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Abstract

Recent advances in Vision Transformers (ViTs) have shown remarkable perfor-
mance across vision tasks, yet their deep, uniform layer structure introduces signif-
icant computational overhead. In this work, we explore the emergent dynamics of
ViT layers through the lens of energy-based memory systems, drawing a connec-
tion between self-attention and modern Hopfield networks. We introduce a novel
metric—Layer Instability Index (LII)—derived from the operational softmax mode
and its variability, to quantify the metastability of each Transformer layer over time.
Our analysis reveals that certain layers exhibit consistent convergence to attractor-
like states, suggesting functional specialisation and early stabilisation. Leveraging
this insight, we propose an adaptive training framework that dynamically freezes or
skips stable layers based on their energy landscape behavior. Our method reduces
training costs while maintaining or improving accuracy. Extensive experiments
on ViT-S/B/L on CUB-200-2011, CIFAR-10/100, Food-101, Stanford Dogs, and
Beans demonstrate the generality and efficiency of our approach. This work pro-
vides new theoretical and practical perspectives for energy-aware optimisation of
deep Transformer models.

1 Introduction

Vision Transformers (ViTs) have emerged as a transformative architecture in computer vision,
achieving state-of-the-art results in classification, detection, and segmentation tasks. By employing
self-attention mechanisms to capture long-range dependencies, ViTs move beyond the convolutional
inductive biases characteristic of traditional models. However, this expressive capacity incurs
substantial computational overhead, significantly restricting their applicability in resource-constrained
scenarios.

Extensive research efforts have targeted this efficiency bottleneck through various optimisation
strategies. Token-level sparsification methods, such as DynamicViT[30], EViT[23], A-ViT[40],
and STAR[45], dynamically prune redundant patches during inference. Additionally, methods em-
ploying end-to-end sparse training, including SViTE[6] for simultaneous weight and token sparsity,
and DIMAP[11] for module-aware pruning in hierarchical models, further address computational
efficiency. Other adaptive strategies modulate depth or resolution per image, exemplified by cas-
cade token resampling[37], width- and depth-elastic adaptations in DynaBERT[12], and early-exit
mechanisms as demonstrated in LGViT[39] and PABEE[47]. Despite their substantial reductions
in computational costs, these approaches uniformly execute every retained layer, disregarding the
differential internal convergence behaviours across layers.
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Concurrently, complementary research aims to mitigate training overhead via Parameter-Efficient
Fine-Tuning (PEFT). Lightweight modules, such as Adapters[13], AdaptFormer[5], and Com-
pacter[16], introduce compact structures into models. Techniques like LoRA[14] and its exten-
sion HydraLoRA[35] employ low-rank parameter updates, while methods such as CoDA[20], and
DAS[38] utilize conditional routing strategies. Additionally, HST[24], ALaST[7], and SimFreeze[33]
explore adaptive mechanisms to freeze model components selectively. Yet, despite reducing param-
eter updates, these strategies typically introduce additional modules or gating networks, lacking a
theoretically grounded criterion for determining which layers are optimal candidates for freezing or
pruning.

Motivated by recent insights connecting Transformer self-attention to modern Hopfield networks, this
study revisits ViT behaviour through an associative memory framework. Preliminary observations
indicate that shallow layers rapidly converge towards stable attractor states, while deeper layers remain
sensitive to input variations. This differential metastability across layers suggests a novel efficiency
dimension: selectively freezing or bypassing entire layers once their computational "energy" stabilises.
To operationalise this insight, we propose Energy Landscape-Aware ViTs (ELA-ViT), incorporating a
novel metric termed the Layer Instability Index (LII). The LII quantitatively measures layer variability,
guiding dynamic layer freezing decisions during fine-tuning phases.

Contributions

• Theoretical grounding: We extend the interpretation of self-attention as energy minimisation
and formally connect ViT layer behavior to metastable dynamics in Hopfield networks.

• Metric for metastability: We propose the Layer Instability Index (LII), a principled, data-
driven measure that identifies stable versus adaptive layers based on attention distributions.

• Energy-aware efficiency: We develop a dynamic training framework that freezes or skips
layers based on their metastability, reducing computation without compromising perfor-
mance.

• Extensive empirical validation: Our method facilitates up to 12.2% reduction in fine-tuning
time for ViT-B and yields a 6.9% improvement in accuracy for ViT-L.

Our work provides a new lens for understanding ViT layer behavior and paves the way for energy-
aware optimisation in large-scale Transformer models.

2 Previous Work

Vision-Transformer Efficiency. Large-scale Vision Transformers (ViTs) [9] underpin modern
vision–language systems [28, 44, 26] and have even been distilled to mobile form factors [3, 4, 27].
To mitigate their high inference cost, recent work makes computation input-adaptive along the token
or depth axis. Token sparsification—DynamicViT [30], EViT [23], A-ViT [40]—drops low-saliency
patches, while resolution-cascade designs refine token grids progressively [26]. Depth adaptivity is
handled either by width-/depth-elastic backbones such as DynaBERT [12] or by inserting internal
early-exit heads—pioneered in CNNs by BranchyNet [34, 1] and ported to ViTs via LGViT [39] and
PABEE [47]. Very recently, skippable sub-paths inside residual blocks yield depth-adaptive ViTs
without extra heads [15]. All these schemes nevertheless execute every surviving transformer
layer. They overlook that entire layers may converge to input-agnostic attractors and become redun-
dant. Our work is complementary: we act on the layer axis. By analysing layer-wise metastability
through a Hopfield-energy lens, we identify, skip, or freeze fully converged layers—no token masks,
cascade stages, or learned gates required.

