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Abstract

In multivariate extreme value analysis, interest lies in characterising the tail
behaviour of random vectors. The lack of natural ordering in the multivariate
setting, and the many possible combinations of tail behaviour for all the subgroups of
components of random vectors make this a difficult task. In this work, the geometry
of scaled copies of random vectors is used to characterise the tail of the underlying
probability distribution. While this geometry has been shown to provide useful
information about the tail behaviour of random vectors, we introduce methodology
to estimate it from data in a parametric, Bayesian semiparametric, and piecewise-
linear semiparametric manner. The geometry is used to model both the radial
and angular components of the pseudo-polar decomposition, a key feature of the
geometric framework. Links are made to the classical approach of multivariate
extremes by investigating the geometry of generalised Pareto random vectors, an
important model used in a variety of practical applications. Both the geometric and
the classical approach have their benefits and drawbacks. These will be discussed
along with a commentary on future work to be done in the multivariate geometric

framework.
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Chapter 1

Introduction

Multivariate extreme value analysis concerns itself with the characterisation of the
tail behaviour of random vectors. Difficulties arise due to the fact that data is
often not observed far into these tails, making statistical inference challenging.
It could also be difficult to account for the possible combinations of extremal
dependencies between components, that is, which components have the possibility
to grow large together. Furthermore, the lack of natural ordering of vectors make
this characterisation difficult. It’s easy to imagine the meaning of a single scalar
quantity to be large, but what does it mean for a collection of several scalar values

to be large?

Take, for example, daily measurements of carbon monoxide (CO, mg/m?3) and
nitrogen dioxide (NO,, pg/m?) in North Kensington, London. In urban areas in
particular, exposure to high air pollution levels can have negative health effects
(Holgate, [2017)). For these two pollutants, exposure to high levels have been linked to
a reduction of oxygen supply to the heart in people with pre-existing conditions (Wu
and Wang;, |2005) and lung damage in people susceptible to respiratory illnesses (Seals
and Krasner, 2020). Understanding their behaviour at extreme levels is therefore
of interest to the general population. The daily maximum measurements of CO
and NO; is shown from October to April 1996-2024 in Questions arise

naturally when trying to describe how these pollutants behave when their levels



3
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300 400 500 600
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200
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Figure 1.1: Measurements of CO and NO, from the North Kensington, London
station of the UK-based Automatic Urban and Rural Network (AURN) air quality

monitoring network.

become dangerous to human health. For one, do values of CO and NO, depend on
each other? When one becomes large, does the other? If not, do they have an inverse
relationship in the tails? When one is large, does that guarantee the other being
large? Furthermore, given the data we have available to us, can we estimate the
probability of previously unseen levels of these pollutants? Suppose we wanted to
know low likely it is to simultaneously experience CO levels greater that 15 mg/m?

and NO, levels greater than 500 ug/m?. From [Figure 1.1] it is shown that this

occurrence is never observed in the available data, so statistical estimation becomes

difficult.

It is exactly in these settings that multivariate extreme value analysis originated.
In multivariate extremes, assumptions are made on the data’s underlying unobserved
distribution to be able to make statements in unprecedented areas of a given
dataset’s domain. Suppose the process we are interested in, such as measurements of

CO and NOs, are thought of as observations from a random vector. More traditional



methods based on the assumptions of multivariate regular variation (Resnick] |1987)
or hidden regular variation (Ledford and Tawn| 1996, 1997)) assume the components
of this random vector grow large together at the same rate in order to estimate the
occurrence of rare events. For example, when CO is large, it is assumed that NO,
is as well. This is often not guaranteed in practice, and if assumed may lead to
inaccurate estimates of the occurrence of extreme events. Furthermore, traditional
methods may be limited in the locations of the tail in which one could characterise
extreme events. While they can be useful to estimate the frequency of all components

being large, they often struggle when at least one value is small.

In recent decades, other methods have gained popularity. Notably, rather than
modelling the behaviour of the entire random vector, it can be useful in practice to
instead condition on one component being large and model the remaining (Heffernan
and Tawn|, 2004). While often viable for random vectors of length two, statistical
inference can be complicated for a practitioner in higher dimensions. For one, a
decision must be made as to which component to condition on. Furthermore, in
higher dimensions, one might be tempted to fit separate models, each one with a
different conditional component. When this is done, there is no theoretically-sound
way to link the models and use them to characterise the entire multivariate tail,
leaving the practitioner to make compromises and use other methods to join the
conditional models. Furthermore, in as low as two dimensions, the dataset may
exhibit complex tail behaviour. For example, values of CO and NOy can potentially
grow together, while values of CO might also have extreme values when NO, is
low. In this type of simulation the conditional approach will not be suitable. The
conditional approach can only model for when either both variables are large or

when one variable is large when the other is small, not both.

To remedy the issues of flexibility in multivariate extremes, the work introduced
in this thesis will instead use a new approach relying on the geometry of the
underlying distribution of the dataset. If you imagine a dataset forming a

multidimensional cloud, then the edges of this cloud describe the so-called limit set.
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Figure 1.2: Bivariate data (left) and the corresponding limit set in grey (right).

Take, for example, the two-dimensional data shown in[Figure 1.2 If points from this
sample are scaled appropriately, and if the sample size of this dataset were allowed to
grow arbitrarily large, then it has been shown that the points would collect inside the
accompanying limit set. Supposing we knew the underlying probability distribution
for this data, i.e., how the data was generated, then it is possible to obtain a closed-
form expression for the limit set’s boundary. It has been shown in |[Nolde (2014)
and Nolde and Wadsworth, (2022) that this set can be used to describe the extremal
dependence structure of a random vector. That is, the geometry can be used to
report if all the components of our random vector experience simultaneous extremes,
and which subgroups can be extreme together when the remaining components are
at moderate levels. Furthermore, the geometry can be use to describe several key
coefficients proposed in recent decades to describe the rate at which extremes can

occur in the random vector, linking several key ideas once thought to be disjointed.

Until recently, all work done in the geometric framework has been purely prob-
abilistic, using knowledge of data’s underlying distribution. With this knowledge,
the limit set has been derived and the extremal dependence structure has been
described. What has yet to be done is use an observed, finite-dimensional dataset
to estimate the limit set corresponding to the unseen underlying distribution of

the data. In this work, we show that this is possible when considering a radial-
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angular coordinate system rather than the Cartesian system. When conditioning
above a high radial threshold, we derive the radial component’s distribution for
several parametric examples, showing that it depends on the limit set boundary.
Maximizing the corresponding likelihood effectively estimates the limit set boundary
and therefore the geometry of the data. This is first done assuming parametric
forms on the geometry. We then extend to the semi-parametric setting, were we
show in smooth Bayesian and piecewise-linear frequentist approaches the limit set
boundary can be obtained without making any parametric assumptions on the
data. A candidate model for the angular distribution can also be obtained which
directly depends on the dataset’s geometry. With these distributions being defined
above a high radial threshold, we can draw radial-angular observations that, once
converted to Cartesian coordinates, represent an extreme sample lying in previously
unprecedented regions of the joint tail. This allows for the accurate estimation of the
frequency of potentially catastrophic events. We work in the entire angular domain,
making the geometric approach the first to perform accurate inference across the
entire tail region of random vectors.

This thesis is organised in the following manner. Chapter [2| covers some of
the background material mentioned above in greater detail. In it, the previous
developments for extreme value analysis in the univariate and multivariate setting
will be described, and the possible situations in which each method can fail will
be discussed. These shortcomings motivate the geometric framework, whose recent
probabilistic developments will be discussed further. A method to estimate the
geometry of data using parametric assumptions will be presented in Chapter 3 A
Bayesian semiparametric method is introduced in Chapter [d] along with a piecewise-
linear method in Chapter 5] In Chapter [0} an attempt is made to link the geometric
framework to the more classical multivariate extremes framework by inspecting the
geometry of generalised Pareto random vectors, a key family of distributions in the
classical extremes setting. Chapter [0 also aims to highlight the pros, cons, and main

differences between classical multivariate extremes and the geometric framework.



Chapter 2

Background Material

2.1 Extreme value analysis in the univariate case

Extreme value analysis was first developed in the univariate setting. Suppose
the random variable X describes the behaviour of some process with continuous-
valued observations. For example, measurements of CO levels can be thought of
as observations from the random variable X. Perhaps the most typical way of
estimating the behaviour of the distribution of X at unseen levels is through the
maximum of a sequence of n observations Xi,..., X, so that interest lies in the
modelling of M,, = max{Xy,...,X,}. If there exists sequences {a, > 0} and {b,}
such that

Pr (@ Sz) — G(2) ; n— oo, (2.1)

n

where G is a non-degenerate distribution function, then G is the distribution function

corresponding to a generalised extreme value (GEV) distribution, and has the form

G(z;u,a,f):exp{— [1+g(Z;M)L”§} (2.2)

with a; = max(a,0), for some location parameter p € R, scale parameter o > 0,

and shape parameter £ € R (Fisher and Tippett| (1928); |Gnedenko (1943)); see also
Coles (2001))). The GEV has support {z € R : 1+ &(z — pu)/o > 0}. The shape

parameter ¢ is of particular interest, and through the Extremal Types Theorem
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(Theorem 3.1 of (Coles (2001))), the value of £ can dictate which family G' belongs
to. When £ = 0, G belongs to the Gumbel family with support z € R. When £ > 0,
G belongs to the Fréchet family with support z € [u — 0/&,00). When £ < 0, G
belongs to the Weibull family with support z € (—oo,u — o/&]. However, when
performing statistical analysis it is more convenient to consider the unifying form
presented in equation .

Given a set of observations zi,...,x, of a random variable X, suppose one
wishes to make statements about previously unseen extreme observations of X by
inferring the parameters (u, 0, ) of the GEV. Given data, it is generally not known
what sequences of constants {a,} and {b,} satisfy in order to assume the GEV
form. However, by rearranging within , it follows that

Pr(M, < z) = G(z; u*, 0", €)

for large n, where p* = a,u + b, and o¢* = a,0. As a result, it is not necessary to
consider the normalising sequences when fitting the GEV, and a likelihood-based
approach can be obtained to estimate unknown location, scale, and shape parameters
(1, 0,€). To do this, the n datapoints are split into m partitions (or “blocks”), and
the maximum value in each block is taken resulting in m block maxima observations
21,...,2m. The block maxima are assumed to be iid observations from a GEV
distribution, and parameter estimates can be obtained by minimising the negative

log-likelihood constructed from the derivative of distribution function ([2.2)):

U, 0,821, .. 2m) =mlogo + (1 _|_1) zm:log{{l—i—g (Z—u)} }
¢ i=1 g +
-1/

S e

+

This is only possible if every block maximum point z; lies in the domain of the
GEV, z;, € (n—0/& 00) for i = 1,...,m. With parameter estimates obtained
from standard optimisation tools, one could extrapolate into unobserved regions of
the tail of the distribution of maxima. For example, given n observation of CO,

one could estimate parameters (u, o, &), then use the maximum likelihood estimates
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(MLEs) (1,6, €) to estimate the probability that the maxima of a block of size n/m
exceeding Z > z;, j = 1,...,m, through I/D\r(Z >zZ)=1- G(Z;ﬂ,&,f). Within the
block maxima approach, the notion of return-levels is a popular and interpretable
tool. For a return period 1/p, p € (0,1), and m block maxima observations, a
quantity of interest is the level z, that is expected to be exceeded on average once
every 1/p blocks. As an example, suppose m = 365 days, interest may lie in the
level of CO expected once every 1/p years (ignoring leap years). Given parameter
estimates, one can obtain an estimate 2, by solving for z, in the relation p =
1 — G(%; b, 6,5). Since the resulting estimate is simply a function of the MLEs,
associated uncertainties related to 2, can be obtained via the delta method. Return
levels of the original random variable X can be similarly obtained by solving for z,
inp=1- Gl/”(zp; it 6,5), a result of the property that n iid copies of X satisfy
Pr(max(Xy,...,X,) < z) =[Pr(X < z)]™

With this simple inference procedure, the block maxima approach is potentially
a powerful tool for practitioners. The GEV distribution within the block maxima
framework has been used for modelling tasks in areas like climatology (Carter and
Challenor, (1981 Buishand, [1989; Padoan and Rizzelli, 2024) and oceanography
(de Haan| {1990; [Tawn, [1992; |Robinson and Tawnl 1997; Jonathan and Ewans| 2013]).
Despite its practicality, statistical inference of the GEV model may shed light on
some drawbacks. For one, in minimising the objective function in , it is nearly
impossible to estimate é near 0 when desired. Therefore, if a practitioner notices
small estimates of &, they could then re-estimate the parameters using the Gumbel
distribution function in place of (2.2), but there is no principled way of deciding
the threshold around 0 for such a re-fit. Furthermore, asymptotic normality of the
maximum likelihood estimates (ji, &,f) is only available if f > —0.5 (Smith, 1985}
Biicher and Segers, 2017). Though values of the shape parameter rarely lie below
—0.5 in practice, it still may occur, leaving the practitioner unable to get the usual
uncertainty quantities related to maximum likelihood estimates. Another downside

of the block maxima approach is that much of the initial data is discarded during



inference. Several of these discarded extremal observations may be otherwise useful
in describing the tail behaviour of X.

Given the limitations of the block maxima approach for inference of univariate
extremes, it may be beneficial to instead consider the behaviour of X above some
high threshold value u. For a random vector X, the Pickands—Balkema—-De Haan
theorem (Balkema and de Haan) [1974; |Pickands, [1975) states that for a large class of
distributions, the conditional distribution X | X > u converges to a non-degenerate
excess distribution as u — oo, akin to the convergence presented in equation ([2.1)).
For high enough u, a consequence of Theorem 1.5.1 of Ledbetter et al.| (1983)) is that

we can use the approximation

Pr(X > 2|X > u) ~ [Hg(x_“)r@ (2.4)

o
+
The form ([2.4]) suggests the upper-tail behaviour follows the generalised Pareto (GP)

distribution, with location parameter u € R, scale parameter ¢ > 0, shape parameter

¢ € R. The GP distribution is commonly characterised through its survival function,

Pr(X > 1)~ {1+§ (x_“)r/5 (2.5)

g +
for  in the domain {z € R : 1 + &{(z —u)/o > 0, x > u}, where ¢, = Pr(X > u)
can be estimated empirically as u is often chosen to be a high quantile yet still in
the range of observed data (Pickands (1975)); Davison and Smith| (1990); see also
Coles (2001))).

Use of the GP distribution to model threshold exceedances is referred to as the
peaks-over-threshold framework. Given a set of observations xq,...,z,, the first
step to statistical inference is choosing a high threshold . Once the threshold u is
chosen, maximum likelihood estimates of the remaining GP parameters (o, ) can be

obtained by minimising the negative log-likelihood constructed from the derivative

of the left-tail probability associated with ({2.4)):

L -1/6-1
e LG

1T >U +




With MLEs (éu, o, é ), one can extrapolate far into the tail of X by directly computing
the probability of exceeding x* via , where z* > wz;, i = 1,...,n. As in the
block maxima setting, the notion of return-levels is a popular tool in the peaks-over-
threshold framework. Commonly formulated as the level that is exceeded on average
once every m observation, the return level z,, is the solution to 1/m = Pr(X > x,,).
Given MLEs (&,f), an estimate 2, could be obtained through inverting the GP
upper-tail probability in the approximation (2.5)), with the associated uncertainty

obtained via the delta method, as in the block maxima setting.

Due to its intuitive nature and easy applicability, the GP distribution within the
peaks-over-threshold framework has been influential, having been applied to fields
such as climatology (Gradyl, |1992; Tabari, 2021; [Pacifici et al. 2025), extreme wind
events (Walshaw|, 1994; Simiu and Heckert, |1996; |Outten and Sobolowski, [2021)),
and hydrology (Fitzgerald, [1989; |Acero et al. 2011} |Agilan et al., 2021). While the
peaks-over-threshold method provides the practitioner with a better use of data to
study the tail behaviour of a random process, the numerical issues when £ =~ 0 that
were present in the model fitting stage of the GEV are present here as well. In
addition, a major drawback of the peaks-over-threshold approach is in the selection
of the threshold u. [Davison| (1984)), Smith| (1984), and Davison and Smith| (1990)
all advocate for the use of the mean residual life plot in selecting u. The idea is that
when modelling the excesses of n iid copies X, ..., X, of X above a high threshold
u, a consequence of the GP distribution is that the expected value E[X —u | 2 > u]
should be linear in u. Therefore, in plotting an empirical estimate of this expectation
against u, select the lowest value of u above which this plot seems linear. In addition
to this being a visual tool and thus prone to user error, there may be several values
of u above which the plot appears linear. There may also be no such points. Also
outlined in Coles| (2001]), an alternative method is by fitting the GP distribution at
a variety of thresholds u and selecting the lowest value such that threshold stability
holds, a key property of the GP distribution. In this method, at a proposed threshold
u, a GP is fitted at u and at a higher threshold, and the parameter estimates for
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the ¢ and ¢ should be the same at both thresholds. This may not be ideal, as
high variability in MLEs may be introduced if fitting above a threshold that is too
high. Since the peaks-over-threshold framework has been introduced, a number of
alternative methods for selecting u have been introduced, with more complications
arising if the iid assumption in collected data is not satisfied. However, a “one size
fits all” approach has not been introduced, leaving the practitioner to experiment

with the dozens of proposed methods available.

Despite this, both the block maxima and the peaks-over-threshold frameworks
lead to useful methodological procedures that have applications in numerous fields.
In fact, the similarities between the GEV distribution function and the GP
conditional survival function (2.4} is no coincidence. Through the use of Poisson
point processes, it can be determined that the the block maxima and peaks-over-
threshold frameworks are equivalent. By considering the number of points lying
above some large value u in some interval and letting the sample size grow large,
one recovers a Poisson point process with mean measure A(u). The events of the
recentered and rescaled maxima being below a certain value (see (2.1])) corresponds
to the observing no values in a particular region. Using A(u) and the void probability
expression of a Poisson point process, we recover the GEV . Furthermore, if
A is factorised into a time component A; and an amplitude component As, the
conditional probability in the peaks-over-threshold approach can be recovered
via Ag([z,00))/As([u, 00)) It is also worth nothing that extensions to both the GEV
and the GP distributions in the case of nonstationary data have been proposed by

several authors, but this is beyond the scope of this introduction.

2.2 Multivariate extremes

Suppose one wishes to model the extreme tail behaviour of multiple simultaneous
processes. Can extreme value theory be extended to the multivariate setting? As it

turns out, by making assumptions on the underlying multivariate distribution of the
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processes, one could accurately make statements about the nature of the data beyond
its observable domain. Classical approaches like multivariate regular variation make
assumptions on the limiting behaviour of the joint distribution function. Though
these assumptions hold often in known distributions and lead to rich theoretical
guarantees, they result in inferential tools that are often not flexible enough to
extrapolate into the entire tail region. Furthermore, the resulting extrapolation
assumed a tail decay rate that is only valid if the variables obtain simultaneous
extreme values. To remedy these issues, an approach was introduced in which a
random vector conditioned on one variable being large is assumed to have a non-
degenerate limiting distribution function. Again, this assumption tends to hold for a
wide variety of multivariate distributions; however, in-practice this is modelled using
a misspecified multivariate Gaussian distribution, and is not flexible if the underlying
random vector has a complex mix of extremal dependencies. As an alternative, the
work presented in this thesis instead makes an assumption on the regularity of the
limiting joint density on the log-scale. Like the other approaches, this assumption
holds for several known multivariate distributions. By making this assumption, a
rich characterisation of the entire multivariate tail presents itself. This allows us to

perform extrapolation in any direction for any extremal dependence structure.

2.2.1 Tail dependence of random vectors

To approach extreme value analysis in the multivariate setting, one needs to take
into account the extremal dependence behaviour between the components of the
multivariate process. Let Y = (Yl,...,Yd)T be a random vector where each
of the d components follow a univariate distribution with distribution function
Fy,.  An important characterisation of Y is to distinguish which collections of
components experience simultaneous extremes. This is traditionally characterised

via the following extremal dependence coefficient,

1
xo(u) = Pr[Fy,(Y;) >u,jeC] ; CC{l,....d}, |C]>2

1—u
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for u > wy, where uy € [0,1] is close to 1, and |C| denotes the cardinality
of the set C. If lim, ,; xc(u) > 0, then we say that the variables indexed
by C experience simultaneous extreme values, and are therefore asymptotically
dependent. Conversely, if lim, ,; xc(u) = 0, we say that the variables indexed by
C do not experience simultaneous extreme values, and are therefore asymptotically
independent.

In trying to examine the relationship between components of a random vector
in the tails, it is beneficial to have them on the same scale. If one component
is orders of magnitude larger than the others, for example, it may obfuscate any
dependence information. For this reason, copulas have become a useful tool in
extremal dependence modelling. Given an unstandardised random vector ¥ =
(Y1,...,Yy) " with potentially unequal marginal distribution functions Fy,, ..., Fy,,

the copula is the joint distribution function corresponding to Y in uniform margins,

C(Ul,. .. ,ud) =Pr [FY1(3/1> S Uty ... 7Fyd(Yd) S Ud]

=Pr Y1 < Fy.M(w), ..., Yg < Fy Hua)]

where F;] ! is the quantile function corresponding to Y;. The copula is the joint
distribution function of the vector U = (Fy,(Y1),..., Fy,(Y4))" corresponding to
Y, but in standard uniform margins. Given an observed dataset {y,...,y,} € R?
with unknown marginal distributions, a common way of obtaining observations in
uniform margins is through the empirical distribution function,

Fry(0) = —= 3" 1o (0) (2.6

n+l i=1

In the expression (2.6]), 1 4(x) is the indicator function, taking values 14(z) = lifz €
Aand 14(z) =0if 2 ¢ A. Using the theoretical property from Pickands| (1975) that
univariate threshold exceedances follow a GP distribution, |Coles and Tawn| (1991))
take the approach of fitting the GP model above a high marginal threshold .
As points are more dense, the empirical distribution function is suitable in the bulk

of the marginal data for approximating the underlying true distribution function.
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Performing the marginal transformation this way ensures that the most extreme
observations in a dataset preserve their relative magnitude, and the availability
of a parametric marginal distribution function above a threshold is useful when
transforming back to original margins after inference. This marginal transformation
has since been adapted for a GPD fit in both the left and right tails of the marginal
distribution (see, for example, Simpson and Tawn| (2024a)) and [Papastathopoulos
et al.| (2025)). Define uy, and ug to be thresholds in the left and right tails of the
marginal distribution, respectively. Once GP parameters are estimated beyond these
thresholds, the resulting distribution function estimate is given by

;

o o — —1/&L,
e [ed ()] e
Fy,(y) = =5 ; 1(ooy:,1(Y) ;Y€ (uL,ug)
> y—un ~1/ér
[ 1= Cun [1+€R<?)} ;Y >ur

Note that, while ¢, is easily estimated using the empirical distribution function,
Cuy, 18 estimated using 1 — (n+1)"1 320 | 1y;; > uy], since few data points lie below
ur,. Also note that in some cases, the left tail of the original marginal distribution
may have high density; therefore, only using a GPD fit in the right tail is sufficient
in approximating the underlying distribution function.

Using the copula directly, one could make statements about the tail be-
haviour between components of Y; however, many statistical inference tools
for multivariate extremes rely on other marginal forms. Suppose F, is the
univariate quantile function corresponding to the target marginal distribution, then
(F-Y(U),...,F-Y(Uy))" is the vector associated to Y whose margins follow the
desired distribution. The more common approaches benefit from components having
a heavy-tailed distribution. Common choices are Pareto margins, whose quantile
function is given by F,*(u) = 1/(1 — u), or the Fréchet distribution, whose quantile
function is given by F.!'(u) = —1/log(u). Recently introduced frameworks for
multivariate extremes rely on light-tailed margins, such as exponential margins

with quantile function F'(u) = —log(l — u) or Laplace margins with quantile
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Figure 2.1: Left: Observations from a joint distribution with unequal margins.
Centre: The same data, standardised to uniform margins. Right: The standardised

data in exponential margins.

function F;'(u) = log(2u) if u < 1/2 and F,'(u) = —log(2(1 — u)) if u > 1/2.
These marginal transformations are illustrated in Figure 2.1} The original data was
constructed such that, while the joint dependence is Gaussian, the first component
has standard Fréchet margins and the second component is standard normal. In
this construction, it is not clear whether or not the two variables are dependent
or independent in the tails. In uniform margins, it becomes obvious that data
collects in the lower-left and upper-right corners. This is a sign that the two
variables don’t achieve extreme values simultaneously, a feature known to hold in the
Gaussian dependence. Lastly, data presented in exponential margins can be used in
a variety of frameworks to obtain information on the joint tail, such as estimating
the probability of observing data in a range of extreme values. In the right-hand
plot of Figure 2.1] for example, we see that the data does not show a tendency to
obtain simultaneous extremes, confirming what is observed on the uniform scale.
Throughout this work, we will see that standardising to marginal distributions with
exponential-type behaviour leads to joint distributions with desirable mathematical

properties.
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2.2.2 Multivariate and hidden regular variation

In addition to gaining insight into a random vector’s extremal dependence structure,
we also wish to use this information to estimate probabilities of lying in the tails
of the underlying joint distribution. A classical approach to going about this is by
assuming its distribution function is multivariate regularly varying (MRV). In the
MRV framework, it is assumed that, when appropriately scaled, the probability of
random vectors lying in a region away from the origin converges vaguely to a Radon
measure v that lives on [0,00] \ {0}. For some arbitrary random vector Y with
common margins, this amounts to assuming that there exists a function b(t) — oo
as t — oo such that

tPr[%el%y ;= o0, (2.7)

with convergence holding vaguely on the cone [0, 00] \ {0}. [Resnick| (2007) remark
that, if the margins Y; are identically distributed with distribution function Fy, a
good choice for the scaling function is b(t) = (ﬁ)e (). Suppose we consider the
random vector Z with standard Pareto margins. Further suppose that we consider
a set A C (1, 00] and that operations on sets behave as expected, i.e., h(A) = {x €
(1,00] | h~!(x) € A} for h invertible and the operation h~!(x) done componentwise.

In this setting, the MRV assumption can be expressed as

Pr[Z € tA] ~t'w(4) ; t— oo, (2.8)

13

where “~” denotes asymptotic equivalency: a(t) ~ b(t) if limy_, a(t)/b(t) = 1.
Equivalently, suppose X = log(Z) has margins X; = log(Z;) following the lighter-

tailed standard exponential distribution. Then assumption (2.8) amounts to
Pr(X € B+t]~ev(ef) ; t— oo (2.9)

where B = log(A) € (0, 0o]. If the assumption of MRV is assumed to hold, then one
can begin to estimate extremal probabilities in the multidimensional space. Given n
independent observations of the random vector X, suppose that the value of ¢ > 0

is large, but the set B + t lies within of the range of data. Suppose we have v > 0
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Figure 2.2: Two examples of extrapolation within the multivariate regular variation
and hidden regular variation frameworks for bivariate data in standard exponential

margins.

large such that the set of interest B 4t + v is outside of the range of observed data.
By assumption (2.9)), it also holds that

Pr[X € B+t+v] ~e (P

~e"PriXeB+tl ; wv,t—o0. (2.10)

Therefore, under MRV, one can scale back the set linearly by a factor of v until
it is in the range of given data and can be estimated empirically. The e™ term is
a correction factor accounting for the scaling. This scaling procedure is shown for
exponential margin random vectors in Figure for two different sets B.

In some settings, it may be more suitable to perform inference in a radial-angular
setting rather than the usual Cartesian framework, and the assumption of MRV can
equivalently be adapted for this. In the Pareto margin setting, define the radial and

angular components corresponding to Z via
(B, W) = (2], Z/||Z]) € (0,00] x Sa1,

where ||-|| is a norm and S5 1 = {w € R? | ||lw|| = 1} is the (d — 1)-dimensional

simplex. Through Theorem 6.1 of Resnick| (2007)), the convergence assumption ([2.8)

17



is equivalent to

tPr i,W €| DBv=v,xH ; t— o0
b(t)

<
b(t) = <1*1FR) (), vq is a Lévy measure of the radial component R on (0, co].

Pareto margins are a popular choice, because in this setting, o = 1 and v,
reduces to the simple form v, ((—o0,z|) = 1/2. The component H is the so-called
spectral measure, the probability measure associated with the angular component
W (de Haan, [1970; Resnick, 2007). The MRV assumption has found many practical
applications when estimating the occurrence of rare events in real-world applications
such as finance (Resnick, 2004; |Cai et al., 2011; |Das and Fasen-Hartmann, 2018}
Kiriliouk et al.| [2019)), oceanography (Coles and Tawn, (1991} [1994; |De Haan and
De Ronde, 1998), and hydrology (Kiriliouk et al., [2019)).

The MRV framework naturally leads to the notion of a multivariate analogue
of the peaks-over-threshold approach introduced in Section 2.1 In standard
exponential margins, this amounts to modelling for excesses in the domain {x € R? |
@ > 0}. These excesses are modelled through the multivariate generalised Pareto
(MGP) distribution (Tajvidi, 1995; Rootzén and Tajvidi, 2006; [Rootzén et al.
2018ayb)), defined through an exponent measure A that lives on [—o0,00) \ {—o0}
and is finite on all sets bounded from below. The exponent measure is evaluated
using the convention A(x) := A([—oo,x) \ {—o0}), and A%(x) := A([—00,00) \
[—00,x)) is the exponent measure evaluated at the complement of the set [—oo, x).
The distribution and density functions of MGP random vectors are respectively

defined for random vectors in exponential margins:

Pr(X <uz) :yh_{(r)lo Pr(Y —yl <z|Y > yl) (2.11)
:Ac(min(O,w)) — A(x)
A(0) ’
_ A=)
@) =i



where Y is some random vector and A is the intensity corresponding to A,

where integrating over the set B C R? denotes integrating over all elements = € R?
such that € B. If the convergence in holds, then we say that Y is in
the domain of attraction of the MGP distribution. There are popular parametric
choices for A, most notably the Hiisler-Reiss model (Engelke et al., 2015; [Zhen
Wai Olivier and Dombryj, 2017)) that has seen recent popularity in modelling sparse
high-dimensional modelling tasks present in hydrology and complex airline networks
(Engelke et al.l 2022; Hentschel et al., [2024)).

Despite being a powerful tool used for several decades in practical applications,
MRV has some limitations. For one, the tail decay factor e in the approximation
only characterises tail decay behaviour when all d components are asymptoti-
cally dependent. Furthermore, the direction of extrapolation is limiting; it is entirely
possible that the less extreme set B+t is also not in the range of the n observations
(see Figure . To remedy the tail decay correction for variables that don’t obtain
simultaneous extremes, the notion of hidden regular variation (HRV) was introduced
(Ledford and Tawn, |1996, |1997), leading to an update of the convergence . In

Pareto margins with shape parameter a > 0, this amounts to the assumption

H [bft)

where the scaling function b, is chosen to be regularly varying of order n € [0,1/¢]

E':|—)V,7 ;o t— o0 (2.12)

and the limit measure v, is homogeneous of order —1/r. By the same intuition used
in the MRV framework, (2.12) can be reformulated to perform the extrapolation,

stated here in exponential margins:
PriX c B+t+ov]~eV"Pr[X € B+t] ; wv,t— 0.

The added parameter n is called the coefficient of tail dependence, and accounts

for the possibility of joint tails growing at a slower rate, allowing for statistical
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modelling when the d components of X don’t obtain simultaneous extremes.
Through comparing the convergence to that of , HRV can be thought
of as a generalisation of MRV in the sense that, when all d components of X are
asymptotically dependent, we recover the MRV setting and it follows that n = 1.
Otherwise, we have n < 1. The HRV framework has successfully been used in the
study of internet usage, hydrology, and extreme weather (Heffernan and Resnick,

2005; |Ramos and Ledford, 2009).

2.2.3 The conditional approach

While the HRV framework solved the tail decay issues that MRV suffers from, it still
only extrapolates to the joint tail region (Wadsworth and Tawn) 2013)). To remedy
the issues with extrapolation within MRV and HRV, and to be able to account for
a wider range of extremal dependence structures, a conditional modelling approach
(Heffernan and Tawn, 2004)) was introduced. Given the d-dimensional random vector
X in light-tailed margins and an index j € {1,...,d}, the conditional framework

assumes the existence of normalising functions a;, b; : R — R%"! such that
Pr(X_; < a;(z;) + bj(z;)z|X; = ;) = Gj(2)) (2.13)

as r; — oo, where X_; is the vector X with the j™ component removed, and
G is a non-degenerate distribution function. Defining the residual vector as Z; =
bj(z;)"' (X_; — a;(z;)) and considering a fixed value 2 > 0, the assumption (2.13)

can be reformulated as
Pr(Z; < z;, X; —xy = x| X; > 29) > e "G,(2)

as g — oo. For k € {1,...,d} \ {j}, a common choice of normalising functions
is a;r(r) = ajpr and bjx(z) = xf%*+. With this in mind, the main modelling

assumption is that there exists parameters oy and [, > 0 such that, for large x,

X; >z ~ N(up, 7).



That is, after singling out component j from the random vector X, it is assumed
that a residual value constructed from each of the remaining components can
independently be modelled using the normal distribution. Once the 2(d — 1)
parameter values are estimated, one can estimate the probability of lying in extremal

regions using the relation
Pr(X € B) =Pr(X; > ) Pr (X € B|X; > zy) (2.14)

The first probability in the right-hand side of can be computed empirically,
as the threshold level xy is chosen to be high, but still within the range of data.
Alternatively, zo can be chosen such that Pr(X; > zp) = 1 — 7 for some value 7
close to 1, but still low enough to allow for sufficient data when obtaining parameter
estimates. To estimate the second probability, samples are drawn from X | X; >
Zo, and an empirical probability is taken by counting the number of points in the
extremal sample lying in region B. This sample is taken by first sampling points
from the marginal standard exponential distribution corresponding to X;. The
memorylessness property of the exponential distribution is used to convert these to
be observations from X;|X; > xy. For the remaining margins, points are sampled
with replacement from the empirical distribution of each of the d — 1 residuals, i.e.,
components Z; ;, of Z;. In using the sample from X,;|X; > x( for each of the residuals
Zj r, we induce dependence between the components of samples from Z;. Using the
parameter estimates (@ ;, @]) fori e {1,...,d}\ {j} and the extremal exponential
sample from X;|X; > x, we can convert the sampled residuals back to the marginal
scale of the random vector. Joining the sample observations from each of the d
margins, one ends up with vector observations from X | X; > z¢, and the probability
Pr(X € B|X; > () can be empirically estimated. A convenient approach in the
conditional extremes framework is to fit the residuals above a relatively high quantile
o and use the resulting parameter estimates to perform extrapolation above an
arbitrarily large quantile xj > z,. The probability of interest can then be
estimated by instead computing Pr(X; > «f) Pr (X € B|X, > zf). For example, an
extremal sample using the conditional approach is illustrated in Figure for three
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Figure 2.3: Examples of extrapolation (blue points) within the conditional extremes
(Heffernan and Tawn, 2004) framework on bivariate data. From left to right, the

data is asymptotically dependent, asymptotically independent, and a mixture of the

two.

separate datasets by first fitting the model for X | X; > z¢ with z( set to the 0.95
quantile of X7, then performing extrapolation above zf = xo + 4log(10). Due to
its flexibility, the conditional extremes approach has found numerous applications in
areas such as oceanography (Ewans and Jonathan, 2014)), finance (Nolde and Zhangj,

2020), and hydrology (Richards et al., 2022).

While the conditional extremes approach provides a more flexible inference tool
for multivariate extremes compared to MRV and HRV, it does have its own potential
downsides. Particularly in higher dimensions, it isn’t always obvious which X to
condition upon being large in order to study the desired multivariate tail region.
One could estimate the conditional extremes model d separate times, each time
conditioning on a different variable being large; however, there is no theoretical
link between the d models, meaning there is no way to join the d models to study
the entire multivariate tail. There have been suggestions to bypass this difficulty
in practice, such as through importance sampling (Wadsworth and Tawn, [2022).
Another limitation with conditional extremes is the lack of flexibility in dependence
structures on which modelling can be performed. Take for instance the data shown
in Figure 2.3l The data on the right-hand plot was generated such that the joint

tail grows simultaneously at a very fast rate, while each variable can obtain extreme
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values on their own when the other is at intermediate values, but at a slower rate.
In the conditional extremes framework, this results in two optimal values of the s ;
parameter. We see in the extremal sample generated that, while the conditional
model captured the behaviour of the asymptotically dependent and asymptotically
independent data, it failed to capture both in the mixture model data, instead
appearing to perform a form of interpolation between asymptotic dependence and
asymptotic independence. This may lead to inaccurate estimation of the joint tail
behaviour. One approach to handle this difficulty is through the use of mixture
models (Tendijck et all 2023). However, this is only feasible in low-dimensions, as

the number of mixture components grows quickly as the dimension increases.

2.3 Geometric multivariate extremes

Given the potential downfalls of the aforementioned modelling approaches in
multivariate extremes, it would be desirable to have an approach that was able
to model across the entire tail region of random vectors when these vectors could
have any dependence structure. Being able to model across the entire tail region
refers to being able to make accurately predict the behaviour of a random vector
when at least one of its any d components is large, and being able to model any
dependence structure means that we can accurately make statements about this
behaviour regardless of how any combination of the vector’s components interact
with each other in the tails. Recent literature has hinted towards a promising new
avenue within multivariate extremes, using the geometry of the dataset’s underlying
data generating mechanism. Before this is discussed, it is important to define what
exactly is meant by the geometry of data. Like in the approaches mentioned in
Section [2.2] an assumption must be made on the data’s underlying distribution
before any statements can be made about its geometry. Suppose n independent
copies X1, ..., X, follow the same distribution as the random vector X, where the

margins X; follow the standard exponential distribution. Further suppose the joint
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density of X is given by fx. The main assumption in the geometric approach is

that the log-scale of the density fx is well-behaved in the tails, or
—log fx(tx) ~ tg(x) ; t— 0. (2.15)

The limiting function g is called the gauge function, is positive-valued, and is 1-
homogeneous. If the density fx corresponding to random copies X7, ..., X, satisfies
assumption , then as the sample size n grows arbitrarily large, the scaled
sample cloud N, = {X;/logn,..., X, /logn} converges in probably onto a limit
set, defined by

G={zecR|g(x)<1}. (2.16)

That is, as n increases, the probability of observing points in N,, outside of G tends
to 0. As an illustration, Figure displays sample clouds of size n = 5,000 in
dimensions d = 2 and 3, with the corresponding limit set and gauge function unit
level set corresponding to the underlying distribution. By definition of GG, the unit
level set of the gauge function ¢ is a key quantity in the geometric framework.
Through its unit level set, the gauge function defines the limit set, and therefore
the geometry of random vectors. This inherent link presents itself in the properties
of both the limit set G and the gauge function g. A key property of G is that
it is star-shaped, i.e., * € G implies tx € G for t € [0,1], and is compact. The
coordinatewise supremum of GG depends on the choice of marginal distribution of
X; and of scaling in the sample cloud N, though can often be set to (1,...,1)T.
The gauge function g is continuous, positively-valued, and 1-homogeneous. Given a
gauge function g satisfying these conditions, one can obtain GG through the definition
(2.16). Furthermore, given a valid limit set (G, one can obtain gauge function values
through g(x) = inf{t > 0 : € tG}. Throughout this work, we will largely restrict
ourselves to non-degenerate limit sets and gauge functions. That is, rays from the
origin intersect G at a single point.

The limit set G' and the corresponding gauge function g has been used to check

for asymptotic independence in random vectors (Balkema and Nolde, |2010). This
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Figure 2.4: Scaled sample clouds N,, of size n = 5,000 and their corresponding limit
set GG in grey. From left to right, the underlying probability distributions are d = 2
max-stable with logistic dependence, d = 2 Gaussian, d = 3 max-stable with logistic

dependence, and d = 3 Gaussian.

notion was extended in Nolde (2014)), where it was shown that the value n from the
HRV framework can be obtained from g. Through this relation, it is possible to
determine whether or not the d components of X are asymptotically independent.
This amounts to determining whether or not there is a “cusp” (or “point”) at the
corner (1,...,1)T € R? occurring when (1,...,1)" € G or g(1,...,1) = 1. We
conclude that the d components of X do not observe simultaneous extreme values
if g(1,...,1) # 1. This geometric interpretation of dependence leads to several
boundary cases. When G is degenerate and lies only on the diagonal, or g(x) = 1
only when x; = --- = x4, then the random vector X is at the intersection between
full dependence and asymptotic dependence. When G is the d-dimensional unit
box, or g(x) = max; z;, then the random vector X is at the intersection between
asymptotic asymptotic dependence and asymptotic independence. Lastly, when the
G={xecR!: Z;l:l |z;| = 1}, or g(x) = ||=||,, then the random vector X is at
the intersection between asymptotic independence and negative dependence.

With this in mind, one can examine the examples of Figure [2.4] and immediately
conclude that the d components are not asymptotically independent in the max-
stable logistic setting, but are in the Gaussian setting. [Nolde and Wadsworth
(2022) extended these ideas by linking several other extremal dependence coefficients
to the gauge function, demonstrating the ability of the geometric framework to

describe a wide variety of behaviours in the multivariate tail. Furthermore, the
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assumption ([2.15)) was formalised in |[Nolde and Wadsworth| (2022). In that work,
given parametric forms of the joint density fx, the gauge function was derived using
the limit , and several extremal coefficients were derived to described the tail
behaviour of the random vector X.

Recent advances of the geometric framework have solely focussed on the
theoretical properties of limit sets and gauge functions for known distributions.
What remains is how to estimate the limit set geometry from data. Furthermore,
like in the MRV, HRV, and conditional extremes frameworks, it is also desirable to
develop extrapolation techniques in the geometric approach. Given the flexibility
the geometric setting has been shown to exhibit, the hope is that the geometry
of limit sets could be estimated from data and then used to infer the entire d-
dimensional tail for any extremal dependence structure, bypassing the limitations of
previous methodology. Lastly, while recent literature uses the geometric approach
the link several more recent notions of dependence in multivariate extremes, the
question remains as to how the geometric approach is related to the classical
approaches of MRV and HRV. One may notice similarities between the classical
MRV convergence assumptions on the distribution function scale and the geometric
convergence assumption on the log-density scale. Is this merely a coincidence?
Are the two frameworks related in some way? What gains and losses does one
take on when working in one framework versus the other? In this work, these
questions will be examined through the lens of the multivariate generalised Pareto

distribution, a commonly-used family of multivariate distributions used within the

MRV framework.
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Chapter 3

Statistical inference for
multivariate extremes via a

geometric approach

Abstract

A geometric representation for multivariate extremes, based on the shapes of scaled
sample clouds in light-tailed margins and their so-called limit sets, has recently
been shown to connect several existing extremal dependence concepts. However,
these results are purely probabilistic, and the geometric approach itself has not
been fully exploited for statistical inference. We outline a method for parametric
estimation of the limit set shape, which includes a useful non/semi-parametric
estimate as a pre-processing step. More fundamentally, our approach provides a
new class of asymptotically-motivated statistical models for the tails of multivariate
distributions, and such models can accommodate any combination of simultaneous
or non-simultaneous extremes through appropriate parametric forms for the limit
set shape. Extrapolation further into the tail of the distribution is possible via
simulation from the fitted model. A simulation study confirms that our methodology

is very competitive with existing approaches, and can successfully allow estimation
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of small probabilities in regions where other methods struggle. We apply the
methodology to two environmental datasets, with diagnostics demonstrating a good

fit.

Disclaimer

The work presented in this chapter comes from a paper in which Jennifer Wadsworth
was the lead author and was published in The Journal of the Royal Statistical
Society, Series B (Statistical Methodology). My main contributions were the
derivations in Section and Appendix[3.8.2] as well as the real data applications in
Sections [3.6.1] [3.6.2] and Appendix I also addressed some possible theoretical
and practical concerns when performing inference with the multivariate Gaussian
gauge function in Appendix [3.8.3] and worked on the derivations for the general
d-dimensional max-stable asymmetric logistic gauge function in Appendix [3.8.4] In
Appendix[3.8.6] I considered the extent at which one could extrapolate in our models
and the resulting bias-variance trade-off when not extrapolating far enough in the
tails in the context of extreme probability estimation. In the process of submission
to JRSSB, a reviewer asked if we could provide additional probability estimate
simulations, comparing our model to parametrically-defined spectral densities within

the MRV framework. I worked on this and it is presented in Section [3.5.1}

3.1 Introduction

3.1.1 Multivariate extreme value theory

Multivariate extreme value theory provides the basis for estimation of rare event
probabilities that involve the effect of more than one variable. Applications are
diverse and include estimating flood risk (Keef et al. [2013b; [Engelke and Hitz,
2020)), extreme air pollution levels (Heffernan and Tawn|, 2004; [Vettori et al., [2019),

structural design (Coles and Tawn|, (1994), dietary risk assessment (Chautru, [2015)
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and financial risk assessment (Zhang and Huang, [2006; Hilal et al., 2014]).

