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Abstract

In multivariate extreme value analysis, interest lies in characterising the tail

behaviour of random vectors. The lack of natural ordering in the multivariate

setting, and the many possible combinations of tail behaviour for all the subgroups of

components of random vectors make this a difficult task. In this work, the geometry

of scaled copies of random vectors is used to characterise the tail of the underlying

probability distribution. While this geometry has been shown to provide useful

information about the tail behaviour of random vectors, we introduce methodology

to estimate it from data in a parametric, Bayesian semiparametric, and piecewise-

linear semiparametric manner. The geometry is used to model both the radial

and angular components of the pseudo-polar decomposition, a key feature of the

geometric framework. Links are made to the classical approach of multivariate

extremes by investigating the geometry of generalised Pareto random vectors, an

important model used in a variety of practical applications. Both the geometric and

the classical approach have their benefits and drawbacks. These will be discussed

along with a commentary on future work to be done in the multivariate geometric

framework.
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Chapter 1

Introduction

Multivariate extreme value analysis concerns itself with the characterisation of the

tail behaviour of random vectors. Difficulties arise due to the fact that data is

often not observed far into these tails, making statistical inference challenging.

It could also be difficult to account for the possible combinations of extremal

dependencies between components, that is, which components have the possibility

to grow large together. Furthermore, the lack of natural ordering of vectors make

this characterisation difficult. It’s easy to imagine the meaning of a single scalar

quantity to be large, but what does it mean for a collection of several scalar values

to be large?

Take, for example, daily measurements of carbon monoxide (CO, mg/m3) and

nitrogen dioxide (NO2, µg/m
3) in North Kensington, London. In urban areas in

particular, exposure to high air pollution levels can have negative health effects

(Holgate, 2017). For these two pollutants, exposure to high levels have been linked to

a reduction of oxygen supply to the heart in people with pre-existing conditions (Wu

andWang, 2005) and lung damage in people susceptible to respiratory illnesses (Seals

and Krasner, 2020). Understanding their behaviour at extreme levels is therefore

of interest to the general population. The daily maximum measurements of CO

and NO2 is shown from October to April 1996–2024 in Figure 1.1. Questions arise

naturally when trying to describe how these pollutants behave when their levels
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Figure 1.1: Measurements of CO and NO2 from the North Kensington, London

station of the UK-based Automatic Urban and Rural Network (AURN) air quality

monitoring network.

become dangerous to human health. For one, do values of CO and NO2 depend on

each other? When one becomes large, does the other? If not, do they have an inverse

relationship in the tails? When one is large, does that guarantee the other being

large? Furthermore, given the data we have available to us, can we estimate the

probability of previously unseen levels of these pollutants? Suppose we wanted to

know low likely it is to simultaneously experience CO levels greater that 15 mg/m3

and NO2 levels greater than 500 µg/m3. From Figure 1.1, it is shown that this

occurrence is never observed in the available data, so statistical estimation becomes

difficult.

It is exactly in these settings that multivariate extreme value analysis originated.

In multivariate extremes, assumptions are made on the data’s underlying unobserved

distribution to be able to make statements in unprecedented areas of a given

dataset’s domain. Suppose the process we are interested in, such as measurements of

CO and NO2, are thought of as observations from a random vector. More traditional
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methods based on the assumptions of multivariate regular variation (Resnick, 1987)

or hidden regular variation (Ledford and Tawn, 1996, 1997) assume the components

of this random vector grow large together at the same rate in order to estimate the

occurrence of rare events. For example, when CO is large, it is assumed that NO2

is as well. This is often not guaranteed in practice, and if assumed may lead to

inaccurate estimates of the occurrence of extreme events. Furthermore, traditional

methods may be limited in the locations of the tail in which one could characterise

extreme events. While they can be useful to estimate the frequency of all components

being large, they often struggle when at least one value is small.

In recent decades, other methods have gained popularity. Notably, rather than

modelling the behaviour of the entire random vector, it can be useful in practice to

instead condition on one component being large and model the remaining (Heffernan

and Tawn, 2004). While often viable for random vectors of length two, statistical

inference can be complicated for a practitioner in higher dimensions. For one, a

decision must be made as to which component to condition on. Furthermore, in

higher dimensions, one might be tempted to fit separate models, each one with a

different conditional component. When this is done, there is no theoretically-sound

way to link the models and use them to characterise the entire multivariate tail,

leaving the practitioner to make compromises and use other methods to join the

conditional models. Furthermore, in as low as two dimensions, the dataset may

exhibit complex tail behaviour. For example, values of CO and NO2 can potentially

grow together, while values of CO might also have extreme values when NO2 is

low. In this type of simulation the conditional approach will not be suitable. The

conditional approach can only model for when either both variables are large or

when one variable is large when the other is small, not both.

To remedy the issues of flexibility in multivariate extremes, the work introduced

in this thesis will instead use a new approach relying on the geometry of the

underlying distribution of the dataset. If you imagine a dataset forming a

multidimensional cloud, then the edges of this cloud describe the so-called limit set.
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Figure 1.2: Bivariate data (left) and the corresponding limit set in grey (right).

Take, for example, the two-dimensional data shown in Figure 1.2. If points from this

sample are scaled appropriately, and if the sample size of this dataset were allowed to

grow arbitrarily large, then it has been shown that the points would collect inside the

accompanying limit set. Supposing we knew the underlying probability distribution

for this data, i.e., how the data was generated, then it is possible to obtain a closed-

form expression for the limit set’s boundary. It has been shown in Nolde (2014)

and Nolde and Wadsworth (2022) that this set can be used to describe the extremal

dependence structure of a random vector. That is, the geometry can be used to

report if all the components of our random vector experience simultaneous extremes,

and which subgroups can be extreme together when the remaining components are

at moderate levels. Furthermore, the geometry can be use to describe several key

coefficients proposed in recent decades to describe the rate at which extremes can

occur in the random vector, linking several key ideas once thought to be disjointed.

Until recently, all work done in the geometric framework has been purely prob-

abilistic, using knowledge of data’s underlying distribution. With this knowledge,

the limit set has been derived and the extremal dependence structure has been

described. What has yet to be done is use an observed, finite-dimensional dataset

to estimate the limit set corresponding to the unseen underlying distribution of

the data. In this work, we show that this is possible when considering a radial-
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angular coordinate system rather than the Cartesian system. When conditioning

above a high radial threshold, we derive the radial component’s distribution for

several parametric examples, showing that it depends on the limit set boundary.

Maximizing the corresponding likelihood effectively estimates the limit set boundary

and therefore the geometry of the data. This is first done assuming parametric

forms on the geometry. We then extend to the semi-parametric setting, were we

show in smooth Bayesian and piecewise-linear frequentist approaches the limit set

boundary can be obtained without making any parametric assumptions on the

data. A candidate model for the angular distribution can also be obtained which

directly depends on the dataset’s geometry. With these distributions being defined

above a high radial threshold, we can draw radial-angular observations that, once

converted to Cartesian coordinates, represent an extreme sample lying in previously

unprecedented regions of the joint tail. This allows for the accurate estimation of the

frequency of potentially catastrophic events. We work in the entire angular domain,

making the geometric approach the first to perform accurate inference across the

entire tail region of random vectors.

This thesis is organised in the following manner. Chapter 2 covers some of

the background material mentioned above in greater detail. In it, the previous

developments for extreme value analysis in the univariate and multivariate setting

will be described, and the possible situations in which each method can fail will

be discussed. These shortcomings motivate the geometric framework, whose recent

probabilistic developments will be discussed further. A method to estimate the

geometry of data using parametric assumptions will be presented in Chapter 3. A

Bayesian semiparametric method is introduced in Chapter 4, along with a piecewise-

linear method in Chapter 5. In Chapter 6, an attempt is made to link the geometric

framework to the more classical multivariate extremes framework by inspecting the

geometry of generalised Pareto random vectors, a key family of distributions in the

classical extremes setting. Chapter 6 also aims to highlight the pros, cons, and main

differences between classical multivariate extremes and the geometric framework.
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Chapter 2

Background Material

2.1 Extreme value analysis in the univariate case

Extreme value analysis was first developed in the univariate setting. Suppose

the random variable X describes the behaviour of some process with continuous-

valued observations. For example, measurements of CO levels can be thought of

as observations from the random variable X. Perhaps the most typical way of

estimating the behaviour of the distribution of X at unseen levels is through the

maximum of a sequence of n observations X1, . . . , Xn so that interest lies in the

modelling of Mn = max{X1, . . . , Xn}. If there exists sequences {an > 0} and {bn}
such that

Pr

(
Mn − bn
an

≤ z

)
−→ G(z) ; n→∞, (2.1)

whereG is a non-degenerate distribution function, thenG is the distribution function

corresponding to a generalised extreme value (GEV) distribution, and has the form

G(z;µ, σ, ξ) = exp

{
−
[
1 + ξ

(
z − µ
σ

)]−1/ξ
+

}
(2.2)

with a+ = max(a, 0), for some location parameter µ ∈ R, scale parameter σ > 0,

and shape parameter ξ ∈ R (Fisher and Tippett (1928); Gnedenko (1943); see also

Coles (2001)). The GEV has support {z ∈ R : 1 + ξ(z − µ)/σ > 0}. The shape

parameter ξ is of particular interest, and through the Extremal Types Theorem
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(Theorem 3.1 of Coles (2001)), the value of ξ can dictate which family G belongs

to. When ξ = 0, G belongs to the Gumbel family with support z ∈ R. When ξ > 0,

G belongs to the Fréchet family with support z ∈ [µ − σ/ξ,∞). When ξ < 0, G

belongs to the Weibull family with support z ∈ (−∞, µ − σ/ξ]. However, when

performing statistical analysis it is more convenient to consider the unifying form

presented in equation (2.2).

Given a set of observations x1, . . . , xn of a random variable X, suppose one

wishes to make statements about previously unseen extreme observations of X by

inferring the parameters (µ, σ, ξ) of the GEV. Given data, it is generally not known

what sequences of constants {an} and {bn} satisfy (2.1) in order to assume the GEV

form. However, by rearranging within (2.2), it follows that

Pr(Mn ≤ z) ≈ G(z;µ∗, σ∗, ξ)

for large n, where µ∗ = anµ + bn and σ∗ = anσ. As a result, it is not necessary to

consider the normalising sequences when fitting the GEV, and a likelihood-based

approach can be obtained to estimate unknown location, scale, and shape parameters

(µ, σ, ξ). To do this, the n datapoints are split into m partitions (or “blocks”), and

the maximum value in each block is taken resulting in m block maxima observations

z1, . . . , zm. The block maxima are assumed to be iid observations from a GEV

distribution, and parameter estimates can be obtained by minimising the negative

log-likelihood constructed from the derivative of distribution function (2.2):

ℓ(µ, σ, ξ; z1, . . . , zm) =m log σ +

(
1

ξ
+ 1

) m∑
i=1

log

{[
1 + ξ

(
z − µ
σ

)]
+

}

+
m∑
i=1

[
1 + ξ

(
z − µ
σ

)]−1/ξ
+

. (2.3)

This is only possible if every block maximum point zi lies in the domain of the

GEV, zi ∈ (µ − σ/ξ,∞) for i = 1, . . . ,m. With parameter estimates obtained

from standard optimisation tools, one could extrapolate into unobserved regions of

the tail of the distribution of maxima. For example, given n observation of CO,

one could estimate parameters (µ, σ, ξ), then use the maximum likelihood estimates

7



(MLEs) (µ̂, σ̂, ξ̂) to estimate the probability that the maxima of a block of size n/m

exceeding z̃ > zj, j = 1, . . . ,m, through P̂r(Z > z̃) = 1 − G(z̃; µ̂, σ̂, ξ̂). Within the

block maxima approach, the notion of return-levels is a popular and interpretable

tool. For a return period 1/p, p ∈ (0, 1), and m block maxima observations, a

quantity of interest is the level zp that is expected to be exceeded on average once

every 1/p blocks. As an example, suppose m = 365 days, interest may lie in the

level of CO expected once every 1/p years (ignoring leap years). Given parameter

estimates, one can obtain an estimate ẑp by solving for zp in the relation p =

1 − G(zp; µ̂, σ̂, ξ̂). Since the resulting estimate is simply a function of the MLEs,

associated uncertainties related to ẑp can be obtained via the delta method. Return

levels of the original random variable X can be similarly obtained by solving for zp

in p = 1 − G1/n(zp; µ̂, σ̂, ξ̂), a result of the property that n iid copies of X satisfy

Pr(max(X1, . . . , Xn) ≤ z) = [Pr(X ≤ z)]n.

With this simple inference procedure, the block maxima approach is potentially

a powerful tool for practitioners. The GEV distribution within the block maxima

framework has been used for modelling tasks in areas like climatology (Carter and

Challenor, 1981; Buishand, 1989; Padoan and Rizzelli, 2024) and oceanography

(de Haan, 1990; Tawn, 1992; Robinson and Tawn, 1997; Jonathan and Ewans, 2013).

Despite its practicality, statistical inference of the GEV model may shed light on

some drawbacks. For one, in minimising the objective function in (2.3), it is nearly

impossible to estimate ξ̂ near 0 when desired. Therefore, if a practitioner notices

small estimates of ξ, they could then re-estimate the parameters using the Gumbel

distribution function in place of (2.2), but there is no principled way of deciding

the threshold around 0 for such a re-fit. Furthermore, asymptotic normality of the

maximum likelihood estimates (µ̂, σ̂, ξ̂) is only available if ξ̂ > −0.5 (Smith, 1985;

Bücher and Segers, 2017). Though values of the shape parameter rarely lie below

−0.5 in practice, it still may occur, leaving the practitioner unable to get the usual

uncertainty quantities related to maximum likelihood estimates. Another downside

of the block maxima approach is that much of the initial data is discarded during
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inference. Several of these discarded extremal observations may be otherwise useful

in describing the tail behaviour of X.

Given the limitations of the block maxima approach for inference of univariate

extremes, it may be beneficial to instead consider the behaviour of X above some

high threshold value u. For a random vector X, the Pickands–Balkema–De Haan

theorem (Balkema and de Haan, 1974; Pickands, 1975) states that for a large class of

distributions, the conditional distribution X | X > u converges to a non-degenerate

excess distribution as u→∞, akin to the convergence presented in equation (2.1).

For high enough u, a consequence of Theorem 1.5.1 of Ledbetter et al. (1983) is that

we can use the approximation

Pr (X > x|X > u) ≈
[
1 + ξ

(
x− u
σ

)]−1/ξ
+

. (2.4)

The form (2.4) suggests the upper-tail behaviour follows the generalised Pareto (GP)

distribution, with location parameter u ∈ R, scale parameter σ > 0, shape parameter

ξ ∈ R. The GP distribution is commonly characterised through its survival function,

Pr (X > x) ≈ ζu

[
1 + ξ

(
x− u
σ

)]−1/ξ
+

(2.5)

for x in the domain {x ∈ R : 1 + ξ(x− u)/σ > 0, x > u}, where ζu = Pr (X > u)

can be estimated empirically as u is often chosen to be a high quantile yet still in

the range of observed data (Pickands (1975); Davison and Smith (1990); see also

Coles (2001)).

Use of the GP distribution to model threshold exceedances is referred to as the

peaks-over-threshold framework. Given a set of observations x1, . . . , xn, the first

step to statistical inference is choosing a high threshold u. Once the threshold u is

chosen, maximum likelihood estimates of the remaining GP parameters (σ, ξ) can be

obtained by minimising the negative log-likelihood constructed from the derivative

of the left-tail probability associated with (2.4):

ℓ(σ, ξ;x1, . . . , xn) =−
∑
i:xi>u

log

[
σ−1

[
1 + ξ

(
xi − u
σ

)]−1/ξ−1
+

]
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With MLEs (ζ̂u, σ̂, ξ̂), one can extrapolate far into the tail ofX by directly computing

the probability of exceeding x∗ via (2.4), where x∗ > xi, i = 1, . . . , n. As in the

block maxima setting, the notion of return-levels is a popular tool in the peaks-over-

threshold framework. Commonly formulated as the level that is exceeded on average

once every m observation, the return level xm is the solution to 1/m = Pr(X > xm).

Given MLEs (σ̂, ξ̂), an estimate x̂m could be obtained through inverting the GP

upper-tail probability in the approximation (2.5), with the associated uncertainty

obtained via the delta method, as in the block maxima setting.

Due to its intuitive nature and easy applicability, the GP distribution within the

peaks-over-threshold framework has been influential, having been applied to fields

such as climatology (Grady, 1992; Tabari, 2021; Pacifici et al., 2025), extreme wind

events (Walshaw, 1994; Simiu and Heckert, 1996; Outten and Sobolowski, 2021),

and hydrology (Fitzgerald, 1989; Acero et al., 2011; Agilan et al., 2021). While the

peaks-over-threshold method provides the practitioner with a better use of data to

study the tail behaviour of a random process, the numerical issues when ξ ≈ 0 that

were present in the model fitting stage of the GEV are present here as well. In

addition, a major drawback of the peaks-over-threshold approach is in the selection

of the threshold u. Davison (1984), Smith (1984), and Davison and Smith (1990)

all advocate for the use of the mean residual life plot in selecting u. The idea is that

when modelling the excesses of n iid copies X1, . . . , Xn of X above a high threshold

u, a consequence of the GP distribution is that the expected value E[X − u | x > u]

should be linear in u. Therefore, in plotting an empirical estimate of this expectation

against u, select the lowest value of u above which this plot seems linear. In addition

to this being a visual tool and thus prone to user error, there may be several values

of u above which the plot appears linear. There may also be no such points. Also

outlined in Coles (2001), an alternative method is by fitting the GP distribution at

a variety of thresholds u and selecting the lowest value such that threshold stability

holds, a key property of the GP distribution. In this method, at a proposed threshold

u, a GP is fitted at u and at a higher threshold, and the parameter estimates for
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the σ and ξ should be the same at both thresholds. This may not be ideal, as

high variability in MLEs may be introduced if fitting above a threshold that is too

high. Since the peaks-over-threshold framework has been introduced, a number of

alternative methods for selecting u have been introduced, with more complications

arising if the iid assumption in collected data is not satisfied. However, a “one size

fits all” approach has not been introduced, leaving the practitioner to experiment

with the dozens of proposed methods available.