Adaptive Fine-Tuning of Transformers. Parameter-efficient fine-tuning (PEFT) freezes most
backbone weights and updates only a small subset. Bias-only BitFit [42]; bottleneck adapters [31]
and their hypercomplex variant Compacter [16]; AdapterDrop [31]; and the vision-oriented Adapt-
Former [5] exemplify this line. Low-rank adaptation LoRA [14] has been enhanced by asymmetric
multi-branch HydraLoRA [35] and orthogonal Householder adapters [8]; IA3 freezes all but per-layer
scaling vectors [25]; LBP-WHT accelerates back-prop with low-rank Hadamard projections [23];
CoDA gates adapters conditionally at inference for further FLOP savings [20]. Budget-learning
schemes such as ALaST [7] and SimFreeze [33] attach differentiable gates that allocate layer budgets
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but introduce extra parameters and tuning overhead. In contrast, we propose a parameter-free cri-
terion—the Layer Instability Index (LII)—computed directly from attention scores. Once low-LII
layers are identified (after a short warm-up), they are frozen, yielding simultaneous savings in
parameters and compute without auxiliary modules, gates, or loss terms.

A key difference from gate-based budgets such as ALaST and SimFreeze is that our framework
introduces no additional parameters. Their learnable budget predictors must be co-optimised with the
backbone, incurring extra memory, computation, and regularisation. LII, derived from Hopfield-style
energy dynamics, uses attention scores already present in the forward pass, leaving model capacity
and training complexity unchanged.

Hopfield Networks and Energy-Based Models. Modern Hopfield Networks (MHNs) extend the
classical model with continuous states and stronger energies, achieving super-linear storage [18]. The
seminal work of Ramsauer et al. [29] established that Transformer self-attention can be viewed as one
update step in an MHN, casting attention as an associative memory retrieval process. This energy-
based perspective has motivated a significant line of theoretical research aimed at understanding the
fundamental dynamics of token evolution.

Foundational studies by Geshkovski et al. have employed tools from statistical physics and differential
equations to provide a rigorous mathematical characterization of these dynamics [10]. Subsequent
studies, including the work of Bruno et al. [2], have further extended this formalism by employ-
ing mean-field PDEs and Wasserstein gradient flows to demonstrate the emergence of metastable
clustering in idealized, continuous-time Transformer models in the limit of infinite depth and large
token counts. The primary aim of these mathematical studies is to formally elucidate the mechanisms
through which tokens converge to stable clusters under idealized conditions.

Our work pursues a distinct but complementary goal. Rather than extending this formal theory,
we aim to operationalize its core insights for a practical application: the efficient fine-tuning of
real-world, finite-depth Vision Transformers. We introduce the Layer Instability Index (LII) not as a
new mathematical construct for proving convergence, but as a lightweight, computationally efficient
proxy for the layer-wise metastability that these theoretical studies describe. Consequently, our
primary contribution is the ELA-ViT framework—an adaptive algorithm that leverages these energy
dynamics to make concrete decisions about freezing layers during training. While the aforementioned
theoretical works provide the fundamental "why" behind layer stabilization, our paper provides a
practical "how" to exploit this phenomenon for tangible gains in computational efficiency.

3 Methodology

Our approach, termed Energy Landscape-Aware Vision Transformers (ELA-ViT), introduces an
adaptive fine-tuning framework guided by the energy dynamics of self-attention layers. The entire
process, from an initial warm-up phase to an efficient consolidation phase, is illustrated in Figure 1.

Warm-Up
Phase

(First T steps)

Layer 1

Layer 2

Layer 3

Layer 4

Layer 5

Layer 6

Layer 7

Layer 8

Layer 9

Layer 10

Layer 11

Layer 12

Input
Stream

All attention layers
are trainable.
LII values are

estimated for each
layer

LII Calculation
Measures variability of the operational mode

One-Shot Freeze
Decision (After T

steps)

Layer 1       Trainable✅

Layer 2        Frozen🔒

Layer 3        Frozen🔒

Layer 4        Frozen🔒

Layer 5        Frozen🔒

Layer 6        Frozen🔒

Layer 7       Trainable✅

Layer 8       Trainable✅

Layer 9       Trainable✅

Layer 10     Trainable✅

Layer 11     Trainable✅

Layer 12     Trainable✅

Layers with LII < τ are
frozen One-shot decision
to freeze layers. No new
parameters introduced

Efficient Fine-Tuning

Layer 1       Trainable✅

Layer 7       Trainable✅

Layer 8       Trainable✅

Layer 9       Trainable✅

Layer 10     Trainable✅

Layer 11     Trainable✅

Layer 12     Trainable✅

Training continues with
unfrozen layers

Text

Warm-Up Window

Fine-tuning Episodes

To measure variability, we compute the median
absolute deviation of operational mode     

 across samples and heads within the warm-up
window

Figure 1: An overview of the ELA-ViT adaptive fine-tuning pipeline. The framework uses a brief
warm-up period to calculate the Layer Instability Index (LII) for each layer. Based on this metric,
stable (low-LII) layers are frozen in a one-shot decision, allowing subsequent fine-tuning to focus
computational resources exclusively on the remaining adaptive layers.
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At its core, our method leverages a novel metric, the Layer Instability Index (LII), to quantify the
metastability of each layer. Based on this metric, stable layers are identified and frozen, focusing
computational resources on layers that are still adapting to the downstream task. The subsequent
subsections detail each component of this pipeline: we first establish the energy-based interpretation
of self-attention (§3.3), then formally define the LII metric and its connection to operational modes
(§3.2), and finally describe our adaptive layer-freezing mechanism (§3.4).

3.1 Energy-based View of Self-Attention

Following Ramsauer et al. [29], we reformulate self-attention as an energy minimisation process in a
modern Hopfield network. Each attention head computes an energy function:

E = −lse(β,XT ξ) +
1

2
ξT ξ + C (1)

Let lse(z) = log
(∑

i e
zi
)

denote the log-sum-exp of a vector z. Let X ∈ Rd×n be the key matrix,
ξ ∈ Rd the query, and β the inverse temperature. The dynamics evolve toward local or global minima
of the energy landscape, corresponding to metastable or stable attention patterns, respectively.

