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Abstract—This paper presents the SMARTS solution for airspace
design and dynamic configuration in European air traffic man-
agement. The approach addresses the critical need for increased
airspace capacity through intelligent sector management using
artificial intelligence and optimization algorithms. The SMARTS
solution comprises three main components: Basic Volume De-
sign; Sector Design employing mixed integer linear program-
ming for optimal sector boundaries; and Dynamic Configuration
using graph-based optimization for near real-time configuration
planning. Validation was conducted at Madrid Area Control
Center (ACC) using 2023 traffic data. The results show that
the SMARTS solution successfully balances air traffic controller
workload, improves capacity utilization, and introduces a local
resilience KPI for monitoring robustness toward a reliable
framework for future European airspace architecture. The
system delivers operationally viable configurations that align
with real-world air traffic management needs while maintaining
flexibility for various operational scenarios.

Keywords—airspace design; dynamic airspace configuration;
optimization; resilience; machine learning; validation

I. INTRODUCTION

Dynamic Airspace Configurations (DAC) is at the core of
the current and future European air traffic system, as it is the
medium to increase airspace capacity. The SESAR Concept
of Operations recommends DAC as the first means to resolve
demand capacity imbalances, and it is also envisioned as a
major cornerstone of the future architecture of the European
airspace described in the Airspace Architecture Study. En-
abling additional airspace capacity is a key factor to address
the significant capacity challenges already faced in the recent
past and to cope with the (expected) significant growth in air
traffic, while maintaining safety, improving flight efficiency
and reducing environmental impact. In line with the strategic
vision provided by the European ATM Master Plan and the
SESAR Strategic Research and Innovation Agenda, the main
objective of the SMARTS research project is delivering the
right amount of capacity, at the right moment and with the
maximum efficiency to better serve the air traffic demand [/1]].
More specifically, it aims to make the airspace design and
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configuration process more efficient taking full advantage of
the airspace potential.

The ambition is to identify sectors and sector configurations
that use the Air Traffic Control (ATC) available resources
— i.e., Air Traffic Controllers (ATCo) — efficiently. In other
words, sectors and sector configurations should ensure that
Air Traffic Controllers can handle the associated workload
comfortably. However, given the varying characteristics of
the air traffic flows, there may not be a single sector con-
figuration that will fulfill the desired objective over all the
time. The key component of the proposed solution is the
smart sectors. Smart in the sense that sectors are aware of
the environment (traffic and complexity prediction, capacity
estimation, impact on other sectors), can act and adapt to
improve the environment (create a sector design that produces
a desired outcome in terms of workload/complexity), and can
communicate with relevant actors (both local and network
nodes). The smart sector — which is engendered by the design
of basic volumes, i.e., the elementary building blocks of
the smart sector — enables the improvement of the overall
dynamic airspace configuration process and the identification
of better capacity actions. More in particular, smart sectors
provide the basis for an optimal distribution of workload,
tailored around specific safety and operational requirements
including complexity. As a by-product, the application of
cost-efficient capacity actions allows a more accurate DCB
planning in the early INAP phases thus reducing the number
of required demand measures.

Compared to current practice on airspace configuration,
which is largely based on the experience of operators and
heuristic methods, the proposed approach is underpinned by
models and algorithms that fall in the broad area of artificial
intelligence and analytics. With respect to models and algo-
rithms for sectorization and dynamic airspace configuration
recently developed, the proposed approach not only includes
the option of creating new sectors but also provides the capa-
bility to identify the best-fit operational sector configuration.

The paper is structured as follows: Section [lI| describes
in details the SMARTS’ approach. Section presents the
experiment setup for the validation exercise, and the data
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Figure 1: Architecture of the SMARTS solution.

description. Section delivers the results and discussion
while Section [V] provides the concluding remarks.

II. SMARTS SOLUTION

The SMARTS approach is schematically depicted in Figure
[[] The diagram illustrates the workflow of the dynamic
airspace configuration process, highlighting its three main
components: Basic Volume Design, Sector Definition, and
Sector Configurations and Configuration Plan.