Despite this, both the block maxima and the peaks-over-threshold frameworks

lead to useful methodological procedures that have applications in numerous fields.

In fact, the similarities between the GEV distribution function (2.2) and the GP

conditional survival function (2.4) is no coincidence. Through the use of Poisson

point processes, it can be determined that the the block maxima and peaks-over-

threshold frameworks are equivalent. By considering the number of points lying

above some large value u in some interval and letting the sample size grow large,

one recovers a Poisson point process with mean measure Λ(u). The events of the

recentered and rescaled maxima being below a certain value (see (2.1)) corresponds

to the observing no values in a particular region. Using Λ(u) and the void probability

expression of a Poisson point process, we recover the GEV (2.2). Furthermore, if

Λ is factorised into a time component Λ1 and an amplitude component Λ2, the

conditional probability (2.4) in the peaks-over-threshold approach can be recovered

via Λ2([x,∞))/Λ2([u,∞)) It is also worth nothing that extensions to both the GEV

and the GP distributions in the case of nonstationary data have been proposed by

several authors, but this is beyond the scope of this introduction.

2.2 Multivariate extremes

Suppose one wishes to model the extreme tail behaviour of multiple simultaneous

processes. Can extreme value theory be extended to the multivariate setting? As it

turns out, by making assumptions on the underlying multivariate distribution of the
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processes, one could accurately make statements about the nature of the data beyond

its observable domain. Classical approaches like multivariate regular variation make

assumptions on the limiting behaviour of the joint distribution function. Though

these assumptions hold often in known distributions and lead to rich theoretical

guarantees, they result in inferential tools that are often not flexible enough to

extrapolate into the entire tail region. Furthermore, the resulting extrapolation

assumed a tail decay rate that is only valid if the variables obtain simultaneous

extreme values. To remedy these issues, an approach was introduced in which a

random vector conditioned on one variable being large is assumed to have a non-

degenerate limiting distribution function. Again, this assumption tends to hold for a

wide variety of multivariate distributions; however, in-practice this is modelled using

a misspecified multivariate Gaussian distribution, and is not flexible if the underlying

random vector has a complex mix of extremal dependencies. As an alternative, the

work presented in this thesis instead makes an assumption on the regularity of the

limiting joint density on the log-scale. Like the other approaches, this assumption

holds for several known multivariate distributions. By making this assumption, a

rich characterisation of the entire multivariate tail presents itself. This allows us to

perform extrapolation in any direction for any extremal dependence structure.

2.2.1 Tail dependence of random vectors

To approach extreme value analysis in the multivariate setting, one needs to take

into account the extremal dependence behaviour between the components of the

multivariate process. Let Y = (Y1, . . . , Yd)
⊤ be a random vector where each

of the d components follow a univariate distribution with distribution function

FYj . An important characterisation of Y is to distinguish which collections of

components experience simultaneous extremes. This is traditionally characterised

via the following extremal dependence coefficient,

χC(u) =
1

1− u Pr
[
FYj(Yj) > u , j ∈ C

]
; C ⊆ {1, . . . , d}, |C| ≥ 2
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for u > u0, where u0 ∈ [0, 1] is close to 1, and |C| denotes the cardinality

of the set C. If limu→1 χC(u) > 0, then we say that the variables indexed

by C experience simultaneous extreme values, and are therefore asymptotically

dependent. Conversely, if limu→1 χC(u) = 0, we say that the variables indexed by

C do not experience simultaneous extreme values, and are therefore asymptotically

independent.

In trying to examine the relationship between components of a random vector

in the tails, it is beneficial to have them on the same scale. If one component

is orders of magnitude larger than the others, for example, it may obfuscate any

dependence information. For this reason, copulas have become a useful tool in

extremal dependence modelling. Given an unstandardised random vector Y =

(Y1, . . . , Yd)
⊤ with potentially unequal marginal distribution functions FY1 , . . . , FYd ,

the copula is the joint distribution function corresponding to Y in uniform margins,

C(u1, . . . , ud) =Pr [FY1(Y1) ≤ u1, . . . , FYd(Yd) ≤ ud]

=Pr
[
Y1 ≤ F−1Y1

(u1), . . . , Yd ≤ F−1Yd
(ud)

]
,

where F−1Yj
is the quantile function corresponding to Yj. The copula is the joint

distribution function of the vector U = (FY1(Y1), . . . , FYd(Yd))
⊤ corresponding to

Y , but in standard uniform margins. Given an observed dataset {y1, . . . ,yn} ∈ Rd

with unknown marginal distributions, a common way of obtaining observations in

uniform margins is through the empirical distribution function,

F̂Yj(y) =
1

n+ 1

n∑
i=1

1(−∞,yi,j ](y). (2.6)

In the expression (2.6), 1A(x) is the indicator function, taking values 1A(x) = 1 if x ∈
A and 1A(x) = 0 if x /∈ A. Using the theoretical property from Pickands (1975) that

univariate threshold exceedances follow a GP distribution, Coles and Tawn (1991)

take the approach of fitting the GP model (2.5) above a high marginal threshold u.

As points are more dense, the empirical distribution function is suitable in the bulk

of the marginal data for approximating the underlying true distribution function.
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Performing the marginal transformation this way ensures that the most extreme

observations in a dataset preserve their relative magnitude, and the availability

of a parametric marginal distribution function above a threshold is useful when

transforming back to original margins after inference. This marginal transformation

has since been adapted for a GPD fit in both the left and right tails of the marginal

distribution (see, for example, Simpson and Tawn (2024a) and Papastathopoulos

et al. (2025)). Define uL and uR to be thresholds in the left and right tails of the

marginal distribution, respectively. Once GP parameters are estimated beyond these

thresholds, the resulting distribution function estimate is given by

F̂Yj(y) =


1− (1− ζuL)

[
1 + ξ̂L

(
uL−y
σ̂L

)]−1/ξ̂L
; y < uL

1
n+1

n∑
i=1

1(−∞,yi,j ](y) ; y ∈ (uL, uR)

1− ζuR
[
1 + ξ̂R

(
y−uR
σ̂R

)]−1/ξ̂R
; y > uR

Note that, while ζuR is easily estimated using the empirical distribution function,

ζuL is estimated using 1− (n+1)−1
∑n

i=1 1[yij ≥ uL], since few data points lie below

uL. Also note that in some cases, the left tail of the original marginal distribution

may have high density; therefore, only using a GPD fit in the right tail is sufficient

in approximating the underlying distribution function.

Using the copula directly, one could make statements about the tail be-

haviour between components of Y ; however, many statistical inference tools

for multivariate extremes rely on other marginal forms. Suppose F∗ is the

univariate quantile function corresponding to the target marginal distribution, then

(F−1∗ (U1), . . . , F
−1
∗ (Ud))

⊤ is the vector associated to Y whose margins follow the

desired distribution. The more common approaches benefit from components having

a heavy-tailed distribution. Common choices are Pareto margins, whose quantile

function is given by F−1∗ (u) = 1/(1− u), or the Fréchet distribution, whose quantile
function is given by F−1∗ (u) = −1/log(u). Recently introduced frameworks for

multivariate extremes rely on light-tailed margins, such as exponential margins

with quantile function F−1∗ (u) = − log(1 − u) or Laplace margins with quantile
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Figure 2.1: Left: Observations from a joint distribution with unequal margins.

Centre: The same data, standardised to uniform margins. Right: The standardised

data in exponential margins.

function F−1∗ (u) = log(2u) if u ≤ 1/2 and F−1∗ (u) = − log(2(1 − u)) if u > 1/2.

These marginal transformations are illustrated in Figure 2.1. The original data was

constructed such that, while the joint dependence is Gaussian, the first component

has standard Fréchet margins and the second component is standard normal. In

this construction, it is not clear whether or not the two variables are dependent

or independent in the tails. In uniform margins, it becomes obvious that data

collects in the lower-left and upper-right corners. This is a sign that the two

variables don’t achieve extreme values simultaneously, a feature known to hold in the

Gaussian dependence. Lastly, data presented in exponential margins can be used in

a variety of frameworks to obtain information on the joint tail, such as estimating

the probability of observing data in a range of extreme values. In the right-hand

plot of Figure 2.1, for example, we see that the data does not show a tendency to

obtain simultaneous extremes, confirming what is observed on the uniform scale.

Throughout this work, we will see that standardising to marginal distributions with

exponential-type behaviour leads to joint distributions with desirable mathematical

properties.

15



2.2.2 Multivariate and hidden regular variation

In addition to gaining insight into a random vector’s extremal dependence structure,

we also wish to use this information to estimate probabilities of lying in the tails

of the underlying joint distribution. A classical approach to going about this is by

assuming its distribution function is multivariate regularly varying (MRV). In the

MRV framework, it is assumed that, when appropriately scaled, the probability of

random vectors lying in a region away from the origin converges vaguely to a Radon

measure ν that lives on [0,∞] \ {0}. For some arbitrary random vector Y with

common margins, this amounts to assuming that there exists a function b(t) → ∞
as t→∞ such that

tPr

[
Y

b(t)
∈ ·
]
→ ν ; t→∞, (2.7)

with convergence holding vaguely on the cone [0,∞] \ {0}. Resnick (2007) remark

that, if the margins Yj are identically distributed with distribution function FY , a

good choice for the scaling function is b(t) =
(

1
1−FY

)←
(t). Suppose we consider the

random vector Z with standard Pareto margins. Further suppose that we consider

a set A ⊂ (1,∞] and that operations on sets behave as expected, i.e., h(A) = {x ∈
(1,∞] | h−1(x) ∈ A} for h invertible and the operation h−1(x) done componentwise.

In this setting, the MRV assumption can be expressed as

Pr [Z ∈ tA] ∼ t−1ν(A) ; t→∞, (2.8)

where “∼” denotes asymptotic equivalency: a(t) ∼ b(t) if limt→∞ a(t)/b(t) = 1.

Equivalently, suppose X = log(Z) has margins Xj = log(Zj) following the lighter-

tailed standard exponential distribution. Then assumption (2.8) amounts to

Pr [X ∈ B + t] ∼ e−tν(eB) ; t→∞. (2.9)

where B = log(A) ∈ (0,∞]. If the assumption of MRV is assumed to hold, then one

can begin to estimate extremal probabilities in the multidimensional space. Given n

independent observations of the random vector X, suppose that the value of t > 0

is large, but the set B + t lies within of the range of data. Suppose we have v > 0
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Figure 2.2: Two examples of extrapolation within the multivariate regular variation

and hidden regular variation frameworks for bivariate data in standard exponential

margins.

large such that the set of interest B+ t+ v is outside of the range of observed data.

By assumption (2.9), it also holds that

Pr [X ∈ B + t+ v] ∼ e−(t+v)ν(eB)

∼ e−v Pr [X ∈ B + t] ; v, t→∞. (2.10)

Therefore, under MRV, one can scale back the set linearly by a factor of v until

it is in the range of given data and can be estimated empirically. The e−v term is

a correction factor accounting for the scaling. This scaling procedure is shown for

exponential margin random vectors in Figure 2.2 for two different sets B.

In some settings, it may be more suitable to perform inference in a radial-angular

setting rather than the usual Cartesian framework, and the assumption of MRV can

equivalently be adapted for this. In the Pareto margin setting, define the radial and

angular components corresponding to Z via

(R,W ) = (∥Z∥ ,Z/∥Z∥) ∈ (0,∞]× Sd−1,

where ∥·∥ is a norm and Sd−1 = {w ∈ Rd | ∥w∥ = 1} is the (d − 1)-dimensional

simplex. Through Theorem 6.1 of Resnick (2007), the convergence assumption (2.8)
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is equivalent to

tPr

[(
R

b(t)
,W

)
∈ ·
]

v−−→ ν = να ×H ; t→∞.

b(t) =
(

1
1−FR

)←
(t), να is a Lévy measure of the radial component R on (0,∞].

Pareto margins are a popular choice, because in this setting, α = 1 and να

reduces to the simple form να((−∞, x]) = 1/x. The component H is the so-called

spectral measure, the probability measure associated with the angular component

W (de Haan, 1970; Resnick, 2007). The MRV assumption has found many practical

applications when estimating the occurrence of rare events in real-world applications

such as finance (Resnick, 2004; Cai et al., 2011; Das and Fasen-Hartmann, 2018;

Kiriliouk et al., 2019), oceanography (Coles and Tawn, 1991, 1994; De Haan and

De Ronde, 1998), and hydrology (Kiriliouk et al., 2019).

The MRV framework naturally leads to the notion of a multivariate analogue

of the peaks-over-threshold approach introduced in Section 2.1. In standard

exponential margins, this amounts to modelling for excesses in the domain {x ∈ Rd |
x > 0}. These excesses are modelled through the multivariate generalised Pareto

(MGP) distribution (Tajvidi, 1995; Rootzén and Tajvidi, 2006; Rootzén et al.,

2018a,b), defined through an exponent measure Λ that lives on [−∞,∞) \ {−∞}
and is finite on all sets bounded from below. The exponent measure is evaluated

using the convention Λ(x) := Λ([−∞,x) \ {−∞}), and Λc(x) := Λ([−∞,∞) \
[−∞,x)) is the exponent measure evaluated at the complement of the set [−∞,x).

The distribution and density functions of MGP random vectors are respectively

defined for random vectors in exponential margins:

Pr (X ≤ x) = lim
y→∞

Pr (Y − y1 ≤ x|Y > y1) (2.11)

=
Λc(min(0,x))− Λc(x)

Λc(0)
,

f(x) =
λ(x)

Λc(0)
,
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where Y is some random vector and λ is the intensity corresponding to Λ,

Λ(B) =

∫
B

λ(x)dx,

where integrating over the set B ⊆ Rd denotes integrating over all elements x ∈ Rd

such that x ∈ B. If the convergence in (2.11) holds, then we say that Y is in

the domain of attraction of the MGP distribution. There are popular parametric

choices for Λ, most notably the Hüsler-Reiss model (Engelke et al., 2015; Zhen

Wai Olivier and Dombry, 2017) that has seen recent popularity in modelling sparse

high-dimensional modelling tasks present in hydrology and complex airline networks

(Engelke et al., 2022; Hentschel et al., 2024).

Despite being a powerful tool used for several decades in practical applications,

MRV has some limitations. For one, the tail decay factor e−v in the approximation

(2.10) only characterises tail decay behaviour when all d components are asymptoti-

cally dependent. Furthermore, the direction of extrapolation is limiting; it is entirely

possible that the less extreme set B+ t is also not in the range of the n observations

(see Figure 2.2). To remedy the tail decay correction for variables that don’t obtain

simultaneous extremes, the notion of hidden regular variation (HRV) was introduced

(Ledford and Tawn, 1996, 1997), leading to an update of the convergence (2.7). In

Pareto margins with shape parameter α > 0, this amounts to the assumption

tPr

[
Z

bη(t)
∈ ·
]
→ νη ; t→∞ (2.12)

where the scaling function bη is chosen to be regularly varying of order η ∈ [0, 1/α]

and the limit measure νη is homogeneous of order −1/η. By the same intuition used

in the MRV framework, (2.12) can be reformulated to perform the extrapolation,

stated here in exponential margins:

Pr [X ∈ B + t+ v] ∼ e−v/η Pr [X ∈ B + t] ; v, t→∞.

The added parameter η is called the coefficient of tail dependence, and accounts

for the possibility of joint tails growing at a slower rate, allowing for statistical
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modelling when the d components of X don’t obtain simultaneous extremes.

Through comparing the convergence (2.12) to that of (2.7), HRV can be thought

of as a generalisation of MRV in the sense that, when all d components of X are

asymptotically dependent, we recover the MRV setting and it follows that η = 1.

Otherwise, we have η < 1. The HRV framework has successfully been used in the

study of internet usage, hydrology, and extreme weather (Heffernan and Resnick,

2005; Ramos and Ledford, 2009).

