ N

((
0

0

)
,

(
φ11(m) •
φ21(m) φ22(m)

))
, (14)

where

φ11(m) =
µ2(m)(µ4,ε(m)− µ2

2,ε(m))

m4(h
′
2,ε(m))2

, (15)

φ22(m) =
µ2(m)(µ4(m)− µ2

2(m))

m4(h′2(m))2
, (16)

φ21(m) =
µ2(m)(ρ2,ε(m)− µ2(m)µ2,ε(m))

m4(h′2(m)h
′
2,ε(m))2

. (17)

Remark 6. Based on a strong approximation argument of Chernozhukov et al. (2013, 2019), we

couple the complicated observation scheme under Assumption 2 with the much simpler limiting

observation scheme (t̆n,i) in Remark 3, and the PDS returns (r
(c)
i )1≤i≤N(c) are strongly approximated

by the sampled returns from a corresponding homogeneous Gaussian random walk in intrinsic time;

see Online Appendix A.1.3 for details. The CLT in Theorem 2 is obtained from a joint convergence

of the PDS-based RV, its censored version, and the sum of squared sampling thresholds. While

the marginal stable CLT of the PDS-based RV can also be derived from Fukasawa (2010), the joint

convergence requires additional non-trivial theoretical results, which are new in the literature; see

Online Appendix A.4 for details.

Moreover, under the alternative, M c,ε remains robust to jumps because ϕε(c) shrinks at the

same rate as
√

∆n, so censoring caps jump-induced overshoots. By contrast, Mc is inflated by these

overshoots and converges to a different level. The resulting separation implies that the standardized

test statistic diverges, as shown in the following Corollary 1.

Theorems 1 and 2 directly imply the following result, which indicates that our test is correctly

sized under the null and consistent under the alternative:

11



Corollary 1. Under the same conditions, the standardized ratio test statistic Tc,ε satisfies

Tc,ε =
M c,ε/Mc − 1√

V̂ε(M c,ε)





L−→ N (0, 1) if ω ∈ Ω′,
P−→ ∞ if ω ∈ Ω′′,

(18)

where the denominator is the estimated standard deviation of M c,ε/Mc with

V̂ε(m) =
1

m2N
(φ11(m) + φ22(m)− 2φ21(m)). (19)

When X ′′(ω) ≡ 0 on the interval (0, 1), the test statistic Tc,ε converges in distribution to a

standard normal random variable, which is implied by Theorem 2. When X ′′(ω) 6= 0 for some

t ∈ (0, 1), the numerator of Tc,ε converges to a finite non-zero level determined by κ, whereas its

denominator shrinks to zero as n→∞. Consequently, the standardized test statistic diverges in

the limit, thereby implying the consistency of the test under the alternative hypothesis.

3.2 Noise Mitigation

As discussed in Remark 6, our asymptotic results derived in Section 3.1 are based on the strong

approximation result that couples the observation scheme (tn,i) under Assumption 2 and the limiting

scheme (t̆n,i) in Remark 3. However, this rationale becomes untenable when the observations are

contaminated by measurement errors, such as market microstructure noise. In this section, we

propose an empirically plausible approach to mitigate the impact of the noise. With a two-step

noise reduction method, we transform the noise-contaminated observations into a sequence of

pseudo-observations, which behaves locally like a Gaussian random walk in the limit. Since each

sampled return is only determined by finitely many tick-level returns within a local horizon, our

test statistic relying solely on the sample moments of normalized PDS returns remains valid.

To this end, we assume an additive noise term with a weak dependence structure, before which

we recall the definition of α-mixing (Fan and Yao, 2003): The α-mixing coefficient of a stationary

sequence (Xi)i∈Z of variables indexed by i ∈ Z is defined as

α(h) = sup{|P(A ∩B)− P(A)P(B)| : A ∈ Fi, B ∈ F i+h}, (20)

where the pre- and post-σ-fields are defined as Fj = σ({Xi : i ≤ j}) and F j = σ({Xi : i ≥ j}). The

process (Xi) is said to be α-mixing if α(h)→ 0 as h→∞.

Assumption 3. Let ε = (εi)0≤i≤N be a stationary sequence with E[εi] = 0 and E[|εi|2+δ] < ∞
for some δ > 0, where εi are identically distributed with variance σ2

ε and autocovariance function

Γh = E[εiεi+h]. The process ε is α-mixing with
∑∞

h=1 α(h)δ/(2+δ) <∞, and exogenous to X. The

sequence Y = (Yi)0≤i≤N collects all observations contaminated by noise Yi = Xi + εi, with the

log-returns ri = Yi − Yi−1 for all 1 ≤ i ≤ N .

Remark 7. The autocovariance function Γh satisfies Γ0 = σ2
ε and Γ−h = Γh. For Γh, the standard

12



absolute summability condition, i.e.,
∑

h∈Z |Γh| <∞, is well-known to be sufficient for ergodicity

and necessary for α-mixing under stationarity (Ibragimov and Linnik, 1971). Furthermore, the

assumed conditions on the (2 + δ)-th moment and the α-mixing coefficient α(h) are sufficient for a

CLT for the centered, stationary and α-mixing ε (Theorem 1.7, Ibragimov, 1962; Theorem 8.3.7,

Durrett, 2019).

Remark 8. The additive noise term εi summarizes a diverse array of market frictions. An i.i.d.

additive noise with non-zero variance, firstly introduced by Zhou (1996), is commonly assumed

in earlier literature of high-frequency volatility estimation, see, e.g., Aı̈t-Sahalia et al. (2005) and

Zhang et al. (2005). However, some previous studies including Hansen and Lunde (2006), Ubukata

and Oya (2009), and Aı̈t-Sahalia et al. (2011) find empirical evidence of self-dependent noise in

financial markets. Recent work by Jacod et al. (2017) summarizes the common statistical properties

of market microstructure noise and develops estimators for its autocovariances and autocorrelations,

which further confirms this point. Assumption 3 allows for a weak dependence structure of the

noise. This standard Itô semimartingale plus locally dependent noise framework has been employed

by a number of recent studies, see, e.g., Jacod et al. (2017, 2019), Varneskov (2017), Christensen

et al. (2022), and Li and Linton (2022).

However, it is worth noting that Assumption 3 is in fact more stringent than needed, given that

Proposition 1 only necessitates the convergence of the pre-averaged returns defined in Eq. (21) to

an α-mixing and stationary Gaussian process. This convergence result requires an appropriate limit

theorem to hold for a weighted-average of the tick-level returns ri = ∆N
i Y = ∆N

i X + ∆N
i ε, which

is satisfied when the assumed α-mixing and stationary ε is exogenous to X. However, the same

result holds when (ri) itself satisfies such conditions for an appropriate limit theorem, which permits

certain dependence structure between X and ε. For brevity, we will stick with the exogenous noise

assumption in the analysis henceforward, and examine its potential impact with a more general

specification of ε via extensive simulations in Section 4.

With the additive noise under Assumption 3, the noisy observations clearly do not resemble a

Gaussian random walk in the limit. There are two main problems:

(i) The noise term dominates the variance of tick-level returns (ri) and does not shrink as n→∞;

(ii) The tick-level returns are no longer independent due to the self-dependence of ε.

We now introduce a two-step noise reduction method which facilitates the construction of a sequence

of pseudo-observations with desirable properties in the limit:

Step 1: Pre-averaging. We implement the pre-averaging approach of Jacod et al. (2009): We

choose a sequence of positive integers kn satisfying kn
√

∆n = θ for some θ > 0. We calculate

log-returns on (Yi)0≤i≤N that are pre-averaged in a local neighborhood of kn observations:

r∗i =
1

kn

kn∑

j=kn/2+1

Yi+j −
1

kn

kn/2∑

j=1

Yi+j =

kn−1∑

j=1

g
( j
kn

)
ri+j , (21)
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where g(s) = s ∧ (1− s), for all i ∈ {1, . . . , N ′} with N ′ = N − 2kn/2 + 2.

Step 2: Random Sign Flip and Permutation. We compute the “wild-bootstrapped” returns

based on the pre-averaged returns (r∗i )1≤i≤N ′ obtained from Step 1:

r̃i = r∗π(i)δπ(i), (22)

where (δi)1≤i≤N ′ is a sequence of i.i.d. Rademacher random variables, i.e., P(δi = −1) = P(δi = 1) =

1/2, and π : {1, . . . , N ′} 7→ {1, . . . , N ′} is a uniform random permutation of the index set {1, . . . , N ′}.

Under the null, we show that the sequence of “wild-bootstrapped” returns (r̃i)1≤i≤N ′ behave

locally like a sequence of i.i.d. Gaussian random variables in the limit:

Proposition 1. Let ε and Y follow Assumption 3. Under the null hypothesis and as n→∞, the

sequence (r̃i)1≤i≤N ′ converges in distribution to a sequence of locally independent7 and identically

distributed Gaussian random variables with variances of order
√

∆n.

We first discuss why this two-step method can mitigate the impact of noise under the null

hypothesis. In Step 1, the standard choice of pre-averaging window balances the orders of X

increments and ε, such that the pre-averaged returns (r∗i )1≤i≤N ′ converge to a centered, stationary

and self-dependent Gaussian process as n→∞. The dependence structure of (r∗i ) arises from both

the assumed self-dependent ε and overlapping pre-averaging windows. Therefore, we proceed to

Step 2 to remove the local dependence, which is inspired by the wild bootstrap introduced by Wu

(1986). The random sign flip eliminates serial correlations in (r∗i ). The uniform random permutation

assigns equal probability to each of the N ′! possible permutations, which ensures that any two

variables in (r̃i)1≤i≤N ′ are independent when their indices are not sufficiently far apart from each

other in {1, . . . , N ′} under infill asymptotics.

Proposition 1 inspires the construction of our test in the presence of noise as follows: We generate

a sequence of pseudo-observations (Ỹi)0≤i≤N ′ as partial sums of (r̃i), where Ỹ0 = Y0 and Ỹi =
∑i

j=1 r̃j .

Next, we choose a sequence of barrier widths c = m∆
1/4
n and obtain the sampled observations (Ỹ

(c)
i ).

Finally, we follow Section 3.1 to construct the standardized test statistic T̃c,ε from (Ỹ
(c)
i ) in place of

(X
(c)
i ). Formal establishment of its asymptotic properties requires further assumptions about the

noise, and is left for future research. We next discuss some plausible properties of T̃c,ε, which are

verified through comprehensive simulations with a realistically calibrated noise specification in the

next section.

The choice of c = m∆
1/4
n ensures that the normalized increments r̃i/c are invariant to ∆n, which

is analogous to the case without noise. Assuming that (r̃i)1≤i≤N ′ is a sequence of i.i.d. centered

Gaussian random variables, (Ỹi)0≤i≤N ′ forms a genuine Gaussian random walk, and thus the same

CLT in Theorem 2 would hold for T̃c,ε under the null. Our simulation results reveal that this CLT

still holds for T̃c,ε constructed from (Ỹi). This is because each sampled return is only determined

7A formal definition of local independence is given in Eq. (A.141) in Online Appendix A.5.
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by finitely many increments of (Ỹi) within a local horizon, which are indeed asymptotically i.i.d..

Importantly, the convergence rate of T̃c,ε remains
√
N , which apparently contradicts the optimal

N1/4 rate of noise-robust IV estimators (Gloter and Jacod, 2001; Xiu, 2010; Reiß, 2011) that also

appears in some noise-robust jump tests (Aı̈t-Sahalia et al., 2012). This discrepancy arises because

our test statistic does not rely on a noise-robust IV estimator, but rather on a consistent estimator

of the scale-invariant barrier width m, which is identified through the variance of r̃i. As r̃i has the

same order as the pre-averaged noise, a consistent estimator of m has the same
√
N rate as that

of a noise variance estimator. This finding also reveals that a noise-robust IV estimator is not a

pre-requisite for noise-robust jump tests.

4 Monte Carlo Simulations

4.1 Simulation Design

We simulate an empirically realistic discretized diffusion model for asset prices, which incorporates

both time varying tick-variances and transaction activities. Firstly, we simulate a Heston model

for the efficient price process X and obtain its tick-level observations, to which we add jumps with

different sizes:

dXt =
(
µ− σ2

t

2

)
dt+ σtdWt + dX ′′t , t ∈ [0, 1]

dσ2
t = α(θ − σ2

t )dt+ ησtdBt,

(23)

where W = (Wt) and B = (Bt) are standard Brownian motions with Corr(Wt, Bt) = ρ, and X ′′ is a

compound Poisson process, i.e.,

X ′′t =

Nt∑

i=1

Ji, (24)

where N = (Nt) is a Poisson process with rate λ, and jump sizes Ji follow a double exponential

distribution (Laplace distribution) with location parameter 0 and scale parameter b. To generate all

tick-level observations, we discretize X equidistantly on t = i/n for n = 23, 400. Then we modify

the observation times 0 ≤ tn,1 < tn,2 < · · · ≤ 1 following an inhomogeneous Poisson process with

the rate

α(t) = 1− 1

2
cos 2πt, (25)

where t ∈ [0, 1]. The inverted U-shaped rate function α(t) is employed to mimic the empirical

feature of more transactions that occur in the early morning and late afternoon than in the middle

of the trading day (Jacod et al., 2017). We draw 10,000 simulated price paths for each experiment.
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For the additive noise,8 we denote

εi = 2

√
σ2
tn,i

n

(
ωAi + ωBi

√
ν − 2

ν

)
, (26)

where ωAi are autocorrelated Gaussian random variables defined as

ωAi = φi +
Λ∑

j=1

βjφi−j , with φi ∼ i.i.d.N (0, 1), and βj =
d(1 + d) · · · (j − 1 + d)

j!
, (27)

for d ∈ (−0.5, 0.5) and a large cutoff value Λ, which form a moving-average series that approximates

a fractionally differenced process (Jacod et al., 2019), and ωBi are i.i.d. draws from a Student’s t

distribution with the degree of freedom ν.

The instantaneous standard deviation of the Gaussian-t mixture noise is about four times as

much as that of diffusive increments, i.e.,
√
σ2
tn,i
/n, so that the diffusive increments are clearly

dominated by the additive noise.9 This specification of εi captures some important features of

market microstructure noise in financial markets, e.g., temporal heteroskedasticity, slowly-decaying

serial correlation, intraday seasonality, and dependence on the latent prices. The t-distributed noise

ωBi is introduced to capture the large bouncebacks commonly observed in high-frequency transaction

data (Aı̈t-Sahalia et al., 2012). Besides the additive noise, we also consider the rounding errors on

the price level, i.e., let the observed prices eYi = eXi+εi be further rounded to cents. The observed

logarithmic prices are given as

Yi = log

([eXi+εi
0.01

]
× 0.01

)
, (28)

where the function [x] rounds a number x to the nearest integer.10

The annualized parameters for the Heston model are fixed at (µ, α, θ, η, ρ) = (0.05, 5, 0.16, 0.5,−0.5),

where the volatility parameters satisfy the Feller’s condition 2αθ ≥ η2 which ensures the positivity

of σ. The parameter choices follow both Äıt-Sahalia and Jacod (2009b) and Äıt-Sahalia et al. (2012),

which are calibrated according to the empirical estimates in Äıt-Sahalia and Kimmel (2007). For the

jump components, we let λ = 1, and b = 0.2
√
θ and 0.4

√
θ corresponding to moderate and relatively

large jump sizes. The moderate (resp. large) jumps contribute about 7% (resp. 25%) of the daily

QV on average when noise is absent. For the additive noise term, we let (d, Λ, ν) = (0.3, 100, 2.5)

following Aı̈t-Sahalia et al. (2012) and Jacod et al. (2019).

Fig. 3 depicts the intraday variation of some market activity variables of a simulated path in the

8The simulation design of additive noise mainly follows Äıt-Sahalia et al. (2012). In addition, we consider its serial
correlation using the method of Jacod et al. (2019).

9In the simulations, we follow Aı̈t-Sahalia et al. (2012) to truncate the t-distributed ωBi at ±50
√
ν/(ν − 2) to

avoid large returns in the absence of jumps, which could lead to very misleading results. Hence, the instantaneous

standard deviation of the t-distributed noise 2ωBi
√
σ2
tn,i

/n
√

(ν − 2)/ν is slightly lower than 2
√
σ2
tn,i

/n.
10We also consider alternative specifications for the additive heteroscedastic noise, see the results in Online Appendix

B.3.
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absence of noise, which include the return, number of trades, and annualized RV in each one-minute

interval. Both transaction intensity and return variation exhibit a U-shaped pattern over the trading

hours, which is in line with some prior empirical findings (Harris, 1986; Wood et al., 1985; Andersen

and Bollerslev, 1997; Andersen et al., 2018, 2019, 2024). Fig. 4 compares the simulated tick-level

latent prices and the rounded, noise-contaminated price observations over an intraday episode.
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Figure 3: Some market activity variables of simulated prices. The tick-level observations are simulated with the Heston model

in Eq. (23), and we assign randomized observation times with an inverted U-shape rate function in Eq. (25) to all observations.

The returns, numbers of transactions, and annualized RVs are computed at a granularity of one minute.
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Figure 4: Comparison of the simulated latent prices and the noise-contaminated prices with rounding errors.

4.2 Test Performance in the Absence of Market Microstructure Noise

Table 1 reports the finite-sample size and size-adjusted power (at 5% nominal level) of the standard-

ized test statistic Tc,ε when noise is absent. Tick-level observations are sampled with different PDS

barrier widths c = Kσ(ri), i.e., K times the standard deviation of tick-by-tick returns, where K

ranges from 3 to 10. Different censoring thresholds with ε ∈ {0.05, 0.07, 0.1} are also considered.

In Table 1, the rejection rates under the null (Panel A) are all closely aligned with the nominal

level. For the finite-sample power under the alternative (Panels B and C), we find that the rejection

rates are fairly robust across different sampling frequencies. Fig. 5 compares the finite-sample

distributions of our test statistic with the limiting standard normal distribution. Under the null,

the finite-sample distribution (solid line) closely resembles the standard normal (shaded area), while
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the distribution deviates significantly from N (0, 1) when there exist jumps of either moderate or

large sizes.

Table 1: Finite-sample size and power (%)

Nominal size: 5% Panel A Panel B Panel C

No Jump Moderate Price Jumps Large Price Jumps

ε ε ε

c/σ(ri) N(c) 0.05 0.07 0.10 N(c) 0.05 0.07 0.10 N(c) 0.05 0.07 0.10

3 1786 5.26 5.31 5.48 1697 58.21 61.68 65.22 1564 76.29 78.47 80.37

4 1100 5.51 5.58 5.89 1043 61.24 64.54 67.46 959 77.95 80.18 81.99

5 744 5.39 5.56 5.77 705 63.01 66.29 69.55 647 79.10 81.00 82.83

6 536 4.99 5.20 5.61 508 63.77 67.13 70.30 466 80.16 82.01 83.92

7 405 5.28 5.56 5.71 383 65.19 68.47 71.07 351 80.59 82.23 84.01

8 316 5.20 5.61 5.93 299 65.86 68.90 72.07 274 80.76 82.51 84.36

9 254 5.28 5.46 6.01 240 66.33 68.88 71.47 220 81.36 82.78 84.42

10 208 5.07 5.29 5.49 197 66.66 69.33 72.16 181 81.20 83.18 84.85

This table reports the finite-sample size and size-adjusted power (%) of 10,000 simulations of the test statistic Tc,ε at 5%

nominal level in the absence of market microstructure noise. Tick-level observations are sampled with different PDS barrier

widths c = Kσ(ri), i.e., K times the standard deviation of tick-by-tick returns, where K ranges from 3 to 10. Different censoring

thresholds with ε ∈ {0.05, 0.07, 0.1} are considered. N(c) stands for the average sampling frequencies.
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Figure 5: Finite-sample distributions of the standardized test statistic Tc,ε in the absence of noise. We plot the finite-sample

distribution under the null (solid line) and compare it with the simulated standard normal (shaded area). Jumps are simulated

with a compounded Poisson process with the intensity λ, and their sizes follow a double exponential distribution with location

parameter 0 and scale parameter b. We consider different parameter choices: (i) λ = 1, b = 0.2
√
θ (dash), (ii) λ = 2, b = 0.2

√
θ

(dash-dot), (iii) λ = 1, b = 0.4
√
θ (dash-circle), and (iv) λ = 2, b = 0.4

√
θ (dash-square). In all cases, the PDS barrier width

c = 5σ(ri), and the censoring parameter ε = 0.05.

4.3 Test Performance in the Presence of Market Microstructure Noise

Panel A in Table 2 summarizes the finite-sample size (at 5% nominal level) of the standardized

test statistic Tc,ε constructed from the rounded noise-contaminated observations. We employ the

two-step noise reduction method in Section 3.2 to construct the sequence of pseudo-observations

with three different pre-averaging windows, i.e., kn = dθ
√
Ne with θ ∈ {0.3, 0.4, 0.5}. The choices of

θ follow the rule of thumb in Hautsch and Podolskij (2013). Similar to the results in the absence of

noise, the rejection rates under the null are close to the nominal level across almost all choices of

bandwidth c and censoring parameter ε. Panels B and C in Table 2 report the size-adjusted power
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under the alternative with moderate and large jumps, respectively. Compared with the simulation

results in Table 1, the finite-sample power experiences a marginal reduction but remains above

40% for most of the parameter choices. Fig. 6 compares the finite-sample distributions of Tc,ε with

N (0, 1). It is observed that Tc,ε is almost a standard normal under the null, but it has a notably

larger magnitude than N (0, 1) under the alternative. Comparing this with Fig. 5, we observe that

the right tails of the test statistic become smaller with the same jump specifications. This explains

the slightly reduced power of our test in the presence of market microstructure noise.