All the DAC components require input data from several
sources including prediction models for air traffic flows and
air traffic demand. These models provide relevant input for
both the basic volume design (e.g., traffic scenarios for flow
analysis) and the sector configuration plan definition (e.g.,
traffic demand prediction). The following subsections provide
a detailed description of the methodology applied to each
component of the dynamic airspace configuration process, as
well as the demand analysis and prediction component.

A. Basic volume design

The first module of the SMARTS solution is the basic
volume design. The goal of this module is to generate a set
of blocks that will be used to design the sectors. Two types
of blocks are considered:

« airspace block (AB), i.e., a primary volume of airspace
which has to be configured to build workable sectors
of control defined as configured sectors in this concept
(CS).

« shareable airspace block (SAB), i.e., non-workable
volume of airspace that can be dynamically configured
(attached) in a pre-defined way to any adjacent Airspace
Block (AB) to build Configured Sectors (CS). These
blocks are smaller than the ABs and have lower traffic
volumes.

The generation of the blocks are based on Simulated
Annealing [2] and Voronoi diagram [3]]. A first version of
the proposed approach considering only ABs is described in
[4].

1) Complexity metric: To design the blocks we use the
history of the flight trajectories. From these trajectories, we
calculate convergence zones, represented by high complexity.
The blocks must be balanced in complexity and centred
around these points of convergence. In this study, we consider
that ABs have a higher complexity than SABs. In SMARTS,
we decided to use the metric developed in [5]. This metric
evaluates the total conflict duration for heading maneuvers
between —W and U, integrating all possible positions of
flights 7 and j around the reference with a constant speed
and a continuous time uncertainty:

7
w, = [ T (W) v, (1)

where 7;; () is the integral for a specific heading change
and equals:

Tij () = kT (2(u)) — KT (2(w)) ,

where k is the conflict duration’s ellipse area divided by ,
z(u) (resp. z(w)) is linked to the minimal (resp. maximal)
time uncertainty and:

0 if 2 < -1
T(z) =3 22122427 4 zarcsin(z) if z € (—1,1)
) ifz>1

2) Mathematical model: To compute the airspace blocks,
we discretize the space using a regular grid, which serves
two purposes: it defines the positions of the block centers
and stores the corresponding complexity values.

Once the grid is defined, all 4D trajectory points are
projected onto it. For each cell (i, j), we assign a complexity
value w; ; equal to the sum of the complexities w, of all
trajectory points located within that cell:

wij = Y wp, 2)

PEXi,j



where x; ; denotes the spatial extent of cell (4, j):

Xij ={(@y) |z <z <zig1,¥ <y <vyiyr}, Q)

with (z;,y;) representing the coordinates of the bottom-
left corner of the cell. illustrates an example in
which three trajectories intersect a grid. The trajectories are
discretized in time, so intersections occurring close in time
will yield high complexity values in the corresponding cells.

\

/

Figure 2: Example of a complexity grid: the redder the cell,
the higher its complexity.

In this model, the total number of blocks, the number of
ABs (n47) and the number of SABs (n545) are considered
constant. The only decision variables are therefore the posi-
tions of the centers:

P = {pb = (b, Yp), (Tb, Yp) € N27b € {17. .. ,nAB _,'_nSAB}}.
“

A solution is represented by a list of cell identifying numbers
in the grid. The first n*? elements are the centres of ABs
and the next n°45 are the centres of SABs. An example of

solution is given in

AB SAB

n n

29 | 25 | 54 | 13 0 41

Figure 3: Example of a solution with two ABs (29 and 25)
and two SABs (54,13)

The objective function is composed of three different func-
tions. The first one represents the imbalance of complexity
between blocks and is defined as follows:

nAB+nSAB | W |
Wy — e
=3 = 5)
b=1 ¢

where W, is the average value of the complexity. The second
objective is to minimize the maximum complexity of blocks.
This function is defined as follows:
2
wp (nAB + nSAB)

f - b€{17...717}}4aBX+nSAB} w (6)

The difference with the model presented in [4] concerns
the addition of a third objective, which corresponds to the

difference in complexity between the lowest one of ABs and
the highest one of SABs. This function is defined as follows:

fd = max max wp — « min wy, 0],
be{nAB+1,...,nSABnAB} be{l,...,n48}

(7
where « is the desired minimum percentage difference be-
tween the lowest complexity of ABs and the highest one of
SABs.