2.2.3 The conditional approach

While the HRV framework solved the tail decay issues that MRV suffers from, it still

only extrapolates to the joint tail region (Wadsworth and Tawn, 2013). To remedy

the issues with extrapolation within MRV and HRV, and to be able to account for

a wider range of extremal dependence structures, a conditional modelling approach

(Heffernan and Tawn, 2004) was introduced. Given the d-dimensional random vector

X in light-tailed margins and an index j ∈ {1, . . . , d}, the conditional framework

assumes the existence of normalising functions aj, bj : R→ Rd−1 such that

Pr (X−j ≤ aj(xj) + bj(xj)zj|Xj = xj)→ Gj(zj) (2.13)

as xj → ∞, where X−j is the vector X with the jth component removed, and

Gj is a non-degenerate distribution function. Defining the residual vector as Zj =

bj(xj)
−1 (X−j − aj(xj)) and considering a fixed value x > 0, the assumption (2.13)

can be reformulated as

Pr (Zj ≤ zj, Xj − x0 = x|Xj > x0)→ e−xGj(zj)

as x0 → ∞. For k ∈ {1, . . . , d} \ {j}, a common choice of normalising functions

is aj,k(x) = αj,kx and bj,k(x) = xβj,k . With this in mind, the main modelling

assumption is that there exists parameters αk and βk > 0 such that, for large x0,

Zj,k|Xj > x0 =
Xk − αj,kXj

X
βj,k
j

∣∣∣∣∣Xj > x0 ∼ N (µk, σ
2
k).
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That is, after singling out component j from the random vector X, it is assumed

that a residual value constructed from each of the remaining components can

independently be modelled using the normal distribution. Once the 2(d − 1)

parameter values are estimated, one can estimate the probability of lying in extremal

regions using the relation

Pr (X ∈ B) = Pr (Xj > x0) Pr (X ∈ B|Xj > x0) (2.14)

The first probability in the right-hand side of (2.14) can be computed empirically,

as the threshold level x0 is chosen to be high, but still within the range of data.

Alternatively, x0 can be chosen such that Pr (Xj > x0) = 1 − τ for some value τ

close to 1, but still low enough to allow for sufficient data when obtaining parameter

estimates. To estimate the second probability, samples are drawn from X | Xj >

x0, and an empirical probability is taken by counting the number of points in the

extremal sample lying in region B. This sample is taken by first sampling points

from the marginal standard exponential distribution corresponding to Xj. The

memorylessness property of the exponential distribution is used to convert these to

be observations from Xj|Xj > x0 . For the remaining margins, points are sampled

with replacement from the empirical distribution of each of the d− 1 residuals, i.e.,

components Zj,k ofZj. In using the sample from Xj|Xj > x0 for each of the residuals

Zj,k, we induce dependence between the components of samples from Zj. Using the

parameter estimates (α̂i,j, β̂i.j) for i ∈ {1, . . . , d} \ {j} and the extremal exponential

sample from Xj|Xj > x0 , we can convert the sampled residuals back to the marginal

scale of the random vector. Joining the sample observations from each of the d

margins, one ends up with vector observations fromX | Xj > x0, and the probability

Pr (X ∈ B|Xj > x0) can be empirically estimated. A convenient approach in the

conditional extremes framework is to fit the residuals above a relatively high quantile

x0 and use the resulting parameter estimates to perform extrapolation above an

arbitrarily large quantile x⋆0 > x0. The probability of interest (2.14) can then be

estimated by instead computing Pr(Xj > x⋆0) Pr (X ∈ B|Xj > x⋆0). For example, an

extremal sample using the conditional approach is illustrated in Figure 2.3 for three
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Figure 2.3: Examples of extrapolation (blue points) within the conditional extremes

(Heffernan and Tawn, 2004) framework on bivariate data. From left to right, the

data is asymptotically dependent, asymptotically independent, and a mixture of the

two.

separate datasets by first fitting the model for X | X1 > x0 with x0 set to the 0.95

quantile of X1, then performing extrapolation above x⋆0 = x0 + 4 log(10). Due to

its flexibility, the conditional extremes approach has found numerous applications in

areas such as oceanography (Ewans and Jonathan, 2014), finance (Nolde and Zhang,

2020), and hydrology (Richards et al., 2022).

While the conditional extremes approach provides a more flexible inference tool

for multivariate extremes compared to MRV and HRV, it does have its own potential

downsides. Particularly in higher dimensions, it isn’t always obvious which Xj to

condition upon being large in order to study the desired multivariate tail region.

One could estimate the conditional extremes model d separate times, each time

conditioning on a different variable being large; however, there is no theoretical

link between the d models, meaning there is no way to join the d models to study

the entire multivariate tail. There have been suggestions to bypass this difficulty

in practice, such as through importance sampling (Wadsworth and Tawn, 2022).

Another limitation with conditional extremes is the lack of flexibility in dependence

structures on which modelling can be performed. Take for instance the data shown

in Figure 2.3. The data on the right-hand plot was generated such that the joint

tail grows simultaneously at a very fast rate, while each variable can obtain extreme
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values on their own when the other is at intermediate values, but at a slower rate.

In the conditional extremes framework, this results in two optimal values of the α2,1

parameter. We see in the extremal sample generated that, while the conditional

model captured the behaviour of the asymptotically dependent and asymptotically

independent data, it failed to capture both in the mixture model data, instead

appearing to perform a form of interpolation between asymptotic dependence and

asymptotic independence. This may lead to inaccurate estimation of the joint tail

behaviour. One approach to handle this difficulty is through the use of mixture

models (Tendijck et al., 2023). However, this is only feasible in low-dimensions, as

the number of mixture components grows quickly as the dimension increases.

2.3 Geometric multivariate extremes

Given the potential downfalls of the aforementioned modelling approaches in

multivariate extremes, it would be desirable to have an approach that was able

to model across the entire tail region of random vectors when these vectors could

have any dependence structure. Being able to model across the entire tail region

refers to being able to make accurately predict the behaviour of a random vector

when at least one of its any d components is large, and being able to model any

dependence structure means that we can accurately make statements about this

behaviour regardless of how any combination of the vector’s components interact

with each other in the tails. Recent literature has hinted towards a promising new

avenue within multivariate extremes, using the geometry of the dataset’s underlying

data generating mechanism. Before this is discussed, it is important to define what

exactly is meant by the geometry of data. Like in the approaches mentioned in

Section 2.2, an assumption must be made on the data’s underlying distribution

before any statements can be made about its geometry. Suppose n independent

copies X1, . . . ,Xn follow the same distribution as the random vector X, where the

margins Xj follow the standard exponential distribution. Further suppose the joint
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density of X is given by fX . The main assumption in the geometric approach is

that the log-scale of the density fX is well-behaved in the tails, or

− log fX(tx) ∼ tg(x) ; t→∞. (2.15)

The limiting function g is called the gauge function, is positive-valued, and is 1-

homogeneous. If the density fX corresponding to random copiesX1, . . . ,Xn satisfies

assumption (2.15), then as the sample size n grows arbitrarily large, the scaled

sample cloud Nn = {X1/log n, . . . ,Xn/log n} converges in probably onto a limit

set, defined by

G =
{
x ∈ Rd

∣∣ g(x) ≤ 1
}
. (2.16)

That is, as n increases, the probability of observing points in Nn outside of G tends

to 0. As an illustration, Figure 2.4 displays sample clouds of size n = 5, 000 in

dimensions d = 2 and 3, with the corresponding limit set and gauge function unit

level set corresponding to the underlying distribution. By definition of G, the unit

level set of the gauge function g is a key quantity in the geometric framework.

Through its unit level set, the gauge function defines the limit set, and therefore

the geometry of random vectors. This inherent link presents itself in the properties

of both the limit set G and the gauge function g. A key property of G is that

it is star-shaped, i.e., x ∈ G implies tx ∈ G for t ∈ [0, 1], and is compact. The

coordinatewise supremum of G depends on the choice of marginal distribution of

Xi and of scaling in the sample cloud Nn, though can often be set to (1, . . . , 1)⊤.

The gauge function g is continuous, positively-valued, and 1-homogeneous. Given a

gauge function g satisfying these conditions, one can obtain G through the definition

(2.16). Furthermore, given a valid limit set G, one can obtain gauge function values

through g(x) = inf{t ≥ 0 : x ∈ tG}. Throughout this work, we will largely restrict

ourselves to non-degenerate limit sets and gauge functions. That is, rays from the

origin intersect ∂G at a single point.

The limit set G and the corresponding gauge function g has been used to check

for asymptotic independence in random vectors (Balkema and Nolde, 2010). This
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Figure 2.4: Scaled sample clouds Nn of size n = 5, 000 and their corresponding limit

set G in grey. From left to right, the underlying probability distributions are d = 2

max-stable with logistic dependence, d = 2 Gaussian, d = 3 max-stable with logistic

dependence, and d = 3 Gaussian.

notion was extended in Nolde (2014), where it was shown that the value η from the

HRV framework can be obtained from g. Through this relation, it is possible to

determine whether or not the d components of X are asymptotically independent.

This amounts to determining whether or not there is a “cusp” (or “point”) at the

corner (1, . . . , 1)⊤ ∈ Rd, occurring when (1, . . . , 1)⊤ ∈ G or g(1, . . . , 1) = 1. We

conclude that the d components of X do not observe simultaneous extreme values

if g(1, . . . , 1) ̸= 1. This geometric interpretation of dependence leads to several

boundary cases. When G is degenerate and lies only on the diagonal, or g(x) = 1

only when x1 = · · · = xd, then the random vector X is at the intersection between

full dependence and asymptotic dependence. When G is the d-dimensional unit

box, or g(x) = maxj xj, then the random vector X is at the intersection between

asymptotic asymptotic dependence and asymptotic independence. Lastly, when the

G = {x ∈ Rd :
∑d

j=1 |xj| = 1}, or g(x) = ∥x∥1, then the random vector X is at

the intersection between asymptotic independence and negative dependence.

With this in mind, one can examine the examples of Figure 2.4 and immediately

conclude that the d components are not asymptotically independent in the max-

stable logistic setting, but are in the Gaussian setting. Nolde and Wadsworth

(2022) extended these ideas by linking several other extremal dependence coefficients

to the gauge function, demonstrating the ability of the geometric framework to

describe a wide variety of behaviours in the multivariate tail. Furthermore, the
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assumption (2.15) was formalised in Nolde and Wadsworth (2022). In that work,

given parametric forms of the joint density fX , the gauge function was derived using

the limit (2.15), and several extremal coefficients were derived to described the tail

behaviour of the random vector X.

Recent advances of the geometric framework have solely focussed on the

theoretical properties of limit sets and gauge functions for known distributions.

What remains is how to estimate the limit set geometry from data. Furthermore,

like in the MRV, HRV, and conditional extremes frameworks, it is also desirable to

develop extrapolation techniques in the geometric approach. Given the flexibility

the geometric setting has been shown to exhibit, the hope is that the geometry

of limit sets could be estimated from data and then used to infer the entire d-

dimensional tail for any extremal dependence structure, bypassing the limitations of

previous methodology. Lastly, while recent literature uses the geometric approach

the link several more recent notions of dependence in multivariate extremes, the

question remains as to how the geometric approach is related to the classical

approaches of MRV and HRV. One may notice similarities between the classical

MRV convergence assumptions on the distribution function scale and the geometric

convergence assumption on the log-density scale. Is this merely a coincidence?

Are the two frameworks related in some way? What gains and losses does one

take on when working in one framework versus the other? In this work, these

questions will be examined through the lens of the multivariate generalised Pareto

distribution, a commonly-used family of multivariate distributions used within the

MRV framework.
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Chapter 3

Statistical inference for

multivariate extremes via a

geometric approach

Abstract

A geometric representation for multivariate extremes, based on the shapes of scaled

sample clouds in light-tailed margins and their so-called limit sets, has recently

been shown to connect several existing extremal dependence concepts. However,

these results are purely probabilistic, and the geometric approach itself has not

been fully exploited for statistical inference. We outline a method for parametric

estimation of the limit set shape, which includes a useful non/semi-parametric

estimate as a pre-processing step. More fundamentally, our approach provides a

new class of asymptotically-motivated statistical models for the tails of multivariate

distributions, and such models can accommodate any combination of simultaneous

or non-simultaneous extremes through appropriate parametric forms for the limit

set shape. Extrapolation further into the tail of the distribution is possible via

simulation from the fitted model. A simulation study confirms that our methodology

is very competitive with existing approaches, and can successfully allow estimation
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of small probabilities in regions where other methods struggle. We apply the

methodology to two environmental datasets, with diagnostics demonstrating a good

fit.

Disclaimer

The work presented in this chapter comes from a paper in which Jennifer Wadsworth

was the lead author and was published in The Journal of the Royal Statistical

Society, Series B (Statistical Methodology). My main contributions were the

derivations in Section 3.3 and Appendix 3.8.2, as well as the real data applications in

Sections 3.6.1, 3.6.2, and Appendix 3.8.8. I also addressed some possible theoretical

and practical concerns when performing inference with the multivariate Gaussian

gauge function in Appendix 3.8.3, and worked on the derivations for the general

d-dimensional max-stable asymmetric logistic gauge function in Appendix 3.8.4. In

Appendix 3.8.6, I considered the extent at which one could extrapolate in our models

and the resulting bias-variance trade-off when not extrapolating far enough in the

tails in the context of extreme probability estimation. In the process of submission

to JRSSB, a reviewer asked if we could provide additional probability estimate

simulations, comparing our model to parametrically-defined spectral densities within

the MRV framework. I worked on this and it is presented in Section 3.5.1.

3.1 Introduction

3.1.1 Multivariate extreme value theory

Multivariate extreme value theory provides the basis for estimation of rare event

probabilities that involve the effect of more than one variable. Applications are

diverse and include estimating flood risk (Keef et al., 2013b; Engelke and Hitz,

2020), extreme air pollution levels (Heffernan and Tawn, 2004; Vettori et al., 2019),

structural design (Coles and Tawn, 1994), dietary risk assessment (Chautru, 2015)
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and financial risk assessment (Zhang and Huang, 2006; Hilal et al., 2014).

The study of multivariate extremes primarily began in the 1970s and 80s, with

the theoretical study of multivariate regular variation (de Haan, 1970; de Haan

and Resnick, 1977; Resnick, 1987). Multivariate regular variation is intrinsically

tied up with the componentwise block maximum method for multivariate extremes.

Suppose we have n independent replicates of a random vector Yi ∈ Rd, i = 1, . . . , n;

the componentwise maximum vector is

Mn = (Mn,1, . . . ,Mn,d) =

(
max
1≤i≤n

Y1,i, . . . , max
1≤i≤n

Yd,i

)
.

Univariate extreme value theory tells us that if, for each j = 1, . . . , d, there exists

an,j > 0, bn,j such that (Mn,j − bn,j)/an,j converges to a non-degenerate random

variable, then the distribution of this limiting variable is generalized extreme value

(Fisher and Tippett, 1928; Gnedenko, 1943), which is the only univariate max-

stable distribution. A distribution is max-stable if it is invariant to the operation of

taking (componentwise) block maxima, up to marginal location and scale changes.

The additional condition for joint convergence of the entire vector (Mn − bn)/an
to a multivariate max-stable distribution is multivariate regular variation. Since

this represents an assumption on the dependence structure it can be expressed in

standardized margins: a common choice is to set XP,j = 1/[1− Fj(Yj)], where XP,j

follows a standard Pareto distribution if Yj ∼ Fj has a continuous distribution,

else it is asymptotically Pareto. A common way to express the multivariate regular

variation assumption is

lim
t→∞

Pr(XP/∥XP∥ ∈ B, ∥XP∥ > ts | ∥XP∥ > t) = s−1H(B), s > 1, (3.1)

where B ⊂ Sd−1 = {v ∈ [0, 1]d : ∥v∥ = 1} is a measurable set with H(∂B) = 0.

Assumption (3.1) shows that large values of the “radial” component ∥XP∥ become

independent of the “angular” componentXP/∥XP∥, which follows some probability

distribution H on Sd−1, commonly referred to as the spectral measure. The choice

of norm ∥ · ∥ is arbitrary, see, e.g., Beirlant et al. (2006, Chap. 8), but the most

common choice is the L1 norm ∥ · ∥1, so that Sd−1 = {v ∈ [0, 1]d :
∑d

j=1 vj = 1}.

29



Statistical methodology for multivariate extremes followed shortly after this the-

oretical study, and focused initially on inference for data arising as componentwise

block maxima through parametrized forms of multivariate max-stable distributions

(Tawn, 1990). This was soon followed by more direct exploitation of the multivariate

regular variation assumption (3.1), whereby parametric models were proposed for

the spectral measure H, and inference performed on these (Coles and Tawn, 1991).

The study of componentwise maxima is a natural multivariate extension of

the univariate block maximum approach, and the associated multivariate regular

variation dependence condition (3.1) widely applicable. However, it has been known

for a long time that while examples not satisfying (3.1) are rare, the number of

examples for which this assumption forms a useful basis for statistical inference is

very much smaller. This is because, for many dependence structures, mass of the

spectral measure H accumulates on one or more regions of the form

BC = {v ∈ Sd−1 : vj > 0, j ∈ C; vk = 0, k ̸∈ C}, C ⊂ {1, . . . , d}. (3.2)

When this is the case, joint extremes of the random vector Y (or equivalently XP )

may not always occur simultaneously; see, e.g., Goix et al. (2017) or Simpson et al.

(2020) for a more detailed explanation. In practice, however, we never observe mass

on such sets BC at finite levels. This is illustrated in Figure 3.1, which displays

the distribution of XP/∥XP∥1 when the associated radial variable ∥XP∥1 exceeds

its 0.98 quantile for two examples. In the left panel, the true limiting spectral

measure H places mass only on the points B{1} = {(1, 0)} and B{2} = {(0, 1)},
yet at observable levels, the distribution of angles is relatively evenly spread over

B{1,2}, represented by the interval (0, 1). In the right panel, the limiting spectral

measure places mass only on B{3} and B{1,2}, but once again, at observable levels

we see all values in B{1,2,3}. A consequence of this mismatch between finite-sample

and limiting distribution is a common modelling assumption that H places all mass

on B{1,...,d} = {v ∈ Sd−1 : vj > 0, j ∈ {1, . . . , d}}, leading to overestimation of the

probability of joint extremes. Moreover, even if one successfully detects the location

of mass of the limiting object H, this does not lead to a practical strategy for
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performing extrapolation beyond the observed values; to achieve this, more detailed

information on the behaviour of XP before the limiting regime is required.
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Figure 3.1: Illustration of the distribution of XP/∥XP∥1, given that ∥XP∥1 is

large, for two examples. Left panel: XP has a bivariate Gaussian dependence

structure with correlation parameter ρ = 0.8. The ticks correspond to observed

angles XP,1/∥XP∥1 associated to large radii, along with a histogram of their density.