Table 2: Finite-sample size and power (%) in the presence of market microstructure noise

Nominal size: 5% θ = 0.3 θ = 0.4 θ = 0.5

ε ε ε

c/σ(r̃i) N(c) 0.05 0.07 0.10 N(c) 0.05 0.07 0.10 N(c) 0.05 0.07 0.10

Panel A

No Jump

3 1784 4.90 5.15 5.20 1784 4.80 5.35 5.71 1783 5.06 5.07 5.70

4 1099 4.84 4.95 5.42 1098 5.29 5.10 5.51 1098 5.14 5.08 5.79

5 743 4.94 5.01 5.20 743 5.19 5.02 5.57 742 4.81 5.02 5.70

6 536 4.74 4.89 5.57 536 4.78 5.11 5.58 535 4.96 5.11 5.47

7 404 4.99 5.11 5.29 404 4.86 5.05 5.76 404 4.86 5.17 5.46

8 316 5.15 5.37 5.54 316 4.82 5.08 5.43 315 4.81 5.30 5.82

9 253 5.04 5.41 5.13 254 4.84 5.10 5.63 253 4.96 5.28 5.73

10 208 5.18 5.10 5.60 208 4.84 5.34 5.54 208 5.04 5.08 5.66

Panel B

Moderate Jumps

3 1716 46.00 49.28 51.77 1717 44.98 46.84 49.27 1718 43.08 45.18 47.52

4 1058 45.89 48.56 50.92 1059 43.31 46.76 48.56 1061 41.35 44.77 46.22

5 717 44.95 47.45 50.42 719 42.99 45.50 47.53 720 40.81 43.12 44.93

6 519 44.60 46.65 48.86 519 42.82 43.97 47.01 520 40.25 42.06 45.01

7 392 43.79 45.31 48.98 393 41.00 43.15 46.29 394 40.08 41.95 45.04

8 307 42.45 45.21 48.64 308 40.97 42.47 46.81 308 39.98 41.03 43.83

9 247 41.38 43.95 48.57 248 40.54 42.58 45.62 248 38.45 41.21 43.67

10 203 41.08 44.57 47.51 204 40.04 41.30 45.45 204 38.12 40.03 43.86

Panel C

Large Jumps

3 1594 68.85 70.38 72.44 1596 68.06 69.14 70.54 1599 66.37 68.54 69.68

4 983 68.79 70.51 72.17 986 66.37 68.97 70.42 990 65.60 67.26 68.97

5 668 67.26 69.92 71.80 671 66.37 68.22 69.52 673 65.11 66.50 68.19

6 484 67.69 69.41 70.48 486 65.92 67.13 69.67 489 64.38 66.05 68.07

7 367 66.78 68.71 70.81 369 65.14 66.46 68.54 371 63.68 65.35 67.61

8 288 65.84 68.11 70.24 290 64.22 66.40 68.42 292 62.93 64.89 66.90

9 233 65.83 67.44 70.32 234 64.08 66.29 68.38 236 62.29 64.68 66.67

10 192 65.00 66.96 69.70 193 63.44 65.54 68.23 194 61.91 64.12 66.69

This table reports the finite-sample size and size-adjusted power (%) of 10,000 simulations of the test statistic Tc,ε at 5%

nominal level. All simulated prices are contaminated by the additive Gaussian-t mixture noise and rounding errors. We utilize

the two-step noise reduction method in Section 3.2 to construct the sequence of pseudo-observations with three different pre-

averaging windows, i.e., kn = dθ
√
Ne with θ ∈ {0.3, 0.4, 0.5}. The observations are sampled with different PDS barrier widths

c = Kσ(r̃i), where K ranges from 3 to 10. Different censoring thresholds with ε ∈ {0.05, 0.07, 0.1} are considered. N(c) stands

for the average sampling frequencies.

We then compare the empirical rejection rates of our test with those of 8 classical high-frequency

jump tests constructed from equidistantly calendar-time-sampled observations (Table 3). These

tests include BNS (Barndorff-Nielsen and Shephard, 2006), JO (Jiang and Oomen, 2008), LM (Lee

and Mykland, 2008), ASJ (Aı̈t-Sahalia and Jacod, 2009b), CPR (Corsi et al., 2010), PZ (Podolskij

and Ziggel, 2010), MinRV and MedRV (Andersen et al., 2012). The parameter choices for all these
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Figure 6: Finite-sample distributions of the standardized test statistic Tc,ε in the presence of noise. We plot the finite-sample

distribution under the null (solid line) and compare it with the simulated standard normal (shaded area). Jumps are simulated

with a compounded Poisson process with the intensity λ, and their sizes follow a double exponential distribution with location

parameter 0 and scale parameter b. We consider different parameter choices: (i) λ = 1, b = 0.2
√
θ (dash), (ii) λ = 2, b = 0.2

√
θ

(dash-dot), (iii) λ = 1, b = 0.4
√
θ (dash-circle), and (iv) λ = 2, b = 0.4

√
θ (dash-square). In all cases, we select the pre-averaging

window kn = dθ
√
Ne = 46 with θ = 0.3, the PDS barrier width c = 5σ(r̃i), and the censoring parameter ε = 0.05.

tests are determined in accordance with the recommendations from their original literature.11 Our

analysis, in line with the Monte Carlo results of Dumitru and Urga (2012) and Maneesoonthorn et al.

(2020), demonstrates that nearly all the tests constructed from equidistantly calendar-time-sampled

observations suffer from size distortion and their results become highly unstable under the assumed

additive Gaussian-t mixture noise and rounding errors. This noise significantly distorts their finite-

sample null distributions, particularly at higher sampling frequencies. It might be interesting to see

that the size of the JO test is close to the nominal level. However, a closer examination reveals

that this is caused by two cancelling distortions due to the mixture of Gaussian and t-distributed

noise specification, see Online Appendix B.3 for details. While sparse sampling can alleviate size

distortion, it also substantially weakens the power of these tests.

For more appropriate benchmarks when noise is present, we also consider some noise-robust

versions of classical tests (Table 4) constructed from tick-level or finely sampled observations:

the noise-adjusted PZ (Podolskij and Ziggel, 2010), LM12 (Lee and Mykland, 2012), and ASJL

(Aı̈t-Sahalia et al., 2012). Similar to our test, all these noise-robust tests rely on the pre-averaging

approach of Jacod et al. (2009) to “pre-filter” the noise-contaminated observations.12 The “optimal”

tuning parameters for those tests are selected by minimizing the absolute distance between the

nominal size and the empirical size with the simulated tick-level noise-contaminated observations.13

We find that, while these noise-robust tests reliably control size, their power performance slightly

falls short of that achieved by our proposed test.

Furthermore, we consider the widely employed jump filtering and detection technique from the

recent literature (see, e.g., Aı̈t-Sahalia et al., 2025; Aleti et al., 2025) as an alternative benchmark.

11The parameter choices of the competing tests are reported in Online Appendix B.1.
12With a simplified i.i.d. noise specification, Jiang and Oomen (2008) propose an analytically modified form of JO.

However, it cannot achieve comparable performance under the simulated Gaussian-t mixture noise.
13Note that the optimal tuning parameters are not empirically feasible in practice. Therefore, the results presented

should be interpreted as upper bounds of the performance for these benchmark tests.
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Table 3: Finite-sample size and power (%) of other tests

Nominal size: 5%

Int. (sec) Nspl BNS JO LM ASJ CPR PZ MinRV MedRV

Panel A

No Jump

5 4680 0.33 6.19 98.40 99.98 33.39 89.61 0.00 0.00

15 1560 0.42 5.23 71.12 99.42 18.20 52.91 0.00 0.12

30 780 3.30 5.25 46.82 76.71 13.02 30.25 0.99 2.53

60 390 5.16 5.75 30.82 29.50 8.47 19.57 3.35 5.30

120 195 6.46 8.08 17.73 10.60 7.86 16.76 4.78 6.91

180 130 6.90 8.95 15.10 7.52 8.05 15.96 5.29 8.16

300 78 7.65 10.87 12.12 4.84 8.97 15.58 5.34 8.98

Panel B

Moderate Jumps

5 4680 30.08 31.95 15.80 97.25 10.93 12.40 16.91 26.45

15 1560 36.42 36.33 24.78 94.76 21.13 20.59 32.89 36.17

30 780 33.20 33.89 32.00 77.29 28.64 28.39 28.95 33.25

60 390 28.25 28.25 36.63 45.44 29.58 37.36 24.96 28.61

120 195 21.64 20.90 32.73 24.43 24.18 30.47 20.07 23.51

180 130 17.40 17.16 28.97 16.57 19.34 25.51 16.34 19.42

300 78 13.83 11.33 20.56 11.44 15.93 19.09 13.32 14.74

Panel C

Large Jumps

5 4680 56.35 59.11 43.00 95.12 32.58 36.63 42.72 53.55

15 1560 60.94 61.18 52.39 95.31 47.32 47.58 58.68 60.84

30 780 59.06 59.05 58.46 83.73 54.54 55.57 54.79 58.43

60 390 54.36 54.57 62.78 59.83 56.25 62.88 50.60 54.90

120 195 46.78 46.16 58.81 36.76 50.12 56.74 44.11 49.20

180 130 41.21 40.86 54.93 26.94 44.83 51.91 39.32 44.13

300 78 34.07 33.19 45.73 16.14 38.76 43.76 33.66 37.49

This table reports the finite-sample size and size-adjusted power (%) of 10,000 simulations of 8 classical tests at 5% nominal level:

BNS (Barndorff-Nielsen and Shephard, 2006), JO (Jiang and Oomen, 2008), LM (Lee and Mykland, 2008), ASJ (Aı̈t-Sahalia

and Jacod, 2009b), CPR (Corsi et al., 2010), PZ (Podolskij and Ziggel, 2010), MinRV and MedRV (Andersen et al., 2012). All

these tests are constructed on observations equidistantly sampled with various intervals in calendar time: 5, 15, 30, 60, 120,

180 and 300 seconds, and “Nspl” stands for the sampling frequencies.

Table 4: Finite-sample size and power (%) of other noise-robust tests

Nominal size: 5%

Int. (sec) Nspl PZ* LM12 ASJL

Panel A: No Jump
tick 23400 5.29 5.03 5.12

5 4680 4.96 8.83 8.79

Panel B: Moderate Jumps
tick 23400 38.57 22.70 38.22

5 4680 30.38 18.79 17.66

Panel C: Large Jumps
tick 23400 64.78 40.76 63.50

5 7680 56.49 31.38 41.96

This table reports the finite-sample size and size-adjusted power (%) of 10,000 simulations of 3

noise-robust tests at 5% nominal level: Noise-adjusted PZ (Podolskij and Ziggel, 2010), LM12

(Lee and Mykland, 2012), and ASJL (Aı̈t-Sahalia et al., 2012). All these tests are constructed on

tick-level and 5-second-sampled observations. The tuning parameters for those tests are selected

by minimizing the absolute distance between the nominal size and the empirical size with the

simulated tick-level noise-contaminated observations.

This method is based on the sequential detection approach of Andersen et al. (2007b) and the

thresholding technique of Mancini (2009). Specifically, returns are classified as jumps if their

absolute value exceeds the threshold kσtn,i∆
$
n,i, where the spot volatility is typically estimated

recursively on a backward-looking window with a jump- and noise-robust procedure. With the

rolling spot volatility estimates, one periodically checks (e.g., every few transactions or every few
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minutes) whether a return has exceeded k standard deviations. Since our focus is to test for the

existence of jumps over a fixed interval (a trading day), we adjust the threshold parameter k using

both the Šidák and Bonferroni corrections—two widely used methods for controlling the family-wise

error rate (FWER)—to maintain a nominal size of 5% for the overall procedure and address the

multiple testing issue.14

Table 5: Finite-sample size and power (%) of truncation-based filtering technique

Nominal size: 5%

Panel A

No Jump (with FWER control) Panel B Panel C

Ticks Nspl Šidák Bonferroni Moderate Jumps Large Jumps

1 23400 100.00 100.00 9.64 29.57

5 4680 100.00 100.00 15.33 39.49

15 1560 99.97 99.96 23.41 49.80

30 780 83.41 82.53 31.92 57.67

60 390 37.31 35.72 38.12 62.78

120 195 15.54 15.18 37.22 61.23

180 130 10.19 10.04 33.09 57.26

300 78 6.99 7.10 26.45 50.42

This table reports the finite-sample size and size-adjusted power (%) of 10,000 simulations of

the truncation-based jump filtering technique. Observations are sampled at various multiples of

ticks, where “Nspl” stands for the corresponding sampling frequencies. The truncation thresh-

olds are constructed from the localized pre-averaged bipower variation of Podolskij and Vetter

(2009) computed within each backward-looking window of 1,800 ticks. The threshold parameter

k is adjusted with both the Šidák and Bonferroni corrections, and $ = 0.5.

Table 5 presents the finite-sample size and size-adjusted power of the truncation-based filtering

technique, where we estimate the spot volatilities with the localized pre-averaged bipower variation of

Podolskij and Vetter (2009) and evaluate returns every few ticks.15 Although the filtering technique

exhibits reliable size and power performance in the absence of noise with various choices of volatility

estimators (see Table B.1 in Online Appendix B.2), our empirically calibrated simulations under

noise contamination reveal that it tends to spuriously detect normal returns as jumps, particularly

when sampled at a very high frequency. Furthermore, similar to the empirical applications of

Äıt-Sahalia et al. (2025), we consider a wide range of k from 3.5 to 9, and test for both tick-time- and

calendar-time-sampled returns across various sampling frequencies. We find that both inadequate

downsampling and low k-values lead to considerable overrejection under the null, whereas further

sparse sampling and more stringent truncation thresholds result in a loss of power under the

alternatives (see Figs. B.1 and B.2 in Online Appendix B.2), which indicates the difficulty of

balancing such trade-offs when employing the truncation-based filtering technique.

14We note that both the Šidák and Bonferroni corrections are highly conservative, as the standardized returns may
exhibit serial correlation. A simulation-based procedure adopted by Christensen et al. (2022) can generate data-driven
critical values from AR(1) processes that account for serial correlations. However, as the critical values need to be
adjusted downwards to achieve the correct size, it results in more inflated rejection rates than those reported in
Table 5, and is therefore omitted here.

15We also examine returns sampled in equidistant calendar-time intervals, with the adjustments for intraday
volatility pattern incorporated, and observe similar finite-sample performance, see Table B.2 in Online Appendix B.2.
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As illustrated in Table 2, our PDS-based test demonstrates robustness across various parameter

choices: (i) barrier width c, (ii) censoring parameter ε, and (iii) pre-averaging window kn = dθ
√
Ne,

even when we consider such a complicated and realistic noise specification. Furthermore, our

test remains competitive and, often superior, to those noise-robust tests with optimal parameter

choices. While we refrain from providing optimal parameter choices, we offer recommended ranges

for practitioners:

(i) Choose c as a multiple of the standard deviation of r̃i, i.e., c = Kσ(r̃i), with 3 ≤ K ≤ 10.

(ii) Choose ε in [0.03, 0.15].

(iii) Choose the pre-averaging window kn = dθ
√
Ne with θ ∈ [0.2, 0.8].

Through extensive simulation studies with different specifications of market frictions, we believe

that the recommended parameter choices work reasonably well in finite samples when the number

of intraday tick-level observations is no less than 10,000. Additional simulation results can be found

in Online Appendix B.3.

5 Empirical Analysis

In this section, we employ our new jump test on the high-frequency transaction data of 10 stocks

listed on the New York Stock Exchange (NYSE): American Express (AXP), Boeing (BA), Disney

(DIS), IBM, Johnson & Johnson (JNJ), JP Morgan (JPM), Merck (MRK), McDonald’s (MCD),

Procter & Gamble (PG), and Walmart (WMT). Our Trade and Quote (TAQ) dataset includes all

transactions from 9:30 am to 4:00 pm on each trading day in 2020. As is standard in empirical

research involving high-frequency financial data, we apply filters, as outlined in Barndorff-Nielsen

et al. (2009), to eliminate obvious data errors, remove all transactions in the original record that are

later corrected, canceled or otherwise invalidated, and retain only transactions from NYSE. Table 6

reports descriptive statistics of trades on these selected NYSE stocks, which include the number of

trades, observed transaction prices in dollar terms, and intraday log-returns in basis points. Our

PDS-based test utilizes the same tuning parameters as those in Section 4: the PDS barrier width

c = Kσ(r̃i) with K ranging from 4 to 6, the censoring parameter ε = 0.05, and three pre-averaging

windows kn = dθ
√
Ne with θ ∈ {0.3, 0.4, 0.5}.

Table 7 reports the proportions of trading days with rejections in 2020, as determined by our

PDS-based test. For the selected stocks, the proportions of trading days with identified jumps are no

more than 20%, with only AXP and MCD identified to exhibit over 15% of trading days containing

jumps. There is little variation in the rejection rates across different stocks, and the results are

relatively stable with different parameter choices. For each stock, there is a slight decrease in the

percentage of identified jumps when we employ a larger barrier width c for PDS, i.e., sample less

frequently. To visualize the testing results for the selected stocks in 2020, we aggregate all stock-day

outcomes, which yields a total of 2530 stock-day pairs. Fig. 7 illustrates the empirical distributions

of the standardized test statistic (solid line) and compares it with the standard normal distribution

N (0, 1). Relative to the limiting distribution under the null hypothesis of no jump (shaded area),
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Table 6: Descriptive statistics of daily trades on selected NYSE stocks

Stock AXP BA DIS IBM JNJ

Number of trades

Min 3171 10556 9785 5047 6383

Max 59273 245802 125550 49178 71733

Mean 19351 55314 37962 17818 22966

Std Dev 9205 38352 20390 8265 11561

Transaction prices

Min 67.03 89.00 79.07 90.56 109.16

Max 138.16 349.45 183.40 158.78 157.66

Mean 100.88 181.46 121.78 123.16 143.33

Std Dev 14.72 51.15 20.12 11.57 8.53

Intraday log-returns

(1× 10−4)

Min −123.24 −163.29 −100.49 −143.49 −110.04

Max 97.48 129.22 75.30 143.49 200.25

Mean 0.00 0.00 0.00 0.00 0.00

Std Dev 1.78 1.85 1.17 1.44 1.23

Stock JPM MRK MCD PG WMT

Number of trades

Min 12593 5787 3968 7516 9845

Max 156987 71570 55024 76337 90546

Mean 44738 22833 16096 23224 26148

Std Dev 25335 11058 7838 10422 13032

Transaction prices

Min 76.92 65.26 124.23 94.31 102.00

Max 141.10 92.14 231.91 146.92 153.60

Mean 103.17 79.86 195.17 125.19 128.55

Std Dev 14.28 4.55 21.74 11.63 12.04

Intraday log-returns

(1× 10−4)

Min −103.80 −177.00 −154.39 −132.25 −305.08

Max 103.80 117.50 142.80 207.58 190.19

Mean 0.00 0.00 0.00 0.00 0.00

Std Dev 1.06 1.26 1.74 1.33 1.13

This table contains summary statistics for the number of trades, observed transaction prices in dollars, and intraday log-returns

in basis points for 10 selected NYSE stocks in 2020. Data are collected from the TAQ database which includes all transactions

from 9:30 am to 4:00 pm in each trading day. We apply filters, as outlined in Barndorff-Nielsen et al. (2009), to eliminate clear

data errors, remove all transactions in the original record that are later corrected, cancelled or otherwise invalidated, and keep

transactions on NYSE only.

the empirical distribution of our test statistic deviates slightly towards the right side, but maintains

a bell shape centered around 0.5.

Table 7: Empirical rejection rates (%) for selected NYSE stocks

kn c/σ(r̃i) AXP BA DIS IBM JNJ JPM MRK MCD PG WMT

θ = 0.3

4 17.00 10.67 9.88 13.04 13.83 10.67 10.67 16.60 13.44 11.07

5 15.81 10.67 9.49 12.25 11.86 10.67 10.28 16.21 11.86 10.67

6 14.23 9.88 9.09 12.25 11.46 10.28 9.88 15.02 11.86 11.07

θ = 0.4

4 16.21 9.88 10.28 13.44 12.65 10.67 9.88 15.81 12.65 12.25

5 15.02 9.88 9.49 12.25 12.25 10.67 9.49 15.42 11.86 11.07

6 14.23 9.49 9.49 11.46 11.07 9.88 9.49 14.23 11.46 10.28

θ = 0.5

4 15.81 10.28 10.28 12.25 13.04 10.28 10.28 15.81 12.25 11.46

5 14.23 9.09 9.88 12.25 11.46 9.49 9.09 15.02 11.86 10.67

6 13.44 8.70 9.09 11.46 11.07 9.88 9.09 14.62 11.07 10.67

This table reports the proportions of days with jumps identified by the PDS-based test for 10 NYSE stocks in 2020. We use

three pre-averaging windows kn = dθ
√
Ne with θ ∈ {0.3, 0.4, 0.5}, different PDS barrier widths c = Kσ(r̃i), i.e., the integer

multiple of the standard deviation of pre-averaged returns, with K ranging from 4 to 6, and the censoring parameter ε = 0.05.

The total number of trading days is 253.
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Figure 7: Testing results for selected NYSE stocks in 2020. We plot the empirical distribution of the standardized test statistic

for all 2530 stock-day pairs and, for comparison, the simulated standard normal distribution (shaded area). We use the PDS

barrier width c = 4σ(r̃i), the censoring parameter ε = 0.05, and the pre-averaging window kn = dθ
√
Ne with θ = 0.3, which

corresponds to the first row in Table 7.

To eliminate spurious detections due to the multiple testing issue, Bajgrowicz et al. (2016)

propose a formal treatment of the over-identification bias with double asymptotics when the jump

tests are applied over a sample of many days. We apply their thresholding methods to our results: (i)

the universal threshold
√

2 ln 253, and (ii) the threshold based on the false discovery rate (FDR).16

The adjusted results of our test for all selected stocks are reported in Table 8. It is noteworthy that

our testing results are fairly robust to the control of spurious detections, which underscores the

empirical reliability of our PDS-based test.

The empirical results for alternative calendar-time-sampling-based and noise-robust tests—both

with and without the control of spurious detections—are reported in Online Appendix B.4. We

find that the outcomes of calendar-time-based tests vary substantially with the sampling frequency,

whereas the noise-robust tests constructed from all available tick-level observations generally identify

fewer days with jumps. Especially, the truncation-based detection method flags jumps on over 60%

of trading days when returns are sampled every 30 seconds, which echoes the findings of Äıt-Sahalia

et al. (2025), but this proportion drops to about 20% when the data are down-sampled to 5-minute

intervals. Our proposed test yields results comparable to certain noise-robust benchmarks—such as

the ASJL test constructed from tick-level data—but exhibits superior robustness to the control of

spurious detections.