Finally, the objective function f is defined by:
F=M+ A= Nf+ Mfe (8)

where A € [0,1] is a compromise coefficient between the
two criteria and M € R is a big value to guarantee that
the solution meets the constraints of minimum complexity
difference between ABs and SABs.

3) Block design: To construct the blocks, we use a Voronoi
diagram [3]], which partitions a plane into regions based on
proximity to a given set of objects. In its simplest form,
these objects are a finite set of points—called seeds, sites, or
generators—each associated with a Voronoi cell, containing
all points closer to that seed than to any other. In our ap-
proach, we first generate a two-dimensional Voronoi diagram,
which is then extruded into the third dimension (see [Figure 4).
This process yields a set of vertically stacked airspace units
that collectively cover the entire designated volume. While
the horizontal footprint of each unit remains constant across
altitude layers, the complexity of the resulting geometry varies

with height.
(©)
. / , /!

Figure 4: Construction of the Voronoi diagram and 3-
dimensional projection.

4) Solution approach: The solution approach is based on
Simulated Annealing, originally introduced by Kirkpatrick
et al. [2], inspired by the physical annealing process of
materials. The SA algorithm consists of two main phases:
a heating phase that brings the solid into a high temper-
ature, followed by a gradual cooling phase to achieve a
solid state with minimal energy ([|6]). A key strength of
Simulated Annealing lies in its capacity to accept transitions
that temporarily degrade the objective function. At the outset,
the algorithm operates at a high temperature 7', enabling
the acceptance of moves with substantial deterioration in
the criterion and thereby promoting extensive exploration of
the solution space. As T' decreases, the algorithm becomes
more selective, accepting primarily improvements or minor
degradations. In the final stages, when 1" approaches zero,



no deterioration is permitted, and the algorithm’s behavior
converges to that of a Monte Carlo method.

The main part of the Simulated Annealing is the neighbor-
hood operator. In this study, it consist in changing randomly
the center position of one block (AB or SAB). It just therefore
consisting in exchanging two elements in the solution list.
The blocks obtained are used as input by the sector design
module.

B. Sector design

Mathematical programming provides the methodological
foundation for sector design. In particular, mixed-integer
linear programming (MILP) formulations have been devel-
oped to address both two-dimensional case (defined on the
latitude—longitude plane) and three-dimensional case. These
formulations are described in detail in [[7]] and [8]] respectively.
The proposed approach enables the design of effective sectors
which satisfy all the operational requirements, as depicted in
the exemplar below.
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Figure 5: Sector from the weekday morning category. The
optimization algorithm has successfully ensured that each
flight path traverses the sector exactly once (flow convexity),
eliminating the operational inefficiencies and coordination
challenges that would arise from trajectory fragmentation.

In accordance with the requirements set by operational
stakeholders, for the validation scenarios considered within
SMARTS in Madrid ACC airspace, all airspace blocks be-
tween FL325 and FL375 are classified as shareable. Con-
sequently, in the vertical dimension of the airspace, only
two ABs remain: one below FL325 and one above FL375.
Since each workable sector must contain at least one AB,
this implies that at least one of these two blocks—below
FL325, above FL375, or both—must be included in the
designed sector. This requirement allows us to apply the 2D
formulation using the workflow illustrated in Figure [0

Our approach defines four traffic scenario categories based
on weekday/weekend and morning/afternoon combinations.
For each category, we compute hourly average instances and
traffic flows to capture representative operational conditions.

”l hourly upper 2D sectors-

layers upper layer

A
[ —1
Multiple I “Hourmower 2D sectors-
Flow data | [hourly ilowss. layers " lower layer

Figure 6: Sector design workflow with hourly average in-
stances for each category.