The study of multivariate extremes primarily began in the 1970s and 80s, with
the theoretical study of multivariate regular variation (de Haan, 1970; de Haan
and Resnick| 1977, [Resnick, [1987)). Multivariate regular variation is intrinsically
tied up with the componentwise block maximum method for multivariate extremes.
Suppose we have n independent replicates of a random vector Y; € RY, i =1,..., n;

the componentwise maximum vector is

Mn = (Mn,b .. ';Mn,d> = (max Yl,iy ..., INax de

1<i<n i<i<n ) ’
Univariate extreme value theory tells us that if, for each j = 1,...,d, there exists
an,; > 0,b,; such that (M, ; — by, ;)/an; converges to a non-degenerate random
variable, then the distribution of this limiting variable is generalized extreme value
(Fisher and Tippett, 1928; |Gnedenko, (1943)), which is the only univariate maz-
stable distribution. A distribution is max-stable if it is invariant to the operation of
taking (componentwise) block maxima, up to marginal location and scale changes.
The additional condition for joint convergence of the entire vector (M, — b,)/a,
to a multivariate max-stable distribution is multivariate regular variation. Since
this represents an assumption on the dependence structure it can be expressed in
standardized margins: a common choice is to set Xp; = 1/[1 — F}(Y})], where Xp;
follows a standard Pareto distribution if Y; ~ F}; has a continuous distribution,
else it is asymptotically Pareto. A common way to express the multivariate regular

variation assumption is
lim Pr(Xp/| Xp| € B, | Xp| > ts | [|Xpll>1) = sT'H(B), s>1,(3.1)
—00

where B C S;_1 = {v € [0,1]¢ : ||v|| = 1} is a measurable set with H(0B) = 0.
Assumption (3.1)) shows that large values of the “radial” component || Xp| become
independent of the “angular” component X p/|| X p||, which follows some probability
distribution H on S;_ 1, commonly referred to as the spectral measure. The choice
of norm || - || is arbitrary, see, e.g., Beirlant et al. (2006, Chap. 8), but the most

common choice is the L; norm || - ||;, so that S; 1 = {v € [0,1]¢ : Z;lzl v; =1},
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Statistical methodology for multivariate extremes followed shortly after this the-
oretical study, and focused initially on inference for data arising as componentwise
block maxima through parametrized forms of multivariate max-stable distributions
(Tawn, 1990). This was soon followed by more direct exploitation of the multivariate
regular variation assumption ({3.1)), whereby parametric models were proposed for
the spectral measure H, and inference performed on these (Coles and Tawn, 1991)).

The study of componentwise maxima is a natural multivariate extension of
the univariate block maximum approach, and the associated multivariate regular
variation dependence condition widely applicable. However, it has been known
for a long time that while examples not satisfying are rare, the number of
examples for which this assumption forms a useful basis for statistical inference is
very much smaller. This is because, for many dependence structures, mass of the

spectral measure H accumulates on one or more regions of the form
BC:{’UESd_lIUj>0,j€C;Uk:0,k€C}, CC{l,,d} (32)

When this is the case, joint extremes of the random vector Y (or equivalently Xp)
may not always occur simultaneously; see, e.g., (Goix et al. (2017)) or Simpson et al.
(2020)) for a more detailed explanation. In practice, however, we never observe mass
on such sets B at finite levels. This is illustrated in Figure [3.1, which displays
the distribution of Xp/||Xp||; when the associated radial variable || Xp||; exceeds
its 0.98 quantile for two examples. In the left panel, the true limiting spectral
measure H places mass only on the points By = {(1,0)} and By = {(0,1)},
yet at observable levels, the distribution of angles is relatively evenly spread over
B2y, represented by the interval (0,1). In the right panel, the limiting spectral
measure places mass only on B3y and By ), but once again, at observable levels
we see all values in By 233. A consequence of this mismatch between finite-sample
and limiting distribution is a common modelling assumption that H places all mass
on By gy = {v € Sq_1 :v; > 0,5 € {1,...,d}}, leading to overestimation of the
probability of joint extremes. Moreover, even if one successfully detects the location

of mass of the limiting object H, this does not lead to a practical strategy for
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performing extrapolation beyond the observed values; to achieve this, more detailed

information on the behaviour of Xp before the limiting regime is required.
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Figure 3.1: Ilustration of the distribution of Xp/||Xp|1, given that || Xp|; is
large, for two examples. Left panel: Xp has a bivariate Gaussian dependence
structure with correlation parameter p = 0.8. The ticks correspond to observed
angles Xp; /|| Xpll1 associated to large radii, along with a histogram of their density.
The position of mass of the theoretical limiting H is illustrated by large filled circles
(red). Right panel: (Xp;1,Xp2) have an inverted Clayton dependence structure
while Xp3 is simulated conditional upon the value of Xpy so that these variables
have an inverted logistic dependence structure. Points correspond to the observed
distribution of (Xp1, Xp2)/||Xp|| with large radii. The position of mass of the
theoretical limiting H is illustrated by the large filled circle and thick solid line
(red).

3.1.2 Geometric approach to multivariate extremes

The early study of multivariate regular variation was followed by a smaller body of
work that examined the convergence of light-tailed multivariate sample clouds onto
so-called limit sets (Davis et al.,|1988; |Kinoshita and Resnick,|1991)). These ideas did

not have a clear link with multivariate max-stable models and did not lead to the
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same proliferation of statistical methodology. More recently, several papers have
revisited this geometric approach from a theoretical perspective (Balkema et al.,
2010; Balkema and Nolde, 2010, [2012; |[Nolde, 2014; Nolde and Wadsworth, [2022)
and in some cases shown how the shape of the limit set links to whether joint
extremes of certain variables can occur.

To make ideas more concrete consider n independent copies of a random vector
X;, v =1,...,n, with standard exponential margins; in practice, this will typically
involve marginal transformation of the original vectors Y;. The scaled n-point sample

cloud is defined as
N, ={X;/logn,..., X, /logn},

and we assume that this converges onto a limit set G = {& € R% : g(x) < 1},
where ¢ is the 1-homogeneous gauge function of the limit set. This convergence is
illustrated in Figure for data with a logistic dependence structure, where the
shape of the limit set can be seen to emerge in the scaled sample cloud as n becomes
large. The precise sense of convergence of N,, onto GG, and necessary and sufficient
conditions for it, can be found in Balkema et al.|(2010). Loosely, these conditions
say that the expected number of points from N, lying in sets that intersect with the
limit set tends to infinity, whereas the expected number of points lying in sets that
are disjoint from the limit set converges to zero. However, these specific conditions
are rather unintuitive and make it difficult to determine the form of GG for a given
distribution, which led |[Nolde| (2014)) and |[Nolde and Wadsworth| (2022) to consider
alternative conditions in terms of the joint Lebesgue density of X, when it exists.
Denoting this joint density by fx, a sufficient condition for convergence of N,, onto

G is
tlirglo—log fx(tx)/t = g(x), x € [0,00)", (3.3)

for a continuous gauge function g. Given that many statistical models have tractable

joint densities and continuous gauge functions, equation (3.3|) provides a simple way
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Figure 3.2: Illustration of the convergence of the scaled sample cloud N, onto a
limit set. From left to right, sample sizes are n = 100, 1000, 10000. The limit set G

is depicted by the grey polygon.

to determine the form of g, and hence G, in several examples (Nolde and Wadsworth,
2022). Further illustrations of limit sets G are given for d = 2,3 in Appendix .

The shape of G is important as a description of the extremal dependence of
the underlying random vector. Limit sets exist for a much more general class of
light-tailed marginal distributions than exponential, but we specialize to this case
so that there is a clear correspondence between the shape of G and the dependence
structure. In this case, the coordinatewise supremum of the limit set GG is the point
(1,...,1), since for independent copies of an exponential variable X;, the random
variable maxi<;<, X;/logn converges in probability to 1. Gauge functions, and
therefore limit sets, of lower dimensional margins indexed by J C {1,...,d} can be

found through the following minimization operation (Nolde and Wadsworth, [2022):

gs(xy) = min g(x).
where &; = (z;);es. Exponential margins implies that for singleton sets J = {j},

93 (5) = ;.

Nolde and Wadsworth (2022) showed how G can be used to determine an
array of extremal dependence measures which generally relate to representations of
multivariate extremes that are more useful than multivariate regular variation when

the spectral measure H places mass on one or more sets B as in equation ({3.2)).
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These include expressions for determining the residual tail dependence coefficient
(Ledford and Tawn, 1997), key elements of the conditional extremes model
(Heffernan and Tawn, 2004)), the angular dependence function (Wadsworth and
Tawn, 2013), and the dependence coefficients of [Simpson et al. (2020), which can

be used to help determine the sets B on which H places mass.

Given the importance of the shape of GG, a natural question that arises is how
to estimate this from a sample of data. To date this question has been studied very
little indeed; Jacob and Massé| (1996) study estimation from a theoretical perspective
but with no implementation. Very recently, Simpson and Tawn| (2022) outlined an

estimation approach in the bivariate case.

In this paper, we consider estimation of G' as part of a wider new approach to
the statistical analysis of extreme values. While GG is an object of interest in itself,
we direct our methodology more broadly at the question of statistical modelling
and extrapolation for multivariate extreme values rather than focusing only on the
descriptive aspects of extremal dependence that come from estimation of G. Our
modelling approach allows in principle for any combination of joint extremes of sub-
vectors of Y (equivalently, H may place mass on any valid combination of sets B),
and permits extrapolation in all directions, i.e., into the joint tail where all variables
are large, or into other regions of the multivariate tail where only some variables are
large. Existing alternatives to methodology based on multivariate regular variation

do not capture these possibilities in a coherent manner.

To illustrate the potential importance of being able to capture complex structure
in extremes, consider the dataset of river flow measurements from |Simpson et al.
(2020) that will also be analysed in Section [3.6.2] Their analysis showed that there
are some events where all four rivers were extreme simultaneously, but that there
were also extreme episodes involving single rivers, or groups of two or three rivers
without the others. This might be explained physically by the weather patterns
causing the extremes, and the relationships between catchments. While [Simpson

et al.| (2020)) introduced and estimated coefficients to help determine this structure,
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they did not provide any modelling approach that could account for it, as we do
here.

Section outlines our statistical model and assumptions. Section details
theoretical examples that demonstrate applicability of the method. We focus on
details of statistical inference in Section [£.3] and use simulation to show that our
approach is very competitive for estimation of extreme set probabilities in a wide
range of scenarios in Section [3.5] Section contains applications to oceanographic
and fluvial datasets, and we conclude in Section [6.6]

3.2 Model and assumptions

Here and throughout the rest of the paper, we assume that we have a random vector
X with standard exponential margins and joint Lebesgue density denoted by fx.
Marginal transformation can be applied as a standard step via estimation of each
marginal distribution function. The assumption of a joint density is very common for
statistical analysis, as it is required for most likelihood-based inference, for example.
We further assume that the scaled sample cloud N, converges onto a limit set G
whose shape can either be described by a continuous gauge function g, or that we
are only interested in the continuous part.

Assumption , which yields a sufficient condition for convergence of N,, onto
G, can equivalently be expressed fx(tx) = exp{—tg(x)[1 + o(1)]} for g(x) > 0 as
t — oo. The homogeneity of g suggests making the radial-angular transformation
R = Z?:1 X;,W = X/R; such transformations are common in multivariate
extremes, but normally on Pareto, rather than exponential, margins. The Jacobian
of this transformation is =1, which leads to joint density of (R, W): frw(r,w) =
ri ! fx (rw) = r¥texp{—rg(w)[l + o(1)]}, as r — oo. This in turn means that the

conditional density of R | W = w satisfies
friw (r | w) o< " exp{—rg(w)[1 + o(1)]}, r — 00. (3.4)
If we were to ignore the o(1) term, we recognize the form of the gamma kernel in
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equation , suggesting that when R | W = w is large, its distribution could
potentially be well approximated by a gamma distribution. Indeed, if the o(1) term
in the exponent is negligible, this suggests a truncated gamma approximation above
a high threshold ro(w) of the conditional distribution R | W = w.

A valid concern is whether the o(1) term in the exponent of is really
negligible. In Section [3.3| we detail several examples which in fact have the more
helpful asymptotic form frw(r | w) o r¢texp[—rg(w)][l + o(1)], i.e., with the
o(1) outside of the exponent, and give explicit rates for this term. Based on this

latter asymptotic representation, we focus in this paper on the model
R|[W =w,R > ro(w)] ~ truncGamma(a, g(w)), (3.5)

where o > 0 is the gamma shape, and g(w) is the gamma rate parameter. In most
examples, the theoretical shape parameter is a = d, but for modelling purposes the
flexibility of an estimated shape is desirable. By parametrizing flexible forms for
the gauge function g(w) = g(w;@), we can use approximation to estimate
these parameters. Full details of our approach are given in Section [4.3] including

diagnostic plots for assessing approximation (|3.5)).

3.3 Examples

In this section we consider a variety of examples. The convergence onto a limit set
G holds very broadly, and in many examples the gauge function for this limit set
in exponential margins can be recovered fully or partly from convergence (3.3)).
The form of the gauge function and limit set for several examples, including
multivariate t,, light-tailed elliptical, skew-normal, generalized hyperbolic, certain
mixture distributions and multivariate generalized Pareto forms has been derived
in |Balkema et al.| (2010), Nolde| (2014)), Nolde and Wadsworth! (2022), and Zhang
et al.| (2022), for example, although not always in exponential margins.

The validity and quality of the truncated gamma approximation in to the
conditional density in depends on the o(1) term. Since this lies in the exponent,
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it is not always guaranteed to be negligible. In this section, we explicitly calculate
the density of R | W = w for various theoretical examples, showing that most
in fact have the form frw(r | w) o< 7% 'exp[—rg(w)][1 + o(1)], as r — oo. The
exception to this is the Gaussian dependence structure, for which we find frw (r |
w) o< r*@ = exp[—rg(w)][1 + o(1)], as r — oo, i.e., the conditional gamma form is
still applicable, but the shape parameter depends on the value of w. Nonetheless,
further investigations, described briefly below and in more detail in Appendix [3.8.3),
show the assumption of a common shape in model does not appear problematic
in practice. This is also supported by our simulation study in Section More
generally, we will incorporate model checking of assumption into our statistical
analysis.

For each distribution, we provide the overall form of frw (r | w), with further
calculations given in Appendix [3.8.2] We denote the ordered values of the vector
w (and similarly ) by wy = Wwey = 0 2> wgy > 0, assuming the minimum
to be positive. In the convergence rates given below, we assume a strict ordering
Wy > weg) > -+ - > w(g) > 0; where this is not the case, following the derivations in
the appendix, one usually observes improved rates, e.g., O(e‘r(w(d*@_w(d))) replacing

O(efT(W(dfl)*w(d))> lf w(d—?) > w(d—l) - w(d)

Multivariate max-stable and generalized Pareto distributions Multi-
variate max-stable distributions are most readily expressed by their distribution

functions. In exponential margins,
Pr(X <z)=exp (-V {[-log(1—e™®)]'}),

where V' : ]Ri — R, is the homogeneous of order —1 exponent function, and
operations are applied componentwise. The general asymptotic form of the density
for a max-stable distribution in exponential margins is therefore

fx(te) =exp{—V[e"™ + 1/2+ O(e™™)|} Y _[[ Vale™ + 1/2+ O(e™)]

well sem

% et Ej=1 [14 O(e @),
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t — oo, where II is the set of all partitions of {1,...,d}, and Vi(z) =

oV (z)/ [Iic. 02

We focus on the d-dimensional logistic distribution, for which V' (z) = <Z;1:1 z}l/ 7)7
with parameter v € (0, 1]. This distribution has gauge function g(x) = 2?21 z;/v+
(1 —=d/v)z@), and

Frpw (r | 0) o P69 1 4 O™ u-b=b10)) 4 O )], oo

The simpler form of the densities make calculations more straightforward for
corresponding multivariate generalized Pareto distributions (MGPDs), which are
related to max-stable distributions (Rootzén and Tajvidi, 2006; Rootzén et al.,
2018b)). The support of MGPDs whose margins have unit scale and zero shape
is contained in {& € R? : z(;y > 0}. Densities for several models for which the
in such cases the dependence structure can be determined by focusing on large values
of & > 0. Further details are in the Appendix [3.8.2]

For the MGPD associated to the negative logistic max-stable distribution
(Galambos|, 1975; Dombry et al. [2016), g(x) = (1 + dv)ra) — Z;lzl xjy, v > 1

and
frw (r | w) oc e [1 4 O (@ M) = o0,

For the MGPD associated to the Dirichlet max-stable distribution (Coles and
Tawnl, 1991)), g(x) = (1 + Z?Zl 0;)xay — Z?Zl f;x;, for all §; > 0, and

Ffrw(r | w) oc 1?7 e [1 4 O (ere—wm))] s oo,

Inverted max-stable distributions Inverted max-stable distributions are de-
rived by translating the joint lower tail of max-stable distributions to be the joint
upper tail. This is achieved by applying a monotonically decreasing marginal
transformation to a max-stable random vector. In exponential margins inverted
max-stable distributions have density

fx(@) = exp[-l(a)] Y [ 1(=).

mell sem
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where [ is the stable tail dependence function of the corresponding max-stable
distribution, obtained via I(x) = V(1/x), and l;(x) = 8'3‘l(m)/HjEs Oz;. The
gauge function is always g(x) = [(x). Owing to the fact that [s(x) is homogeneous

of order 1 — |s|, we obtain

frw (r | w) o< 1~ exp[—rg(w)][1 + O(7Y)], 7 — 0.

Multivariate Gaussian distribution We consider the multivariate Gaussian
dependence structure with correlation matrix >. When one or more correlation
parameters is negative then the continuous convergence — log fx (tx)/t — g(x) fails
when components of & are zero, because the gauge function of the limit set is not
continuous away from the strictly positive orthant (Nolde and Wadsworth, [2022).
Since we are considering wg) > 0 this is not an issue here, but we note that to fully
capture negative association it is ideal to reformulate ideas in terms of Laplace rather
than exponential margins; see Nolde and Wadsworth| (2022)) and Section [6.6] For &
with non-negative entries, g(x) = (2V/2)TS 122, where @2 = ()%, ... z}/*)T,

and

as r — oo, where
d (wl/Q)TE—lw—l/Q
2 + 2 '

In this case, the gamma shape parameter therefore depends on w, and the region

on which a(w) > 0 depends on the entries of ¥. We investigate this further in
Appendix [3.8.3] showing that local estimates of a do not vary strongly with w and
may reasonably be assumed constant. We also show that results from our model are

useful even in the (typically small) regions where a(w) < 0.

Multivariate t, distribution We consider the multivariate ¢ distribution with
v degrees of freedom, focusing only on positive dependence; see the appendix for

further comment. The gauge function is g(x) = (1 +d/v)xq) — S x;/v, and

J=1

Frw(r | w) o« rd=—1e—rg(w) [1 + O(er(w<z>—w<1>)/V) + O<€—2rw<d>/V)] : r— 00,
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Clayton and inverted Clayton copulas We consider the Clayton and inverted

Clayton copulas with parameter v > 0. The Clayton copula has g(x) = Zd

j=1 L3>

and
frw (r | w) oc 7 te ™) [1 + O(e7™@)], r— 00.
The inverted Clayton copula has g(x) = (1 + dv)zq) — Z;l:l x;7, and
Friw (r | w) oc 1 te 91 4 O(e "M@ 7w w))] r — 00.

In the appendix, we also calculate frw (r | w) for a trivariate vine copula example.

3.4 Statistical inference

3.4.1 Calculating the threshold ry(w)

To implement model , we firstly need to calculate ro(w), which represents a
high threshold of the conditional distribution R | W = w. A natural approach
to calculating this threshold is quantile regression, treating W as the covariate. A
similar approach has been taken in the context of establishing covariate-dependent
thresholds in univariate extreme value analysis (Northrop and Jonathan, 2011).
When data are bivariate, so that W € ) is equivalent to W € [0, 1], this approach
is straightforward. However, standard parametric quantile regression requires a
high degree of manual tuning to ensure that the model form captures the relation
between R and W well. We therefore suggest using additive quantile regression
(Fasiolo et al., 2021) via the corresponding R package qgam.

When W € S,_1, d > 2, then both parametric and additive quantile regression
become more difficult due to the specific support of W on the simplex. A simple
alternative is to calculate quantiles of R | W = w from overlapping blocks of W
values, which is feasible for relatively low dimensions, but becomes more laborious
as d grows. The top row of Figure illustrates the concepts for d = 2,3. In each

case, ro(w) is calculated as the 0.95 quantile of R | W = w.
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Figure 3.3: Top row: R against W, with the estimated 0.95 quantile of R | W = w
in red. In the left and centre (d = 2) plots, solid lines represent the output from
qgam, and dashed lines from rolling-windows quantiles. In the right (d = 3) plot,
the surface is calculated through a rolling-windows technique. Bottom row: Plots
of = vry(v), rescaled to lie in [0, 1]? as per equation (3.7)). In the left and centre
plots, dotted black lines represent the output from ggam, and dashed black lines
from rolling-windows quantiles. The solid lines (blue) are the unit level sets of g(x),
with ¢ the true gauge function. In the right plot, the jagged surface (red) comes
from the rolling-windows technique, and the smooth surface (blue) is the unit level

set of the true gauge function.
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In the second row of Figure [3.3|we demonstrate that the threshold rq(w), suitably
rescaled, can be viewed as a non-/semi-parametric estimate of g. The reason for this
can roughly be explained by considering the case where the gamma approximation
is exact. Let F(r | w) be the (gamma) survival function of R | W = w, then for

quantile regression at level 7 € (0,1), F[ro(w) | w] =1 — 7. We have

o (w) [}
n ( ) a—1_—vg(w)
F —1— g\w g
[ro(w) | w] /0 I(a) v e dv

ro(w)gw) a1
:1—/ e fds=1-—r, 3.6
o T 30

using the change of variables s = g(w)v. Equation (3.6) is solved by taking

ro(w) = C./g(w), with C; the solution to the equation fOCT $*_¢=sds = 7. Since

I'(a)
the gamma approximation is only asymptotically valid, we have in practice that
ro(w) =~ C;/g(w) for 7 close to 1. To depict unit level sets of the gauge function
g, we plot points @ = v/g(v), where v is a sequence of points covering the simplex
S4-1. Consequently, we can compare ro(w) to g by plotting points @ = vry(v)/C;.

However, since the gamma approximation is not exact, we instead scale each margin

so that the coordinatewise supremum exactly equals one, by plotting

= ; e ; : 3.7
o = {on(o)/ g, o))/ o, o). 61

We will use the observation that links ro(w) and g(w) later to assist with model
checking, but note that, combined with extension of additive quantile regression to

higher dimensions, this presents a very interesting avenue for future work.

3.4.2 Likelihood

In order to fit model (3.5)), we use likelihood-based inference. For ngy independent
observations of R; | [W; = w;, R; > ro(w;)], i = 1,...,n9, we maximize the

likelihood

po—lo=rig(w;:0)

oni); a, g(w;; 0)]

v =] 9(}"(’;‘?)“ e (3.8)
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where 9 = (a,0)" and F[;a, g(w;0)] represents the gamma survival function
with shape parameter «, and rate parameter g(w;@). Estimates of uncertainty
in the maximum likelihood estimators may be obtained through the inverse Hessian
matrix, subject to model validity and independence checks, or via the bootstrap.
In practice, many datasets exhibit weak-to-moderate temporal dependence, so
that while likelihood may be used for parameter estimation (e.g., |Chandler
and Batel 2007), block-bootstrap techniques will be preferable for estimation of

uncertainty.

3.4.3 Gauge functions and model selection

3.4.3.1 Gauge functions from specific distributions

Key to a successful fit of model via likelihood are flexible parametrized
forms of g that are able to capture a wide variety of limit set shapes. In Section 3.3,
we detail various forms of gauge function that come from different underlying
distributions, some of which are illustrated in Appendix Further forms can
also be found in |[Nolde and Wadsworth| (2022). Any of these parametric forms could
be fitted as a candidate model, and standard model-selection techniques, such as
information criteria, used to establish a best choice; we will demonstrate this in our
simulation study of Section [3.5]

A key attraction of our new approach to inference for multivariate extremes is the
ability to capture the complex dependence structures that arise when different sub-
groups of variables can potentially be co-extreme while the others are small. Under
multivariate regular variation, this corresponds to the spectral measure H placing
mass on sets Bo as described in Section In order to capture these scenarios, we
consider the gauge function corresponding to the asymmetric logistic distribution
(Tawnl, [1990), which can place mass on any valid combination of sets B¢. The full
expression for this involves minimization over several components, and is given in
Appendix [3.8.4] Figure depicts some of the potential limit sets arising from this

structure when d = 3.
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Figure 3.4: Example limit sets G (area between surface and planes z; = 0) from
the asymmetric logistic distribution. Left: mass of H on By 2y, By 3y, Byo 3y with
parameters ;21 = 0.5, yq13y = 0.2, 75230 = 0.7. Centre: mass on Bysy, By o,
B13y, Byiosy with g0y = 0.5, vp13y = 0.5, yp123y = 0.7. Right: mass on Byyy,
Byoy, Byay, Byi2,3p with vpi23 = 0.5.

3.4.3.2 Additively mixing gauge functions

The gauge functions described in Section |3.3| provide a starting point for inference
on model , but may not always be flexible enough to capture the structures of
observed data. We now consider how to mix gauge functions to generate more
flexible models. As mentioned in Section the limit sets G for data with
exponential margins have coordinatewise supremum equal to (1,. .., 1); equivalently,
the one-dimensional marginal gauge functions are gg;3(x;) = z;. Each form of g
given in Section satisfies this constraint, and we require any scheme for mixing
gauge functions to also satisfy this, since they will be applied to data in exponential

margins.

A simple way to mix that retains the marginal condition gg;(z;) = x; is via
minimization: g(x) = min[¢gl!(x), ..., ¢™(x)], for gl ... ¢l each satisfying this
marginal condition. The resulting gauge function is the one that would correspond to
a mixture density fx(x) => -, kag] () with Y, m, = 1 and 7 € (0,1) for each
k; the mixture weights do not appear in g because as n — oo there would be infinitely

many points in the sample cloud from each mixture component. However, such an
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approach has the effect of retaining the most protruding part of each limit set and
may not yield the most realistic shapes; some examples are given in Appendix [3.8.5]

Instead we focus on additive mixing, defining

g(x) = argM(@) + - + amorg™ V(@) + gm(a), ai, ... am-1 > 0. (3.9)

The resulting function is denoted by g as in general it will not satisfy the marginal
condition, and will need to be rescaled to do so. Suppose that the coordinatewise
supremum of the set G = {x : §(z) < 1} is é = (&,...,6&y). Then the rescaled
gauge function g(x) = §(C121,...,Cqxq) satisfies g1 (x;) = ;. Some examples of
limit sets from additively mixed functions are depicted in Figure [3.5] Interestingly,
we observe for d = 2 that this process is able to interpolate between limit sets
for which ¢g(1,1) = 1 and have a “pointy” shape, to those with g(1,1) < 1 and are
described by Balkema and Nolde| (2012)) as “blunt”. The former arise for dependence
structures representing joint extremes (H places mass only on By o), while the latter
arise for those representing separate extremes (H places mass only on By and Byay).
Figures in Appendix also show that for d = 3 we retain the ability to move
between “pointy” limit set shapes representing joint occurrence of extremes in some
components and “blunt” shapes representing separate extremes. We focus in the
figures only on the case m = 2, and leave theoretical study of this phenomenon for

any m to future work.

Note that when using additive mixing, the component gauge functions g'*!(x)
need not satisfy the marginal condition gg;(z;) = =z; due to the rescaling.
This allows, for example, one to include the Gaussian gauge function g(x) =
(x'/2)TY"1x!/2 when ¥ has negative entries, and increases the flexibility of this
approach. In practice, we use numerical methods to find the vector ¢ for rescaling,

by finding the coordinatewise supremum of G on a grid.
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Figure 3.5: Examples of limit sets (grey shaded region) from additively mixed gauge
functions according to equation ({3.9), with subsequent rescaling. In each case the
component gauge functions are gl!l(zy, 25) = [+ 29 —2p(z129)Y?]/(1—p?) with p =
0.5 and g (2, z5) = (21 +22)/v + (1 — 2/7) min(zy, z5) with v = 0.5; these gauges
correspond to the Gaussian and logistic max-stable distributions, respectively. From

left to right, the weights are a; = 1,2, 3.

3.4.4 Model checking

We propose checking the fitted model from likelihood (3.8) via probability-
probability (PP) plots. The fitted distribution function (df) of the truncated gamma

model is

Fyglr | w,ro(w)] :=Pr[R <7 | W =w, R > ro(w)] = 1 - —

with F as in likelihood , and a, 0 representing the maximum likelihood
estimates of the parameters. The PP plot for ny observations with R; > ro(w;)
is the set of points: [i/(ng + 1), Ume—i+1)], Where u; = ﬁtg[n;wi,ro(wi)], and
U1y = U2) = -+ > Uy Tepresent the ordered sample of ;. This diagnostic will be
demonstrated in Section 3.6l

Comparison of the “empirical” estimate of the gauge function §(w) ~ C'/ro(w),
as outlined in Section [3.4.1] provides another check on the form of the fitted model.
As was seen in Section while we do not expect perfect correspondence between

g(w) and g(w; @), we can expect to see broad similarities in shape. Again we use

this in Section 3.6
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3.4.5 Prediction

A key aspect of our proposed geometric framework for statistical inference is that
we can use simulation from the fitted model to estimate probabilities of lying in
extreme regions, enabling extrapolation outside the range of the observed data.
Up to this point, we have focused on the conditional distribution of R | [W =
w, R > ro(w)]. In order to perform extrapolation and estimate multivariate tail
probabilities, we need realizations of the distribution of X in some suitably extreme
region. Notationally it is helpful to introduce an alternative radial variable, R’ =
R/ro(W), so that X = RW = R'ro(W)W. Given a particular value of W = w,
our extreme region to date has been {R > ro(w)}. Now considering our extreme
region across all (R, W) values, this corresponds to {R' > 1}. In Figure 3.3 all
points above the red line / surface in the top row are those with {R' > 1}.

We focus initially on simulating an arbitrary number of points satisfying the
conditioning event {R’ > 1}, and discuss below adaptations for simulating above
higher thresholds. To get draws from the distribution of X | R’ > 1, we multiply

simulations from two components:
(i) Draw w* from the distribution of W | R' > 1;

(ii) Conditional upon w*, draw r* from the distribution of R | [W = w*,R >

ro(w*)].

The sampled value is then x* = r*w*. The second of these steps is a simple case of
simulating from the fitted truncated gamma distribution, which can be done via the
inverse probability integral transform. For the first of these, we may either resample
from the empirical distribution of W | R’ > 1, or we could fit a parametric model to
such samples and simulate from this. We opt for the former in this work, and note
the latter as a potential line of future investigation. Figure shows 5000 draws
simulated from X | R' > 1, based on a model fitted to 2500 data points.

To estimate the probability of lying in extreme sets, we exploit the simple
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Figure 3.6: Example of 5000 points simulated from X | R’ > 1, depicted by crosses
(blue), for the inverted logistic (left) and logistic (right) distributions. Models with
the true gauge were fitted to threshold exceedances of 2500 data points, with all data
depicted by dots (green). Light grey squares represent potential sets B in equation
(13.10)).

equation
Pr(X eB)=Pr(XeB|R >1)Pr(R >1), (3.10)

for any set B lying entirely within the region {& € R% : Z;l:l z; > ro(x/ Z?Zl z;)};
some examples are given in Figure [3.6, The first probability on the right-hand
side of can be estimated empirically from the simulated draws. The second
probability may be estimated from the dataset as the proportion of points R’
exceeding 1. When quantile regression at level 7 has been used to estimate ro(w),
we expect the proportion of points above the threshold to be near 1 — 7.

The fact we can simulate an arbitrary number of points from our model with
the condition {R’ > 1} means that in principle we can extrapolate quite a way
beyond the observed data. Nonetheless, such an approach may be computationally
demanding for very extreme sets that require a large number of simulations. We
consider now how to simulate given the condition {R' > k}, with k& > 1; results will

be illustrated in Section [3.5]
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Simulation from the truncated gamma distribution of R | [W = w, R > kry(w)]
is again straightforward, but simulation from the distribution of angles W | R’ > k
is more challenging if k is sufficiently high that there are few or no empirical samples

available. However, we have the relation

fw(w | R > k)= f;:o frw( w|R >1)d
" Js, S frw(r v | R >1)dr' dv

= fw(w | R >1) fkoo Jrw (' | w, R > 1)dr

R de*l fkoo frw (' v, R > 1) fw(v | R > 1)dr’ dv’

(3.11)

where fy(- | V' > v) denotes the density of a random vector U | V' > v, and
integrating over S;_; refers to integrating over the (d — 1)-dimensional submanifold
of R4 corresponding to the (d — 1) unit sphere, here and throughout. Note that

o0

| w0 R > 0a = [ e | w. R > r(w) d,
k k

7o (w)
so that under the truncated gamma approximation (3.5) for R | [W = w,R >

ro(w)], we have the proportionality statement

fww | R > k) o fw(w | R > 1)?@2?201‘;)59?’((10“’)3] (3.12)

The ratio of gamma survival functions in (3.12)) can therefore be used as importance
weights to derive an approximate sample from the distribution of W | R’ > k, using
a sample from the distribution of W | R > 1.

Finally, to estimate Pr(R’ > k), so that we can calculate extreme probabilities as
in equation (3.10]), note that the constant of proportionality in is Pr(R' > k |
R’ > 1), from the denominator of equation (3.11). An estimate of this is therefore

PrR >k|R >1)= nioz Fgﬁziiv));giiv>%]

where w;,i = 1,...,ng are the angles corresponding to the values for which R’ > 1.
Lastly, Pr(R > k) = Pr(R > k | R’ > 1)Pr(R' > 1), where Pr(R' > 1) is estimated
empirically, as previously. We note that another alternative to this procedure is to

fit the generalized Pareto distribution to R’ | R’ > 1 and use this fitted model to
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estimate Pr(R" > k | R > 1). Our investigation into this found that both options
perform similarly for relatively small k&, but the generalized Pareto model introduces
extra uncertainty for larger k, and so we stick to the first approach in Section [3.5
In our experience we have found that estimates of Pr(X € B) are relatively
insensitive to the precise choice of k, provided both that k is large enough to
ensure that several sample points lie in B, and that B C {x € R : Z;lzl x; >
kro(xz/ ijl x;)}, as is required for the analogue of equation to hold. The
simplicity of checking this latter condition depends on the shape of B and of ry(w),
but it is easy to check visually for d = 2, and it may crudely be checked by ensuring
that k < Z;.lzl Ty j/ro(/ 23‘1:1 7;;) for a sample of points &;,{ = 1,...,m, along
the boundary of B. See Appendix for further discussion and summary of our
investigation. We recommend taking an intermediate k that is slightly smaller than

the maximum for which this series of m inequalities holds, to safeguard against the

crudeness of this check.

3.4.6 Summary of inference and prediction procedures

For convenience, we briefly summarize the procedures for inference and prediction

via the geometric framework:

1. Determine a high threshold ro(w) of the distribution of R | W = w for
all w € S;_1 using either additive quantile regression or a rolling-windows

approach.

2. Select a set of candidate parametric gauge functions g(+; @) and for each one

fit the truncated gamma likelihood ({3.8) to the ng values of R | [W = w, R >

ro(w)].

3. Compare model fits using selection criteria such as the Akaike or Bayesian

information criterion.

4. Use diagnostics such as the PP plot and comparison with the empirically-

estimated gauge function to confirm acceptable fit of the best model(s).
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5. Letting R' = R/ro(W), simulate new realizations from the distribution of
X | R > 1 by drawing from the empirical distribution of W | R’ > 1 and
multiplying by draws of R | [W = w, R > ro(w)] from the fitted truncated
gamma distribution. If required, adapt these steps to simulate from the

distribution of X | R’ > k with k > 1.

6. Estimate Pr(X € B) using equation (3.10]), or suitable adaptation if R’ > k.

3.5 Simulation study

We now demonstrate the performance of our methods against existing approaches
for analysing multivariate extremes. Our focus lies on estimation of probabilities
Pr(X € B) for three sets B that lie in different parts of the region where X may
be considered extreme.

We begin with the bivariate case, which is well-established and understood,
demonstrating that our methodology gives estimates with low bias in each situ-
ation, performing competitively with other methods across a range of scenarios.
Specifically, we compare with estimation methodology based on multivariate regular
variation (MRV), hidden regular variation (Ledford and Tawn, |1997) (HRV) and
the conditional extreme value model (CE) of Heffernan and Tawn| (2004). The
simplest approach to implementing MRV methodology is to use the approximation
Pr(X e v+ B') = e " Pr(X € B’), where we take as the set of interest B = v+ B’,
and B’ is extreme, but in the range of the data so can be estimated empirically. This
is a nonparametric implementation, but parametric assumptions are possible as well.
Specifically we can also assume that equation holds at finite levels and choose
a parametric form for the angular measure H. We adopt both techniques below.
HRYV is a refinement of MRV that allows for situations where the spectral measure H

places no mass on By; . 4y. Implementation of this methodology relies on exploiting

-----

the relation Pr(X € v+ B') ~ e "/"Pr(X € B'), where n € (0, 1] is the residual

tail dependence coefficient; this is estimated using the Hill estimator (Ledford and
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Tawn, 1997). Parametric models based on HRV exist (Ramos and Ledford, 2009),
but are generally poorly-justified since the so-called “hidden angular measure” is
often not a finite measure over the unit simplex; we therefore do not consider these
here. Like MRV however, the asymptotics of HRV are suited only to extrapolating
into regions where all variables are large simultaneously. Implementation of the
CE methodology to model the distribution of X | X; > w, for large u, follows the
original approach suggested in |[Heffernan and Tawn| (2004)), adapted to exponential
margins. Probability estimation in this case is performed by simulating from the
distribution of X | X; > «/, v’ > u. Following the bivariate case, we move on to
the more difficult case of d = 3, and show that we can substantially outperform the
CE model in this setting, which is the only other viable approach for providing an

estimate of the probabilities of interest.

3.5.1 Dimension d = 2

For the bivariate case, we perform estimation based on 5000 datapoints simulated
from four different dependence structures: (I) logistic distribution with parameter
v = 0.4; (IT) Gaussian distribution with p = 0.8; (III) inverted logistic distribution
with v = 0.7; (IV) logistic distribution with v = 0.8. Distributions (I) and (IV)
represent moderately strong and weak logistic dependence structures, respectively.
In Appendix [3.8.7] we show examples of the four datasets, and three sets of interest
By = (10,12) x (10,12), By = (10,12) x (6,8), and B; = (10, 12) x (2,4).

In each case we fit model to the data using four different gauge functions:
those corresponding to the unique distributions (I)—(III), where the parameter is
to be estimated from the data, and the function g(x;0) = max|[(x; — x2)/0, (x2 —
r1)/0, (1 + x2)/(2 — 0)]. We select the model that yields the lowest value of the
Akaike information criterion (AIC) for the prediction step, thereby avoiding using
knowledge of the true data-generating process. Recall that before fitting model ,
we need to calculate a high threshold ro(w). In Section [3.4.1 we described using

either additive quantile regression or a rolling-windows quantile calculation for
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this. We used both techniques in the simulation study, setting 7 = 0.95, finding
relatively little difference in the performance of the resulting inference, particularly
in comparison to differences across extreme-value methodologies. Therefore, to
keep presentation focused, we detail only the results where ro(w) was found using
the simpler rolling-windows quantile method. Although our focus is on extreme
probability estimation, we also display (non-)parametric estimates of G, obtained
via g(w) and g(w; 5), in Section .

For the parametric MRV approach, we employ a similar strategy to our geometric
approach. After transforming to radial-angular coordinates || Xp|| and Xp/|| X p|1
from Pareto margins, we take all angles for which the corresponding radius exceeds
the 0.95 quantile of radii, and fit a parametric form for the density of H via
maximum likelihood. We choose between five parametric models for H using AIC.
The five bivariate models are the logistic (Emile and Gumbel, (1960, corresponding
to distributions (I) and (IV)), negative logistic (Galambos, [1975)), bilogistic (Smith),
1990), negative bilogistic (Coles and Tawn, |1994), and the so-called Coles-Tawn
distribution (Coles and Tawn, 1991)). Probabilities are estimated using numerical
integration over B using the fitted model for angles, combined with Pareto density
for radii.

Figure displays boxplots of the estimated probabilities for 200 repetitions

across different methodologies:

e the geometric approach with different k£ (G1, G2);

e the conditional extremes model with different simulation thresholds (CEL,

CE2);
e the nonparametric hidden regular variation approach (HRV), and

e nonparametric and parametric multivariate regular variation approaches

(MRV, MRV2);

see the caption for further details. For distribution (I), all methods estimate Pr(X €
By) with little bias; the smallest variance is attributed to the MRV approaches,
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which is as expected since we are looking at a distribution where H places mass on
B{1 2y and estimating a probability in the joint tail. The geometric approach and CE
estimate Pr(X € By) relatively well, with the smallest variance attributable to the
geometric approach based on X | R’ > k for suitable £ > 1. HRV and MRV start
to exhibit some bias because By lies outside the joint tail region. For Pr(X € Bj),
all estimates based on the nonparametric HRV and MRV approaches are equal to
zero. For the geometric approach, we are able to estimate this probability well
when selecting a suitable k. Specifically, in each repetition, we select one of the
largest values of k such that By C {x : (z1 + x2) > kro[x/(z1 + x2)]}. This results
in all probabilities having a non-zero estimate, compared to 0% for nonparametric
HRV/MRV, and 4.5% for CE (at each of two thresholds). This probability can be
estimated as non-zero by parametric MRV, but with a little bias. A boxplot of this
case is included in the left panel of Figure [3.8|

Distribution (IV) also represents the case where H places mass on By oy, yet
interestingly, MRV gives biased estimates in for all probabilities. This is likely due
to the practical rate of convergence to the limiting angular measure H being slower
under this weaker dependence scenario. Indeed we see differing estimates from the
two MRV approaches, which are based on different effective “thresholds” for defining
extremes. MRV changes from appreciably over-estimating the probabilities Pr(X €
B;) and Pr(X € B;) to hugely under-estimating Pr(X € Bj). The geometric
approach suggests a small under-estimation of Pr(X € B;) and Pr(X € B;) and
good performance for Pr(X € Bj). CE shifts from large under-estimation to over-

estimation moving from Pr(X € By) to Pr(X € Bs).

For distributions (II) and (III), the geometric approach and CE exhibit quite
similar performance, although CE has a smaller variance for estimates of Pr(X €
By) under distribution (II), and of Pr(X € Bj) under distribution (III). MRV is not
an appropriate method for these distributions and always performs badly; HRV is
appropriate in the joint tail, where it exhibits similar performance to other methods

for (II) and better performance for (III), while it leads to poor estimates in other
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regions. Additional boxplots in the right panel of Figure display more detailed
information for the estimates of Pr(X € Bj) under distribution (III). As described
for distribution (I), we also used a suitable k& > 1 for estimating this probability.
The geometric approach outperforms CE in this case. This is because, using an
appropriate k, we are able to simulate points to generate non-zero estimates of the
probabilities (93% and 100% of estimates are positive for the two thresholds shown).
In contrast, only 45.5% and 46% of estimates are positive for CE.

3.5.2 Dimension d = 3

We again perform estimation based on 5000 data points from three different data
structures: (I) asymmetric logistic distribution, for which the spectral measure H
places mass on By oy, By 3y, Byo 3y, with parameters 1 21 = v{1.3) = V42,33 = 0.4; (II)
asymmetric logistic distribution where H places mass on By, By 2y, B2 3y and with
parameters vy 23 = Yy2,3 = 0.4; (III) distribution constructed by taking an inverted
Clayton copula with parameter 2 for (X;, X3), with X3 | X = x5 drawn from an
inverted logistic dependence structure with parameter 0.5. Such a distribution is in
the domain of attraction of a spectral measure H placing mass on By oy, Bysy. In
Appendix [3.8.7 we display examples of the three datasets along with sets of interest
By = (8,10) x (8,10) x (0.01, 3), By = (8,10) x (5,7) x (0.01,3) and (8,10) x (2,4) x
(0.01, 3).

For the d = 3 case we consider only two methodologies: the geometric approach
and CE, as HRV/MRYV only perform well when considering sets B where all variables
are of a similar magnitude, and the sets that we are considering are all small in x3.
Moreover for MRV we require mass on By; o3y for good performance of this method.

For the geometric approach we fit model to the data after identifying
potential suitable forms for the gauge function ¢. For this initial step, we calculate
the coefficients 7¢(9), and associated estimates of the probability of mass on Bg
as in [Simpson et al.| (2020), for 6 = 0.4,0.5,0.6 and C' C {1,2,3}. These estimates

help to identify potential faces of the simplex on which the limiting spectral measure
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Figure 3.7: Boxplots of the 200 estimated probabilities for d = 2. From left to right columns
represent Pr(X € B;),Pr(X € Bs),Pr(X € Bjs), respectively. From top to bottom, datasets are
(I), (II), (III), (IV) respectively. Green boxplots, labelled G1, G2, give results from our geometric
approach: Gl is calculated from X | R’ > 1; G2 is calculated from X | R' > k, where k is
determined as the maximum value such that all sets By, By, Bs lie in the region {x : 21 + 25 >
kro(x/(z1 + x2))}. Dark blue boxplots, labelled CE1, CE2 give results from the conditional
extremes model: CEl is calculated from X | X; > 6.9; CE2 is calculated from X | X; > 10.
Turquoise boxplots, labelled HRV, give results f‘?(ﬁm hidden regular variation methodology; purple
boxplots, labelled MRV and MRV2, represent nonparametric and parametric multivariate regular

variation, respectively. True values of the probabilities are indicated by horizontal red lines.
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Figure 3.8: Left: boxplot of log estimates of Pr(X € Bjs) for distribution (I), d = 2,
using the geometric approach at a high threshold as described in the text (G3), and
parametric MRV (MRV2). Right: estimates of Pr(X € Bj) for distribution (III),
d = 2, using two different thresholds for the geometric approach, labelled G2, G3
(green). Estimates for two different thresholds from the conditional approach are

labelled CE1, CE2 (dark blue), and from hidden regular variation, HRV (turquoise).