6 Conclusions

This paper introduces a novel nonparametric high-frequency jump test for a discretely observed

Itô semimartingale. Our approach utilizes a path-dependent sampling scheme for the tick-level

16For the vector of one-side test statistics (S1, S2, . . . , SN )′ which converge to i.i.d. standard normal random
variables under the null, the universal threshold is

√
2 lnN (Bajgrowicz et al., 2016). The data-adaptive FDR threshold

is determined from the observed p-value distribution by the Benjamini–Hochberg procedure.

25



Table 8: Adjusted empirical rejection rates (%) for selected NYSE stocks

kn c/σ(r̃i) AXP BA DIS IBM JNJ JPM MRK MCD PG WMT

Panel A

Universal threshold

θ = 0.3

4 15.02 9.49 9.09 12.25 12.25 7.91 9.49 14.62 11.07 9.49

5 13.83 9.88 8.70 11.07 10.28 8.30 9.09 14.62 9.88 8.70

6 12.65 8.70 8.30 11.07 10.28 7.91 8.70 13.44 9.88 9.09

θ = 0.4

4 14.23 8.70 9.49 12.25 11.07 8.30 8.70 14.23 10.28 9.88

5 13.44 8.70 8.70 11.46 11.07 8.30 8.30 13.83 9.88 9.09

6 13.04 8.70 8.70 10.67 9.88 7.91 8.30 12.65 9.49 8.70

θ = 0.5

4 13.83 9.09 9.09 11.46 11.86 8.30 9.09 13.83 10.28 9.49

5 12.65 8.30 9.09 11.07 10.28 7.51 7.91 13.44 9.88 8.70

6 11.86 7.91 8.30 10.67 9.88 7.51 8.30 13.04 9.49 9.09

Panel B

FDR threshold

θ = 0.3

4 13.44 9.09 8.70 11.86 11.07 7.11 9.09 13.44 9.88 8.70

5 12.65 9.49 8.70 11.07 9.88 7.51 8.70 13.44 9.09 8.30

6 11.86 8.30 8.30 10.67 9.88 7.51 8.30 12.65 9.09 8.30

θ = 0.4

4 13.04 8.70 9.09 11.86 10.28 7.51 8.30 13.04 9.88 9.09

5 12.25 8.30 8.30 11.07 10.67 7.51 8.30 12.65 9.09 8.70

6 12.25 8.70 8.30 9.88 9.49 7.51 7.91 11.86 9.09 8.30

θ = 0.5

4 12.65 9.09 8.30 11.07 11.07 7.51 9.09 12.25 9.09 9.09

5 11.46 7.91 8.70 10.67 9.49 7.11 7.91 12.25 9.09 7.91

6 11.07 7.91 8.30 10.28 9.49 6.72 7.91 12.25 9.09 8.30

This table reports the proportions of days with jumps identified by the PDS-based test for 10 NYSE stocks in 2020, with the

control of spurious detections using (i) the universal threshold and (ii) the FDR threshold of Bajgrowicz et al. (2016). We use

three pre-averaging windows kn = dθ
√
Ne with θ ∈ {0.3, 0.4, 0.5}, different PDS barrier widths c = Kσ(r̃i), i.e., the integer

multiple of the standard deviation of pre-averaged returns, with K ranging from 4 to 6, and the censoring parameter ε = 0.05.

The total number of trading days is 253.

price observations. The key intuition behind the construction of our test is that, different from

a continuous price increase or decrease over a certain time interval, a discontinuous shift with

a larger magnitude will always trigger an exit-time event and induce a disproportionately large

threshold exceedance under infill asymptotics. Additionally, a two-step noise reduction technique

is designed to alleviate the impact of weakly dependent market microstructure noise. Through

extensive simulations, we validate the reliable finite-sample performance of our test under empirically

realistic specifications for price observations, which is convincingly superior to a comprehensive

collection of “classical” methods. The Monte Carlo results demonstrate that the performance of our

test is robust to various aggregation levels and tuning parameter choices. An empirical analysis

of NYSE-traded stocks provides strong statistical evidence for jumps across all selected stocks,

and the results are robust to the correction of spurious detections. This methodology stands as

the first exploration of the duration-based approach to test for jumps, which offers a robust and

easy-to-implement tool for researchers and practitioners.
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Appendix A Proofs

A.1 Strong Approximation and Some Useful Lemmas

In this section, we establish a strong approximation result in the spirit of Chernozhukov et al.

(2013, 2019), which couples the complicated observation scheme under Assumption 2 with the much

simpler limiting observation scheme (t̆n,i) in Remark 3. Unless specifically stated, we assume X(ω)

to be continuous, i.e., ω ∈ Ω′.

In all the sequel, the positive constants K, K ′, K ′′ may vary from line to line, but never depend on

n, N , and N (c), and the various indices i, j. We use 〈M,N〉 to denote the quadratic covariation of M

and N . When M and N are d- and r-dimensional, respectively, then 〈M,N〉 = (〈M i, N j〉)1≤i≤d,1≤j≤r
is a (d× r)-dimensional process, and also 〈M〉 ≡ 〈M,M〉.

Similar to the Assumption (S-HON) of Jacod et al. (2019), we impose the following stronger

assumption without loss of generality by a standard localization procedure:

Assumption A.1. We have Assumptions 1 and 2 with τ1 =∞. Moreover, the function δ and the

processes µ, σ, λ, X are bounded, and we have N ≤ K∆−1
n and E[∆p

n,i] ≤ K ′∆
p
n.

A.1.1 Intrinsic time. With an absolutely continuous time change from the calendar time t to

intrinsic time τ(t):

t→ τ(t) =

∫ t

0
σ2
sds, (A.1)

the intrinsic-time counterpart of X adapted to (Ft)t≥0 is

X̃τ(t) = X̃0 +

∫ τ(t)

0
µ̃sds+ W̃τ(t), (A.2)

where µ̃ is time-changed processes corresponding to µ in Eq. (1), and W̃ = (W̃τ )τ≥0 is a Brownian

motion evolving in intrinsic time. The relation X̃τ(t) = Xt holds for all t, and the τ -time process

X̃ = (X̃τ(t))t≥0 is adapted to (F̃τ(t))t≥0 with the τ -time σ-algebra satisfying F̃τ(t) = Ft (Lemma 1.2,

Barndorff-Nielsen and Shiryaev, 2015). Particularly, when X is a calendar-time local martingale, X̃

is an intrinsic-time Brownian motion (with an initial condition), which is implied by the Dambis-

Dubins-Schwarz theorem. Following Mykland and Zhang (2009), the drift can be harmlessly assumed

away, as the results on convergence in probability and stable convergence—established in Appendix

A.3 and Appendix A.4, respectively—remain valid by a contiguity argument.

A.1.2 Observation schemes. We start with two sequences of observations of X(ω):

(I) Under Assumption 2: Xti , for all i = 0, 1, 2, . . . , N ,

(II) Equidistant observations in intrinsic time: X̃i∆n , for all i = 0, 1, 2, . . . , N .
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For the ease of notation, we denote ti ≡ tn,i under Assumption 2, and t̆i ≡ τ−1(i∆n). The increments

between successive observations are denoted by

ri = Xti −Xti−1 and r̆i = Xt̆i
−Xt̆i−1

, (A.3)

for all i ∈ {1, 2, . . . , N}. Lemma A.1 of Jacod et al. (2017) indicates the sequence (I) is an (Fnt )-

martingale with Gaussian increments. Different from the independent but not identically distributed

increments ri, the increments r̆i are i.i.d. normal with zero mean and variance ∆n, which make the

sequence (II) a homogenous Gaussian random walk.

Remark A.1. We assume both sequences have the same number N ≡ Nn
1 of observations. As-

sumption A.1 and Eq. (6) indicate that Tn = τ−1(N∆n) is bounded and Tn
P−→ 1 as n → ∞.

Moreover, by the triangle inequality and law of iterated expectations, Assumption 2 further

implies E[|N∆n − τ(1)|] ≤ K∆n, hence |T − 1| = Op(∆n). That being said, the probabil-

ity of jump occurrence in the “differenced part” of observation interval is negligible; see more

discussions in Section 2.3 of Aı̈t-Sahalia and Jacod (2009). To fix ideas, let δ → 0, then

P(X ′′t 6= 0 for some t ∈ [0, T ]4 [0, 1]) ≤ P(|T −1| > δ) +P(X ′′t 6= 0 for some t ∈ [1− δ, 1 + δ]) = o(1),

since we only assume potential jumps in (0, 1).

For each sequence of observations, we conduct the PDS with the barrier width c = m
√

∆n.

We denote the PDS returns from each sequence of sampled observations by (r
(c)
i )i∈{1,2,...,N(c)} and

(r̆
(c)
i )i∈{1,2,...,N̆(c)}, respectively. Note that the PDS returns r̆

(c)
i are i.i.d., as implied by the strong

Markov property of the Gaussian random walk (II) and the symmetric feature of the stopping rule

in Eq. (7).

A.1.3 Strong Approximation. We define two supremum processes (Yj)1≤j≤N and (Y̆j)1≤j≤N :

Yj = sup
1≤i≤j

|Xti | and Y̆j = sup
1≤i≤j

|Xt̆i
|. (A.4)

Lemma A.1. For any fixed 1 ≤ j ≤ N , it holds for the supremum processes that

|Yj − Y̆j | = Op(j
2∆1+κ/2

n

√
Ln), (A.5)

where for the ease of notation, Ln ≡ logN � log(∆−1
n ).

Proof. Let Dn ≡ σ(∆n,1,∆n,2, . . .) denote the σ-algebra generated by observation times. Note that

by the triangle inequality of `∞-norm

|Yj − Y̆j | =
∣∣∣max
1≤i≤j

|Xti | − max
1≤i≤j

|Xt̆i
|
∣∣∣

≤ max
1≤i≤j

|Xti −Xt̆i
|.

(A.6)
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Note that by definition, we have with probability approaching 1,

Xti −Xt̆i
=

i∑

`=1

(∫ t`

t`−1

σsdWs −
∫ t̆`

t̆`−1

σsdWs

)

=
i∑

`=1

(
σt`−1

(Wt` −Wt`−1
)− σt̆`−1

(Wt̆`
−Wt̆`−1

)
)

+
i∑

`=1

(∫ t`

t`−1

(σs − σt`−1
)dWs −

∫ t̆`

t̆`−1

(σs − σt̆`−1
)dWs

)

≡ A(1)
n,i +A

(2)
n,i .

(A.7)

For the first term, by the maximal inequality of Gaussian variables, we have

E
[

max
1≤i≤j

|A(1)
n,i |
∣∣∣Dn

]
≤ K

√√√√Ln max
1≤i≤j

∣∣∣∣
i∑

`=1

(∆n,`λt`−1
−∆n)

∣∣∣∣. (A.8)

For the right hand side, note that by the triangle inequality and Assumption 2 (ii),

max
1≤i≤j

∣∣∣∣
i∑

`=1

E
[
|∆n,`λt`−1

−∆n|
∣∣Fn`−1

]∣∣∣∣ ≤ Kj∆2+κ
n . (A.9)

Combining Eq. (A.8) and Eq. (A.9), it follows the law of iterated expectation that

max
1≤i≤j

|A(1)
n,i | = Op(j∆

1+κ/2
n

√
Ln). (A.10)

For the second term in Eq. (A.7), by the maximal inequality, we have

E
[

max
1≤i≤j

|A(2)
n,i |
]
≤ Kj max

1≤i≤j
E[|A(2)

n,i |] ≤ Kj2∆3/2+κ/2
n , (A.11)

where the last step is by the Burkholder-Davis-Gundy inequality and smoothness of σ regulated

by Assumption 1 (ii). The proof of required statement is completed by the triangle inequality and

Eqs. (A.6), (A.7), (A.10) and (A.11).

We consider the first sampled observation times for both sequences:

Π
(c)
1 = inf{i : |Xti −X0| ≥ c} and Π̆

(c)
1 = inf{i : |X̃i∆n − X̃0| ≥ c}, (A.12)

which means that the Π
(c)
1 -th and the Π̆

(c)
1 -th observations in (I) and (II), respectively, are the first

to breach the symmetric double barrier. Lemma A.2 indicates that the first exit times of both

sequences coincide with probability approaching 1 under infill asymptotics.
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Lemma A.2. For c = m
√

∆n, let N
(c) ≡ N (c) ∧ N̆ (c).

(i) For all integer p ≥ 1, E[(Π̆
(c)
1 )p] <∞.

(ii) The first exit times for both sequences (I) and (II) satisfy

P
(

max
1≤i≤N(c)

|Π(c)
i − Π̆

(c)
i | ≥ 1

)
≤ K∆κ/2

n

√
Ln. (A.13)

Proof. (i) Note that Π̆
(c)
1 has the same distribution as the number of steps for a standard Gaussian

random walk (Zi)i=1,2,... to exit the double barrier (−m,m). Let h = inf{τ : W̃τ /∈ (−m,m)} denote

the first exit time of the time-changed Brownian motion W̃ from (−m,m), then it is clear that

Π̆
(c)
1 − 1 ≤ h by the continuity of Brownian motion, thus E[(Π̆

(c)
1 − 1)p] ≤ E[hp] for all p > 0. The

Laplace transform of h is well-known in the literature, see, e.g., Eq. (3.0.1) in Borodin and Salminen

(2002): E[e−λh] = cosh−1
√

2λm, and its Maclaurin series implies that E[hp] < ∞ for all integer

p ≥ 1. This completes the proof.

(ii) We start from the first term. By definition, we have

P(Π
(c)
1 ≥ k) = P(Yk ≤ c) and P(Π̆

(c)
1 ≥ k) = P(Y̆k ≤ c). (A.14)

Let ε > 0 be a positive number that can be arbitrarily small but not depend on N , it follows

Lemma A.1 and the Markov inequality that

P(Π
(c)
1 − Π̆

(c)
1 ≥ 1) =

N∑

k=1

P(Π̆
(c)
1 = k)P(Π

(c)
1 > k|Π̆(c)

1 = k)

≤
N∑

k=1

P(Π̆
(c)
1 = k)P(Y̆k − Yk > ε)

≤ K∆1+κ/2
n

√
Ln

[ N∑

k=1

k2P(Π̆
(c)
1 = k)

]

≤ K∆1+κ/2
n

√
Ln,

(A.15)

where the last line uses
∑N

k=1 k
2P(Π̆

(c)
1 = k) ≤ E[(Π̆

(c)
1 )2] ≤ K by Lemma A.2 (i). Similarly, we can

also show

P(Π̆
(c)
1 −Π

(c)
1 ≥ 1) ≤ K∆1+κ/2

n

√
Ln. (A.16)

Combining above results, we have

P(|Π(c)
1 − Π̆

(c)
1 | ≥ 1) ≤ K∆1+κ/2

n

√
Ln. (A.17)

Let Ei = {|Π(c)
i − Π̆

(c)
i | ≥ 1 and Π

(c)
j = Π̆

(c)
j for all 1 ≤ j ≤ i− 1} ∈ Fti be the event that the first

discrepancy occurs at step i, and E1 = {|Π(c)
1 − Π̆

(c)
1 | ≥ 1}. By the renewal property, we have

Π
(c)
i − Π̆

(c)
i
L
= Π

(c)
1 − Π̆

(c)
1 conditional on Π

(c)
j = Π̆

(c)
j for all 1 ≤ j ≤ i− 1. Using the same argument
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as in driving Eq. (A.17), we can show that P(Ei|Fti−1) is bounded by K∆
1+κ/2
n

√
Ln. Therefore, it

holds that

P
(

max
1≤i≤N(c)

|Π(c)
i − Π̆

(c)
i | ≥ 1

)
≤ P



N

(c)⋃

i=1

Ei


 ≤

∞∑

i=1

E
[
1Ei1{i≤N(c)}

]

=
∞∑

i=1

E
[
E[1Ei |Fti−1 ]1{i≤N(c)}

]
≤ K∆1+κ/2

n

√
Ln E[N

(c)
]

≤ K ′∆κ/2
n

√
Ln,

(A.18)

which follows from the fact that 1{i≤N(c)} ∈ Fti−1 , and E[N
(c)

] ≤ K∆−1
n ; see Lemma A.6 (ii). The

proof is then completed.

Lemma A.3. (Strong Approximation for Sampled Returns) It holds that

P
(

max
1≤i≤N(c)

|r(c)
i − r̆

(c)
i | > K∆1+κ/8

n

)
≤ K ′∆κ/8

n

√
Ln. (A.19)

Proof. It follows from the maximal inequality of Gaussian variables that

E
[

max
1≤i≤N

|ri − r̆i|
∣∣∣Dn

]
≤ K

√
Ln max

1≤i≤N

√∣∣E[∆n,iλti−1 |Fni−1]−∆n

∣∣ ≤ K∆1+κ/2
n

√
Ln. (A.20)

Let En ≡ {Π(c)
i = Π̆

(c)
i for all 1 ≤ i ≤ N (c) = N̆ (c)}, we have P(E{

n) ≤ K∆
κ/2
n
√
Ln by Lemma A.2

(ii). Note that by the maximal inequality, we have for any p > 1,

E
[

max
1≤i≤N̆(c)

|Π̆(c)
i − Π̆

(c)
i−1|p

]
≤ N̆ (c) max

1≤i≤N̆(c)
E[|Π̆(c)

i − Π̆
(c)
i−1|p] ≤ Kp∆

−1
n , (A.21)

where the last step is by Lemma A.2 (i). Taking p > 4/κ gives

E
[

max
1≤i≤N̆(c)

|Π̆(c)
i − Π̆

(c)
i−1|2

]
≤ K∆−κ/2n . (A.22)

Moreover, by Cauchy-Schwarz inequality, we obtain

E
[

max
1≤i≤N̆(c)

|r(c)
i − r̆

(c)
i |
∣∣∣En

]
≤
√
E
[

max
1≤i≤N̆(c)

|Π̆(c)
i − Π̆

(c)
i−1|2

]
E
[

max
1≤`≤n

|r` − r̆`|2
]

≤ K∆1+κ/4
n

√
Ln.

(A.23)

OA.6



Therefore, we have

P
(

max
1≤i≤N(c)

|r(c)
i − r̆

(c)
i | > K∆1+κ/8

n

)

≤ P
(

max
1≤i≤N̆(c)

|r(c)
i − r̆

(c)
i | > K∆1+κ/8

n

∣∣∣En
)

+ P(E{
n)

≤ K ′(∆κ/8
n

√
Ln + ∆κ/2

n

√
Ln).

(A.24)

This completes the proof.

Lemma A.3 shows the statistics constructed from sampled returns under observation schemes (I)

and (II) are equivalent up to a ∆
−1−κ/8
n normalization, which is sufficient for the c−1 � ∆

−1/2
n or√

N̆ (c) � ∆
−1/2
n order in conventional CLT. The requirement is only κ > 0.

The above type of strong approximation results are similarly used in, e.g., the proof of Theorem

5.1 in Chernozhukov et al. (2013) and the proof of Theorem 4.3 in Chernozhukov et al. (2019). It

allows us to focus on the limiting behavior of functionals of (|r̆(c)
i |/c)2, the result can be sufficiently

extended to those of (|r(c)
i |/c)2. To fix ideas, consider a possibly multi-dimensional Lipschitz function

f(·). Suppose that

1

N̆ (c)

N̆(c)∑

i=1

f
((r̆

(c)
i )2

c2

)
P−→ µf , and

1√
N̆ (c)

N̆(c)∑

i=1

(
f
((r̆

(c)
i )2

c2

)
− µf

)
L−→ N (0,Σf ). (A.25)

Let E′n ≡ {Π(c)
i = Π̆

(c)
i for all 1 ≤ i ≤ N̆ (c)} ∩ {max1≤i≤N̆(c) |(r(c)

i )2 − (r̆
(c)
i )2|/c2 > K∆

1/2+κ/16
n }.

Note that a2 − b2 = (a− b)2 + 2b(a− b), it follows from triangle inequality that

max
1≤i≤N̆(c)

|(r(c)
i )2−(r̆

(c)
i )2| ≤

(
max

1≤i≤N̆(c)
|r(c)
i −r̆

(c)
i |
)2

+2
(

max
1≤i≤N̆(c)

|r̆(c)
i |
)(

max
1≤i≤N̆(c)

|r(c)
i −r̆

(c)
i |
)
. (A.26)

Note that max1≤i≤N̆(c) |r̆(c)
i | = Op(∆

1/2
n
√
Ln) = op(∆

1/2−κ/16
n ) by the maximal inequality of sub-

Gaussian variables. Then it follows from Lemma A.2 (ii), A.3, and Eq. (A.26) that P(E′n) ≥
1−K∆

κ/8
n
√
Ln. Therefore, for each ε > 0,
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P
(∥∥∥∥

1

N (c)

N(c)∑

i=1

f
((r

(c)
i )2

c2

)
− µf

∥∥∥∥> ε

)

≤ P
(∥∥∥∥

1

N̆ (c)

N̆(c)∑

i=1

f
((r̆

(c)
i )2

c2

)
− µf

∥∥∥∥>
ε

2

)
+ P

(∥∥∥∥
1

N (c)

N(c)∑

i=1

f
((r

(c)
i )2

c2

)
− 1

N̆ (c)

N̆(c)∑

i=1

f
((r̆

(c)
i )2

c2

)∥∥∥∥>
ε

2

)

≤ P
(∥∥∥∥

1

N̆ (c)

N̆(c)∑

i=1

f
((r̆

(c)
i )2

c2

)
− µf

∥∥∥∥>
ε

2

)
+ P

(
K max

1≤i≤N̆(c)

|(r(c)
i )2 − (r̆

(c)
i )2|

c2
>
ε

2

∣∣∣E′n
)

+ P(E′{n )

= P
(∥∥∥∥

1

N̆ (c)

N̆(c)∑

i=1

f
((r̆

(c)
i )2

c2

)
− µf

∥∥∥∥>
ε

2

)
+K∆κ/8

n

√
Ln.