]

We conducted experiments with a varying number of sectors
K (with K € 2,4,6,8) under two distinct traffic scenarios
corresponding to different airspace portions: lower levels and
upper levels.

The experimental design employs a two-phase optimization
strategy. First, we perform 2D sector optimization to establish
horizontal boundaries. Second, we apply systematic vertical
layer assignment using a hierarchical protocol:

1) Upper layer sectors: Progressive assignment following
the sequence Flight Level (FL) 375+, FL365+, then
FL355+

2) Lower layer sectors: Reverse hierarchical assignment
pattern of FL355-, FL345-, then FL335-

This methodology significantly reduces computational
overhead compared to simultaneous 3D optimization while
preserving the essential spatial relationships required for
effective airspace management. The outputs of sector design
are sector catalogs for each categories, cleaned from those
sectors that do not meet the complexity requirements, as

in which will be used in the dynamic airspace

configuration process.

C. Airspace configuration

The computational framework designed and developed
for hosting the SMARTS airspace configuration optimizer
is known as Puzzle. Puzzle is a CRIDA-developed Flight
Management Position (FMP) tool that contains the SMARTS
Sector Configuration Service, which supports air traffic flow
and capacity management by providing visualization and
optimization tools. The service is structured around two
complementary functions:

1) Air Traffic Demand Interface; and

2) Airspace Configuration Plan.

The Air Traffic Demand Interface function provides a
comprehensive operational picture of expected traffic demand
for a given shift.

The function integrates multiple datasets, including the
following:

o Sectorization data: XML files that describe the geo-

graphic boundaries and vertical limits of each sector.

o Capacity thresholds: CSV files specifying peak and

sustained occupancy thresholds per sector.
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Figure 7: Puzzle FMP tool interface

o Traffic flows: XML files detailing the main flows within
each sector. Each flow entry contains the geometry of
the route and potential interactions with other flows.

o Predicted traffic demand: XML files containing flight-
level trajectories and flow assignments for all flights
crossing a sector during a shift. Each record includes
aircraft identifier, entry/exit times, flight levels, and
assigned flow.

o Sector Complexity metrics: Complexity metrics per sec-
tor based on the type of traffic and the flows interactions.

The complexity of sectors c; is formally defined as:
Cs = Chase T Cevolution + Coceanic + Cflow + cosr (9)

The formulation considers a baseline sector complexity
Chase together with additional terms capturing flights in evo-
lution (climbs/descents) Ceyoiution, OCEANIC €NLIIES Coceqnics
flow interactions cyj,,,, and flights deviating from standard
flows cosr. Each factor is quantified from traffic data and
combined additively, providing a comprehensive indicator of
sector difficulty that reflects both structural characteristics and
dynamic traffic behaviour.

The calculation of the peak capacity threshold C{ and
the sustain capacity threshold CZ.S within SMARTS followed
the Warning Density Area method derived from the Hourly
Entry Count (HEC) versus Occupancy Count (OCC) rela-
tionship. Using calibrated abacuses, two critical occupancy
values were defined: a Sustain Occupancy, representing the
maximum level of traffic that can be managed safely and
consistently, and a Peak Occupancy, indicating the upper
limit before sector overload requires regulatory measures.
The corresponding HEC values were then extracted from
traffic data in the Madrid ACC sectors, with expert-defined
thresholds mapped to HEC values. Building on this, an
automatic process—developed according to the methodology
described in [9] was applied, using empirical analysis of
HEC—OCC distributions to derive linear trends of maximal
and standard occupancy for OCC values. The interval between
these thresholds defines the Warning Density Area, where
traffic monitoring and tactical interventions ensure sector sta-

bility while maintaining a quantifiable link between strategic
capacity planning and real-time ATFCM regulation.

In this interface, the user has the flexibility to fix the
following parameters:

1) Overload penalty weight w,: Applied when con-

figuration complexity exceeds the sustained threshold.
For configurations satisfying C; > CF, the objective
penalty is computed as w, x (C; — CF).