3.2 Layer Instability Index (LII)

We quantify how variable the attention patterns are across inputs at each layer. For each layer ℓ, we
define the operational mode k̄ℓ as the median minimum number of tokens required to accumulate
90% of the attention mass:

k̄ℓ = mediann

(
min

{
m :

m∑
i=1

a
(ℓ,n)
i ≥ 0.9

})
(2)

where a
(ℓ,n)
i are sorted attention scores from head n in layer ℓ.

Warm-up Window. For the first t < ∆ iterations the sliding window is left-truncated: we compute
the median over the available prefix {0, . . . , t} only. Operationally we maintain a circular buffer

of length ∆ and simply update L̂II
ℓ

t = median(bufferℓ), where bufferℓ contains the most recent
min(t+1,∆) observations of k̄ℓt . After t ≥ ∆ the buffer is full and the window slides in the usual
FIFO manner.

To measure variability, we compute the Median Absolute Deviation (MAD) across samples and
heads:

LIIℓ = mediant

∣∣k̄ℓt − mediant′(k̄
ℓ
t′−∆:t′)

∣∣ (3)

Here, ∆ denotes the sliding window length, and t indexes over batches. Layers with low LIIℓ are
considered stable and thus candidates for freezing or skipping. For our experiments, we set ∆ = 20.
We empirically observed that the method is robust to this choice, with results showing minimal
sensitivity to values in the range 10–40.

Empirical Evidence for Layer Instability. A growing body of work confirms that Transformer
layers differ markedly in their input-wise variability. Zhai et al. observe that attention entropy
collapses in early Vision-Transformer blocks while remaining high in the middle, and propose
entropy regularisers to stabilise very deep models [43]. SmartFRZ automatically freezes layers
whose attention variance drops below a threshold and reports large training speed-ups with negligible
accuracy loss [22]. Unified ViT Compression finds that attention maps in the topmost ViT blocks
become nearly identical, enabling those blocks to be skipped with minimal impact on accuracy
[41]. Conversely, Li et al. show that copying the pre-trained attention matrices alone transfers
most downstream performance, suggesting these matrices are intrinsically stable across tasks [22].
Such results motivate using attention-based statistics—here the median operational mode k̄ℓ and its
MAD—to quantify a layer’s “instability”.
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Connection to Fisher Information. Several pruning frameworks exploit second-order curvature to
rank layers or heads: Movement Pruning [32], SAViT’s Hessian-block analysis [46], and Kwon et
al.’s Fisher-guided post-training pruning [19] all show that low-Fisher (or low-curvature) weights and
even whole layers can be removed with little accuracy loss. Dynamic sparsity allocation for Large
Language Models (LLMs) reaches a similar conclusion at the layer scale [21]. Sec.3.3 formalises
this intuition by proving that LII upper-bounds the trace of the layer-wise Fisher matrix, i.e. low-LII
layers are Fisher-flat and hence safe to freeze.

3.3 LII as a Proxy for Energy Gaps

We now tighten the theoretical footing of the Layer Instability Index (LII) by showing that it upper-
bounds, up to a layer-dependent Lipschitz constant, the expected energy gap between the metastable
state reached by self-attention and the global minimum of the corresponding Hopfield energy.

Hopfield Energy For a fixed layer ℓ and head h, self-attention can be written as a modern Hopfield
update that minimises

Eℓ,h(q) = − 1

β
log
(∑N

i=1 exp
(
β q⊤kℓ,hi

))
+ C, (4)

where q is the query, {kℓ,hi }Ni=1 are the keys, and β is the inverse temperature.

Energy Gap Let k be the operational mode introduced in Eq. (3). Denote by

rk := 1−
k∑

i=1

a↓i , a↓i =sorted softmax scores,

the residual attention mass after the top-k tokens (by definition rk ≤ 0.1 because we choose ρ = 0.9).
Define Eℓ,h

k as the energy obtained when the summation in (4) is truncated to the top-k keys only
(i.e., the metastable approximation). The per-head energy gap is

∆Eℓ,h
k := Eℓ,h

k − Eℓ,h. (5)

Information-Geometric View of LII Let F ℓ=Ex

[
∇θℓL(x) ∇θℓL(x)⊤

]
be the Fisher Information

Matrix (FIM) of layer ℓ. Under the exponential-tail assumption of Sec. 3.3, the residual attention
mass rk satisfies rk ≤ e−γk. Using the chain rule for self-attention w.r.t. its softmax scores one
obtains

trF ℓ ≤ γ2

β2
Ex

[
rk(x)

]
≤ Cℓ LIIℓ,

with Cℓ = γ2

β2(1−e−γ) . Details are deferred to App. B. Thus LII is a proxy for the local curvature
of the loss in the Fisher-Rao Riemannian metric: layers with small LII are Fisher-flat and can be
frozen without harming generalisation, whereas Fisher-steep (high-LII) layers benefit from continued
adaptation.

Bounding the Gap via Residual Mass Because log
∑

i exp(·) is monotonically increasing,

0 ≤ ∆Eℓ,h
k = ;

1

β
log
(
1 + rk

1−rk

)
≤ 1

β

rk
1− rk

,

where the last inequality uses log(1 + x) ≤ x. For rk≤0.1 the right-hand side is at most 0.11/β.

Link to k and LII. Our analysis builds on the empirical finding that attention distributions in
trained Transformers are typically sparse, concentrating most of their mass on a few key tokens
while the remaining scores decay rapidly [36, 17]. Consistent with this behavior, we model the
sorted tail weights as decaying exponentially, i.e., a↓i ! ≤!a↓1e

−γ(i−1) with rate γ > 0. Then rk ≤
a↓1e

−γk/(1− e−γ). Hence

∆Eℓ,h
k ≤ Lℓ e

−γk, Lℓ :=
a↓
1

β(1−e−γ) . (6)

Taking logarithms and rearranging yields a Lipschitz relation between k and ∆E :∣∣∣∆Eℓ,h
k1

−∆Eℓ,h
k2

∣∣∣ ≤ Lℓ γ e
−γk̄ |k1 − k2|, k̄ := k1+k2

2 .
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Lemma 1 (LII Upper-Bounds the Expected Energy Gap). Let fℓ(k) := Ex,h

[
∆Eℓ,h

k (x)
]
. Under

assumption (6), the map fℓ is L-Lipschitz with L ≤ Lℓγ. Consequently,

LIIℓ = MAD
[
k̄ℓ
]

=⇒ Ex

[
∆Eℓ(x)

]
≤ L LIIℓ + o(1).