(A.27)

Let Z ∼ N (0,Σf ). For each A ⊂ Rdim(f) and ε > 0, let Aε ≡ {x ∈ Rdim(f) : infy∈A ‖x − y‖ ≤ ε}
denote the ε-enlargement of A, then we have

P
(

1√
N (c)

N(c)∑

i=1

(
f
((r

(c)
i )2

c2

)
− µf

)
∈ A

)

≤ P
(

1√
N̆ (c)

N̆(c)∑

i=1

(
f
((r̆

(c)
i )2

c2

)
− µf

)
∈ Aε

)
+ P

(∥∥∥∥
1√
N (c)

N(c)∑

i=1

f
((r

(c)
i )2

c2

)
− 1√

N̆ (c)

N̆(c)∑

i=1

f
((r̆

(c)
i )2

c2

)∥∥∥∥ > ε

)

≤ P
(

1√
N̆ (c)

N̆(c)∑

i=1

(
f
((r̆

(c)
i )2

c2

)
− µf

)
∈ Aε

)
+ P

(
K
√
N̆ (c) max

1≤i≤N̆(c)

|(r(c)
i )2 − (r̆

(c)
i )2|

c2
> ε
∣∣∣E′n

)
+ P(E′{n )

= P(Z ∈ A) + P(Z ∈ Aε \A) +K∆κ/8
n

√
Ln.

(A.28)

Taking ε→ 0, the right-hand side becomes P(Z ∈ A) + o(1). Similarly, one can show

P
(

1√
N (c)

N(c)∑

i=1

(
f
((r

(c)
i )2

c2

)
− µf

)
∈ A

)
≥ P(Z ∈ A)− o(1), (A.29)

which is the desired result.

A.1.4 Impact of Small Jumps. Under Assumption 1, we consider the jump component of X

in the following form, which is valid as the jumps are of finite variation:

X ′′t =

∫ t

0

∫

R
δ(s, x)p(ds, dx), (A.30)
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where δ(ω, t, x) on Ω × R+ × R is predictable, p(dt, dx) is a Poisson random measure on R+ × R
with a compensator q(dt, dx) = dt⊗ λ(dx), and λ is a σ-finite measure on R+. Moreover, we have

lim
u→0+

ur
∫

{|fm|≥u}
λ(dx) ≤

∫

{|fm|≥u}
|fm|rλ(dx) <∞, (A.31)

which implies, as u→ 0,

λ({x : |fm(x)| ≥ u}) ≡
∫

{|fm|≥u}
λ(dx) = O(u−r). (A.32)

We split the jumps into “big” and “small” ones by selecting a sequence (un) of positive real numbers

satisfying:
un√
∆n
→∞ and un∆β−1/2

n → 0, (A.33)

for any 0 < β ≤ 1/2. Then we rewrite the Itô semimartingale X = X ′ +X ′′ in Eq. (1) as:

Xt = X ′t +

∫ t

0

∫

{|δ(s,x)|≥un}
δ(s, x)p(ds, dx)

︸ ︷︷ ︸
“Big” Jumps: Jn1,t

+

∫ t

0

∫

{|δ(s,x)|<un}
δ(s, x)p(ds, dx)

︸ ︷︷ ︸
“Small” Jumps: Jn2,t

, (A.34)

where the component X ′′ is partitioned into two n-dependent processes Jn1 and Jn2 . This “optimal”

cutoff level un � ∆$
n with $ arbitrarily close to but below 1/2 separates all jumps that either

prevail over or are diluted within Brownian increments.

Next, we show that the existence of small jumps in Jn2 has no impact on Lemma A.1.

Lemma A.4. For the purely discontinuous process Jn2 defined in Eq. (A.34), with the sequence

(un) of thresholds satisfying Eq. (A.33), it holds that for all p ≥ 1,

sup
ti−1≤s≤ti

|Jn2,s − Jn2,ti−1
|p = Op(∆nu

p−r
n ). (A.35)

Proof. Following Assumption A.1, we have Assumption 1 (v) with τ1 =∞ without loss of generality

by a standard localization procedure, such that |δ(ω, t, x)|∧1 ≤ f(x) holds uniformly on Ω×R+×R.

We start with the notation for a local p-th order variation of small jumps, which resembles the first

quantity in Eq. (2.1.35) of Jacod and Protter (2012):

For some p ≥ 1, we define

δ̂p,i =
1

ti − ti−1

∫ ti

ti−1

ds

∫

{|δ(s,x)|<un}
|δ(s, x)|pλ(dx). (A.36)
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For all 1 ≤ i ≤ n, it holds that

E[δ̂p,i|Fti−1 ] ≤ 1

ti − ti−1
E

[∫ ti

ti−1

ds

∫

{|δ(s,x)|<un}
|δ(s, x)|pλ(dx)

∣∣∣∣∣Fti−1

]

≤ 1

ti − ti−1
E

[∫ ti

ti−1

ds

∫

{|δ(s,x)|<un}
up−rn |δ(s, x)|rλ(dx)

∣∣∣∣∣Fti−1

]

≤ up−rn

∫

R
|f(x)|rλ(dx),

(A.37)

since δ(ω, t, x) is bounded by the deterministic function f(x), and ti − ti−1 is independent of Fti−1 .

Denote the integral as a constant Cr =
∫
R |f(x)|rλ(dx), we have

E[δ̂p,i|Fti−1 ] ≤ Crup−rn . (A.38)

Similarly, for another conditional expectation E[δ̂p1,i|Fti−1 ], we have

E[δ̂p1,i|Fti−1 ] =
1

(ti − ti−1)p
E

[(∫ ti

ti−1

ds

∫

{|δ(s,x)|<un}
|δ(s, x)|λ(dx)

)p ∣∣∣∣∣Fti−1

]

≤ 1

(ti − ti−1)p
E

[(∫ ti

ti−1

ds

∫

{|δ(s,x)|<un}
u1−r
n |δ(s, x)|rλ(dx)

)p ∣∣∣∣∣Fti−1

]

≤ up(1−r)n

(∫

R
|f(x)|rλ(dx)

)p

≤ Cprup(1−r)n .

(A.39)

Then by Lemma 2.1.7 of Jacod and Protter (2012), with the bounds for both E[δ̂p,i|Fti−1 ] and

E[δ̂p1,i|Fti−1 ] in Eqs. (A.38) and (A.39), respectively, we have for all p ≥ 1,

E

[
sup

ti−1≤s≤ti
|Jn2,s − Jn2,ti−1

|p
∣∣∣∣∣Fti−1

]
≤ K

(
∆nE[δ̂p,i|Fti−1 ] + ∆p

nE[δ̂p1,i|Fti−1 ]
)

≤ K
(
Cr∆nu

p−r
n + Cpr∆p

nu
p(1−r)
n

)

≤ K ′∆nu
p−r
n ,

(A.40)

where the latter term KCpr∆p
nu

p(1−r)
n reduces to K ′∆nu

p−r
n since 1 < 1+$(p−r) < p < p+p$(1−r)

for some $ slightly smaller than 1/2. The desired result in Lemma A.4 follows from the law of

iterated expectation and Markov’s inequality.

To examine the impact of small jumps on Lemma A.1, we rewrite the supremum processes into

Yj = sup
1≤i≤j

|X ′ti + Jn2,ti | and Y̆j = sup
1≤i≤j

|X ′
t̆i
|. (A.41)
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In this case, by the triangle inequality, we have

|Yj − Y̆j | =
∣∣∣max
1≤i≤j

|X ′ti + Jn2,ti | − max
1≤i≤j

|X ′
t̆i
|
∣∣∣ ≤ max

1≤i≤j
|X ′ti −X ′t̆i |+ max

1≤i≤j
|Jn2,ti |, (A.42)

where, by Lemma A.4,

max
1≤i≤j

|Jn2,ti | ≤
j∑

i=1

sup
(i−1)∆n≤s≤i∆n

|Jn2,s − Jn2,(i−1)∆n
| = Op(j∆nu

1−r
n ). (A.43)

For some 0 < κ < 1− r such that κ/2(1− r) ≤ $ < 1/2, we have max1≤i≤j |Jn2,ti | = Op(j∆
1+κ/2
n ).

Therefore, for any fixed 1 ≤ j ≤ N , the small jumps in Jn2 do not affect the order of coupling error

in Lemma A.1 and any subsequent results in Appendix A.1.3.

A.2 Properties of Functions h2(m) and h2,ε(m)

In this section, we prove some properties of the functions h2(·) and h2,ε(·) defined in Eq. (10), which

are important for the construction of our test statistic.

Proposition 1. The functions h2(·) and h2,ε(·) are invertible and differentiable with nonvanishing

derivatives.

Proof. For the standard Gaussian random walk Z, let Π
(m)
1 ≡ min{n ≥ 1 : |Zn| > m} be the first

passage time across ±m, then by definition Z
(m)
1 = Z

Π
(m)
1

. We start with h2,ε(·), it follows Fubini’s

theorem that

h2,ε(m) = E
[ |Z(m)

1 |2
m2

∧ (1 + ε)2

]
=

∫ (1+ε)2

0
P(|Z(m)

1 | > m
√
u)du

= 1 + 2

∫ ε

0
(1 + v)P

(
|Z(m)

1 | > m(1 + v)
)
dv,

(A.44)

where the second line follows from the change of variable u = (1 + v)2 and the fact that P
(
|Z(m)

1 | >
m(1 + v)

)
= 1 for v ∈ [−1, 0). As m increases, the annulus

(
m,m(1 + v)

)
widens; then it becomes

strictly harder for the walk Z to exit ±m and simultaneously cross ±m(1 + v) at the same first-exit

time. Formally, for fixed v > 0 and 0 < δ < mv, the absolute continuous increments implies that

|Z(m)
1 | has a density, and thus

P
(
m(1 + v) < |Z(m)

1 | < (m+ δ)(1 + v)
)
> 0. (A.45)

On this event, we have |Z(m)
1 | > m+ δ but |Z(m+δ)

1 | < (m+ δ)(1 + v), and therefore

P
(
|Z(m)

1 | > m(1 + v)
)
> P

(
|Z(m+δ)

1 | > (m+ δ)(1 + v)
)
, (A.46)

i.e., the tail probability P
(
|Z(m)

1 | > m(1 + v)
)

is strictly decreasing in m. This further implies h2,ε(·)
in Eq. (A.44) is also strictly decreasing, the invertibility readily follows.
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The differentiability relies on an integral representation of tail probability using renewal identity.

Let (Hn)n≥1 denote the strong ascending ladder heights, with FH its distribution. By the standard

Wiener–Hopf renewal representation for ladder heights (see Chapter XVIII.3 in Feller, 1991), FH

is absolutely continuous with density fH(x) =
∫

[0,∞) ϕ(x+ y)U−(dy) where U− is the descending

ladder height renewal measure. Further denote U+
m the renewal measure killed upon hitting −m,

i.e., U+
m(E) ≡∑n≥0 P

(∑n
i=1Hi ∈ E, τm < τ−m

)
for Borel E. Then by symmetry and the renewal

identity (see, e.g., Section 2.6 in Gut, 2009),

P
(
|Z(m)

1 | > m(1 + v)
)

= 2

∫

[0,m]

[
1− FH

(
m(1 + v)− x

)]
U+
m(dx) ≡ φv(m). (A.47)

Note that U+
m has an atom U+

m({0}) = P(τm < τ−m) = 1
2 , by Theorem VII.1.1 in Asmussen (2003),

it admits Stone’s decomposition on compact sets, i.e., U+
m(dx) = 1

2δ0(dx) + u+
m(x)dx for a bounded

continuous density u+
m(·). It follows Leibniz rule that

φ′v(m) = 2

[
u+
m(m)

(
1− FH(mv)

)
− (1 + v)

∫

[0,m]
fH
(
m(1 + v)− x

)
U+
m(dx)

]
, (A.48)

where we use the fact that ∂mU
+
m vanishes except for the boundary x = m. Combining Eqs. (A.44)

and (A.48) gives the differentiability and h
′
2,ε(m) = 2

∫ ε
0 (1 + v)φ′v(m)dv which is strictly negative

for m > 0 and ε > 0.

We now turn to h2(·). Taking ε→∞ in Eq. (A.44) yields

h2(m) = 1 + 2

∫ ∞

0
(1 + v)φv(m)dv. (A.49)

Since for Gaussian increments, the tails of ladder height 1 − FH(·) are exponentially small, by

Eq. (A.47) we have φv(m) ≤ 2U+
m([0,m])

(
1− FH(mv)

)
≤ Km exp{−Kv2m2}. Therefore,

∫∞
0 2(1 +

v)φv(m)dv is finite. The rest of the proof follows the similar argument as h2,ε(·) and dominated

convergence.

A.3 Proof of Theorem 1

Following the strong approximation results in Appendix A.1.3, it suffices to consider the limit

theorems of the test statistics constructed from (r̆
(c)
i )1≤i≤N̆(c) . For ease of notation, we drop the

breve mark (̆ ) in the subsequent proofs.

Under the null. We shall prove the following three convergence results under ω ∈ Ω′:

N(c)∑

i=1

(r
(c)
i )2 P−→ τ(1),

N(c)∑

i=1

(r
(c)
i )2 P−→ τ(1)

h2,ε(m)

h2(m)
, c2N (c) P−→ τ(1)

h2(m)
. (A.50)
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To verify these results over the unit interval in Eq. (A.50), we establish a more general result

on uniform convergence in probability (u.c.p.). Specifically, for any processes Zn and Z, where n

indexes the stages of statistical experiments, we say that Zn converges uniformly in probability to Z

on compact sets, written as Zn
u.c.p.−−−→ Z, if and only if sup0≤t≤T |Znt − Zt|

P−→ 0 for all finite T > 0.

We start with some notation for clarity: Let N
(c)
n,t denote the number of sampled observations

with the barrier width cn over [0, t] at stage n. Let τ
(c)
n,i = τ(t

n,Π
(c)
n,i

) denote the intrinsic time (defined

in Appendix A.1.1) at the i-th sampled observation, and ∆τ
(c)
n,i = τ

(c)
n,i − τ

(c)
n,i−1 the i-th duration in

intrinsic time. We define the discretized filtration Fn = (Fn
N

(c)
n,t+1

)t≥0, where Fni = Ft
n,Π

(c)
n,i

= F̃
τ

(c)
n,i

.

Lemma A.5 extends Wald’s identity to sums of independent, non-negative, and potentially non-

identically distributed random variables. Lemma A.6 establishes some properties of the sequence

(∆τ
(c)
n,i ), the sampled returns (r

(c)
n,i), and the counting process (N

(c)
n,t ). Lemma A.7 provides some

results for the discretized filtration Fn that will be used in subsequent proofs.

Lemma A.5. Let Sn =
∑n

i=1Xi, where (Xi)i≥1 is a sequence of independent, non-negative random

variables satisfying E[Xi] ≤ C for all i. Suppose that N is an integer-valued stopping time with

respect to the filtration Gi = σ(X1, . . . , Xi). Then the expectation of the stopped sum satisfies the

bound E[SN ] ≤ CE[N ].

Proof. It holds that

E[SN ] = E

[ ∞∑

i=1

Xi1{i≤N}

]
=

∞∑

i=1

E[Xi1{i≤N}] =

∞∑

i=1

E[Xi]E[1{i≤N}] ≤ C
∞∑

i=1

P(N ≥ i) = CE[N ],

(A.51)

where the interchange of infinite sum and expectation is valid by Tonelli’s theorem since all the

summands are non-negative, and Xi is independent from 1{i≤N} ∈ Gi−1. This completes the proof

of Lemma A.5.

Lemma A.6. For any finite t > 0, it holds that

(i) E[r
(c)
n,i] = 0, and E[(r

(c)
n,i)

2] = c2
nh2(m);

(ii) E[N
(c)
n,t + 1] ≤ Kc−2

n ;

(iii) max
1≤i≤N(c)

n,t+1
∆τ

(c)
n,i = op(cn);

(iv) E[∆τ
(c)
n,i r

(c)
n,i|Fni−1] = 0 for all i and n.

Proof. (i) Since E[τ
(c)
n,1] <∞, the claims follow from Theorem 1 of Shepp (1967).

(ii) We express E[N
(c)
n,t ] as an infinite sum of probabilities related to ∆τ

(c)
n,i :

E[N
(c)
n,t ] =

∞∑

k=1

P(N
(c)
n,t ≥ k) =

∞∑

k=1

P

(
k∑

i=1

∆τ
(c)
n,i ≤ τ(t)

)
. (A.52)

By the Markov property of X̃, the sequence (∆τ
(c)
n,i ) consists of positively-valued, conditionally

independent random variables for each n, which satisfy ∆τ
(c)
n,i
L
= c2

n∆tni , where (∆tni ) is a sequence
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of i.i.d. random variables, representing the durations for a standard Gaussian random walk to exit

the double barrier (−1, 1). Specifically, ∆tni = ∆n(Π
(1)
n,i − Π

(1)
n,i−1), where Π

(1)
n,i denote the number of

steps to breach the barrier for the i-th time. Therefore, for some constant K > 0, we obtain the

bound:
∞∑

k=1

P

(
k∑

i=1

∆τ
(c)
n,i ≤ τ(t)

)
≤
∞∑

k=1

P

(
k∑

i=1

∆tni ≤ Kc−2
n

)
= E[N

(1)

n,Kc−2
n

], (A.53)

where

N
(1)
n,t =

∞∑

k=1

1{∑k
i=1 ∆tni ≤t}

(A.54)

is a counting process associated with the standard Gaussian random walk. Next we show that

E[N
(1)

n,Kc−2
n

] ≤ Kc−2
n . Following an approach similar to the proof of the elementary renewal theorem

(see, e.g., Theorem 4.1, Gut, 2009), we censor the durations ∆tni for some a > 0:

∆t
n
i =





∆tni , tni ≤ a,
a, tni > a,

(A.55)

and consider another renewal process with the sequence of durations (∆t
n
i ), and the corresponding

counting process

N
(1)
n,t =

∞∑

k=1

1{∑k
i=1 ∆t

n
i ≤t}, (A.56)

which satisfies

E[N
(1)
n,t] ≤ E[N

(1)
n,t], (A.57)

for all t > 0. Note that N
(1)
n,t is not a stopping time (with respect to the renewal process), while

N
(1)
n,t + 1 is a stopping time for all t > 0; see details in Section 2.3 of Gut (2009). Moreover, for

any a > 0 and t > 0, we have
∑N

(1)
n,t+1

i=1 ∆t
n
i ≤ t+ a. For large enough n such that Kc−2

n > 1, take

t = Kc−2
n and by Wald’s identity, we have

E




N
(1)

n,Kc−2
n

+1
∑

i=1

∆t
n
i


 = E[∆t

n
i ]E
[
N

(1)

n,Kc−2
n

+ 1
]

+ a′︸︷︷︸
O(1)

≤ Kc−2
n + a′ ⇒ E

[
N

(1)

n,Kc−2
n

+ 1
]
≤ Kc−2

n .

(A.58)

Therefore, it follows from Eqs. (A.52), (A.53), (A.57) and (A.58) that E[N
(c)
n,t + 1] ≤ Kc−2

n .

(iii) By the maximal inequality, Lemma A.5, and Lemma A.6 (ii), it holds that for some p > 1,

E

[(
max

1≤i≤N(c)
n,t+1

∆τ
(c)
n,i

)p]
≤ E

[N(c)
n,t+1∑

i=1

(∆τ
(c)
n,i )

p

]
≤ Kc2pn E[N

(c)
n,t + 1] ≤ Kc2p−2

n . (A.59)
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Then, by Markov’s and Jensen’s inequalities, for any δ > 0,

P

(
max

1≤i≤N(c)
n,t+1

∆τ
(c)
n,i ≥ δ

)
≤ KE

[(
max

1≤i≤N(c)
n,t+1

∆τ
(c)
n,i

)p]1/p

≤ Kc2−2/p
n = o(cn). (A.60)

(iv) By the Markov property of X̃, it suffices to show that E[τ
(c)
n,1X̃τ

(c)
n,1

] = 0. To justify this result

intuitively, we appeal to the reflection principle of Brownian motion. It states that for any sample

path of X̃ stopped at X̃
τ

(c)
n,1

, there exists a corresponding mirrored path where the process evolves

identically up to τ
(c)
n,1, but with the final position flipped, i.e., −X̃

τ
(c)
n,1

. As a result, the distribution

of X̃
τ

(c)
n,1

conditional on τ
(c)
n,1 is symmetric about zero, which yields E[X̃

τ
(c)
n,1

|τ (c)
n,1] = 0, and hence

E[τ
(c)
n,1X̃τ

(c)
n,1

] = 0 by the law of iterated expectations.

This completes the proof of Lemma A.6.

Lemma A.7. The following results hold for each n:

(i) For a F-martingale M , if M is bounded or square-integrable with 〈M〉t < Ct almost surely

for some C <∞, then its discretized version M(n) with M(n)t = MTn(t) is an Fn-martingale,

where Tn(t) = t
n,Π

(c)

n,i′
with i′ = N

(c)
n,t + 1 represents the first sampling time after t.

(ii) The process
∑N

(c)
n,t+1

i=1 (∆τ
(c)
n,i − h2(m)c2

n) is an Fn-martingale.

Proof. (i) Note that N
(c)
n,t + 1 = inf{i ≥ 1 : τ

(c)
n,i > t} is an Fn-stopping time. For some finite T > 0,

it holds that MTn(t)∧T is a discrete-time Fn-martingale by optional stopping. For 0 ≤ s ≤ t, since

N
(c)
s + 1 ≤ N (c)

t + 1 are both stopping times, the optional sampling theorem implies that

E
[
MTn(t)∧T

∣∣∣Fn
N

(c)
n,s+1

]
= MTn(s)∧T . (A.61)

To obtain the desired result E[MTn(t)|Fn
N

(c)
n,s+1

] = MTn(s), it remains to prove E[|MTn(t)−MTn(t)∧T |]→
0 as T →∞.

If M is bounded, then

|MTn(t) −MTn(t)∧T | ≤ 2

(
sup

0≤s≤Tn(t)
|Ms|

)
1{Tn(t)>T}, (A.62)

and the desired result is directly implied by 1{Tn(t)>T} → 0 as T →∞.