The position of mass of the theoretical limiting H is illustrated by large filled circles

(red). Right panel: (XP,1, XP,2) have an inverted Clayton dependence structure

while XP,3 is simulated conditional upon the value of XP,2 so that these variables

have an inverted logistic dependence structure. Points correspond to the observed

distribution of (XP,1, XP,2)/∥XP∥ with large radii. The position of mass of the

theoretical limiting H is illustrated by the large filled circle and thick solid line

(red).

3.1.2 Geometric approach to multivariate extremes

The early study of multivariate regular variation was followed by a smaller body of

work that examined the convergence of light-tailed multivariate sample clouds onto

so-called limit sets (Davis et al., 1988; Kinoshita and Resnick, 1991). These ideas did

not have a clear link with multivariate max-stable models and did not lead to the
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same proliferation of statistical methodology. More recently, several papers have

revisited this geometric approach from a theoretical perspective (Balkema et al.,

2010; Balkema and Nolde, 2010, 2012; Nolde, 2014; Nolde and Wadsworth, 2022)

and in some cases shown how the shape of the limit set links to whether joint

extremes of certain variables can occur.

To make ideas more concrete consider n independent copies of a random vector

Xi, i = 1, . . . , n, with standard exponential margins; in practice, this will typically

involve marginal transformation of the original vectors Yi. The scaled n-point sample

cloud is defined as

Nn = {X1/ log n, . . . ,Xn/ log n},

and we assume that this converges onto a limit set G = {x ∈ Rd
+ : g(x) ≤ 1},

where g is the 1-homogeneous gauge function of the limit set. This convergence is

illustrated in Figure 3.2 for data with a logistic dependence structure, where the

shape of the limit set can be seen to emerge in the scaled sample cloud as n becomes

large. The precise sense of convergence of Nn onto G, and necessary and sufficient

conditions for it, can be found in Balkema et al. (2010). Loosely, these conditions

say that the expected number of points from Nn lying in sets that intersect with the

limit set tends to infinity, whereas the expected number of points lying in sets that

are disjoint from the limit set converges to zero. However, these specific conditions

are rather unintuitive and make it difficult to determine the form of G for a given

distribution, which led Nolde (2014) and Nolde and Wadsworth (2022) to consider

alternative conditions in terms of the joint Lebesgue density of X, when it exists.

Denoting this joint density by fX , a sufficient condition for convergence of Nn onto

G is

lim
t→∞
− log fX(tx)/t = g(x), x ∈ [0,∞)d, (3.3)

for a continuous gauge function g. Given that many statistical models have tractable

joint densities and continuous gauge functions, equation (3.3) provides a simple way
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Figure 3.2: Illustration of the convergence of the scaled sample cloud Nn onto a

limit set. From left to right, sample sizes are n = 100, 1000, 10000. The limit set G

is depicted by the grey polygon.

to determine the form of g, and hence G, in several examples (Nolde and Wadsworth,

2022). Further illustrations of limit sets G are given for d = 2, 3 in Appendix 3.8.1.

The shape of G is important as a description of the extremal dependence of

the underlying random vector. Limit sets exist for a much more general class of

light-tailed marginal distributions than exponential, but we specialize to this case

so that there is a clear correspondence between the shape of G and the dependence

structure. In this case, the coordinatewise supremum of the limit set G is the point

(1, . . . , 1), since for independent copies of an exponential variable Xi, the random

variable max1≤i≤nXi/ log n converges in probability to 1. Gauge functions, and

therefore limit sets, of lower dimensional margins indexed by J ⊂ {1, . . . , d} can be

found through the following minimization operation (Nolde and Wadsworth, 2022):

gJ(xJ) = min
xk≥0,k ̸∈J

g(x),

where xJ = (xj)j∈J . Exponential margins implies that for singleton sets J = {j},
g{j}(xj) = xj.

Nolde and Wadsworth (2022) showed how G can be used to determine an

array of extremal dependence measures which generally relate to representations of

multivariate extremes that are more useful than multivariate regular variation when

the spectral measure H places mass on one or more sets BC as in equation (3.2).
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These include expressions for determining the residual tail dependence coefficient

(Ledford and Tawn, 1997), key elements of the conditional extremes model

(Heffernan and Tawn, 2004), the angular dependence function (Wadsworth and

Tawn, 2013), and the dependence coefficients of Simpson et al. (2020), which can

be used to help determine the sets BC on which H places mass.

Given the importance of the shape of G, a natural question that arises is how

to estimate this from a sample of data. To date this question has been studied very

little indeed; Jacob and Massé (1996) study estimation from a theoretical perspective

but with no implementation. Very recently, Simpson and Tawn (2022) outlined an

estimation approach in the bivariate case.

In this paper, we consider estimation of G as part of a wider new approach to

the statistical analysis of extreme values. While G is an object of interest in itself,

we direct our methodology more broadly at the question of statistical modelling

and extrapolation for multivariate extreme values rather than focusing only on the

descriptive aspects of extremal dependence that come from estimation of G. Our

modelling approach allows in principle for any combination of joint extremes of sub-

vectors of Y (equivalently, H may place mass on any valid combination of sets BC),

and permits extrapolation in all directions, i.e., into the joint tail where all variables

are large, or into other regions of the multivariate tail where only some variables are

large. Existing alternatives to methodology based on multivariate regular variation

do not capture these possibilities in a coherent manner.

To illustrate the potential importance of being able to capture complex structure

in extremes, consider the dataset of river flow measurements from Simpson et al.

(2020) that will also be analysed in Section 3.6.2. Their analysis showed that there

are some events where all four rivers were extreme simultaneously, but that there

were also extreme episodes involving single rivers, or groups of two or three rivers

without the others. This might be explained physically by the weather patterns

causing the extremes, and the relationships between catchments. While Simpson

et al. (2020) introduced and estimated coefficients to help determine this structure,
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they did not provide any modelling approach that could account for it, as we do

here.

Section 3.2 outlines our statistical model and assumptions. Section 3.3 details

theoretical examples that demonstrate applicability of the method. We focus on

details of statistical inference in Section 4.3, and use simulation to show that our

approach is very competitive for estimation of extreme set probabilities in a wide

range of scenarios in Section 3.5. Section 3.6 contains applications to oceanographic

and fluvial datasets, and we conclude in Section 6.6.

3.2 Model and assumptions

Here and throughout the rest of the paper, we assume that we have a random vector

X with standard exponential margins and joint Lebesgue density denoted by fX .

Marginal transformation can be applied as a standard step via estimation of each

marginal distribution function. The assumption of a joint density is very common for

statistical analysis, as it is required for most likelihood-based inference, for example.

We further assume that the scaled sample cloud Nn converges onto a limit set G

whose shape can either be described by a continuous gauge function g, or that we

are only interested in the continuous part.

Assumption (3.3), which yields a sufficient condition for convergence of Nn onto

G, can equivalently be expressed fX(tx) = exp{−tg(x)[1 + o(1)]} for g(x) > 0 as

t → ∞. The homogeneity of g suggests making the radial-angular transformation

R =
∑d

j=1Xj,W = X/R; such transformations are common in multivariate

extremes, but normally on Pareto, rather than exponential, margins. The Jacobian

of this transformation is rd−1, which leads to joint density of (R,W ): fR,W (r,w) =

rd−1fX(rw) = rd−1 exp{−rg(w)[1 + o(1)]}, as r →∞. This in turn means that the

conditional density of R |W = w satisfies

fR|W (r | w) ∝ rd−1 exp{−rg(w)[1 + o(1)]}, r →∞. (3.4)

If we were to ignore the o(1) term, we recognize the form of the gamma kernel in
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equation (3.4), suggesting that when R | W = w is large, its distribution could

potentially be well approximated by a gamma distribution. Indeed, if the o(1) term

in the exponent is negligible, this suggests a truncated gamma approximation above

a high threshold r0(w) of the conditional distribution R |W = w.

A valid concern is whether the o(1) term in the exponent of (3.4) is really

negligible. In Section 3.3 we detail several examples which in fact have the more

helpful asymptotic form fR|W (r | w) ∝ rd−1 exp[−rg(w)][1 + o(1)], i.e., with the

o(1) outside of the exponent, and give explicit rates for this term. Based on this

latter asymptotic representation, we focus in this paper on the model

R | [W = w, R > r0(w)]
.∼ truncGamma(α, g(w)), (3.5)

where α > 0 is the gamma shape, and g(w) is the gamma rate parameter. In most

examples, the theoretical shape parameter is α = d, but for modelling purposes the

flexibility of an estimated shape is desirable. By parametrizing flexible forms for

the gauge function g(w) = g(w;θ), we can use approximation (3.5) to estimate

these parameters. Full details of our approach are given in Section 4.3, including

diagnostic plots for assessing approximation (3.5).

3.3 Examples

In this section we consider a variety of examples. The convergence onto a limit set

G holds very broadly, and in many examples the gauge function for this limit set

in exponential margins can be recovered fully or partly from convergence (3.3).

The form of the gauge function and limit set for several examples, including

multivariate tν , light-tailed elliptical, skew-normal, generalized hyperbolic, certain

mixture distributions and multivariate generalized Pareto forms has been derived

in Balkema et al. (2010), Nolde (2014), Nolde and Wadsworth (2022), and Zhang

et al. (2022), for example, although not always in exponential margins.

The validity and quality of the truncated gamma approximation in (3.5) to the

conditional density in (3.4) depends on the o(1) term. Since this lies in the exponent,
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it is not always guaranteed to be negligible. In this section, we explicitly calculate

the density of R | W = w for various theoretical examples, showing that most

in fact have the form fR|W (r | w) ∝ rd−1 exp[−rg(w)][1 + o(1)], as r → ∞. The

exception to this is the Gaussian dependence structure, for which we find fR|W (r |
w) ∝ rα(w)−1 exp[−rg(w)][1 + o(1)], as r →∞, i.e., the conditional gamma form is

still applicable, but the shape parameter depends on the value of w. Nonetheless,

further investigations, described briefly below and in more detail in Appendix 3.8.3,

show the assumption of a common shape in model (3.5) does not appear problematic

in practice. This is also supported by our simulation study in Section 3.5. More

generally, we will incorporate model checking of assumption (3.5) into our statistical

analysis.

For each distribution, we provide the overall form of fR|W (r | w), with further

calculations given in Appendix 3.8.2. We denote the ordered values of the vector

w (and similarly x) by w(1) ≥ w(2) ≥ · · · ≥ w(d) > 0, assuming the minimum

to be positive. In the convergence rates given below, we assume a strict ordering

w(1) > w(2) > · · · > w(d) > 0; where this is not the case, following the derivations in

the appendix, one usually observes improved rates, e.g., O(e−r(w(d−2)−w(d))) replacing

O(e−r(w(d−1)−w(d))) if w(d−2) > w(d−1) = w(d).

Multivariate max-stable and generalized Pareto distributions Multi-

variate max-stable distributions are most readily expressed by their distribution

functions. In exponential margins,

Pr(X ≤ x) = exp
(
−V

{
[− log(1− e−x)]−1

})
,

where V : Rd
+ → R+ is the homogeneous of order −1 exponent function, and

operations are applied componentwise. The general asymptotic form of the density

for a max-stable distribution in exponential margins is therefore

fX(tx) = exp{−V [etx + 1/2 +O(e−tx)]}
∑
π∈Π

∏
s∈π

Vs[e
tx + 1/2 +O(e−tx)]

× et
∑d

j=1 xj [1 +O(e−2tx(d))],
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t → ∞, where Π is the set of all partitions of {1, . . . , d}, and Vs(z) =

∂|s|V (z)/
∏

j∈s ∂zj.

We focus on the d-dimensional logistic distribution, for which V (z) =
(∑d

j=1 z
−1/γ
j

)γ
with parameter γ ∈ (0, 1]. This distribution has gauge function g(x) =

∑d
j=1 xj/γ+

(1− d/γ)x(d), and

fR|W (r | w) ∝ rd−1e−rg(w)[1 +O(e−r(w(d−1)−w(d))/γ) +O(e−rw(d))], r →∞.

The simpler form of the densities make calculations more straightforward for

corresponding multivariate generalized Pareto distributions (MGPDs), which are

related to max-stable distributions (Rootzén and Tajvidi, 2006; Rootzén et al.,

2018b). The support of MGPDs whose margins have unit scale and zero shape

is contained in {x ∈ Rd : x(1) > 0}. Densities for several models for which the

spectral measure H places mass only on B{1,...,d} are given in Kiriliouk et al. (2019);

in such cases the dependence structure can be determined by focusing on large values

of x > 0. Further details are in the Appendix 3.8.2.

For the MGPD associated to the negative logistic max-stable distribution

(Galambos, 1975; Dombry et al., 2016), g(x) = (1 + dγ)x(1) −
∑d

j=1 xjγ, γ > 1

and

fR|W (r | w) ∝ rd−1e−rg(w)
[
1 +O

(
er(w(2)−w(1))γ

)]
, r →∞.

For the MGPD associated to the Dirichlet max-stable distribution (Coles and

Tawn, 1991), g(x) = (1 +
∑d

j=1 θj)x(1) −
∑d

j=1 θjxj, for all θj > 0, and

fR|W (r | w) ∝ rd−1e−rg(w)
[
1 +O

(
er(w(2)−w(1))

)]
, r →∞.

Inverted max-stable distributions Inverted max-stable distributions are de-

rived by translating the joint lower tail of max-stable distributions to be the joint

upper tail. This is achieved by applying a monotonically decreasing marginal

transformation to a max-stable random vector. In exponential margins inverted

max-stable distributions have density

fX(x) = exp[−l(x)]
∑
π∈Π

∏
s∈π

ls(x),
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where l is the stable tail dependence function of the corresponding max-stable

distribution, obtained via l(x) = V (1/x), and ls(x) = ∂|s|l(x)/
∏

j∈s ∂xj. The

gauge function is always g(x) = l(x). Owing to the fact that ls(x) is homogeneous

of order 1− |s|, we obtain

fR|W (r | w) ∝ rd−1 exp[−rg(w)][1 +O(r−1)], r →∞.

Multivariate Gaussian distribution We consider the multivariate Gaussian

dependence structure with correlation matrix Σ. When one or more correlation

parameters is negative then the continuous convergence − log fX(tx)/t→ g(x) fails

when components of x are zero, because the gauge function of the limit set is not

continuous away from the strictly positive orthant (Nolde and Wadsworth, 2022).

Since we are considering w(d) > 0 this is not an issue here, but we note that to fully

capture negative association it is ideal to reformulate ideas in terms of Laplace rather

than exponential margins; see Nolde and Wadsworth (2022) and Section 6.6. For Σ

with non-negative entries, g(x) = (x1/2)⊤Σ−1x1/2, where x1/2 = (x
1/2
1 , . . . , x

1/2
d )⊤,

and

fR|W (r | w) ∝ rα(w)−1 exp[−rg(w)]

[
1 +O

(
(log r)2

r

)]
as r →∞, where

α(w) =
d

2
+

(w1/2)⊤Σ−1w−1/2

2
.

In this case, the gamma shape parameter therefore depends on w, and the region

on which α(w) > 0 depends on the entries of Σ. We investigate this further in

Appendix 3.8.3, showing that local estimates of α do not vary strongly with w and

may reasonably be assumed constant. We also show that results from our model are

useful even in the (typically small) regions where α(w) ≤ 0.

Multivariate tν distribution We consider the multivariate t distribution with

ν degrees of freedom, focusing only on positive dependence; see the appendix for

further comment. The gauge function is g(x) = (1 + d/ν)x(1) −
∑d

j=1 xj/ν, and

fR|W (r | w) ∝ rd−1e−rg(w)
[
1 +O(er(w(2)−w(1))/ν) +O(e−2rw(d)/ν)

]
, r →∞.
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Clayton and inverted Clayton copulas We consider the Clayton and inverted

Clayton copulas with parameter γ > 0. The Clayton copula has g(x) =
∑d

j=1 xj,

and

fR|W (r | w) ∝ rd−1e−rg(w)[1 +O(e−rw(d))], r →∞.

The inverted Clayton copula has g(x) = (1 + dγ)x(1) −
∑d

j=1 xjγ, and

fR|W (r | w) ∝ rd−1e−rg(w)[1 +O(e−r(w(2)−w(1)))], r →∞.

In the appendix, we also calculate fR|W (r | w) for a trivariate vine copula example.

3.4 Statistical inference

3.4.1 Calculating the threshold r0(w)

To implement model (3.5), we firstly need to calculate r0(w), which represents a

high threshold of the conditional distribution R | W = w. A natural approach

to calculating this threshold is quantile regression, treating W as the covariate. A

similar approach has been taken in the context of establishing covariate-dependent

thresholds in univariate extreme value analysis (Northrop and Jonathan, 2011).

When data are bivariate, so that W ∈ S1 is equivalent to W ∈ [0, 1], this approach

is straightforward. However, standard parametric quantile regression requires a

high degree of manual tuning to ensure that the model form captures the relation

between R and W well. We therefore suggest using additive quantile regression

(Fasiolo et al., 2021) via the corresponding R package qgam.