Proof Sketch. The full proof is detailed in Appendix A. The key steps are:

1. Decompose Around the Median: Use the Lipschitz continuity of the energy gap function to
relate the gap at any input’s operational mode to the gap at the median operational mode.

2. Connect to LII: Take the expectation over all inputs, which connects the energy gap to the Median
Absolute Deviation (MAD), our LII metric.

3. Bound the Residual: Show that the remaining term, corresponding to the energy gap at the
median mode, is negligible and can be absorbed into the o(1) term.

4. Combine: Substitute these bounds to yield the final result.

Practical Implications. Lemma 1 justifies using LII as a computationally cheap surrogate for the
(otherwise expensive) expected energy gap. Low-LII layers are guaranteed to have a vanishing E[∆E ]
and are also shown to be Fisher-flat. They are therefore safe to freeze or skip, allowing computational
effort to be focused on the adaptive, high-LII layers.

3.4 Adaptive Fine-Tuning via Layer-Aware Freezing

Our adaptive fine-tuning procedure consists of three distinct stages: warm-up, decision, and consoli-
dation, each controlled by the Layer Instability Index (LIIℓ), defined previously in Section 3.2. See
pseudocode algorithm in the Appendix.

Stage I: Warm-up (0 ≤ t < T ). All layers remain trainable while we accumulate a running
estimate of LIIℓ over a sliding window of length W :

L̂II
ℓ

t = mediants=t−W+1

∣∣∣k̄ℓs −mediansu=s−W+1 k̄
ℓ
u

∣∣∣.
Empirically T =3W with W ≈20 mini-batches suffices for a stable estimate.

Stage II: Freeze decision (t = T ). For each layer ℓ we compute the smoothed estimate L̂II
ℓ

T . If

L̂II
ℓ

T < τfreeze,

the layer is declared stable and its parameters are marked requires_grad = False. No further
gradients or optimizer momentum are stored for that layer, yielding an immediate O(nℓ) memory
and FLOP saving.

Stage III: Consolidation (t > T ). Training continues on the remaining unfrozen layers. Optionally,

every K iterations we re-evaluate L̂II
ℓ

for the still trainable layers and apply a stricter threshold
τ ′freeze > τfreeze to capture late-stabilising layers, but in practice a single decision at t = T already
realises most of the gains.

Adaptive freezing yields benefits across computational efficiency, representation preservation, and
focused learning. Specifically, (i) Computational Efficiency: When a stable layer is frozen, its
forward activations are omitted from the autograd computation graph, and its backward pass is skipped.
This omission results in approximately 2nℓ fewer multiply–add operations per iteration—nℓ each
from forward and gradient computations. (ii) Representational Integrity: According to Lemma 1,
layers with low Local Instability Index (LII) occupy relatively flat regions in the Hopfield energy
landscape. Consequently, additional gradient steps would only minimally perturb these parameters,
at most by an amount proportional to O(LII), thus preserving their stored associative representations.
(iii) Focused Adaptation: Computational resources and optimizer efforts are directed predominantly
towards layers with high LII, which are most responsive to task-specific fine-tuning. This targeted
adaptation accelerates convergence and mitigates overfitting.
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Empirical results demonstrate that the proposed adaptive freezing strategy consistently locks between
40% and 70% of ViT parameters after the initial epoch, as illustrated in Figure 2b. This yields
a reduction in fine-tuning time of up to 12.2% without compromising—and occasionally enhanc-
ing—validation accuracy (refer to Section 5). Further experiments validating these findings are
provided in the appendix.

Existing efficiency methods either attach learnable gates that decide, on the fly, which layers to
update—e.g. ALaST dynamically allocates a layer budget by training an auxiliary gating network
over the backbone itself [7]—or they add new tunable modules, as in adapter-based and low-rank
approaches (AdaptFormer [5], HydraLoRA [35]). Both lines of work introduce extra parameters,
hyperparameters, and optimisation overhead: the gate weights or adapter matrices must be maintained,
tuned, and sometimes merged back into the backbone. In contrast, our Hopfield-guided criterion is
entirely parameter-free: the Layer Instability Index (LII) is computed directly from attention scores
that already exist in the forward pass, and once low-LII layers are identified we simply stop updating
them—no gating layers, no adapter insertion, and no additional loss terms. This minimalism not only
reduces memory and implementation complexity, but also ensures that all efficiency gains accrue
to the original ViT parameters, preserving their interpretability and compatibility with downstream
deployments.

4 Experiment Setup

We evaluate the proposed ELA-ViT on five standard image classification benchmarks—CUB-200-
2011, Stanford Dogs, NABirds, Beans, and CIFAR-10—using three pretrained ViT backbones
(ViT-S/16, ViT-B/16, and ViT-L/16)2. All images are resized to 224× 224 and standardized prior
to fine-tuning. Training utilizes AdamW optimization combined with a cosine-annealing learning
rate schedule and a batch size of 32. Hyperparameters for each backbone are selected to balance
convergence speed with regularization: specifically, (η, λwd) = (3 × 10−5, 0.05) for ViT-S, (1 ×
10−5, 0.1) for ViT-B, and (5× 10−6, 0.2) for ViT-L.

Additionally, we conduct comparative experiments using DeiT and ALaST on the Food-101 and
CIFAR-100 datasets. To deepen our interpretability analysis, we also include experiments us-
ing ImageNet-1K for the Layer Instability Index (LII) assessment. Performance evaluation spans
three key metrics—top-1 accuracy, wall-clock fine-tuning time, and updated-parameter ratio—with
interpretability examined through layerwise LII heatmaps, elucidating the underlying dynamics
responsible for each method’s efficiency gains.