If M is square-integrable with 〈M〉t < Ct, it holds that

E[|MTn(t) −MTn(t)∧T |2] = E[|〈M〉Tn(t) − 〈M〉Tn(t)∧T |] < CE[Tn(t)1{Tn(t)>T}]. (A.63)

Note that Tn(t) ≤ t + max
1≤i≤N(c)

n,t+1
∆t

(c)
n,i, where ∆t

(c)
n,i is the i-th calendar time duration under
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PDS. By the smoothness of σ under Assumption 1, Lemma A.5, and Lemma A.6 (iii),

E

[
max

1≤i≤N(c)
n,t+1

∆t
(c)
n,i

]
≤ KE

[
max

1≤i≤N(c)
n,t+1

∆τ
(c)
n,i

]
≤ KE

[N(c)
n,t+1∑

i=1

∆τ
(c)
n,i

]
≤ K ′cnE[N

(c)
n,t + 1] <∞,

(A.64)

such that E[Tn(t)] <∞, and limT→∞ E[Tn(t)1{Tn(t)>T}] = 0 by the dominated convergence theorem.

Then the desired result follows from Eq. (A.63).

(ii) By the Markov property in intrinsic time and the first-exit scaling, it holds that c−2
n ∆τ

(c)
n,i
L
=

m−2(Z
(m)
1 )2 with E[m−2(Z

(m)
1 )2] = h2(m), and thus E[∆τ

(c)
n,i |Fni−1] = h2(m)c2

n. Therefore, Mn,k =
∑k

i=1(∆τ
(c)
n,i − h2(m)c2

n) is a discrete-time martingale with respect to Fn. For any fixed n > 0, the

stopping time E[N
(c)
n,t + 1] <∞ by Lemma A.6 (ii), and E

[
|Mn,i −Mn,i−1|

∣∣Fni−1

]
≤ E[∆τ

(c)
n,i |Fni−1] +

h2(m)c2
n = 2h2(m)c2

n ≤ K, such that the optional sampling theorem implies that

E
[
M
n,N

(c)
n,t+1

∣∣∣Fn
N

(c)
n,s+1

]
= M

n,N
(c)
n,s+1

, (A.65)

for 0 ≤ s ≤ t. Therefore, (M
n,N

(c)
n,t+1

) is a discrete-time martingale with respect to Fn = (Fn
N

(c)
n,t+1

)t≥0.

This completes the proof of Lemma A.7.

Next, we define the following three scaled processes at stage n:

V n
1,t =

N
(c)
n,t∑

i=1

ζ1(r
(c)
n,i)

2, V n
2,t =

N
(c)
n,t∑

i=1

ζ2(r
(c)
n,i)

2, V n
3,t = ζ3c

2
nN

(c)
n,t , (A.66)

where the scaling factors are given by (ζ1, ζ2, ζ3) = (1, h2(m)/h2,ε(m), h2(m)). Our goal is to show

that for each k = 1, 2, 3, the process V n
k satisfies V n

k

u.c.p.−−−→ τ = (τ(t))t≥0. To establish this, it suffices

to show that for any T > 0,

sup
t∈[0,T ]

|V n
k,t − τ(t)| = Op(cn). (A.67)

We begin by proving (A.67) for V n
3 : Define an auxiliary pre-limiting process Unt =

∑N
(c)
n,t

i=1 ∆τ
(c)
n,i . By

the triangle inequality,

sup
t∈[0,T ]

|V n
3,t − τ(t)| ≤ sup

t∈[0,T ]
|V n

3,t − Unt |+ sup
t∈[0,T ]

|Unt − τ(t)|. (A.68)

For the first supremum, we have

sup
t∈[0,T ]

|V n
3,t − Unt | = sup

t∈[0,T ]

∣∣∣∣∣

N
(c)
n,t∑

i=1

(ζ3c
2
n −∆τ

(c)
n,i )

∣∣∣∣∣ ≤ K sup
t∈[0,T ]

∣∣∣∣∣

N
(c)
n,t+1∑

i=1

(ζ3c
2
n −∆τ

(c)
n,i )

∣∣∣∣∣, (A.69)

where the inequality holds because adding one more term to the sum cannot decrease the supremum

of the process. By Lemma A.6 (iii), it holds that E[(ζ3c
2
n−∆τ

(c)
n,i )

2] ≤ Kc4n. Note that
∑N

(c)
n,t+1

i=1 (ζ3c
2
n−
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∆τ
(c)
n,i ) is an Fn-martingale, i.e., Lemma A.7 (ii). Applying the Burkholder-Davis-Gundy inequality,

Lemma A.5, and Lemma A.6 (ii), we have

E

[
sup
t∈[0,T ]

∣∣∣∣∣

N
(c)
n,t+1∑

i=1

(ζ3c
2
n −∆τ

(c)
n,i )

∣∣∣∣∣

2]
≤ KE

[N(c)
n,t+1∑

i=1

(ζ3c
2
n −∆τ

(c)
n,i )

2

]
≤ K ′c4

nE[N
(c)
n,t ] ≤ K ′′c2

n. (A.70)

Then, by Markov’s and Jensen’s inequalities, for any δ > 0,

P

(
sup
t∈[0,T ]

∣∣∣∣∣

N
(c)
n,t+1∑

i=1

(ζ3c
2
n −∆τ

(c)
n,i )

∣∣∣∣∣ > δ

)
≤ 1

δ
E

[
sup
t∈[0,T ]

∣∣∣∣∣

N
(c)
n,t+1∑

i=1

(ζ3c
2
n −∆τ

(c)
n,i )

∣∣∣∣∣

2]1/2

≤ Kcn, (A.71)

which shows that supt∈[0,T ] |V n
3,t − Unt | = Op(cn).

For the second term, we have

sup
t∈[0,T ]

|Unt − τ(t)| = sup
t∈[0,T ]

∣∣∣τn
N

(c)
n,t

− τ(t)
∣∣∣ ≤ K max

1≤i≤N(c)
n,t+1

∆τ
(c)
n,i = op(cn), (A.72)

where the final equation follows from Lemma A.6 (iii). Combining Eqs. (A.69) and (A.72), we

conclude that the u.c.p. result in Eq. (A.67) holds for V n
3 .

To prove the u.c.p. result for V n
1 , we write the corresponding supremum process into:

sup
t∈[0,T ]

|V n
1,t − τ(t)| ≤ sup

t∈[0,T ]
|V n

1,t − V n
3,t|+ sup

t∈[0,T ]
|V n

3,t − τ(t)|, (A.73)

thus it suffices to prove that

sup
t∈[0,T ]

|V n
1,t − V n

3,t| = sup
t∈[0,T ]

∣∣∣∣∣

N
(c)
n,t∑

i=1

((r
(c)
n,i)

2 − ζ3c
2
n)

∣∣∣∣∣ ≤ K sup
t∈[0,T ]

∣∣∣∣∣

N
(c)
n,t+1∑

i=1

((r
(c)
n,i)

2 − ζ3c
2
n)

∣∣∣∣∣ = Op(cn). (A.74)

With a similar martingale argument as for V n
3 (Lemma A.7 (ii)), and E

[(
(r

(c)
n,i)

2 − ζ3c
2
n

)2] ≤ Kc4n
implied by the Burkholder-Davis-Gundy inequality, we have

E

[
sup
t∈[0,T ]

∣∣∣∣∣

N
(c)
n,t+1∑

i=1

((r
(c)
n,i)

2 − ζ3c
2
n)

∣∣∣∣∣

2]
≤ KE

[N(c)
n,t+1∑

i=1

((r
(c)
n,i)

2 − ζ3c
2
n)2

]
≤ K ′c4

nE[N
(c)
n,t ] ≤ K ′′c2

n. (A.75)

and then, similarly to Eq. (A.71), we conclude that Eq. (A.74), and thus the u.c.p. result in

Eq. (A.67), holds for V n
1 . Moreover, the u.c.p. result for V n

2 can be verified with the same steps,

and thus omitted here.

Since the u.c.p. results in Eq. (A.67) hold for all three processes V n
1 , V n

2 , and V n
3 , it follows that
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the three limits in Eq. (A.50) also hold uniformly over the unit interval, such that

V n
1,t

V n
3,t

=

∑N(c)

i=1 (r
(c)
i )2

c2N (c)

P−→ h2(m) and
V n

2,t

V n
3,t

=

∑N(c)

i=1 (r
(c)
i )2

c2N (c)

P−→ h2,ε(m). (A.76)

The consistency of both M c,ε and Mc in Theorem 1 is a direct result from Eq. (A.76) and the

continuous mapping theorem.

Under the alternative. We denote by (Λnt ) the counting process of all jumps in Jn1 in Eq. (A.34),

then Λnt is bounded for each n, and for all n, we have

∑

0≤s≤t
|∆Jn1,s|r <∞, where ∆Jn1,s = Jn1,s − Jn1,s− , (A.77)

which implies for large enough n (such that un → 0),

urnΛ
n
t ≤

∑

0≤s≤t
|∆Jn1,s|r <∞, (A.78)

with un defined in Appendix A.1.4. From Eq. (A.78), we deduce that Λnt = Op(∆
−r$
n ) for all fixed

t, where $ is arbitrarily close to but below 1/2.

When X(ω) is discontinuous within (0, 1), we denote by {sn1 , sn2 . . . , snΛ} the sequence of all jump

times in chronological order, where Λ ≡ Λn1 (ω) counts the number of all jumps on (0, 1]. We define

k−(s) = inf
0≤i≤n

{ti ≥ s : |ti − s|} and k+(s) = inf
0≤i≤n

{ti < s : |ti − s|} (A.79)

as the index of the first observations no earlier than and strictly before s, respectively. We split the

sequence of observations (Xti)0≤i≤N into Λ+ 1 segments with i = k+(snj ) for all 1 ≤ j ≤ Λ as cutoff

points. As N → ∞, we have k+(snj ) − k+(snj−1) → ∞ (also, k+(sn1 ) → ∞), since any intervals of

length of order ∆n mostly contain a single jump of size larger than un with probability approaching

one, see Section 2.3 of Aı̈t-Sahalia and Jacod (2009).

For each segment (Xti)k+(snj−1)≤i≤k+(snj ), we obtain the PDS returns (r
(c)
i )

N
(c)
j−1+1≤i≤N(c)

j

with the

barrier width c = m
√

∆n. For each i ∈ An = {N (c)
1 , N

(c)
2 , . . . , N

(c)
Λ }, the PDS return |r(c)

i | ≥ un � c

contains jumps and will be censored by ϕε(c). For all i ∈ A{
n, the PDS return r

(c)
i contains only

aggregated Brownian increments. For the censored PDS returns, we have

∑N(c)

i=1 (r
(c)
i )2

c2N (c)
=

∑
i∈A{

n
(r

(c)
i )2

c2N (c)
+

∑
i∈An(r

(c)
i )2

c2N (c)
. (A.80)

For the first term above, since the cardinality of An is Λ = Op(∆
−r$
n )� ∆−1

n � N (c), we have

∑
i∈A{

n
(r

(c)
i )2

c2N (c)
=
N (c) − Λ
N (c)

∑
i∈A{

n
(r

(c)
i )2

c2(N (c) − Λ)
, where

N (c) − Λ
N (c)

P−→ 1, (A.81)

OA.18



such that it coincides with the limit theorems under the null. For the second term, it holds that

∑
i∈An(r

(c)
i )2

c2N (c)
≤ K Λ

N (c)
≤ K ′∆1−r$

n , (A.82)

which has no impact on the LLN result. It still vanishes after multiplying by
√
N (c) � ∆

−1/2
n for

any r ∈ [0, 1), and thus does not affect the CLT.

Consider the PDS returns. Under infill asymptotics, we claim that

N(c)∑

i=1

(r
(c)
i )2 =

∑

i∈A{
n

(r
(c)
i )2 +

∑

i∈An
(r

(c)
i )2 P−→ τ(1) +

∑

0<s≤1

|∆Jn1,s|2, (A.83)

where the jump variation is given by

∑

0<s≤1

|∆Jn1,s|2 =

∫ 1

0
ds

∫

{|δ(s,x)|≥un}
|δ(s, x)|2λ(dx). (A.84)

The convergence
∑

i∈A{
n
(r

(c)
i )2 P−→ τ(1) is a direct result from Eq. (A.50), with the cardinality of

A{
n, N (c) − Λ, satisfying Eq. (A.81). For the PDS returns with i ∈ An, we have

∑

i∈An
|r(c)
i |2 −

∑

0<s≤1

|∆J1,s|2 ≤
∑

i∈An
||r(c)
i |2 − |∆iJ

n
1 |2|, (A.85)

where ∆iJ
n
1 = Jn1,t

Π
(c)
i

− Jn1,t
Π

(c)
i
−1

. For all i ∈ An, it holds that

|r(c)
i | ≤

∣∣∣∣∣

Π
(c)
i∑

i=Π
(c)
i−1

(X ′ti −X ′ti−1
)

∣∣∣∣∣+ |∆iJ
n
1 |+

∣∣∣∣∣

Π
(c)
i∑

i=Π
(c)
i−1

(Jn2,ti − Jn2,ti−1)

∣∣∣∣∣, (A.86)

such that

||r(c)
i |2−|∆iJ

n
1 |2| ≤ (|r(c)

i |+ |∆iJ
n
1 |)
(∣∣∣∣∣

Π
(c)
i∑

i=Π
(c)
i−1

(X ′ti −X ′ti−1
)

∣∣∣∣∣+
∣∣∣∣∣

Π
(c)
i∑

i=Π
(c)
i−1

(Jn2,ti −Jn2,ti−1)

∣∣∣∣∣

)
= Op(

√
∆n),

(A.87)

where, by Lemma A.5 and Lemma A.2 (i),

E

[∣∣∣∣∣

Π
(c)
i∑

i=Π
(c)
i−1

(X ′ti −X ′ti−1
)

∣∣∣∣∣

]
≤ E

[Π
(c)
i +1∑

i=Π
(c)
i−1

|X ′ti −X ′ti−1
|
]
≤ E[Π

(c)
1 + 1] max

1≤i≤N
E[|X ′ti −X ′ti−1

|] ≤ K
√

∆n,

(A.88)
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and, by Lemma A.4,

E

[∣∣∣∣∣

Π
(c)
i∑

i=Π
(c)
i−1

(Jn2,ti − Jn2,ti−1)

∣∣∣∣∣

]
≤ E

[ Π
(c)
i∑

i=Π
(c)
i−1

|Jn2,ti − Jn2,ti−1|
]
≤ E[Π

(c)
1 ] max

1≤i≤N
E[|Jn2,ti − Jn2,ti−1|]

≤ E[Π
(c)
1 ] max

1≤i≤N
E
[

sup
ti−1≤s≤ti

|Jn2,s − Jn2,ti−1
|
]
≤ K∆1+(1−r)$

n .

(A.89)

Therefore, we have

∑

i∈An
|r(c)
i |2 −

∑

0<s≤1

|∆J1,s|2 ≤
∑

i∈An
||r(c)
i |2 − |∆iJ

n
1 |2| = Op(∆

1/2−r$
n ) = op(1), (A.90)

which implies the convergence of
∑

i∈An(r
(c)
i )2 and thus Eq. (A.83), such that it holds that

∑N(c)

i=1 (r
(c)
i )2

c2N (c)

P−→ h2(m)〈X,X〉1
τ(1)

. (A.91)

This completes the proof.

A.4 Proof of Theorem 2

We start with some definitions and notation for clarity in the proof: We follow the design of

statistical experiments in the proof of Theorem 1 (Appendix A.3), where N
(c)
n,t counts the number

of sampled observations with the barrier width cn over [0, t] at stage n, and we define a sequence

(U
(c)
n,i ) of random variables as scaled intrinsic-time durations, i.e., U

(c)
n,i = c−2

n ∆τ
(c)
n,i .

By Wald’s identity, we have E[U
(c)
n,i ] = m−2E[|Z(m)

1 |2] = h2(m) and E[(U
(c)
n,i )

2] = h4(m). For

simplicity, we denote the scaled cross moments of U
(c)
n,i with the squared censored and uncensored

PDS returns as λ(m) = c−2
n E[U

(c)
n,i (r

(c)
n,i)

2] and λ(m) = c−2
n E[U

(c)
n,i (r

(c)
n,i)

2], respectively. Additionally,

we denote the scaled cross moment between the squared censored and uncensored PDS returns as

λr(m) = c−2
n E[(r

(c)
n,i)

2(r
(c)
n,i)

2] = m−4ρ2,ε(m).

Stable convergence. We state a key theorem from Jacod (1997) to establish F -stable convergence

for a sequence of local martingales.1 We say that Zn converges F-stably in law to Z, written as

Zn
L−s−−→ Z, if for all F-measurable processes Y , we have the joint convergence (Zn, Y )

L−→ (Z, Y );

see more details in Rényi (1963) and Jacod and Protter (2012).

We start with the general setting of Jacod (1997): Let X be a continuous-time local martingale

on (Ω,F ,F = (Ft)t≥0,P), and denote by Mb the set of all bounded martingales on the same basis.

A sequence of filtrations Fn = (Fnt )t≥0 on (Ω,F) is said to satisfy Property (F) if the following

conditions hold for each n ∈ N:

1See also Chapter IX.7 of Jacod and Shiryaev (2003).
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Property (F). We have a square-integrable Fn-martingale X(n) and, for each Z ∈Mb, a bounded

Fn-martingale Z(n), such that for all t ≥ 0,

(i) supn,t,ω |Z(n)t(ω)| <∞;

(ii) 〈X(n)〉t P−→ 〈X〉t;
(iii) For any finite family (Z1, . . . , Zm) ⊂Mb, we have the following convergence for the Skorokhod

topology on D(Rd+m):

(X(n), Z1(n), . . . , Zm(n))
P−→ (X,Z1, . . . , Zm). (A.92)

The following theorem is a simplified version of Theorem IX.7.13 of Jacod and Shiryaev (2003):

Theorem A.1. Assume Property (F). Let Hn denote a sequence of square-integrable Fn-local

martingales, and let ∆Hn collects all jumps of Hn. Suppose that there is a C∞-valued adapted

process η starting from zero, such that for all Z ∈Mb orthogonal to X, we have for all t ≥ 0 and

ε > 0:

(i)
∑

s≤t |∆Hn
s |21{|∆Hn

s |>ε}
P−→ 0;

(ii) 〈Hn, X(n)〉t P−→ 0;

(iii) 〈Hn, Z(n)〉t P−→ 0;

(iv) 〈Hn〉t P−→ ηt.

Then it holds that Hn L−s−−→ H, where H is an F-conditional Gaussian martingale on the filtered

extension (Ω∗,F∗, (F∗t )t≥0,P∗) with 〈H〉t = ηt.

We consider a 3-dimensional Fn-martingale Hn, we aim to show that for ω ∈ Ω′:

Hn
t = c−1

n





N
(c)
n,t+1∑

i=1




(r
(c)
n,i)

2

(r
(c)
n,i)

2

c2
n


−

N
(c)
n,t+1∑

i=1

c2
nU

(c)
n,i



ζ−1

1

ζ−1
2

ζ−1
3







L−s−−→ Ht, with 〈H〉t =

τ(t)

h2(m)
Σ, (A.93)

where Σ = (σij)1≤i,j≤3 is symmetric with

σ11 = 2(h4(m)− λ(m)), (A.94)

σ22 = h4,ε(m)− 2h2,ε(m)λ(m)

h2(m)
+
h4,ε(m)h

2
2,ε(m)

h2
2(m)

, (A.95)

σ33 =
h4(m)− h2

2(m)

h2
2(m)

, (A.96)

σ12 = ρ2,ε(m)− h2,ε(m)λ(m)

h2(m)
− λ(m) +

h4(m)h2,ε(m)

h2(m)
, (A.97)

σ13 =
h4(m)− λ(m)

h2(m)
, (A.98)

σ23 =
h4(m)h2,ε(m)

h2
2(m)

− λ(m)

h2(m)
, (A.99)
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Note that the martingality of Hn with respect to Fn can be similarly verified as in Lemma A.7 (ii).

We prove the claimed stable CLT in Eq. (A.93) by verifying the conditions of Theorem A.1.

First, we check Property (F) for the discretized filtration Fn = (Fn
N

(c)
n,t+1

)t≥0. Given the continuous

martingale X ≡ X ′ adapted to F, we define its Fn-discretized version X(n) as in Lemma A.7 (i),

which is square-integrable by construction. Pick some Z ∈Mb and consider its discretized version

Z(n), then the boundedness of Z ensures that condition (i) of Property (F) holds. Condition (ii)

follows from the u.c.p. result of V n
1 in the proof of Theorem 1 (Appendix A.3). Condition (iii)

follows from Proposition VI.6.37 of Jacod and Shiryaev (2003) and Eq. (2.2.13) of Jacod and Protter

(2012) by virtue of Lemma A.6 (iii). Therefore, Property (F) is satisfied for the specific PDS-based

Fn.