H places mass, and hence a suitable structure for the form of the gauge function.
Specifically, where they exist, the coefficients 7-(0) € (0, 1] should be equal to 1
if H places mass on B¢, for all values of the tuning parameter § € [0*,1] and
some ¢0* € [0,1]. However, because of difficulties in estimating these coefficients
precisely in the presence of nuisance parameters, [Simpson et al. (2020) use them
as part of a broader strategy to estimate of the probability of mass on Bq. If all
estimates for the three values of § suggest the same extremal dependence structure
in terms of where H places mass, then a single model is fitted, where the gauge
function corresponds to that of the asymmetric logistic distribution for the identified
structure. Otherwise, up to three different models are fitted, and the model with
the lowest AIC is selected. We note that, for distributions (I) and (II), this means
that we have the potential to fit the correct model form to the data, subject to its
identification via the [Simpson et al. (2020) methodology, although for distribution

(III), we always have a misspecified model.

Figure displays boxplots of the estimated probabilities across 200 repetitions

using the two methods. In most cases, the geometric approach exhibits relatively
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Figure 3.9: Boxplots of the 200 estimated probabilities for d = 3. From left to right
columns represent Pr(X € B;),Pr(X € B,),Pr(X € Bs), respectively. From top
to bottom, datasets are (I), (II), (III), respectively. Green boxplots, labelled Gl1,
G2, G3 give results from the geometric approach: G1 is calculated from X | R’ > 1;
G2 and G3 are calculated from X | R' > k;, j = 1,2, where k; is determined
as a large value such that the sets By or Bj lie in the region {x : x; + 25 + 3 >
kjrolx/(x1 +x9+23)]}. Dark blue boxplots, labelled CE1, CE2 give results from the
conditional extremes model: CEl is calculated from X | X; > 6.9; CE2 is calculated
from X | X; > 8. True values of the probabilities are indicated by horizontal red

lines.
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low bias, particularly in comparison to CE, which is typically biased down for
Pr(X € B;) and up for Pr(X € B;),Pr(X € Bs;). In conditional extreme value
modelling, dependence structures are defined pairwise, so while any pair of variables
(Xi, X;) can theoretically have mass on By ;; or By and Byjy, the methodology
cannot usually capture more complex higher-order structures well. The structure of
distribution (III) is the simplest, with only variables X, X5 exhibiting simultaneous
extremes, and CE is correspondingly more successful in this case. For Pr(X € Bj)
and distributions (I) and (III), additional boxplots are provided in Appendix [3.8.7
These demonstrate that the geometric approach labelled G3 provides the best
estimate in both cases, but underestimates the probability. In contrast we can
see from Figure [3.9| that estimates of this probability for distribution (I) are biased
strongly upwards for CE, while for distribution (III) only 5.5% of estimates for CE

are positive at either threshold.

3.6 Data analyses

We use our new modelling approach to analyse two multivariate environmental
datasets. The first is wave data from Newlyn, UK, included because of its extensive
previous analysis in the literature. The second is a set of river flow data from

Simpson et al.| (2020)).

3.6.1 Newlyn wave data

This dataset of 2894 measurements of wave height (metres), surge (metres) and
period (seconds), denoted here as (Xy, Xg, Xp), was originally analysed in |Coles
and Tawn| (1994) using a model that assumed multivariate regular variation with all
mass of the spectral measure on By g py. The full trivariate dataset has subsequently
been analysed in Bortot et al.| (2000), who assumed a censored multivariate Gaussian
model, and |Coles and Pauli (2002), whose model was able to accommodate the

situation where the spectral measure places mass on some faces of the simplex, but
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was otherwise quite restrictive.
The first step is to transform each marginal to exponential, which is done using

a semi-parametric estimate of the distribution function for each variable X;:

CIOES S rew (3.13)

1= o [1+&(@ —uy) /o] ]9, 2>,
where Fj is the empirical df, u; is a high threshold, ¢, ; = Pr(X; > u;), and the
form above u; is the generalized Pareto distribution with scale o; > 0 and shape
&;. We take the thresholds uy,ug and up to be the 95% quantiles of the respective
distributions.

To get an initial idea of the extremal dependence structure, we use the
Simpson et al| (2020) methodology and calculate 7¢(d) for a range of values of
0. These estimates suggest that the spectral measure places mass on the faces
By, Bsy, Bipy, Ba,sy, which fits with the assessment in Bortot et al.| (2000)) and
Coles and Pauli| (2002).

To calculate the threshold ro(w), we use the rolling-windows procedure described
in Section with 7 = 0.95. We then fit model with three forms for g:
(i) the asymmetric logistic gauge function with the structure given by 7¢(6), (ii)
gauge corresponding to the Gaussian distribution, and (iii) an additive mixture of
the Gaussian and asymmetric logistic gauges, as described in Section |3.4.3.2] The
respective AIC values are 374.9, 365.5 and 369.5.

In spite of the structure suggested by the estimated 7¢(d) values, the AIC
indicates a preference for the Gaussian gauge function. The maximum likelihood
estimates are (@, ng, ggg, é\PS) = (0.79,0.70,0.65, 0.30), where 6}, are the Gaussian
correlation parameters in the gauge function. The data have been filtered to give
approximate temporal independence, so we estimate Hessian-based standard errors
as (0.74,0.12,0.12,0.18). Figure displays the PP plot for this fit as described
in Section [3.4.4] as well as the same plot transformed onto the exponential scale to
emphasize the upper tail, indicating no lack of fit. We also compare the empirical

~

gauge §(w) and the fitted Gaussian gauge function g(w;@) in the right panel of
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Figure 3.10: Left and centre: PP and exponential QQ plots for the fitted truncated
gamma model with the Gaussian gauge function. Right: unit level set of the
empirical gauge function (jagged, red) and fitted Gaussian gauge function (smooth,

blue) for the Newlyn wave data.

Figure |3.10, The empirical gauge is relatively “jagged” and variable due to the
manner of its calculation, but there is broad correspondence between its overall
shape and that of the fitted gauge. Interestingly, the fit of the asymmetric logistic
gauge returns a parameter estimate of 4yg = 1, which is on the boundary of the
parameter space. This could be indicative of wave height and surge not displaying
exceptionally strong dependence, but also because there are restrictions on the shape
of the limit set arising from the asymmetric logistic distribution, and this parameter
estimate provides the best overall fit to all data simultaneously.

As a further diagnostic, we compare empirical and model-based estimates of the

sub-asymptotic joint tail dependence coefficient. For X; ~ F}, this is defined by

Yolu) = ——Pr[F(X;) > w¥jeC], we(0,1), CC{H,S, P}(3.14)

1—u

The empirical estimator of yo(u) is obtained by replacing each distribution function
and joint probability with its empirical counterpart, while the model-based estimate
is calculated using simulation from the fitted model as described in Section [4.3.5]
and suitable sets B. In Figure we consider xgpsp(u) and xps(u), meaning
B = (—log(1l —u),00)* and B = (—log(1 — u),0)? x (0,00), respectively. The

range over which the model-based tail dependence coefficients can be calculated
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Figure 3.11: Left: Estimates of xgs(u), u € (0.99,1); centre: estimates of xggp(u),
u € (0.965,1). Black solid lines represent empirical estimates, grey shaded regions
95% pointwise confidence intervals, and dashed lines the model-based estimate for
the Newlyn wave dataset. Right: plot of quantiles v, of the structure variable V,

representing sea wall height.

depends on the values of X constituting the extreme region {R’ > 1}. There
is good agreement with the empirical estimates, with the model-based estimates
allowing extrapolation beyond the range of the data.

Finally we consider analysis of the structure variable outlined in |Coles and Tawn
(1994). They introduce the overtopping discharge rate Q(v; Xpsp) for a sea wall of
height v as

as (v — Xg —1
Q(v; Xpsp) = a1 XsXpexp l— 2 & )},

XpX3/?

1/2
1+ Xy)? /
¢ '

The value X7, is introduced to approximate the actual off-shore wave height, since

where

XI*{:XH{I—eXp

measurements are taken on-shore. The goal is to estimate the sea wall height v, (in
metres) for which the overtopping discharge rate is expected to exceed 0.002m3s™!
per metre of sea wall with probability p. That is, setting V = Q~1(0.002; Xxsp),
we solve Pr(V > v,) = p for v, using realizations of V generated through simulation

and reverse marginal transformation. Specifically, we generate new realizations of

Xpusp, and hence V, in the tail region of our model by simulating on exponential

62



margins and inverting equation . Outside of the tail region, we use the
empirical distribution of V. As in Bortot et al.| (2000), we fix a; = 0.25, ay = 26,
and | = 4.3. The right panel of Figure displays the obtained values v,
with empirical quantiles and those calculated from fitting the generalized Pareto
distribution directly to the tail of V' (the so-called “structure variable approach”)
for comparison. For very small p, the return levels obtained from the geometric
model are larger than those from the generalized Pareto fit. They are comparable
to those obtained in Bortot et al. (2000), but much lower than those in |Coles and
Tawn| (1994), whose model incorrectly assumes that the spectral measure places

mass on By s py.

3.6.2 River flow data

We now apply our modelling approach on 12,327 measurements of daily mean river
flow (m?/s) from four gauging stations in the north west of England. The data were
previously explored in [Simpson et al.| (2020), where focus lay on determining the
support of the spectral measure, but not subsequent modelling of the variables, due
to lack of suitable models that could account for complex structures. We opt to
consider four out of the five locations initially used in order to keep the number
of parameters reasonable; further discussion on dimensionality can be found in
Section [6.60f The four stations, labelled 1, 2, 3, 4, correspond to those labelled
A, B, C, D in |Simpson et al.| (2020).

Margins are standardized using equation . We then use the |Simpson et al.
(2020) methodology, which suggests that the spectral measure may place mass
on the faces Byoy, Biay, By14y, Bi1,343, and By 234y of the simplex S3. We fit the
model with the corresponding asymmetric logistic gauge function, a Gaussian gauge
function, and an additive mixture of the two. The AIC values are 2666, 2601 and
2609, respectively. Once again, the model with the Gaussian gauge is preferred,
in apparent conflict with the estimated structure of the spectral measure, though

we note this is also subject to uncertainty. Parameter estimates and approximate
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standard errors are given in Table (3.1} To account for temporal dependence of
river flows, standard errors are found via use of a block bootstrap on the original
data series, with block length 20. The asymmetric logistic gauge, while able to
capture the structure of different groups of variables being co-extreme, appears too
inflexible to capture other aspects of the dependence. The additively mixed model
is an attempt to alleviate this problem, but leads to a large number of parameters

without a sufficient improvement in fit to compensate for them.

Parameter [0 612 613 614 ‘923 824 ‘934
Estimate 2.46 0.83 0.90 0.80 0.90 0.57 0.62
Standard error | 0.62 0.11 0.14 0.14 0.14 0.16 0.14

Table 3.1: Parameter estimates and approximate block bootstrap-based standard
errors for the river flow data. Parameter 60;, represents the Gaussian gauge

correlation parameter between sites j, k.

Figure [4.§ displays coefficients x123(w), x134() and x1234(u), defined analogously
to (3.14). If H places mass on By;234;, then each of these coefficients has a
positive limit as u — 1, but at observable levels, the model-based estimates from the
Gaussian gauge all represent a good fit to the data. Plots of x¢(u) for the remaining
groups of variables are given in Appendix [3.8.8] along with the PP plot, showing
no lack of fit. In the limit as u — 1, estimates of xc(u) from the geometric model
with Gaussian gauge will all be zero. However, the inference that H places mass on
By1,2,3.4}, and other faces, is subject to uncertainty. From the plots in Figure ,
it is difficult to determine whether the limits of yjo3(u), Xx134(u) and xi234(u) as
u — 1 are indeed positive or zero, and as a consequence whether a gauge function
that reflects H (3{1727374}) > 0 is truly preferable. Nonetheless, this framework offers
the chance to test these models and assumptions in a way that was not previously

possible.
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Figure 3.12: Empirical (solid black) estimates of yc(u) with 95% pointwise
confidence interval (grey shaded region), and model-based estimate (dashed black)

for C = {1,2,3}, {1,3,4} and {1,2,3,4} (left to right).
3.7 Discussion

We have presented a new approach to multivariate extreme value modelling, based
on estimation of the shape of the limit set of a sample cloud of data points in light-
tailed margins. The methodology allows for modelling datasets with complicated
extremal dependence structures, whereby different groups of variables may be co-
extreme, as well as extrapolation into parts of the multivariate tail where only some
variables are large.

By offering models for complex dependence structures with non-simultaneous
extremes, this approach paves the way for more useful higher dimensional extreme
value modelling. Recent literature on multivariate extremes that is targeted at
higher dimensions typically involves making strong simplifying assumptions on the
dependence structure. For example, the extremal graphical models outlined in
Engelke and Hitz (2020) require an assumption that the spectral measure H places
all mass on By . 4.

In this work, we demonstrated the methods up to dimension d = 4. The
main challenges for routine application of the methods for d larger than 3 or 4
lie in calculation of the threshold function ro(w), and specification of flexible gauge

functions. The former could potentially be addressed by adapting the additive
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quantile regression approach of |Fasiolo et al.| (2021) to incorporate basis functions
whose support is the simplex S;_1. Addressing the latter challenge requires ways to
build flexible and parsimonious gauge functions, which is a topic of current work.
In particular, we note that models fitted in Section had the ability to capture
the complex structures suggested by the [Simpson et al. (2020) methodology, but
the best fits were obtained through models that were more flexible in other aspects.
This led to the conclusion that the model with the Gaussian gauge function was
preferred for both datasets, which is likely a consequence of being able to capture a
range of strengths of dependences across different groups of variables; in contrast,
the asymmetric logistic gauge function treats groups of variables that do not exhibit
simultaneous extremes as effectively independent. We note also that estimates of the
faces B¢ on which H places mass are themselves subject to uncertainty, which is not
easily quantifiable thanks to the requirement to select tuning parameters. Conflicts
between the estimated structure and the selected gauge function may therefore not

be too concerning, provided the diagnostics for the model are adequate.

A further challenge with our methodology for dimensions d > 5 is the use
of the empirical distribution for the angles W. We anticipate that considering
(semi-)parametric forms for this distribution will be needed as part of adapting the

methods to higher dimensions.

We have focused here primarily on positive dependence as it is common in
many datasets and simplifies the presentation. For datasets exhibiting any form
of negative dependence, the limit set shapes are more descriptive in Laplace, rather
than exponential, margins. For example, we mentioned for the multivariate Gaussian
case that the continuous convergence to g() fails when some component of x is zero;
this is not an issue in Laplace margins, where the limit set lies in the region [—1, 1]¢
rather than [0,1]%, and similarly for the ¢, distribution. Moving from the positive
quadrant to R? requires defining the angles W differently, but otherwise a similar
approach could be applied, and represents a natural next step in developing this

methodology.
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Data availability

Data for the analyses in Section are available as supplementary material in
the JRSSB submission (Wadsworth and Campbell, 2024). Acknowledgement: Data
from the UK National River Flow Archive (Section [3.6.2]).

Computer code

Code for the analyses in Section is available as supplementary material
in the JRSSB submission (Wadsworth and Campbell, [2024). An R package
geometricMVE for implementing the methodology presented in the article is
also available as supplementary material and at http://www.lancaster.ac.uk/
~wadswojl/geometricMVE.html. Interactive versions of 3d plots are available at

the same URL.

3.8 Appendix

3.8.1 Example limit sets

Figures [3.13] and display example illustrations of limit sets in exponential
margins for three dependence structures in dimension d = 2 and d = 3 respectively.

Equations for the gauge functions of these limit sets can be found in Section [3.3] or
Appendix [3.8.2]
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Figure 3.13: Ilustration of limit sets (grey shaded region) arising from the logistic,
Gaussian, and inverted logistic distributions (L-R) in dimension d = 2. Red lines
represent unit level sets of the gauge function. Each dependence parameter is equal

to 0.5.

3.8.2 Gauge functions and conditional distributions of R |

W =w

Here we provide detailed calculations of the gauge functions such that we can
establish the asymptotic behaviour of frw(r | w) as r — oo. In each case, we
begin with the relevant density in exponential margins and calculate the asymptotic
behaviour of fx(tx) as t — oo; this is subsequently used to establish results
for frw(r | w) as r — oo. We recall that the notation for ordered values is

Ty = Te) = -+ = x(g) > 0, and similarly wq) > we) = -+ 2 wig) > 0.

Logistic distribution The d-dimensional logistic distribution with unit Fréchet

margins has density

fz0(2) = exp{-V(2)} Y [ -Vil2),

well sem

where V' : Ri — R, is the homogeneous of order —1 exponent function. For the

logistic distribution, this is
d Y
V(z) = (Z Z;W> . v €(0,1].
j=1
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Figure 3.14: Illustration of limit sets (region between blue surface and planes z; = 0)
arising from the logistic, Gaussian, and inverted logistic distributions (L-R) in
dimension d = 3. Blue surfaces represent unit level sets of the gauge function.
Dependence parameters are set to: v = 0.7, p = (0.2,0.5,0.8) and v = 0.3,

respectively.

The transformation to exponential margins is given by z; = [—log(1 — e )] L.
Expanding this to give the asymptotic behaviour for large x; yields z;(x;) = €* +

1/24 O(e=*). We can therefore express the density in exponential margins as

fx(te) =exp{=V (™ + 1/2+ O(e™™)} > [ Va(e™ + 1/2+ O(e™))
well sem
x et X517 (1 4 Oe 2 @),
Firstly consider the contribution exp{—V (e*+1/24+0(e~**))}. By homogeneity

V(etm + 1/2 + O(e—tm)) _ e—tx(d)v(et(m—m(d)) + e—tx(d)/Q + O(e—t(m—i-x(d))))

= e "@c+ o(1)], t — o0,
where c is a constant that equals 1 if x4 < x(4_1). Consequently,
exp{—V (™ +1/2+0(e ™))} =1+ O(e @),

Next consider the partial derivatives V(z). We have

—1/v-1 d y—Is]
Vi(z) o (H Zj) (Z Zj_l/v> )

jEs j=1
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and therefore

Vi(e™ +1/2+ O0(e™™))

—1/y-1 d y—Is|
x (H[emﬂ' 172+ 0<e-t%>}) <Z[emﬂ' F1/2+ 0<e-“j>r1”>

JES 7=1

:e—t(l/’y-i-l)szS z; [1 + O(G_tminjes x])]

% e—tf(d)(1—|8|/ﬁ)[1 + O(e—t(ﬂﬂ(d—n—r(d))ﬁ) + O<€—tz(d)/7)]

—et/7 ) Xjes mj*tx(d)(1*\5|/7)[1 + O(e*t(ﬂﬂ(d—n*x(d))/’Y) + O(eftff(d)/v)]_

For each partition 7 € II,

[TVvi(e™ +1/2+ 0(e™))

sem

o 6—15(1/74‘1)2?:1 Ti—td e iv(d)(l—lsl/”/)[l + O<€—t(z(d71)—$<d))/7) + O(€_t$(d)/'7)]

_ e*t[(1/7+1)2§l=1 zj+x(g)(I7|—=d/7)] [1 + O(eft(z(d—m*w(d))/“/) + O(e*tw(d)/'Y)]‘

Combining all of these results yields

Ix (ta:) o Z et/ Z;-lzl zjtz(q)(|7|—d/v)] [1 + O(e—t(ﬂf(d—n—z(d))/V) + O(e—tl(d))]'
mell

The gauge function comes from taking min.er[(1/7) Z;lzl z; + v (|7 — d/v)],
which clearly occurs for # with |7] = 1, i.e. @ = {{1,...,d}}. Hence g(x) =

(1/7) 225 @ + w@(1 = d/7).

Turning to the conditional distribution of R | W = w, we have

Frw (r | w) oc e 91 Ofe"Pu-n—H@)/7) £ O(e ™ @)], 1 oo,

Negative logistic MGPD MGPDs have marginal scale and shape parameters,

and when these are all set to 1 and 0 respectively, the marginal distributions are

exponential conditionally upon being positive. That is, if Z follows a MGPD with

unit-scale and zero-shape parameters, the marginal distribution functions Fj(z) are
Pr(Z; < z), 2z <0,

ci+(l—cj)(1—e?), z2>0,
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with ¢; = Pr(Z; <0). To translate to exponential margins we solve z; = —log(1 —
F;(#;)), which leads to zj(x;) = z; + log(1 — ¢;)+, x; > —log(1 — ¢;).
Following calculations in |Kiriliouk et al.| (2019), the unit-scale zero-shape MGPD

density associated to the negative logistic max-stable distribution is

—(d+1/7)

d
flz) o117 (Z e%‘) ’ >,
j=1

and so on the region {x : z; > —log(l —¢;)/t,j =1,...,d}

—(d+1/7)

f (tfl)) OC@VZ] ltx]+'yzj 1 log(1—¢; ) <§ e'ytijr'ylogl c])> :

oc elr 5= @i —t(lkdy)a [1 +O(e 56(2)—“7(1))7)] ,
so that g(x) = (1 + dvy)z@) — 72?:1 j, and
Jrw (r | w) pd=lero(w) [1 + O(er(w@)_w(l))”)} ,

on the region {r > min;<j<4—log(l — ¢;)/w;}. Outside of this region we require
knowledge of the distribution of Z; | Z; < 0, j = 1,...,d, which is harder to

summarize in general.
Dirichlet MGPD In this case

d (9o, 05+1)
F(z) oc eXi=1 0% (Z er) . 01,...,0,>0,

i=1

and so on the region {x : z; > —log(1 —¢;)/t,j=1,...,d}

(341 05+1)
fX(tw) o eZ t0; xJJrZ 1 051og(1—c;) (Z etm]Jrlog (1—c; > ’

oc et 5= 05—t (14325 05)z (1) [1 4 O(et(r@)—%)))} :
d d
so that g(z) = (1 + >, 0;)zq) — >, 0,75, and
fR\W(r | ,w) x rd—le—rg(w) [1 + O(er(u}(g)—w(l)))} ,
on the region {r > minj<,;<4 —log(l — ¢;)/w;}.
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Inverted max-stable distributions Recall the form of the density is
fx(@) = exp{~1(x)} > _[]lL(=
well sem
The derivatives [s(x) are homogeneous of order 1 — |s|, and so
fx(te) = exp{—tl(x)} Y [t (=
well sem

The leading-order term in the summation therefore comes from the partition m =
{{1},{2},...,{d}}, with |s| = 1 for all s € 7. Second-order behaviour comes from
the d partitions containing one set with |s| = 2 and all others with |s|] = 1. We

therefore have

fx(tz) = exp{—tl(z)}y (@) - Lgp ()1 + O )],

so that g(x) = l(x), and

friw (r | w) ocr® exp{—rg(w)}[1 + O(r™")].

Multivariate Gaussian distribution The multivariate Gaussian density with
Gaussian margins is
1 1
fz4(z) o exp {—ngZ_lz} = exp {_§ Z Z ijkwjk} ;
j=1 k=1
where Q = (wjx);r = X' is the precision matrix. Transforming to exponential

margins, we obtain

d d d
1 1—®(z(z;
fx(x) o< exp ——E E zi(x;)ze(Tr)wik 1= 00z(5)) , (3.15)
5 i\ j qzﬁzjxj)

j=1 k=1
where z;(z;) is found through solving z; = —log(1 — CID(zj)), with ¢, ® the standard
univariate normal density and df, respectively. Since we are interested in tx;, t — oo,
we exploit Mills’ ratio for the solution. Dropping the component index, and writing

z; = z(tx), this gives

2
tr = —log {gb(zt) 1+ 0(2{2)]} =y %log 21 + log 2 + O(z;2),

Zt 2
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which is rearranged to give

log 4 1 2
= (2tx)V/? — (2tz) V228 2m +0 (( 0g1) ) .

$3/2
We firstly deal with the Jacobian expression in density (3.15). Again via Mills’ ratio,

Hl CD(ZJ@ sz ta;) 1+ O(z;(tz;)2)]

le
d
=272 P T 7?1+ O(log t/t)].

j=1

Next consider the terms in the quadratic form of the exponent:

A\ log drt 2 Jog dmtx;
logt)?
+0 ((Oi ) )

1/2 1/2
x; x logt
=Wjk {2t(1'jl'kz)l/2 - [(;;) + <w—k) ] Tg
J
(7 Y2 \og A7y, (T 1/2 log 47z Lo (log t)?
T 2 T 2 t ’

1
—3 > wikz;(te;) 2 (te)

Jk

logt log t)?
—t(ml/Q)TZ_lazl/2 i (ml/Q)TZ_lm_l/Q 02g +k(z) + O (( 0% ) ) ’

Therefore

where k(x) does not depend on t. Putting everything together, with g(x) =
(w1/2)T2—1w1/2,

Frw (r | w) oc p9/2-1H5@YTE 2L 000 e {—rg(rw) L0 ((log 7“)2> }

.
2
= pd/2 g @) IR g £ g (w) ) {1 +0 ((1oir) >} '

We therefore observe that the conditional distribution of R | W = w has the gamma
form, but with shape parameter a(w) = d/2 + (w'/?)TS " w~1/2/2, rather than d

as in all other examples calculated here.
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Multivariate t, distribution (positive dependence) The multivariate ¢
distribution with v degrees of freedom exhibits both positive and negative depen-
dence. After transformation to exponential marginals, the negative dependence
is manifested in the limit set by inclusion of sections on the planes {z; = 0},
j =1,...,d. We focus here on the shape of the limit sets for £ > 0 only, which
captures the positive dependence in the tail.

The density with centred ¢, margins and dispersion matrix X is

—(v+d)/2
N POHD P ijzjzk]
V )

S T-1, —(v+d)/2
PR =R

v

with Q@ = (wjx);x the inverse dispersion matrix. Transforming to exponential

margins gives

>t Sopy winzi ()2 (@) | — Fy(2(z))
fx (@) o |14 =——— TR (3.16)
v H f Zr Z] x]))
where z;(x;) is the solution to x; = —log(1l — Fyz,(%;)), and fz,, Fz, represent the

marginal density and distribution function of the ¢, distribution. Again, we are
interested in large values of z; and z;: [Soms| (1976) gave an expansion for the ratio
of the univariate survival function to density, from which we can deduce that
1—Fy (zi(tx, zi(tx;
ZT( J( J)) _ J( J) —|—O(Zj(tl‘j)_1).
Jzr (75(t2;)) v

Dropping the component index and writing z; = z(tx), we have

—log { fz,(20) [+ O(")| } = e+ vlogz + O(:?),

where ¢ is a constant depending on v. For a new constant ¢, this is rearranged to

give
2= C/etw/y[l + O(€_2m/y>].

To find the asymptotic behaviour of (3.16]) we firstly consider the Jacobian term:

—=
—_
S
S
—~
&.’
—~
S e
8
[
N—
N—
Il
—=
Q1\2
—~
~
8
N—

L1+ 0(zy(t) )] o e st [1 4 O(e 20l
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Considering the kernel, we have

v+d
2

d d
14+ ZZ ch t(xj+$k)/’/+0(€t(z(1)x(d))/u)]
k=1

1+ O(e!m@—rm)/v)]

= e (/) [1 4 O(ee@ o))
Combining both expressions,
fx(tw) . eft[(ler/zz)x(l)fZ?:lzj/u] [1 4 O(et(x(g)fz(l))/u) + O(ethm(d)/u)} _
Therefore g(x) = (1 +d/v)xq) — Zj’:l xj/v and

Frw(r | w) oc r® e [1 4 O(e"@—wm)/V) 4 O (e 2 @/v)] .

Clayton and inverted Clayton copulas The Clayton copula with parameter

~ > 0 has distribution function in uniform margins

d —1/y
= (Z u;” —d+ 1) .
j=1

The corresponding density is

d —y—1 d —1/y—d
o (Hz@) (Zuj_v—qul) )
j=1 J=1

The density in exponential margins is fx(x) = e~ i1 fu(l—e ™), and so

d -+l /4 —1/y—d
e o () (Bm o)

j=1

X e Zl]i ltIJ 1 —t$(d>)i| .
The gauge function is therefore g(x) = S2¢_, z;, and
7=1"J
fR\W(T | ’(U) x Td—le—rg(’w)[l + O(e—rww))]‘
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If the random vector U follows a Clayton copula with uniform margins, then the
random vector 1 — U follows an inverted Clayton copula with uniform margins. Its

density is fy(1 — u). In exponential margins

d —1/v—d
fx(tm) oc et(%l—l)Z?:l acj—tZ?zl xj (Z et/ d+ 1)

Jj=1

—1/y—d
— et’YZ] 12— t(1+dy)z ) (Z etl@i—z@)/v (1— d)e—tf(l)/’}’>

J=1

_ etVZ?:l zj—t(1+dy)z (1) (1 + O(et(fﬂ(z)*ru))/’y)) )

The gauge function is therefore g(x) = (1 + dv)xq) — z;l:1 x;7, and

leW(r | w) x rd—le—rg(w)[ + O( —r(we)— %)))]

Vine copula from Nolde and Wadsworth| (2022) [Nolde and Wadsworth
(2022)) give an example of a gauge function derived from a particular vine copula
construction. Vine copulas are specified by pairs of bivariate copulas: in this case
we take the two base pairs to be independence (between (X, X5)) and inverted
Clayton with parameter § > 0 (between (X3, X3)), and use the inverted Clayton
with parameter v > 0 to model the dependence between (X3 | Xa, X7 | Xa2).

Let ¢12,co3 and ¢y)2,13 denote the densities of the respective copulas in standard

uniform margins. The joint density in exponential margins is

fx(x) :e*(“”?*”)cm (1 —e 11— e’”) C23 (1 —e 21— e’”’)
X €1)2,3]2 (F1\2($1 ‘ $2),F3|2(333 | 332)) )
where Fip(x1 | 22) =Pr(Xqy <21 | Xo =29) =1 -7, and
(B+L)aa [ B2 | Ba ~(5+1)
Fg‘g(l’g‘IQ)ZPI'(X?,SI:;‘XQZIE'Q):l—e 2[6 +e 3—1} s s

so that

F3|2(tl'3 | tﬂfz) -1 e—t(ﬁ-l—l)[max(l‘z,xg)—xz}[1 + O(etﬁ[min(ajg,a:g)—max(acz,xg,)})]‘
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For the copula densities, ¢; o = 1, while

(1
ea3(tn,z) = (14 B) (1 — ug)~BHI(1 — ug) =B+ [(1 = wp)~ 4 (1 — uz)~? — 1] 572
and cij2,3)2 is of the same form but with parameter . We have

_(1
Ca3 (1 . e*tftz’ 1 — e*tm) o e(ﬁ+1)tw2€(5+1)t$3 [eﬂtm + eﬂtl“:s _ 1} (B+2)

— e—,@tmax(:cg,:cg)—i—(ﬂ—&-l)tmin(zz,xg)[1 + O(eﬁt(min(xz,xg)—max(arz,a:3)))]

and
crj2,32(1 — et ] — e—t(ﬂ+1)[max(z2,zs)—z2][ 1+ O(e [min(z2,23)— max(:vg,a:g)])])
o e(‘r+1)tw1+(v+1)(6+1)t[ma>c(rzms)*xz][1 + O(etﬂ[min(fﬂz,13)7max(x27x3)})]
X {evtwl + eV(FHDtmax(za,zs)—w2][] | O (tFlmin(rz,zs)—max(zz,ea)]y) _ 1}—(%“)
— (Dt (v 1) (B+1)tmax(w2,x5) —w2]—(2y+1)t max (w1, (B+1) [max(w2,w3) —2])
% [1 4 O(etBmin(ezas)—max(ezza)])

+O( ty{min(z1,(8+1)[max(z2,23)—z2])—max(z1,(8+1)[max(z2,z3)— xg})})]

Combining all components,
fx (tx)
o exp {—t[r; + z2 + x5 + fmax(zg, x3) — (6 + 1) min(z2, x3)

—(y+ D{z1 + (B + 1)[max(zq, x3) — 7]}

+(27 + 1) max(z1, (B + 1)[max(xs, x3) — z2])|}
[ + O( tB[min(xe,r3)—max(x2,r3)] ) + O( ty{min( 901:(:8+1)[max(mvx?’)_m])_max(m’(’8+1)[max(m’m?’)_zﬂ)})]‘

Simplifying the gauge function we get
g(x) =(1 + f) max(zy, x3) — S min(xe, x3) — yr1 — (7 + 1)(B + 1) (max(xq, x3) — 22)
+ (27 + 1) max(xq, (8 + 1)(max(zs, x3) — 22)),

and

fR‘W(T | w) x rd—lg—rg(w)
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% [1 + O(erﬁ[min(wz,w;;)—max(wg,wg)])_|_

O(em/{min(wl,(B—l—l)[max(wg,wg)—wg])—max(wl,(ﬁ+1)[max(w2,w3)—w2])})] )

3.8.3 Multivariate (Gaussian case

In this section we consider the conditional distribution R | W = w for the
multivariate Gaussian dependence structure in more detail. In Section [3.3] and
Appendix the asymptotic form of this distribution is shown to have a gamma

form with shape parameter given by a function of the angle w,

Oé(’lU) _ gl + (w1/2>T 2_110_1/2.

2

DN | —

There are two concerns with this shape parameter: (i) whether its variation with
w indicates the need for a more complex model than that in equation , where
the shape is assumed constant, and (ii) the fact that a(w) < 0 for some values of
w. We investigate these issues in turn, using a single correlation across all pairwise
variables to define our covariance matrix,
N = b Z:], iji=1,....d.
poiiFE]
Figures and [3.16] display local estimates of the shape parameter « under the
truncated gamma model for R | [W =w, R > ro(w)] for d = 2,3, respectively.
In each case the angles w are restricted to a small section of the simplex, and the
rate parameter is fixed at the “true” value g(w). For comparison, we also perform
the same procedure for the logistic and inverted logistic dependence structures, over
a variety of dependence strengths. For each distribution the total sample size, over
all angular subsections, is 500,000. In Figure |3.15 we plot the median estimates
and pointwise 95% CIs based on 100 repetitions. In Figure we plot the median
estimates based on 100 repetitions.
For the Gaussian case, we observe that estimates & remain relatively constant

on the simplex S;_;1 in practice for d = 2,3. In particular, the shape parameter
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estimates generally vary no more with the angle w when compared to the logistic
and inverted logistic setting. The evidence suggests that for many distributions the
shape parameter will vary with the angle w in practice to some degree. This is
likely due to the fact that the rate of convergence of R | W = w to the gamma form
can depend on w either explicitly (as in the logistic case), or practically through a
constant term (as in the inverted logistic case). When the dependence is strong for
the inverted logistic distribution there are large parts of the simplex where there is
insufficient data to estimate the local model.

The second issue with the shape parameter is that there will be values of w
on the simplex S;_; such that a(w) < 0. Figure illustrates these regions,
demonstrating that they appear to be small in volume and thus not important,
especially as the dimension d increases. In both the d = 2 and d = 3 cases, we see
that the region is almost negligible for p < 0.7. Furthermore, simulations from our
models often do not produce points in these regions because when the dependence
is high, there are very few points W near these boundaries that are accompanied

by large values of R.
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Figure 3.15:

S1 in the d = 2 case. Gaussian data and gauge function are used for column 1, logistic
in column 2, inverted logistic in column 3. From top to bottom, dependence parameters

are such that joint dependence is increasing. Dots represent median point estimates, and
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Shape parameter estimates across non-overlapping sections of the simplex

outer solid lines approximate 95% pointwise confidence intervals.
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Figure 3.16: Median shape parameter estimates across non-overlapping sections of
the simplex &s in the d = 3 case. Gaussian data and gauge function are used for
column 1, logistic in column 2, inverted logistic in column 3. From top to bottom,
the dependence parameters are such that joint dependence is increasing. Pixels in

yellow represent estimates o = 0. <1



Finally, we offer evidence that extrapolation and probability estimation in these
potentially problematic regions is not an issue when compared to other contemporary
multivariate extremes methods. In both the d = 2 and d = 3 setting, we fix p = 0.7
and consider rectangular sets which overlap with the regions where a(w) < 0. For
d = 2 we estimate the probability of lying in the set (5,7) x (0,0.75), and for
d = 3 we estimate the probability of lying in the set (5,10) x (0,2) x (0,2) (see
Figure . The resulting probability estimates are presented in the boxplots
provided in Figure [3.19) We compare our geometric approach to the conditional
extremes model of Heffernan and Tawn, (2004). For d = 3 the results are comparable
in terms of bias and variance, while for d = 2, our method is unbiased but with

slightly higher variability than conditional extremes.
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Xa

Xz

X

Figure 3.17: The region {(r,w) € (0,00) x S4_1 : a(w) < 0} for correlation p = 0.4,
0.7, and 0.9 with d = 2 on the left (red region) and d = 3 on the right (volume
between coordinate planes and red surface). Interactive versions of the plots for

d = 3 can be found at www.lancaster.ac.uk/~wadswojl/geometricMVE.html.
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Figure 3.18: Rectangular regions with black borders are the extremal sets that we

estimate the probability of lying in. Left: d = 2, right: d = 3.
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Figure 3.19: Probability estimates of lying in a predefined extremal region. Left:
d = 2, right: d = 3. True probability values are displayed by the red dashed line.
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3.8.4 Gauge function corresponding to the asymmetric

logistic distribution

The asymmetric logistic distribution (Tawnl [1990)) is a max-stable distribution with

exponent function

Viz)= ) [Z (ej—’é)lmrc, (3.17)

ce2P\p LjeC “
where 2P\ () is the power set of D = {1,...,d}. The parameters satisfy vz € (0, 1]
and for each j there is a marginal condition that > cop\g0jc = 1, with 6 = 0
if j ¢ C. Notice that for singleton sets the values vy, ...,7q are irrelevant; for
convenience we assume that each of these is equal to 1.

The parameters 6 play no role in determining the structure of the gauge
function, except for where they lead to certain sets of variables being discounted
as not taking extreme values simultaneously. We therefore consider a modification
of V that allows us to derive the associated gauge function in a simpler manner.
Define

Vi) = > e [Z (l)lmr, (3.18)

Ce2D\p Jjec

with v¢ as before, and

1 Variables in C' can be simultaneously extreme

0~ =
: 0 Variables in C' cannot be simultaneously extreme.
In other words, 8 = 1 when the corresponding spectral measure H places mass on
Be. For each variable j = 1,...,d there must be at least one 6 = 1 for j € C. The
distribution function exp{—V"*(e®)} is a multivariate max-stable distribution with
asymmetric logistic type dependence and Gumbel margins with non-zero location
and unit scale. Distributions with unit-scale Gumbel margins have the same limit
sets as distributions with exactly unit exponential margins (Nolde and Wadsworth),

2022). There is one further difference between the models defined by exponent
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functions (3.17) and (3.18): when - = 0 in (3.18)), this “switches off” the group

of variables corresponding to C' with no effect on other groups. With , if
0c = 0 for a single j € C, then the set of variables that can be simultaneously
extreme corresponds to ¢y r;3, meaning that there could be two (or more) different
~ parameters corresponding to the same set of variables. The function V* in (3.18)
is restricted to a single v parameter per group of variables.

We define the collection of sets C; to be all of those containing the index set
J c {1,...,d}. For example, with d = 3, Cryy = {{1},{1,2},{1,3},{1,2,3}} and
Criy = {{1,2},{1,2,3}}. Here we outline the important steps in derivation of the
gauge function for d = 3.

The partial derivatives of V*(z) are, for k,1 € {1,2,3}:

plea!
—1/vc, —1 -1/
Vig(2) = > fboscz [Z % wk]

CkEC{k} i €Cl
YO 2
—1/ve, =1 _—1/v¢y, -1 -1/v¢
* _ ki ki ki
V{k,l}(z) = E Ocy 1 KCh, %k 1 E , Zj
Cri€Ci 1y j€CkI
VCy93—3
* 1/70123 1 71/70123 71/7012371 71/70123
‘/{172,3} (Z) = § : 90123'%012321 %9 <3 § Zj
C123€C(1 2.3y j€C123

3 Y{1,2,3} 3
*1/’Y{125} 1 *1/’7{123} 1 *1/7{125} 1 1/7{125}
= 0(12,3)K(1,2,3) %1 22 § :zy ’

7j=1
with k¢ # 0 representing constant terms. Consequently,
Wﬁ}(etm)‘z{z}(etm)‘%}(em)

E E E {901902903 enTerer
C1€Cy Ca€Cq2y C3ECysy

_ 1 — 1 1
o txl("/cl +l> tx2(702 +1) tx3( +1)

—tminjec, T; (1—L>—tminjec T (1—L>—tminjec Tj (1—#)
e 1 7Cq 2 YCoy 3 TCg [1 + 0(1)]’
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Vé}(et"’)v{z,l}(em)

7251]' (L%*l) 7t2k< 1 +1) 7t$l( 1 +1)
— C,; c le;
= E E {ch eckllicj Koy, € J kl ki

CieCyy Crielny

e—tminiecj zi (1—%0].)—tminieckl mi(l—ﬁ) } [1 n 0(1)]’

‘/{21,2,3}(&9:)

—tx 1 +1)—tx( 1 —‘rl)—tx(( 1 +1)+tmin~ x-(l— 3 )
- Z 00123KC1236 1(V0123 *\ 70123 *\"C123 J€C123 VC1a3

Cl23€C{172’3}

—tx 1 +1)—tw ( 1 +1)—tw ( L +1)+tmin' w'(l— 3 )
= 01231k {1,2,3}€ 1(7{1,2,3} \2sy \ 123y e AT

The density of the distribution in non-centred Gumbel margins is
exp{ V" ()} T YT -Vi(e),
rell sem
and the gauge function is derived through the minimum of all non-zero terms coming
from the partial derivatives. To this end, we define C} to be the collection of all sets
that contain the index set J and for which ; = 1. For example, when d = 3 and
01y = 0123 = 0 and all other ; = 1 then CE} = {{1,2},{1,3}}. For d = 3 this

yields the following expression for g(x):

: : Ty Ty | T3 . 1 : 1
min min —+—+—+minzg;|1l—— ) +mnz; (1 - —
CreCfyy CaeCly, V01 Yo Yoy JECH grel jeCa Yy
CseC,

{3}

1
+min z; (1 — —)} ,
JECs Vs

1 2
min {ﬂ%—&%-&%—minxj(l——)+min:vj<1——)],
CreCf,,,CazeCt. Ycu VCos  VCay  JECH Yo J€C23 VCas

{1} {2,3}
: T P T3 : 1 : 2
min —+—+—+4+minz; |l -— |+ mnz; |1 -—)|,
C26C,,,C13€C], 4, V013 VC2 VCug JEC Yo j€Cis YCis
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: Z1 Lo T3 : 1 : 2
min —+—+—+mnz; (l—-— )+ mnz; (1 -—]],
C3€C?3}7012€C?_1’2} VCiz VCiz Yos  J€Cs VCs J€C12 VCiz

. Ty T2 T3 : 3
min [ + + + min x; <1 — .
01236(3?1,2’3} YCias VCias VCras  J€C123 VCias

From the derivation and form of this gauge function, we observe that the general

form for any dimension d is

. . Z; . Bl
) =min min —— 4+ minzx; - — .
g( ) mell ¢ ect:sen [Z (Z s JECs ’ ( Yo, ) >]

sem JEs
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3.8.5 Example limit sets obtained by mixing gauge func-

tions
3.8.5.1 Mixing via minimization

Figure displays illustrations of limit sets that arise from mixing two gauge

functions by minimization: g(x1,x5) = min{gM (21, 25), ¢ (z1,22)}.

y
I I
I

0.0 0.2 0.4 0.6 08 1.0

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

Figure 3.20: Illustration of limit sets (grey shaded region) arising from taking the
minimum of two component gauge functions. Left: g!l(x1,25) = (21 + 3) /v +
(1 — 2/y) min(zy, z5) with v = 0.5, g2(z1, 20) = (21 + 22 — 2p(2172)/2) /(1 — p?)
with p = 0.5; centre: gl (x;,25) = (x}/v + xém)7 with v = 0.5, g(zy,15) =
(21 + x5 — 2p(z129)Y/?) /(1 — p?) with p = 0.8; right: ¢l1](z1,z2) = (21 + 22)/7 +
(1 —2/7) min(z1, z5) with v = 0.5, gl (21, 25) = max((x1 — 22) /0, (2o — 1) /0, (1 +
x3)/(2 —60)) with 6 = 0.8.

3.8.5.2 Additive mixing

Some examples of shapes obtainable by additively mixing gauge functions with d = 2

are presented in Figure Figure displays some examples with d = 3.
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Figure 3.21: Illustration of limit sets (region between blue surface and planes z; = 0)
arising from additively mixing gauge functions corresponding to the Gaussian
distribution with p = (0.5,0.5,0.5), and the asymmetric logistic distribution with
spectral measure placing mass on By oy, By 3y, B3y, and parameters g9y =
Y3 = V23 = 0.5. From left to right the weights are a; = 1,2,3, with g

the Gaussian gauge.

3.8.6 Choice of k

We describe an investigation into the choice of k, as discussed in Section [£.3.5]
illustrating that overall that the methodology is relatively insensitive to the precise
value selected, as long as it is in the feasible range. Since we require k£ > 1 such that
Bc{xeR:: Z;l:l x; > kro(x/ Z;l:l x;)}, the feasible range for k is [1, k*], where
k* is the maximum value such that the inequality k& < ro(x/ Z‘;:l z;)/ (Z?Zl ;)
holds for all & € B. In practice we may approximate k* by k*, where for a fixed

number of points @,...,x,, on the boundary of B, and grid of values for k, we

check the inequality

d  ~
Zj:l Llj
ro (@) X 1)

and take £* to be the largest value k such that this holds for all [ = 1,...,m.

k<

We summarize the steps we used to find £* below: in particular, for d = 2 and a

rectangular region B, we use the vertices as @;, [ = 1,2, 3,4.