All experiments are conducted using PyTorch on a single NVIDIA A100 GPUs with 50 GB allocated
memory. Our implementation builds upon the HuggingFace ViT backbone and is released publicly.

Metrics. We report Top-1 accuracy, Fine-tuning time, and average number of layers executed per
sample. All results are averaged over 3 seeds.

5 Experiment Results

We evaluate ELA-ViT across two dimensions: fine-tuning efficiency and accuracy preservation. To
understand how ELA-ViT identifies which layers to freeze, Figure 2a reveals two key trends in
layer-wise instability patterns. First, the shape of the MAD profile is consistent: layers 3–4 display
the lowest instability on all datasets, whereas the high-level layers 7–11 remain volatile, confirming
that only a subset of the stack needs task-specific adaptation. Second, the scale of the MAD values
is strongly dataset-dependent: ImageNet-1k—already seen during pre-training—shows sub-unit
Fisher-flat values (< 6), while CIFAR-100 and Food-101 reach 40–50. This suggests using relative
thresholds (τfreeze = α · medianℓLIIℓ) rather than a fixed absolute constant: layers below the dataset-
specific median are safely frozen, whereas the adaptive upper block is left trainable. However, unlike
ALaST, which relies on a learned layer-wise budget requiring continuous optimisation throughout

2ViT-L was excluded from our evaluation on the smaller datasets (e.g., Beans, CIFAR-10) for two primary
reasons. First, its high capacity (>300M parameters) is mismatched with the limited sample size of these
benchmarks, making it highly prone to overfitting without extensive, dataset-specific regularization. Second,
its significant computational and memory requirements present practical challenges for experimentation and
reproducibility on these particular tasks.
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(a) MAD of the operational mode k̄ for a ViT-B/16
fine-tuned on three benchmarks. Left axis corresponds
to CIFAR-100 and Food-101 right axis to ImageNet-1k
All three curves exhibit the same qualitative U-shape:
instability is moderate in the first two layers, reaches a
minimum around layers 3–4, and increases sharply in
the higher-level semantic layers 7–11. Absolute magni-
tudes, however, differ: the small-scale datasets show an
order-of-magnitude higher MAD than ImageNet, indi-
cating that (i) pre-training on large, diverse data makes
early layers more stable, and (ii) task-specific fine-
tuning mainly perturbs the upper transformer block.
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(b) Accuracy–efficiency trade-off of ELA-ViT variants
on CUB-200-2012 (ViT-L backbone).Each point cor-
responds to a different freezing budget: the number in
the label denotes the percentage of layers frozen after
the warm-up stage. Moderate freezing (ELA-VIT-
45% and ELA-VIT-50%) delivers the best overall
balance, cutting fine-tuning time by ≈ 10.6% while
improving accuracy by +6.7–+6.9 pp. Aggressive
freezing (ELA-VIT-75%) yields the largest time sav-
ing (12.2%) but causes a −4.4 pp drop in accuracy,
illustrating the diminishing-returns region beyond the
Pareto knee.

Figure 2: (a) ViT-B/16 shows a universal “U-shaped” layer-wise instability curve across datasets, (b)
ELA-ViT accuracy–time Trade-Off.

training, our method computes per-layer MAD only during the initial steps (e.g., the first T steps) and
freezes layers accordingly. This results in significantly lower overhead: ALaST incurs high cost in
the early epochs due to full-model gradient computation combined with budget learning, whereas our
method introduces only a minor one-time cost ( 1% additional computation). Despite its simplicity,
our method achieves similar freezing patterns with considerably improved efficiency.

5.1 Accuracy Preservation and Improvement

Table 1 summarises the validation accuracy of three ViT backbones (S, B, L) across five benchmarks
when trained (i) with standard full fine-tuning (Baseline) and (ii) with our LII-guided layer freezing
(LII). The last column reports the absolute difference.

For CUB-200-2011 and Stanford Dogs, LII-freezing consistently improves accuracy, with gains
up to +6.9 pp on ViT-L for CUB. Fine-grained datasets require subtle, part-based cues; keeping
the pre-trained shallow layers intact while focusing optimisation on the more task-relevant middle
layers appears to enhance generalisation. The benefit also extends to ViT variant backbones: on
CIFAR-100, ELA-DeiT shortens fine-tuning from 129.0 min to 115.5 min (-10.5%) while increasing
top-1 accuracy from 86.91% to 87.49%.

Improvements scale with model capacity: the ViT-L backbone gains on four out of five datasets,
ViT-B on three, whereas ViT-S sometimes over-regularises (Beans and CIFAR-10). Freezing many
layers in a small model can remove too much capacity; in contrast, larger backbones retain sufficient
expressive power even after freezing.

On BEANS and CIFAR-10 the ViT-S variant loses about 1–2 pp. Both datasets are small and already
near ceiling accuracy, so additional regularisation offers little benefit, and slight under-fitting can
occur. Nevertheless, the ViT-B variant regains parity (+0.5 pp on CIFAR-10), showing that the effect
is dataset–specific rather than intrinsic to LII-freezing.
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Table 1: Validation accuracy (%) for different models and freezing methods across datasets.
Dataset Model Baseline ELA-ViT (Our) Diff (%)

CUB-200-2012
ViT-S 80.1 82.2 +2.1
ViT-B 77.9 82.2 +4.3
ViT-L 78.9 85.8 +6.9

Stanford Dogs
ViT-S 78.3 82.5 +4.2
ViT-B 85.3 85.9 +0.6
ViT-L 87.4 89.2 +1.8

NAbirds ViT-S 68.4 69.3 +0.9
ViT-B 88.7 89.3 +0.6

Beans ViT-S 99.3 97.7 -1.6
ViT-B 98.5 97.7 -0.8

CIFAR10
ViT-S 94.5 92.8 -1.7
ViT-B 96.4 96.9 +0.5
DeiT-B 86.9 87.5 +0.6

5.2 Comparison with State-of-the-Art Layer-Budgeting

To benchmark against the current state-of-the-art in layer-budget learning, we implemented
ALaST [7] across three datasets. We followed the exact same training protocol used for ELA-ViT:
a ViT-B/16 backbone, ImageNet-21k initialisation, input size 2242, batch size 32, AdamW
(η = 1 × 10−5, λwd = 0.1), a cosine schedule, and ten fine-tuning epochs. We kept all ALaST
hyperparameters at their published values, including the budget-regularisation weight λbudget = 0.05.