Now we verify the conditions in Theorem A.1 for Hn = (Hn
1 , H

n
2 , H

n
3 )>. We write

Hn
t =

N
(c)
n,t+1∑

i=1

∆Hn
i , where ∆Hn

i =




∆Hn
1,i

∆Hn
2,i

∆Hn
3,i


 = c−1

n




(r
(c)
n,i)

2 −∆τ
(c)
n,i

(r
(c)
n,i)

2 − ζ−1
2 ∆τ

(c)
n,i

c2
n − ζ−1

3 ∆τ
(c)
n,i


 . (A.100)

For Condition (i), we need to show that

N
(c)
n,t+1∑

i=1

(∆Hn
k,i)

2
1{|∆Hn

k,i|>ε}
P−→ 0, (A.101)

for all t ≥ 0 and ε > 0. This condition corresponds to a classical (conditional) Lindeberg condition,

which ensures that the limiting process H has no jumps; see Remark 3 of Podolskij and Vetter

(2010). Note that the conditional expectation of the summand can be bounded by:

E[(∆Hn
k,i)

2
1{|∆Hn

k,i|>ε}|F
n
i−1] ≤ (E[(∆Hn

k,i)
r|Fni−1])2/r(P(|∆Hn

k,i| > ε|Fni−1))1−2/r

≤ (E[(∆Hn
k,i)

r|Fni−1])2/r(ε−rE[(∆Hn
k,i)

r|Fni−1])1−2/r

≤ ε2−rE[(∆Hn
k,i)

r|Fni−1]

≤ KE[(∆Hn
k,i)

r|Fni−1],

(A.102)

for some r > 2, by Hölder’s and Markov’s inequalities. Then we have

E[|∆Hn
i |r|Fni−1] ≤ Kcrn




E[|c−2
n (r

(c)
n,i)

2 − U (c)
n,i |r|Fni−1]

E[|c−2
n (r

(c)
n,i)

2 − ζ−1
2 U

(c)
n,i |r|Fni−1]

E[|1− ζ−1
3 U

(c)
n,i |r|Fni−1]


 ≤ K ′crn




1

1

1


 , (A.103)

where all three conditional moments are finite for some r > 2, which can be readily verified with

the Burkholder-Davis-Gundy inequality, and with finite r-th moment of U
(c)
n,i , i.e., E[|U (c)

n,i |r] =
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c−2r
n ∆r

nE[|Π(c)
n,1|r] <∞ by Lemma A.2 (ii). By Lemma A.5, we have

E

[N(c)
n,t+1∑

i=1

(∆Hn
k,i)

2
1{|∆Hn

k,i|>ε}

]
≤ Kcr−2

n = o(1), (A.104)

which implies Eq. (A.101).

For Condition (ii), we have

E[∆Hn
1,ir

(c)
n,i|Fni−1] = c−1

n E[((r
(c)
n,i)

2 −∆τ
(c)
n,i )r

(c)
n,i|Fni−1] = 0,

E[∆Hn
2,ir

(c)
n,i|Fni−1] = c−1

n E[((r
(c)
n,i)

2 − ζ−1
2 ∆τ

(c)
n,i )r

(c)
n,i|Fni−1] = 0,

E[∆Hn
3,ir

(c)
n,i|Fni−1] = c−1

n E[(c2
n − ζ−1

3 ∆τ
(c)
n,i )r

(c)
n,i|Fni−1] = 0,

(A.105)

by Lemma A.6 (iii) and (iv), and also E[(r
(c)
n,i)

2r
(c)
n,i] = 0.

For a generic martingale Z ∈Mb starting from 0 and orthogonal to X, we define Z̃τ(t) = Zt as

the intrinsic-time counterpart of Z, where τ(t) = 〈X〉t. Then, Condition (iii) can be written into

E
[
∆Hn

k,i

(
Z̃
τ

(c)
n,i

− Z̃
τ

(c)
n,i−1

)∣∣Fni−1

]
= 0, (A.106)

and it suffices to show that

E
[
∆Hn

k,1Z̃τ (c)
n,1

]
= 0. (A.107)

As defined in Appendix A.1.1, the filtration F̃ = (F̃τ )τ≥0 is generated by the Brownian motion X̃.

Since τ
(c)
n,1 is a F̃-stopping time, the increments ∆Hn

k,1 in Eq. (A.100) are measurable with respect to

F̃ with zero mean and finite variance. Hence, by the martingale representation theorem, there exists

a predictable process hk which is adapted to F̃, such that

∆Hn
k,1 =

∫ ∞

0
hk,sdX̃s. (A.108)

We also have the following integral representation for Z̃
τ

(c)
n,1

:

Z̃
τ

(c)
n,1

=

∫ ∞

0
1{s≤τ (c)

n,1}
dZ̃s. (A.109)

Therefore, by the Kunita-Watanabe identity, we have

E
[
∆Hn

k,1Z̃τ (c)
n,1

]
= E

[∫ ∞

0
hk,s1{s≤τ (c)

n,1}
d〈X̃, Z̃〉s

]
= 0, (A.110)

since 〈X̃, Z̃〉τ(t) = 〈X,Z〉t ≡ 0 as assumed. This result and an iterative conditioning argument lead

to Eq. (A.106) and further implies Condition (iii) in Theorem A.1.
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Finally, Condition (iv) translates to

N
(c)
n,t+1∑

i=1

E[〈∆Hn
i 〉|Fni−1]

P−→ τ(t)

h2(m)
Σ. (A.111)

Note that c2
nN

(c)
n,t

P−→ τ(t)/h2(m). We further calculate all cross moments E[∆Hn
k,i∆H

n
k′,i|Fni−1]:

E[(∆Hn
1,i)

2|Fni−1] = c−2
n E[((r

(c)
n,i)

2 − c2
nU

(c)
n,i )

2|Fni−1] = 2c2
n(h4(m)− λ(m)), (A.112)

E[(∆Hn
2,i)

2|Fni−1] = c−2
n E[((r

(c)
n,i)

2 − ζ−1
2 c2

nU
(c)
n,i )

2|Fni−1]

= c2
n

(
h4,ε(m)− 2h2,ε(m)λ(m)

h2(m)
+
h4,ε(m)h

2
2,ε(m)

h2
2(m)

)
,

(A.113)

E[(∆Hn
3,i)

2|Fni−1] = c−2
n E[(c2

n − ζ−1
3 c2

nU
(c)
n,i )

2|Fni−1] =
c2
n(h4(m)− h2

2(m))

h2
2(m)

, (A.114)

E[∆Hn
1,i∆H

n
2,i|Fni−1] = c−2

n E[((r
(c)
n,i)

2 − c2
nU

(c)
n,i )((r

(c)
n,i)

2 − ζ−1
2 c2

nU
(c)
n,i )|Fni−1]

= c2
n

(
λr(m)− h2,ε(m)λ(m)

h2(m)
− λ(m) +

h4(m)h2,ε(m)

h2(m)

)
,

(A.115)

E[∆Hn
1,i∆H

n
3,i|Fni−1] = c−2

n E[((r
(c)
n,i)

2 − c2
nU

(c)
n,i )(c

2
n − ζ−1

3 c2
nU

(c)
n,i )|Fni−1] =

c2
n(h4(m)− λ(m))

h2(m)
,

(A.116)

E[∆Hn
2,i∆H

n
3,i|Fni−1] = c−2

n E[((r
(c)
n,i)

2 − ζ−1
2 c2

nU
(c)
n,i )(c

2
n − ζ−1

3 c2
nU

(c)
n,i )|Fni−1]

= c2
n

(
h4(m)h2,ε(m)

h2
2(m)

− λ(m)

h2(m)

)
.

(A.117)

The above calculations verify the result in Eq. (A.111). Therefore, the stable convergence in

Eq. (A.93) follows from Theorem A.1 with all conditions satisfied, and it is safe to replace N
(c)
n,t + 1

with N
(c)
n,t in Eq. (A.93) as the additional term of order op(cn) is asymptotic negligible.

Suppose that (xn, yn, zn)> − (x0, y0, z0)> L−→MN (0,Σ), where Σ = (σij)1≤i,j≤3. Consider the

function g(x, y, z) = (x/z, y/z)>. The Jacobian matrix is given by

Jg(x, y, z) =

(
1/z 0 −x/z2

0 1/z −x/z2

)
. (A.118)

By the multivariate delta method, we obtain

g(xn, yn, zn)> − g(x0, y0, z0)> L−→MN (0, Σ̃), where Σ̃ = Jg(x0, y0, z0)ΣJg(x0, y0, z0)>. (A.119)
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Explicitly, Σ̃ = (σ̃ij)1≤i,j≤2 is given by

σ̃11 =
σ11

z2
0

− 2
σ13x0

z3
0

+
σ33x

2
0

z4
0

,

σ̃12 =
σ12

z2
0

− σ23x0

z3
0

− σ13y0

z3
0

+
σ33x0y0

z4
0

,

σ̃22 =
σ22

z2
0

− 2
σ23y0

z3
0

+
σ33y

2
0

z4
0

.

(A.120)

Using the above result from the multivariate delta method and the joint stable CLT in Eq. (A.101),

we can derive the asymptotic distribution of the vector
(∑N

(c)
n,t

i=1 (r
(c)
n,i)

2/(c2
nN

(c)
n,t ),

∑N
(c)
n,t

i=1 (r
(c)
n,i)

2/(c2
nN

(c)
n,t )
)>

.

When t = 1, it is the vector (S2, S2,ε)
> defined in Eq. (12). We evaluate each term in Eq. (A.120)

with (x0, y0, z0)> = τ(t)(1, h2,ε(m)/h2(m), 1/h2(m))>:

σ̃11 =
h2(m)

τ(t)
(2(h4(m)− λ(m))− 2(h4(m)− λ(m)) + h4(m)− h2

2(m))

=
h2(m)

τ(t)
(h4(m)− h2

2(m)),

(A.121)

σ̃21 =
h2(m)

τ(t)

(
λr(m)− h2,ε(m)λ(m)

h2(m)
− λ(m) +

h4(m)h2,ε(m)

h2(m)
−
(
h4(m)h2,ε(m)

h2(m)
− λ(m)

)

− h2,ε(m)

h2(m)
(h4(m)− λ(m)) +

h2,ε(m)

h2(m)
(h4(m)− h2

2(m))

)

=
h2(m)

τ(t)
(λr(m)− h2(m)h2,ε(m)),

(A.122)

σ̃22 =
h2(m)

τ(t)

(
h4,ε(m)− 2h2,ε(m)λ(m)

h2(m)
+
h4,ε(m)h

2
2,ε(m)

h2
2(m)

− 2

(
h4(m)h

2
2,ε(m)

h2
2(m)

− h2,ε(m)λ(m)

h2(m)

)

+
h

2
2,ε(m)

h2
2(m)

(h4(m)− h2
2(m))

)

=
h2(m)

τ(t)
(h4,ε(m)− h2

2,ε(m)).

(A.123)

By the u.c.p. result in Eq. (A.67), we have

√
N

(c)
n,t





∑N

(c)
n,t

i=1 (r
(c)
n,i)

2/(c2
nN

(c)
n,t )

∑N
(c)
n,t

i=1 (r
(c)
n,i)

2/(c2
nN

(c)
n,t )


−

(
h2(m)

h2,ε(m)

)
 L−→ N (0, Σ̃), (A.124)
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where

Σ̃ = m−4

(
µ4(m)− µ2

2(m) ρ2,ε(m)− µ2(m)µ2,ε(m)

ρ2,ε(m)− µ2(m)µ2,ε(m) µ4,ε(m)− µ2
2,ε(m)

)
. (A.125)

By the same u.c.p. result and Eq. (6), we have Nn
t /N

(c)
n,t

P−→ µ2(m), and thus

√
Nn
t





∑N

(c)
n,t

i=1 (r
(c)
n,i)

2/(c2
nN

(c)
n,t )

∑N
(c)
n,t

i=1 (r
(c)
n,i)

2/(c2
nN

(c)
n,t )


−

(
h2(m)

h2,ε(m)

)
 L−→ N (0, µ2(m)Σ̃). (A.126)

Therefore, for the random vector


h
−1
2

(∑N
(c)
n,t

i=1 (r
(c)
n,i)

2/(c2
nN

(c)
n,t )
)

h
−1
2,ε

(∑N
(c)
n,t

i=1 (r
(c)
n,i)

2/(c2
nN

(c)
n,t )
)


 , (A.127)

the multivariate delta method implies that

√
Nn
t




h
−1
2 (
∑N

(c)
n,t

i=1 (r
(c)
n,i)

2/(c2
nN

(c)
n,t ))

h
−1
2,ε (
∑N

(c)
n,t

i=1 (r
(c)
n,i)

2/(c2
nN

(c)
n,t ))


−

(
m

m

)
 L−→ N (0, µ2(m)Λ>Σ̃Λ), (A.128)

where

Λ =

(
1

h′2(h−1
2 (h−1

2 (m)))
,

1

h
′
2,ε(h

−1
2,ε (h2,ε(m)))

)
=

(
1

h′2(m)
,

1

h
′
2,ε(m)

)
. (A.129)

This completes the proof.

A.5 Proof of Proposition 1

Proof. Firstly, we prove that the sequence of pre-averaged returns (r∗i )1≤i≤N ′ converges in law to a

centered stationary Gaussian process with desired variance under infill asymptotics for each i. We

assume kn = 2k for simplicity, and expand r∗i in terms of ∆N
j X = Xj −Xj−1 and εj :

r∗i =
1

kn

k∑

j=1

(Xi+k+j −Xi+j) +
1

kn

k∑

j=1

(εi+k+j − εi+j)

=

kn∑

j=1

g
( j

2k

)
∆N
i+jX

︸ ︷︷ ︸
Ai

+
1

kn

k∑

j=1

(εi+k+j − εi+j)
︸ ︷︷ ︸

Bi

,
(A.130)

where g(s) = s ∧ (1 − s) is the triangular kernel weighting function. Under Assumption 2 and

by the strong approximation result in Eq. (A.20), we deduce that Ai converges in probability to∑kn
j=1 g

( j
2k

)
r̆i+j , which is a linear combination of i.i.d. centered Gaussian random variables. The

α-mixing ε with the conditions in Assumption 3 indidates a CLT under weak dependence (Theorem

1.7, Ibragimov, 1962; Theorem 8.3.7, Durrett, 2019), which implies the asymptotic Gaussianity of
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Bi. The independence between X and ε implies that r∗i converges in distribution to a centered

Gaussian random variable for all i.

We now identify the limiting law of (r∗i ) by calculating its variance kernel explicitly, which

also establishes the stationarity of the limiting Gaussian process. With Corr(Xj , εj′) = 0 for any

0 ≤ j, j′ ≤ N , we have Var(r∗i ) = Var(Ai) + Var(Bi) with

Var(Ai) =

kn∑

j=1

g2
( j
kn

)
(∆n + o(∆n)) =

kn∆n

12
+ o(

√
∆n). (A.131)

For the additive noise term, we define the partial sum of ε as

Sn,h =

h∑

i=1

εn+i, (A.132)

and start with the following results for some λ ≥ h:

Var(Sn,h) =

h−1∑

m=1−h
(h− |m|)Γm = h

h−1∑

m=1−h

(
1−

∣∣∣m
h

∣∣∣
)

Γm, (A.133)

Cov(Sn,h, Sn+λ,h) = E[Sn,hSn+λ,h] =
h−1∑

i=0

h−1∑

j=0

Cov(εn+i, εn+λ+i+j)

=
h−1∑

m=1−h
(h− |m|)Γm+λ = h

h−1∑

m=1−h

(
1−

∣∣∣m
h

∣∣∣
)

Γm+λ,

(A.134)

where the weight 1− |m/h| is the Bartlett kernel. Therefore, we have

Var(Bi) =
1

4k2
Var(Si+k,k − Si,k)

=
1

4k2
Var(Si+k,k) +

1

4k2
Var(Si,k)− 2Cov(Si+k,k, Si,k)

=
1

2k

k−1∑

m=1−k

(
1−

∣∣∣m
k

∣∣∣
)

Γm −
1

2k

k−1∑

m=1−k

(
1−

∣∣∣m
k

∣∣∣
)

Γm+k

(A.135)

of the order
√

∆n by the absolute summability of Γm, which is implied by the α-mixing property of

ε under Assumption 3 (Ibragimov and Linnik, 1971). Since kn �
√
N , both Var(Ai) and Var(Bi)

are of the order
√

∆n, such that we can ignore all terms with order smaller than
√

∆n, which yields

Var(r∗i ) = Var(Ai) + Var(Bi) �
√

∆n.

With the time-invariant first moment and finite second moment of r∗i for all time, in order to

prove the weak stationarity of (r∗i ), we need to make sure that the autocovariance Cov(r∗i , r
∗
i+λ)

does not vary with i. Here we firstly deal with the autocovariance of Ai. It suffices to examine

the autocovariance for non-negative integer-valued lags λ, as the autocovariance function is always
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symmetric.

Cov(Ai, Ai+λ) = E[AiAi+λ] = E



kn∑

j=1

g
( j
kn

)
∆N
i+jX

kn∑

η=1

g
( η
kn

)
∆N
i+λ+ηX


 . (A.136)

When λ ≥ kn, Cov(Ai, Ai+λ) = 0. When 1 ≤ λ ≤ kn − 1, we have

Cov(Ai, Ai+λ) = E



kn−λ∑

j=1

g
( j
kn

)
g
(j + λ

kn

)
(∆N

i+λ+jX)2




=

kn−λ∑

j=1

g
( j
kn

)
g
(j + λ

kn

)
E[(∆N

i+λ+jX)2] = O(
√

∆n).

(A.137)

For the noise term, we have the lag-λ autocovariance

Cov(Bi, Bi+λ) =
1

4k2
E[(Si+k,k − Si,k)(Si+k+λ,k − Si+λ,k)]

=
1

4k2
(E[Si+k,kSi+k+λ,k] + E[Si,kSi+λ,k]− E[Si+k,kSi+λ,k]− E[Si,kSi+k+λ,k])

=
1

2k

k−1∑

m=1−k

(
1−

∣∣∣m
k

∣∣∣
)

Γm+λ −
1

4k

k−1∑

m=1−k

(
1−

∣∣∣m
k

∣∣∣
)

Γm+λ−k −
1

4k

k−1∑

m=1−k

(
1−

∣∣∣m
k

∣∣∣
)

Γm+λ+k

= O(
√

∆n),

(A.138)

by the absolute summability of Γm. In the limit, both the covariances are finite and time-invariant

(not depend on i) for all possible λ ∈ N, which implies the weak stationarity of (r∗i ) in the limit, as

desired.

For Step 2, we first demonstrate how the random sign flip eliminates serial correlations in (r∗i ).

Let F (x) = P(r∗i ≤ x) denote the CDF of r∗i . It is obvious that the product δir
∗
i is a Gaussian

random variable with the same distribution:

P(δir
∗
i ≤ x) = P(δi = 1)P(δir

∗
i ≤ x|δi = 1) + P(δi = −1)P(δir

∗
i ≤ x|δi = −1)

=
1

2
P(r∗i ≤ x) +

1

2
P(r∗i ≥ −x) = F (x),

(A.139)

and the autocovariance function for any i ∈ {1, . . . , N ′ − λ} satisfies

Cov(δir
∗
i , δi+λr

∗
i+λ) = E[δiδi+λr

∗
i r
∗
i+λ] = E[δi]E[δi+λ]Cov(r∗i , r

∗
i+λ) = 0. (A.140)

Next, we establish that, following the uniform random permutation π : {1, . . . , N ′} 7→ {1, . . . , N ′},
any two variables in (r̃i)1≤i≤N ′ are independent when their indices are not sufficiently distant from

each other each other in {1, . . . , N ′} under infill asymptotics. We start with a formal definition of

the local independence for a discrete-time stochastic process: The process X = (Xi)1≤i≤n is said to
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be locally independent if

lim
n→∞

sup
1≤i,j≤n

1≤|i−j|≤Λn

P(Xi and Xj are dependent) = 0,

or lim
n→∞

sup
1≤i,j≤n

1≤|i−j|≤Λn

{|P(A ∩B)− P(A)P(B)| : A ∈ σ(Xi), B ∈ σ(Xj)} = 0,
(A.141)

where Λn � n$ for some $ ∈ (0, 1), such that Xi is independent to other variables in X whose

indices fall within the interval [i− Λn, i+ Λn]. In our case, we need to verify

lim
n→∞

sup
1≤i,j≤N ′

1≤|i−j|≤Λn

P(r̃i and r̃j are dependent) = 0. (A.142)

The fact that (εi)0≤i≤N is α-mixing implies that

α(Λn) = sup{|P(A ∩B)− P(A)P(B)| : A ∈ σ(εi), B ∈ σ(εi+Λn)} → 0, (A.143)

as n→∞, thus εi and εj are asymptotically independent if |i− j| ≥ Λn.

With the uniform random permutation, we denote

r̃i = r∗π(i)δπ(i) and r̃j = r∗π(j)δπ(j) (A.144)

where π(i), π(j) are the corresponding indices of the products before permutation. Therefore, for

all 1 ≤ i, j ≤ N ′ and 1 ≤ |i− j| ≤ Λn, r̃i and r̃j are independent if the corresponding indices π(i)

and π(j) are sufficiently far apart from one another:

P(r̃i and r̃j are dependent) = P(r∗π(i) and r∗π(j) are dependent)

= P(σ({επ(i)+` : 0 ≤ ` ≤ kn}) and σ({επ(j)+` : 0 ≤ ` ≤ kn}) are dependent)

≤ 2P(π(i) + 1 ≤ π(j) ≤ π(i) + kn + Λn)

=
2(kn + Λn)

N ′ − 1
= O(∆γ

n), where γ = 1−max
{1

2
, $
}
.

(A.145)

For a sequence of N ′ variables, the uniform random permutation ensures that each of the N ′!

possible permutations are equally likely and that each “ball” r∗π(i)δπ(i) has an equal chance of being

placed into any “box” i, which has become a question of classical probability. As n→∞, r̃i and r̃j

with 1 ≤ |i− j| ≤ Λn are asymptotically independent. This completes the proof.
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Appendix B Supplementary Results

B.1 Parameter Choices for Other Tests

For other tests constructed in Sections 4 and 5, we clarify some specific parameter choices:

LM: For the local realized bipower variation, we consider the window size K =
√

252N , where N

is the number of sampled observations.

ASJ: For the multipower variations constructed on two different sampling intervals δ and kδ, we

select p = 4 and k = 2, which satisfies the requirement.

CPR: For the auxiliary local variance estimator, we employ the nonparametric filter of length 2L+ 1

with L = 25 and a Gaussian kernel, which follows the recommendation in Appendix B of Corsi

et al. (2010).

PZ: We employ the truncated realised power variation with p = 4 and the truncation threshold

cN−$, where c and $ follow the recommendation in Section 5 of Podolskij and Ziggel (2010).

For the noise-adjusted version, we select the pre-averaging window kn = 0.5b
√
Nc.

LM12: We select the pre-averaging window kn = 0.4b
√
Nc, which minimizes the absolute distance

between the nominal size and the empirical size with the simulated tick-level noise-contaminated

observations.

ASJL: We select the pre-averaging window kn = 0.9b
√
Nc based on the simulated noise-contaminated

data, and the truncation level C = 5.