When W ∈ Sd−1, d > 2, then both parametric and additive quantile regression

become more difficult due to the specific support of W on the simplex. A simple

alternative is to calculate quantiles of R | W = w from overlapping blocks of W

values, which is feasible for relatively low dimensions, but becomes more laborious

as d grows. The top row of Figure 3.3 illustrates the concepts for d = 2, 3. In each

case, r0(w) is calculated as the 0.95 quantile of R |W = w.
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Figure 3.3: Top row: R againstW , with the estimated 0.95 quantile of R |W = w

in red. In the left and centre (d = 2) plots, solid lines represent the output from

qgam, and dashed lines from rolling-windows quantiles. In the right (d = 3) plot,

the surface is calculated through a rolling-windows technique. Bottom row: Plots

of x = vr0(v), rescaled to lie in [0, 1]d as per equation (3.7). In the left and centre

plots, dotted black lines represent the output from qgam, and dashed black lines

from rolling-windows quantiles. The solid lines (blue) are the unit level sets of g(x),

with g the true gauge function. In the right plot, the jagged surface (red) comes

from the rolling-windows technique, and the smooth surface (blue) is the unit level

set of the true gauge function.
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In the second row of Figure 3.3 we demonstrate that the threshold r0(w), suitably

rescaled, can be viewed as a non-/semi-parametric estimate of g. The reason for this

can roughly be explained by considering the case where the gamma approximation

is exact. Let F̄ (r | w) be the (gamma) survival function of R | W = w, then for

quantile regression at level τ ∈ (0, 1), F̄ [r0(w) | w] = 1− τ . We have

F̄ [r0(w) | w] = 1−
∫ r0(w)

0

g(w)α

Γ(α)
vα−1e−vg(w) dv

= 1−
∫ r0(w)g(w)

0

sα−1

Γ(α)
e−s ds = 1− τ, (3.6)

using the change of variables s = g(w)v. Equation (3.6) is solved by taking

r0(w) = Cτ/g(w), with Cτ the solution to the equation
∫ Cτ

0
sα−1

Γ(α)
e−s ds = τ . Since

the gamma approximation is only asymptotically valid, we have in practice that

r0(w) ≈ Cτ/g(w) for τ close to 1. To depict unit level sets of the gauge function

g, we plot points x = v/g(v), where v is a sequence of points covering the simplex

Sd−1. Consequently, we can compare r0(w) to g by plotting points x = vr0(v)/Cτ .

However, since the gamma approximation is not exact, we instead scale each margin

so that the coordinatewise supremum exactly equals one, by plotting

x =

{
v1r0(v)/ max

j∈{1,...,d}
[vjr0(v)], . . . , vdr0(v)/ max

j∈{1,...,d}
[vjr0(v)]

}
. (3.7)

We will use the observation that links r0(w) and g(w) later to assist with model

checking, but note that, combined with extension of additive quantile regression to

higher dimensions, this presents a very interesting avenue for future work.

3.4.2 Likelihood

In order to fit model (3.5), we use likelihood-based inference. For n0 independent

observations of Ri | [Wi = wi, Ri > r0(wi)], i = 1, . . . , n0, we maximize the

likelihood

L(ψ) =

n0∏
i=1

g(wi;θ)
α

Γ(α)

rα−1i e−rig(wi;θ)

F̄ [r0(wi);α, g(wi;θ)]
, (3.8)
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where ψ = (α,θ)⊤ and F̄ [·;α, g(w;θ)] represents the gamma survival function

with shape parameter α, and rate parameter g(w;θ). Estimates of uncertainty

in the maximum likelihood estimators may be obtained through the inverse Hessian

matrix, subject to model validity and independence checks, or via the bootstrap.

In practice, many datasets exhibit weak-to-moderate temporal dependence, so

that while likelihood (3.8) may be used for parameter estimation (e.g., Chandler

and Bate, 2007), block-bootstrap techniques will be preferable for estimation of

uncertainty.

3.4.3 Gauge functions and model selection

3.4.3.1 Gauge functions from specific distributions

Key to a successful fit of model (3.5) via likelihood (3.8) are flexible parametrized

forms of g that are able to capture a wide variety of limit set shapes. In Section 3.3,

we detail various forms of gauge function that come from different underlying

distributions, some of which are illustrated in Appendix 3.8.1. Further forms can

also be found in Nolde and Wadsworth (2022). Any of these parametric forms could

be fitted as a candidate model, and standard model-selection techniques, such as

information criteria, used to establish a best choice; we will demonstrate this in our

simulation study of Section 3.5.

A key attraction of our new approach to inference for multivariate extremes is the

ability to capture the complex dependence structures that arise when different sub-

groups of variables can potentially be co-extreme while the others are small. Under

multivariate regular variation, this corresponds to the spectral measure H placing

mass on sets BC as described in Section 6.1. In order to capture these scenarios, we

consider the gauge function corresponding to the asymmetric logistic distribution

(Tawn, 1990), which can place mass on any valid combination of sets BC . The full

expression for this involves minimization over several components, and is given in

Appendix 3.8.4. Figure 3.4 depicts some of the potential limit sets arising from this

structure when d = 3.
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Figure 3.4: Example limit sets G (area between surface and planes xj = 0) from

the asymmetric logistic distribution. Left: mass of H on B{1,2}, B{1,3}, B{2,3} with

parameters γ{1,2} = 0.5, γ{1,3} = 0.2, γ{2,3} = 0.7. Centre: mass on B{3}, B{1,2},

B{1,3}, B{1,2,3} with γ{1,2} = 0.5, γ{1,3} = 0.5, γ{1,2,3} = 0.7. Right: mass on B{1},

B{2}, B{3}, B{1,2,3} with γ{1,2,3} = 0.5.

3.4.3.2 Additively mixing gauge functions

The gauge functions described in Section 3.3 provide a starting point for inference

on model (3.5), but may not always be flexible enough to capture the structures of

observed data. We now consider how to mix gauge functions to generate more

flexible models. As mentioned in Section 6.1, the limit sets G for data with

exponential margins have coordinatewise supremum equal to (1, . . . , 1); equivalently,

the one-dimensional marginal gauge functions are g{j}(xj) = xj. Each form of g

given in Section 3.3 satisfies this constraint, and we require any scheme for mixing

gauge functions to also satisfy this, since they will be applied to data in exponential

margins.

A simple way to mix that retains the marginal condition g{j}(xj) = xj is via

minimization: g(x) = min[g[1](x), . . . , g[m](x)], for g[1], . . . , g[m] each satisfying this

marginal condition. The resulting gauge function is the one that would correspond to

a mixture density fX(x) =
∑m

k=1 πkf
[k]
X (x) with

∑m
k=1 πk = 1 and πk ∈ (0, 1) for each

k; the mixture weights do not appear in g because as n→∞ there would be infinitely

many points in the sample cloud from each mixture component. However, such an
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approach has the effect of retaining the most protruding part of each limit set and

may not yield the most realistic shapes; some examples are given in Appendix 3.8.5.

Instead we focus on additive mixing, defining

g̃(x) = a1g
[1](x) + · · ·+ am−1g

[m−1](x) + g[m](x), a1, . . . , am−1 > 0. (3.9)

The resulting function is denoted by g̃ as in general it will not satisfy the marginal

condition, and will need to be rescaled to do so. Suppose that the coordinatewise

supremum of the set G̃ = {x : g̃(x) ≤ 1} is c̃ = (c̃1, . . . , c̃m). Then the rescaled

gauge function g(x) = g̃(c̃1x1, . . . , c̃dxd) satisfies g{j}(xj) = xj. Some examples of

limit sets from additively mixed functions are depicted in Figure 3.5. Interestingly,

we observe for d = 2 that this process is able to interpolate between limit sets

for which g(1, 1) = 1 and have a “pointy” shape, to those with g(1, 1) < 1 and are

described by Balkema and Nolde (2012) as “blunt”. The former arise for dependence

structures representing joint extremes (H places mass only on B{1,2}), while the latter

arise for those representing separate extremes (H places mass only on B{1} and B{2}).

Figures in Appendix 3.8.5 also show that for d = 3 we retain the ability to move

between “pointy” limit set shapes representing joint occurrence of extremes in some

components and “blunt” shapes representing separate extremes. We focus in the

figures only on the case m = 2, and leave theoretical study of this phenomenon for

any m to future work.

Note that when using additive mixing, the component gauge functions g[k](x)

need not satisfy the marginal condition g{j}(xj) = xj due to the rescaling.

This allows, for example, one to include the Gaussian gauge function g(x) =

(x1/2)⊤Σ−1x1/2 when Σ has negative entries, and increases the flexibility of this

approach. In practice, we use numerical methods to find the vector c̃ for rescaling,

by finding the coordinatewise supremum of G̃ on a grid.
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Figure 3.5: Examples of limit sets (grey shaded region) from additively mixed gauge

functions according to equation (3.9), with subsequent rescaling. In each case the

component gauge functions are g[1](x1, x2) = [x1+x2−2ρ(x1x2)1/2]/(1−ρ2) with ρ =
0.5 and g[2](x1, x2) = (x1 + x2)/γ + (1− 2/γ)min(x1, x2) with γ = 0.5; these gauges

correspond to the Gaussian and logistic max-stable distributions, respectively. From

left to right, the weights are a1 = 1, 2, 3.

3.4.4 Model checking

We propose checking the fitted model from likelihood (3.8) via probability-

probability (PP) plots. The fitted distribution function (df) of the truncated gamma

model is

F̂tg[r | w, r0(w)] := Pr[R ≤ r |W = w, R > r0(w)] = 1− F̄ [r; α̂, g(w; θ̂)]

F̄ [r0(w); α̂, g(w; θ̂)]
,

with F̄ as in likelihood (3.8), and α̂, θ̂ representing the maximum likelihood

estimates of the parameters. The PP plot for n0 observations with Ri > r0(wi)

is the set of points: [i/(n0 + 1), u(n0−i+1)], where ui = F̂tg[ri;wi, r0(wi)], and

u(1) ≥ u(2) ≥ · · · ≥ u(n0) represent the ordered sample of ui. This diagnostic will be

demonstrated in Section 3.6.

Comparison of the “empirical” estimate of the gauge function ĝ(w) ≈ Ĉ/r0(w),

as outlined in Section 3.4.1, provides another check on the form of the fitted model.

As was seen in Section 3.4.1, while we do not expect perfect correspondence between

ĝ(w) and g(w; θ̂), we can expect to see broad similarities in shape. Again we use

this in Section 3.6.
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3.4.5 Prediction

A key aspect of our proposed geometric framework for statistical inference is that

we can use simulation from the fitted model to estimate probabilities of lying in

extreme regions, enabling extrapolation outside the range of the observed data.

Up to this point, we have focused on the conditional distribution of R | [W =

w, R > r0(w)]. In order to perform extrapolation and estimate multivariate tail

probabilities, we need realizations of the distribution ofX in some suitably extreme

region. Notationally it is helpful to introduce an alternative radial variable, R′ =

R/r0(W ), so that X = RW = R′r0(W )W . Given a particular value of W = w,

our extreme region to date has been {R > r0(w)}. Now considering our extreme

region across all (R,W ) values, this corresponds to {R′ > 1}. In Figure 3.3, all

points above the red line / surface in the top row are those with {R′ > 1}.
We focus initially on simulating an arbitrary number of points satisfying the

conditioning event {R′ > 1}, and discuss below adaptations for simulating above

higher thresholds. To get draws from the distribution of X | R′ > 1, we multiply

simulations from two components:

(i) Draw w⋆ from the distribution of W | R′ > 1;

(ii) Conditional upon w⋆, draw r⋆ from the distribution of R | [W = w⋆, R >

r0(w
⋆)].

The sampled value is then x⋆ = r⋆w⋆. The second of these steps is a simple case of

simulating from the fitted truncated gamma distribution, which can be done via the

inverse probability integral transform. For the first of these, we may either resample

from the empirical distribution ofW | R′ > 1, or we could fit a parametric model to

such samples and simulate from this. We opt for the former in this work, and note

the latter as a potential line of future investigation. Figure 3.6 shows 5000 draws

simulated from X | R′ > 1, based on a model fitted to 2500 data points.

To estimate the probability of lying in extreme sets, we exploit the simple
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Figure 3.6: Example of 5000 points simulated from X | R′ > 1, depicted by crosses

(blue), for the inverted logistic (left) and logistic (right) distributions. Models with

the true gauge were fitted to threshold exceedances of 2500 data points, with all data

depicted by dots (green). Light grey squares represent potential sets B in equation

(3.10).

equation

Pr(X ∈ B) = Pr(X ∈ B | R′ > 1) Pr(R′ > 1), (3.10)

for any set B lying entirely within the region {x ∈ Rd
+ :
∑d

j=1 xj > r0(x/
∑d

j=1 xj)};
some examples are given in Figure 3.6. The first probability on the right-hand

side of (3.10) can be estimated empirically from the simulated draws. The second

probability may be estimated from the dataset as the proportion of points R′

exceeding 1. When quantile regression at level τ has been used to estimate r0(w),

we expect the proportion of points above the threshold to be near 1− τ .
The fact we can simulate an arbitrary number of points from our model with

the condition {R′ > 1} means that in principle we can extrapolate quite a way

beyond the observed data. Nonetheless, such an approach may be computationally

demanding for very extreme sets that require a large number of simulations. We

consider now how to simulate given the condition {R′ > k}, with k > 1; results will

be illustrated in Section 3.5.
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Simulation from the truncated gamma distribution of R | [W = w, R > kr0(w)]

is again straightforward, but simulation from the distribution of angles W | R′ > k

is more challenging if k is sufficiently high that there are few or no empirical samples

available. However, we have the relation

fW (w | R′ > k) =

∫∞
k
fR′,W (r′,w | R′ > 1) dr′∫

Sd−1

∫∞
k
fR′,W (r′,v | R′ > 1) dr′ dv

=
fW (w | R′ > 1)

∫∞
k
fR′|W (r′ | w, R′ > 1) dr′∫

Sd−1

∫∞
k
fR′|W (r′ | v, R′ > 1)fW (v | R′ > 1) dr′ dv

, (3.11)

where fU (· | V > v) denotes the density of a random vector U | V > v, and

integrating over Sd−1 refers to integrating over the (d− 1)-dimensional submanifold

of Rd corresponding to the (d− 1) unit sphere, here and throughout. Note that∫ ∞
k

fR′|W (r′ | w, R′ > 1) dr′ =

∫ ∞
kr0(w)

fR|W (r | w, R > r0(w)) dr,

so that under the truncated gamma approximation (3.5) for R | [W = w, R >

r0(w)], we have the proportionality statement

fW (w | R′ > k) ∝ fW (w | R′ > 1)
F̄ [kr0(w);α, g(w)]

F̄ [r0(w);α, g(w)]
. (3.12)

The ratio of gamma survival functions in (3.12) can therefore be used as importance

weights to derive an approximate sample from the distribution ofW | R′ > k, using

a sample from the distribution of W | R′ > 1.

Finally, to estimate Pr(R′ > k), so that we can calculate extreme probabilities as

in equation (3.10), note that the constant of proportionality in (3.12) is Pr(R′ > k |
R′ > 1), from the denominator of equation (3.11). An estimate of this is therefore

P̂r(R′ > k | R′ > 1) =
1

n0

n0∑
i=1

F̄ [kr0(wi);α, g(wi)]

F̄ [r0(wi);α, g(wi)]
,

where wi, i = 1, . . . , n0 are the angles corresponding to the values for which R′ > 1.

Lastly, P̂r(R′ > k) = P̂r(R′ > k | R′ > 1)P̂r(R′ > 1), where P̂r(R′ > 1) is estimated

empirically, as previously. We note that another alternative to this procedure is to

fit the generalized Pareto distribution to R′ | R′ > 1 and use this fitted model to
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estimate Pr(R′ > k | R′ > 1). Our investigation into this found that both options

perform similarly for relatively small k, but the generalized Pareto model introduces

extra uncertainty for larger k, and so we stick to the first approach in Section 3.5.

In our experience we have found that estimates of Pr(X ∈ B) are relatively

insensitive to the precise choice of k, provided both that k is large enough to

ensure that several sample points lie in B, and that B ⊂ {x ∈ Rd
+ :

∑d
j=1 xj >

kr0(x/
∑d

j=1 xj)}, as is required for the analogue of equation (3.10) to hold. The

simplicity of checking this latter condition depends on the shape of B and of r0(w),

but it is easy to check visually for d = 2, and it may crudely be checked by ensuring

that k <
∑d

j=1 x̃l,j/r0(x̃l/
∑d

j=1 x̃l,j) for a sample of points x̃l, l = 1, . . . ,m, along

the boundary of B. See Appendix 3.8.6 for further discussion and summary of our

investigation. We recommend taking an intermediate k that is slightly smaller than

the maximum for which this series of m inequalities holds, to safeguard against the

crudeness of this check.

3.4.6 Summary of inference and prediction procedures

For convenience, we briefly summarize the procedures for inference and prediction

via the geometric framework:

1. Determine a high threshold r0(w) of the distribution of R | W = w for

all w ∈ Sd−1 using either additive quantile regression or a rolling-windows

approach.

2. Select a set of candidate parametric gauge functions g(·;θ) and for each one

fit the truncated gamma likelihood (3.8) to the n0 values of R | [W = w, R >

r0(w)].

3. Compare model fits using selection criteria such as the Akaike or Bayesian

information criterion.