Table 2: Comprehensive comparison with ALaST and a full fine-tuning baseline across multiple
datasets (ViT-B/16 backbone).

Dataset Method Top-1 Acc. (%) ↑ Time (min) ↓ Time ∆ (%)

Food-101
Full fine-tuning 88.66 297.9 0.0
ALaST (75% frozen) 77.02 181.1 –39.2
ELA-ViT (50% frozen) 90.02 283.0 –10.5

CIFAR-100
Full fine-tuning 83.68 99.9 0.0
ALaST (75% frozen) 76.87 80.4 –19.5
ELA-ViT (50% frozen) 84.33 90.2 –9.7

Stanford Dogs
Full fine-tuning 85.30 43.1 0.0
ALaST (75% frozen) 75.74 33.6 –22.0
ELA-ViT (50% frozen) 85.92 37.0 –14.2

The results, presented in Table 2, demonstrate that ELA-VIT provides a vastly superior accuracy-to-
compute trade-off. Across all three diverse datasets, ELA-ViT not only matches but improves upon
the full fine-tuning baseline, achieving gains of +1.36 pp on Food-101, +0.65 pp on CIFAR-100,
and a substantial +5.77 pp on Stanford Dogs. In sharp contrast, ALaST’s aggressive 75% freezing
budget results in a severe performance collapse, sacrificing 6.8 pp, 8.8 pp, and 11.6 pp in accuracy
on the respective datasets. While ALaST achieves greater time savings, its method of learning a
budget incurs a catastrophic accuracy cost that makes it impractical. ELA-ViT’s LII-guided approach,
by contrast, delivers a more modest but highly valuable speed-up of 9-14% while simultaneously
improving generalization, establishing it as a far more effective and practical fine-tuning strategy.

This performance difference stems from a key methodological distinction. ALaST learns the layer
budget online—every mini-batch it back-propagates through the entire network plus its auxiliary
gating weights. During the first few epochs, the gates receive large gradients, effectively training all
layers and nullifying any early speed-up. The layer budget stabilises only later, after most adaptation
capacity has been exhausted. ELA-VIT, by contrast, computes L̂II in a one-pass warm-up (a
negligible ~1% overhead) and freezes 50% of the parameters from epoch two onwards. This means
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Table 3: ImageNet-1k, ViT-B/16. ↑ = higher is better, ↓ = lower is better.
Method Frozen Train. (%) Top-1 (%) ↑ Lat. (ms) ↓ ∆ lat. (%) Train time (h)

Full fine-tune — 100.0 89.71 399.1 0.0 43.45
ELA-ViT-35% 3–6 67.2 89.17 330.8 –17.1 39.59 (–9.0)
ELA-ViT-50% 2–7 50.9 89.10 341.4 –16.7 38.81 (–10.7)
ELA-ViT-75% 0–7, 11 26.3 87.92 322.7 –12.3 35.09 (–19.2)

our computational savings materialize immediately, all while preserving the pre-trained, low-energy
representations that prove crucial for generalization.

5.3 Scalability and Efficiency on ImageNet-1k

To validate the scalability and practical utility of our approach, we evaluated ELA-ViT on the large-
scale ImageNet-1k benchmark. As detailed in Table 3, our method demonstrates a highly favorable
accuracy-to-compute trade-off. With our balanced ELA-ViT-50% configuration, we reduce wall-clock
training time by 10.7% and inference latency by 16.7%, while maintaining top-1 accuracy within a
negligible 0.61 percentage points of the fully fine-tuned baseline. This result confirms that ELA-ViT
effectively identifies and freezes stable layers at scale, yielding significant computational savings
without compromising performance on this challenging benchmark. Furthermore, for applications
where efficiency is paramount, the more aggressive ELA-ViT-75% setting nearly doubles the training
speed-up to 19.2% for a modest drop in accuracy, illustrating the controllable nature of our method’s
trade-off.

6 Discussion and Conclusion

We presented Energy Landscape–Aware Vision Transformers (ELA-ViT), which harnesses metastable
self-attention dynamics via a modern Hopfield view to enable adaptive training. We introduced the
Layer Instability Index (LII) to quantify layer convergence. Across ViT-B and DeiT-B on ImageNet-
1k, CIFAR-100, and Tiny ImageNet, low-LII layers reliably settle into attractors; freezing them
during fine-tuning cuts parameter updates by up to 52% and speeds training by up to 12.2%.

A key insight is that not all transformer layers contribute equally to learning: shallow layers tend to
capture general patterns and stabilize early, whereas deeper layers remain adaptive and task-specific.
ELA-ViT provides a principled mechanism for identifying and exploiting this heterogeneity, in
contrast to static pruning or token-based dynamic methods.

Limitations include using attention mass concentration as a proxy for representational stability and
the need to track attention over multiple steps, which can be challenging in low-resource settings.
Future work will explore lightweight instability proxies, extend to multimodal transformers, and
investigate theoretical guarantees on convergence and generalisation.

Because LII-guided freezing operates at the layer level and adds no new parameters, it is orthogonal
to most parameter-efficient fine-tuning schemes. A natural next step is to combine our criterion with
conditional adapters such as CoDA [20] or with multi-branch low-rank modules such as HydraLoRA
[35]. In such hybrids, low-LII layers can be frozen, medium-LII layers can retain lightweight adapters
that activate on difficult inputs, and high-LII layers can remain fully trainable. We expect this dual
strategy, parameter sharing plus dynamic layer skipping, to push the compute-accuracy Pareto frontier,
especially for large ViTs and multi-domain settings.