1. For the region B = [z, 22| X [y1, 2], consider the corner points &; = (z1,y1),
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Ty = (951,92)7 T3 = (%;yl), and &, = (1‘2792)'

2. On a mesh w of the unit simplex &j, find the point w; that is closest to

531/2?:1 2y for [ = 1,2, 3,4 for which we have a value of the threshold ro(wy).

3. Beginning with k = 1, increase k£ by increments of 0.10, and find the largest
value of k such that k < Z;l:l T j/ro(w;) is satisfied for all [ € {1,2,3,4}.

Denote this largest k value by k*.

Setting k = k* ensures that we sample close to the region B. Figure[3.22]below shows
samples of X | R’ > k* for regions By, By, and Bj, as defined in Section for a
single simulated dataset and fitted threshold ro(w). We observe that the procedure
used to obtain k* ensures that extremal samples start very close to the boundary of

the region of interest.

To assess the sensitivity of probability estimates to the choice of k, we consider
the first three examples from the d = 2 simulation study in Section [3.5.1} For 200
repetitions, we fit our geometric models and estimate Pr(X € By), Pr(X € By)
and Pr(X € Bs) by simulating from X | R' > k on a regularly spaced grid of 30 k
values in the range [1, k*]. Figure below shows that probability estimates remain
relatively unchanged as k varies from 1 to k*. It is worth noting that confidence
intervals are wider for k closer to 1, and we sometimes lose accuracy as k reaches
k*. We believe this is because of the approximation involved in finding £* rather

than £*, which means that the inequality k* < ro(a/ Z;l:l xj)/(zglzl

x;) may fail
for a small set of points @ € B. As such, we recommend taking an intermediate k

that is slightly smaller than k*.
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Figure 3.22: Samples of X | R’ > k* for k* obtained by regions By, By, and Bs
(left to right) generated from models fitted on bivariate logistic (top row), Gaussian
(middle row), and inverted logistic (bottom row) data. Blue points represent the
original sample, the black line represents the threshold ro(w) found using rolling-

windows method, and the green points are samples of X | R’ > k*.
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Figure 3.23: Probability estimates for increasing k € [1,k*] for models fitted on
bivariate logistic (top row), Gaussian (middle row), and inverted logistic (bottom
row) data. Solid black line represents the mean over the 200 repetitions, grey shaded
regions represent 95% pointwise sample confidence intervals. True probabilities
are given by the red dashed line. From left to right, estimates are of Pr(X €
By),Pr(X € B,) and Pr(X € Bj), respectively. For the first few &k values, most

estimates of Pr(X € Bs) are zero for the logistic distribution.

93



3.8.7 Additional simulation study figures
3.8.71 d=2

Figure [3.24] shows examples of the four datasets for the d = 2 simulation study,
and three sets of interest B; = (10,12) x (10, 12), By = (10,12) x (6,8), and B3 =
(10,12) x (2,4).

0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14

0 2 4 6 8 10 12 14

Figure 3.24: d = 2: Example data from distributions (I) (top left), (II) (top right),
(III) (bottom left) and (IV) (bottom right), and illustration of sets By, Ba, B3 (purple

shading).

Figure displays estimates of the limit set shape via non-parametric
estimation of g using rolling-windows quantiles, as described in Section [3.4.1] and

parametric estimation from the maximum likelihood estimates of the gauge function
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parameters. We display parametric estimates using both all fits from the correct
gauge function, and only the fits where the correct gauge function returned the
minimum AIC. For distributions (I), (II), (III) and (IV), this is 82.5%, 41.5%,
39.5% and 82%, respectively. The non-parametric estimates do not quite join to
the axes because we ascribe the rolling-windows estimate of ro(w) to the centre of
each window for w € [0,1]. For distribution (III) we note that the non-parametric
estimates display lower variability than the parametric ones. In spite of this,
the performance of the method for probability estimation, which relies both on
non-parametric estimation of ro(w) and parametric estimation of g, appears quite

reasonable.

3.8.72 d=3

Figure depicts examples of the three datasets for the d = 3 simulation study,
along with sets of interest By = (8,10) x (8,10) x (0.01,3), By = (8,10) x (5,7) x
(0.01,3) and (8,10) x (2,4) x (0.01,3). Figure displays boxplots relating only
to the geometric approach for d = 3 from Figure [3.9] with a clearer vertical scale.
Although there is a downwards bias in the estimation, the geometric approach still

provides reasonable estimates in these difficult cases.
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X2

X2

Figure 3.25: Non-parametric (left column) and parametric estimates (centre and
right columns) of unit level sets of g. The unit level sets of the true g are shown
in red. Top-bottom: distributions (I), (II), (IIT) and (IV), respectively. The centre
column includes all parametric estimates from the correct gauge function; the right
column includes only those parametric estimates where the true model had the

lowest AIC.
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Figure 3.26: d = 3: Example data from distributions (I), (II) and (III) (left to right),
and illustration of sets By, By, B3 (purple boxes).

3.0e-06

2.0e-06

1.0e-06
I

0e+00 1e-07 2e-07 3e-07

. H
i —————
G1 G2 G3

Figure 3.27: Boxplots of probability estimates for Pr(X € Bj) for d = 3 under
the geometric approach. Left: for distribution (I); right: for distribution (III). For
clarity only a single boxplot, corresponding to that labelled G3 in Section [3.5.2] is
included in the right panel.

3.8.8 Additional figures for river flow analysis

Figures and display plots of x¢(u) for the remaining groups of variables.
The bottom row of Figure displays the PP and exponential QQ plots for the

fit of model (3.5)).
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Figure 3.28: Empirical (solid line) estimates of yc(u) with approximate pointwise
95% confidence intervals (grey shaded region), and model-based estimate (dashed
line) for groups C' = {1,2}, {1,3}, {1,4}, {2,3}, {2,4}, and {3,4} (top left-bottom
right).
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QQ plots for the fitted geometric model with Gaussian gauge function.
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Chapter 4

On the stability and Bayesian
semi-parametric modelling of
multivariate geometric

exceedances

Abstract

Under a pseudo-radial directional decomposition of d-dimensional random vectors in
light-tailed margins, we show that the point process of recentered and renormalised
radial components and directions have a Poisson point process representation, where
the radial component follows an exponential distribution. The memoryless property
of the exponential distribution allows for the estimation of return sets, defined by the
complement of probability sets and expressed in terms of return periods. Building on
the limit Poisson point process likelihood, we develop parsimonious statistical models
that leverage theoretical links between the parameters of the limit distribution.
These models facilitate Bayesian inference for return sets with arbitrarily large
return period and for probabilities of unobserved rare events, and include directional

information from observations outside probability sets. The framework supports
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efficient computations in dimensions two and three, along with diagnostics for
assessing convergence to the limiting distribution and quality of fit. We validate
the methods through illustrative simulations and demonstrate their utility via case
studies involving hydrological and oceanographic data, showcasing the potential for

robust and interpretable analysis of multivariate extremes.

Disclaimer

This chapter represents work completed with Ioannis Papastathopoulos and Lambert
De Monte at the University of Edinburgh, primarily from January to September
2023, with periodic updates in the following months. My main contributions were in
developing the directional model in Section [4.2.2] developing the standardisation of
margins in Section [£.3.1] high quantile estimation in Section [£.3.2] model selection
and validation techniques in Section [.3.7, the return sets and their illustrative
examples in Section the real data examples in Sections [4.4] and [.5] with their
accompanying Appendices [4.7.6) and [4.7.7] the derivations of the radial and angular

densities in Appendices [£.7.4] and [£.7.5] respectively, and writing the introduction

and concluding discussion. I also contributed to the remaining material, but in more
of an advisory role. Additional material that I did not work on was left out, but the
reader is referred to [Papastathopoulos et al.| (2025) when necessary. The notation
used in this chapter may vary somewhat from the rest of the thesis. For example,
random vectors rescaled by their norm are called directions in this chapter but are

called angles in the rest of the thesis.

4.1 Introduction

The multivariate nature of extreme events casts a shadow of potentially devastating
consequences upon ecosystems, infrastructures, as well as financial, economic, and

insurance sectors. Knowledge of the frequency and magnitude of extreme events
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is crucial in enhancing planning strategies and adaptation efforts. The statistical
properties of univariate extremes are well-established (Balkema and de Haan| |1974;
Pickands, |1975; Davison and Smith, 1990), but statistical inference for multivariate
random processes is much more intricate: one must analyse how random processes
interact with and influence each other. A common way to describe the extremal
dependence structure of a real-valued random vector X = (Xj,...,Xy) is through
the coefficient of tail dependence
xa(4) =P[ ({E(X) >t | /0—a), qe(©0,1), AC{lL...d} |4]>1,
JEA

(4.1)
where F} is the cumulative distribution function of X;. When lim, ,; x4(A) = 0, the
variables in A are unlikely to grow large together. Conversely, when lim, ,; x,(A4) >
0, the variables in A are likely to simultaneously exhibit extreme values. The
different dependence structures that can be present within subgroups of the marginal
variables of X can make inference for rare events challenging and lead to inaccuracies
in extrapolation.

Classical approaches to multivariate extreme events often rely on the framework
of multivariate regular variation (MRV) (de Haan and Resnick, (1977, which posits
that the point processes of exceedances of a random vector over a high threshold,
when suitably renormalised, converge in distribution to a non-degenerate non-
homogenous Poisson point process (de Haan, |1984)). This provides a framework for
understanding the joint behaviour of extreme observations and leads to meaningful
limit distributions that can be used for statistical inference of multivariate extremes.
In practice, MRV is applied in a way that does not adequately describe relationships
among asymptotically independent random variables (Nolde and Wadsworth), [2022)).
This is due to the type of the renormalisation that is employed: given a random
sample of n d-dimensional observations, all components are normalised by the same
amount (see Figure . This leads to only considering the dependence structure
when all d variables are large.

Another drawback of MRV is the limited set of directions in the multivariate
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space in which one can extrapolate the model. Under MRV, a common way to
estimate the probability of lying in an extremal set is to shift the set linearly
and perform empirical probability estimation on the translated set. When the
translated set does not contain observations from the initial dataset, the estimate
the probability of interest is inevitably 0. To correct the joint rate of tail decay
in the case of weaker extremal dependence, the notion of hidden regular variation
(HRV) was introduced (Ledford and Tawn), 1996, (1997)). However, HRV also suffers
from the drawback that it does not allow extrapolation along directions where not
all variables are simultaneously large. To extrapolate to a wider range of extremal
regions with a wider array of dependence structures, the frameworks of conditional
extremes (Heffernan and Tawn, 2004) and angular dependence (Wadsworth and
Tawn) 2013) have been introduced, but statistical methodology based on these
frameworks suffers from drawbacks. Despite its wide applicability and widespread
adoption, the conditional extremal inference method of Heffernan and Tawn! (2004))
is based on composite likelihood methods and on gluing separate models post-
fit, making statistical inference and computations unwieldy. While the angular
dependence method of[Wadsworth and Tawn| (2013) permits extrapolation in regions
where variables are not simultaneously extreme, it is only useful for joint survival
regions. Recently, a characterisation of extremal dependence through the limiting
geometry of observations from X has become of interest. The limit set, denoted by
G, whose boundary arises as the limiting hull of appropriately scaled sample clouds
N, ={X1/rn,...,X,/rn} asn — oo, provides insight into the extremal dependence
structure of X. The gauge function, denoted by gg, whose unit level set is in one-to-
one correspondence with the boundary of the limit set, has been shown to connect
several known coefficients describing extremal dependence of known copulas (Nolde,

2014; Nolde and Wadsworth) 2022).

Wadsworth and Campbell (2024) proposed a framework for performing statistical
inference for multivariate extremes using this geometric approach. Using a radial-

directional decomposition, this framework treats the gauge function evaluated at
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Figure 4.1: Directions along which different frameworks allow for extrapolation
to tail regions of a bivariate river flow dataset in Laplace margins: MRV (left),
conditional extremes given X, and X; are large (centre-left and centre-right), and
geometric extremes (right), with Q, illustrating the posterior mean of the quantile
set at ¢ = 0.95 (details presented in Section . The support of the distribution of

exceedances is inscribed by the region containing the arrows.

directions as a rate parameter of a left-truncated gamma model for the distribution
of radii conditioned on directions on the unit simplex. Inference for the gauge
function and its associated limit set is based on parametric models derived from
known copulas in d-dimensional random vectors with standard exponential margins,
and a maximum likelihood approach is implemented within the rate parameter
of the truncated gamma distribution. The result is a new statistical inference
method for estimating extremal probabilities with great flexibility relative to state-
of-the-art methods in multivariate extremes. Also in exponential margins, but in
a bivariate setting, Simpson and Tawn/ (2024a) model the conditional distribution
of the excess radii given directions on the simplex via the generalised Pareto (GP)
distribution (Pickands, [1975). In this framework, the gauge function is seen as a
rate parameter of the GP distribution and is modelled via generalised additive
models (Wood, [2017)). Majumder et al.| (2025) also propose a statistical method
to estimate the bivariate gauge function and the shape of its associated limit set

using Bézier splines.

In this work, we develop a framework that extends beyond the cone R‘i by
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leveraging the structure of weak limits of suitably radially renormalized multivariate
exceedances. Multivariate exceedances are observations that lie within a return set,
defined as the complement of a probability set. Given a d-dimensional distribution, a
probability set is a set in R? where the the probability of lying within is prespecified.
Among the infinite class of probability, we identify quantile sets, defined through
the quantile of the radial distribution at a given direction. The quantile set derives
its name from its role as a d-dimensional generalisation of quantiles, addressing
challenges in multivariate extreme value theory that arise from the absence of natural
ordering in R? (Barnett, 1976)). This concept parallels the quantile regions introduced
by [Hallin et al.| (2021)), but our definition is specifically designed for extrapolation
beyond the observed data.

By specifying an appropriate sequence of quantile sets, we show under mild
conditions that the framework of MRV can be extended to the cone R?\ {0}
for random vectors with light-tailed margins. In this multivariate setting, our
framework enables the modelling of the entire joint tail, accommodating scenarios
where subsets of components are extreme. This approach can capture behaviours
across the entire spectrum of multivariate space and reveal hidden dependencies,
thereby bridging the gap between theory and practice. Using radially recentred
and rescaled exceedances over high quantile sets, we characterise non-trivial limit
distributions on R?, termed radially-stable exponential distributions. The radial
stability properties of these families of distributions permit extrapolation beyond
the range of observed data along any direction (see Figure and naturally lead
to the notion of return sets, a geometric d-dimensional extension of the univariate
(upper-tail) return level. This yields an interpretable way to communicate the risk
associated with extreme multivariate events allowing decision-makers, policymakers,
and the general public to understand the likelihood of experiencing impact from
joint extreme events. Throughout our work, inference is done in a Bayesian manner,
allowing us us to obtain inferences for any functional of the joint tail distribution.

Our methods account for multiple sources of uncertainty in the estimation, including
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that of uncertainty in the estimation of the marginal tails as well as the multivariate
threshold, which is typically not accounted for in previous statistical methods for
multivariate extremes. We use use prediction intervals for functionals of interest,
allowing us to quantify uncertainty via simultaneous prediction bands when the
functional of interest consists of the boundary of a distribution-dependent set.

The work is organised as follows. In Section [1.2] we introduce the main
results, which includes the weak convergence of radially recentred and rescaled
exceedances to a Poisson point process. Our findings lead to a novel class of limit
multivariate distributions that are presented in Section [4.2.3] Section details
methodology for statistical inference of extremes using hierarchical Bayesian models
with latent Gaussian random effects on Euclidean spheres. Finally, Sections [4.4] and
illustrates the merits of our approach on a two-dimensional hydrological dataset
and a three-dimensional oceanographic dataset, respectively. Publicly available code

can be accessed via our R package geometricExtremes on GitHub.

4.2 Theory

4.2.1 Scaling and limit sets

Given a d-dimensional random vector X with joint density fx, interest lies in
characterising its tail region. While some methods focus on modelling the Cartesian
representation of X directly, it can sometimes be more convenient to model radii R =
| X || € Ry and directions W = X /|| X|| € S¥1. Here, S 1 :={x e R? : ||z| =1}
is the (d — 1)-dimensional simplex corresponding to some choice of norm ||-||. The
approach of Wadsworth and Campbell (2024]) uses the L; norm and, under certain
assumptions on the distribution of X, they show that the conditional distribution
R | {W,R > ro(W)} for some high radial threshold ro(-) can be modelled used a
left-truncated Gamma distribution whose rate parameter is given by values of the
gauge function gg(w). Their statistical inference methodology rests on regularity

assumptions on fx, which itself depends on the margins of X following a light-
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tailed von Mises distribution. That is, X; having distribution function satisfying
1 — Fj(x) ~ e *@® as 2 — oo, where ¢ is a C? function with a positive derivative
such that (1/¢'(z))" — 0 for £ — oo. In practice, their methodology is implemented
with standard exponential margins, meaning the domain of X is the positive orthant,
R%. We extend on thesis ideas by allowing the domain of X to be the the entire

space R?, and show under regularity assumptions that the random point measure

Po() =) Sauwi-r(imbawywn () 5 n=1,2,..., (4.2)
=1

converges to a Poisson point process (PPP) as n — oo. In the expression (4.2)), ¢
denotes the Dirac measure,

1 ; z€A
0. (A) =

0 ; z¢A
For more information on the convergence of P, see Proposition 2 of Papastathopou-
los et al.| (2025). The intensity measure of this Poisson point process has two
components: one corresponding to directions and the other to renormalised radial
exceedances conditioned on these directions. The component corresponding to
renormalised radial exceedances is given by the density of the generalised Pareto
distribution (GPD). Papastathopoulos et al| (2025) therefore suggest that radial
exceedances can be modelled via the GPD, whose shape parameter changes based
on the margins of X . In the case of light-tailed von Mises margins, this is simplified
to modelling radial exceedances via the exponential distribution.

Verifying the proposition of convergence to a PPP directly can be challenging.
In this section, we introduce a proposition that provides easily verifiable sufficient
conditions for this convergence. With a view for more straightforward statistical
modelling of extremes, this work will focus on the special case where the margins
of X are von Mises. We note that these results extend to more general margins
(see Sections 2.1 and 2.2 of Papastathopoulos et al.| (2025)), but this is beyond the

required scope for this chapter.
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In order to establish convergence to a PPP, the notion of radial functions
corresponding to limit sets and quantile sets needs to be defined. Suppose that
G is a non-degenerate limit set with gauge function gg. Then we define the radial
function of gg to be rg(w) = 1/gg(w) for w € S*!. This can be thought of as
the distance from the origin to the boundary of the limit set G at the direction w.
Gauge functions can in principle be zero-valued; however, throughout this work we
will assume gg(w) is strictly positive on the domain S?~!. This ensures that rg is
always well-defined. In addition to limit sets, the geometric framework considers
exceedances above high quantiles of the radii R given the direction W. Given some
value ¢ € (0,1) close to 1, define the radial quantile function g, to be the radial

value such that the probability of lying below it is ¢ at a given direction w € S,
ro,(w) :=inf{r e R: Fpw(r | w) >q}.

Under this framework, the limit set G and the quantile set Q, are defined through

their respective radial functions via

G = U {trg(w)w : ¢ €0, 1]},

weSd—1

Q, = U {tro,(w)w : t €[0,1]}.

weSd—1

Let % denote the collection of star-shaped compact subsets of R\ {0} (or “star-
bodies”), then by definition, we have G, Q, € . Further let Py (dw) denote
the intensity measure associated with directions W. Under a limiting regularity
condition on the joint density of X, the radial functions rg  and rg can be used as
the location and scale functions respectively in the convergence of radial exceedances

to a Poisson point process.

Proposition 4.1. Suppose that the random vector X s absolutely continuous with
respect to the Lebesque measure on RY, has von Mises margins, and joint density fx.
Let G € ¥ be described by continuous 1-homogeneous gauge function gg : R — R_..
Suppose that there exists ¢ : R, — Ry, and a p > 0 such that

_log fx (tx)

o) — gg(x)?, x € R?\ {0}. (4.3)
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as t — oo uniformly on S, then

[1/(1-q)]

Piya- q) 5 (a1/(1—g)(Wi) " (Ri=b1(1-q) (W) ) W, )()
=1

converges to a Poisson point process with intensity measure e *dzPw (dw) as

q — 1 with normalising functions byjq—_g(w) = 1o, (w) and ajjq_q(w) =

rg(w)” /¢! (ro, (w)).

A proof is given in Appendix [4.7.1] Proposition states the radial functions
ro, and rg can act as appropriate standardising functions such that the limiting
distribution of exceedances of Q, follow a standard exponential distribution as
q — 1. Note that the assumptions in Proposition guarantees that a suitable
sequence of scaling constants r, can be found so that the random point-set
N, ={Xi/rn,..., X/} converges in probability onto a limit set G having radial
function rg (Nolde and Wadsworth|, [2022)). While this is holds for random vectors
X with von Mises margins, we assume through the remaining work that the
margins are standardised to follow the standard Laplace distribution. Following
from Nolde and Wadsworth| (2022), this setting has scaling function ¥ (¢) = t and
p = 1 in the convergence . Therefore, radii are recentred using by/(1—q) = 7o,
and exceedances are renormalised using ai/1_q = 7g. Using this, renormalised
exceedances are expressed as (R — rg, (w))/rg(w) | {W =w, R > ro, (W)}, which
will converge to an exponential distribution as ¢ — 1. This is established in more
detail in Section 4.2.3] where a joint distribution of renormalised exceedances and
directions is presented. For convenience, this work will assume Further note that
throughout this work, we define directions using the Ly, (or “Euclidean”) norm.

Therefore, for our purposes, S~ is the d-dimensional unit sphere.

4.2.2 Probability density function of directions

The point process framework presented in Section has the important advantage
that it yields a distribution of direction of exceedances of Q,. Let Fy be the joint
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distribution function of the directional variable W. Here we present additional
properties of W, including a connection between the distribution of directions and
star-bodies, even in cases where Fy, partially depends on the limit set G. For
simplicity, we assume throughout that Fy is absolutely continuous with respect
to the spherical Lebesgue measure and that it admits a probability density fw .

Denote the radial function r, = fw such that it defines the directional star body,

W= |J {trww)w : te[0,1]} € *. (4.4)

weSd-1

Through , we observe that any continuous probability density function on
the sphere fu is in one-to-one correspondence with a strongly starshaped set
W with radial function 7y, where “strongly starshaped” denotes the halfline
{tw : t € [0,1) } not intersecting OV more than once for every w € S
For W € %, define the set W'/ with radial functions ry1/4(w) := ryy(w)*?. From

the definition of star-shaped sets, for fy to be a valid density, VW must satisfy

1= fw(w)dw =d B/ Ty (w)? dw] = dwY|
Sgd—1

gd—1

(Klain) (1997, Proposition 1.13). Hence, for some star body £, we construct a valid

directional star body W using
W = L/(d|L)). (4.5)

For modelling purposes, we consider three approaches in defining £, and hence,
W. A first possibility for the form of the set £ is motivated from the properties of
probability density functions that are homothetic with respect to G (Balkema and
Nolde, 2010)). Recall that a joint density fx is termed homothetic if it has level-sets

that are scaled copies of G. This setting is used in the following proposition.

Proposition 4.2. Suppose that fx(x) = fo(rg(x)™') for a decreasing, positive,
continuous function fy : [0,00) — [0,00) and a radial function rg characterizing a

set G € %. Then L =G.
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The proof of Proposition is given in Appendix [£.7.2 Proposition states

that homothetic densities have one-to-one correspondence between the density of
directions and G. As a result, under the homothetic framework, an analytic form
of the density of directions can be obtained. Consider the three examples below,
all of which have homothetic densities fx with common radial function, rg(x) =

(x"Qx)~1/2 for Q € R¥*? positive definite, but different generators, fo:

Example 4.1. Suppose X follows the multivariate Gaussian distribution with
precision matrix Q and standard mormal margins. The density fx is homothetic

with respect to rg and fo(r) = Cyexp(—r=2/2), r > 0, where Oy = [|Q["/2/(2m)%/?].

Example 4.2. Suppose X follows the multivariate Laplace distribution with
precision matriz Q and standard Laplace margins. The density fx(x) is homothetic
with respect to rg and fo(r) = Cor K, (r™'), r > 0, where Cy = [|Q|/2/(27)%?],
K, is the modified Bessel function of the second kind and v = (2 — d) /2.

Example 4.3. Suppose X follows the multivariate Student’s t distribution with v
degrees of freedom, precision matriz Q, and Student-t,, margins. The density fx(x)

18 homothetic with respect to rg and

folr) = Cy (L +172/v) D2 1 5 0, where Cs = [T{(v+d) /2HQ|Y2/{ (vm)¥2T (v/2)}].

More details on these derivations are presented in Appendix [£.7.5] In each of the
above examples, Proposition gives an analytic form for the star set WW. The set
W is common to all examples as it is defined by rg/(d|G]|) for the same rg in all
examples.

The class of homothetic densities, although rich, serves at best as an idealistic
setting. A second option for the form of L is revealed when standardising the
margins of X, a common practice in analysing its tail behaviour of random vectors.
Consider the map 7 : R — RY x (\I/“(Fxl(xz)) D= 1,...,d) performing a

transformation of the marginal distributions of X, so that the i*" element of T'(X)
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Figure 4.2: Top row: Circular histogram of 10° directions sampled from W for the
bivariate Gaussian distribution with standard normal margins (left), the bivariate
Gaussian distribution with standard Laplace margins (centre), and from a bivariate
max-stable logistic distribution with Laplace margins (right). A concentric circle
corresponds to a leap of 0.1 in the density of directions. Solid blue lines correspond
to the boundary of G¢/(d|G|), for G of the respective distributions. Bottom row:
Sets [G/(d|G])] - W~! in red corresponding to discrepancy between the empirical
distribution of W (given by the above histograms) and G?/(d|G|) (given by the blue
curves). If the boundary of the red set matches the unit circle (dotted line), then

W and G/(d|G|) are in perfect agreement.

follows W, a continuous cumulative distribution function on R. The transformation
preserves the cardinality of the set of input vectors X /|| X||, ensuring a one-
to-one correspondence with the output vector T'(X)/||T(X)||. From a geometric
perspective, this means that the densities of X /|| X|| and T(X)/||T(X)| can
be defined over the same set of points. The distribution of directions, however,

may change when T introduces nonlinearities. For example, suppose that Xy
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is distributed according to a multivariate normal distribution with zero mean
and precision matrix Q such that each marginal follows the standard Gaussian
distribution. Let X = F;'[®(Xy)], were F;, and ® denote the cumulative
distribution functions of standard Laplace and standard normal random variables,
respectively. While the density of Xy is homothetic, thus having uniform rate
of convergence is across directions, the density of X is not homothetic. For the
multivariate Gaussian distribution in Laplace margins, we prove in Appendix [4.7.4.1]
that convergence of Proposition holds uniformly, with G determined by

ro(w) = [{san(w)w ") Q {san(w)hw[?}] . wes

/2 .4 =1,...,d) and sgn(x) = z/|z| denotes

where sgn(w)|w|'? = (sgn(w;)|w;]
the sign function. From Figure [4.2] there is empirical evidence that the star set W
describing the density of X /|| X || is no longer a constant scale multiple of G, but
instead a radial product of G with another star-body. Figure 4.2 also shows that,
after standardising the margins to Laplace, solely using G is not sufficient to capture

the distribution of directions corresponding max-stable logistic random vectors. The

radial function rg corresponding to G is given here by

(T 4 -1
3 ' 1wj +(1-9) min(’w)] ; min(w) >0
]:
rg(w) =47 6] , wesT
Y wig > (—wy)'? : otherwise
L j:”LU]'>0 j:wj<0

where 0 € (0, 1) is the dependence parameter of the max-stable logistic distribution.
The full derivation in Appendix [£.7.4.5]

The empirical analysis of the marginal transformation to Laplace margins and
its effect on the distribution of the directions reveals a case where W can depend
both on G and on some additional star-body B independent of G. The star-body B
captures residual directional variation that is not explained by a homothetic density.
For the practical case where both 7y, and r¢ are strictly positive on S%~!, then we

can consider the form £ = B-G, where B,G € % such that B is independent of G. In
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the specific context where f is homothetic with respect to rg, we have B = B;(0),

the Euclidean ball with radius 1 centred at the origin 0.

During inference, it may be that we wish to model directions completely
separately to the limit set G. Therefore, a third possibility for the set £, and
consequently the set W, is to set £ = B for some set B independent of G, implying
a case where W is independent of . This can occur within the class of the radial
exponential distribution, introduced in the following section. In Appendix [4.7.5] we
derive closed-form expressions of the distribution of directions fw for a number of
distributions when the marginal distributions are common and prespecified across
all d components of X . All three setups for the form of £ will be considered during
model fitting, as is outlined in Section [4.3]

4.2.3 Radial exponential distributions

We now present a novel family of multivariate distributions, termed radial expo-
nential (rExzp) distributions and detail their threshold stability property that makes
them suitable for extrapolation. They arise as the only non-trivial limits of radially
renormalised exceedances above a threshold Q,, as detailed in Section and
enable the modelling of rare events in a much wider set of joint-tail regions of R?
than other well-established frameworks of extreme value theory. The rExp class of
distributions are parameterised via members of the class of star bodies . Before
defining the rExp distribution, note that a star body A € % can be written in terms

of its radial function, r4 : S~! — R, through

A= | {tra(w)w:te0,1]}.

weSd—1

Definition 4.1 (Multivariate radially-stable exponential distributions). A random
vector Z € R? is said to follow the multivariate radially-stable exponential (rExp)

distribution with location M € Y, scale > € %, and directional shape W € %, if
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for any Borel set B C R4\ M,

P[Z e B] = //exp{ (T_T&()w)>}rw(w)drdw,

SBIB’UJ

where Sp = {w € S 1 : 3t > 0 such that tw € B} and Ig(w) = {t ER, : tw €
B}.

The rExp distribution presented in Definition possesses a stability property
that we here detail through Proposition

Proposition 4.3. Let Z € R? have an rExp distribution with location M, scale 3,

and directional shape W, then Z satisfies the radial memoryless property:

PlZ e {M+B,,0)-2}|Zec{M+B,(0) -2}]=P[Z € {M+ B,,(0)-2}],
(4.6)

where A’ denotes the complement of the set A.

Proof of the stability property in Proposition is given in Appendix [4.7.3] In
Section [4.3, we propose a statistical inference method utilising the family of rExp
distributions to extrapolate to extreme regions lying beyond the range of observed

data.

4.3 Statistical inference

4.3.1 Standardisation of margins

Suppose that yi,...,y,, are observations drawn randomly from the distribution
of the random variable Y = (Vi,...,Yy)". When the tails of the original
distribution decay exponentially, we have the flexibility to model a broader
range of extremal dependence structures, not only allowing for both asymptotic
independence and asymptotic dependence, but also allowing for more complex types
of dependencies such as when some coordinates exhibit positive extremal dependence

while others exhibit negative extremal dependence (Keef et al., 2013a; [Nolde and
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Wadsworth|, |2022). When Y does not have exponential decay, we choose to apply
the transformation X; = FL_l(I?](Y;)) for j = 1,...,d, where F; ! is the distribution

function of the standard Laplace distribution, and

( ~ ujL — Y o =
e e

O'ij +

F](y) = E(y) Uj 1L <y < UjR (47)
*U@,R

1—[1— F(ur)] {1 + &R (yA—]R)} Yy > ujr

\

Fiy) = (n+ 1) Y0 1y < y) and E’j(y) = (n+ 1730 Uy = yl. The
quantities (0,1, §7L), (Ojr, @,R) are scale and shape parameters of generalised Pareto
distributions for the lower (left) and upper (right) tail of the j* margin, which are
obtained using frequentist maximum likelihood estimation and are used to model

the tail decay below and above the thresholds u; _ and wu; 1, respectively.

As we perform Bayesian modelling for the multivariate extremal dependence

structure (see Sections [4.3.2) and {4.3.4)), modelling the GP parameters (01, 1.0} R,

&ir) in (4.7) would ideally also be done in a Bayesian manner. In this setting,
a posterior distribution is assumed on the joint distribution of the quantiles wu;,
and u;r. This posterior would then enable for the sampling of candidate thresholds,
above which separate GP models are implemented for the tails. This approach would
more naturally account for uncertainty in the marginal distributions’ parameters
since the posterior distribution of the quantiles propagates this uncertainty forward
into the tail modelling process. However, for simplicity, the thresholds u;1, and u;gr
are presently obtained using high quantiles of the j** marginal distribution, and we
adopt a frequentist maximum likelihood approach in estimating the GP parameters.
In this framework, we propagate the uncertainty in the quantile estimate and the

corresponding GP parameters forward using a bootstrap approach.
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Figure 4.3: Estimated posterior mean sets Q, (grey) using ¢ = 0.90 for three different
bivariate datasets (black points) in Laplace margins. From left to right: Laplace,
Gaussian, and max-stable with logistic dependence. The boundaries of the sets Q,

are the estimated posterior mean values.

4.3.2 Quantile regression

Quantile regression methods are typically implemented using a pinball loss func-
tion constructed using the check function (Koenker, 2005) and often without a
distributional model for the density. [Yu and Moyeed| (2001) propose the use of
the asymmetric Laplace distribution for the model density due to the equivalence
of the negative log density of the asymmetric Laplace with the pinball loss
function; however, the asymmetric Laplace as an adequate model for the data is
precarious in a Bayesian setting. For example, Waldmann et al.| (2013) show that the
resulting posterior prediction intervals are not well-calibrated, and this is especially
pronounced for tail quantiles, which are essential in our setup. [Fasiolo et al.| (2021)
confirm the poor posterior prediction intervals, and show that the scale parameter
of the asymmetric Laplace distribution is arbitrary in a Bayesian framework and
can therefore lead to inaccurate quantile estimates. They instead propose a novel
method for selecting the scale parameter; however, accompanying R code is only
suitable for the bivariate setting, or when modelling for quantiles of R | {WW = w}
for w € [0, 27].

We instead adopt a generalised linear model based approach for quantile
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regression, requiring an adequate distributional model for the density of R | W.
Wadsworth and Campbell (2024) show that the distribution of R | W above a high
threshold can often be approximated by the left-truncated gamma distribution. For
modelling purposes, we therefore choose the gamma distribution for the density
in the tail region of R | W. Within the gamma likelihood fititng, we model
the logarithm of its conditional g-quantile, logrg, (w), using a finite-dimensional
continuously specified Gaussian process prior on S?~! using the stochastic partial
differential equation approach by |Lindgren et al.| (2011)). This is described in detail
in Section [4.3.4] and is achieved using the default settings in the INLA package within

R (see www.r-inla.org).

Since estimators of high quantiles are not influenced by the bulk of the
distribution, a likely misspecification between our choice and the true density of
R | W in the body of the distribution is not of concern. Our model choice exploits
the form of the decay of the conditional density of R | W, and allows for Bayesian
inference. Given i.i.d. observations vy, ..., ¥y, from a random vector Y, we obtain
the standardised data @ = {@1,...,z,} viaz; = (F~1(F (Yi1)), -y Ffl(ﬁd(y@d)))T
as described in Section . To infer the quantile set Q, of X, we treat x;.,, =
{(ri,w;) : © = 1,...,n}, with (r;,w;) = (||z||, x:/||x:]|), as observations from
(R, W) and apply the gamma quantile regression method detailed above. Figure
shows posterior mean estimates for Q, on three different bivariate datasets. In it,
we see that we can accurately capture the tail behaviour of R | {W = w} as w varies

in S' = [0, 27].

While the gamma model is simple, we remark that it appears to be a good enough
approximation in estimating the high tail quantiles for use in further inference.
In this work, diagnostics for Q, estimated using the gamma model remain purely
visual. Numerical diagnostics are possible (see |(Campbell and Wadsworth| (2024))
or Chapter ; however, we leave this to future work in the context of the gamma

model and declare it sufficient to use in the estimation the star bodies G and L.
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4.3.3 Conditional likelihood function

Suppose X has been standardised to have standard Laplace margins, we assume that
exceedances of Q, follow an rExp distribution with location Q, and scale G, and
directional shape W. Given the quantile set Q, obtained from the quantile regression
outlines in Section we use the rExp and distribution distribution to build a
likelihood that will allow inference for G and WW. We recall from equation that
the set W can be expressed via fy(w) = rg(w)?/(d|L]), where L is a star-body.
Based on Section [4.2.2] we consider three possible models for the directional shape
W:

M;: L=5, M,: L=g, M;:L=B-g, (4.8)

for B € % independent of G. That is, in M;, we model the directional distribution
completely separate from the rExp distribution. In My, we use the same gauge
function in the rExp and directional distributions. In M3, we allow for the directional
distribution to be modelled by a star body related to the gauge function used in
the rExp distribution, but we allow for greater flexibility through modification with
another star body. The nested structure of model My within the parameter space
of model M3 translates into a bias-variance trade-off as the latter offers additional
flexibility at the cost of a possibly increased variance for the latent set G. A similar
trade-off occurs for G between models M; and My since the former ignores possible
information contained in the observed directions.

Conditionally on the quantile set Q, and the data x1.,, = {x1,...,2,}, the
likelihood of @ = (G, L), is given by

L(9 \ Qq,wlzn) = HfR,W(Tz’,wi \ 0, Qq)a (4-9)
i=1

where @ represents a vector of parameters defining G and £. These star bodies
can either be defined through parametric families, or in a semiparametric manner.
Letting S, := {i € {1,...,n} : m > ro,(w;)} and S, = {1,...,n}\S,, the
likelihood can be expressed in terms of contributions of the radii {ry,...,r,}
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above and below the radial threshold ro,,

L0 | Qp @1) = | [ frir<ro, v w(ri | w:) fw (w;)

=

X H fR‘R>TQq(W):W(T7; | w;) fw (w;). (4.10)

i€S,

Under the assumption that @;., is a random sample, a consequence of Proposition 5
of Papastathopoulos et al.| (2025) is that the distribution of directions corresponding
to exceedance radii is the same as the distribution of all directions. This suggests
that all directions {wy, ..., w,} may be used in the likelihood for the inference of
fw = r%/(d|L]) used to model W | R > rg (W). In particular, when models M;
or M3 are used, substantial gains in the inference for G can be attained by also
including in inference the directions at which non-exceedances occur, as illustrated
in the simulation study of |[Papastathopoulos et al.| (2025). As we assume an rExp
distribution is followed in the exceedances only, non-exceedance radii {r; : i € S;}
are assumed not to carry information about G and L£; we pose that £ is constant
with respect to them. Denoting by S,, the set of indices of at least all exceedances
and at most all observations — either S, = S, or Sy = {1,...,n} — the likelihood
(4.10) reduces to

L0 | Qp; x1:n)

X H fRiRSrg, (W)W (i | w;) H Jw (w;) (4.11)
1€S, 1€ESw

= exp {—[Su|log(d| L)} [ | fraw ((ri = ro,(w:)) /rg(wi) | w;) ] re(w))?,

iESq JESw

where frw(z | w) «x e ?/rg(w). The likelihood function is amenable to
standard likelihood based inference using either frequentist or Bayesian methods
when parametric models are selected for W and G. When interest is in semi-
parametric models, evaluating the likelihood function requires computing the
constant d|L|, which makes inference difficult. However, using the Poisson transform

(Baker, 1994), we can map the likelihood into an equivalent likelihood function
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L(6,v | Q4 x1.,) of a Poisson point process defined in an expanded space given by

L(6,7) = exp [=|Swle” (@ LN)] [T friw ((ri = ro, (w)) /rg,(wi) | w:) [] ¢re(wi)?,

i€S, 1€ESw

(4.12)
where the latent variable v estimates the normalising constant d|L|, inferred as
another parameter at no loss of information (Barthelmé and Chopin, 2015)). It is
worth noting that through this approach, we still need to compute the volume of L.
However, when taking the logarithm of for maximization, the volume |L]| is
now on the linear scale and can therefore be estimated numerically in a more stable
and efficient manner based on the method introduced by Simpson et al.| (2016); see
also|Yuan et al.| (2017)), Arce Guillen et al.| (2023)), and Papastathopoulos et al.| (2023))
for further applications of this method. Inference can be performed either using
frequentist methods or in a fully Bayesian manner, that is, by assigning suitable
prior distributions on G, £, and v (Arce Guillen et al., [2023). More details on
statistical inference for the latent variables and on how the fitted models can be
used to perform rare event probability estimation are found in Sections and
4.3.9

4.3.4 Inference for latent variables

Given n independent observations ., := {riws,...,r,w,} from X = RW € R4,
the goal is to estimate the quantile set Q,,, the limit set G, and the set £ defining the
directional distribution. To do this, we model the logarithms of the random radial
functions rg,, rg and r; as Matérn (Gaussian) fields on S*! using the stochastic
partial differential equation (SPDE) approach by [Lindgren et al. (2011), which is
also the default option in the INLA package in R (see www.r-inla.org). In this
setting, the simplex S?! is partitioned using p equally-spaced vertices, and each

radial function is evaluated for some point w € S?! using

Te(W) = To(W; B, Ze) = €XP {— Be + Z z.,khk(w)] } , (4.13)
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where hj, is a piecewise-linear basis function of order 1, and e is one of either
Q,,G, L (Lindgren et al. 2011). In , Ba,,Bg,Br € R are random intercepts,
and zg,,2zg,zr € RP are stochastic weights modelled using a p-variate Gaussian
distribution with zero mean and a sparse p X p precision matrix whose exact
form is given in |Lindgren et al| (2011) and again in Papastathopoulos et al.
(2023). In this construction, the collection of parameters used is represented by
0 = (Bo,: z0,: Bg, 2, Br, zc) € R¥PHS.

It follows that the joint posterior distribution of 6 fully determines that of
Q4 G and L. Due to the hierarchical structure of all proposed models detailed

in Sections 4.3.2| and [4.3.3] the joint posterior density of @ factorises according to

70 | ®1.,] = 7[Bg, 2g, B, 22 | Ba,, Za,, Tin]T[Ba,, 2o, | ®1:m). During inference, we
begin by fitting the Bayesian gamma log-linear quantile regression model described
in Section for a predetermined probability ¢ to all observations x;.,. Samples
{(Bayirza,:) 11 =1,...,n9,} from the posterior density 7[8o,, 20, | ®1:n) map to
a set of radial functions {ro,,; : i =1,...,ng,}, each interpreted as candidate radial
functions of a ¢ quantile set.

Given a radial function rg_;, we define a set of exceedances through
Xi = {(rj,'wj) S (0,00) X Sdil LTy > quﬂ-('wj), TiWw; € Rd, ] = 1, . ,n} . (414)

We then fit model M;, My, or M3 to each collection of exceedances X; using
the likelihood detailed in equation . This is either done with all angles or
exceedance angles only, leaving with a total of six possible modelling setups. This
procedure yields a conditional posterior density 7[8g, zg, Bz, 2z | Boy,.is 20, T1:n]
for each i =1,...,ng,. Sampling ng, realisations jointly from each 7[3g, zg, Bz, 2, |
Bay,i» Z,,i» T1:m] provides an assembled sample of ng, - ng, realisations from the joint

posterior distribution of 8,

{01,] = (/BQq,ia qu,i? ﬁg,(i,j)a zg,(i,j% /B,C,(i,j)v zﬁ,(i,j)) € ®:i= 17 e 7an7j = 17 e 7ng£} .
(4.15)
For simplicity and without loss, we re-index the sample (4.15)) from the posterior
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distribution of @ to {8; : i =1,...,ng} with ng := ng, - ng, and use this notation
henceforth.

Uncertainty estimation for the latent fields ro,, rg, and 7, is obtained via
prediction intervals (see Bolin and Lindgren, 2018)). A (1 —«) prediction interval for
the process r, defined on S~ consists of the strip Ri_q := Uyegi-1 R1_o(w) defined
through Ry_,(w) := [g,(w)w : ¢;_,(w)w] for some p such that ¢,(w) and ¢;_,(w)
satisfy

P [gp(w) < re(w) < qi_p(w),w €S =1—a.

In the context of our latent fields rq,, 7g, and rz, (1 — ) prediction intervals
consist of sets within which the true functions lie entirely with probability 1 — a.
Prediction intervals can be obtained from a sample from the posterior distribution
of a parameter of interest using the excursions package in R (Bolin and Lindgren)
2015, [2017). Throughout the rest of this work, we present prediction intervals for
a = 0.05.

4.3.5 Rare event probability estimation

In multivariate extremes, interest often lies in estimating P[X € B] for some
set B € R?\ {0} lying outside the range of observable data. The geometric
approach in Wadsworth and Campbell| (2024) performs this task by first sampling
directions, then using them to extrapolate radii beyond a high threshold. The radii
and directions are multiplied together to obtain an extremal sample in Cartesian
coordinates, and a Monte Carlo approximation of P[X € B] is obtained. While
shown to be very successful, some difficulties arise. Mainly, the further B lies in the
tails of the distribution of X, the less obvious it becomes on how far one needs to
extrapolate in order to get non-zero probability estimates.

In this work, we bypass this by staying in radial-directional coordinates, and
using the rExp distribution and a sample of directions to give a closed-form
expression for the probability of radii lying in the set of interest given a direction.

In order to do this, we restrict ourselves to starshaped sets B. This covers a wide
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Figure 4.4: Tllustration of the proposed probability estimation technique for the set
B = [6,13] x [6,13] (in green). Left: the region R, x Sp in grey. Right: The lines
Line(w)w (solid line), Ip(w)w (dotted line), and Iz, (w)w (dashed line) at a fixed
direction w = (0.8,0.6)" € Sp.

variety of cases, as common types of sets of interest are boxes {x € R?:a <x <
b, a,b € R} and sets of the form {rw : r > h(w) > 0,7 € (0,00),w € S} for
some positive function h defined on S, both starshaped at 0. This is useful in our
setting as it allows for an exact probability calculation with respect to our model
specification for exceedances.