B.2 Jump Detection

As detailed in Section 4.3, we consider the common jump filtering and detection method as a

benchmark, which is based on the sequential detection approach of Andersen et al. (2007) and the

thresholding technique of Mancini (2009). Particularly, we adjust the threshold parameter k with

two types of FWER corrections. Specifically, given Nspl tests of null hypotheses (Nspl sampled

returns) and a family-wise significance level of α, we select the corresponding k for each individual

return at α′:

• Šidák correction: α′ = 1− (1− α)1/Nspl ,

• Bonferroni correction: α′ = α/Nspl.

Table B.1 presents the finite-sample size and size-adjusted power of the truncation-based filtering

technique in the absence of market microstructure noise. The truncation thresholds are determined

with (i) the latent true volatility, (ii) the localized tick-by-tick BV, and (iii) the localized pre-

averaged BV of Podolskij and Vetter (2009). The threshold parameter k is adjusted with both

FWER corrections, and we set $ = 0.5. Following the same procedure used for the noise case in

Table 5, the spot volatility estimates are recursively obtained within a backward-looking tick-time

window of 1,800 ticks. The pre-averaging window is chosen to be d0.5
√

1800e ticks.
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Table B.1: Finite-sample size and power (%) of truncation-based filtering technique in the

absence of market microstructure noise

Nominal size: 5%

Panel A: Normalization with true spot volatility

No Jump (with FWER control)

Ticks Nspl Šidák Bonferroni Moderate Jumps Large Jumps

1 23400 4.92 4.83 93.13 96.80

5 4680 5.15 4.98 84.91 91.88

15 1560 5.38 5.25 75.12 87.18

30 780 4.96 4.80 67.55 82.46

60 390 5.13 4.99 57.84 76.16

120 195 5.22 5.08 46.50 69.19

180 130 4.93 4.81 40.92 64.71

300 78 5.03 4.90 31.98 56.20

Panel B: Normalization with localized tick-by-tick BV

No Jump (with FWER control)

Ticks Nspl Šidák Bonferroni Moderate Jumps Large Jumps

1 23400 5.95 5.74 91.21 95.92

5 4680 5.21 5.07 82.41 90.80

15 1560 5.31 5.23 72.45 85.60

30 780 5.06 4.87 64.37 81.08

60 390 5.13 5.01 53.72 74.08

120 195 5.15 5.02 42.28 66.33

180 130 4.89 4.75 36.51 61.57

300 78 4.98 4.89 27.52 52.92

Panel C: Normalization with localized pre-averaged BV

No Jump (with FWER control)

Ticks Nspl Šidák Bonferroni Moderate Jumps Large Jumps

1 23400 6.02 5.92 91.23 95.85

5 4680 5.87 5.73 82.44 90.72

15 1560 5.51 5.45 72.26 85.50

30 780 4.78 4.68 64.46 81.00

60 390 4.81 4.69 53.53 73.84

120 195 4.93 4.79 41.99 65.94

180 130 4.57 4.52 35.95 61.17

300 78 4.68 4.58 27.52 52.52

This table reports the finite-sample size and size-adjusted power (%) of 10,000 simulations of the

truncation-based jump filtering technique in the absence of market microstructure noise. Ob-

servations are sampled at various multiples of ticks, where “Nspl” stands for the corresponding

sampling frequencies. The truncation thresholds are constructed from (i) the latent true volatil-

ity, (ii) the localized tick-by-tick BV, and (iii) the localized pre-averaged BV. The threshold

parameter k is adjusted with both the Šidák and Bonferroni corrections, and $ = 0.5.

In addition to the noise-case results in Table 5, we follow the empirical applications of Äıt-Sahalia

et al. (2025) to consider a broad range of fixed k from 3.5 to 9. Fig. B.1 illustrates the rejection rates

under both the null and alternative hypotheses across various frequencies of tick-time sampling.

Furthermore, we extend the comparisons by examining returns sampled at equidistant calendar-

time intervals. To estimate the spot volatility for each calendar-time interval and avoid the impact

of tick irregularity, we construct the pre-averaged BV from all tick-level price observations within

each day. We then adjust these daily volatility estimates to account for intraday volatility pattern

for each calendar-time interval, where we follow Aleti et al. (2025) for the time-of-day adjustment
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Figure B.1: Rejection rates of 10,000 simulations of the truncation-based jump filtering technique. Observations are sampled

at various multiples of ticks. The truncation thresholds are constructed from the localized pre-averaged BV of Podolskij and

Vetter (2009) computed within each backward-looking window of 1,800 ticks. The threshold parameter k is varied from 3.5 to

9, corresponding to progressively more stringent cutoffs, and $ = 0.5.

θj for the j-th calendar-time interval:

θj =

(
M∑

i=1

r2
i,j

)
/
(

1

Nspl

M∑

i=1

Nspl∑

j=1

r2
i,j

)
, (B.1)

where ri,j is the return on the asset on day i at interval j, and θj is a simple ex ante measure of the

fraction of daily RV that arrives at each time-of-day. Given a daily pre-averaged BV estimate BVi,

the spot volatility σi,j is then estimated as σ̂i,j =
√

BViθj . Table B.2 presents the finite-sample

size and size-adjusted power of the truncation-based filtering technique applied to calendar-time

sampled returns, with the threshold parameter k calibrated with both corrections to control a 5%

FWER under the null.

Table B.2: Finite-sample size and power (%) of truncation-based filtering technique with

calendar-time sampling

Nominal size: 5%

Panel A

No Jump (with FWER control) Panel B Panel C

Int. (sec) Nspl Šidák Bonferroni Moderate Jumps Large Jumps

5 4680 100.00 100.00 15.58 39.79

15 1560 99.95 99.95 22.49 49.02

30 780 85.80 85.51 30.92 56.68

60 390 40.69 40.27 38.61 62.75

120 195 16.44 16.17 41.29 63.64

180 130 10.41 10.20 39.53 60.79

300 78 7.34 7.14 34.09 55.87

This table reports the finite-sample size and size-adjusted power (%) of 10,000 simulations of the

truncation-based jump filtering technique. Observations are sampled at equidistant intervals in

calendar time, where “Nspl” stands for the corresponding sampling frequencies. The truncation

thresholds are constructed from the pre-averaged BV of Podolskij and Vetter (2009), with the

intraday volatility seasonality incorporated, and the threshold parameter k is adjusted with

both the Šidák and Bonferroni corrections, and $ = 0.5.
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Similarly, we consider some fixed k varying from 3.5 to 9 for the truncation thresholds applied

to calendar-time sampled returns. Fig. B.2 illustrates the rejection rates under both the null and

alternative hypotheses across various frequencies of calendar-time sampling.
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Figure B.2: Rejection rates of 10,000 simulations of the truncation-based jump filtering technique. Observations are sampled

at equidistant intervals in calendar time. The truncation thresholds are constructed from the pre-averaged bipower variation

of Podolskij and Vetter (2009), with the intraday volatility seasonality incorporated. The threshold parameter k is varied from

3.5 to 9, corresponding to progressively more stringent cutoffs, and $ = 0.5.

B.3 Simulation Results with Other Noise Specifications

In addition to the simulation results in Section 4, we consider three other specifications for the

additive noise that follows Aı̈t-Sahalia et al. (2012) as robustness checks:

(i) Gaussian noise:

εi = 2Zi

√
σ2
tn,i

n
, (B.2)

where Zi are i.i.d. draws from a standard normal distribution, see Tables B.3 to B.6.

(ii) Autocorrelated Gaussian noise:

εi = 2ωAi

√
σ2
tn,i

n
, (B.3)

where ωAi is an autocorrelated Gaussian defined in Eq. (27), see Tables B.7 to B.10.

(iii) t-distributed noise:

εi = 2ωBi

√
ν − 2

ν

√
σ2
tn,i

n
, (B.4)

where ωBi are i.i.d. draws from a Student’s t distribution with the degree of freedom ν, see Tables B.11

to B.14.
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Table B.3: Finite-sample size and power (%) under Gaussian noise

Nominal size: 5% θ = 0.3 θ = 0.4 θ = 0.5

ε ε ε

c/σ(r̃i) N(c) 0.05 0.07 0.10 N(c) 0.05 0.07 0.10 N(c) 0.05 0.07 0.10

Panel A

No Jump

3 1785 4.90 5.21 5.35 1783 5.07 5.05 5.76 1783 5.01 5.07 5.70

4 1099 5.33 5.03 5.49 1098 4.93 5.14 5.81 1098 5.24 5.21 5.62

5 743 4.71 5.14 5.33 743 5.18 5.28 5.43 742 5.10 5.70 5.27

6 535 5.26 5.01 5.49 535 4.63 4.89 5.53 535 4.82 5.47 5.13

7 404 4.71 4.99 5.19 404 4.61 5.55 5.62 404 5.17 5.18 5.08

8 316 4.83 4.79 5.59 315 4.83 5.23 5.73 315 5.08 5.12 5.30

9 254 5.44 4.80 5.30 253 5.22 5.00 5.38 253 5.20 5.20 5.73

10 208 4.93 5.31 5.71 208 4.98 5.41 5.68 208 5.18 5.28 5.75

Panel B

Moderate Jump

3 1715 47.74 49.52 50.82 1716 44.73 47.04 49.52 1718 42.85 45.35 47.45

4 1058 46.68 48.74 50.80 1059 43.38 46.51 48.46 1061 41.71 44.74 46.93

5 717 45.27 47.51 50.26 718 43.27 45.29 48.09 720 41.23 43.10 45.95

6 518 44.45 47.15 49.63 519 43.24 44.57 46.91 520 41.10 42.06 45.13

7 392 44.91 46.79 49.45 393 42.51 43.70 46.51 394 40.31 41.96 44.21

8 307 42.82 46.95 49.09 308 41.76 43.10 45.84 308 39.45 40.95 44.10

9 247 42.13 45.59 48.45 248 40.81 42.65 46.06 248 38.43 40.97 43.46

10 203 41.42 44.81 48.32 204 40.32 41.82 46.46 204 38.26 40.44 43.70

Panel C

Large Jump

3 1587 69.98 71.41 73.31 1589 68.18 69.74 71.08 1594 67.26 68.39 69.95

4 979 68.91 71.10 72.74 982 67.81 69.39 70.89 985 65.92 67.49 69.41

5 665 68.80 70.14 72.20 668 66.75 69.09 70.32 670 65.28 66.87 69.25

6 482 67.64 69.69 71.54 485 66.71 68.34 69.77 487 64.99 66.15 68.20

7 365 67.61 69.10 71.27 368 65.47 66.78 69.89 370 63.94 65.80 67.99

8 287 67.37 68.95 71.00 289 65.11 66.62 68.93 291 64.21 65.45 66.91

9 232 65.90 69.22 70.84 234 64.78 66.60 68.88 235 63.87 64.83 67.73

10 191 65.47 68.02 70.71 193 64.23 65.74 68.45 194 63.14 64.76 67.56

This table reports the finite-sample size and size-adjusted power (%) of 10,000 simulations of the test statistic Tc,ε at 5% nominal

level. All simulated prices are contaminated by the additive Gaussian noise and rounding errors. We utilize the two-step noise

reduction method in Section 3.2 to construct the sequence of pseudo-observations with three different pre-averaging windows,

i.e., kn = dθ
√
Ne with θ ∈ {0.3, 0.4, 0.5}. The observations are sampled with different PDS barrier widths c = Kσ(r̃i), where

K ranges from 3 to 10. Different censoring thresholds with ε ∈ {0.05, 0.07, 0.1} are considered. N(c) stands for the average

sampling frequencies.
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Table B.4: Finite-sample size and power (%) of other tests under Gaussian noise

Nominal size: 5%

Int. (sec) Nspl BNS JO LM ASJ CPR PZ MinRV MedRV

Panel A

No Jump

5 4680 0.23 1.06 14.02 100.00 0.37 5.59 0.00 0.00

15 1560 4.93 3.70 22.26 93.73 5.43 9.91 0.91 2.89

30 780 7.88 5.02 29.32 38.68 8.42 12.55 4.04 6.35

60 390 7.69 6.23 27.86 13.10 8.26 14.47 5.37 7.14

120 195 7.49 8.07 17.76 7.10 8.02 16.23 5.71 7.93

180 130 7.91 9.05 15.11 5.36 8.70 16.12 5.78 8.78

300 78 7.74 10.98 11.96 4.22 8.70 14.91 5.67 9.12

Panel B

Moderate Jump

5 4680 44.28 51.82 69.09 99.76 47.13 66.49 40.11 45.46

15 1560 40.43 44.90 60.35 92.97 43.88 61.13 37.19 41.85

30 780 36.17 38.30 51.11 65.25 39.14 52.79 33.48 36.97

60 390 29.52 30.92 42.23 37.60 32.97 43.63 27.36 31.32

120 195 21.55 22.20 36.06 22.08 24.92 32.72 21.00 24.32

180 130 17.48 17.40 30.52 14.55 20.17 26.98 17.02 20.84

300 78 15.27 11.91 21.62 11.67 17.54 19.96 14.36 16.51

Panel C

Large Jump

5 4680 68.50 74.10 84.55 99.83 70.65 82.69 64.96 68.91

15 1560 65.66 69.37 79.03 95.72 68.29 79.36 62.52 66.47

30 780 61.28 64.47 73.60 78.16 64.28 74.79 58.50 62.36

60 390 55.16 57.63 67.45 57.04 58.50 68.70 52.97 57.53

120 195 46.02 48.22 61.94 36.07 50.16 59.34 44.72 49.98

180 130 41.61 42.27 56.76 26.63 45.35 53.82 40.37 44.59

300 78 35.12 33.77 46.86 17.83 39.24 45.27 34.30 38.21

This table reports the finite-sample size and size-adjusted power (%) of 10,000 simulations of 8 classical tests at 5% nominal

level: BNS (Barndorff-Nielsen and Shephard, 2006), JO (Jiang and Oomen, 2008), LM (Lee and Mykland, 2008), ASJ (Aı̈t-

Sahalia and Jacod, 2009), CPR (Corsi et al., 2010), PZ (Podolskij and Ziggel, 2010), MinRV and MedRV (Andersen et al., 2012).

All simulated prices are contaminated by the additive Gaussian noise and rounding errors. All these tests are constructed on

observations equidistantly sampled with various intervals in calendar time: 5, 15, 30, 60, 120, 180 and 300 seconds, and “Nspl”

stands for the sampling frequencies.

Table B.5: Finite-sample size and power (%) of other noise-robust tests under Gaussian noise

Nominal size: 5%

Int. (sec) Nspl PZ* LM12 ASJL

Panel A: No Jump
tick 23400 5.10 3.27 5.12

5 4680 4.93 8.59 8.79

Panel B: Moderate Jump
tick 23400 39.34 24.12 38.06

5 4680 29.96 18.97 16.88

Panel C: Large Jump
tick 23400 64.18 39.18 62.90

5 7680 56.03 32.23 41.41

This table reports the finite-sample size and size-adjusted power (%) of 10,000 simulations

of 3 noise-robust tests at 5% nominal level: noise-adjusted PZ (Podolskij and Ziggel, 2010),

LM12 (Lee and Mykland, 2012), and ASJL (Aı̈t-Sahalia et al., 2012). All simulated prices are

contaminated by the additive Gaussian noise and rounding errors. All these tests are constructed

on tick-level and 5-second-sampled observations. The tuning parameters for those tests are

selected by minimizing the absolute distance between the nominal size and the empirical size

with the simulated tick-level noise-contaminated observations.
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Table B.6: Finite-sample size and power (%) of truncation-based filtering technique under Gaussian noise

Nominal size: 5%

Panel A

No Jump (with FWER control) Panel B Panel C

Ticks Nspl Šidák Bonferroni Moderate Jumps Large Jumps

1 23400 100.00 100.00 74.84 86.80

5 4680 100.00 100.00 72.45 85.36

15 1560 73.56 73.04 66.19 82.02

30 780 28.77 28.23 59.89 78.41

60 390 12.97 12.69 51.74 73.25

120 195 7.89 7.72 40.75 64.72

180 130 6.25 6.12 35.06 59.93

300 78 5.77 5.61 27.01 53.77

This table reports the finite-sample size and size-adjusted power (%) of 10,000 simulations of the truncation-based

jump filtering technique. All simulated prices are contaminated by the additive autocorrelated Gaussian noise and

rounding errors. Observations are sampled at various multiples of ticks, where “Nspl” stands for the corresponding

sampling frequencies. The truncation thresholds are constructed from the localized pre-averaged BV of Podolskij

and Vetter (2009) computed within each backward-looking window of 1,800 ticks. The threshold parameter k is

adjusted with both the Šidák and Bonferroni corrections, and $ = 0.5.

Table B.7: Finite-sample size and power (%) under autocorrelated Gaussian noise

Nominal size: 5% θ = 0.3 θ = 0.4 θ = 0.5

ε ε ε

c/σ(r̃i) N(c) 0.05 0.07 0.10 N(c) 0.05 0.07 0.10 N(c) 0.05 0.07 0.10

Panel A

No Jump

3 1785 4.85 5.28 5.39 1784 5.14 5.34 5.69 1783 5.38 5.70 5.84

4 1099 5.02 5.36 5.34 1099 5.05 4.94 5.32 1097 5.23 5.62 5.69

5 743 4.84 5.45 4.96 743 4.82 5.58 5.37 743 5.41 5.64 6.07

6 536 4.71 5.14 5.30 536 4.87 5.32 5.23 535 4.73 5.33 5.63

7 404 5.21 5.36 5.44 404 5.11 4.91 5.60 404 5.20 5.02 5.45

8 316 4.74 5.21 5.50 316 4.91 4.79 5.74 316 4.75 5.17 5.41

9 253 4.56 5.05 5.37 254 4.92 5.16 5.35 253 4.86 5.36 5.32

10 208 4.87 5.45 5.33 208 5.01 5.48 5.77 208 5.36 5.42 5.75

Panel B

Moderate Jump

3 1715 47.02 49.41 52.39 1717 45.14 47.22 49.69 1719 43.27 45.53 48.29

4 1058 46.22 48.63 51.34 1059 43.97 46.88 48.80 1061 42.70 44.28 47.16

5 717 45.80 47.83 51.35 719 43.38 45.64 48.35 720 40.70 43.64 45.82

6 518 45.25 46.85 49.59 519 41.62 45.13 47.71 520 40.83 42.25 45.93

7 392 43.53 46.57 48.48 393 41.06 44.33 46.80 394 39.47 42.48 45.30

8 307 43.39 45.85 49.41 308 41.95 43.80 46.44 309 39.25 41.64 44.64

9 247 43.28 45.83 48.46 248 40.78 43.20 46.57 248 39.04 40.64 45.10

10 203 42.70 44.97 48.27 204 40.26 41.86 45.96 204 38.51 40.48 43.28

Panel C

Large Jump

3 1587 69.39 70.70 72.91 1590 67.87 69.33 71.27 1594 66.82 68.17 70.24

4 979 68.87 70.46 72.68 983 66.80 69.17 70.63 985 65.84 67.74 69.17

5 665 67.98 70.11 72.16 668 66.93 68.16 70.27 671 65.21 66.26 68.55

6 482 68.20 69.38 71.78 485 65.87 67.95 69.81 487 64.66 66.04 67.63

7 366 66.57 68.81 71.08 368 65.20 67.12 68.95 370 64.53 66.31 67.93

8 287 67.04 69.14 71.08 289 64.39 66.85 69.28 291 63.97 65.09 67.34

9 232 66.01 68.47 70.40 234 64.17 66.33 69.04 235 63.15 64.93 67.69

10 191 66.15 67.95 70.27 193 63.67 65.80 68.23 194 62.39 64.69 67.11

This table reports the finite-sample size and size-adjusted power (%) of 10,000 simulations of the test statistic Tc,ε at 5%

nominal level. All simulated prices are contaminated by the additive autocorrelated Gaussian noise and rounding errors. We

utilize the two-step noise reduction method in Section 3.2 to construct the sequence of pseudo-observations with three different

pre-averaging windows, i.e., kn = dθ
√
Ne with θ ∈ {0.3, 0.4, 0.5}. The observations are sampled with different PDS barrier

widths c = Kσ(r̃i), where K ranges from 3 to 10. Different censoring thresholds with ε ∈ {0.05, 0.07, 0.1} are considered. N(c)

stands for the average sampling frequencies.
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Table B.8: Finite-sample size and power (%) of other tests under autocorrelated Gaussian noise

Nominal size: 5%

Int. (sec) Nspl BNS JO LM ASJ CPR PZ MinRV MedRV

Panel A

No Jump

5 4680 0.00 0.72 10.46 100.00 0.00 5.19 0.00 0.00

15 1560 2.48 2.79 19.26 97.34 2.84 8.11 0.40 1.59

30 780 5.59 4.27 26.71 47.36 6.32 11.46 2.93 4.99

60 390 6.84 5.87 26.53 14.89 7.32 13.67 4.93 6.60

120 195 7.08 7.43 17.00 8.51 7.64 15.53 5.55 7.50

180 130 7.33 8.53 14.31 5.60 8.09 15.63 5.56 7.98

300 78 7.92 10.90 12.15 4.35 9.20 15.09 5.73 9.55

Panel B

Moderate Jump

5 4680 42.34 49.60 68.05 99.81 45.64 64.41 37.27 42.66

15 1560 39.11 43.61 59.86 93.84 42.79 60.18 36.30 40.82

30 780 36.35 37.43 50.10 66.10 40.00 52.66 32.51 37.08

60 390 28.49 29.46 41.52 39.38 32.06 43.30 26.18 30.62

120 195 22.16 21.09 34.90 21.09 25.48 32.18 20.48 23.39

180 130 17.80 16.58 29.83 15.66 20.78 25.61 17.18 19.83

300 78 13.36 11.19 19.64 10.68 14.91 18.07 12.98 14.99

Panel C

Large Jump

5 4680 66.02 71.75 83.05 99.73 68.49 80.74 61.79 66.31

15 1560 63.75 67.48 78.59 95.40 66.49 78.52 61.00 64.90

30 780 60.36 62.07 72.40 78.66 63.52 73.58 57.06 61.05

60 390 53.77 55.08 65.78 56.45 57.05 67.04 51.59 55.26

120 195 46.55 46.82 60.23 35.58 49.80 57.96 44.44 48.75

180 130 40.73 41.31 55.31 24.87 44.99 51.75 39.56 44.64

300 78 33.58 32.74 44.99 16.57 37.28 42.89 32.71 36.46

This table reports the finite-sample size and size-adjusted power (%) of 10,000 simulations of 8 classical tests at 5% nominal

level: BNS (Barndorff-Nielsen and Shephard, 2006), JO (Jiang and Oomen, 2008), LM (Lee and Mykland, 2008), ASJ (Aı̈t-

Sahalia and Jacod, 2009), CPR (Corsi et al., 2010), PZ (Podolskij and Ziggel, 2010), MinRV and MedRV (Andersen et al.,

2012). All simulated prices are contaminated by the additive autocorrelated Gaussian noise and rounding errors. All these tests

are constructed on observations equidistantly sampled with various intervals in calendar time: 5, 15, 30, 60, 120, 180 and 300

seconds, and “Nspl” stands for the sampling frequencies.