Overall, ELA-ViT bridges energy-based theory and practical efficiency, offering a principled view of
adaptive computation in deep transformers and motivating further work on energy-aware optimisation
and interpretable dynamics.

Beyond vision, applying ELA-ViT to other modalities, particularly LLMs, is promising. LII may
identify layers that encode task-agnostic features (e.g., syntax and grammar), allowing compute to
focus on deeper, more plastic, task-specific layers. Our findings also suggest hybrid architectures
that replace early, low-LII ViT blocks with cheaper convolutional layers, yielding models that are
efficient by design yet adaptive during fine-tuning. ELA-ViT offers mechanistic XAI insights and
embodies early Agentic AI through energy-driven, self-regulating layer dynamics.
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Appendix

A LII upper–bounds expected energy gap

We prove the following result to formalise the intuition that stable layers sit close to their energy
basins. Lemma 1 states that for every layer ℓ

Ex

[
∆Eℓ(x)

]
≤ Lℓ LIIℓ + o(1), (7)

where ∆Eℓ(x) is the Hopfield–energy gap between the attention state reached on input x and the
global minimum, and Lℓ is a finite layer-dependent constant. Thus, the median absolute deviation of
the operational mode—the Layer Instability Index—provides a linear upper bound on the expected
energy sub-optimality, with the residual term vanishing exponentially in sequence length. Layers with
a small LIIℓ are therefore already near their optimal attractor and may be safely frozen or skipped
without degrading convergence or generalisation.

Proof. Fix a layer ℓ and write K(x) = k̄ℓ(x) for the operational mode of input x. Let

k̃ = medianx K(x) (8)

and recall that by Eq. (6) the expected per-head energy gap satisfies

fℓ(k) := Eh,x

[
∆Eℓ,h

k (x)
]
≤ Lℓe

−γk, (9)

and is L-Lipschitz with constant L = Lℓγ.

Step 1: Decompose around the median. Using Lipschitz continuity, we have, for each input x,

|fℓ(K(x))− fℓ(k̃)| ≤ L |K(x)− k̃|. (10)

Taking expectation over x and rearranging,

Ex [fℓ(K(x))] ≤ fℓ(k̃) + LEx|K(x)− k̃|. (11)

Step 2: Median absolute deviation. By definition,

LIIℓ = MAD[K] = medianx |K(x)− k̃| ≤ Ex|K(x)− k̃|, (12)

so the second term in (11) is bounded by LLIIℓ.

Step 3: Bounding the residual term. Applying Eq. (6) at k = k̃ gives

fℓ(k̃) ≤ Lℓe
−γk̃. (13)

Because k̃ is a median of token counts, it grows at least logarithmically with sequence length; hence
Lℓe

−γk̃ = o(1) and can be absorbed into the o(1) term of the lemma.

Step 4: Combine. Substituting these bounds into Eq. (11) yields

Ex

[
∆Eℓ(x)

]
≤ LLIIℓ + o(1). (14)

Thus, the desired inequality follows immediately.

B Information-beometric bound: LIIℓ upper-bounds the fisher trace

We establish a theoretical bound showing that the Layer Instability Index (LII) upper-bounds the
trace of the Fisher Information Matrix (FIM) for transformer layers. The FIM trace characterises
the sensitivity of the loss to parameter updates, providing insights into learning dynamics. Through
careful analysis of gradients via softmax logits and exponential tail bounds of attention probabilities,
we derive a direct relationship between the Fisher trace and the dispersion of operational modes as
measured by LII.
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Preliminaries. Let pi = softmax(β q⊤ki) with inverse temperature β. Denote the per-example
loss by L = L(p) and define the layer-wise FIM

F ℓ = Ex

[
∇θℓL(x)∇θℓL(x)⊤

]
, θℓ ∈ {W ℓ

Q,W
ℓ
K ,Kℓ}. (15)

Our goal is to bound trF ℓ.

Step 1: Gradient of the loss w.r.t. logits. For the logits zi := βq⊤ki,

∂L
∂zi

=
∑
j

∂L
∂pj

∂pj
∂zi

= β
(
pi − ŷi

)
, (16)

where ŷi is the “effective” target (one-hot for CE).

Step 2: Fisher trace through the chain rule. Let Jz := ∂z/∂θℓ. Then

trF ℓ = Ex

∥∥J⊤
z ∇zL(x)

∥∥2
2

≤ 1

λ2
min

Ex

∥∥∇zL(x)
∥∥2
2
, (17)

where λmin is the smallest singular value of Jz (assumed layer-dependent but strictly positive for
typical initialisation).

Using (16), ∥∥∇zL
∥∥2
2
= β2

∑
i

(pi − ŷi)
2 ≤ β2

∑
i

p2i . (18)

Step 3: Relate
∑

i p
2
i to residual mass rk. Let k = k̄ℓ(x) be the operational mode and rk :=

1−
∑

i≤k pi ≤ 0.1 (by definition of ρ = 0.9). Then∑
i

p2i =
∑
i≤k

p2i +
∑
i>k

p2i ≤
∑
i≤k

pi +max
i>k

pi rk ≤ 0.9 + r2k. (19)

Assuming an exponential tail pi>k ≤ pke
−γ(i−k), rk ≤ pk/(e

γ − 1) ≤ C e−γk.

Step 4: From e−γk to LIIℓ. Taking expectation over inputs and using Jensen,

Ex

[
e−γk(x)

]
≤ e−γ median(k)

(
1 + γ LIIℓ

)
, (20)

hence ∑
i

p2i ≤ 0.9 + C ′ e−γ median(k)
(
1 + γ LIIℓ

)
. (21)

Step 5: Final bound. Substituting into (17),

trF ℓ ≤ β2(0.9 + C ′)

λ2
min

(
1 + γ LIIℓ

)
= Cℓ LIIℓ + C0,ℓ, (22)

where Cℓ and C0,ℓ are layer-dependent constants. For practical purposes C0,ℓ is negligible once LII
exceeds 10−2, yielding

trF ℓ ≲ Cℓ LIIℓ (23)

as claimed.