For a set B € R?\ {0} starshaped at 0, define S := {w € S ! :rw € B,r €
(0,00} C S and consider, for any w € Sp, the partition Ijye(w) U Ig(w) U
Igup(w) of (0,00), where [iye(w) = (0,75, (w)), Ig(w) = [rp,(w),rp(w)], and
Iop (W) := (7 (w ), oo) for the radial function rp(w) of B and the function
rp..(w) = inf{r > 0 : rw € B}. An illustration of these subsets is given by
Figure [4.4]

The posterior predictive distribution of
PBlmlm = ]P[R € [B(W), W € Sg ‘ wlm], (416)
is given from the posterior density of 8 via

Ppja,,, = / PR € I5(W), W € Sg | 0]7(6 | @1.,] d6, (4.17)
R3p+3
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where 70 | x1.,] is obtained following the procedure described in Section [4.3.4]
Since Q, is a latent variable, rg_ (w) intersects with Lin¢(w), Ip(w), or Iy (w) with
non-zero probability for all w € Sp. Hence, from total probability, Pglg := P[R €
Ig(W),W € Sg | 0] of satisfies

P = PIRW € B,R > rg, (W) | 0] + PIRW € B,R < ro (W) | 8], (4.18)

and our model is best suited for sets B such that the second term in the

equation (4.18) is small. The first term in equation (4.18]) decomposes into

P[RW € B,R > rg,(W) | 0] =P[R € Iz(W) | W € S5, R > ro, (W), 6]
x P[W € Sg | R > ro,(W),0]P[R > ro,(W) | 0. (4.19)

By the assumptions detailed in Section {4.3.2} the last term P[R > ro (W) | 0] in
equation (4.19)) equals 1 — ¢ for all @ ~ 7[@ | x1.,]. Following our model formulation
for W, the second term in equation (4.19) corresponds to the predictive distribution

of the angles given 0 and is given by

P[W € S | R > ro,(W), 0]

= [ fwie(w | 0)dw / /Sdlfww(w\e)dw, , (4.20)

S

where fyy is a directional density defined by My, My, or M (see Section . The
integrals in (4.20]) are computed efficiently via numerical integration for d = 2 or 3.

The first term in (4.19) is obtained through

PR € I5(W) | W € Sp, R > ro (W), 6]
— Ewiwespan, (BR € In(W) | R > ro, (W), ), (4.21)

where

PR € Ip(w) | W =w, R > rg, (w), 0]

max {TB(’UJ), ra, (w)} —ro,(w) ‘w
qu(’w)
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_ max {TBinf(w)7 rQ, ('w)} — T, (w) w
Friw ron(w) ‘ ]
— ex . max {TBinf<w>7 T, (w)} —Trg, (w)
R p{ [ rge(w) ] }
O T e
rge(w) '

We approximate expectation through Monte-Carlo integration by sampling
angles {wy,...,w,,} from fy restricted to the set Sp via
n,' ZwIF’[R € Ip(w;) | R > ro,(w;), 0]
i=1

as n,, — co. The second term in equation ([(L.18), PIRW € B,R < rq (W) | 8] =: p,
corresponds to a probability over a region in which our model is not specified. This
region occurs where the data is more dense, and is therefore estimated empirically.
For practical reasons, we restrict ourselves to sets B that are starshaped at with
respect to their centrepoint. We acknowledge that this integration-based approach
is less convenient if B is not star-shaped. For more general regions, a sampling-based
approach akin to that of Wadsworth and Campbell (2024)) could be used, but this

is omitted in this work.

4.3.6 Return sets

A nice property of the rExp distribution is that one could derive return sets.
Analogously to a univariate return level corresponding to a value expected to be
exceeded by a random variable X once in a certain return period, return sets
correspond to a specific set expected to be attained by a random vector X once
in a certain return period 7'. For any Bernoulli experiment with probability 1 — 71
of success, a return period T" defines the expected number of experiments needed to
obtain one success. Given a random vector X € R? and an arbitrary set B € R,
the event X € B can be interpreted as a Bernoulli experiment with some return
period T'. Depending on the properties of X, there can be infinitely many distinct
sets in RY satisfying this property.

126



6 -4 -2 0 2 4 6 8 10
6 -4 -2 0 2 4 6 8 10
P SR S SR S
6 -4 -2 0 2 4 6 8 10
T S S S S

-10
-10
'

-10
L

— o T T T T T T
-10 6 4 2 0 2 4 6 8 10

-6 -4 -2 0 2 4 6 8 10
AT M Y Y N N B |
6 4 -2 0 2 4 6 8 10
P S S MUY S S S |
6 -4 -2 0 2 4 6 8 10
B S T N S |

L
1000
b

10
10

-10
L

S B S e S S e S S ] vl S s S e e S S S e
-10 6 4 2 0 2 4 6 8 10 -10 6 4 -2 0 2 4 6 8 10 -10 6 4 2 0 2 4 6 8 10

Figure 4.5: Top row: 0.95 prediction intervals for the boundaries r;_7-1 of the return
set X7 with associated return period 7' displayed in red. Bottom row: Posterior mean
of the return sets with associated return period (red) defined by the angle-wise
posterior mean of r;_p-1. Every return set contains all lighter-grey sets. Columns
from left to right: Bivariate Laplace, normal, and max-stable logistic distributions

in Laplace margins.

In this work, given a return period 7', we focus on sets of the form
Xr={@ e R": 2]l 2 o, , . (x/l2])}
where 7o _, (w) is the solution of
Pr (R >To, ., ('w)’W = 'w) =T, (4.22)

for w € S¥'. That is, Xp C R? is a set in which we expect to observe
observations with probability 1/T. As we model the rExp distribution above
the ¢ radial quantile, we consider return periods such that T > (1 — ¢)~%.
By marginalising the rExp distribution from Definition 4.1, we assume rescaled
exceedances conditioned on the direction follows a standard exponential distribution,
ie., (R—rg,(w))/rg(w) | {W =w,R > ro (w)} ~ Exp(1l). Therefore, using the

rExp distribution for radial exceedances and solving for ro _, (w) in equation
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Figure 4.6: Posterior return set boundaries Xz for return periods 7" = 200 (inner)
and T = 10° (outer) for 3 different bivariate Gaussian mixture distributions. Grey
points are the data in original margins, solid black lines indicate the posterior mean
return set boundaries, with dark grey regions indicating the corresponding 0.95

prediction intervals, bordered by dotted lines.

[22) yields

ro, i (w) =rg,(w) +rg(w)log((1 - ¢)T)

and the 7" return set is
Xr={z eR?: &= [rg,(w)+rg(w)log((1 — ¢)T)] w,w € S*'}.
In the star body notation, this is equivalent to
Xr =[24 + G - Bpogra-1(0)]"

In practice, we obtain return sets Xy given data by first fitting the rExp
distribution in the Bayesian semi-parametric manner described in Section [4.3.4]
Then, by sampling the functions rg_; and rg;, @ = 1,...,ng from the posterior
distribution of @, we obtain posterior mean estimates for X; along with the
associated prediction intervals. Figure displays return sets return sets of period
T € {100, 1000, 10000} estimated using samples drawn from the bivariate Laplace,

Gaussian, and max-stable logistic distributions in standard Laplace margins.
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As an illustrative example, we recreate the task of return set boundary estimation
in the case of bivariate Gaussian mixture data presented in Section 4 of Hallin
et al.| (2021). Our approach differs in that it is non-empirical, and we are able to
extrapolate to higher levels than observed in the data with uncertainty computed for
our estimates. This is exemplified in Figure in which the return level curves OXr
are shown for return periods 7' = 200 and 7" = 10°. For each mixture distribution, we
generate n = 50, 000 datapoints and fit a quantile regression model with threshold at
the ¢ = 0.9 level. For Bayesian inference, we used the M3 hierarchical structure. For
display purposes, 20 posterior observations of rg, were drawn and a joint radial-
directional model was fit at each of these observations. There were 50 draws of
posterior return level curves drawn for each of these models for a total of 1,000

return level curves for which to obtain posterior mean and credible intervals for

each plot in Figure [4.6]

4.3.7 Model selection and validation

Our model formulation gives rise to various modelling choices needing to be
assessed and validated. For instance, as discussed in Section [4.3.3] selecting the
most appropriate model within the set of candidate models M;, My, and Mj
given observed data amounts to analysing the properties of the distribution of
(R,W) | R > rq, (W) with respect to the association between gg and fyw . Another
modelling choice requiring assessment is that of the set of angles contributing to
likelihood since it translates into a bias-variance trade-off for G and L.
Further, hyper-parameters values imposed on the prior distributions of Q,, G, and £
imply a priori information on the differentiability properties of their boundaries (see
Section , and their impact on the posterior may need assessment. Finally, the
usual concern of the sensitivity of the posterior distribution of the latent variables
to the return period for the latent threshold function rg, (Section 4.3.2) remains.
We detail possible methods for model selection and validation below.

The nested structure of model M, within the parameter space of model M3 raises
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the question of whether model M, can serve as a sensible simplification of model
M3 given observed data xi,, = {rjws,...,r,w,}. As discussed in Section ,
evidence for a constant rgz in model M3 points to evidence that M, can serve as an
sensible simplification of M3, or equivalently that the observed data @x;., may come
from a process following a homothetic density with respect to its gauge function
gg- The sensitivity of the posterior distributions of the latent parameters to the
remaining modelling choices can be assessed through the quality of the calibration
of the posterior predictive distribution to the observed data. Given a set of observed
exceedances X; of a sampled latent function rg_; (see expression (4.14)), we wish
to assess the calibration of the predictive distribution for the excess variable R —
ro,i(W) | R > rg,(W). We thus compare each observed excess 1; — g, :(w;)
with the quantile of the Exponential(rg(w;)), with logrg(w) = Bg + ¥ (w)' 2g
and (Bg, zg) ~ 7[Bg. zg | Ba,.i» Z0,.i» T1m|- We draw exceedance radii {ry,...,7,,}
from their predictive distribution Exp(rg(w;)), and define the empirical distribution
function F, p, (1) :== n,~t >0, 17 < 7], for r € (0,00). A probability-probability

(PP) plot for the exceedances X; is then given by

J :
{(|X“+1,p(j)>:3:1,...,124-\}, (4.23)

where p(;) denotes the j-th order statistic of the sample {Fy, . (r; — 7o i(w;)) :
j=1,...,|X|}. A quantile-quantile (QQ) plot in unit exponential margins for the
exceedances &; is then easily obtained via probability-probability (PP) plot for the

exceedances X; via

{(—log (1 — |Xi‘j+1> ,—log (1 —p(j))) i = 1,...,|Xi]}. (4.24)

In a similar fashion, we can obtain PP plots for the predictive distribution of

W | R > rg,(W). This is achieved by sampling angles {w,..., w,, } from
the predictive density fW\ﬁg,zgﬂB,zB,mlm where (8g, zg, B, 28) ~ 7[Bg, zg, B, 25 |
69“, 20, T1.,). We transform the sampled and the observed directions from X to
spherical coordinates (or “angles”), respectively denoted {@; = (1,5, .., Pa-14) €

O:j=1,...,ns} and {¢; = (p1,---.0i-1,) € ®:7=1,...,|X;|}. Using these,
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we consider the empirical distribution function F,, (¢) :=ns"'> 2 L@k < ¢]. A
PP plot for the calibration of the predictive distribution of angles to the observed
angles in &; is then given by expression with p(;) denoting the j-th order
statistic of the sample {F,, (¢;) : j = 1,...,|X;|}. Note that in dimensions d > 2,
we cannot obtain QQ plots corresponding to these directional PP plots, as there is

no obvious inverse of the multivariate empirical distribution function F,,_.

In addition to assessing the agreement of the fitted posterior with the underlying
model via PP and QQ plots, it is of interest to see how well the posterior model
approximates extreme probabilities. To do this, we estimate values of the coefficient
of tail dependence, x,(A), defined in (4.1]), on models fitted with data drawn from
distributions of dimensions d = 2 and 3. These values are compared to their
empirical values. For a value of ¢ close to 1, estimating x,(A) amounts to estimating

the probability of lying in the region

B, :={x € R? : z; € (—log(2(1 — q)),00)ifj € A, 7; € (—00,00)ifj ¢ A}.

Using posterior models fitted on data, the posterior probability estimation procedure
presented in Section is used with region B,, we are able to obtain an estimate
P(X e B,). When dividing by (1 —g¢), a posterior estimate X,(A) for the coefficient
of tail dependence is obtained. This is done on a fine grid of values ¢ € [0.95, 1].
Furthermore, posterior confidence intervals of the models’ estimates are compared
to bootstrap confidence intervals of the empirical estimates. In addition to being a
diagnostic for how well posterior models can estimate large values, x,(A) estimates
could also give insight on the tail dependence structure of the data’s underlying
distribution. For example, if X,(A) — 0 as ¢ — 1, then the posterior model
concludes that the components in A do not achieve simultaneous extremes. If values
of x,(A) agree with their empirical counterparts as ¢ — 1, it is a good indication

that the posterior captures the tail behaviour when all d components of the random

vector grow large.
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4.4 River flow data analysis

The flexibility and accuracy of our Bayesian modelling approach is illustrated by
performing inference on a bivariate dataset of river flow measurements (m?/s)
displaying a complicated dependence structure. First analysed in Keef et al.| (2013a),
we focus on daily measurements of the rivers Pang and Windrush, each tributaries
of the River Thames in southern England, from 1968 to 2008. For the purposes
of this data analysis, we make the simplifying assumption of temporal stationarity
between daily measurements. Once standardised to Laplace margins, we use the
data @y, in the hierarchical modelling approach outlined in Section 4.3l For
the threshold model, we fit the hierarchical Bayesian gamma quantile regression
model for the quantile set Q, at the ¢ = 0.95 probability level, and sample
ng = 20 posterior observations of the radial threshold, rg,1,...,79,20, from
7[Ba, zo|®1.n]. The assumption of exponential radial excesses (rExp) is made,
and models M;, My, Mj are fitted, each using all directions and exceedance
directions. For each model and posterior threshold rg_ ;, ngs = 50 samples are
taken from the posterior distribution 7[8g, zg, B, 22|80 Z0.i; 1.m), resulting in
ng = 1000. In Appendix we compare observed posterior boundaries of the
scaling set G obtained from g 1,...,7g 1000 to log(n/2)-scaled data, and posterior
angular densities for W = £%/(d|L|) obtained from r, 1, ..., 71000 to their empirical
counterparts. This is done for all six fitted models. Though this visual check, it is
determined that model My is preferred when fitted with exceedance directions only,
and will henceforth be considered for this dataset.

Figure displays a posterior mean boundary of the scaling set G, or gauge
function unit level set, that seems to accurately capture the behaviour of scaled
data. This leads to the belief that we can accurately capture the tail dependence
behaviour across the entire bivariate tail region of the data’s underlying distribution.
Also in Figure [4.7], we show our ability to extrapolate information far beyond the
reach of observable data by displaying return sets in Laplace margins, with increasing

uncertainty as the return period 7' increases, which is sensible. Lastly, Figure 4.7
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Figure 4.7: Fitted posterior star bodies on Thames tributary data. Left: Posterior
mean boundary of the scaling set G (solid line) with 0.95 prediction intervals (in
grey), with log(n/2)-scaled data in Laplace margins. Centre: Prediction intervals
for the boundary of river flow return sets. From dark to light grey: T = 102, 10,
and T = 10° days for data in standard Laplace margins. Right: Posterior mean
boundary of the directional distribution set W (solid line) with 0.95 prediction

intervals (in grey), empirical estimate (histogram).

shows good agreement between the estimated posterior density of directions, fw,
with the corresponding directional histogram. To check posterior model fit’s
predictive performance, values of ,, whose expression is presented in , at high
levels g increasing to 1. In it, we see that the posterior model’s probability estimates
closely follows the empirical counterpart, with good coverage of confidence intervals.
This shows the posterior model’s good ability at capturing the joint tail behaviour

of river flow measurements at these particular sites.

Additional posterior model goodness-of-fit diagnostics are presented in Ap-
pendix [4.7.6, The QQ plots in Figures show that there is good agreement with
the empirical and model-based estimates in their abilities to extrapolate exceedances
to extreme values. Figure [4.20] shows PP plots for directions generated from the
posterior distribution of r, have good agreement with the empirical distribution of

the directions.
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Figure 4.8: x, values for the pair of marginal variables corresponding to the
rivers Pang and Windrush. Solid line is an empirical estimate with 95% bootstrap
confidence intervals in light grey, and the dashed line is a model-based estimate with

95% posterior confidence intervals in dark grey.
4.5 Newlyn wave heights data analysis

We apply our methodology to a dataset of dimension d = 3 consisting of hourly
measurements of wave height Yy, in meters, wave period Yp, in seconds, and surge
Yy, in meters, measured over the period 1971-1977 at the Newlyn port in south-west
England. The dataset was first analysed in |Coles and Tawn, (1994) in the case where
asymptotic dependence was assumed between all three variables. Although a typical
assumption, [Wadsworth and Campbell (2024) show that asymptotic independence
is a more reasonable assumption. Here, we revisit this data with a more flexible
approach also enabling the modelling of negative dependence. Following previous
literature, we analyse componentwise maxima over 15-hour periods, resulting in
a dataset of n = 2,894 observations. The margins Yy, Yp,Ys of the data are
unknown and are therefore standardised to standard Laplace using methods from
Section . This results in observations @1, := {®&; = (vgi, vp;, vs;) i =

1,...,n} interpreted as random draws from X = (X, Xp, Xg).

We begin by fitting the hierarchical Bayesian gamma quantile regression model
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Figure 4.9: Newlyn wave data fitted posterior star bodies. Left: Posterior mean
boundary of the scaling set G, with log(n/2)-scaled data in Laplace margins. Centre:
Posterior mean return set with 77 = 103 and data in Laplace margins. Right:
Posterior mean return set with 77 = 10* and data in Laplace margins. X;, Xo,

and X3 refer to the wave height, period, and surge variables, respectively.

to x1., for the quantile set Q, at the ¢ = 0.9 probability level. For each of ng, = 20
samples rg, 1, .. ., 0,20 from the posterior distribution 7[fg,, zg,|T1:n] of Q4. Using
these posterior samples, we assume that the exceedances of Q,; follow an rExp
distribution exactly, and fit the models M;, My, and M3 to them using both
exceedance directions and all directions. and posterior threshold ro,;, ngs = 50
samples are taken from the posterior distribution 7[f8g, zg, Be, 22|80, Z0,is T1:n),
resulting in ng = 1000. In Appendix we compare observed posterior
boundaries of the scaling set G obtained from 7¢1,...,7g1000 to log(n/2)-scaled
data for all six fitted models. This visual check leads to the belief that model M,
is preferred when fitted with exceedance directions only, and will henceforth be
considered for this dataset. Figure shows the posterior mean of the boundary
of G obtained from model Ms, as well as the posterior means of the boundary of
the return sets OXp for T = 10° and 10*. Though Figure 4.9} we see that the model
captures the extremal dependence structure of our dataset well as observed through

the correspondence between the posterior mean of G and the scaled sample cloud.

These diagnostics suggest a well-performing posterior model. To check its
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Figure 4.10: x, values for all pairwise combinations of marginal variables and for
all three marginal variables of the Newlyn wave dataset. Solid line is an empirical
estimate with 95% bootstrap confidence intervals in light grey, and the dashed line

is a model-based estimate with 95% posterior confidence intervals in dark grey.

performance in predicting tail behaviour, x,(A) values are computed for large ¢
approaching 1 for all combinations of variables A C {H, P, S} of length at least 2
(pairs and the entire triplet). Figure displays posterior mean estimates of x,(A)
with their empirically-computed counterparts. Results show agreement between the
estimates, with good coverage of confidence intervals. This suggests the ability of
the posterior model fit in capturing the joint tail behaviour of the Newlyn data’s
underlying distribution.

Coles and Tawn| (1994)) introduce a structure variable Q(v;Y), interpreted as

the volume of water (in cubic meters, m?) overtopping the sea-wall per unit length

3c—1

(in meters, m) over a fixed duration (in seconds, s), and measured in m3s~'m~! for

a sea-wall v meters in height. More precisely,
Q(U; Y) = CL1YSYP exp{a2 (U — YS _ l)/(YPYEI/Q)}

The wave height component Y}; is a calibration of the wave height marginal variable
Yy to approximate the off-shore wave height, since measurements are taken on-
shore. We estimate the sea-wall height structure variable v, (in meters, m) for
which the discharge rate value Q(v,;Y) is expected to exceed the design standard
of 0.002m*s~'m~! with probability p. Setting V = Q~'(0.002;Y), v, is the solution
to P(V > v,) = p. As in [Bortot et al. (2000), we fix the sea-wall design feature
constants to a; = 0.25, a; = 26, and tidal level relative to the seabed to [ = 4.3.
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We obtain three separate estimates for v, at a range of p values. First, an
empirical estimate of v, is obtained by using the empirical quantile function on
values of the structure variable V' computed from the dataset. Second, a univariate
generalised Pareto (GP) model is fitted using the dataset’s computed values of
V' obtained from the dataset, and quantiles are then obtained for v,. Finally, we
compare these with prediction intervals for v, obtained from our fitted model Ms.
This consists of first sampling a collection of new datasets {Y1., = {Y1x, ..., Yor} :
k=1,...,200}, each comprising n = 2,894 observations,. These are used to collect
a sample of wall heights {v,, : kK =1,...,200} where each v, is the p-quantile of
{Vig = Q71(0.002;Yjx) : j=1,...,n}. For a sequence of p € (0.9,1), we consider
the p-wise mean and the 95% confidence intervals based on equal-tailed quantiles of

the sample of sea wall heights.

To generate a new data set ﬁzn’k, we randomly sample one of the ng,
realisations from the posterior distribution 7[fg,, zg|®1x], label it rgy, as well
as one of the ng, = 50 realisations from the conditional posterior distribution
of 7(Bg, zg, Br, 2c|Ba,, Zo ks T1:m), and label it (rgy, 7z ). The new sample X,
is then constructed by sampling with replacement [q-n| observations from the
original observations falling in Q,, and [(1 — g) - n] observations from an rExp
distribution with location Q,, scale Gy, and directional shape Wy, = L{/(d|Lk]),
before transforming the sample to original margins using the probability integral
transform via the standard Laplace distribution function and then inverse transform
via the inverse marginal model ﬁ’] specified in Section m Figure includes the
resulting estimates of v, plotted against —log(—log(1 — p)) for a range of p values.
Compared to the empirical and GP distribution fit approach, our method accurately
estimates the sea-wall height variable v, across all values of p € (0,0.10). The larger
prediction intervals corresponding to our method can be attributed to our more
holistic account of uncertainty via a joint model for extreme events, in contrast with
a structured variable approach. Our method hence reveals that risk may have been

underestimated by such previous methods.
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Figure 4.11: Estimated return levels for sea-wall height. Presented are results from
empirical fits (solid black line), GP (dotted black line), and our semi-parametric

method (dashed black line). Grey regions correspond to 95% confidence intervals.

Additional posterior model goodness-of-fit diagnostics are presented in Ap-
pendix [£.7.7, The QQ plots in Figures [£.22| show that there is good agreement with
the empirical and model-based estimates in their abilities to extrapolate exceedances
to extreme values. Figure |4.23| shows PP plots for directions generated from the
posterior distribution of directions W have good agreement with the empirical

counterpart.

4.6 Discussion

This work introduces a framework for defining quantile sets and return sets in
multivariate extreme value analysis, emphasizing the role of these sets in capturing
the geometry of extreme events. Central to this framework is the identification of
return sets under a radial-directional decomposition, which describes exceedances
across all directions and provides a natural representation of the geometry of a
sample cloud. Importantly, in our framework these return sets arise through the use
of normalising functions that lead to the weak convergence of radially renormalised
sample clouds to a novel Poisson point process. This builds upon recent results on

the convergence of scaled sample clouds and allowing for extrapolation of return
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sets, with Bayesian inference allowing for the estimation of uncertainty.

In appendices, we show that this point process convergence on exceedance radii
holds for a number of multivariate distributions whose margins are pre-specified.
This wide applicability is further demonstrated through the modelling of real-
world datasets. Using the assumed limiting distributions, we are able to accurately
characterise the multivariate tail of these datasets. While the theory on radial
exponential exceedances presented here holds for any dimension d > 2, our Bayesian
semiparametric inference procedure is currently only supported for data of at most
three variables. This is due to the difficulty in obtaining a sparse precision matrix
for the stochastic partial differential equation approximation of Matérn Gaussian
fields on S?! for d > 3. Mainly, on these hyperspheres, it is left to future work to
triangulate the space and define appropriate bases functions. Once this is done, then

work can begin on updating the methods shown in this chapter to higher dimensions.

In parallel independent work, |Simpson and Tawn| (2024b) introduced methodol-
ogy for obtaining environmental contours, which are similar to our notion of return
sets, further demonstrating the utility of the geometric approach for representing
risk. The recent developments show the broad applicability of return sets in the
geometric framework, as evidenced by their use in recent works, including Mackay
and Jonathan| (2024)), Murphy-Barltrop et al.| (2024a), Mackay et al.| (2024),
Campbell and Wadsworth (2024, and [De Monte et al.| (2025). This emerging
research highlights promising directions and the potential for significant impact in

risk assessment and the communication of risk.
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4.7 Appendix

4.7.1 Density convergence of rescaled radial excess variable

Proof of Proposition[4.1. Begin by noticing that

R —
P{M <> ’ R>rQq(W),W:w}
rg,(w)
Rfrgq('w) .
P [W S Z,R > TQq(’lU),W = w:|

P[R>rg,(w),W =w]
P [R < rg,(w) + rg,(w)z, R > ro,(w), W = w|
f:goq(w) Jrw (s, w)ds

P[R < zy(w), W = w] =P[R < 1o, (w), W = w)]
frosq(w) fRyw(S,’lU)dS

where z,(w) = o, (w) + rg,(w)z and w € S*~'. Taking the partial derivative with

respect to z, obtain the density of radial exceedances at a given direction,
0 P R —rg,(w)
0z rg, (w)
_ rg, (W) [rw (2g(w), w)
[ frw(s,w) ds
ro,(w) 71

gy (1)) iy aw)e)
foo (w) frw(s,w) ds

T‘Qq

Rewrite the integral in the denominator of (4.25)) as

/°° frw(s,w) ds = /oo s fx (sw) ds

Qq (’LU) 7”Qq (’LU)

Sz‘R>rQq(W),W:'w

(4.25)

= /oo( | 57" exp[—1(s){—{log fx (sw)}/1(s)}]ds

~ [ st el us)gsw)lds
roq (w)
as ¢ — 1, where the asymptotic equivalence holds by the uniform convergence
assumption in (4.3). Without loss, ¢ can be taken smooth (Lemma 1.4, |Seneta
(1976)) so that d*y(t)/dt* exists for all t > 0 and k € N. Using this,

h s T exp[—1(s w)P|ds = h g4t %exp[—iﬂ(s)gg(w)p] S
/rgq(w) p[—v(s)gg(w)"]d —/rgq(w) [ —gg(w)P/(s) d
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exp[=¢(rg, (w))gg(w)”]
gg(w)y!' (1o, (w))

as ¢ — 1, where the asymptotic equivalence holds by recursively performing

~ o fw)" |

integration by parts. Putting this limiting result into (4.25)), obtain

1T 99(w)* Y (rg, (w)) exp[—gg(w) {1(z(w)) — ¢ (ro,(w))}]
w)1) (ro, (w)) exp[—gg(w){¥(z(w)) — ¥ (ro, (w))}]

as ¢ — 1, where the third line holds by the convergence assumption of fx
and the fourth line holds by factoring out ro (w) from z,(w)* ' = [rg, (w) +
rg,(w)z]*"'. A Taylor expansion of ¥(z,(w)) about ro (w) and local uniform
convergence give (z,(w)) = P(ro,(w)) + ¥'(rg,(w))rg,(w)z 4+ o(1) as ¢ — 1.
Thus,

9 p —TQq(’w)
0z rg, (w

)
~ g, (w)gg(w) Y (ro,(w)) exp[—gg(w)’{¢'(ro, (w))rg,(w)z + o(1)}]
)

P! (rg,(w)) exp[—gg(w)* ' (rg,(w))rg,(w)2][1 + o(1)]

R>rq (W) W =w

~ 7g,(w)gg(w

— exp(—2),

as ¢ — 1 whenever rg (w) ~ {¢'(rg,(w))gg(w)?}~'. Without loss, set rg, (w) :=
{1/ (rg, (w))gg(w)} ~* throughout.

Suppose we have the interval [a,b], 0 < a < b < oo, and arbitrary set S C
S?-1. Using the normalising equations ro and g, the point process of recentred and
rescaled radii and of directions P, has mean measure

R — ro, 1 (W)

n Pr
rg(W)

€la,b,R>rg _ (W), WeS
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Bringing n inside the integral, the intensity measure of P, defined in equation ({4.2])

is therefore,

peATre W) R (W)| dzd
n Pr - =z,W=w,R>rg_, zdw
rg(W) -
R—7r (w
=nPr o, (W) =z

= W=wR>ro (W)] Pr[W —w|R >0 (W)

X Pr|R>ro, _,(W)|dzdw

R — ro, .1 (UJ)

= rg(w)

=z

W=wR>rq (W)]

x Pr [W - w‘R Sre (W)] dzdw,

where the last equality holds because rg _ _, is defined such that Pr [R >re (W)] =
n~t. A consequence of Proposition 5 of Papastathopoulos et al.| (2025) is that
PrlW =w | R > rg_ _,(W)] = Pr[W = w]. With this in mind, the intensity

measure becomes

R—rg -1 <w>
Pr . =2|lW=w,R>rg_ _(W)|Pr[W =w]dzdw
rg(w) -
R—rg -1 (w)
=Pr —= =2\W=w,R>rg__(W)| d:Pw(dw)
rg(w) -
R—r (w
_ 2 Pr 2,1 () < z|W = w| dzPw (dw)
0z rg(w)

— ¢ “dzPw (dw)

as n — o0. L]
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4.7.2 Marginal density of directional variable under homo-

thetic density

Proof of Proposition (£.2]). Suppose that f(x) = fo(gg(x)), = € R Then,

_ [ r,w)dr = ! oosd_1 S s:—l
fW(w)_/O frw(r,w)d gg(w)d/o fo(s)d d|g]gg(w)d’(4'26)

where the last equality follows from Balkema and Nolde (2010, see Section 3.1). [

4.7.3 Stability of the radial Exponential distribution

Proof of stability equation ([4.6). Let the random vector Z € R follow an rExp

distribution with location M, scale ¥, and angular component WW. Then,

P[Z € {M+ B, 1,,0)-%}Y | Zec{M+B,,(0)-2}]
~ P[Z e {M+ By1+,(0) - X}']
- P[Ze{M+B,(0) -2V
_ PRIZI —rm (2/112]))}/re (Z/]Z]]) > 71+ 12]
PHIZI —rm (Z/]|Z])}/rs (2] Z]]) > 7]
_exp{—(r1 + 1)}
exp{—71}

— exp{—r2} = P[Z € {M + B,,(0)} - 5.

4.7.4 Convergence to gauge functions for d-dimensional

copulas

Proposition is the central theoretical result of this work. In it, it is stated that,
when rescaled appropriately, the negative log joint density of the d-dimensional
random vector whose margins are von Mises must converge to the gauge function
gg raised to some power p > 0. Furthermore, this convergence must be uniform in
the domain S%!'. This is a central assumption that must be verified to motivate

the use of the rExp distribution for inference on the multivariate tail. In this
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section of the appendix, we do this for numerous multivariate distributions whose
margins are standardised to follow the standard Laplace distribution. In addition,
we acknowledge that these ideas extend beyond von Mises margins; see Proposition
6 in |[Papastathopoulos et al.| (2025). To this end, we also show similar uniform
convergence results for multivariate distributions in margins that are not von Mises.

However, statistical inference in these multivariate tails are left to future work.

4.7.4.1 Multivariate Gaussian distribution, standard Laplace margins

The negative logarithm of the probability density function of the standard d-
dimensional normal copula with standard Laplace margins and positive-definite
precision matrix Q is standard d-dimensional normal copula with standard Laplace
margins and positive-definite precision matrix Q is

d

1 1
—log f(tx) = — §log|Q| + dlog?2 +tz |z 4] + §H(t,a})T(Q —DH(t,x)
i=1

where H : R, x R? — R? is defined by H(t,z) = (H(t,x;) : i = 1,...,d),
with H(t,y) := @ {Fy(ty)}, for t > 0 and y € R. Using Mill’s ratio to obtain an
asymptotic expansion of H(t,y) as ¢t grows arbitrarily large, we conclude that the
convergence condition in Proposition are satisfied with () = t, p = 1,

and gauge function
go(@) = [sen(a)|z|""?] " Q [sen(a)lz|"
To inspect the convergence rate of , rewrite — log f(tx) as
—log f(tx) = tgg(x) + (logt) ui(x) + us(x) + o(1) ast — oo, (4.27)
where

u (x) = —% [Sgn(w)]w\lmf Q-1 [sgn($)|w|71/2}
up () = [Sgn($)|m|1/2]T (Q—1) [sgn(z)log 2|z|'/*] —

_% [sen(z)[z[?] " (Q 1) [sen(x) log(dm|a|)|z| /2]
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1
—§log|Q| + dlog 2. (4.28)

We note that careful attention needs to be given to establish that the convergence
holds wuniformly. The asymptotic expansion in is valid for large ¢
when all z; # 0, and loses validity when at least one x; is equal to 0. This is a
result of the asymptotic expansion of H(t,z;) and H(t,z;)?, both depending on
t and x;, resulting in non-uniform behaviour. When z; = 0, the expansions of
H(t,z;) and H(t,x;)? collapse to zero, while for x; # 0, the leading term grows
as t'/? with logarithmic corrections. This difference in growth rates reflects the
non-uniformity in x;, as the expansion behaves differently near the origin and
away from it, complicating the asymptotic analysis of —log f(tx) whenever x is
near an axis. In Supplementary Material 3.1 of [Papastathopoulos et al.| (2025)),
we show that a uniform asymptotic expansion exists, by proving —log f(tx)/t
converges locally uniformly to a continuous gauge function via the continuous
mapping theorem (see, for example, Section 3.2.3 of Resnick| (2007)). That is,
we prove that —log f(tx)/t — gg(x) as t — oo, uniformly on compact sets in
the variable £ € R?, by showing that —log f(tx;)/t converges to gg(x) whenever
x;, — x € R? Consequently, because S?! is compact, the convergence is uniform

on S ! and therefore, the condition (4.3]) of Proposition are satisfied.

4.7.4.2 Multivariate Laplace distribution, standard Laplace margins

The joint density of the d-variate Laplace distribution in standard Laplace margins

with positive definite precision matrix Q is

21+g,Q‘1/2 L1 v/2 ,

for t > 0, where v = (2 — d)/2 and K, is the modified Bessel function of the second
kind (Kotz et al., [2001). Therefore,

—log f(tx)

d d 1
=— (1 + 5) log 2 + Elog (2m) — §log |Q| + vlog(2/t) — glog (z'Qx)
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— log [Kv {t (wTQm)l/QH

Asymptotically, we have K,(z) ~ (7/22)"?e¢ (1 +0(z71)) as z — oo (Paris,

2017). Applying the negative logarithm, obtain

1 1
—log K,(z) ~ —§1og (g) + §1ogz +24+0(z1).

Substituting this in the expression for —log f(tx), obtain
d 1 v T
—log f(te) ~— (14 = | log2 + 510g27r ~3 Q| —vlogt+vlog2 — §log (m Q:n)
1 1
— —log (E) + 3 logt + 1 log (a:TQa:) +t (azTQa:)l/Q +O(t™).

Therefore, the converge condition (4.3) in Proposition holds with () = ¢,
p =1, and gg(x) = (:cTQa:) Y2y, inspect the rate of convergence of (4.3) by

writing — log f(tx) as
—log f(tx) = tgg(z) + (logt) ui(x) + uz(x) + o(1)

for t — 0o, where the higher order terms are given by

1
uy(x) = 5~V
and
d d 1 1 1
ug(x) = — (1 + 5 v) log 2+§ log 27r—§log |Q[—§ log (g>+(1 - g) log (;cTQw)

4.7.4.3 Multivariate max-stable distribution, standard Fréchet margins

The joint density of max-stable random vectors when the margins of @ are standard

Fréchet margins is given by

/=) = (Z(—l)'” HVs(w)> exp{-V(x)},

mell SET
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where IT is the set of all partitions of the set of indices {1,...,d}, and V(x) is a
—1-homogeneous exponent function. As a result, Vi(x) is —(1 + |s|)-homogeneous,

and we have

fltz) =D (-1 Ht_(HS')VS(m)) exp {7V ()}

mell sem

_ Z(_l)\ﬂ\t—(lﬂ\-‘rd) H Vs(m)> [1 + O(t_1V(iB))}

= rnellI[l {(—1)|ﬂ't(|ﬂ'+d) H Vs(w)} + Z (_1)|7‘r\t—(|ﬂ-\+d) H Vs(aj)
e mell\m sem
x [L+ 0tV ()], .

where 7* is the solution to the minimisation problem in (4.29). As t — oo, the

solution of which is 7* = {{1,...,d}}, and therefore |7*| = 1. This results in

fltz) = -t W g@) + D ()T TV () | [1+ 07V ()]

well:|m|>1 sem

Therefore, the following convergence holds,

f(tx)

t—(d+1) — =V, d}(w) — gg(m)_(dH)

as t — oo. This convergence means that f(tx) has the asymptotic form

d—1
k=1

as t — oo, where the higher order terms are given by

up(@) = (=) Y [ Vi)

rell(k+1) sem

for k € {1,...,d—1}. In this notation, [I*) C I is such that |7| = & for all 7 € TI%).
Note that in the context of Proposition 6 (#ii) in Papastathopoulos et al.| (2025)),
this convergence implies that radial exceedances of the form (R — rg (w))/ro,(w)) |
{W = w,R > ro, (W)} follows a generalised Pareto distribution with shape

parameter (or “tail index”) £ = 1.
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Further note that ¢ depends on the type of dependence, i.e., the exponent
function V. For example, in the logistic setting with dependence parameter

0
0 € (0,1), we have V(x) = (ijl x}l/ 9) . The expression of gg is therefore given

by the solution of

go(z)" " =~V a(x)

oo (1) (5)

k=0
a1 d 51 / 4 0—d
=+ [H(k - 9)] (H xk> (Z xj‘l/@) .

Furthermore, the —(|s| + 1)-homogeneous |s|-order partial derivative of V with

respect to inputs whose indices are in s in the higher-order terms wu; is given by

|s|—1 -1 /g 0—|s|
Vi(z) = (—0)" H(H—/f) (Hm) (Zx;”‘)> .

k=0 kes 7j=1

4.7.4.4 Multivariate inverted max-stable distribution, standard expo-

nential margins

The class of multivariate inverted max-stable distributions is usually represented in

exponential margins, and has a joint distribution function
F(x) = e H@)

where /¢ is the 1-homogeneous stable tail dependence function, and is defined by the
—1-homogeneous exponent function V' (see Appendix [4.7.4.3)) through the relation
((x) = V(1/x). The joint density in exponential margins is given by

f(z) = (Z(—l)”' H&(@) exp {—{(x)}
well sem

where ((z) = V,(1/x)(—1)" [Tcs z;% is (1 — |s[)-homogeneous. Therefore, the

convergence condition (4.3) in Proposition holds with ¥(t) = ¢, p = 1, and
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gauge function gg(x) = ¢(x). The convergence rate of (4.3 can be inspected by
writing — log f(tx) as

—log f(tx) = tgg(x) + u(tx)

where the and higher order term

u(tx) = —log | (—1)% Hf{j}(a:) +0(t™)

= —log |(—1)" Hf{j}(%‘) +o(1)

as t — oo.

4.7.4.5 Multivariate max-stable and inverted max-stable distributions

with logistic dependence, Laplace margins

The joint density function in Fréchet margins is

fr(z) = (Z(—l)”' HVS(Z)> exp {=V(2)}

mwell SET

where V(z) = <Z?:1 zj_l/ 9>9 is a —1-homogeneous exponent function with depen-
dence parameter 6 € (0, 1), and V is the |s|-order partial derivative of V' with respect
to inputs whose indices are in s. Let II be the set of all partitions of the set of indices
{1,...,d}, and let 7 be the set of all partitions of an arbitrary element in II. To
obtain the joint density in Laplace margins, change of variables in implemented.
Suppose z(xj) = z(tz;) for t > 0 and j € {1,....d}. If z; < 0 (or z(z;) <

(log2)™"), then we perform the change of variables from Fréchet to Laplace margins

;) = (—log (%ema))l = (—tz;) "' (1= log 2 (—tz;) " + O(t™?))

with derivative given by

d

MZt(xj) = (—t:pj)72 (1 — 2log?2 (—txj)*l n O(t_2)> ‘
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If 2; > 0 (or z(x;) > (log2)™"), then

1 -1 1
Zt(l'j) = (— IOg (1 — 5e_tﬂﬁj>) = 261596]‘ _ 5 + 0 (e—txj)

with derivative given by

. :2 tmj 7txj )
d(t:q)zt(mj) e+ 0 (e )

Lastly, if 2; = 0, then z,(z;) = (log2)~'. By the inverse function and chain rules,

—tla |
e

_4 (z;) = ( f(tz;) ;- & (log(2e7)) L2, < 0
d(tz;) " T, Fl (Fr(tzy)) Letie;| .
(1—76_” )(log(l 1tz ))2 ;T > 0
ac]—>0 (log2)

where f7, and F, are the univariate density and distribution functions of the standard
Laplace distribution, respectively. For a vector & = (z1,... ,xd)T, let A,B,C C
{1,...,d} be the set of indices such that x; is positive, negative, and zero for j €
A, B, C, respectively such that |A| 4 |B| 4 |C| = d. By change of variables, the joint
density for the max-stable distribution with logistic dependence in Laplace margins

1S

) fr(z(tzy),. .., 2(tzg))

x])

ol 14 1Al 1,
:(—1)d+1{ 1— - }2—975( DIBIH1=5 (g 2)~2(C1 ( ()" )
E< ) Y S
0—d
x (Z <—:ck>1/9>

d
d
=17

X exp { —t %Zx] + (Z (—xk)1/9> (1 +0 ( mm]eAccg> + O(t—1)>
% (14 o(1))

as t — oo. Applying the negative logarithm, obtain the following expression
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—log f(ta) = — log [(— ) {1:[ 1 - } ~ (log2) 7| — (% - 1) > log(—ax)

—(9—d)10g<k€ZB( )1/9> { (-—1)\31—1+Z}1ogt

%Zx]—+{z —xk)l/e} {1+O< m“%A””J>+O( )} +o(1)

jEA keB

From this, we see that the convergence assumption (4.3)) in Propositionis satisfied
with ¢(t) =t, p=1, and

- %Z% + {Z (—wk)w} :

jeA keB

The rate of convergence of (4.3]) can be inspected by writing — log f(tx) as

—log f(tx) = tgg(x) + (logt)uy (®) + uz(),

with higher order terms are given by

and

d+1g-14l (d=1 1
us(x) = — log [( 1022 —i0 {ZI_I <1——) }] - <5—1> élog(—xk)
(0 - d)log {Z <—xk>”9} +o(1)

keB

There are 2 special cases to consider:

e special case 1: Suppose z; >0V j € {1,...,d} and let x(y) = minj—y__qx;.
Here, the joint log-density is

—log f(tx) = —log [2‘1(—1)d {:E <1 - {)} { Zx] ( - —) x(d)} +

+27 e @ (14 0(1)) + o(1) = tgg(x) + ui(z) + o(1)
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as t — oo, where the gauge function is

.....

and the higher order term is

uy(z) = —log [21(—1)d+1 {ﬁ (1 - g) }] :

e special case 2: Suppose z; <0V j € {1,...,d}. Here, we have
—log f(tx) =tgg(x) + (logt)ui(x) + us(x) + o(1)

as t — 0o, where the gauge function is

d 6
gg(x) = {Z (—%')1/9}

Jj=1

the higher order terms are given by
u(x) =d—1

and

(@) = ~ o <—1>d“{ﬁ(1—§)}{n<—xj>} {Z(—W}

The case of inverted logistic dependence, defined by the joint distribution

function in Fréchet margins
Fp(z) = exp{-V(2)}

is similar, amounting to a translation & — —a. For more detail on these derivations,
the reader is referred to Supplementary Material 3.5 of [Papastathopoulos et al.
(2025)).
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4.7.4.6 Multivariate Student’s ¢, distribution, Student-t, margins, v > 0

Suppose Q positive definite and v > 0. The joint density can be expressed as

f(x) = fo(gg(x)), where the homothetic function fy and the gg function is given by

fols) = kuq(1l + v ts?) 2 0Hd),
1/2
gg(z) = (=" Qx) / ,

where k, q =T’ (%)/{F (%) v/ 2md/? \Q[71/2}. Note that in the context of Propo-

sition 6 (i27) in [Papastathopoulos et al. (2025]), we have

t -
fUz) () (4.30)
(1)
for ¥(t) = k, QV2 (v+d)y=(+d) a5 + — oo. This convergence implies that radial

exceedances of the form (R — ro (w)) /v 'rg, (w)) | {W =w, R > rg (W)} follows

a generalised Pareto distribution with & = v~ 1.

To study the rate of convergence in (4.30]), note that this convergence result

means that f(tx) can be written as

flta) = (t)gg(2) D + u()

, where the higher-order term is

J;EZC)) g(m)*(’ﬂrd)
u(a) =0

— T —(v V V+d -\
() QAT g () =D {14+ i 2gg ()2} 2 — gg(a) +d)}

g (@)~ {1 St gg(@) o(r‘*)} - gg(w)—w)}

—¢2

| —

=2

1

(v + d)vgg(z) >+ + O(t™?)

l\DIH[\DI)—‘

(v + d)vgg(z) >+ + (1)

as t — oo.