2) Underload penalty weight w,: Applied to configu-
rations operating significantly below capacity. When
C; < 0.4 - CF, the objective penalty becomes w,, x
(0.4 - CF — C;). The sum of overload penalty weight
and underload penalty weight equals to 1: w,, +w, = 1.

3) Maximum sectors constraint N, : Defines the upper
bound on the number of sectors permitted within any
configuration plan.

4) Permanence duration ¢,,: Specifies the minimum acti-
vation period for any configuration following transition,
ensuring operational stability.

The Airspace Configuration Plan facilitates the reso-
lution of detected capacity-demand imbalances through an
airspace configuration optimizer that systematically evaluates
alternative sector configurations against demand predictions
and capacity constraints. The optimal configuration plan is
obtained by invoking the configuration optimizer hosted by
the Lancaster University Web Services.

Upon receiving optimization requests from the PUZZLE
interface, the configuration service returns a comprehensive
solution containing time-indexed optimal configurations, as-
sociated cost metrics, and detailed sector compositions. This
solution replaces the reference configuration within the vi-
sualization environment, enabling direct comparative analysis
of demand-capacity balance between baseline and optimized
configurations. The iterative nature of the system permits
parameter adjustment and re-optimization to achieve desired
operational outcomes.

The Dynamic Airspace Configuration (DAC) optimizer
provides two algorithmic options for various operational
requirements. The first option employs a deterministic graph-
based approach using shortest path algorithms [10], while



the second option utilizes a deterministic Integer Linear
Programming (ILP) model [[11] incorporating sector perma-
nence constraints for more realistic operational scenarios.
The complete mathematical formulation is detailed in the
aforementioned reference. Both the options use complexity
values computed by Puzzle as criterion of performance. The
complexity of configuration ¢ is formally defined as:

N

Ci=> ¢, VjEN (10)
j=1

where configuration 7 comprises N sectors and cs; repre-

sents the complexity metric for sector s;. The sector-level

complexity metric c¢;; was computed using the a formula

to calculate complexity metrics per sector, which aggregates

multiple contributing factors into a single score.

For Optimizer, we leverage NetworkX [[12]] for efficient
graph modeling and shortest path computation, minimizing
external dependencies while ensuring fast execution times
suitable for real-time applications. We also integrate Gurobi
Python [13]] for its optimization capabilities and proven
convergence stability in complex mixed-integer programming
problems.The system architecture is built using FastAPI,
a modern Python web framework that provides automatic
API documentation, request validation, and high-performance
asynchronous processing. FastAPI enables seamless RESTful
API integration with PUZZLE while maintaining type safety
and providing interactive API documentation for easier inte-
gration and testing.

The DAC Optimizer follows a streamlined workflow where
client requests are received through an API layer that handles
validation and parameter extraction. The system then loads
the appropriate configuration based on time-of-day and day-
of-week parameters, utilizing sector catalogs provided in

III. VALIDATION EXERCISE
A. Data and scenarios

The validation exercise was conducted using the EURO-
CONTROL RNEST 2 platform at Madrid ACC (LECMCTA),
covering airspace sectors LECMCTAN and LECMCTAS
from FL 245. The study utilized 12 selected dates from June
and July 2023, alongside predicted traffic for 2030 using
STATFOR forecasts. Filed flight plans (M1 data) from the
Demand Data Repository (DDR2) served as the primary data
source, representing the best approximation of airspace users’
preferences [14].

B. Demand Analysis

Demand analysis underpins both the design of sectors and
their subsequent configuration. In the project, we employed
flight plan data from the LECMCTA over the six-month sum-
mer season of 2023. A clustering machine learning model is
used to identify traffic flows in this dataset, which comprises
approximately 444,000 flights.

The clustering model employs Hierarchical Density-Based
Spatial Clustering of Applications with Noise (HDBSCAN)
due to its capacity to extract clusters of varying scales and

densities. Drawing on established literature [|15], HDBSCAN
excels at discovering clusters with heterogeneous densities
and arbitrary shapes and is relatively robust to hyperparameter
selection.