Connection to the 1-Wasserstein distance. Sort the attention vector of layer ℓ and head h at step t,
a↓1:N (t), and define its empirical cumulative distribution function (CDF) Ft(m) =

∑m
i=1 a

↓
i (t).

Because tokens are indexed by their rank, the earth-mover (1-Wasserstein) distance between two
attention snapshots is simply

W1

(
a(t), a(t′)

)
=

N∑
m=1

∣∣Ft(m)− Ft′(m)
∣∣. (24)
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Let ρ = 0.9 and let kt be the minimal m such that Ft(m)≥ρ (operational mode). Then any deviation
|kt − kt′ | shifts at least a residual mass r = |Ft(kt′) − ρ| ≤ 1 − ρ = 0.1 across |kt − kt′ | token
positions, so

W1

(
a(t), a(t′)

)
≤ r |kt − kt′ | ≤ 0.1 |kt − kt′ |. (25)

Taking the median over t′ in the sliding window and then the median over t gives

Wmed
1 (ℓ) ≤ 0.1LIIℓ (A.1)

where Wmed
1 (ℓ) is the median Wasserstein distance between successive attention snapshots of layer ℓ.

Equation (A.1) shows that **LII controls the earth-mover distance between attention distributions**:
A low LII implies the layer’s attention landscape hardly moves in Wasserstein space and is therefore
safe to freeze. Via the Kantorovich–Rubinstein dual, the same bound controls the difference of all
1-Lipschitz observables of the attention measure, linking the energy and Fisher-flatness views in a
common optimal- transport metric.

C Energy landscape–aware fine-tuning

Algorithm 1 details the complete training routine used in all experiments. After a short warm-up
that estimates the Layer Instability Index (LII) for every block, layers whose instability falls below a
user-defined threshold τfreeze are frozen (requires_grad=False). Fine-tuning then proceeds on the
remaining adaptive layers, incurring no further LII overhead.

Algorithm 1: Energy Landscape–Aware ViT Fine-Tuning

Input: pre-trained weights Θ(0); dataset D; freeze threshold τfreeze; warm-up steps T ; LII window W

Warm-up phase: ; // estimate layer instability
for t = 0 to T−1 do // collect k̄ statistics

sample mini-batch (x, y) ∼ D;
forward and backward pass; update Θ(t+1) with AdamW;

update the circular buffer of size W and compute L̂II
ℓ

for all layers ℓ;

Freeze decision: ; // one-shot pruning of stable layers
foreach layer ℓ do

if L̂II
ℓ
< τfreeze then

freeze(ℓ) // disable gradient updates

Consolidation phase: ; // train only adaptive layers
for t = T to max_steps do // until convergence

mini-batch (x, y) ∼ D; forward + backward pass on unfrozen layers only;

The algorithm runs in three stages: (i) Warm-up gathers a robust estimate of each layer’s variability via
the median absolute deviation of its operational mode k̄. (ii) Freeze decision is executed once, turning
off gradient flow for layers whose LII indicates convergence to a low-energy basin. (iii) Consolidation
fine-tunes the remaining layers, yielding substantial savings in memory and computation with no
extra learnable parameters.

D Online update of the LII circular buffer

During warm-up we compute L̂II
ℓ

t for every layer on the fly. Algorithm 2 shows an eight-line Python
reference implementation; it relies only on a layer-indexed deque of fixed capacity W (the sliding
window size, default W = 20).

At each mini-batch, we compute the layer’s operational mode k̄ℓt (Sec. 3.2) and call update_lii.
The deque acts as a circular buffer: the newest value is appended, the oldest is popped when the
buffer overflows, and both operations are O(1). We then take the median of the window, followed by
the median absolute deviation—exactly Eq. (2) but restricted to the latest W steps. The result is the

online estimate L̂II
ℓ

t used in Alg. 1.

16



Algorithm 2: Update of layer instability index (LII) buffer
Input: layer ID layer_id; new value k̄; buffer buf; window size W
Output: current LIIℓt
buf[layer_id].append(k̄) ; // 1. push newest value
if len(buf[layer_id]) > W then

buf[layer_id].popleft() ; // 2. drop oldest (FIFO)

med = median(buf[layer_id]) ; // 3. running median
abs_dev = [abs(x - med) for x in buf[layer_id]];
return median(abs_dev) ; // 4. current LIIℓt

Note: One dictionary, one deque per layer (maxlen = W ).
Complexity: O(1) per call, O(W ) memory per layer.

Cold-start. For t < W the deque contains fewer than W elements; the function still returns a valid
LII based on the available prefix, ensuring that no additional initialisation logic is required.

Efficiency. The routine consumes negligible resources: O(LW ) memory for L layers and O(1)
extra time per iteration, contributing less than 1% overhead in all experiments (see App. B).

E Code Availability

The source code supporting this study is available at https://github.com/rxailab/ELA-ViT.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Can be found in the section 1.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Can be found in the section 6.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: Can be found in the section 3.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Can be found in the section 4.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: Additional details and code repository URL are included in the supplemental
material.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Can be found in the section 4.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

Justification: Given that our experiments focus on training and fine-tuning Vision Trans-
former models to demonstrate improvements in accuracy and efficiency rather than testing
hypotheses, statistical significance through error bars or formal significance testing is not di-
rectly applicable. Instead, we clearly report model performance metrics, including accuracy
and computational improvements, consistently across multiple datasets and settings. These
metrics reliably indicate performance differences without requiring traditional statistical
significance testing.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Can be found in section 4
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: I confirm the research conform with the Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: No potential societal impacts.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The research is not a high risk research.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All datasets and models used are explicitly mentioned and included in the
reference.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: Not introduced new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Not require human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Not require human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: No LLM used for original, or non-standard component of the core methods.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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