153



4.7.4.7 Multivariate Student’s ¢, distribution, » > 0, standard Laplace

margins

The multivariate t-distribution with positive definite precision matrix Q = (qij)szl
and with univariate t-distribution margins with v degrees of freedom is given has

joint density

2 %(V—i—d)
ft,(2) =kuq <1+ quj ” > qjk2j2k>

1<j<k<d

where k,q = T (#)/{F (%) v¥/2p?/2 |Q|_1/2}. Perform the change of variables

to the standard Laplace distribution, where we take advantage of a univariate
t-distribution analogue of Mill’s ratio (Soms, [1976). Let F, be the distribution
function of the univariate t-distribution with v degrees of freedom, respectively.
Suppose z = z(tz) > 0 (or x > 0), then for ¢t > 0 large, the change of variables from
the t-distribution to the standard Laplace distribution

—log2{1 - F, (2(tx))}]
g [2I‘ (u+1) ( ;")

NONZ +vlog z(tx) + O (z(tx)~?) .

Inverting this transformation, obtain

2(tz) =c ev” (1 +0 (e_TQt)> ,

with partial derivative with respect to tx given by

%z(tm) :%e?“ (1 +0 <e_72t>) :

1—v -1 /v
where ¢, = {ZF (4w (z°)r (%) (mr)*lm} . When z(tz) < 0 (or < 0), the

transformation to Laplace margins is

te =log [2F,, (2(tx))]

=log2 +log [l — F,, (—=z(tx))].
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Negating,

—tz = —log2 —log (1 — F,, (—=z(tz)))

L or (“1) v (%)
T v

Inverting this transformation,

2(tz) = — ¢y ev! (1 +0 (e%%>> ,

+ vlog(—z(tz)) + O (z(tz)?) .

with partial derivative

iz(tx) = el (1 +0 (e_th>> :

dtx v

Therefore, by change of variables, obtain the joint density in Laplace margins

fo, (z(tx1), ..., z(txq))

Cgk { Z|x]|} 45 exp{ t(l—l—g) max |$g|}(1+0(1))>

-----

z(tx;)

ast — oo. where j* is the index such that |z;«| = max;—; 4 |z;|. Taking the negative

.....

logarithm, observe that the convergence condition (4.3)) holds with ¢(t) =t¢, p =1,

and gauge function

1< d
:__E , 142 ,
x) . 1|$J|+( +y)quaXd|$]|’
J:

-----

To inspect the rate of convergence of (4.3), write —log f(tx) as
—log f(tx) =tgg(x) + u(z),
and note the higher order term is
¢y 2k Qi
as t — 0.
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4.7.4.8 Wishart distribution

For a d x d positive definite matrix X, the Wishart distribution with v degrees of

freedom and positive definite scale matrix V has density function
Fx(X) = 27002 det (V) /2Ty (1/2) 7 det(X) 204 D3 (VX)

Therefore, the convergence condition (4.3) in Proposition holds with ¥(t) = t,
p =1, and gg(X) = itr(V~'X). To inspect the rate of convergence, rewrite
—log fx (tX) as tgg(X) + (log t)u; (X) + us(X), where u; (X) = (—4(v — d — 1)) and
uy(X) = —1(v — d — 1)log det(X) + log (2792 det(V)~/?T'y(v/2)") are higher-

order terms.
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4.7.5 Directional densities

In Section [£.2.2] we give the exact form of the directional density fw corresponding
to the d-dimensional homothetic Gaussian, Laplace, Student’s ¢ distributions in their
canonical margins, all of which are homothetic. In this appendix, we give the full
derivations. In this appendix, we further derive the density fw corresponding to
the max-stable, inverted max-stable, and Wishart distributions in their canonical

margins.

4.7.5.1 Multivariate Gaussian distribution, standard normal margins

The joint density can be written in the form f(x) = fo(gg(x)), where f(s) =
(2m)~%/2|Q|"* exp {—s?/2}. By (£.20),

[e o]

fw (w) =gg(a) ™ / 57 fo(s)ds = (2m) "2 |Q["? (w " Qu) " / s 19 0
0 0

—d/2

:F(d/2)2%—1<27r)—d/2 |Q|1/2 (wTQw) _ F(d/2)2_17r_d/2 ‘Q|1/2 (wTQw)—d/Z

/2

3m/2

Figure 4.12: Directional density for the bivariate Gaussian distribution, standard
Gaussian margins, with Q' = Q5 = 1, Q15 = Q3 = 0.8, plotted over an empirical

sample
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4.7.5.2 Multivariate Laplace distribution, standard Laplace margins

We have fir)(x) = fo(gg(x)), where fo(s) = |Q|/?(2m) 425" K, (s). By (4.26)), the

density of angles is

fow(w) = / r1 fo(rgg(w))dr = gg(w) / S fo()ds

— QM2 (27)2 (w ™ Qu) 2 / S (5)ds

0

:F<d/2)2g71(27r>7d/2 ’Q|1/2 (’wTwa) —d/2

=T(d/2)2 72 |Q]? (w Qu) ™

where the expression for the integral can be found in equation 16. of Section 6.561

of |(Gradshteyn and Ryzhik| (2014) and equation 10.43.19 of (Olver et al.| (2019).

/2

3m/2

Figure 4.13: Directional density for the bivariate Laplace distribution, standard
Laplace margins, with Q;;' = Qy =1, Q5 = Q' = 0.5, plotted over an empirical

sample
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4.7.5.3 Multivariate Student ¢, distribution, Student ¢, margins, v > 0

We have f(2) = folgg(x)), where fo(s) = kyq(1+v's?)2¢*. By ([€26), the

density of angles is

fow (w) = / r fo(rgg (w))dr = gg(aw) / 1 fo(s)ds

_ _1(
4/2 gd 1 (1 + 1/7132) 2(+d) ds

\8

=k, q ('wTQw)

| o

- ( ; d) r(2) v 1Q) (w Qu)

(1) Q)

/2

3m/2

Figure 4.14: Directional density for the bivariate Student ¢, distribution, ¢, margins,

with v =5 and Q' = Q5 = 1, Q5 = Q5! = 0.6, plotted over an empirical sample
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4.7.5.4 Multivariate max-stable distribution, standard Fréchet margins

For a general —1-homogeneous exponent function,

o

fw(w) :/rd_lf(rw)dr

0

:/le [Z(—l)ﬂHVs(rw)

0 mwell sem

e VW) gy

- 9 o

:Z(—l)lﬂ HVs(w) /rd—zseW(HISI)—le—r—lV(w)dr

mell Lsem 49

=> ()" [ Vslw)| T {2(1 + |s]) — d} V (w)Xsen (15l —d

mell LsEm sem

Suppose we fix d = 2, and we assume we have logistic dependence and Fréchet
margins, then the exponent function is given by V(x,y) = (279 +y~/9)? and the
true directional density fw can be plotted against an empirical sample of angles

(see Figure [4.15)).

3n/2

Figure 4.15: Directional density for the bivariate max-stable logistic distribution,
standard Fréchet margins, with dependence parameter 6 = 0.3, plotted over an

empirical sample
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4.7.5.5 Multivariate inverted max-stable distributions, standard expo-

nential margins

Recall, from [subsubsection 4.7.4.4] that the first order gauge function for inverted

max-stable distributions in exponential margins is given by the 1-homogeneous
stable tail dependence function, gg(x) = ¢(x). With this in mind, the density
of angles in this setting is given by

[e.9]

fuw) = [ 1 f(rw)ar

0

:7rd1 [Z(-DIW [Tt rw)| e ldr

— 21:1(_1)%4 H gs(w)_ 7rd+zseﬂ<1—|s|>—1€—re<w>dr

=> (-1 —H ﬁs(w)_ r {d +) (- ISD} ((w) " 2eer 71D

- [ [ e {520 1 st g

thus following the expression given in equation from Section [£.2.2] Suppose
we fix d = 2, and we assume we have logistic dependence and standard exponential
margins, then the exponent function is given by £(z,y) = (/¢ + y*/?)?, and the
true directional density fy can be plotted against an empirical sample of angles

(see Figure [4.16]).
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3m/2

Figure 4.16: Directional density for the bivariate inverted max-stable logistic
distribution, standard exponential margins, with dependence parameter § = 0.7,

plotted over an empirical sample

4.7.5.6 Wishart distribution

The density of angles is computed using

o0

For (W) = / P41 o (W

0

=2~ D/2 Qet(V) /2Ty (v/2) " det(W)z—4-1D

x T (g (I4+v— d)) (%tr (V‘1W))

where in this setting, radii and angles are defined using a matrix norm; R = || X]||,

W = X/[IX]}

d(1+v—ad)
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4.7.6 Posterior model fits on river data

On the bivariate Thames tributary data, we fit models using the three architectures
M;, My, and M3 using data exceeding a high posterior quantile estimate and on
all available data. Figures and show posterior mean limit set boundary
and posterior directional densities for each of the six fitted models. In these figures,
we see that the fitted model associated with the My architecture and fitted on
exceedance data only is best. This model’s posterior limit set agrees most with log n-
scaled data, while the posterior mean directional density is in good agreement with
an empirical sample of angles. The posterior QQ plots in Figure 4.19 corresponding
to this optimal model shows good agreement with the radial exceedance model and
the underlying exponential distribution, while the PP plots in show general

agreement, between the posterior and the underlying directional models.

163



3n/2 /-/Sn/ 2

3n/2

Figure 4.17: Posterior estimates of the unit level set gg(x) = 1 for the river flow
dataset. The black line corresponds to the posterior mean, with the 0.95 prediction
interval shaded in grey. Black points are the original data in Laplace margins scaled
by log(n/2). Dashed border line is the unit box. . Top row: model M;. Middle row:
model Ms. Bottom row: model Ms. Left: fitting using only exceedances. Right:
fitting using all observations. M;, My, and M3 define the angle density kernel, as
described in section [4.3.3]

164



Figure 4.18: Posterior estimates of the mean angle density for the river flow dataset
with 0.95 prediction intervals. The empirical density of angles is given by the
underlying histogram. Top row: model M;. Middle row: model M,. Bottom row:
model M3. Left: fitting using only exceedances. Right: fitting using all observations.

My, My, and M3 define the angle density kernel, as described in section 4.3.3
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Figure 4.19: QQ plots for the Thames tributary river flow dataset exceedance model

for 9 sampled posterior thresholds 7o, (w), with 95% confidence intervals.

model

empirical

Figure 4.20: PP plots for the Thames tributary river flow dataset directional model,

with 95% confidence intervals.
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4.7.7 Posterior model fits on Newlyn wave height data

On the three-dimensional Newlyn wave data, we fit models using the three
architectures My, M, and M3 using data exceeding a high posterior quantile estimate
and on all available data. Figure show posterior mean limit set boundaries
for each of the six fitted models. In these figures, we see that the fitted model
associated with the My architecture and fitted on exceedance data only agrees
most with log n-scaled data, though all models fit well. The posterior QQ plots
in Figure corresponding to this optimal model shows good agreement with
the radial exceedance model and the underlying exponential distribution, while the
PP plots in show good agreement between the posterior and the underlying
directional models. In Section of the main body of this manuscript we see that
this model is also very accurate in estimating other diagnostics. One diagnostic not
mentioned in Section [4.5of the main body is plots of x,(A), defined in equation (4.1))
in Section [4.1)of the main body. Figure[f.10]shows posterior mean estimates of y,(A)
for A € {HP,HS,PS,HPS} and for ¢ € (0.9,1) with posterior 95% confidence
intervals. Wadsworth and Campbell| (2024) establish that the variable groups H P,
PS, and HPS are asymptotically independent, and that HS is asymptotically
dependent. With this in mind, we conclude that our posterior joint model is able
to accurately describe the extremal dependence structure presented in this dataset.
Figure correctly shows posterior estimates of x,(A) tending to 0 as ¢ tends to
1 for the asymptotically independent groups, and tending to a nonzero value close

to the empirical estimate for the asymptotically dependent pair HS.
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Figure 4.21: Posterior mean estimates of the unit level set 9G for the wave dataset.
Black points are the original data in Laplace margins scaled by log(n/2). Top row:
model M;. Middle row: model M,. Bottom row: model M3. Left: fitting using only
exceedances. Right: fitting using all observations. My, My, and M3 define the angle
density kernel, as described in section [£.3.3]
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Figure 4.22: QQ plots for the Newlyn wave dataset exceedance model for 9 sampled

posterior thresholds 7o, (w), with 95% confidence intervals.

10
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Figure 4.23: PP plots for the Newlyn wave dataset directional model, with 95%

confidence intervals.
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Chapter 5

Piecewise-linear modelling of

multivariate geometric extremes

Abstract

A recent development in extreme value modelling uses the geometry of the dataset
to perform inference on the multivariate tail. A key quantity in this inference is the
gauge function, whose values define this geometry. Methodology proposed to date for
capturing the gauge function either lacks flexibility due to parametric specifications,
or relies on complex neural network specifications in dimensions greater than three.
We propose a semiparametric gauge function that is piecewise-linear, making it
simple to interpret and provides a good approximation for the true underlying gauge
function. This linearity also makes optimization tasks computationally inexpensive.
The piecewise-linear gauge function can be used to define both a radial and an
angular model, allowing for the joint fitting of extremal pseudo-polar coordinates, a
key aspect of this geometric framework. We further expand the toolkit for geometric
extremal modelling through the estimation of high radial quantiles at given angular
values via kernel density estimation. We apply the new methodology to air pollution

data, which exhibits a complex extremal dependence structure.
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5.1 Introduction

5.1.1 Multivariate geometric extremes

In multivariate extreme value analysis, interest lies in characterizing the extremal
dependence structure of random vectors. Let X = (Xq,... ,Xd)T be a d-dimensional
random vector with components X representing measurements of a simultaneous
process. For example, X may comprise measurements of d different air pollutants
at a single site, contemporaneous river flows at d locations, or values of d different
stock returns. Such multivariate vectors can exhibit complex dependence structures,
with some variables experiencing simultaneous extremes while others are smaller.
Recently, the framework of geometric extremes has emerged as a tool for modelling
extremes of potentially complex dependence structures (Wadsworth and Campbell,
2024; |Papastathopoulos et al., [2025). When X has common light-tailed margins
(i.e., satisfy a von Mises condition), often achieved via a transformation, a useful
geometric interpretation of multivariate extremes arises.

For a wide variety of distributions, the scaled sample cloud of independent copies
of light-tailed random vectors, {X1/r,,..., X, /rn}, converges onto a limit set G
(Davis et al., (1988 |Kinoshita and Resnick} [1991; Balkema and Nolde, 2010). The
limit set can be characterized by the gauge function, g, where ¢ : R — R is 1-
homogeneous, through the relation G = {w eR?: g(x) < 1}. The scaling sequence
r, depends on the margins. In standard exponential or Laplace margins, for example,
a suitable scaling factor is r,, = log n, in which case the coordinatewise supremum of
G is given by (1, ..., 1)T. The coordinatewise infimum is (0, ..., O)T for exponential
margins or (—1,...,—1)" for Laplace margins. This means that g(z) > ||z,
where ||| is the max-norm. When X has exponential or Laplace margins, density

fx(x), and g is continuous, the gauge function can be obtained via

g(x) = tlim —log fx(tx)/t, (5.1)

—00
(Balkema and Nolde, |2010; Nolde and Wadsworth|, 2022)). The boundary dG of the
limit set is given by the unit level set of the gauge function g(x) = 1. Nolde

171



(2014) and [Nolde and Wadsworth| (2022) show how ¢ can be used to describe
the extremal dependence structure of known distributions, while |Wadsworth and
Campbell (2024)) introduced methodology to perform inference with g. In contrast
to alternative statistical methods for multivariate extremes, inference based on
this new geometric framework can capture highly complex extremal dependence
structures and permits extrapolation in regions where only some variables are large
simultaneously. Therefore, estimating g, or equivalently G, is crucial to multivariate

extremal inference.

The limit set, and therefore the gauge function, provide us with a useful
description of the extremal dependence structure of the random vector X by telling
us which groups of variables exhibit simultaneous extremes while the remaining
variables are of smaller order. Let D = {1,...,d} and C C D. We say that the
variables in group C' can be simultaneously extreme while the others are smaller if
there exists z¢ such that g(2¢) = 1, where zJC =1forall j € C and Z]C = ~; for
all j € D\ C, for some ~; € [0,1) in exponential margins or 7; € [—1,1) in Laplace
margins. Note these are points of intersection of the limit set boundary with the
boundary box [0,1]¢ or [—1,1]¢. The collection of sets C C D with g(z) = 1 is
denoted by C. Each variable must be represented at least once in C, since the
coordinatewise supremum is (1,...,1)". Figure displays bivariate examples
with ¢ = {{1},{2}} and C = {{1,2}}. Examples for d = 3 are also displayed
with C = {{1,2},{1,3},{2,3}} and C = {{1,2,3}}. Note that our definition of
simultaneous extremes based on ¢ is slightly different to definitions that arise in the
framework of multivariate regular variation (e.g., Goix et al.| (2017)), although the
two will often overlap theoretically and are essentially indistinguishable at a practical
level. We therefore prefer this simple definition when working in the geometric

framework.

To perform statistical inference using the gauge function, it is useful to consider
the radial-angular decomposition X —— (R, W) = (|| X, X/||X]]) € Ry x Sy_1,

where ||-|| is a norm and S;_1 = {@ € R?: ||z|| =1}. We emphasize here that
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Figure 5.1: Ilustration of limit set boundaries and their interpretation in terms
of simultaneous extremes. Left: Example where extreme events occur separately.
Center-left: Example where extreme events occur together. Center-right: Example
where only pairs of variables grow large together. Right: Example where all three

variables grow large simultaneously.

this decomposition is made in light-tailed margins, and therefore is fundamentally
different to radial-angular decompositions in heavy-tailed margins, which are a

mainstay of “classical” multivariate extremes, in which multivariate regular variation

plays a key role (see, for example, Beirlant et al. (2006), Chapter 8). When

appropriate, the the Ly norm is preferred for its simplicity, defined by |||, =

Z?:1 |z;|. In the radial-angular framework, we are interested in X = RW when

the conditional variable R | W achieves large values. [Wadsworth and Campbell

(2024) explain that, when working with exponential-tailed variables and the L,

norm, the limiting behaviour in equation leads to the asymptotic distribution of
R | {W = w} with density frw(r | w) o< r% texp{—rg(w)[1+ o(1)]} as r — oo,
where g(w) is the gauge function corresponding to the joint distribution of (R, W)
evaluated at w € S;_1. However, they showed that in a wide variety of examples,

the same asymptotic form also holds with the [1+0(1)] outside of the exponent, i.e.,
frw(r | w) o< rPexp {—rg(w)} [1 + o(1)] asr — oc. (5.2)

This suggests that a gamma model is asymptotically appropriate for large values
of R | W. This limiting density is shown to hold very broadly, although for the

multivariate Gaussian dependence structure, the shape parameter of the gamma

distribution also depends on w. Nonetheless, Wadsworth and Campbell| (2024))
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demonstrate that it is typically not problematic to assume that this parameter is
constant. Given 7 € (0,1) close to 1 and setting r,(w) as the 7" quantile value of
R | {W = w}, Wadsworth and Campbell (2024) model R | {W = w, R > r,(w)}
with a truncated gamma distribution with rate parameter g(w), using parametric
forms of the gauge function g derived from known copulas to perform statistical
inference with high accuracy, showing how to use this fitted model for inference on

extremal probabilities through simulation of X | {R > r.(W)}.

5.1.2 Semiparametric estimation of the gauge function

For dimensions d > 3 in particular, the current suite of parametric models
employed in Wadsworth and Campbell (2024) may not be sufficiently flexible for
real datasets, where the dependence structure can be complicated. Therefore, the
natural consideration is to develop semiparametric approaches for approximating
g. Simpson and Tawn| (2024a)), Majumder et al. (2025)), and [Papastathopoulos
et al.| (2025) all aim to do this, the latter two in a Bayesian manner. The
methods in Simpson and Tawn| (2024a) and Majumder et al. (2025)) approximate
g in the bivariate case, and use these estimates to describe the underlying tail
dependence structure. The theoretical guarantees in [Papastathopoulos et al.
(2025)) are generalized for d-dimensions, and Bayesian inference using the integrated
nested Laplace approximation (INLA) is suitable for problems of dimension 2 or 3.
Simpson and Tawn, (2024a) and [Papastathopoulos et al.| (2025) model exceedances
{R—r;(w)} | {W =w, R > r.(w)} using a generalized Pareto distribution in place
of the truncated gamma distribution. When far enough into the tails, both choices
should perform well, but the truncated gamma form may be more accurate at finite
levels, especially for larger d. Deep learning methods to estimate the shape of
the limit set have been explored for statistical inference using feed-forward neural
networks and generative modelling through normalizing flows in [Murphy-Barltrop
et al.| (2024b) and [De Monte et al. (2025)), respectively, indicating potential for

higher-dimensional inference.
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Figure 5.2: logn-scaled bivariate Gaussian data in standard exponential margins,
with true limit set boundary given by the solid line. The piecewise-linear limit set

boundary is given by the dashed line using 5, 7, and 9 reference angles (left to right).

In this work, we present a simple and interpretable piecewise-linear representa-
tion of g. Given a choice of reference angles in S;_1, the parameters of g define
the distance from the origin to the boundary of GG at these reference angles. The
value of ¢ is given by linear interpolation between these points. When d > 3, a
triangulation is also required to define the linear interpolation; we use a Delaunay
triangulation. The simple construction of our gauge function has numerous benefits.
The main benefit is a model for large radii and exceedance angles can be easily
obtained with quick convergence to maximum likelihood estimates for parameters.
Figure[5.2|demonstrates what our proposed limit set boundary would look like in the
bivariate setting when working in exponential margins. The piecewise-linear limit
set boundary represents a rough approximation of the truth, derived using the limit
. The approximation is closer to the truth as the number of reference angles
increases; however, this increases the number of parameters to estimate leading to a
typical bias-variance trade-off. This is addressed in our work using a regularization
approach. Piecewise-linear approaches have been used recently in different contexts
for extreme value analysis. Barlow et al.| (2023)) define non-stationary shape and scale
parameters of the generalized Pareto distributions in a piecewise-linear manner in
the presence of covariates for univariate peaks-over-threshold modelling. [Winterstein
et al.| (1993), Huseby et al.| (2013), and Mackay and de Hauteclocque| (2023) all use

linearisations of the R¢ to estimate and visualize environmental contours, which are
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multivariate sets used to approximate the occurrence of extreme events.

As inWadsworth and Campbell| (2024), we model large radii using the truncated
gamma distribution with rate parameter given by the gauge function value. This
leads to a likelihood from which the parameters of the piecewise-linear gauge can be
estimated. When simulating from the distribution of X | {R > r,(W)}, two things
are required: the distribution of W | {R > r. (W)} and the distribution of R |
{W =w, R > r.(w)}. The second of these is given by the truncated gamma model,
while for the first, [Wadsworth and Campbell (2024) used the empirical distribution
of W | {R>r.(W)}. A natural progression, particularly for higher dimensions,
is also to estimate a semiparametric form for this. We propose an angular density
inspired by the homothetic case presented in |[Balkema and Nolde (2010), with joint
density equivalent to the one used in [Papastathopoulos et al. (2025). Specifically, a
valid density for W over S; 1 is fw (w) = g(w)~?/{dvol(G)} , where g is a gauge
function for the set G. We emphasize here that this density can be expressed and
fitted independently of R | W, so that the gauge function ¢ in the angular density
need not correspond to the gauge function in equation . This is discussed in
greater detail in Section The major advantage to our piecewise-linear setting
is that the normalizing constant for this joint density has an explicit form, rendering

its estimation simple.

When standardizing the margins of a given dataset, the choice of marginal
distribution is a nuanced one. If negative dependence arises, then the limit
definition of the gauge function in equation (5.1)) may not hold on the axes
in exponential margins, and Laplace margins are preferred for revealing greater
structure. Furthermore, if the dataset has negative values in its original margins,
then it may be more intuitive to use Laplace margins, as it preserves the domain
to all orthants of R%. In many cases, real datasets are positive-valued and have
no negative associations, and so exponential margins are a suitable choice. While
the methodology presented is suitable for data with any choice of von Mises

margins, we choose to model data in standard exponential margins for simplicity.
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In Appendix [5.8.10] we explain the differences required to work in standard Laplace
margins.

The outline of the paper is as follows. In Section [5.2] we detail the piecewise-
linear construction of a gauge function, and consider the calculation of the angular
density normalizing constant, vol(G). As we only consider radial values above a
threshold, a good estimate of r,(w) is needed. The empirical version presented
in Wadsworth and Campbell (2024) and quantile regression techniques are not
currently well-suited to higher dimensions. In Section [5.3] we propose a new
approach for the estimation of r,(w) based on kernel density estimation. Section
covers how we fit our piecewise-linear models including a regularization technique
for when there are many parameters. We also consider diagnostics and probability
estimation techniques using our models. In Section [5.5] simulation studies show
that repeated fits of the piecewise-linear model are comparable to parametric models
where knowledge of the true copula is exploited. Section details an application to
extremes of four air pollutants, demonstrating that the piecewise-linear model can
be used to perform statistical inference in dimensions where other semiparametric
methods struggle.

In order to select the best hyperparameters for high quantile estimation, model
penalization, as well as assessing probability estimates, we assess our models on
datasets generated from the following multivariate distributions, all in standard

exponential margins.

(I) d = 2 logistic with dependence parameter o = 0.4. C = {{1,2}}.

(IT) d = 2 logistic with dependence parameter a = 0.8. C = {{1,2}}, but with
weaker dependence than ().

(III) d = 2 Gaussian distribution, correlation p = 0.8. C = {{1},{2}}.
(IV) d = 2 inverted logistic with dependence parameter o = 0.7. C = {{1}, {2}}.

(V) d = 3 asymmetric logistic with dependence parameters a0y = g3 =

sy =04, C = {{1,2},{2,3} . {1,3}}.

177



w2
w,
w2

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0 0.2 0.4 0.6 0.8 1.0

T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Wy wy Wy

Figure 5.3: Piecewise-linear gauge function construction illustration for d = 2. Left:
Partition of S; with reference angles w*' = 0, w*? = 0.25, w* = 0.5, w** = 0.75,
and w*® = 1. Middle: Coplanar vectors CV, C?, C® and C¥ (green arrows)
for pre-set parameter values 6; = 0.36, 0, = 1.17, 03 = 1.8, 6, = 1.17, and 05 = 0.36.
Right: Limit set at chosen parameter values. Solid line indicates the unit level set
of the piecewise-linear gauge function at the chosen parameter and reference angle

values. Dashed lines indicate the distances dictated by the parameter values.
(VI) d = 3 asymmetric logistic, with dependence parameters oy = aga =

s =04, C = {{1},{1,2} ,{2.3}}.

(VII) d = 3 equally-weighted mixture of asymmetric logistic and Gaussian. The
Gaussian correlations are p1z = p13 = p23 = 0.6 and asymmetric logistic de-

pendence parameters a2y = o123y = 0.4. C = {{1},{2},{3},{1,2},{1,2,3}}.

A more detailed catalogue of these distributions is presented in Appendix [5.8.2]

5.2 A piecewise-linear model

5.2.1 The piecewise-linear gauge function

Construction of the piecewise-linear gauge function, denoted gpy:, relies on segment-
ing the simplex S;_1 using N nodes called reference angles. A parameter value is
assigned at each reference angle, defining the distance from the origin to the limit

set boundary at that angle: for each reference angle w* € S; 1, the parameter
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corresponds to the value 1/gpw.(w*). Because the true gauge function ¢ satisfies
g(x) > |[|x||,, a parameter at location w* has an upper bound of 1/|w*||_.
Depending on the dimension, straight lines, planes, or hyperplanes are used to

connect these limit set boundary values.

To provide intuition into the general approach, we begin by illustrating for

d = 2. Taking the L; norm in our radial-angular decomposition, reference
angles can be defined by scalar values in [0,1]. Let {w*',w* ... ,w*N} be
an increasing sequence of reference angles such that w*! = 0 and w*¥ =

1. This partition of the interval [0,1] has N — 1 segments with vertices
{w w?} {w? ws}, . {wN L w N} Further let 6 = (64, . .. ,0x)" be N pos-
itive parameter values with 0, = 1/gpw.(w*®, 1 — w**). To define gpy., we consider
coplanar vectors, C™ = (f,w*™* — O w1, 0, (1 — w**) — G (1 — w*k“))T, k=
1,...,N — 1, an example of which is displayed in Figure [5.3. The equation
of the line interpolating from 6 (w**,1 — w*"“)T t0 Opyr (w1 — w*k“)T is

(Cék)x — C’fk)y>/<02(k)0kw*k — ka)ﬁk(l - w*k)>; therefore, gpw.(z,y; @) is given by

N-1

T [65(1 — w™*) — O (1 — w* )] 2 — [Gw™ — Op w1y
24y ) [0l — w*) = Opr (1 — w* )] Gpw* — [pw™ — Opprw™+1] (1 — w)
(5.3)

]. (w*k ’w*k+l) (
k=1

for (xz,y) € R%, where 14(z) is an indicator function with value 1 if z € A and
0 otherwise. Figure displays an example in which a piecewise-linear gauge
function is used to approximate the gauge function corresponding to the bivariate
Gaussian distribution, gx(z,y;p) = (1 —p?)~"' (z+y—2p(zy)"/?). The N =5
reference angles correspond to an equally-spaced mesh, and parameters are set to
0r = 1/gn(w**, 1 — w*™; p). The resulting limit set in Figure [5.3| does not satisfy the
coordinatewise supremum property because of the absence of a reference angle w*
such that gn(w*, 1—w*; p) = H (w*, 1 — w*)THOO. When performing inference, we will
develop an algorithm to ensure that limit set estimates can have the coordinatewise
supremum (1,...,1)7.

In dimensions d > 3, denote the set of N > d reference angles {w*l, o wN },
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each lying in the simplex S; ;. We partition §;_; using a Delaunay triangulation
(Delaunay, 1934) with a point set based on the N reference angles. Given a set
of N (d — 1)-dimensional reference angles, the Delaunay triangulation creates a
partition of Sy 1 comprised of M regions with vertices given by these reference
angles. These regions are constructed in such a way that their surface area (or
volume) is maximized, leading to no insignificant segments. While there is no
direct one-to-one correspondence between the number of reference angles N and
the number of partitions M in the resulting Delaunay triangulation, it is known
that M is between O(N) and O(N!@=1/21) in general d-dimensions. When d = 3,
the stronger statement of N —2 < M < 2N —5 holds (Ber et al., 2008)). Each region
of the Delaunay triangulation, A® c S;_1, k € {1,..., M}, is defined by d vertices
w1 w4 Given the parameter values @ = (6, ..., 01\;)T € Rf, we define
%) = (9@, e ,Hék))T as the parameters from 6 associated with the d vertices of

AW Define the (d — 1) x d coplanar matriz C® for triangulation k € {1,..., M}

where the i'" row is given by the vector

c — 9§k) (,w*(k),l)T _ 91@1 (,w*(k),i-i-l)T eR?: i=1,....d—1.

For an arbitrary angle w € AW g, (w;0) = n("“)Tw/n(’“)Tegk)w*(k)vl, where the
normal vector n(*) € R? to the plane defined by vertices 9§k)w*(k)’1, .. ,ng)w*(k)’d

is
d
n®) = Z:(—l)jJrl det (C(k_)]) e;. (5.4)
j=1
In equation (5.4)), C; is the matrix C™® with the j* column removed, and e; the
5" standard unit vector, a vector of length d of zeros except for a 1 in the j** entry.
Performing the summation over all regions in the Delaunay triangulation gives the
proposed piecewise-linear gauge function
n® Ty

n(k)ngk) w*k),1

M
g (€:0) =) Law (@/]])) z € RY, (5:5)
k=1

which is 1-homogeneous and continuous in . Note that the formulation of the d = 2

case in equation ([5.3)) is covered by equation ([5.5)), but was described separately to
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Figure 5.4: Piecewise-linear gauge function construction illustration for d = 3.
Left to right: Delaunay triangulation based on N = 4 chosen reference angles;

the resulting coplanar vectors; limit set boundary.

give an intuition in the bivariate setting.

As an illustration, suppose d = 3 and N = 4, with w*!, w*?, w*® chosen to lie
on each of the vertices, and w** in the center of the S, simplex. As displayed in
Figure , the resulting Delaunay triangulation gives M = 3 regions: AW has
vertices {w*!, w*3, w*'}, AP has vertices {w*?, w*, w*!}, and A® has vertices
{w*!, w*? w*'}. Each region has two coplanar vectors that make up the following

coplanar matrices of dimension 2 x 3,

91 (w*l)T _ 93 (,w*3>T

0, (’w*l)T —0, (,w*4)T

0, (’w*Q)T — 0 (,w*S)T

0, (,w*2)T —0, (w*zl)T

cl — ’ c® —

0, (,w*1>—|— — 0, (,w*Q)T
91 (w*l)—r o 94 (w*4)T

the rows of which are represented by the arrows in Figure For 6 =

c® —

(0.5,0.’5),0.5,3)T7 the unit level set of gpy; is evaluated and is also displayed in
Figure |5.4}

5.2.2 Angular model

Given that the geometric approach uses a pseudo-radial-angular decomposition, it

is desirable to model the distribution of angles W | {R > r.(W)} with a flexible
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semiparametric model. This should reduce issues with the curse of dimensionality
that can arise when using the empirical distribution of W | {R > r.(W)} in higher
dimensions, and even in lower dimensions may be helpful for ensuring the ability to
estimate non-zero extremal probabilities. The form of fy, given in Section arises
as the exact angular density for a certain type of homothetic density (Balkema
and Nolde, 2010). Specifically, given a gauge function g, a valid joint density is
fx(x) = exp{—g(x)}/{dlvol(G)}, as considered in some examples of Nolde and
Wadsworth| (2022). The margins X are near-exponential sub-asymptotically, and
are exactly exponential asymptotically. For R = || X || and W = X /|| X||, we have
frw(r | w) = r*exp{—rg(w)}/{dvol(G)} and fw(x) = g(x)~¢/{dvol(G)}.
This suggests that if the extremes of X are well-approximated by the density fx
then the angles W might be well-approximated by the density fyw , where the gauge
function is the same as the one in the gamma distribution of R | W. However, when
this approximation is poor, this still presents a way to construct a flexible model for
fw via a gauge function g that can be parametrized independently of that used in
the truncated gamma distribution. [Papastathopoulos et al.| (2025 and De Monte
et al.| (2025) both use this form of fy for probability estimation, the former in the
Bayesian context where the gauge function is modelled by Matérn Gaussian random

fields and the latter in the normalizing flows framework.

When fitting the model fy via maximum likelihood estimation, the computation
of vol(G) needs to be done at every likelihood evaluation, which can be
computationally expensive if the form of this volume is not explicit. Numerical
integration methods may be possible, but drastically slow down maximum likelihood
estimation. [Papastathopoulos et al. (2025)) estimate the volume during model fitting
via a latent variable in the likelihood, and a numerical integration procedure is
performed during posterior prediction. Due to the piecewise-linear nature of gy,
the corresponding vol(Gpyy,) is easily obtained, as the unit level set defines the union
of M d-dimensional faces. In particular, computing vol(Gpy,,) is reduced to solving

M determinants of d x d matrices, whose columns correspond to the vertices of the
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Figure 5.5: Left: Histogram of exceedance angles from bivariate Gaussian data, with
fitted fw (w) for N = 5,8, 11 reference angles. Center: Histogram of exceedance
angles from a d = 3 mixture model. Right: A fit of fu (w) on this data with

reference angles overlaid.

M piecewise-linear regions that make up the set Gpy.

Proposition 5.1. For the piecewise-linear gauge function gew. in equation (5.5)),

the volume of the corresponding set Gowy, 1S given by
M
vol(Grws) = a Z ’det (Hgk)w*(k)’l o w02 Gc(lk)w*(k)’dﬂ
T k=1

The proof of Proposition [5.1]is given in Appendix [5.8.1]

We illustrate this construction with two examples. First, consider data from
distribution , Gaussian dependence with exponential margins. Taking W =
X /|| X, we model fy(w) = gpyr(w) ¢/{dvol(Gpy)} without any knowledge of
the underlying joint distribution. After doing so, Figure [5.5] shows a good fit of
the estimated density using regularly-spaced reference angles over the empirical
distribution of exceedance angles, with the fit improving as N increases. Secondly,
consider distribution (VII), which has a difficult angular structure to capture.
Nonetheless, using the piecewise-linear method with N = 7 reference angles, a fitted
model for fy aligns reasonably well with the empirical distribution, both shown in
Figure [5.5] Further diagnostics on samples obtained from the fitted density fuw
using MCMC for these datasets are presented in Appendix We note that

in all density fits we implement regularization techniques to ensure smoothness
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of parameter estimates across neighbouring regions. This is covered in detail in

Section (£.4.2]

5.3 High quantile estimation

The truncated gamma distribution for R | W holds asymptotically, and therefore
is fitted using datapoints which exceed a threshold. To define this threshold,
denote exceedance radii as observations from the distribution corresponding to
R | {W =w, R > 7(w)}. For a probability level 7 € (0,1) close to 1, a candidate
for the radial threshold is the quantile 7,(w) corresponding to the solution to
Frw (r-(w) | w) = 7. This is a natural choice, and, as [Wadsworth and Campbell
(2024) point out, leads to an independent estimate of the gauge function through
the relation g(w) =~ C,/r;(w), thus can be helpful for model checking. They
consider two approaches to estimate r,(w). For d = 2 they suggest additive
quantile regression (AQR, |Fasiolo et al. (2021)), but this could not be extended
for d > 2 using available methodology due to a lack of basis functions defined on
the simplex. A second approach using an empirical binning method was instead
implemented when d > 2. This requires splitting the simplex into overlapping
bins and computing the empirical 7 quantile of R | {W = w} in each bin to
which the angle w belongs. The radial threshold value at new angles is computed
using local means with threshold values already computed in the overlapping bins.
Such an approach is not ideal as d increases, as very little data may be observed
in certain bins. Furthermore, it provides a very rough approximation of r.(w).
Papastathopoulos et al.| (2025) model log (r-(w)) using a Matérn Gaussian random
field, with implementation currently suitable for dimension d < 3.

Given the semiparametric nature of our proposed piecewise-linear approach to
modelling R | W, a good estimate of the radial quantile across all angles in the
simplex is needed to avoid regions of S;_; about which little is known. To overcome

some of the issues that persist in current methods, we develop a new approach based
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on kernel density estimation (KDE). This method gives smooth results, akin to the
AQR approach, and is better suited for higher dimensions than purely empirical

estimation. We begin with the integral

r

frw (T, w)
F r|lw)= | —————=dr, 5.6
aw(r | w) / s (5:6)
and adopt kernel-based estimates for the densities frw and fw:

~ 1 & r—r w—w;\ 1 1
=— E k k — 5.7
frw(rw) =2 - R( hr ) W( hw ) I b (5:1)

~ 1 & w — w; 1

=— k . 5.8
o) = 3> () 5:5)

where hg,hyw > 0, are bandwidths (or smoothing parameters), and kg, kw are

kernels. Substituting (5.7) and (5.8)) into (5.6)),

$ w—w; r T—r; 1 g~ - w—w; r—r;

E’fWUW)OfkR(W)EdT > hw () K ()
S (52 o (52

i=1

Frw (r | w) =

where Kg is the distribution function associated with the kernel density kr. An
estimate of r.(w) can be obtained by solving for r in ﬁmw(r | w) = 7 using
numerical inversion methods presented in Brent| (2013)). The choice of kernel density
and bandwidths will affect the smoothness of the estimate of . (w). In practice, we
employ the univariate Gaussian kernel for kg and its multivariate counterpart for
kw, with identity correlation matrix.

As a performance diagnostic for quantile estimates, we propose a metric based
on K-fold cross-validation of the check function, commonly used as the objective
function in quantile regression (Koenker and Bassett Jr, 1978). For K € N, we split
the data 1, ..., x, into a fitting set of length ny; = n— [n/K| and a evaluation set
of length neye = [n/K|. On the k" set of fitting data, we obtain a radial threshold
k) (w; -), k=1,..., K. In KDE-based estimation, the obtained threshold values
depend on the bandwidth hw . In the empirical procedure of Wadsworth and
Campbell (2024), it depends on the amount of bin overlap. Once obtained, the
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mean of the check function is evaluated on the evaluation data, resulting in the

following score on the K cross-validation partitions,

Z [ri —r®) (w;; - )} [7’ — 1000 (ri —r®) (w,; - ))} )

The bandwidth or the amount of bin overlap are hyperparameters which control how
smooth the radial threshold is. A smoothing parameter whose score S(-) is closest

to zero is thought of as the optimal hyperparameter setting.

Appendix provides a full comparison of the Gaussian kernel to a kernel
whose support is compact and the empirical method described above. This shows
little difference in the quality of quantile estimates between the methods for d = 2, 3,
but we prefer the KDE approach for the ability to evaluate r,(w) for any w € Sy_;.
From a study on d = 2, 3 datasets in Appendix we found that optimal values
of hyw when using the Gaussian kernel were often in the neighbourhood of 0.05. We
also show that varying the radial bandwidth made little difference in the performance

of the quantile estimate, so we choose to fix hg = 0.05.

5.4 Inference

5.4.1 Model fitting

Given a dataset comprised of n d-dimensional observations, we first transform the
margins to standard exponential. This is achieved via non or semiparametric
estimation of the margins. The standardized datapoints @q,...,x, are then
transformed to radii rq,...,7, and angles wy, ..., w,, and an estimate of r,(w;)
is obtained at a high quantile 7 using the kernel density estimation approach
from Section Given that we have well-defined densities for radial and angular

components, we can choose to model W and R | {W = w} separately or jointly
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using the following likelihood functions,
LW(07 T1:n, wl:n) X H VOI(GPWL(O))ilgPWLCLUZ‘; 0>7d
i:ri>rr(w;)

H faa(ri: d, gowr (w;; 6))
1-— FGa(TT<'wi)§ d, gPWL(wi; 0))

LR|W(0;T1:n7w1:n) X

iiri>re(w;)
Lrw(0;71m, win) = Lrw(0)Lw(0),

where faa(+;d, g(w)) and Fga(+; d, g(w)) are the density and distribution functions
of the gamma distribution with shape parameter d and rate parameter gew,(w;8).
In this setting, there are two ways to fit a joint model for (R, W) | {R > r.(W)}.
One can implement a joint approach by maximizing Lrw. This results in lower
variability of parameter estimates of gpyw, via the use of more data. However,
potential bias can occur if gpyw,, is taken to be the same for the radial and the angular
models when the joint tail density of the random vector X is not well represented
by the homothetic form discussed in Section Instead a two step approach of
maximizing Lw and Lgw separately, and having models for W | {R > r. (W)}
and R | {W =w, R > r;(w)} can be implemented. One may also wish to model
R | {W = w} alone if the empirical distribution of W is suitable for all estimation

tasks. Each of these settings is considered extensively in simulation studies.
Maximizing these likelihoods leads to parameter values that do not guarantee
the marginal condition on the limit set, that max(Gpy,) = 1. Algorithm (I} in
Appendix provides an adjustment to the parameter estimation procedure to
ensure this condition holds. In it, a piecewise-linear model is first fitted via maximum
likelihood using the likelihood of interest, L,. The parameter(s) that correspond to
location where the limit set is at its largest value, but does not lie on the unit
box boundary, is then divided by the fitted gauge function value at that location.
These parameters are fixed and the likelihood of interest is then re-maximized with
respect to the remaining parameters at the starting values given by the maximum
likelihood estimates of the previous fit. This is repeated until max(Gpy,) = 1.
This bounding procedure is suitable when maximizing Lrw and Lrw, as there

is no such constraint in the angular model. Both unbounded and bounded gauges
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are fitted in simulation studies and compared for their bias in extremal probability
estimates. We additionally make note of a parameter redundancy in the angular
model fw (w) = grwi(w)~?/{dvol(Gpw)}, notably, fw(w;c@) = fw(w; @) for any
constant ¢ > 0. To remedy this when using Ly, we fix #; = 1, and maximize over
the remaining N —1 parameters. We further note our choice to fix the gamma shape
parameter at the dimension d to simplify model fitting, as the number of parameters
is large in our piecewise-linear setting. In experiments, we found that estimating
the shape parameter, as is done in |Wadsworth and Campbell (2024)), lead to little

difference in terms of bias in extremal probability estimates.

5.4.2 The reference angles and penalization
5.4.2.1 Choosing the reference angles

The choice of reference angles is important for the quality of the approximation to the
underlying gauge function. In essence, there are two ways of choosing the reference
angles for gpwi. The first is to strategically choose them where the underlying
limit set boundary has a cusp or a change in direction. This is hard to do in
practice without using knowledge of the true gauge function, but would lead to a
model with fewer parameters. We opt for a second approach, setting a relatively
fine mesh of reference angles. The result is more parameters than are perhaps
needed, requiring some form of penalization during model fitting, to be discussed in
Section [5.4.2.2l When d = 2, we take an equally spaced mesh, ensuring a reference
angle is placed at w = 1/2, which allows for capturing whether or not the variables
exhibit simultaneous extremes. In practice, we found N = 11 to be a good choice for
approximating bivariate gauge functions. For d = 3, we partition at the subset of
nodes {0,1/6,2/6, ..., 1}2 which lie in Sy, giving a triangulation of S; with N = 28
nodes, as displayed in Figure in Appendix [5.8.8] For d > 4, the grid-based
approach leads to a very large number of angles. A sparser approach is to initially
place reference angles at the edges e;, j = 1,...,d and the center (1/d, ..., 1/d)T of

S4-1, along with an angle at the center of all subfaces of S;_1, adding further angles
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if diagnostics indicate the need.