In this application, the clusters identified via HDBSCAN
demonstrate higher quality (per defined clustering metrics
such as compactness, separation, or stability) compared to
those produced by Gaussian mixture models. However, a
considerable fraction — approximately 29% of all flights —
is assigned to an outlier (noise) cluster under the HDBSCAN
regime. For alternative use cases in which it is undesirable
to have such a high proportion of unclustered or outlier data,
one might accept somewhat inferior cluster quality by using a
Gaussian clustering paradigm (e.g. Gaussian mixture models),
which forces assignment of all data points to clusters.

By computing each flight’s distance to its cluster medoid,
cluster quality was assessed. In the vertical dimension,
91.37% of the flights lie within +600 feet of their medoids.
In the full three-dimensional space, 88.44% of the flights
are at most 10 NM away from their medoids. These results
attest to the high internal consistency of the 1,700 clusters
identified (each cluster containing at least 60 flights). Figure
displays the top 10 clusters, with medoids distributed across
the LECMCTA.

/j7
LK

Figure 8: Distribution of the 10 most used traffic flows in
LECMCTA airspace. Each color represents a different flow
with it“s medoid as the thick line.

C. Resiliency

As a contribution to the SMARTS initiative aimed at
enhancing the resiliency of sectors and their configuration
plans (Figure [I), we propose a methodology for assessing
the resilience of configuration plans using three performance
metrics that collectively define a Key Performance Indicator
(KPI). The local resilience KPI (TI) evaluates each config-
uration plan through a composite metric that quantifies the
remaining flexibility to absorb disruptions of varying char-
acteristics. These disruptions are captured through indicators
related to capacity, demand, and local state conditions (e.g.
weather):

LCR;
max{1,LDD,}"

where LCR, LDD and LSD denote Local Capacity Re-
siliency (12), Local Demand Disruption (I4) and Local State

Local Resiliency, = LSD; * (11)



Disruption (I3)). The first indicator (LC'R) captures the abso-
lute deviation (reserved buffer) between planned and actual
occupancy counts by quantifying the standardized distance
to its designated thresholds for each active sector in a given
configuration. Note that the standardized delta values makes
the LC'R range to be lower or equal to one:

LCR=1- |LCRPlan(t) - LCRActual(t)‘ (12)

VAN
Zz i,t > (13)

LCRm(t) (:13 Zi (Pi +9 Uz)
where:

o i = Enumerator for Sectors

e ¢t = Time interval

e U, = Sustained Threshold for Sector 7

e P, = Peak Threshold for Sector %

e A;+ = Sector’s Sustained Threshold (U;;) minus
Planned occupancy at time ¢

. Ag’t = Sector’s Sustained Threshold (U; ;) minus Pre-
dicted occupancy at time ¢

The demand indicator (LD D) quantifies the divergence be-
tween planned traffic and predicted traffic under a specific
configuration plan:

LDD,; = Z|(Demandi,t — PredictedDemand, ;)| (14)

and the last term of equation (II)), quantifies the impact of
convective weather:

Zi (1 - PCToverlap(i,t))

LSD; =
! Scount(t)

15)

This metric aggregates the percentage of intact area across
each sector ¢, and subsequently computes the mean value over
Seount> the total number of sectors, during the time interval
t.

The use of absolute values in the equations above is
deliberate in order to account for both positive and negative
disruptions [16] - i.e. a negative disruption may correspond to
unused capacity. Furthermore, by incorporating components
for capacity (LC R) and demand (LD D), the key performance
indicator is constructed to provide an equitable measure of
both types of deviations. Finally, adverse weather impact
(LSD) is modeled to affect demand and capacity simulta-
neously.