4. Use diagnostics such as the PP plot and comparison with the empirically-

estimated gauge function to confirm acceptable fit of the best model(s).
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5. Letting R′ = R/r0(W ), simulate new realizations from the distribution of

X | R′ > 1 by drawing from the empirical distribution of W | R′ > 1 and

multiplying by draws of R | [W = w, R > r0(w)] from the fitted truncated

gamma distribution. If required, adapt these steps to simulate from the

distribution of X | R′ > k with k > 1.

6. Estimate Pr(X ∈ B) using equation (3.10), or suitable adaptation if R′ > k.

3.5 Simulation study

We now demonstrate the performance of our methods against existing approaches

for analysing multivariate extremes. Our focus lies on estimation of probabilities

Pr(X ∈ B) for three sets B that lie in different parts of the region where X may

be considered extreme.

We begin with the bivariate case, which is well-established and understood,

demonstrating that our methodology gives estimates with low bias in each situ-

ation, performing competitively with other methods across a range of scenarios.

Specifically, we compare with estimation methodology based on multivariate regular

variation (MRV), hidden regular variation (Ledford and Tawn, 1997) (HRV) and

the conditional extreme value model (CE) of Heffernan and Tawn (2004). The

simplest approach to implementing MRV methodology is to use the approximation

Pr(X ∈ v+B′) ≈ e−v Pr(X ∈ B′), where we take as the set of interest B = v+B′,

and B′ is extreme, but in the range of the data so can be estimated empirically. This

is a nonparametric implementation, but parametric assumptions are possible as well.

Specifically we can also assume that equation (3.1) holds at finite levels and choose

a parametric form for the angular measure H. We adopt both techniques below.

HRV is a refinement of MRV that allows for situations where the spectral measure H

places no mass on B{1,...,d}. Implementation of this methodology relies on exploiting

the relation Pr(X ∈ v + B′) ≈ e−v/η Pr(X ∈ B′), where η ∈ (0, 1] is the residual

tail dependence coefficient; this is estimated using the Hill estimator (Ledford and
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Tawn, 1997). Parametric models based on HRV exist (Ramos and Ledford, 2009),

but are generally poorly-justified since the so-called “hidden angular measure” is

often not a finite measure over the unit simplex; we therefore do not consider these

here. Like MRV however, the asymptotics of HRV are suited only to extrapolating

into regions where all variables are large simultaneously. Implementation of the

CE methodology to model the distribution of X | Xj > u, for large u, follows the

original approach suggested in Heffernan and Tawn (2004), adapted to exponential

margins. Probability estimation in this case is performed by simulating from the

distribution of X | Xj > u′, u′ ≥ u. Following the bivariate case, we move on to

the more difficult case of d = 3, and show that we can substantially outperform the

CE model in this setting, which is the only other viable approach for providing an

estimate of the probabilities of interest.

3.5.1 Dimension d = 2

For the bivariate case, we perform estimation based on 5000 datapoints simulated

from four different dependence structures: (I) logistic distribution with parameter

γ = 0.4; (II) Gaussian distribution with ρ = 0.8; (III) inverted logistic distribution

with γ = 0.7; (IV) logistic distribution with γ = 0.8. Distributions (I) and (IV)

represent moderately strong and weak logistic dependence structures, respectively.

In Appendix 3.8.7 we show examples of the four datasets, and three sets of interest

B1 = (10, 12)× (10, 12), B2 = (10, 12)× (6, 8), and B3 = (10, 12)× (2, 4).

In each case we fit model (3.5) to the data using four different gauge functions:

those corresponding to the unique distributions (I)–(III), where the parameter is

to be estimated from the data, and the function g(x; θ) = max[(x1 − x2)/θ, (x2 −
x1)/θ, (x1 + x2)/(2 − θ)]. We select the model that yields the lowest value of the

Akaike information criterion (AIC) for the prediction step, thereby avoiding using

knowledge of the true data-generating process. Recall that before fitting model (3.5),

we need to calculate a high threshold r0(w). In Section 3.4.1, we described using

either additive quantile regression or a rolling-windows quantile calculation for
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this. We used both techniques in the simulation study, setting τ = 0.95, finding

relatively little difference in the performance of the resulting inference, particularly

in comparison to differences across extreme-value methodologies. Therefore, to

keep presentation focused, we detail only the results where r0(w) was found using

the simpler rolling-windows quantile method. Although our focus is on extreme

probability estimation, we also display (non-)parametric estimates of G, obtained

via ĝ(w) and g(w; θ̂), in Section 3.8.7.

For the parametric MRV approach, we employ a similar strategy to our geometric

approach. After transforming to radial-angular coordinates ∥XP∥ and XP/∥XP∥1
from Pareto margins, we take all angles for which the corresponding radius exceeds

the 0.95 quantile of radii, and fit a parametric form for the density of H via

maximum likelihood. We choose between five parametric models for H using AIC.

The five bivariate models are the logistic (Émile and Gumbel, 1960, corresponding

to distributions (I) and (IV)), negative logistic (Galambos, 1975), bilogistic (Smith,

1990), negative bilogistic (Coles and Tawn, 1994), and the so-called Coles-Tawn

distribution (Coles and Tawn, 1991). Probabilities are estimated using numerical

integration over B using the fitted model for angles, combined with Pareto density

for radii.

Figure 3.7 displays boxplots of the estimated probabilities for 200 repetitions

across different methodologies:

• the geometric approach with different k (G1, G2);

• the conditional extremes model with different simulation thresholds (CE1,

CE2);

• the nonparametric hidden regular variation approach (HRV), and

• nonparametric and parametric multivariate regular variation approaches

(MRV, MRV2);

see the caption for further details. For distribution (I), all methods estimate Pr(X ∈
B1) with little bias; the smallest variance is attributed to the MRV approaches,

53



which is as expected since we are looking at a distribution where H places mass on

B{1,2} and estimating a probability in the joint tail. The geometric approach and CE

estimate Pr(X ∈ B2) relatively well, with the smallest variance attributable to the

geometric approach based on X | R′ > k for suitable k > 1. HRV and MRV start

to exhibit some bias because B2 lies outside the joint tail region. For Pr(X ∈ B3),

all estimates based on the nonparametric HRV and MRV approaches are equal to

zero. For the geometric approach, we are able to estimate this probability well

when selecting a suitable k. Specifically, in each repetition, we select one of the

largest values of k such that B3 ⊂ {x : (x1 + x2) > kr0[x/(x1 + x2)]}. This results

in all probabilities having a non-zero estimate, compared to 0% for nonparametric

HRV/MRV, and 4.5% for CE (at each of two thresholds). This probability can be

estimated as non-zero by parametric MRV, but with a little bias. A boxplot of this

case is included in the left panel of Figure 3.8.

Distribution (IV) also represents the case where H places mass on B{1,2}, yet

interestingly, MRV gives biased estimates in for all probabilities. This is likely due

to the practical rate of convergence to the limiting angular measure H being slower

under this weaker dependence scenario. Indeed we see differing estimates from the

two MRV approaches, which are based on different effective “thresholds” for defining

extremes. MRV changes from appreciably over-estimating the probabilities Pr(X ∈
B1) and Pr(X ∈ B2) to hugely under-estimating Pr(X ∈ B3). The geometric

approach suggests a small under-estimation of Pr(X ∈ B1) and Pr(X ∈ B2) and

good performance for Pr(X ∈ B3). CE shifts from large under-estimation to over-

estimation moving from Pr(X ∈ B1) to Pr(X ∈ B3).

For distributions (II) and (III), the geometric approach and CE exhibit quite

similar performance, although CE has a smaller variance for estimates of Pr(X ∈
B2) under distribution (II), and of Pr(X ∈ B3) under distribution (III). MRV is not

an appropriate method for these distributions and always performs badly; HRV is

appropriate in the joint tail, where it exhibits similar performance to other methods

for (II) and better performance for (III), while it leads to poor estimates in other
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regions. Additional boxplots in the right panel of Figure 3.8 display more detailed

information for the estimates of Pr(X ∈ B1) under distribution (III). As described

for distribution (I), we also used a suitable k > 1 for estimating this probability.

The geometric approach outperforms CE in this case. This is because, using an

appropriate k, we are able to simulate points to generate non-zero estimates of the

probabilities (93% and 100% of estimates are positive for the two thresholds shown).

In contrast, only 45.5% and 46% of estimates are positive for CE.

3.5.2 Dimension d = 3

We again perform estimation based on 5000 data points from three different data

structures: (I) asymmetric logistic distribution, for which the spectral measure H

places mass on B{1,2},B{1,3},B{2,3}, with parameters γ{1,2} = γ{1,3} = γ{2,3} = 0.4; (II)

asymmetric logistic distribution where H places mass on B{1},B{1,2},B{2,3} and with

parameters γ{1,2} = γ{2,3} = 0.4; (III) distribution constructed by taking an inverted

Clayton copula with parameter 2 for (X1, X2), with X3 | X2 = x2 drawn from an

inverted logistic dependence structure with parameter 0.5. Such a distribution is in

the domain of attraction of a spectral measure H placing mass on B{1,2},B{3}. In

Appendix 3.8.7 we display examples of the three datasets along with sets of interest

B1 = (8, 10)× (8, 10)× (0.01, 3), B2 = (8, 10)× (5, 7)× (0.01, 3) and (8, 10)× (2, 4)×
(0.01, 3).

For the d = 3 case we consider only two methodologies: the geometric approach

and CE, as HRV/MRV only perform well when considering sets B where all variables

are of a similar magnitude, and the sets that we are considering are all small in x3.

Moreover for MRV we require mass on B{1,2,3} for good performance of this method.

For the geometric approach we fit model (3.5) to the data after identifying

potential suitable forms for the gauge function g. For this initial step, we calculate

the coefficients τC(δ), and associated estimates of the probability of mass on BC
as in Simpson et al. (2020), for δ = 0.4, 0.5, 0.6 and C ⊆ {1, 2, 3}. These estimates

help to identify potential faces of the simplex on which the limiting spectral measure
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Figure 3.7: Boxplots of the 200 estimated probabilities for d = 2. From left to right columns

represent Pr(X ∈ B1),Pr(X ∈ B2),Pr(X ∈ B3), respectively. From top to bottom, datasets are

(I), (II), (III), (IV) respectively. Green boxplots, labelled G1, G2, give results from our geometric

approach: G1 is calculated from X | R′ > 1; G2 is calculated from X | R′ > k, where k is

determined as the maximum value such that all sets B1, B2, B3 lie in the region {x : x1 + x2 >

kr0(x/(x1 + x2))}. Dark blue boxplots, labelled CE1, CE2 give results from the conditional

extremes model: CE1 is calculated from X | X1 > 6.9; CE2 is calculated from X | X1 > 10.

Turquoise boxplots, labelled HRV, give results from hidden regular variation methodology; purple

boxplots, labelled MRV and MRV2, represent nonparametric and parametric multivariate regular

variation, respectively. True values of the probabilities are indicated by horizontal red lines.
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Figure 3.8: Left: boxplot of log estimates of Pr(X ∈ B3) for distribution (I), d = 2,

using the geometric approach at a high threshold as described in the text (G3), and

parametric MRV (MRV2). Right: estimates of Pr(X ∈ B1) for distribution (III),

d = 2, using two different thresholds for the geometric approach, labelled G2, G3

(green). Estimates for two different thresholds from the conditional approach are

labelled CE1, CE2 (dark blue), and from hidden regular variation, HRV (turquoise).

H places mass, and hence a suitable structure for the form of the gauge function.

Specifically, where they exist, the coefficients τC(δ) ∈ (0, 1] should be equal to 1

if H places mass on BC , for all values of the tuning parameter δ ∈ [δ⋆, 1] and

some δ⋆ ∈ [0, 1]. However, because of difficulties in estimating these coefficients

precisely in the presence of nuisance parameters, Simpson et al. (2020) use them

as part of a broader strategy to estimate of the probability of mass on BC . If all

estimates for the three values of δ suggest the same extremal dependence structure

in terms of where H places mass, then a single model is fitted, where the gauge

function corresponds to that of the asymmetric logistic distribution for the identified

structure. Otherwise, up to three different models are fitted, and the model with

the lowest AIC is selected. We note that, for distributions (I) and (II), this means

that we have the potential to fit the correct model form to the data, subject to its

identification via the Simpson et al. (2020) methodology, although for distribution

(III), we always have a misspecified model.

Figure 3.9 displays boxplots of the estimated probabilities across 200 repetitions

using the two methods. In most cases, the geometric approach exhibits relatively
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Figure 3.9: Boxplots of the 200 estimated probabilities for d = 3. From left to right

columns represent Pr(X ∈ B1),Pr(X ∈ B2),Pr(X ∈ B3), respectively. From top

to bottom, datasets are (I), (II), (III), respectively. Green boxplots, labelled G1,

G2, G3 give results from the geometric approach: G1 is calculated fromX | R′ > 1;

G2 and G3 are calculated from X | R′ > kj, j = 1, 2, where kj is determined

as a large value such that the sets B2 or B3 lie in the region {x : x1 + x2 + x3 >

kjr0[x/(x1+x2+x3)]}. Dark blue boxplots, labelled CE1, CE2 give results from the

conditional extremes model: CE1 is calculated fromX | X1 > 6.9; CE2 is calculated

from X | X1 > 8. True values of the probabilities are indicated by horizontal red

lines.
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low bias, particularly in comparison to CE, which is typically biased down for

Pr(X ∈ B1) and up for Pr(X ∈ B2),Pr(X ∈ B3). In conditional extreme value

modelling, dependence structures are defined pairwise, so while any pair of variables

(Xi, Xj) can theoretically have mass on B{i,j} or B{i} and B{j}, the methodology

cannot usually capture more complex higher-order structures well. The structure of

distribution (III) is the simplest, with only variables X1, X2 exhibiting simultaneous

extremes, and CE is correspondingly more successful in this case. For Pr(X ∈ B3)

and distributions (I) and (III), additional boxplots are provided in Appendix 3.8.7.

These demonstrate that the geometric approach labelled G3 provides the best

estimate in both cases, but underestimates the probability. In contrast we can

see from Figure 3.9 that estimates of this probability for distribution (I) are biased

strongly upwards for CE, while for distribution (III) only 5.5% of estimates for CE

are positive at either threshold.

3.6 Data analyses

We use our new modelling approach to analyse two multivariate environmental

datasets. The first is wave data from Newlyn, UK, included because of its extensive

previous analysis in the literature. The second is a set of river flow data from

Simpson et al. (2020).

3.6.1 Newlyn wave data

This dataset of 2894 measurements of wave height (metres), surge (metres) and

period (seconds), denoted here as (XH , XS, XP ), was originally analysed in Coles

and Tawn (1994) using a model that assumed multivariate regular variation with all

mass of the spectral measure on B{H,S,P}. The full trivariate dataset has subsequently

been analysed in Bortot et al. (2000), who assumed a censored multivariate Gaussian

model, and Coles and Pauli (2002), whose model was able to accommodate the

situation where the spectral measure places mass on some faces of the simplex, but
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was otherwise quite restrictive.

The first step is to transform each marginal to exponential, which is done using

a semi-parametric estimate of the distribution function for each variable Xj:

F̂j(x) =

F̃j(x), x ≤ uj,

1− ϕu,j [1 + ξj(x− uj)/σj]−1/ξj+ , x > u,

(3.13)

where F̃j is the empirical df, uj is a high threshold, ϕu,j = Pr(Xj > uj), and the

form above uj is the generalized Pareto distribution with scale σj > 0 and shape

ξj. We take the thresholds uH , uS and uP to be the 95% quantiles of the respective

distributions.

To get an initial idea of the extremal dependence structure, we use the

Simpson et al. (2020) methodology and calculate τC(δ) for a range of values of

δ. These estimates suggest that the spectral measure places mass on the faces

B{H},B{S},B{P},B{H,S}, which fits with the assessment in Bortot et al. (2000) and

Coles and Pauli (2002).

To calculate the threshold r0(w), we use the rolling-windows procedure described

in Section 3.4.1, with τ = 0.95. We then fit model (3.5) with three forms for g:

(i) the asymmetric logistic gauge function with the structure given by τC(δ), (ii)

gauge corresponding to the Gaussian distribution, and (iii) an additive mixture of

the Gaussian and asymmetric logistic gauges, as described in Section 3.4.3.2. The

respective AIC values are 374.9, 365.5 and 369.5.

In spite of the structure suggested by the estimated τC(δ) values, the AIC

indicates a preference for the Gaussian gauge function. The maximum likelihood

estimates are (α̂, θ̂HP , θ̂HS, θ̂PS) = (0.79, 0.70, 0.65, 0.30), where θjk are the Gaussian

correlation parameters in the gauge function. The data have been filtered to give

approximate temporal independence, so we estimate Hessian-based standard errors

as (0.74, 0.12, 0.12, 0.18). Figure 3.10 displays the PP plot for this fit as described

in Section 3.4.4, as well as the same plot transformed onto the exponential scale to

emphasize the upper tail, indicating no lack of fit. We also compare the empirical

gauge ĝ(w) and the fitted Gaussian gauge function g(w; θ̂) in the right panel of
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Figure 3.10: Left and centre: PP and exponential QQ plots for the fitted truncated

gamma model with the Gaussian gauge function. Right: unit level set of the

empirical gauge function (jagged, red) and fitted Gaussian gauge function (smooth,

blue) for the Newlyn wave data.

Figure 3.10. The empirical gauge is relatively “jagged” and variable due to the

manner of its calculation, but there is broad correspondence between its overall

shape and that of the fitted gauge. Interestingly, the fit of the asymmetric logistic

gauge returns a parameter estimate of γ̂HS = 1, which is on the boundary of the

parameter space. This could be indicative of wave height and surge not displaying

exceptionally strong dependence, but also because there are restrictions on the shape

of the limit set arising from the asymmetric logistic distribution, and this parameter

estimate provides the best overall fit to all data simultaneously.

