Generating the curvature perturbation without an inflation.

Lyth, David H. and Wands, D. (2002) Generating the curvature perturbation without an inflation. Physics Letters B, 524 (1-2). pp. 5-14.

Full text not available from this repository.

Abstract

We present a mechanism for the origin of the large-scale curvature perturbation in our Universe by the late decay of a massive scalar field, the curvaton. The curvaton is light during a period of cosmological inflation, when it acquires a perturbation with an almost scale-invariant spectrum. This corresponds initially to an isocurvature density perturbation, which generates the curvature perturbation after inflation when the curvaton density becomes a significant fraction of the total. The isocurvature density perturbation disappears if the curvaton completely decays into thermalised radiation. Any residual isocurvature perturbation is 100% correlated with the curvature. The same mechanism can also generate the curvature perturbation in pre-big bang/ekpyrotic models, provided that the curvaton has a suitable non-canonical kinetic term so as to generate a flat spectrum.

Item Type:
Journal Article
Journal or Publication Title:
Physics Letters B
Additional Information:
This agenda-setting paper proposed a radical modification of the inflationary scenario, whereby the field responsible for the origin of structure in the universe may lie dormant until a rather late epoch. This 'curvaton' mechanism opened the way to new ways of thinking about the early universe. 353 citations (SPIRES). RAE_import_type : Journal article RAE_uoa_type : Physics
Uncontrolled Keywords:
/dk/atira/pure/subjectarea/asjc/3100/3106
Subjects:
?? nuclear and high energy physicsqc physics ??
ID Code:
2333
Deposited By:
Deposited On:
02 Apr 2008 10:49
Refereed?:
Yes
Published?:
Published
Last Modified:
15 Jul 2024 10:16