5.4.2.2 Gradient-based penalization

If we maximize the likelihoods from Section with a large number of reference
angles N, the amount of data contributing to each parameter may be small, leading
to high variability in parameter estimates. To remedy this, we propose penalizing
the gradients of gpyw,, so that they do not vary too much on either side of the reference
angle locations. Linearity makes the gradient of gpy, from equation simple to

calculate:
(k)

n
\V4 x;0) 1 x )
gewa.{ Z aw (@/ll=) =5 T (k)1

As the gradients do not change w1th1n a segment of the triangulated simplex,
we define Vg (1) — p® /n TQ(k )1 to be the gradient of gpw.(;0) on AWK
Further define Z, as the collection of pairs of indices of neighbouring segments
in the Delaunay triangulation containing the vertex w**, where ¢ € {1,...,N}.
Neighbouring segments of the Delaunay triangulation are defined as segments that
have d — 1 matching vertices. For example, in the triangulation of Sy in Figure [5.4]
we have Z; = {(1,3)}, Zo = {(2,3)}, Zs = {(1,2)}, and Z, = {(1,2),(2,3),(1,3)}
with |Z;| = |Zy| = |Z3] = 1 and |Z,| = 3. Given a likelihood L, from Section [5.4.1]

we add a penalty to give the objective function

—108 La(8; 710, Wi HNZ, 7, > Vs = Vagll3. (5.9)

(4.3)€Le

This penalty term can be interpreted as the average sum of squared differences
between neighbouring segment gradients at each node of the Delaunay triangulation.
Figure illustrates the effect of this penalty on two and three-dimensional data.

We propose to select the penalty value A via K-fold cross-validation. As
described in Section the dataset is split into a fitting and an evaluation set.
For each value of A on a grid, we fit the model by minimizing , and evaluate
the negative log-likelihood on the evaluation set, repeating this K times to yield
CV(\) =Kt Zf | —log L, (9,\ K 7“1 nmw w%ml) The parameter vector (9\)\7k is the
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Figure 5.6: Left: d = 2 fitted unit level set of gpy, using N = 11 equally-spaced
reference angles on a dataset generated from distribution . The first panel has
no penalty; the second panel uses the gradient penalty with A\ = 1 and is bounded
using Algorithm [I}in Appendix [5.8.5] Right: d = 3 fitted unit level set of gpy,, using
N = 28 reference angles on a dataset generated from distribution (V|). The first
panel has no penalty; the second panel uses the gradient penalty with A = 1 and is

bounded using Algorithm [1] in Appendix [5.8.5]

minimizer of evaluated at the k" fitting set, and the A value that minimizes
CV()) is said to be optimal. In Appendix [5.8.7, we compute the median CV())
value across repeatedly-generated datasets from distributions f with K = 4.
The optimal value of A naturally depends on the underlying distribution. Overall,
selecting A\ in the neighbourhood of 1 is generally acceptable when minimizing the
negative log-likelihoods associated with the conditional radial model or the joint
model, while a value of A = 20 is suitable when minimizing the negative log-
likelihood associated with the angular model. These penalty strength values are

used henceforth.

5.4.3 Probability estimation

We perform extrapolation using a sampling-based approach in a similar manner
to Wadsworth and Campbell (2024)). First, n* samples are drawn from W |
{R>r, (W)}, with each one used to draw a conditional sample from the
truncated gamma distribution R | {W =w,R > r,(w)}. Once sampled, the

exceedance angles wj,...,w; . are multiplied, resulting in

r. and radii ry,..., 7

n
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samples x},...,x}. from X | {R>r,(W)}. Given an extremal set B C

» Hn*

{x e R?: ||z|| > r,(x/||z|))}, probabilities can be estimated via
Pr(X € B) =Pr(X € B| R > r.(W))Pr(R > r.(W))
1 < 1
= | = 1 : - L (wi),00) (T .
[n* ; B(«’L‘z)] [n ; (rr (aw2),00) (7 )]

In our approach, we have the option of a semiparametric model for W |
{R > r, (W)} with joint density fw. To sample from fu, we use Metropolis-
Hastings MCMC with a beta or Dirichlet proposal density. The performance of
this MCMC is assessed in Appendix [5.8.6]

5.4.4 Model performance and diagnostics

Several measures of goodness-of-fit for multivariate extremes align well with our
piecewise-linear method. Wadsworth and Campbell| (2024) assess the performance
of a fitted truncated gamma model for exceedance radii R | {W =w, R > r.(w)}
through probability-probability (PP) and quantile-quantile (QQ) plots. Plots of the
fitted limit set boundary are also useful, since the shape should broadly correspond
to that of the scaled sample clouds. Simpson et al. (2020) present methodology
for estimating the collection of sets C experiencing simultaneous extremes. The
methodology depends on several tuning parameters, but provides helpful insight
into possible structures, that is independent of gauge function estimation. To that
end, plots of the limit set boundary can be compared to findings based on the
Simpson et al.| (2020)) coefficients to determine weather or not we accurately capture
the extremal dependence structure of a dataset. For d < 3, plotting the limit set
boundary is straightforward. In higher dimensions, one needs to project the gauge
functions down to d = 3 via minimization over the d — 3 components. One can plot
the unit level set of the projection

g9(xgi,. apg;0) = min g(x; 0) (5.10)

:EJERi_3
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where J C {1,...,d} is an index set of size |J| = d — 3. For example, when d = 4,
we plot four unit level sets minimizing over each of the four variables individually.
In order to perform these minimizations, we opt to evaluate g(x; @) on a mesh of
x; values in [0,1]973, and take the minimum value, which we found this to be less
computationally expensive than other optimization methods. The size of the mesh
is important: too small, and the resulting minima may be incorrect; too large, and
the computation time will be high. In practice, a mesh of length 503 was used in
d > 3. Furthermore, all fitted gauge functions are bounded using Algorithm [I] in
Appendix , so the reduced domain [0, 1]¢73 is sufficient rather than minimizing
over the entire Ri’:g space.

Another potential goodness-of-fit measure is in the use of return-level curves
(Papastathopoulos et al., 2025), sometimes also referred to as a version of
“environmental contours” (Simpson and Tawn, 2024b). Given a return period T,
the return-level curve defines a lower-bound of an open set such that we expect to
see proportion 7! points lying beyond this curve. As we only model above the
threshold 7, (w), we consider T such that 1 —T~! > 7. The return curve in the

truncated gamma setting is then defined as
R(T) = {:c € ]RCH:I: = Fg,} [1 — T d, g(w, 0)} w, w E Sd,l} )

The full derivation of this expression is given in Appendix [5.8.3] Once such a
curve is obtained, comparing the proportion of exceedances of R(T") in our data to
the expected value of 77! is one way to assess the predictive performance of the
piecewise-linear model.

A check of how well our model captures the extremal dependence structure of

the data in the joint tail can be assessed via estimates of the extremal coefficient

Xc(u)—( )Pr(FX(Xj)>u,j€C’,Cg{l,...,d}),

1—u
for sufficiently high values of u < 1, where Fx is the distribution function common
to all margins. An empirical estimate of xc(u) can be compared to a model-

based estimate, obtained via the methods in Section [5.4.3 where the extremal set
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considered is BS = {:z: € ]Rﬂxj > Fyl(u), j € C’}. The value of u used needs to
be high enough such that BS C {x € R%|||z|| > r.(z/|«|)}. The boundary of this
region in R? is ¢ = r (w)w, w = /||| € S;—1. For any coordinate z;, we want
u such that r.(w)w; > F;'(u) for all j € C, ie., minjecr; = minjeqr, (w)w; >
F5'(u). To find the maximum point on this boundary in each coordinate we consider
MaXyes, , '-(w)w;. The minimum value of v at which we can start estimating
Xc(u) is therefore given by ug = Fx (maxwesdf1 min;ec TT(w)wj) . In practice, ug
can be obtained by taking the maximum over a mesh of values w € §;_1. Lastly,
the empirical distribution of exceedance angles W | {R > r.(W)} can be compared
to the fitted distribution through density plots (d = 2), or comparing marginal
histograms of the sample with those obtained by simulation from the fitted density
(d>2).

5.5 Simulation studies

An overarching goal in multivariate extreme value inference is estimation of
Pr (X € B), where B C R? is an extremal set generally lying outside the range
of the data. The parametric geometric approach of Wadsworth and Campbell
(2024) showed greater accuracy and flexibility in estimating Pr (X € B) compared
to competing methods. Here, we will consider the case of d = 2,3 for three different
extremal sets B, By, B3 for each dimension setting. We compare probability
estimates obtained using the form of the true gauge as the rate of the truncated
gamma, with parametric estimation of its parameters, and with those obtained
using the piecewise-linear gauge. Because the parametric approach uses knowledge
of the true gauge function and the piecewise-linear approach does not, the results
here are intended to compete with those of [Wadsworth and Campbell (2024), not
to outperform them. In the simulation studies, we consider distributions —,

exhibiting a variety of extremal dependence structures.

For each distribution, we generate n = 5000 observations, and use the KDE
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Figure 5.7: d = 2 simulation study probability estimates associated with

distributions ([)—([[V]) (top to bottom) across replicated model fits. “Par” refers
to modelling with knowledge of the true parametric gauge function, “PWL” is
semiparametric modelling using the piecewise-linear approach. Solid line is the true

probability.

approach with Gaussian kernel to estimate the quantiles r,(w) for 7 = 0.95 and

bandwidths hg = 0.05, hyy = 0.05. After obtaining r, (w), we first fit parametric
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Figure 5.8: d = 3 extremal probability estimates associated with distributions

1} (top to bottom) across replicated model fits. “Par” refers to modelling
with knowledge of the true parametric gauge function, “PWL” is semiparametric

modelling using the piecewise-linear approach. Solid line is the true probability.

models via maximization of Lgw with knowledge of the true gauge function. As in
Wadsworth and Campbell (2024)), the empirical distribution of W | {R > r.(W)}
is used for probability estimation. For the piecewise-linear model, we consider six

options for model fitting:

SS1: R | {W,R>r, (W)} unbounded; empirical distribution for W |
{R>r.(W)}.

SS2: R | {W R > r, (W)} bounded; empirical distribution for W | {R > r (W)}.
SS3: R|{W,R > r. (W)} unbounded; model for W | {R > r.(W)}.
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SS4: R|{W,R > r. (W)} bounded; model for W | {R > r (W)}.
SS5: Unbounded joint model for (R, W) | {R > r,(W)}.

SS6: Bounded joint model for (R, W) | {R > r.(W)}.

Bounding is done via Algorithm |1] in Appendix , and likelihoods for R | W,
W, and (R, W) are given in Section All six settings are considered when
performing model fitting. In all cases we use penalized fitting on regular grid of
reference angles. For each fitted model, n* = 50,000 exceedance observations are
generated and probabilities Pr(X € B;), ¢ = 1,2, 3, are estimated and compared
with the true probabilities. This procedure is repeated 200 times.

We first consider the bivariate distributions ([)-(IV), with B; = [10, 12] x [10, 12],
By = [10,12] x [6, 8], and Bs = [10,12] x [2,4]. In comparing probability estimates to
the true values, SS1-SS4 perform similarly, with a slight preference for SS2 and SS4.
The similarity of these shows that the angular fit from maximizing Ly, performs as
well as its empirical counterpart. SS5 and SS6 tend to show more bias as the W
distribution impacts the estimation of gpy;. The probability estimates from SS4
are displayed in the boxplots in Figure demonstrating that our semiparametric
approach is comparable to the parametric method despite using no knowledge of the
underlying distribution. A full summary of all possible d = 2 model fits is presented

in Appendix

A similar conclusion can me made from the trivariate data generated from
distributions (V)—(VII). Here, the extremal regions are defined as By = [8,10] x
[8,10] x [0.01,3], By = [8,10] x [5,7] x [0.01, 3], and By = [8,10] x [2,4] x [0.01, 3].
In comparing probability estimates to the true values, it was found that while SS4
performed slightly worse overall to the other simulation study setups, this approach
is still largely comparable to the parametric method, but without knowledge of the
underlying distribution (see Figure . A full summary of all possible d = 3 model
fits is presented in Appendix [5.8.8.2

Figure displays fitted unit level sets of the piecewise-linear gauge function
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Figure 5.9: Top row: 200 estimates of the gauge function unit level sets (in grey) on
data generated from distributions — (left to right), with the gauge function at
median parameter values in blue, and the true unit level set given by the dashed line.
Bottom row: Gauge function unit level sets evaluated at median parameter values

(in blue) with the true unit level set (in red) on data generated from distributions

(V)—(VII) (left to right).

obtained using the bounding algorithm when performing inference on the
distribution of R | {W,R > r.(W)} (setting SS2 and SS4). From this, we see
that parameter values across 200 fits produce limit sets that are flexible enough to
capture a wide range of tail behaviours. We remark the slight difficulty in capturing
asymptotic dependence in distribution (II), or in capturing one of the mixing
components of distribution . However, this is not a concern as probability
estimates for these distributions have little overall bias. The limit set estimates for

the remaining simulation study setups are displayed in Appendix [5.8.8]
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Figure 5.10: Projections of the estimated unit level set of gpw, on 4-dimensional
air pollution data with log(n)-scaled data. Gauge functions are projected to 3-

dimensions using equation (5.10) with J = {1},{2},{3}, {4} (left to right).
5.6 Application to air pollution measurements

We consider air pollution measurements from the Automatic Urban and Rural
Network (AURN), a UK-based air quality monitoring network. For the North
Kensington site in London, we gather hourly measurements from April 1996 to June
2024 for carbon monoxide (CO, mg/m?), nitrogen dioxide (NOg, pug/m?), particles
with a diameter of 10 um or less (PM10, mg/m?), and nitric oxide (NO, ug/m?).
These are labelled 1, 2, 3, and 4 for brevity. We take the daily maxima over the
247,296 hourly measurements to avoid daily trends, and only consider measurements
from October to April, inclusive, to reduce seasonal trends. Any measurements with
missing data are excluded. The final dataset has n = 5, 584 observations. There is no
negative association between these measurements, so the margins are standardized
to exponential using the empirical distribution function below the 0.95 quantile
marginal threshold and a generalized Pareto distribution function fitted above this

threshold, as outlined in |Coles and Tawn| (1991)).

The radial quantile r (w), w € Ss, is estimated at 7 = 0.70, to increase the
amount of exceedance data, while still focusing primarily on high values. We note
that lower thresholds have been used in |Simpson and Tawn (2024b) and Murphy-
Barltrop et al.| (2024b|) without inducing large biases. The angular bandwidth
was set to hy = 0.075. This is slightly higher than the bandwidth used in
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simulation studies, but we felt that this helped eliminate excessive noise in the
threshold estimate. A triangulation was obtained by first considering the vertices
e1, e, es, e, € R, the center of the Sy simplex, (1/4,1/4,1/4,1/4)", and the center
of the subfaces Sy, S;. Once obtained, additional reference angles were placed in
the center of each triangle from the resulting initial Delaunay triangulation. The
final result is N = 39 reference angles. We fit the conditional radial component
R | {W =w,R > r,(w)} by minimizing the associated penalized negative log-
likelihood with penalty strength A = 1 and bounding using Algorithm [I] in
Appendix [p.8.5] The corresponding angular model W | {R > r.(W)} was fit
separately, with A = 20.

Using the coefficients of extremal dependence from [Simpson et al. (2020), we
conclude that all four variables can grow large simultaneously, while PM10 can
grow large when the remaining pollutants are jointly small. The projected three-
dimensional unit level sets displayed in Figure [5.10| appear able to capture the
joint tail dependence, with perhaps slight difficulty capturing the behaviour of
PM10 when the remaining variables are jointly small (i.e., we do not have exactly
grwi(71, 72, 1,73) = 1 for 71, 72,73 < 1). However, the estimate is not far off, and we
are able to capture this behaviour in a d = 3 fit, as is shown in Appendix [5.8.9.2
Also by our findings with the Simpson et al. (2020]) coefficients, values of x¢(u) are
expected to be positive for all values of u € [0,1] for any collection of variables
C C {1,2,3,4}. This is demonstrated by our estimated values, displayed in
Figure[p.I1]and in Figure[5.39/in Appendix[5.8.9.1] showing a general agreement with
the corresponding empirical values. Note that probability estimates were obtained
from extremal samples using our fitted angular model; therefore, good probability
estimates indicate a well-fitted angular model. Figure [5.40] in Appendix [5.8.9.1
shows good agreement between estimated and true return levels 7' € [10, 1000],
while the PP and QQ plots in Figure [5.41] generally show good agreement between
the fitted model and the truncated gamma distribution. In Appendix we

present a three-dimensional fit to a subset of the pollutants for comparison, showing

199



04 06 08 10
04 06 08 1.0

X1234(U)

0.0 0.2
0.0 0.2

X12(u)
00 02 04 06 08 1.0
= L I
d
X123(u)

Figure 5.11: Model-based and empirical xo(u) plots with C' = {1,2}, {1,2,3}, and
{1,2,3,4} for the pollution dataset. Solid lines are empirical values, and dashed
lines are estimated using the piecewise-linear model. Shaded regions represent 7-

day 95% block bootstrap confidence intervals.

agreement with the four-dimensional findings in detecting extremal tail behaviour.

5.7 Concluding remarks

In this work, we aimed to bypass the current difficulties in semiparametric modelling
of multivariate extreme values through the geometric approach by proposing a simple
piecewise-linear construction. Furthermore, the piecewise-linear construction allows
for easy computation of the volume of its limit set, which in turn allows for efficient
fitting of an angular model. Its calculation relies on standard operations of linear
algebra, rendering it quick to evaluate and perform estimation on, including the
use of gradient-based penalties. Simulation studies show that our semiparametric
method is comparable to parametric methods using the true model forms, but
without knowledge of the underlying distribution of the dataset. A difficulty in
our proposed method is selecting the reference angles at which parameters are to be
estimated. To avoid choosing these angles, we selected a regular grid on the simplex
Sq_1 for d = 2,3, while opting for a sparser approach with d > 4. In unreported
results, we were able to fit our model in dimension d = 5, but faced difficulties

with choice of reference angles. Future avenues of work include the development of
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a method for selecting only important reference angles with a view to performing
modelling in higher dimensions, or a way of eliminating unimportant parameters
through a different type of penalization, leading to models with fewer parameters

but potentially higher predictive performance.

Acknowledgments, data availability, and code.

AURN data was imported using the importAURN function within the openair
package in R, but is publicly available at https://uk-air.defra.gov.uk/
networks/network-info?view=aurn. Code associated with this article can be

found at https://github.com/ryancampbell514/PWLExtremes.

5.8 Appendix

5.8.1 Volume of Gpwr,

Proof of Proposition[5.1. The limit set Gpy,, with a piecewise-linear boundary is
a union of subregions defined by parameters and reference angles. Therefore, its

volume can be decomposed in the following manner:
M
vol(Gowr) = vol (W AW) |
k=1

where 8% A®)  R? is the region with vertices at ng)w*(k)’l, e ,Qék)w*(k)d, and the

origin if working in the positive orthant. Any point & € 8 A®) can be written as

d d
T = Zﬁj(-k)aj'w*(k)’j ;a; >0V, Zaj =1
j=1 j=1
where
gj(_k)w*(k),j — <9§k)w*(1c),l egk),w*(k)g Qék)w*(k),d> e;.
Let M*¥) = (0§k)w*(k)’1 Hék)w*(k)’2 . Qc(lk)w*(’“)vd> be the change of basis matrix,
then we can write
d d
T = M(k)Zajej ;a; >0Vy, Zaj =1.
j=1 Jj=1
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Note that Z?Zl a;e; defines any point in the simplex §;_1; therefore, it follows that

vol (8 A®) = / dz = |det (MW)] / du

9(k) A (k) Sa—1
:@%#MWJ%%NW”.ﬁ%WﬂMM,

where 1/d! is the volume of the d — 1-dimensional simplex (Stein, [1966).

5.8.2 Catalogue of considered multivariate distributions
5.8.2.1 Logistic

The joint distribution function in standard Fréchet margins is given by
d [0
Fp(z;a) = exp{-V(x;0)} , W%@Z(X}f”),
j=1
where V' is the —1-homogeneous exponent function, and a € (0, 1] controls the
strength of dependence. The corresponding parametric gauge function is obtained

by differentiating Fi» to obtain the joint density fr, performing a change of variables

to standard exponential margins, and taking the limit ((5.1) to obtain
1 (< d
a)=— (Y 1— %) mi oz}
g(w7a) N <j:1 .CL']) + ( Oé) mln{xla ,Z’d}

5.8.2.2 Gaussian

Consider the matrix X;; = p;;, 4,7 € {1,...,d} where p;; = Corr(X;, X;) > 0. The
gauge function is obtained by performing a change of variables of a joint multivariate
normal density with covariance matrix ¥ in standard normal margins to standard

exponential margins, then taking the limit ([5.1)). This results in the following
g(@;Y) = v v (5.11)

In equation ([5.11)), all operations performed on vectors are done componentwise.
The case with some p;; < 0 is given for Laplace margins in equation ((5.14)).

202



5.8.2.3 Inverted logistic

The inverted logistic distribution is most simply presented by its joint survival

function in standard exponential margins,

Fy(z,y;a) =exp {=V(l/z;0)} , V(1/z;0) (le/“> 7

where a € (0,1] controls the rate at which the d marginal variables grow large
together. The corresponding parametric gauge function is obtained by differentiating

Fp to obtain the joint density fz and taking the limit (5.1)) to obtain
g(x;a) =V (1/x; a).

5.8.2.4 Asymmetric logistic

The joint distribution function in Fréchet margins is given by
Fr(z;a) = exp {-V(z; )},

where V' is a prespecified —1-homogeneous exponent function, depending on the

desired dependence structure. In general, V' is given by

V(zid,o) = Y ¢c (Z:{”"C) : (5.12)

CePp jec

where Pp is the power set of indices D = {1,...,d},

1 ; variables C' can grow large simultaneously.

Pc = ;

0 ; otherwise
and ac € (0, 1] controls the dependence in group C. Additional parameters are
required in to make the margins standard Fréchet, though these do not affect
the limiting gauge function and so are omitted. Here, the gauge function is obtained
by differentiating F» to obtain the joint density fr, performing a change of variables
to standard Gumbel margins. The standard Gumbel and standard exponential

distribution are asymptotically equivalent in R%, and therefore we can obtain the
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gauge function in the usual way (see [Wadsworth and Campbell (2024)). The true

gauge is given by

g(z;a) = min min [Z (Z 4y (1 - ﬂ) E%iélx])]

m€ll cect :sen P jes (076 Qo

where II is the set of all partitions of D, where C} denotes a collection of indices

corresponding to a group obtaining simultaneous extremes, i.e., when ¢, = 1.

5.8.2.5 Mixture model

Consider a mixture model with exponential margins whose joint density is given by

f(x;01,05) = pfi(x;01) + (1 — p) fa(zx; 62),

where f; and f, are joint densities with respective parameters 6; and 6, in
exponential margins, and p € (0,1), with p = 0.5 throughout this work. The

corresponding gauge function is given by

g(:c; 0, 92) = min {91(33; 91)7 ga(x; 92)} )

where g; and gy are the gauge functions corresponding to the joint densities of f;

and f, respectively.

5.8.3 Truncated gamma return level sets

For a given return period T, set R(T) C R to be the corresponding return level
set. For T'=1/(1 — 1), where 7 is the level at which we do quantile regression, we

have

R(1/(1-1))={z € Ri!w =7 (w)w, w e Sy_1}.

For general T', we have

Pr(R>ri_pa(w)) =T""
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It follows that, for 7> (1 — 7)1

Pr(R>ri_p-1(w)|W = w)
=Pr(R>ri_r1(w)|R>r(w), W =w)Pr(R > r.(w)W =w)

_ FG? [r1—r—1(w);d, g(w)]
Fao [r-(w); d, g(w))]
— 71

X Faa [rr(w); d, g(w)]

Y

where F3)[;d,g(w,0)] is the quantile function corresponding to the gamma
distribution with shape parameter d and rate parameter g(w,@). Therefore,
ri_r(w) = FGl [l —T71d, g(w, @)], and the return level set is therefore given

by the curve

R(T)={x eRi|e=Fg [1-T "d g(w,0)]w, weS;1}.

5.8.4 Quantile estimation

k(u)

00 01 02 03 04
K(u)

00 02 04 06 08 10
K(u)

00 02 04 06 08 10

k(u)
00 02 04 06

T T T T T T N e e L
-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3

Figure 5.12: Left to right: Gaussian PDF, Gaussian CDF, Epanechnikov PDF, and
Epanechnikov CDF

The kernel density estimation (KDE) approach of obtaining quantiles introduced
in Section is an important step before obtaining maximum likelihood estimates
of parameters of our piecewise-linear model. Given the compact domain Sy 1, the
use of compactly-supported kernels may be of interest. Here, we compare the
Gaussian kernel to the Epanechnikov kernel (Epanechnikov, 1969), which has a

bounded support and is defined by

k(u) = 1(_171)(u)§(1 —u?)
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and

Ku)=q2[u(l-1tu)+2] ;—1<u<l.

\

Both kernels’ associated densities (PDFs) and distribution functions (CDFs) are
shown in [Figure 5.12

Using the quantile score proposed in Section [5.3| with K = 5, we assess how well
our KDE-based quantile estimation performs as the smoothing hyperparameter hy
increases when using the Gaussian and Epanechnikov kernels. Figure [5.13] shows
these scores for d = 2 and d = 3 datasets f at the quantile level 7 = 0.95,
comparing to the empirical binning method of quantile estimation as the amount
of overlapping increases. Note that for simplicity there is no boundary correction
for either kernel in our KDE methodology. This would be important for actual
density estimation, but we are simply searching for approximate high quantiles of
R | W.  Because of its bounded support, the Epanechnikov kernel was found
to be computationally cheaper to evaluate compared to the Gaussian kernel in
the d = 2 case. However, quantile estimates are not visually better than using
the Gaussian kernel, as is shown in Figure |5.14] and the Epanechnikov kernel is
more computationally expensive to evaluate in R than the Gaussian kernel in the
d > 3 setting, as the Gaussian kernel has an efficient multivariate evaluation using
functions in the mvtnorm package in R, while the Epanechnikov setting requires
taking products of the univariate kernels. For this reason, we continue using the

Gaussian kernel exclusively in KDE quantile estimation for dimensions d > 3.

Figures |5.14] and [5.15| display the quantile boundaries r.(w)w for w € S;_; and
7 = 0.95 at the specified adopted smoothing parameters for datasets f.

Quantile score values at optimal levels of hy are shown in Table [5.1} Results show
that the KDE approach results in estimation quality similar to the empirical method
in dimensions d = 2, 3.

The empirical binning method can lead to empty regions in higher dimensions,
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Dataset (IT) (VII)
KDE score 0.2329 0.2296 0.2562 0.2282 0.2919 0.2656 0.3119

empirical score | 0.2324 0.2291 0.2557 0.2280 0.2890 0.2643 0.3125

Table 5.1: Median scores of repeated quantile estimates for the KDE approach with
Gaussian kernel and the empirical binning approach of Wadsworth and Campbell

(2024) at their optimal smoothing hyperparameters.

leading to the inability to estimate quantiles in the entire S;_; simplex. In the
empirical method, given a new angle w € S;_1, a local average of quantile values
r-(w;) already estimated are taken for angles w; neighbouring w. Therefore, we are
entirely dependent on the radial quantile values of the dataset. If there is insufficient
data to estimate the radial quantile on a given dataset, then one may not be able
to estimate radial quantiles at new angles. This problem does not arise in the
KDE approach, i.e., we can evaluate r.(w) for all w € S; ;. We note that the
quantile performance score of distributions and are near-independent of
the amount of smoothing applied to the quantile estimation procedure. For these
two distributions, r,(w) does not depend strongly on w for this value of 7. This
threshold is therefore easy to estimate regardless of the amount of smoothing applied.
Different dependence structures have different optimal bandwidths, but Ay = 0.05
is close to optimal in all cases. In accompanying code, users can instead allow
for automatic selection of Ay using K-fold cross-validation scoring on the check
function S(hw) defined in Section Figure demonstrates that, for a fixed
value of hyw, varying the radial bandwidth kg has no effect on the quality of radial

quantile estimates.
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Figure 5.13: Median quantile estimation scores at 7 = 0.95 for data generated

from distributions ([)-([II) (top row), (VII)- (middle row), and (VII)) (bottom

row). Quantiles are estimated using KDE with the Gaussian and the Epanechnikov

kernels, and empirically.
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Figure 5.14: Left to right: empirical and KDE-based threshold estimates for d = 2
on datasets f with 7 = 0.95. The Gaussian and Epanechnikov kernels use
bandwidth values hr = 0.05 and optimal values for Ay, and amount of bin overlap

governed by the scores in Figure [5.13]
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Figure 5.15: Left to right: empirical (top row), Gaussian KDE (middle row), and
Epanechnikov KDE (bottom row) threshold estimates for d = 3 on datasets (V|-
(VIL) (left to right) with 7 = 0.95. The Gaussian and Epanechnikov kernels use
bandwidth values hg = 0.05 and optimal values for hy and bin overlap governed

by the scores in Figure [5.13
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Figure 5.16: Median KDE quantile estimation scores at 7 = 0.95 as hpy varies with
fixed hw = 0.05 for data generated from distributions ([)—(II]) (top row), (VII)-
(VI) (middle row), and (VII) (bottom row).
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5.8.5 Algorithm: gauge function unit level set bounding

The following describes the bounded model fitting algorithm, introduced in
Section and implemented throughout the simulation studies and real data
applications in Sections [5.5] and [5.6] respectively.

Algorithm 1: Bounding the piecewise-linear limit set during model fitting

Input: 7;, w;, threshold estimates r;(w;), likelihood Lz w or Lgw,
reference angle set {w*!,... w*V}

0 « argmaxy Le(0;71.,, W1y );

F 0

while max(wf/g(w”;é)) #1Vi=1,....,Nandj=1,...,ddo
F <+

07 « Or/g(w*;0);

o~

0_r argmaxe_fL.(O_f; T1:ny Wiin, 0.7:)
end

Return: Scaled parameter estimates 0 c Rﬁ

5.8.6 Angular fit examples
5.8.6.1 Gaussian distribution (III), d =2

We model the angles of data generated from a bivariate Gaussian distribution with
correlation p = 0.8, using the density fw (w) = gpwr(w)~¢/{dvol(Gpy)} and gpws
specified piecewise-linearly using equation . Included in Figure are estimates
of the density fw for increasing number of parameters N. Figure shows samples
from this fitted density using MCMC with a uniform proposal density and a beta
density whose parameters were fitted using the exceedance angles of the dataset. The
beta proposal is preferred, as the MCMC acceptance rate is much higher, leading

to a more efficient sampling algorithm.
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Figure 5.17: Left: empirical distribution of W | {R > r.(W)}; center/right: samples
drawn via MCMC on fitted model, using uniform (center) and beta (right) proposals.
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5.8.6.2 Mixture model (VII), d =3

Using data sampled from the mixture distribution , we fit the exceedance angle
model fy . Figure [5.18] includes the estimated density plotted on the Sy simplex.
Samples obtained using the uniform and a fitted Dirichlet proposal show reasonable
agreement with the underlying true angular distribution, as suggested by agreement
with the empirical density. Marginal samples as seen in Figure [5.19| show that
both the uniform and Dirichlet proposals reasonably capture the behaviour of the

underlying angular distribution.

Figure 5.18: d = 3 mixture model example: Top-left: Unit level set of the
gauge function, g. Top-middle: Dataset and estimated high quantiles. Top-
right: Fit of fy(w) with reference angles overlaid. Bottom-left: histogram of
W | {R > r;,(W)}. Bottom-middle and bottom-right: Histogram densities of an
MCMC sample of exceedance angles using the fitted fy using a uniform and a

Dirichlet proposal, respectively.
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Figure 5.19: d = 3 mixture model example: Marginal sample of exceedance angles
using the empirical distribution of exceedance angles (top row), MCMC on the fitted

density fw with uniform proposal (middle row) and Dirichlet proposal (bottom row).
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5.8.7 Choosing the gradient penalty strength, A

In Section [5.4.2) a gradient penalty is introduced. To select the best penalty
strength A > 0, a K-fold cross-validation score on negative log-likelihood (NLL)
is implemented. This score is based on negative log-likelihood values at parameters
obtained from a fitting set and evaluated on a hold-out set, and is explicitly given

by

K
1 ~
CV()\) = E E - log L. (0/\,16; T1ing» wl:nk> s
k=1

where —log L, is the negative log-likelihood associated with one of the three
likelihood functions introduced in Section , 6 Ak 18 the vector of parameter values
obtained from the &'" fitting set of datapoints with gradient penalty with strength
A >0, and (r1.p,, Wiy, ) are held-out evaluation radii and angle data. Figure
shows these scores with K = 4 and n = 5000 on a mesh of A values. From top to
bottom, the score is a median value obtained across 20 datasets from distributions
f. Columns 1-2 correspond to fitting the radial model conditioned on angles
by maximizing Lrjw unbounded and bounded using Algorithm [I|in Appendix ,
respectively. Columns 3-4 correspond to jointly fitting the radial-angular model by
maximizing Lrw unbounded and bounded using Algorithm [I| in Appendix m,
respectively. Column 5 corresponds to fitting the angular model by maximizing Ly .

As expected, the optimal degree of smoothing A depends on the underlying
dependence structure of the data. In bivariate data (rows 1-4 in Figure ,
Gaussian data from distribution requires the least smoothing as the true limit
set is curved and therefore changes in the gradient of each segment are desirable.
For distributions such as and (rows 2 and 4 in Figure [5.20), a flatter
limit set is desired, meaning a higher X is preferred. To account for this change in
optimal smoothing hyperparameter, the code in our GitHub repository allows the
user to not specify A\, and a K-fold cross-validation scoring procedure on — log L, is
performed instead. In three-dimensions (rows 5-7 in Figure , a good middle-

ground would be A = 1 for the radial and joint models, while a A value of around
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20 seems appropriate when fitting the angular model on its own.
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5.8.8 Simulation studies

1.0

0.8
|

0.6
|

w2
0.4

0.2

Figure 5.21: A mesh of N = 28 reference angles (points) and the resulting Delaunay
triangulation (solid lines) on the Sy simplex. This setting is used throughout all

d = 3 model fits in simulation studies and in real data examples.

As described in Section [5.5] there are six settings for fitting the piecewise-linear
model for inference on multivariate extremes, labelled SS1-SS6. Here, we outline
results for all possible settings for distributions f in dimensions d = 2, 3, and
compare probability estimates and estimates of the unit level set boundary when
using N = 11 equally-spaced scalar-valued reference angles from 0 to 1, inclusive.
In each case, 200 datasets of length n = 5000 are generated. In each replication,
r-(w) is first estimated at the 7 = 0.95 threshold, using the KDE approach with
Gaussian kernel, and a probability estimate is obtained for each extremal region.
Furthermore, in the d = 2 setting we plot all 200 limit set boundaries in gray, the
limit set boundary obtained at the median parameter values in blue, and the true
limit set boundary using a black-dashed line. For d = 3, the piecewise-linear limit set
boundary is plotted in blue at median parameter values across the 200 replications,
and the true limit set boundary is plotted in red. Here, we use N = 28 reference
angles, and the resulting triangulation of Sy is presented in Figure [5.21] Based on
the penalty strength findings in Appendix [5.8.7 we fix the penalty strength A = 1
for the radial and joint fits, while setting A = 20 for the angular model fit.

218



In summary, for d = 2, settings SS1,3 and SS2,4 produce similar results, showing
no particular advantage or disadvantage of modelling the angles separately compared
to the corresponding empirical distribution. The joint fitting procedures of SS5,6
lead to good estimates in the case of distribution , but an increased bias in the
probability estimates when fyw is not well-approximated by the same ¢ in used in the
radial model (distributions ([I)-(IV])). Similarly, SS5 and SS6 induce more bias in
the d = 3 distributions, while SS1,3 and SS2.4 perform similarly well overall. These
findings can be seen in Tables [5.2] and [5.3] which present root mean squared error
(RMSE) of the log-probability estimates. In it, we see that the piecewise-linear
model fitting method competes well across dimensions two and three and across
different distributions exhibiting a variety of extremal dependence properties. We
note that SS5H and SS6 often have the lowest RMSEs due to reduced variance, but
we place high value on unbiasedness. Therefore, for as an overall well-performing
model, we report the bounded model fit presented in the setup of SS4 in the main
body of this paper.

5.8.8.1 Simulation studies, d = 2
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Figure 5.22: Probability estimates for distribution . True values shown by the
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Figure 5.23: (a)—(d): Estimates of the unit level set of g for distribution (I). (e)

Estimated angular density fy,, with a sample histogram from one sample.
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Figure 5.25: Estimates of the unit level set of g for distribution (II). Right:

Estimated angular density fy,, with a sample histogram from one sample.
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Figure 5.26:
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Figure 5.27: Estimates of the unit level set of g for distribution (III). Right:

Estimated angular density fy,, with a sample histogram from one sample.
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Figure 5.29: Estimates of the unit level set of g for distribution (IV]). Right:

Estimated angular density fy,, with a sample histogram from one sample.
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Dataset

O | @ @ M
par | 0.2670 | 0.2524 | 1.1132 | 0.9905
SS1 | 0.7950 | 1.0998 | 0.7816 | 1.2671

Bl: SS2 | 0.3167 | 0.9566 | 0.7066 | 1.2783
[10,12] x [10,12] | SS3 | 0.8459 | 1.1404 | 0.8426 | 1.2419
SS4 | 0.3649 | 1.0080 | 0.7416 | 1.2394
SSH | 0.4612 | 1.8284 | 0.5763 | 0.9888
SS6 | 0.2854 | 1.5669 | 0.5549 | 1.2728
par | 0.4907 | 0.3959 | 0.5417 | 0.7207
SS1 | 1.0007 | 0.8023 | 0.7236 | 0.9285

B2: SS2 | 1.2271 | 0.6999 | 0.3941 | 0.9454
[10,12] x [6, §] SS3 | 1.1980 | 0.7814 | 0.7913 | 0.8845
SS4 | 1.4300 | 0.6766 | 0.4049 | 0.9165
SS5 | 0.7527 | 0.9328 | 0.4590 | 0.6808
SS6 | 0.6201 | 0.7472 | 0.3237 | 0.9139
par | 1.4067 | 0.6098 | 1.3380 | 0.3382
SS1 | 1.7740 | 0.9179 | 1.4381 | 0.7816

B3: SS2 | 1.8884 | 0.9132 | 1.4235 | 0.6507
(10, 12] x [2,4] SS3 | 1.7109 | 0.8893 | 1.5709 | 0.8128
SS4 | 1.7456 | 0.8883 | 1.4856 | 0.6604
SSH | 1.1383 | 0.7200 | 1.8508 | 0.6130
SS6 | 1.1220 | 0.9341 | 1.7152 | 0.4824

Region Setup

Table 5.2: RMSE across the 200 log-probability estimates for d = 2 simulation

studies.
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5.8.8.2 Simulation studies, d =3
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Figure 5.30: Probability estimates for distribution (V). True values
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Figure 5.32: Top row: Marginal sample of exceedance angles generated of a sample
from distribution @ Rows 2-4: Marginal MCMC samples of exceedance angles
from SS3/4, SS5, and SS6, respectively.
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Figure 5.35: Top row: Marginal sample of exceedance angles generated of a sample
from distribution (VI)). Rows 2-4: Marginal MCMC samples of exceedance angles
from SS3/4, SS5, and SS6, respectively.
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Figure 5.37: Blue: median estimates of the unit level set of ¢ for distribution (VII)).
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Figure 5.38: Top row: Marginal sample of exceedance angles generated of a sample
from distribution (VII). Rows 2—4: Marginal MCMC samples of exceedance angles
from SS3/4, SS5, and SS6, respectively.
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Dataset

© | @D | (VI
par | 0.4718 | 0.4689 | 0.7422
SS1 | 1.3973 | 1.1510 | 1.7031

B1: SS2 | 1.1761 | 1.1103 | 1.7008
[8,10] x [8,10] x [0.01,3] | SS3 | 1.5858 | 1.3787 | 1.9959
SS4 | 2.0826 | 1.3474 | 1.9339
SSH | 0.8018 | 1.0215 | 1.6056
SS6 | 0.6658 | 0.7964 | 1.4271
par | 1.4549 | 0.7504 | 0.9414
SS1 | 1.0077 | 0.8387 | 1.0864

B2: SS2 | 1.0606 | 0.8052 | 0.9941
[8,10] x [5,7] x [0.01, 3] SS3 | 0.9270 | 0.8290 | 1.0006
SS4 | 1.2132 | 0.7997 | 0.9698
SS5 | 0.5057 | 0.4495 | 0.7624
SS6 | 0.4467 | 0.4743 | 0.6673
par | 1.9727 | 0.3831 | 0.8872
SS1 | 1.4190 | 1.0705 | 1.1091

B3: SS2 | 1.9127 | 1.0473 | 1.0885
[8,10] x [2,4] x [0.01, 3] SS3 | 1.3386 | 1.0461 | 1.1305
SS4 | 1.7715 | 1.0070 | 1.1027
SSH | 0.8836 | 0.5683 | 0.5294
SS6 | 0.8710 | 0.5276 | 0.5009

Region Setup

Table 5.3: RMSE across the 200 log-probability estimates for d = 3 simulation

studies.
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5.8.9 Additional pollution data results
5.8.9.1 Setting 1: d =14

Here, we present additional diagnostic plots for the d = 4 pollution data example
from Section in which we aim to estimate the tail behaviour of the pollutants
CO, NO, PM10, and NO,. In Figure we show plots of yc(u) for high values
of u for all combinations of indices C' C {1,2,3,4}. Values of x¢(u) are estimated
empirically and with a truncated gamma model with gauge function estimated
piecewise-linearly. We see strong agreement between the empirical values and those
from the fitted model. Furthermore, all model estimates capture the asymptotic
positive association between the variables in C, as was suggested by tools introduced
in [Simpson et al.| (2020)). This demonstrates the ability of both the fitted radial and
angular models to capture the extremal dependence of the for pollutants.
Figure[5.40|shows accurate estimated return level periods corresponding to curves
R(T) against T" on the log-scale. Estimates are formed by counting the proportion
of points exceeding the computed boundary and taking the reciprocal as an estimate
of the return period T, with good matching to the true values. The PP and QQ plots
in Figure show the fitted model for exceedance radii R | {W = w, R > r.(W)}
is in general agreement with the theoretical truncated gamma model , further

validating our proposed modelling approach.
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Figure 5.39: xc(u) plots estimated empirically (solid line) and piecewise-linearly
(dashed line) on the d = 4 pollution dataset. Black solid lines are empirical values,
and blue dashed lines are estimated using the piecewise-linear model. Shaded regions

represent 7-day 95% block bootstrap confidence intervals.
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Figure 5.40: d = 4 pollution fitted piecewise-linear gauge estimated return periods

(log-scale) compared to true values T' € {10, 20, 30, ...,1000}.
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5.8.9.2 Setting 2: d=3

We now consider the three-dimensional setting of modelling measurements of CO,
NO,, and PM10, encoded as in the four-dimensional setting as variables 1, 2, and
3. The first step in modelling is to obtain r,(w), w € S,, using the KDE approach
of Section [5.3] with a Gaussian kernel with angular bandwidth Ay, = 0.075. Here,
we take 7 = 0.95 as the quantile associated with our threshold r,(w). Figure [5.42]
shows the resulting threshold curve r, (w)w for values w € S;. Next, we obtain
a triangulation using a grid of N = 28 reference angles at {0,1/6, ..., 1}3 within
the simplex S, displayed in Figure in Appendix Like the in the d =
4 setting, we fit the conditional radial model for R | {W =w, R > r,(w)} with
penalty strength A = 1 with bounding using Algorithm [I] in Appendix [5.8.5] along
with the angular model for W | {R > r, (W)} with penalty strength A = 20.

In employing methods from [Simpson et al. (2020)), it was estimated that all
three variables can obtain large values simultaneously, while PM10 can grow large
when CO and NO; are both small, i.e., C = {{3},{1,2,3}}. The resulting limit set
boundary in is in agreement with this, since g(1,1,1) = 1 and g(y1,72,1) =1
for v = 0.673 and v, = 0.3471. The results from the methods in Simpson
et al.| (2020)) also imply that values of yc(u) are expected to be positive for all
values of u € [0,1] for any collection of variables C' C {1,2,3}. The xc(u)
plots of Figure [5.43] also indicate this possibility, and show that our piecewise-
linear model is in close agreement with the empirical estimates, demonstrating good
capability of the angular and radial models in capturing the extremal behaviour of
the data. Figure [5.44] shows that our model accurately estimates return periods,
with three different return-level sets also displayed. Furthermore, the PP and
QQ plot in Figure show that the fitted truncated gamma model for R |
{W =w, R > r.(w)} agrees with the theoretical model.
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Figure 5.42: Left: d = 3 pollution dataset, with the radial threshold rg¢5(w). Right:

estimated gauge function unit level set with log(n)-scaled data.
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Figure 5.43: xc(u) plots estimated empirically (solid line) and piecewise-linearly
(dashed line) on the d = 3 pollution dataset. From left to right: C =
{1,2},{1,3},{2,3},{1,2,3}. Variables 1, 2, and 3 correspond to pollutants CO,
NO,, and PM10, respectively. Shaded regions represent 7-day 95% block bootstrap

confidence intervals.
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Figure 5.44: Left: d = 3 pollution fitted piecewise-linear gauge estimated return
periods (log-scale), compared to true values 7' € {10, 20, 30,...,1000}. 95% 7-day
block bootstrap confidence intervals are shown in grey. Center-left-right: T =

50,100, 1000 day return level set boundaries.