As a further diagnostic, we compare empirical and model-based estimates of the

sub-asymptotic joint tail dependence coefficient. For Xj ∼ Fj, this is defined by

χC(u) =
1

1− u Pr [Fj(Xj) > u,∀j ∈ C] , u ∈ (0, 1), C ⊆ {H,S, P}.(3.14)

The empirical estimator of χC(u) is obtained by replacing each distribution function

and joint probability with its empirical counterpart, while the model-based estimate

is calculated using simulation from the fitted model as described in Section 4.3.5,

and suitable sets B. In Figure 3.11 we consider χHSP (u) and χHS(u), meaning

B = (− log(1 − u),∞)3 and B = (− log(1 − u),∞)2 × (0,∞), respectively. The

range over which the model-based tail dependence coefficients can be calculated
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Figure 3.11: Left: Estimates of χHS(u), u ∈ (0.99, 1); centre: estimates of χHSP (u),

u ∈ (0.965, 1). Black solid lines represent empirical estimates, grey shaded regions

95% pointwise confidence intervals, and dashed lines the model-based estimate for

the Newlyn wave dataset. Right: plot of quantiles vp of the structure variable V ,

representing sea wall height.

depends on the values of X constituting the extreme region {R′ > 1}. There

is good agreement with the empirical estimates, with the model-based estimates

allowing extrapolation beyond the range of the data.

Finally we consider analysis of the structure variable outlined in Coles and Tawn

(1994). They introduce the overtopping discharge rate Q(v;XHSP ) for a sea wall of

height v as

Q(v;XHSP ) = a1XSXP exp

[
−a2 (v −XS − l)

XPX∗H
1/2

]
,

where

X∗H = XH

{
1− exp

[
−(l +XS)

2

2X2
H

]}1/2

.

The value X∗H is introduced to approximate the actual off-shore wave height, since

measurements are taken on-shore. The goal is to estimate the sea wall height vp (in

metres) for which the overtopping discharge rate is expected to exceed 0.002m3s−1

per metre of sea wall with probability p. That is, setting V = Q−1(0.002;XHSP ),

we solve Pr(V > vp) = p for vp using realizations of V generated through simulation

and reverse marginal transformation. Specifically, we generate new realizations of

XHSP , and hence V , in the tail region of our model by simulating on exponential
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margins and inverting equation (3.13). Outside of the tail region, we use the

empirical distribution of V . As in Bortot et al. (2000), we fix a1 = 0.25, a2 = 26,

and l = 4.3. The right panel of Figure 3.11 displays the obtained values vp,

with empirical quantiles and those calculated from fitting the generalized Pareto

distribution directly to the tail of V (the so-called “structure variable approach”)

for comparison. For very small p, the return levels obtained from the geometric

model are larger than those from the generalized Pareto fit. They are comparable

to those obtained in Bortot et al. (2000), but much lower than those in Coles and

Tawn (1994), whose model incorrectly assumes that the spectral measure places

mass on B{H,S,P}.

3.6.2 River flow data

We now apply our modelling approach on 12,327 measurements of daily mean river

flow (m3/s) from four gauging stations in the north west of England. The data were

previously explored in Simpson et al. (2020), where focus lay on determining the

support of the spectral measure, but not subsequent modelling of the variables, due

to lack of suitable models that could account for complex structures. We opt to

consider four out of the five locations initially used in order to keep the number

of parameters reasonable; further discussion on dimensionality can be found in

Section 6.6. The four stations, labelled 1, 2, 3, 4, correspond to those labelled

A, B, C, D in Simpson et al. (2020).

Margins are standardized using equation (3.13). We then use the Simpson et al.

(2020) methodology, which suggests that the spectral measure may place mass

on the faces B{2},B{4},B{1,4},B{1,3,4}, and B{1,2,3,4} of the simplex S3. We fit the

model with the corresponding asymmetric logistic gauge function, a Gaussian gauge

function, and an additive mixture of the two. The AIC values are 2666, 2601 and

2609, respectively. Once again, the model with the Gaussian gauge is preferred,

in apparent conflict with the estimated structure of the spectral measure, though

we note this is also subject to uncertainty. Parameter estimates and approximate
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standard errors are given in Table 3.1. To account for temporal dependence of

river flows, standard errors are found via use of a block bootstrap on the original

data series, with block length 20. The asymmetric logistic gauge, while able to

capture the structure of different groups of variables being co-extreme, appears too

inflexible to capture other aspects of the dependence. The additively mixed model

is an attempt to alleviate this problem, but leads to a large number of parameters

without a sufficient improvement in fit to compensate for them.

Parameter α θ12 θ13 θ14 θ23 θ24 θ34

Estimate 2.46 0.83 0.90 0.80 0.90 0.57 0.62

Standard error 0.62 0.11 0.14 0.14 0.14 0.16 0.14

Table 3.1: Parameter estimates and approximate block bootstrap-based standard

errors for the river flow data. Parameter θjk represents the Gaussian gauge

correlation parameter between sites j, k.

Figure 4.8 displays coefficients χ123(u), χ134(u) and χ1234(u), defined analogously

to (3.14). If H places mass on B{1,2,3,4}, then each of these coefficients has a

positive limit as u→ 1, but at observable levels, the model-based estimates from the

Gaussian gauge all represent a good fit to the data. Plots of χC(u) for the remaining

groups of variables are given in Appendix 3.8.8, along with the PP plot, showing

no lack of fit. In the limit as u → 1, estimates of χC(u) from the geometric model

with Gaussian gauge will all be zero. However, the inference that H places mass on

B{1,2,3,4}, and other faces, is subject to uncertainty. From the plots in Figure 4.8,

it is difficult to determine whether the limits of χ123(u), χ134(u) and χ1234(u) as

u → 1 are indeed positive or zero, and as a consequence whether a gauge function

that reflects H(B{1,2,3,4}) > 0 is truly preferable. Nonetheless, this framework offers

the chance to test these models and assumptions in a way that was not previously

possible.
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Figure 3.12: Empirical (solid black) estimates of χC(u) with 95% pointwise

confidence interval (grey shaded region), and model-based estimate (dashed black)

for C = {1, 2, 3}, {1, 3, 4} and {1, 2, 3, 4} (left to right).

3.7 Discussion

We have presented a new approach to multivariate extreme value modelling, based

on estimation of the shape of the limit set of a sample cloud of data points in light-

tailed margins. The methodology allows for modelling datasets with complicated

extremal dependence structures, whereby different groups of variables may be co-

extreme, as well as extrapolation into parts of the multivariate tail where only some

variables are large.

By offering models for complex dependence structures with non-simultaneous

extremes, this approach paves the way for more useful higher dimensional extreme

value modelling. Recent literature on multivariate extremes that is targeted at

higher dimensions typically involves making strong simplifying assumptions on the

dependence structure. For example, the extremal graphical models outlined in

Engelke and Hitz (2020) require an assumption that the spectral measure H places

all mass on B{1,...,d}.

In this work, we demonstrated the methods up to dimension d = 4. The

main challenges for routine application of the methods for d larger than 3 or 4

lie in calculation of the threshold function r0(w), and specification of flexible gauge

functions. The former could potentially be addressed by adapting the additive
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quantile regression approach of Fasiolo et al. (2021) to incorporate basis functions

whose support is the simplex Sd−1. Addressing the latter challenge requires ways to

build flexible and parsimonious gauge functions, which is a topic of current work.

In particular, we note that models fitted in Section 3.6 had the ability to capture

the complex structures suggested by the Simpson et al. (2020) methodology, but

the best fits were obtained through models that were more flexible in other aspects.

This led to the conclusion that the model with the Gaussian gauge function was

preferred for both datasets, which is likely a consequence of being able to capture a

range of strengths of dependences across different groups of variables; in contrast,

the asymmetric logistic gauge function treats groups of variables that do not exhibit

simultaneous extremes as effectively independent. We note also that estimates of the

faces BC on which H places mass are themselves subject to uncertainty, which is not

easily quantifiable thanks to the requirement to select tuning parameters. Conflicts

between the estimated structure and the selected gauge function may therefore not

be too concerning, provided the diagnostics for the model are adequate.

A further challenge with our methodology for dimensions d ≥ 5 is the use

of the empirical distribution for the angles W . We anticipate that considering

(semi-)parametric forms for this distribution will be needed as part of adapting the

methods to higher dimensions.

We have focused here primarily on positive dependence as it is common in

many datasets and simplifies the presentation. For datasets exhibiting any form

of negative dependence, the limit set shapes are more descriptive in Laplace, rather

than exponential, margins. For example, we mentioned for the multivariate Gaussian

case that the continuous convergence to g(x) fails when some component of x is zero;

this is not an issue in Laplace margins, where the limit set lies in the region [−1, 1]d

rather than [0, 1]d, and similarly for the tν distribution. Moving from the positive

quadrant to Rd requires defining the angles W differently, but otherwise a similar

approach could be applied, and represents a natural next step in developing this

methodology.
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Data availability

Data for the analyses in Section 3.6 are available as supplementary material in

the JRSSB submission (Wadsworth and Campbell, 2024). Acknowledgement: Data

from the UK National River Flow Archive (Section 3.6.2).

Computer code

Code for the analyses in Section 3.6 is available as supplementary material

in the JRSSB submission (Wadsworth and Campbell, 2024). An R package

geometricMVE for implementing the methodology presented in the article is

also available as supplementary material and at http://www.lancaster.ac.uk/

~wadswojl/geometricMVE.html. Interactive versions of 3d plots are available at

the same URL.

3.8 Appendix

3.8.1 Example limit sets

Figures 3.13 and 3.14 display example illustrations of limit sets in exponential

margins for three dependence structures in dimension d = 2 and d = 3 respectively.

Equations for the gauge functions of these limit sets can be found in Section 3.3, or

Appendix 3.8.2.
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Figure 3.13: Illustration of limit sets (grey shaded region) arising from the logistic,

Gaussian, and inverted logistic distributions (L-R) in dimension d = 2. Red lines

represent unit level sets of the gauge function. Each dependence parameter is equal

to 0.5.

3.8.2 Gauge functions and conditional distributions of R |
W = w

Here we provide detailed calculations of the gauge functions such that we can

establish the asymptotic behaviour of fR|W (r | w) as r → ∞. In each case, we

begin with the relevant density in exponential margins and calculate the asymptotic

behaviour of fX(tx) as t → ∞; this is subsequently used to establish results

for fR|W (r | w) as r → ∞. We recall that the notation for ordered values is

x(1) ≥ x(2) ≥ · · · ≥ x(d) > 0, and similarly w(1) ≥ w(2) ≥ · · · ≥ w(d) > 0.

Logistic distribution The d-dimensional logistic distribution with unit Fréchet

margins has density

fZF
(z) = exp{−V (z)}

∑
π∈Π

∏
s∈π

−Vs(z),

where V : Rd
+ → R+ is the homogeneous of order −1 exponent function. For the

logistic distribution, this is

V (z) =

(
d∑
j=1

z
−1/γ
j

)γ

, γ ∈ (0, 1].
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Figure 3.14: Illustration of limit sets (region between blue surface and planes xj = 0)

arising from the logistic, Gaussian, and inverted logistic distributions (L-R) in

dimension d = 3. Blue surfaces represent unit level sets of the gauge function.

Dependence parameters are set to: γ = 0.7, ρ = (0.2, 0.5, 0.8) and γ = 0.3,

respectively.

The transformation to exponential margins is given by zj = [− log(1 − e−xj)]−1.

Expanding this to give the asymptotic behaviour for large xj yields zj(xj) = exj +

1/2 +O(e−xj). We can therefore express the density in exponential margins as

fX(tx) = exp{−V (etx + 1/2 +O(e−tx))}
∑
π∈Π

∏
s∈π

Vs(e
tx + 1/2 +O(e−tx))

× et
∑d

j=1 xj [1 +O(e−2tx(d))].

Firstly consider the contribution exp{−V (etx+1/2+O(e−tx))}. By homogeneity

V (etx + 1/2 +O(e−tx)) = e−tx(d)V (et(x−x(d)) + e−tx(d)/2 +O(e−t(x+x(d))))

= e−tx(d) [c+ o(1)], t→∞,

where c is a constant that equals 1 if x(d) < x(d−1). Consequently,

exp{−V (etx + 1/2 +O(e−tx))} = 1 +O(e−tx(d)).

Next consider the partial derivatives Vs(z). We have

Vs(z) ∝
(∏
j∈s

zj

)−1/γ−1( d∑
j=1

z
−1/γ
j

)γ−|s|

,

69



and therefore

Vs(e
tx + 1/2 +O(e−tx))

∝
(∏
j∈s

[etxj + 1/2 +O(e−txj)]

)−1/γ−1( d∑
j=1

[etxj + 1/2 +O(e−txj)]−1/γ

)γ−|s|

=e−t(1/γ+1)
∑

j∈s xj [1 +O(e−tminj∈s xj)]

× e−tx(d)(1−|s|/γ)[1 +O(e−t(x(d−1)−x(d))/γ) +O(e−tx(d)/γ)]

=e−t(1/γ+1)
∑

j∈s xj−tx(d)(1−|s|/γ)[1 +O(e−t(x(d−1)−x(d))/γ) +O(e−tx(d)/γ)].

For each partition π ∈ Π,∏
s∈π

Vs(e
tx + 1/2 +O(e−tx))

∝ e−t(1/γ+1)
∑d

j=1 xj−t
∑

s∈π x(d)(1−|s|/γ)[1 +O(e−t(x(d−1)−x(d))/γ) +O(e−tx(d)/γ)]

= e−t[(1/γ+1)
∑d

j=1 xj+x(d)(|π|−d/γ)][1 +O(e−t(x(d−1)−x(d))/γ) +O(e−tx(d)/γ)].

Combining all of these results yields

fX(tx) ∝
∑
π∈Π

e−t[(1/γ)
∑d

j=1 xj+x(d)(|π|−d/γ)][1 +O(e−t(x(d−1)−x(d))/γ) +O(e−tx(d))].

The gauge function comes from taking minπ∈Π[(1/γ)
∑d

j=1 xj + x(d)(|π| − d/γ)],

which clearly occurs for π with |π| = 1, i.e. π = {{1, . . . , d}}. Hence g(x) =

(1/γ)
∑d

j=1 xj + x(d)(1− d/γ).
Turning to the conditional distribution of R |W = w, we have

fR|W (r | w) ∝ rd−1e−rg(w)[1 +O(e−r(w(d−1)−w(d))/γ) +O(e−rw(d))], r →∞.

Negative logistic MGPD MGPDs have marginal scale and shape parameters,

and when these are all set to 1 and 0 respectively, the marginal distributions are

exponential conditionally upon being positive. That is, if Z follows a MGPD with

unit-scale and zero-shape parameters, the marginal distribution functions Fj(z) are

Fj(z) =

Pr(Zj ≤ z), z < 0,

cj + (1− cj)(1− e−z), z ≥ 0,
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with cj = Pr(Zj ≤ 0). To translate to exponential margins we solve xj = − log(1−
Fj(zj)), which leads to zj(xj) = xj + log(1− cj)+, xj > − log(1− cj).

Following calculations in Kiriliouk et al. (2019), the unit-scale zero-shape MGPD

density associated to the negative logistic max-stable distribution is

f(z) ∝ eγ
∑d

j=1 zj

(
d∑
j=1

eγzj

)−(d+1/γ)

, γ > 1,

and so on the region {x : xj > − log(1− cj)/t, j = 1, . . . , d}

fX(tx) ∝ eγ
∑d

j=1 txj+γ
∑d

j=1 log(1−cj)

(
d∑
j=1

eγtxj+γ log(1−cj)

)−(d+1/γ)

,

∝ etγ
∑d

j=1 xj−t(1+dγ)x(1)
[
1 +O(et(x(2)−x(1))γ)

]
,

so that g(x) = (1 + dγ)x(1) − γ
∑d

j=1 xj, and

fR|W (r | w) ∝ rd−1e−rg(w)
[
1 +O(er(w(2)−w(1))γ)

]
,

on the region {r > min1≤j≤d− log(1 − cj)/wj}. Outside of this region we require

knowledge of the distribution of Zj | Zj < 0, j = 1, . . . , d, which is harder to

summarize in general.

Dirichlet MGPD In this case

f(z) ∝ e
∑d

j=1 θjzj

(
d∑
j=1

ezj

)−(∑d
j=1 θj+1)

, θ1, . . . , θd > 0,

and so on the region {x : xj > − log(1− cj)/t, j = 1, . . . , d}

fX(tx) ∝ e
∑d

j=1 tθjxj+
∑d

j=1 θj log(1−cj)

(
d∑
j=1

etxj+log(1−cj)

)−(∑d
j=1 θj+1)

,

∝ et
∑d

j=1 θjxj−t(1+
∑d

j=1 θj)x(1)
[
1 +O(et(x(2)−x(1)))

]
,

so that g(x) = (1 +
∑d

j=1 θj)x(1) −
∑d

j=1 θjxj, and

fR|W (r | w) ∝ rd−1e−rg(w)
[
1 +O(er(w(2)−w(1)))

]
,

on the region {r > min1≤j≤d− log(1− cj)/wj}.
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Inverted max-stable distributions Recall the form of the density is

fX(x) = exp{−l(x)}
∑
π∈Π

∏
s∈π

ls(x).