Table B.9: Finite-sample size and power (%) of other noise-robust tests under autocorrelated

Gaussian noise

Nominal size: 5%

Int. (sec) Nspl PZ* LM12 ASJL

Panel A: No Jump
tick 23400 5.06 2.91 5.19

5 4680 4.98 8.10 8.92

Panel B: Moderate Jump
tick 23400 38.51 21.87 37.46

5 4680 29.10 18.91 17.09

Panel C: Large Jump
tick 23400 65.58 39.64 63.69

5 7680 55.98 32.62 41.88

This table reports the finite-sample size and size-adjusted power (%) of 10,000 simulations

of 3 noise-robust tests at 5% nominal level: noise-adjusted PZ (Podolskij and Ziggel, 2010),

LM12 (Lee and Mykland, 2012), and ASJL (Aı̈t-Sahalia et al., 2012). All simulated prices are

contaminated by the additive autocorrelated Gaussian noise and rounding errors. All these

tests are constructed on tick-level and 5-second-sampled observations. The tuning parameters

for those tests are selected by minimizing the absolute distance between the nominal size and

the empirical size with the simulated tick-level noise-contaminated observations.
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Table B.10: Finite-sample size and power (%) of truncation-based detection under autocorrelated Gaussian noise

Nominal size: 5%

Panel A

No Jump (with FWER control) Panel B Panel C

Ticks Nspl Šidák Bonferroni Moderate Jumps Large Jumps

1 23400 100.00 100.00 72.29 85.15

5 4680 100.00 100.00 70.59 85.03

15 1560 85.80 85.44 65.00 81.64

30 780 36.99 36.46 58.82 77.33

60 390 15.62 15.28 51.05 72.25

120 195 8.96 8.74 41.05 64.41

180 130 7.06 6.86 34.71 59.46

300 78 5.83 5.73 27.36 52.70

This table reports the finite-sample size and size-adjusted power (%) of 10,000 simulations of the truncation-based

jump filtering technique. All simulated prices are contaminated by the additive autocorrelated Gaussian noise and

rounding errors. Observations are sampled at various multiples of ticks, where “Nspl” stands for the corresponding

sampling frequencies. The truncation thresholds are constructed from the localized pre-averaged BV of Podolskij

and Vetter (2009) computed within each backward-looking window of 1,800 ticks. The threshold parameter k is

adjusted with both the Šidák and Bonferroni corrections, and $ = 0.5.

Table B.11: Finite-sample size and power (%) under t-distributed noise

Nominal size: 5% θ = 0.3 θ = 0.4 θ = 0.5

ε ε ε

c/σ(r̃i) N(c) 0.05 0.07 0.10 N(c) 0.05 0.07 0.10 N(c) 0.05 0.07 0.10

Panel A

No Jump

3 1785 4.74 5.28 5.54 1784 5.25 5.01 5.79 1783 5.04 5.38 5.73

4 1100 5.01 5.04 5.40 1098 5.05 5.00 5.78 1098 5.05 5.10 5.61

5 743 4.62 4.85 5.29 743 4.77 5.04 5.51 743 4.60 5.31 5.82

6 536 4.93 5.01 5.35 535 4.67 5.01 5.42 535 4.81 5.44 5.81

7 404 4.83 5.08 5.22 404 4.81 5.04 5.48 403 5.24 5.58 5.67

8 316 4.86 5.34 5.27 316 4.91 5.22 5.67 316 4.88 5.15 5.70

9 254 4.77 5.42 5.24 253 5.13 5.41 5.39 253 4.83 5.01 5.72

10 208 5.12 5.37 5.64 208 5.27 5.56 5.77 208 4.93 5.62 5.84

Panel B

Moderate Jump

3 1716 46.47 48.75 50.70 1718 44.29 46.93 48.39 1718 42.42 45.03 46.94

4 1058 45.56 48.39 50.84 1060 43.27 45.47 47.73 1061 41.57 43.20 45.28

5 717 45.09 47.07 50.32 719 42.73 45.48 47.82 720 40.67 42.31 45.21

6 519 44.78 46.46 48.26 519 41.76 44.18 46.61 521 40.50 42.15 44.40

7 392 44.00 45.75 48.66 393 40.80 43.60 46.14 394 39.99 41.48 43.88

8 307 42.56 44.26 48.15 308 40.08 42.59 45.58 308 39.08 41.55 43.25

9 247 42.79 44.68 48.11 248 39.44 41.88 45.47 248 38.55 41.12 42.51

10 203 41.21 44.19 46.88 204 39.69 41.62 44.87 204 37.62 39.87 42.92

Panel C

Large Jump

3 1585 70.44 71.21 73.23 1589 68.58 70.69 72.01 1592 66.90 68.86 70.80

4 978 69.91 71.37 73.07 981 68.25 69.64 71.07 985 66.59 68.75 69.66

5 664 69.36 71.15 72.79 668 67.65 69.30 71.08 670 66.09 67.79 69.56

6 481 68.75 70.43 72.67 484 66.82 68.64 70.50 487 65.24 66.70 68.72

7 365 68.08 69.77 71.74 368 65.70 67.87 69.97 370 64.57 66.43 68.83

8 287 67.67 68.95 70.93 289 65.10 68.12 69.69 291 63.77 66.09 67.83

9 232 66.89 68.86 71.66 234 64.52 66.96 69.63 235 63.39 66.10 67.81

10 191 66.21 68.25 70.90 192 64.24 66.28 69.49 194 62.52 64.96 67.43

This table reports the finite-sample size and size-adjusted power (%) of 10,000 simulations of the test statistic Tc,ε at 5% nominal

level. All simulated prices are contaminated by the additive t-distributed noise and rounding errors. We utilize the two-step

noise reduction method in Section 3.2 to construct the sequence of pseudo-observations with three different pre-averaging

windows, i.e., kn = dθ
√
Ne with θ ∈ {0.3, 0.4, 0.5}. The observations are sampled with different PDS barrier widths c = Kσ(r̃i),

where K ranges from 3 to 10. Different censoring thresholds with ε ∈ {0.05, 0.07, 0.1} are considered. N(c) stands for the

average sampling frequencies.
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Table B.12: Finite-sample size and power (%) of other tests under t-distributed noise

Int. (sec) Nspl BNS JO LM ASJ CPR PZ MinRV MedRV

Panel A

No Jump

5 4680 58.90 15.85 100.00 99.92 99.87 99.70 0.12 0.02

15 1560 12.76 10.10 89.87 92.05 56.23 72.27 0.71 2.19

30 780 8.89 7.81 62.42 44.91 24.70 40.96 3.06 5.18

60 390 7.25 7.38 38.66 16.35 11.91 24.07 4.49 7.09

120 195 7.23 8.22 20.16 7.68 8.87 18.31 5.11 7.38

180 130 7.37 8.99 16.35 5.38 8.42 17.48 5.30 8.46

300 78 7.34 10.83 11.47 4.33 8.64 14.86 5.22 8.55

Panel B

Moderate Jump

5 4680 37.49 37.05 17.64 99.97 11.25 13.71 39.54 41.12

15 1560 40.61 38.20 25.74 97.85 21.65 20.95 34.45 37.18

30 780 36.25 35.77 31.96 70.97 30.82 27.51 31.47 35.67

60 390 30.11 29.45 36.41 40.48 30.72 35.36 27.12 31.05

120 195 22.54 21.73 34.11 21.92 24.58 30.89 20.59 23.94

180 130 17.55 17.67 29.39 14.43 20.16 25.77 16.98 20.66

300 78 14.49 12.22 22.25 10.45 16.11 20.07 13.74 17.01

Panel C

Large Jump

5 4680 62.75 63.82 45.20 99.98 31.59 38.22 63.94 65.60

15 1560 65.71 64.24 53.45 98.79 47.84 47.73 59.14 61.94

30 780 61.92 62.02 59.38 81.94 56.98 54.91 56.36 60.86

60 390 55.55 55.88 63.00 57.74 56.36 62.26 52.38 56.60

120 195 47.62 47.85 60.48 37.89 51.29 57.77 45.42 50.37

180 130 41.65 43.02 55.53 25.61 45.02 52.02 40.67 45.06

300 78 35.10 34.13 47.57 16.34 39.19 45.37 34.32 39.24

This table reports the finite-sample size and size-adjusted power (%) of 10,000 simulations of 8 classical tests at 5% nominal level:

BNS (Barndorff-Nielsen and Shephard, 2006), JO (Jiang and Oomen, 2008), LM (Lee and Mykland, 2008), ASJ (Aı̈t-Sahalia

and Jacod, 2009), CPR (Corsi et al., 2010), PZ (Podolskij and Ziggel, 2010), MinRV and MedRV (Andersen et al., 2012). All

simulated prices are contaminated by the additive t-distributed noise and rounding errors. All these tests are constructed on

observations equidistantly sampled with various intervals in calendar time: 5, 15, 30, 60, 120, 180 and 300 seconds, and “Nspl”

stands for the sampling frequencies.

Table B.13: Finite-sample size and power (%) of other noise-robust tests under t-distributed

noise

Nominal size: 5%

Int. (sec) Nspl PZ* LM12 ASJL

Panel A: No Jump
tick 23400 5.07 5.46 6.18

5 4680 4.64 9.24 8.74

Panel B: Moderate Jump
tick 23400 39.40 25.31 37.68

5 4680 29.26 18.76 17.19

Panel C: Large Jump
tick 23400 65.11 41.81 62.48

5 7680 55.60 31.85 41.42

This table reports the finite-sample size and size-adjusted power (%) of 10,000 simulations

of 3 noise-robust tests at 5% nominal level: noise-adjusted PZ (Podolskij and Ziggel, 2010),

LM12 (Lee and Mykland, 2012), and ASJL (Aı̈t-Sahalia et al., 2012). All simulated prices

are contaminated by the additive t-distributed noise and rounding errors. All these tests are

constructed on tick-level and 5-second-sampled observations. The tuning parameters for those

tests are selected by minimizing the absolute distance between the nominal size and the empirical

size with the simulated tick-level noise-contaminated observations.
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Table B.14: Finite-sample size and power (%) of truncation-based detection under t-distributed noise

Nominal size: 5%

Panel A

No Jump (with FWER control) Panel B Panel C

Ticks Nspl Šidák Bonferroni Moderate Jumps Large Jumps

1 23400 100.00 100.00 9.95 29.93

5 4680 100.00 100.00 15.54 39.25

15 1560 97.71 97.63 23.69 50.02

30 780 63.20 62.93 29.69 56.28

60 390 26.47 26.23 36.40 61.59

120 195 11.41 11.26 38.29 62.58

180 130 8.19 7.99 32.68 58.53

300 78 5.73 5.48 26.31 52.13

This table reports the finite-sample size and size-adjusted power (%) of 10,000 simulations of the truncation-based

jump filtering technique. All simulated prices are contaminated by the additive t-distributed noise and rounding

errors. Observations are sampled at various multiples of ticks, where “Nspl” stands for the corresponding sampling

frequencies. The truncation thresholds are constructed from the localized pre-averaged BV of Podolskij and Vetter

(2009) computed within each backward-looking window of 1,800 ticks. The threshold parameter k is adjusted with

both the Šidák and Bonferroni corrections, and $ = 0.5.
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B.4 Supplementary Empirical Results

Table B.15 reports the empirical results for 8 other tests. Based on the simulation results in

Tables 3 and 4, we select four calendar-time-sampling-based tests: BNS, CPR, MinRV and MedRV,

with different sampling intervals: 30, 60, 120, and 300 seconds, and we also construct the noise-

robust tests PZ*, LM12 and ASJL from tick-by-tick and 5-second data. Moreover, we consider

the truncation-based filtering technique on calendar-time-sampled returns, with the truncation

parameter k calibrated with the Šidák correction. For most of the selected stocks, the noise-robust

ASJL constructed from tick-level observations obtains comparable results to our PDS-based test.

Table B.15: Empirical rejection rates (%) of other tests for selected NYSE stocks

Test Int. (sec) AXP BA DIS IBM JNJ JPM MRK MCD PG WMT

BNS

30 32.02 20.55 20.95 28.46 36.36 32.81 49.80 25.69 43.08 32.41

60 20.16 11.07 19.37 25.69 28.06 24.51 37.55 26.09 31.23 26.88

120 17.00 16.21 16.21 22.53 27.67 25.30 25.69 23.32 27.27 27.67

300 18.58 18.58 15.42 19.76 20.16 17.00 23.32 22.13 22.13 22.13

CPR

30 38.34 32.02 35.57 39.13 47.83 38.34 59.29 33.20 52.57 41.11

60 28.46 16.60 26.88 33.99 40.32 32.41 45.85 29.25 40.32 35.57

120 25.30 20.16 21.74 30.83 34.78 32.02 33.99 28.85 32.81 33.60

300 23.32 23.72 21.34 27.67 29.64 22.13 32.81 28.46 30.43 30.83

MinRV

30 22.53 17.39 15.42 18.18 22.92 21.74 27.67 19.76 26.48 21.34

60 14.23 9.88 15.42 19.76 21.74 16.21 22.92 20.95 22.13 22.13

120 14.23 12.65 12.65 18.58 18.18 17.79 18.58 19.76 19.76 21.74

300 13.04 14.62 13.83 17.39 13.04 11.07 15.81 15.42 16.21 14.23

MedRV

30 30.83 23.72 28.46 31.62 37.15 29.64 40.71 29.64 37.94 32.02

60 20.55 15.81 22.92 28.46 37.15 27.67 33.60 28.85 32.81 30.04

120 20.55 18.58 18.58 26.48 29.64 26.48 27.27 26.88 28.85 34.78

300 18.97 17.00 16.60 24.11 21.74 20.55 23.72 24.90 28.06 25.30

PZ*
tick 7.51 6.32 6.32 5.93 6.32 6.72 7.51 5.14 7.51 4.74

5 31.23 22.92 19.76 26.09 22.13 23.32 23.72 24.90 30.04 31.62

LM12
tick 12.65 4.35 7.51 9.49 12.65 11.46 12.65 9.49 18.58 11.86

5 32.02 21.34 30.04 37.55 29.25 27.27 38.74 27.67 40.32 35.18

ASJL
tick 15.81 20.16 13.04 13.83 13.83 13.44 15.02 20.55 13.83 15.02

5 32.02 20.95 29.25 21.34 26.48 21.74 22.92 26.09 30.04 32.41

Truncation-based

Detection

30 69.96 67.98 70.75 63.64 77.87 64.43 80.63 74.31 80.63 75.10

60 52.96 44.27 49.80 45.45 59.29 45.45 64.43 58.50 65.22 56.13

120 32.41 36.36 33.99 32.81 40.32 34.78 43.87 36.36 42.69 36.36

300 21.34 22.92 19.37 20.55 22.53 16.60 21.34 24.11 24.90 24.51

This table reports the proportions of days with jumps for 10 NYSE stocks in 2020, as identified by the following procedures:

BNS (Barndorff-Nielsen and Shephard, 2006), CPR (Corsi et al., 2010), PZ (Podolskij and Ziggel, 2010), MinRV and MedRV

(Andersen et al., 2012), PZ* (Podolskij and Ziggel, 2010), LM12 (Lee and Mykland, 2012), ASJL (Aı̈t-Sahalia et al., 2012),

and the truncation-based filtering technique in the spirit of Andersen et al. (2007) and Mancini (2009). The first four tests,

together with the truncation-based filtering, employ observations sampled equidistantly in calendar time (with the last tick

interpolation): 30, 60, 120 and 300 seconds. The noise-adjusted PZ*, LM12, and ASJL are constructed from tick-by-tick and

5-second-sampled data. The total number of trading days is 253.

Table B.16 reports the empirical results for other tests constructed from calendar-time-sampled

data, with the control of spurious detections using the thresholding methods in Bajgrowicz et al.

(2016): (i) the universal threshold
√

2 ln 253, and (ii) the FDR threshold. We only consider one-sided

tests whose limiting distribution is N (0, 1) under the null, which includes the upper-tailed BNS,
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CPR, MinRV, MedRV, PZ*, and the lower-tailed ASJL, but excludes the Gumbel-distributed LM12.

Table B.16: Adjusted empirical rejection rate (%) of other tests for selected NYSE stocks

Test Int. (sec) AXP BA DIS IBM JNJ JPM MRK MCD PG WMT

Panel A

Universal threshold

BNS

30 24.11 18.18 17.79 23.32 27.67 25.69 33.99 20.95 30.83 22.92

60 15.81 9.09 15.42 19.37 18.58 18.97 29.25 20.55 24.11 20.16

120 13.44 13.83 15.02 20.55 22.92 22.13 21.74 17.79 19.37 20.55

300 15.02 16.21 13.04 15.42 16.21 14.62 19.76 17.79 17.00 20.55

CPR

30 27.67 27.27 29.64 27.67 31.23 26.88 36.76 23.32 33.99 26.48

60 22.92 13.83 20.55 25.69 27.67 22.92 31.23 20.95 27.67 24.11

120 21.34 17.00 19.76 24.90 24.11 27.27 25.69 23.32 23.72 24.51

300 18.18 20.55 16.60 22.53 23.72 18.18 25.69 22.13 21.74 26.09

MinRV

30 17.79 16.21 13.44 16.21 19.37 18.18 23.32 16.60 20.55 16.60

60 11.86 8.30 14.23 15.81 17.79 14.62 20.55 18.97 20.16 18.97

120 12.25 12.25 12.25 18.18 17.39 17.39 15.02 17.79 16.21 18.97

300 12.25 13.44 13.44 16.21 12.25 11.07 15.42 13.44 15.02 13.83

MedRV

30 24.51 21.74 26.09 25.30 26.09 21.74 30.04 22.92 28.46 26.09

60 17.00 14.23 19.76 23.32 29.64 21.34 24.90 25.69 24.11 22.53

120 17.39 16.21 17.39 21.34 24.11 24.11 22.53 22.13 22.13 29.64

300 16.21 15.42 15.02 20.55 18.97 18.97 18.18 20.95 24.51 22.13

PZ*
tick 5.53 5.53 6.32 3.56 3.56 5.93 5.93 3.95 5.14 3.16

5 2.77 4.35 1.58 3.95 3.16 2.77 2.77 3.16 3.56 4.74

ASJL
tick 14.23 18.58 13.04 13.04 13.44 12.25 12.25 19.37 13.44 14.62

5 26.09 17.39 26.09 18.18 21.34 17.00 18.58 22.53 25.30 24.11

Panel B

FDR threshold

BNS

30 14.23 15.02 16.21 14.23 12.25 15.02 9.09 14.62 11.46 11.07

60 13.04 7.11 12.25 12.65 10.28 14.23 15.02 13.04 14.23 9.09

120 9.88 13.44 14.62 14.62 13.83 17.39 12.25 15.02 13.83 10.28

300 13.04 13.04 9.88 12.25 13.83 11.46 12.65 13.44 9.09 16.21

CPR

30 9.09 15.42 19.37 13.04 11.86 9.09 7.51 12.25 8.30 10.28

60 14.62 10.67 15.02 15.02 13.04 15.02 12.25 11.46 11.07 9.88

120 13.83 16.21 16.21 13.04 14.62 16.21 13.04 13.44 13.04 10.67

300 13.04 16.21 11.46 17.00 13.04 10.28 17.79 15.02 13.44 15.42

MinRV

30 15.81 14.23 12.65 16.21 12.65 17.39 11.07 14.23 15.02 13.83

60 10.67 7.51 11.07 12.65 12.65 11.86 13.44 18.58 13.44 14.62

120 10.67 12.25 12.65 18.18 13.83 16.21 14.23 16.21 14.62 16.21

300 12.65 11.86 13.44 15.81 12.25 11.07 13.04 13.44 15.02 13.83

MedRV

30 15.02 19.37 19.76 10.28 16.60 16.60 10.67 16.21 17.39 13.44

60 13.04 13.04 13.44 11.86 19.76 13.04 13.83 18.18 16.60 11.07

120 15.42 15.02 13.83 15.42 18.58 21.74 16.21 18.97 12.25 18.58

300 11.07 13.83 9.49 16.60 13.83 16.60 13.04 13.04 16.60 18.97

PZ*
tick 5.53 5.53 6.32 3.56 3.56 5.93 5.93 3.95 5.14 3.16

5 2.77 4.35 1.58 3.95 3.16 2.77 2.77 3.16 3.56 4.74

ASJL
tick 13.04 16.21 13.04 10.28 13.44 12.25 11.07 17.39 13.44 14.62

5 15.02 13.44 18.58 15.42 15.42 14.23 12.65 18.58 17.39 14.62

This table reports the proportions of days with jumps for 10 NYSE stocks in 2020, as identified by the following procedures:

BNS (Barndorff-Nielsen and Shephard, 2006), CPR (Corsi et al., 2010), PZ (Podolskij and Ziggel, 2010), MinRV and MedRV

(Andersen et al., 2012), PZ* (Podolskij and Ziggel, 2010), and ASJL (Aı̈t-Sahalia et al., 2012), with the control of spurious

detections using the thresholding methods in Bajgrowicz et al. (2016). The first 4 tests are constructed from observations

equidistantly sampled in calendar time (with the last tick interpolation): 30, 60, 120 and 300 seconds. The noise-adjusted PZ*

and ASJL are constructed from tick-by-tick and 5-second-sampled data. The total number of trading days is 253.
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