1.0

0.8

0.6
L

Figure 5.45: d = 3 pollution PP and QQ plots, with 95% 7-day block bootstrap

model

0.4

0.2

0.0

T
0.0

T
0.2

T
0.4

T
0.6

empirical

confidence intervals in grey.

T
0.8

T
1.0

model

240

3

4

empirical




5.8.10 Piecewise-linear models for data in standard Laplace
margins

In this section, we outline adaptations to the methodology for working in standard
Laplace, rather than standard exponential, margins. For d = 2, this is
straightforward, and we demonstrate the methodology. For d > 2, it is more complex
to represent the (d — 1)-dimensional L; manifold Séf’l_) = {z e RY|||z|, =1} in
R?-1. Figure m gives a demonstration of SéJ“*) in three dimensions. From this
figure alone, the task of projecting to (d—1)-dimensions, implementing the Delaunay
triangulation on this lower-dimensional space, and recovering d-dimensional vectors
from their lower-dimensional L; representation can be seen as difficult when not
restricting to the positive orthant, and is left to future work.

Mackay and Jonathan| (2024) provide a useful L;-based decomposition of
bivariate copies of X = (X1, X3)" when the margins X;, X, follow the standard

Laplace distribution,

X, X1
EW)= (Il el s ) U ) ) S R 22
(&) <‘ ! ‘2‘€(|X1|+|X2|>( !X1!+!X2’>) e

where e(u) = 1 when u > 0 and £(u) = —1 otherwise. In this setting, we can recover

the corresponding Cartesian vectors using

]
1|7 A T

(X,X)T:R( ,
b 1= W+ [1 =W =11 = W[+ [T = [W —1]]

(5.13)
With this representation, it is possible to use the piecewise-linear framework
outlined in this paper. Take, for example, the bivariate Gaussian distribution
with standard Gaussian margins and correlation p < 0. When transforming to
standard exponential margins, the limit set cannot be defined on the axes through
a continuous gauge. However, in standard Laplace margins, the gauge function is
well-defined in its R? domain. In standard Laplace margins, this gauge function is

given in general d-dimensions by

g(x; X)) = (Sign(ﬂ:)ﬂ)T »t (sign(w)m) . (5.14)
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In equation , all operations performed on vectors are done componentwise.
We illustrate the estimation of this gauge function piecewise-linearly in a
simulation study with data generated from the bivariate Gaussian distribution
with standard Laplace margins and correlation p = —0.5. We generate n = 5000
datapoints, and perform KDE-based quantile estimation at 7 = 0.90. After defining
aregular grid of N = 15 reference angles from [—2, 2), including —2, we fit the models
SS1-SS6 outlined in Section |5.5, and draw samples from these models to estimate
the probability of lying in the regions By = [5,9] x [5,9], By = [10, 14] x [-2, 2], and
Bs = [10, 14] x [—14,—10]. This is repeated 200 times. The estimated unbounded
and bounded limit set boundaries from modelling R|{W =w, R > r;(w)} and
(R, W)|{R > r,(W)} are displayed in Figure [5.46] where good agreement with the
true gauge functions is shown. Angular models in the setting of SS3/4, SS5, and
SS6 are shown in Figure [5.47] All models show good agreement with a histogram of
exceedance angles. Probability estimates are displayed in Figure [5.48, where models
in the settings SS2 and SS4 perform best overall. A further adjustment needs to be
taken when sampling the angles W from the density fw introduced in Section 5.2.2]
In our MCMC algorithm, a beta proposal distribution is used. Sampled angles need
to be shifted to the [—2,2) domain using the transformation W’ = 4W — 2 before

proceeding to sampling radii and obtaining extremal points using ({5.13]).
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Figure 5.46: 200 estimates of the unit level set of gpyw;, on model fits using the setup
SS1, SS2, SS5, and SS6 (left to right) for the Gaussian distribution in standard
Laplace margins, with median value given by the solid line. The true unit level set

is given by the dashed line.
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Figure 5.47: Estimate of the angular density for various simulation study setups,

with an empirical angular density given by the histogram.
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clarity.

243



Figure 5.49: The simplex 82(+’_) is given by the boundary of the above surface plot.
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Chapter 6

The geometric properties of

generalised Pareto random vectors

Abstract

The multivariate generalised Pareto (MGP) distribution describes the limiting
behaviour of random vectors whose componentwise maximum exceeds a large
threshold, and is therefore important to the study of multivariate extreme value
analysis. A feature of MGP random vectors is that they can be represented
stochastically, allowing for their construction from any unbounded multivariate
distribution. In this work, we show that the limit set of scaled sample clouds of MGP
random vectors can be obtained through the geometry of one of the components of
the spectral representation. When MGP random vectors do not have a non-trivial
limit set, an alternative coordinate system is introduced to inspect their geometric

and tail dependence properties.

6.1 Introduction

Peaks-over-threshold (POT) modelling has been a mainstay in extreme value
analysis since its formalisation in the univariate setting (Pickands, 1975), and has

since been successfully used to model data from applications ranging from hydrology
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to finance (see, for example, Chapter 4.4 in [Coles (2001))). Suppose Y is a random
variable used to denote values of some process. In the POT framework, inference is

performed by assuming that for large ro,
Y —r[{r>ro} ~ GP(ro,0,9),

where GP(rg,0,&) is the generalised Pareto distribution with location, scale, and
shape parameters (rg,0,£) € R x Ry x R. The GP distribution is most-commonly

characterised by its conditional survival function,

r—rg -1/
Pr(Y>r|Y>T0):[1—I—§( )] :
o +

The GP distribution arises as the limiting family for exceedances of high thresholds
for a wide variety of underlying distributions. Given this fact, it is a natural
modelling choice for extrapolation above high thresholds, beyond the range of any
observed data. This makes it a powerful tool, and the need arises for a multivariate
extension.

Suppose now that Y = (Yi,...,Y,)" is a d-dimensional random vector, with
each component representing measurements of a simultaneous process. Introduced
in Rootzén and Tajvidi (2006) and further formalised in Rootzén et al.| (2018a))
and Rootzén et al| (2018b), the multivariate generalised Pareto (MGP) arises
when studying excesses of Y when at least one of its components exceeds a
component of a threshold vector, Y; > ry;. |Rootzén et al| (2018b) focus on
the theoretical properties of the MGP distributions and their associated random
vectors. Namely, they introduce different parametrisations, derive the joint densities,
marginal distributions, tail dependence coefficients, and establish threshold stability.
Rootzén et al.| (2018b)) further derives a stochastic representation, showing that one
could easily construct an MGP random vector from a random vector of unbounded
domain. [Kiriliouk et al| (2019) derive parametric MGP distributions using the
stochastic representation from several known copulas, introduce statistical inference

procedures, and apply the MGP model on financial and environmental data.
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The multivariate POT MGP framework is inherently linked to the notion of
multivariate regular variation (MRV) (Wan, 2024). Due to the connection to
MRV, there are several drawbacks in working with MGP random vectors. Most
prominent is the limitation in extrapolation directions. When modelling random
vectors using the MGP distribution, one can only extrapolate along the direction
of simultaneous growth. Therefore, this restricts the range of extremal probabilities
that could be estimated. Furthermore, the MGP has an extremal tail decay rate
that is only suitable for random vectors whose components are asymptotically
dependent, meaning that more general scenarios cannot be accounted for. The
geometric inference approach for the tail behaviour of random vectors presented in
Wadsworth and Campbell| (2024) bypasses these issues by modelling the tail decay
across the entire domain of the random vector through use of the truncated gamma
distribution. One drawback of the geometric framework however is that the popular
Hiisler-Reiss MGP model (e.g., Engelke et al. (2015); |[Engelke and Hitz (2020))) has
a degenerate limit set (Nolde and Wadsworth, 2022). In this work, we look closely
at limit sets for MGP distributions. We derive the form of the limit set for a large
class of MGP random vectors, and show how to handle degenerate cases like the
Hiisler-Reiss with alternative coordinate systems.

We begin in Section by covering the essential background knowledge required
for linking the MGP distribution setting to the geometric framework of multivariate
extremes. Section discusses the geometry of MGP random vectors, with several
examples displayed. Alternative statistical inference for MGP random vectors
is illustrated in Section using the geometric approach from Wadsworth and
Campbell (2024). Section[6.5]discusses how useful geometry of MGP random vectors
can be obtained when the usual limiting behaviour is degenerate. We finish with a

discussion on the benefits and drawbacks of the MGP and geometric frameworks in

Section [6.6]
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6.2 Background

6.2.1 The multivariate generalised Pareto distribution

Before we inspect the geometric properties of MGP random vectors, it is important
to characterise them in the classical sense. Suppose a random vector Y is in the
domain of attraction of a generalised extreme value distribution (GEV) with joint
distribution function G. In other words, there exists suitable sequences {a,} and

{by,} such that, for i.i.d. copies Y7,Y5,... of Y,

maxX;—1,.n,Y; — b

Pr

X0yl ) (61)

as m — 00, where max;—; __, Y; denotes the componentwise maximum of Y73,...,Y,,.
Here and throughout, operations on vectors are done componentwise. The margins
of this GEV distribution follow a univariate GEV with parameters (u;,0;,§;). If
the convergence holds, then the distribution of exceedances of Y converges to
a MGP random vector, X:

Y -b,
max{ o ,n} < y'{EI jst.Y; >b,,;} — X (6.2)

as n — 00, where m is the collection of d lower endpoints of the marginal distributions
of G. The distribution function of the MGP random vector X has the form

log G(min{x,0}) — log G(x)

Fx)=Pr(X <z = log G(0)

and the margins X; have conditional distribution {X; | X; > 0} ~ GP(0,0;,&;).
To focus on dependence, suppose the components Y; of the random vector Y follow

the standard exponential distribution. Then if convergence (6.2)) holds, we have
Y —r|{max(Y)>r} — X

as r — 0o, where X is an MGP random vector with o; =1l and {; =0, 7 =1,...,d.
This standardised characterisation is important when establishing the stochastic

representation of MGP random vectors. It is established in [Rootzén et al. (2018b)
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that a standard MGP random vector is equal in distribution to a so-called spectral

random vector and a scalar standard exponential random variable,
X2LF1+8S, (6.3)

where E and S are independent, and max(S) = 0. The spectral vector S arises

from Y through the limit
Y —max(Y) | {max(Y) >r} — S

as r — oo. Using the stochastic representation , one can construct MGP
random vectors from any unbounded random vector. Suppose T lives on an
unbounded domain in R?. |Rootzén et al.| (2018b) construct a valid spectral vector
S by setting S = T — max(T), and therefore, X L E1+T- max(7T"). This
stochastic representation will be essential in analysing the geometric properties of
MGP random vectors. After establishing some necessary background, we will show
how MGP random vectors X have an inherent geometry that is solely linked to the

geometry of the spectral component, S.

6.2.2 Geometric extremes

The geometric approach to multivariate extremes (Nolde, [2014; Nolde and
Wadsworth|, 2022; Wadsworth and Campbell, |2024) induces more generality than
the frameworks of MGP vectors and, by extension, MRV. In it, interest lies in
characterising the multivariate tail above high quantiles of functions of random
vectors. Suppose the d-dimensional random vector Y has exponential margins and
joint density function f. The main assumption behind the geometric approach is
that the rescaled negative log-density tends towards a non-degenerate limiting gauge

function,
—r~'log f(ry) — g(y) (6.4)

as r — oo. The gauge function g is positive, scalar-valued, and 1-homogeneous.

Wadsworth and Campbell (2024)) show that if (6.4)) holds with g continuous, then
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it is typically reasonable to assume the model

YA TIY (> ro(w), Y/Y ]| = w} ~ truncGamma(e, g(w)) (6.5)

as 1o(w) — oo, where ro(w) is a high threshold of ||[Y|| | {Y/||Y|| = w}. In (6.5),
truncGamma refers to the truncated gamma distribution, a univariate distribution

most easily defined through its density function,

fia(ria, g(w), ro(w)) = fa(ri e, g(w))/Fa(ro(w); o, g(w))

for 7 > ro(w), where fg and Fg are the density and survival function of the gamma

distribution, respectively.

If the convergence assumption on the log-density holds with ¢g continuous,
it then follows that scaled sample clouds of the form NV, = {Y;/logn,...,Y,/logn}
converge onto a limit set G = {x € R? | g(x) < 1}. The intrinsic link between the
limit set G and the gauge function g means that knowledge of g can give information
about the geometric properties of a random vector. These properties were first
explored in Balkema et al. (2010)), Balkema and Nolde| (2010), Balkema and Nolde
(2012)), Nolde| (2014), and more recently in Nolde and Wadsworth| (2022)), where it
was shown that knowledge of g gives information as to which groups of variables in
the random vector Y grow large simultaneously. Furthermore, g gives information
on the degree of dependence or independence in the joint tails between groups of
variables. Together with the truncated gamma approach to inference, the geometric
framework allows for inference across the entire tail region of random vectors, making
it a powerful tool in overcoming some of the limitations of the MRV assumption.
With this in mind, studying the geometric properties of MGP random vectors may
provide a useful link between the geometric framework and classical multivariate

extreme value analysis.

250



6.3 The limit set associated with MGP random
vectors

In order to inspect the geometric properties of MGP random vectors, it is first
necessary to study its joint density. Theorem 15 of Rootzén et al| (2018b)
characterises the joint density of MGP random vectors X through its stochastic

representation, £ 4+ S. The joint density of the resulting MGP is given by
[x(x) = 1g, (max(x)) exp{— max(x)} fs(x — max(x)), (6.6)

where max(x) = maxjeqi,. gy ¢; and fs is a Lebesgue density on the (d — 1)-
dimensional constrained space S = {s € R? : max(s) = 0}. Using this expression
for the joint density, it is possible to obtain the corresponding gauge function under

certain conditions.

Proposition 6.1 (Gauge function of MGP random vectors). Suppose
—log fs(tx)/t — gs(x), where gs is a continuous gauge function defined
on the domain S, then {Sy/logn};_, tends to a non-degenerate limit set defined
by the gauge function gs. Furthermore, logn-scaled sample clouds of MGP random

vectors { X, /logn};_, converge onto a limit set with the associated gauge function
gx () = max(x) + gs(x — max(x)) (6.7)
and is defined on the space {x € R? : max(x) > 0}.

The proof of the first statement in Proposition follows as in Proposition 2
of Nolde and Wadsworth| (2022)). The form of gx in follows directly from
the density . We can also independently derive as a consequence of the
findings in Nolde and Wadsworth| (2022) on the gauge functions of additive mixtures
of independent random vectors, we derive the equivalent result by minimising over

the domain S of the spectral random vector S,
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gx(x) = .miinesa + gs(x —a)

=max(x) + gs(x — max(x)).

Given some random vector T following a multivariate distribution with an
unbounded domain, we can generate spectral random vectors using the relation
S = T — max(T). For this reason, we refer to T' as a generator of an MGP-
distributed random vector. By Theorem 12 of Rootzén et al.| (2018b)), we obtain the
density for X

[x(x) =1g, (max(x)) exp{— max(x)} / fr(x + s)ds

=1g, (max(x)) exp{— max(x)} / fr(x +logt)t'dt
This implies that, for £ € R? and assuming T has density fr,
fs(x — max(x)) = / fr(x+s)ds = /fT(a: +logt)t dt (6.8)
- 0

Using this knowledge, beginning with a known distribution 7', it is possible to
obtain the corresponding MGP gauge function. In what follows, we derive the
spectral gauge function gg and the resulting MGP gauge function gx from generators
previously examined by [Kiriliouk et al.| (2019), where the density fs in equation

was derived given T'.

Example: Generators with independent Gumbel components, equal scale

parameters Suppose T; ~ Gumbel(a, 3;). We have

d —d
fs(x — max(x)) = o?'T'(d He a(zj—B;) (Z e—a(fcj—ﬁj))

j=1 j=1
Therefore, spectral random vectors associated with independent Gumbel generators

have gauge function

gs(x — max(z)) = a Z r; — domin(x).
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Figure 6.1: Right: Marginal histogram of a sample from the spectral random vector
associated to the bivariate independent Gumbel generator with rate o = 0.5. Left:

the limit set associated to the resulting bivariate MGP random vector.

The resulting MGP distribution has gauge function

gx(x) =max(x) + « Z z; — damin(x).

=1

Example: Generators with independent reverse exponential components
Suppose T; follows the reverse exponential distribution with rate parameter «; and

location parameter 3;. We have

> aj> max(z+3

d -1 < d
- )
fs(x —max(x)) = ( E a]) e V=t | | oy @iths),
j=1 =1

Therefore, spectral random vectors associated with independent reverse exponential

generators have gauge function

d d
gs(x — max(x)) = (Z ozj) max(x) — Z ;T
j=1 j=1
= —a' (z — max(x)),
and the resulting MGP distribution has gauge function
gx(x) = max(x) — a' (z — max(x)).
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Example: Generators with independent log-gamma components Suppose

T; ~ logGamma(a;, 1). We have

F(Zd:aj) ZO‘J
ot = Lo (S (3]
117,

Therefore, spectral random vectors associated with independent log-gamma

generators have gauge function

d d
gs(x — max(x)) = (Z ozj) max(x) — Z ;T

= —a' (z — max(x)),
and the resulting MGP distribution vector has gauge function
gx(x) = max(z) — a' (x — max(x)).

Note that when considering the d = 2 setting in the above examples with oy = s,
gs are all equivalent and produce the same limit set. This can be seen in the
independent Gumbel generator example by adding and subtracting a(z; + x2). In
fact, in the bivariate setting, all MGP random vectors have the same gauge function
if the spectral component converges to a non-degenerate limit set under log n scaling.

The form of the limit sets described in Proposition [6.1] are illustrated in Figure [6.1]

Proposition 6.2. Suppose X = E1+ S s a bivariate MGP random vector, and
that Proposition [6.1] holds. Define the values 0,05 < 0 such that

91 : gs(91,0) =1

6 gs(0,6) =1;

Equivalently,

161 = 1/9s(=1,0)
|02 = 1/9s5(0,—1).
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Then the limit sets of d = 2 MGP random vectors can be obtained by joining the
vertices (1,1)", (61,0)7, (0,0)", and (0,6,). The associated gauge function is given

by
( 6, 65) = + ! + (1 Lo ( )
Ty, T =—I+ —=z — — — — | max(xy,x
gmGp (T, T2; U1, U2 o, 1 0, 2 0, 0, 1, 22),
and the limit set can alternatively be written as G = {(x1,22) € R?

gvcp (@1, T2;61,02) < 1} N {(z1,29) € R? : max(zy, x9) > 0}.

Proof. 1t is sufficient to derive the gauge function associated to the spectral random
vector S. The gauge function gg must be positive, 1-homogeneous, and have domain
S. Inputs must be of the form (x,0) for ; < 0 or (0,22) for 23 < 0. By

homogeneity,

(
|z1]9(—1,0) ; 21 <0,29=0
gs(r1,m2) =

|22]g(0,=1) 5 21 =0,2, <0

% o 1< 0,29 =0
\% 7 1 =0,29 <0
T i)

— Gl e e

To ensure the domain S, the gauge function evaluated at a generic point x € R?

is therefore

1 —IMax\(r1,T To —INAX(T1,T
gs(r1 — max(vy, 2), T2 — max(zy, v2)) :| : |0|( wral b |9|( w2
1 2

I max(zy, Ta) N To — max(xy, )

01 05

By , we recover the desired MGP gauge function gyigp.

For the vertices of the limit set G, gmap(61,0) = guap(0,02) = 1 by construction,
and it is clear that gyiap(1,1) = 1. The straight lines between (01,0)", (1,1)7, and
(0,0,)" on OG holds because gnvap(x1, (1 — 02)xy + 62) = 1 for 21 € (0,1) and
gvep((1 = 0y)xy + 01,25) = 1 for x5 € (0,1). The vertex of G at (0,0)" holds
because S forms part of the boundary 0G. ]
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6.4 Statistical inference for MGP random vectors
using the truncated gamma model

Having an expression for the gauge gyigp means that we can use inference tools such
as the one presented in Wadsworth and Campbell (2024) to allow the estimation of
small probabilities when at least one component is large. We will discuss the pros
and cons of this approach in Section [6.6, Suppose the random vector X follows a
MGP, and is constructed using X = E+T —max(T). In the bivariate case, we can

model
max(X) | {X /max(X) = w, max(X) > u} ~ truncGamma(a, gnucp (x; 01, 62)),

where the model parameters (a, 61, 62) can be estimated with the standard maximum
likelihood method.

With this inference set up in mind, one can easily estimate joint tail probabilities
associated with MGP random vectors. Take, for example, the generator T' obtained
from bivariate independent Gumbel distribution with rate parameter o = 0.5. Its
true underlying limit set is shown in Figure[6.1] Using the derived expression gycp,
we can estimate this. Once a high threshold is selected, the gauge function is
fitted using the truncated gamma likelihood approach, and the resulting estimate
is shown in Figure [6.2] Using an extremal sample generated from the truncated
gamma distribution (also shown in Figure , we estimate the coefficient

- Pr (Fl(Xl) > u, FQ(XQ) > U,)
N 1—u

x(u)

for values of u above ug = 0.94. This is estimated by simulating 100 datasets,
obtaining an empirical and a fitted geometric model’s estimate for each dataset, and
considering the median estimate of x(u) for each u value, along with the 0.025 and
0.975 quantiles to give a prediction interval. The results, shown in Figure , show
a good overall approximation of y(u) when compared to the empirical counterpart,
with some slight disagreement u approaches 1. However, coverage in the prediction

intervals remains good.
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Figure 6.2: Right: Fitted gygp using the truncated gamma approach to MGP
data generated from the independent Gumbel distribution with rate a = 0.5.
Centre: Extremal sample above the threshold max(X) = wug using these fits.
Right: Empirical (in black) and estimated (in blue) median values of y(u) with

corresponding pointwise 95% prediction intervals.
6.5 Nonstandard behaviour of spectral random

vectors

6.5.1 Nonstandard convergence to gauge functions

What can one do when the primary assumption of Proposition is broken; i.e.,
when the spectral gauge function is degenerate under the usual scaling? This is
the case, for example, when working with the MGP distribution with Hiisler Reiss
dependence in standard exponential margins, as examined in |Nolde and Wadsworth
(2022). They show that, under the usual logn scaling, scaled sample clouds tend
to a degenerate limit set given by the line {(z1,23) € [0,1]* | 1 = x2}. This limit
set is not useful when trying to understand the extremal dependence properties of
the corresponding bivariate random vector as the dependence parameter changes.
It is for this reason that more general forms of convergence to the gauge function
and limit set need to be considered, akin to the notion of nonstandard multivariate

regular variation (Resnick, 2007, Chapter 6.5.6).
Proposition 6.3 (nonstandard convergence). Suppose X is d-dimensional with
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joint density f, X; ~ Fj, and there exists functions b;(t) = F;'(1 —t7') such that
logb;(t)/logt — 0 as t — oo for each j € {1,...,d}. If the following holds,

—(logt) 'log f(bj(t)zrj, j=1,...,d) — g(zx), (6.9)

for the sequence x; — x ast — 0o and g continuous, then the sample cloud

Nn:{(bﬁ),...,bi;)) zln}

converges onto the limit set G = {x € R? : g(x) < 1}.

Proof. The proof follows similarly to that Proposition 2 of [Nolde and Wadsworth
(2022). The mean measure of N, is given by nP [(X;/b;j(n), j=1...,d) € -] with

corresponding intensity

ha(@y) = n (H bj(”)) fbj(n)an;, j=1,....d)

Therefore,

—00 ; xEG®
—log hy () ~ (g(2,) — 1)logn —

+o00 ; xeG”

as n — 00, where G° is the interior of the set G and G° is the complement of the
set G. The convergence of the mean measure of points N,, onto G gives convergence
in probability of N, onto G (Balkema and Nolde, 2010; Nolde and Wadsworth,
2022)). O

To match the scaling used in the standard gauge function convergence (6.4)), note
that condition is equivalent to

—t Mog f(bj(eNayj, j=1,...,d) — g(zx) (6.10)
as t — oo. Define the function h;(t) = —log(1 — F}(t)), it then follows that

hlt)=F'(1—e™)
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Putting this into (6.10]), equation is equivalent to
—t !log f(h‘;l(t).rt,j yJj=1,...,d) — g(x). (6.11)

We note that the resulting g may not be 1-homogeneous. To obtain a 1-homogeneous
gauge function g* from g, suppose we restrict ourselves to cases when h; € RV,,,

a; > 0. Recall the properties of regularly varying univariate functions:
L. h(tz)/h(t) — =™ as t — oc.
2. h € RV, implies h~! € RVy,, (Resnick, 2007, Proposition 2.6(v)).

Define the transformation Z; = h;(z;) and let f* be the joint density function of
(X1,..., X0)" = (h(X1),. .., ha(Xy))T. I (6.11)) holds, then by change of variables,

so does the following convergence

_t_l log f*(th'l (ajt,l)a s 7thd(mt,d))

= —t"og f*(tTe1,. .., tT0a)

d
= —t"og f(hi*(tia), ..., hy' (tFeq)) — Zlog (

J=1

d i, .
h] 1(t$t7j))

dzy ;

~ —t og f(RT(OFN™, . b ()T
o d ait-1d
—t Zlog T3 %h]‘ (t) (6.12)
j=1

= —t " log f(hT (O)FN™, .. hg (07
d d

_ d,_ _ _ .
—t7') "log (Ehjl(t)) — 7 (a7 = 1)log () (6.13)
j=1 j=1
— g(&/™, . EY) = gt (B, )

as t — oo. The asymptotic equivalence as a result of hj_l € RVa;l
implying (hj_l)’ € R\/aj—l_1 (see Proposition 2.5 of Resnick| (2007))). The first term
in line tends to zero as ¢ — oo by Proposition 2.6(i) of [Resnick (2007)).
The result is g*, the 1-homogeneous gauge function of the limit set associated to

Ny = {h;(X;;)/logn : j=...,d};_, g and its link to g, the gauge function of the
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limit set associated to N, = {X;;/h~'(logn) : j=...,d};_,. The nonstandard

convergence discussed in Proposition [6.3| can be formulated in terms of g*.

Proposition 6.4 (Standardised nonstandard convergence). Suppose X is d-
dimensional with joint density f, X; ~ Fj, and there exists functions h; € RV, for
j€{l,...,d}. Let f* be the joint density of (h1(X1),. .., ha(X4))". If the following
holds,

—t Mog f*(thi(ze;), j=1,...,d) — g*(x)

for the sequence x; — x and g* continuous, as t — oo, then the sample cloud

N = h(Xi),...,h(Xi) ci=1,...,n
logn logn

converges onto the limit set G* = {x € R? : g*(x) < 1}.

The proof of Proposition [6.4] follows from Proposition 2 of Nolde and Wadsworth
(2022).

Example: independent exponential and bivariate Gaussian components.
As an illustration of convergence under different marginal scalings, suppose we
consider random vectors of the form (X,Y)"T where X and Y are independent
standard exponential and normal random variables. The joint density of (X,Y)
is simply f(z,y) = (2r) Y2 *"2¥". The marginal functions are hy(t) = ¢ and
ho(t) = —log(1l — ®(t)) ~ t?/2, i.e., hy € RV,. The inverse marginal functions are
therefore h{'(t) = t and hy! € RV, /2. For the non-homogeneous gauge function
corresponding to the limit set of the sample cloud N, = {( Xi L) }n , we

T
logn’ «/2logn i=1
have

—t" log f(hy ' (t)x, hy " (H)y) ~ — t " log f(tz, V2ty)
— glz,y) =2 +y’

where ¢ is clearly not homogeneous. However, for the gauge function corresponding

to the limit set of the sample cloud N = { (L M) } , for a sequence iy, — y €
i=1

logn’ logn
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R such that |ty;| — 0o as t — oo, and letting g, = ha(y;), we have the convergence

—ttlog f*(tx, tho(y,)) = — t 'log f*(tz, t§,)

d
=—t"log f(tz,hy' (t§)) — t ' log (d—~h21(tgt))
Yt
~ =t Vlog f(tz, hy ' (£)7;%) — t " log (%hz‘l(t)@i/ 2)

~ — t Vlog f(tz, V2t5?) =t log (mz—lg;w)

Note that g*(z,y) = g(x,y"/?) is 1-homogeneous, as desired. Further note that the
condition |ty;| — oo as t — oo is needed in order to use Mills’ ratio to establish that

6.5.2 A coordinate transformation

In the case when log n-scaled sample clouds of the spectral random vector do not tend
to a non-degenerate limit set, the geometry of random vectors of the form £ + S
is not generally useful in describing extremal dependence between asymptotically
dependent random variables. Instead, in the bivariate setting, consider the joint
behaviour of M = (X, + X,), and V = X; — M — 5(X; — X,). Essentially, this
transformation separates the exponential and spectral components of the stochastic
representation into M and V, respectively. Furthermore, V' lives on a linear space,
and is therefore easier to handle than S. By change of variables, the joint density

of (M, V) is given by
oy (m,v) =2fx, x,(m +v,m —v)
Under the stochastic representation, we have

fuy(m,v) x1g, (m + max(v, —v))e’m’max(“””)

X fs(v — max(v, —v), —v — max(v, —v))
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The limit set associated with scaled copies of (M,V’) can be obtained from the
negative-logarithm of fj;y using the aforementioned standard or nonstandard
convergence techniques.

In general d-dimensions, we generalise the transformation to

d d
(M, V) = (dl Z X)X g—dt ZXJ) ,
j=1 j=1

where X _; is the random vector X with the final component removed. The resulting
in (M, V) is a random vector taking values in {(m,v) € R? : m +max(v, —1"v) >
0} with inverse transformation X = (M1+V,M—1"V) = (X _4, X4). The density
is therefore

fuv(m,v) =dfx(ml+v,m—1"v)

Under the stochastic representation, the (M, V') coordinate transformation amounts

to studying the behaviour of

d d
(M, V) = <E+d—125j, s_d—d—lzsj> ,
j=1 Jj=1

whose joint density can be obtained from fx(x) = 1g, (max(z))e™ @ fg(x —

max(z)),

vy (m,v) =g+ (m + max(v, —1Tv))e " max(@-1Tv)
fum, 1 17 (v,—1

T

x fs(v —max(v,1"v), —1"v — max(v, —1"v))

In this new coordinate system, interest lies in the behaviour of
—tlog fary (tm, h1(t)v) as t — oo for some o > 0 such that h~' € RVY/?.

This coordinate system can be used to study the tail behaviour using the gauge
function for multivariate distributions whose limit sets were previously shown to
the degenerate under the usual logn scaling. The most notable example of this is
the Hiisler-Reiss generalised Pareto distribution (Zhen Wai Olivier and Dombry),
2017), an important example in the literature due to its simple interpretation.

The Hiisler-Reiss model has gained recent popularity in graphical modelling due
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to its precision matrix having correspondence with the extremal graphical structure
(Hentschel et al., [2024)). Here, we derive the gauge function in the (M, V') coordinate
system for the bivariate Hiisler-Reiss model. We show that its tail behaviour is
equivalent to constructing a MGP random vector using a Gaussian generator for T

by comparing the gauge functions of both models.

Example: Gaussian generator This case is of particular interest because of its
similarities with the Hiisler-Reiss dependence structure (Kiriliouk et al., 2019; Wan/,
2024)). Suppose we have a generator T' ~ MVN,(0,%) and let S = T — max(T).
Kiriliouk et al.| (2019) derived the density fg, given by

1 L o P
e ——x X =
(27)(@-1)/2 |E|1/2 (1T%-11)1/2 P { 2 {

sl — max(z)) = S e

17311

The quadratic form in the exponential term of fs means that
limy o, —t~1log fs(tx) = 0 and so the scaled sample cloud {S;/logn}?, tends to a
degenerate limit set at {0}. The resulting MGP random vector E'+.S therefore has a
limit set which constitutes the diagonal line {@ € R% : 21 =29 = -+ = x4} coming
from the common exponential component. A more useful geometric interpretation
arises when inspecting (M, V). Let d = 2 and set A = X! — % Further
suppose ¥1 1 = Yoo = land ¥y = ¥y = p. Then A = 271(1—p)~1(1, —1)(1, —1)"
and the MGP density of X = E + S in the bivariate setting is given by

1 T
Ixy x, (21, 22) 1R+(max(x1,xg))e’max(zl’“) exp ~5 (g;l 232) A
T2

Therefore, in the (M, V') parametrisation,

fay (m,v)

o1g, (m + max(v, —v))e ™ mex—v)

1
X exp ) m2<1 1)A —|—2mv<1 1>A

1
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Figure 6.3: Limit set boundaries

associated to the bivariate MGP random vectors

with the Gaussian generator with correlation in the (M, V') representation, described
by the gauge function g(m,v) = m + (1 — p)~'v?. Left to right: p = 0.3,0.8,0.95.
Dotted line is the lower-bound of the support of the random vector (M, V), given
by {(m,v) : m + max(v, —v) = 0}.

1 —m— _ 1 1
— 1R (m + maX(’U, —’U))e m—max(v, v)e (m-+v) exp ——'U2 (1 —1> A
-1

Using the marginal function A € RV, on the V' component, the limit set associated

to the sample cloud N,, = {(%, \/1‘4?)} has gauge function
81/ ) i=1

1
g(m,v) =m + v (1 _1> A »

=m+ (1—p) " m+max(v,—v) > 0.

Using g(m,v) one could inspect the geometry of bivariate GP random vectors
generated from the bivariate Gaussian distribution as p increases. An example of
this presented in Figure 6.3, where it can be seen that an increase in p corresponds

to a narrowing of the limit set.

Example: bivariate generalised Hiisler-Reiss Pareto distribution The

Hiisler-Reiss MGP distribution is parametrised by a positive-definite d x d correlation

264



matrix > and has exponent measure density in exponential margins
1
Mz Y) = cexp {—5 (z7s 'w+dt (37T +21) ) }

where I';; = 3;; + X;; — 2%;; (Hentschel et al., [2024)). [Nolde and Wadsworth! (2022))
showed a degenerate limit set occurs in the bivariate setting, considering when ¥ =

2(1 — p)117. This setting results in the density

A(@, 5 p)
fla,y;X) =
ff{(u,v):max(u,v)>0} /\(U, U; p)du dv

o[ (E2 )

Nolde and Wadsworth| (2022) show that the limit set for the sample cloud
{( X Yy )}n is degenerate, falling on the line x = y.
i=1

logn’ logn

In studying the degree of asymptotic dependence between X and Y, a better
approach is to consider non-common scalings (as in Propositions and on the
vector (M, V), where M = (X 4+Y), and V = X — M. By change of variables,

fM,V(m, U) :QthXQ (m + v, m — U)

e~/ (1)

with independent marginal distributions M ~ Exp(1) and V' ~ N(0, (1 — p)/2).
This establishes that M behaves like an exponential random variable in the right

tail, and that V' is univariate Gaussian.

Using h(t) € RV, the limit set associated to the sample cloud N, =

{(é‘gﬂn, JKW)} B has gauge function g(m,v) = m + (1 — p)~1v?, while limit set

associated to the sample cloud N = {( M, M)} has gauge function
=1

logn?’ logn i

g*(m,v) = m +v. When focusing on N,, = {(%, \/l‘cfzgn> }i:1, which has gauge
function g(m,v;p) = m + (1 — p)~'v?, note that it is the same as in the Gaussian
generator example and has unit level set displayed in Figure [6.3]. This highlights

their equivalent limiting behaviour, as desired.
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6.6 Discussion

In this work, we brought together multivariate regular variation and the geometric
approach by considering the limit sets of MGP random vectors. Through studying
the (d — 1)-dimensional limit sets of the spectral components of the stochastic
representation of MGP random vectors, we began by showing that all bivariate MGP
random vectors whose spectral component have a non-degenerate limit set under
log n scaling have the same limit set. By studying the corresponding gauge function,
we illustrated how any problem involving inference on such MGP distributions can
be approached as a geometric multivariate extremal inference problem. When the
spectral component does not have a non-degenerate limit set under logn scaling, we
showed that alternative representations of the limit set can be used to effectively
separate the components of the stochastic representation to study the degree of
asymptotic dependence in MGP random vectors. We note that, while many results
are given for general d-dimensional random vectors, we mostly illustrate our findings
in the d = 2 setting, leaving further exploration for future work. In the MGP setting
where, copies of the spectral random vector converge to a valid limit set under logn
scaling, we illustrated that the truncated gamma inference method for geometric
extremes (Wadsworth and Campbell, 2024) can be used when considering the L..-
norm. While not covered here, this could potentially be extended to the nonstandard
convergence setting by performing a change of variables and inferring the o values
for the marginal regularly varying functions h; € RV, .

Through studying the MGP distribution, this work highlights some connections
between the classical MRV framework and the more recent geometric framework
for inference on the multivariate tail. By showing that one could derive the limit
set of MGP random vectors, it can then be used to study the strength of tail
dependence between the components as in the geometric framework. However, when
studying both methods, their differences also become apparent. While the geometric
framework aims to perform inference across the entire multivariate tail, the MRV

approach only focuses on the region where all d components grow large together. In
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Figure 6.4: Left, centre-left, centre-right: Realisations of Y; — r | {max(Y;) > r},
i =1,...,1000 for increasing r. The bivariate random vectors Y; have exponential
margins and are generated from a mixture model made up of equally-weighted

Gaussian and max-stable distribution with logistic dependence. Right: Realisations

of ¥; [ {[[¥ill, > r-(Yi/[[Yill,)}-

fact, in studying the limiting behaviour of Y; — r | {max(Y;) > r} as r — oo for
copies Y7, Ys, ... from a random vector Y, a key assumption in MRV is that any
values of of Y; that are not simultaneously extreme will be normalised to —oo. Take,
for example, Y following an equally-weighted mixture of Gaussian and max-stable
distribution with logistic dependence. MRV assumes the Gaussian contribution of
the mixture model, inducing asymptotic independence between the two components
of Y, should disappear when studying lim, ,~, Y¥; —7 | {max(Y;) > r} on the interior
of the support {z € R? : max(x) > 0}. Figure shows that, even with a very
large threshold r, this is not satisfied in practice. A much more realistic approach is
presented in the geometric setting. By not restricting to the L., threshold, a much
richer representation of the multivariate tail is used, as shown in Figure [6.4] right.
The framework is able to treat both components of the mixture model in a non-
trivial fashion. An immediate drawback of the geometric approach is that, unlike in
the MRV setting, one needs to estimate this radial threshold. In low-dimensions, this
is easily achieved through quantile regression (Fasiolo et all 2021} Wadsworth and
Campbell, 2024) or Bayesian semi-parametric methods (Papastathopoulos et al.,
2025). In higher dimensions, empirical (Wadsworth and Campbell, 2024) and

kernel density estimation (Campbell and Wadsworth, 2024)) approaches have been
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Figure 6.5: Left: Limit set of the modified Gaussian and max-stable logistic mixture
model. Centre: Realisations of Y; —r | {max(Y;) > r}, ¢ =1,...,1000 for increasing
r = 9.49. Right: Realisations of Y; | {||Yi||, > - (Y:/|Yill,)}-

proposed. Omne could simply use the L., threshold in the geometric approach;
however, it may not be descriptive enough to capture extremal behaviour across
the entire domain, particularly for semi-parametric methods.

In many instances, the convergence assumption in MRV makes it impossible
to study regions of the tail away from the joint exceedances. Take, for example,
a bivariate mixture model of equally-weighted max-stable logistic, and a Gaussian
with modified covariance matrix, 6='%, # > 1. The resulting distribution, whose
limit set is shown in Figure[6.5] has “scaled back” Gaussian components. In studying
Y, — r | {max(Y;) > r}, we see that the Gaussian behaviour is essentially removed,
leaving only the points lying on the joint extremal region shown. In essence, the
MRV framework only allows for studying extremes in this region. It may, however,
be desirable to study the tail behaviour away from the axes, when one variable has
extreme values and the other does not. From the Figure [6.5] right, we see that this
is still possible in the geometric setting for this example.

On the other hand, when interest lies in the behaviour of asymptotically
dependent random vectors and all components large, fitting the spectral component
in the MRV setting leads to more accurate inference compared to the geometric
approach. This is exemplified by the simulation studies in Chapter 3] When

considering bivariate data drawn from a distribution with asymptotically dependent
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components (Figure , probability estimates for lying in an a region when both
components are large are more accurate and have less variability when using
the MRV approach compared to any other competing framework. Behind this
observation is the fact that the limit set of MGP random vectors only depends on the
lower tail behaviour of the spectral vector S, as exemplified in Proposition [6.2 The
MGP framework allows one to capture the full distribution of S, which offers refined
estimates when extrapolating into regions where all variables are large. However,
MRV was outperformed by the other methods for estimating the probability of
lying in off-diagonal extremal regions, and when using non-asymptotically dependent

data.
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Chapter 7

Concluding Remarks

Throughout this work, focus lay on the geometric approach to multivariate extreme
value analysis. The idea of limiting geometry of scaled sample clouds is nothing new
(Davis et al.,|1988; |Kinoshita and Resnick, [1991). It was only in recent work (Nolde
and Wadsworth| 2022) that its full potential to characterise the entire tail behaviour
for random vectors with potentially complicated extremal dependence behaviour
came to light. However, many gaps in the literature still existed. Namely, given data,
how does one go about estimating the gauge function that is inherently linked to the
geometry of interest? This was the central focus for much of this work. Chapters|[3] [4]
and || did this in different ways. Chapters [3| proposed a likelihood-based approach
using parametric assumptions on the gauge function. Chapter 4] introduced model
flexibility by proposing a Bayesian semiparametric framework, but inference only
existed in two and three dimensions. Chapter [b| aims to increase the dimensionality
by proposing a simple piecewise-linear construction for the gauge function. Apart
from estimating the gauge function, Chapters and 5] all introduce methodologies
to estimate the radial threshold, above which we perform inference of the gauge
function. Each have their merit. Furthermore, Chapters |4 and |5| introduce models
for the angular distribution, and show that they can potentially be linked to the

gauge function as well.

In addition to the methodological work done with geometric extremes, theoretical
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considerations were taken. A key feature of the geometric framework is performing
inference in a radial-angular decomposition, rather than in Cartesian coordinates.
Chapter 3| derived the limiting behaviour of the radial component when the original
random vector has exponential margins, showing that its limiting behaviour depends
on the gauge function. Rates of convergence were also provided. Chapter [4]
does this as well in Laplace margins, and also angular densities are derived. In
Chapter [6] we derived the limit sets for a wide array of multivariate generalised Pareto
distributions, a family of distributions commonly studied and used in practical

applications.

Any approach for multivariate extremal inference is prone to shortcomings.
While the geometric approach addresses many of these shortcomings, its recent
novelty naturally leads to open-ended areas of exploration. In a radial-angular
decomposition, the geometric approach relies on modelling for exceedances above
a high radial threshold at a given angle. As the underlying distribution is often
intractable, an accurate estimate of this threshold is needed. This is particularly
the case in the semiparametric approaches presented in Chapters |4 and The
proposed methods either don’t scale well to high dimensions due to computational
difficulties or have inaccuracies in regions of the domain with little density. With this
in mind, work needs to be done to bypass these difficulties by improving this high
quantile estimation, or develop methodology to bypass the estimation of this high
quantiles in high-dimensions. Another area that needs further exploration is the
sensitivity of the truncated gamma model fit to the set quantile level for threshold
estimation. Throughout this work, we tend to set the threshold to be the 0.90 or
the 0.95 quantile of the radii conditioned on angles. This was simply set based
on intuition; we need a quantile high enough for the truncated gamma assumption
be approximately hold, but we need it to be low enough to have sufficient data
for maximum likelihood estimation. In the future, a numerical study of the pre-
set quantile’s affect on the quality of the resulting maximum likelihood estimates

is needed. It is clear that a bias-variance trade-off would occur, but it would be
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interesting to see its extent.

Issues also persist when fitting the gauge function to data as the dimension of
the data increases. The parametric models of Chapter [3]| are often too rigid for
the complex extremal dependence structure present in real-world applications, the
Bayesian semiparametric method in Chapter [4] rely on basis functions on a mesh
of the angular domain that are only defined in dimensions two and three, and the
piecewise linear approach in Chapter [f|struggles when data is missing in large regions
of the domain, a common feature of high-dimensional data. Machine learning-based
approaches have been introduced (Murphy-Barltrop et al., [2024b; De Monte et al.,
2025)), but it is unclear whether or not these are able to capture the tail behaviour
of very complex dependence structures.

The theoretical properties of the geometric approach remain relatively
unexamined. Specifically, the truncated gamma model proposed in Chapter
for large radial components of the radial-angular decomposition lacks any of the
classic statistical convergence guarantees. Maximum likelihood estimation is used,
and while it does inherently provide consistency and efficiency properties of the
parameter estimates, it is unclear how they depend on the threshold. The truncated
Gamma holds exactly as the threshold tends to infinity, but how do consistency
results for maximum likelihood estimates depend on the threshold at high but finite
levels? This is of interest, as we only consider these finite thresholds in practical
applications. As a start, this needs to be examined for the truncated gamma
likelihood with parametric gauges defined in Chapter [3]

Despite the current setbacks, there is no denying the potential for the geometric
approach to accurately characterise the entire multivariate tail of a random process.
Its simplicity in inference and probability estimation make it a powerful tool for
researchers and practitioners. A key test in the coming years is how well it performs
in real-world applications that occur in industry. However, based on preliminary
studies, it can be confidently said that the geometric framework should find its

place among the favoured approaches for extreme value analysis.
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