The resilience KPI’s maximum theoretical value is 1 (note
that LC'R delta values are always smaller than LD D non-
normalized values) that represents the configuration plan
in absence of any convective weather (LSD = 1), while
the planned occupancy counts (in pre-tactical phase) match
exactly the calculated counts in tactical phase (LCRpjan(s) =
LCRActual(¢))- However, the practical ceiling of local re-
silience KPI (< 1) is the largest recorded value for a pool of
available configuration plans in post-operation data denoting
the maximum value for a given set of days and airspace

(here LECMCTA). This case represents the most flexible
configuration plan consistent to the definition of resilient
system [[17, |18]].

IV. RESULTS AND DISCUSSION

We first conduct a numerical analysis to evaluate the
SMARTS solution. Setting w, = 0.6 and w, = 0.4 with an
additional penalty for over-peak scenarios, we examine the
performance of the optimal configuration plan in Figure [9]
using 5-minute time intervals. The results demonstrate that
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Figure 9: Key metrics from the optimal configuration plan.
The solid line indicates the number of sectors with zero
complexity, while the dashed line shows the number of
sectors exceeding peak capacity. The dark boxes represent
the maximum complexity above peak capacity among all
sectors for each configuration, and the pink boxes indicate
the maximum complexity above sustained capacity.

over-peak scenarios are largely avoided, with only one sector
experiencing slight over-peak complexity at approximately
11:30 am and 2:30 pm. This demonstrates the optimizer’s
capability to prevent excessive workload for ATCOs. Ad-
ditionally, we observe that some zero-complexity sectors
are unavoidable despite workload balancing efforts, due to
temporal variations in active traffic flows and input data
quality limitations.

A. Performance achievements

The system consistently delivered acceptable solutions
when configured with 12-16 sectors, with users finding the
traffic distribution and sector balancing generally effective.
The model emerged as the standout approach, representing
the preferred solution by FMP operators and consistently
delivering superior operational results.

Under adverse conditions, the system demonstrated marked
improvement when utilizing updated traffic models (M1).
This enhancement resulted in significantly better sector uti-
lization and traffic distribution, with optimizer complexity
metrics aligning well with user expectations. The system’s
ability to adapt to challenging operational scenarios represents
a key strength. FMP operators expressed clear satisfaction
with solutions providing 8-16 sectors featuring balanced
workload distribution. The system successfully navigated the



operational sweet spot, avoiding both excessive overloading
from too few sectors and unnecessary complexity from too
many underloaded sectors.

When performing optimally, the system generated practical
configuration plans that aligned with real-world operational
needs. Traffic flow distribution was well-managed, with crit-
ical traffic points appropriately centered and positioned away
from sector boundaries. Multiple scenarios demonstrated the
system’s ability to generate operationally viable solutions that
controllers found acceptable for implementation. The system
showed good responsiveness to traffic variations, with com-
plexity metrics that made operational sense and traffic distri-
bution improvements evident when appropriate models were
applied. The evaluation revealed strong user confidence in the
system’s core capabilities, with controllers and FMP operators
recognizing its potential for operational deployment. The
positive feedback on the generated configurations particularly
indicates that the algorithmic approach successfully balances
the complex trade-offs inherent in airspace management.

V. CONCLUDING REMARKS

The SMARTS solution herein presented addresses the
critical challenge of dynamic airspace configuration through
an integrated three-component approach combining artificial
intelligence and optimization algorithms. The initial valida-
tion exercise at Madrid Area Control Center demonstrated
exceptional performance achievement, with superior capabil-
ity in avoiding over-peak complexity and finding workload
balance, evaluated by the FMP operators.

While the system demonstrates strong foundational capa-
bilities, targeted improvements would maximize operational
effectiveness. The sector catalog would benefit from ex-
pansion to provide enhanced splitting and merging options.
Additionally, specific geographic hotspots require enhanced
sector management capabilities, and the flow prioritization
functionality needs refinement to consistently generate viable
solutions.

A new validation exercise is scheduled in the coming weeks
to verify whether some of the identified issues have been
addressed. As part of this exercise, a comparative analysis will
be conducted between SMARTS and a solution developed by
Eurocontrol. It is worth noting that Eurocontrol’s approach
demonstrated remarkable congestion reduction, achieving a
98.5% improvement compared to the S44 reference baseline.
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