The derivatives ls(x) are homogeneous of order 1− |s|, and so

fX(tx) = exp{−tl(x)}
∑
π∈Π

∏
s∈π

t1−|s|ls(x).

The leading-order term in the summation therefore comes from the partition π =

{{1}, {2}, . . . , {d}}, with |s| = 1 for all s ∈ π. Second-order behaviour comes from

the d partitions containing one set with |s| = 2 and all others with |s| = 1. We

therefore have

fX(tx) = exp{−tl(x)}l{1}(x) · · · l{d}(x)[1 +O(t−1)],

so that g(x) = l(x), and

fR|W (r | w) ∝ rd−1 exp{−rg(w)}[1 +O(r−1)].

Multivariate Gaussian distribution The multivariate Gaussian density with

Gaussian margins is

fZG
(z) ∝ exp

{
−1

2
z⊤Σ−1z

}
= exp

{
−1

2

d∑
j=1

d∑
k=1

zjzkωjk

}
,

where Ω = (ωjk)j,k = Σ−1 is the precision matrix. Transforming to exponential

margins, we obtain

fX(x) ∝ exp

{
−1

2

d∑
j=1

d∑
k=1

zj(xj)zk(xk)ωjk

}
d∏
j=1

1− Φ(zj(xj))

ϕ(zj(xj))
, (3.15)

where zj(xj) is found through solving xj = − log(1−Φ(zj)), with ϕ,Φ the standard

univariate normal density and df, respectively. Since we are interested in txj, t→∞,

we exploit Mills’ ratio for the solution. Dropping the component index, and writing

zt = z(tx), this gives

tx = − log

{
ϕ(zt)

zt
[1 +O(z−2t )]

}
=
z2t
2

+
1

2
log 2π + log zt +O(z−2t ),
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which is rearranged to give

zt = (2tx)1/2 − (2tx)−1/2
log 4πtx

2
+O

(
(log t)2

t3/2

)
.

We firstly deal with the Jacobian expression in density (3.15). Again via Mills’ ratio,

d∏
j=1

1− Φ(zj(xj))

ϕ(zj(xj))
=

d∏
j=1

zj(txj)
−1[1 +O(zj(txj)

−2)]

= 2−d/2t−d/2
d∏
j=1

x
−1/2
j [1 +O(log t/t)].

Next consider the terms in the quadratic form of the exponent:

ωjkzj(txj)zk(txk) =ωjk

{
2t(xjxk)

1/2 −
(
xj
xk

)1/2
log 4πtxk

2
−
(
xk
xj

)1/2
log 4πtxj

2

}

+O

(
(log t)2

t

)
=ωjk

{
2t(xjxk)

1/2 −
[(

xj
xk

)1/2

+

(
xk
xj

)1/2
]
log t

2

−
(
xj
xk

)1/2
log 4πxk

2
−
(
xk
xj

)1/2
log 4πxj

2

}
+O

(
(log t)2

t

)
.

Therefore

−1

2

∑
j,k

ωjkzj(txj)zk(txk)

= −t(x1/2)⊤Σ−1x1/2 + (x1/2)⊤Σ−1x−1/2
log t

2
+ k(x) +O

(
(log t)2

t

)
,

where k(x) does not depend on t. Putting everything together, with g(x) =

(x1/2)⊤Σ−1x1/2,

fR|W (r | w) ∝ rd/2−1+
1
2
(w1/2)⊤Σ−1w−1/2

[1 +O(log r/r)] exp

{
−rg(w) +O

(
(log r)2

r

)}
= rd/2−1+

1
2
(w1/2)⊤Σ−1w−1/2

exp {−rg(w)}
[
1 +O

(
(log r)2

r

)]
.

We therefore observe that the conditional distribution of R |W = w has the gamma

form, but with shape parameter α(w) = d/2 + (w1/2)⊤Σ−1w−1/2/2, rather than d

as in all other examples calculated here.
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Multivariate tν distribution (positive dependence) The multivariate t

distribution with ν degrees of freedom exhibits both positive and negative depen-

dence. After transformation to exponential marginals, the negative dependence

is manifested in the limit set by inclusion of sections on the planes {xj = 0},
j = 1, . . . , d. We focus here on the shape of the limit sets for x > 0 only, which

captures the positive dependence in the tail.

The density with centred tν margins and dispersion matrix Σ is

fZT
(z) ∝

[
1 +

z⊤Σ−1z

ν

]−(ν+d)/2
=

[
1 +

∑d
j=1

∑d
k=1 ωjkzjzk

ν

]−(ν+d)/2
,

with Ω = (ωjk)j,k the inverse dispersion matrix. Transforming to exponential

margins gives

fX(x) ∝
[
1 +

∑d
j=1

∑d
k=1 ωjkzj(xj)zk(xk)

ν

]−(ν+d)/2 d∏
j=1

1− FZT
(zj(xj))

fZT
(zj(xj))

,(3.16)

where zj(xj) is the solution to xj = − log(1− FZT
(zj)), and fZT

, FZT
represent the

marginal density and distribution function of the tν distribution. Again, we are

interested in large values of xj and zj: Soms (1976) gave an expansion for the ratio

of the univariate survival function to density, from which we can deduce that

1− FZT
(zj(txj))

fZT
(zj(txj))

=
zj(txj)

ν
+O(zj(txj)

−1).

Dropping the component index and writing zt = z(tx), we have

tx = − log
{
fZT

(zt)
[zt
ν
+O(z−1t )

]}
= c+ ν log zt +O(z−2t ),

where c is a constant depending on ν. For a new constant c′, this is rearranged to

give

zt = c′etx/ν [1 +O(e−2tx/ν)].

To find the asymptotic behaviour of (3.16) we firstly consider the Jacobian term:

d∏
j=1

1− FZT
(zj(txj))

fZT
(zj(txj))

=
d∏
j=1

zj(txj)

ν
[1 +O(zj(txj)

−2)] ∝ et
∑d

j=1 xj/ν [1 +O(e−2tx(d)/ν)].
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Considering the kernel, we have[
1 +

d∑
j=1

d∑
k=1

ωjk
ν
zj(txj)zk(txj)

]− ν+d
2

=

[
1 +

d∑
j=1

d∑
k=1

ωjkc
′2

ν
et(xj+xk)/ν +O(et(x(1)−x(d))/ν)

]− ν+d
2

∝ e−
2tx(1)

ν
ν+d
2

[
1 +O(et(x(2)−x(1))/ν)

]
= e−tx(1)(1+d/ν)

[
1 +O(et(x(2)−x(1))/ν)

]
.

Combining both expressions,

fX(tx) ∝ e−t[(1+d/ν)x(1)−
∑d

j=1 xj/ν]
[
1 +O(et(x(2)−x(1))/ν) +O(e−2tx(d)/ν)

]
.

Therefore g(x) = (1 + d/ν)x(1) −
∑d

j=1 xj/ν and

fR|W (r | w) ∝ rd−1e−rg(w)
[
1 +O(er(w(2)−w(1))/ν) +O(e−2rw(d)/ν)

]
.

Clayton and inverted Clayton copulas The Clayton copula with parameter

γ > 0 has distribution function in uniform margins

FU (u) =

(
d∑
j=1

u−γj − d+ 1

)−1/γ
.

The corresponding density is

fU (u) ∝
(

d∏
j=1

uj

)−γ−1( d∑
j=1

u−γj − d+ 1

)−1/γ−d
.

The density in exponential margins is fX(x) = e−
∑d

j=1 xjfU (1− e−x), and so

fX(tx) ∝ e−
∑d

j=1 txj

(
d∏
j=1

[1− e−txj ]
)−(γ+1)( d∑

j=1

(1− e−xj)−γ − d+ 1

)−1/γ−d
∝ e−

∑d
j=1 txj

[
1 +O(e−tx(d))

]
.

The gauge function is therefore g(x) =
∑d

j=1 xj, and

fR|W (r | w) ∝ rd−1e−rg(w)[1 +O(e−rw(d))].
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If the random vector U follows a Clayton copula with uniform margins, then the

random vector 1−U follows an inverted Clayton copula with uniform margins. Its

density is fU (1− u). In exponential margins

fX(tx) ∝ et(γ+1)
∑d

j=1 xj−t
∑d

j=1 xj

(
d∑
j=1

etxj/γ − d+ 1

)−1/γ−d

= etγ
∑d

j=1 xj−t(1+dγ)x(1)

(
d∑
j=1

et(xj−x(1))/γ + (1− d)e−tx(1)/γ
)−1/γ−d

= etγ
∑d

j=1 xj−t(1+dγ)x(1)
(
1 +O(et(x(2)−x(1))/γ)

)
.

The gauge function is therefore g(x) = (1 + dγ)x(1) −
∑d

j=1 xjγ, and

fR|W (r | w) ∝ rd−1e−rg(w)[1 +O(e−r(w(2)−w(1)))].

Vine copula from Nolde and Wadsworth (2022) Nolde and Wadsworth

(2022) give an example of a gauge function derived from a particular vine copula

construction. Vine copulas are specified by pairs of bivariate copulas: in this case

we take the two base pairs to be independence (between (X1, X2)) and inverted

Clayton with parameter β > 0 (between (X2, X3)), and use the inverted Clayton

with parameter γ > 0 to model the dependence between (X3 | X2, X1 | X2).

Let c1,2, c2,3 and c1|2,1|3 denote the densities of the respective copulas in standard

uniform margins. The joint density in exponential margins is

fX(x) =e−(x1+x2+x3)c1,2
(
1− e−x1 , 1− e−x2

)
c2,3
(
1− e−x2 , 1− e−x3

)
× c1|2,3|2

(
F1|2(x1 | x2), F3|2(x3 | x2)

)
,

where F1|2(x1 | x2) = Pr(X1 ≤ x1 | X2 = x2) = 1− e−x1 , and

F3|2(x3 | x2) = Pr (X3 ≤ x3 | X2 = x2) = 1− e(β+1)x2
[
eβx2 + eβx3 − 1

]−( 1
β
+1)

,

so that

F3|2(tx3 | tx2) = 1− e−t(β+1)[max(x2,x3)−x2][1 +O(etβ[min(x2,x3)−max(x2,x3)])].
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For the copula densities, c1,2 = 1, while

c2,3(u2, u3) = (1 + β) (1− u2)−(β+1)(1− u3)−(β+1)
[
(1− u2)−β + (1− u3)−β − 1

]−( 1
β
+2)

,

and c1|2,3|2 is of the same form but with parameter γ. We have

c2,3
(
1− e−tx2 , 1− e−tx3

)
∝ e(β+1)tx2e(β+1)tx3

[
eβtx2 + eβtx3 − 1

]−( 1
β
+2)

= e−βtmax(x2,x3)+(β+1)tmin(x2,x3)[1 +O(eβt(min(x2,x3)−max(x2,x3)))],

and

c1|2,3|2(1− e−tx1 , 1− e−t(β+1)[max(x2,x3)−x2][1 +O(etβ[min(x2,x3)−max(x2,x3)])])

∝ e(γ+1)tx1+(γ+1)(β+1)t[max(x2,x3)−x2][1 +O(etβ[min(x2,x3)−max(x2,x3)])]

×
{
eγtx1 + eγ(β+1)t[max(x2,x3)−x2][1 +O(etβ[min(x2,x3)−max(x2,x3)])]− 1

}−( 1
γ
+2)

= e(γ+1)tx1+(γ+1)(β+1)t[max(x2,x3)−x2]−(2γ+1)tmax(x1,(β+1)[max(x2,x3)−x2])

× [1 +O(etβ[min(x2,x3)−max(x2,x3)])

+O(etγ{min(x1,(β+1)[max(x2,x3)−x2])−max(x1,(β+1)[max(x2,x3)−x2])})]

Combining all components,

fX(tx)

∝ exp {−t[x1 + x2 + x3 + βmax(x2, x3)− (β + 1)min(x2, x3)

−(γ + 1){x1 + (β + 1)[max(x2, x3)− x2]}

+(2γ + 1)max(x1, (β + 1)[max(x2, x3)− x2])]}

× [1 +O(etβ[min(x2,x3)−max(x2,x3)]) +O(etγ{min(x1,(β+1)[max(x2,x3)−x2])−max(x1,(β+1)[max(x2,x3)−x2])})].

Simplifying the gauge function we get

g(x) =(1 + β)max(x2, x3)− βmin(x2, x3)− γx1 − (γ + 1)(β + 1) (max(x2, x3)− x2)

+ (2γ + 1)max(x1, (β + 1)(max(x2, x3)− x2)),

and

fR|W (r | w) ∝ rd−1e−rg(w)
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× [1 +O(erβ[min(w2,w3)−max(w2,w3)])+

O(erγ{min(w1,(β+1)[max(w2,w3)−w2])−max(w1,(β+1)[max(w2,w3)−w2])})].

3.8.3 Multivariate Gaussian case

In this section we consider the conditional distribution R | W = w for the

multivariate Gaussian dependence structure in more detail. In Section 3.3, and

Appendix 3.8.2, the asymptotic form of this distribution is shown to have a gamma

form with shape parameter given by a function of the angle w,

α(w) =
d

2
+

1

2

(
w1/2

)⊤
Σ−1w−1/2.

There are two concerns with this shape parameter: (i) whether its variation with

w indicates the need for a more complex model than that in equation (3.5), where

the shape is assumed constant, and (ii) the fact that α(w) ≤ 0 for some values of

w. We investigate these issues in turn, using a single correlation across all pairwise

variables to define our covariance matrix,

Σij =

1 ; i = j

ρ ; i ̸= j

, i, j = 1, . . . , d.

Figures 3.15 and 3.16 display local estimates of the shape parameter α under the

truncated gamma model (3.5) for R | [W = w, R > r0(w)] for d = 2, 3, respectively.

In each case the angles w are restricted to a small section of the simplex, and the

rate parameter is fixed at the “true” value g(w). For comparison, we also perform

the same procedure for the logistic and inverted logistic dependence structures, over

a variety of dependence strengths. For each distribution the total sample size, over

all angular subsections, is 500,000. In Figure 3.15 we plot the median estimates

and pointwise 95% CIs based on 100 repetitions. In Figure 3.16 we plot the median

estimates based on 100 repetitions.

For the Gaussian case, we observe that estimates α̂ remain relatively constant

on the simplex Sd−1 in practice for d = 2, 3. In particular, the shape parameter
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estimates generally vary no more with the angle w when compared to the logistic

and inverted logistic setting. The evidence suggests that for many distributions the

shape parameter will vary with the angle w in practice to some degree. This is

likely due to the fact that the rate of convergence of R |W = w to the gamma form

can depend on w either explicitly (as in the logistic case), or practically through a

constant term (as in the inverted logistic case). When the dependence is strong for

the inverted logistic distribution there are large parts of the simplex where there is

insufficient data to estimate the local model.

The second issue with the shape parameter is that there will be values of w

on the simplex Sd−1 such that α(w) ≤ 0. Figure 3.17 illustrates these regions,

demonstrating that they appear to be small in volume and thus not important,

especially as the dimension d increases. In both the d = 2 and d = 3 cases, we see

that the region is almost negligible for ρ < 0.7. Furthermore, simulations from our

models often do not produce points in these regions because when the dependence

is high, there are very few points W near these boundaries that are accompanied

by large values of R.
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Figure 3.15: Shape parameter estimates across non-overlapping sections of the simplex

S1 in the d = 2 case. Gaussian data and gauge function are used for column 1, logistic

in column 2, inverted logistic in column 3. From top to bottom, dependence parameters

are such that joint dependence is increasing. Dots represent median point estimates, and

outer solid lines approximate 95% pointwise confidence intervals.
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Figure 3.16: Median shape parameter estimates across non-overlapping sections of

the simplex S2 in the d = 3 case. Gaussian data and gauge function are used for

column 1, logistic in column 2, inverted logistic in column 3. From top to bottom,

the dependence parameters are such that joint dependence is increasing. Pixels in

yellow represent estimates α̂ = 0.
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Finally, we offer evidence that extrapolation and probability estimation in these

potentially problematic regions is not an issue when compared to other contemporary

multivariate extremes methods. In both the d = 2 and d = 3 setting, we fix ρ = 0.7

and consider rectangular sets which overlap with the regions where α(w) ≤ 0. For

d = 2 we estimate the probability of lying in the set (5, 7) × (0, 0.75), and for

d = 3 we estimate the probability of lying in the set (5, 10) × (0, 2) × (0, 2) (see

Figure 3.18). The resulting probability estimates are presented in the boxplots

provided in Figure 3.19. We compare our geometric approach to the conditional

extremes model of Heffernan and Tawn (2004). For d = 3 the results are comparable

in terms of bias and variance, while for d = 2, our method is unbiased but with

slightly higher variability than conditional extremes.
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Figure 3.17: The region {(r,w) ∈ (0,∞)× Sd−1 : α(w) < 0} for correlation ρ = 0.4,

0.7, and 0.9 with d = 2 on the left (red region) and d = 3 on the right (volume

between coordinate planes and red surface). Interactive versions of the plots for

d = 3 can be found at www.lancaster.ac.uk/~wadswojl/geometricMVE.html.
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Figure 3.18: Rectangular regions with black borders are the extremal sets that we

estimate the probability of lying in. Left: d = 2, right: d = 3.

Figure 3.19: Probability estimates of lying in a predefined extremal region. Left:

d = 2, right: d = 3. True probability values are displayed by the red dashed line.
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3.8.4 Gauge function corresponding to the asymmetric

logistic distribution

The asymmetric logistic distribution (Tawn, 1990) is a max-stable distribution with

exponent function

V (z) =
∑

C∈2D\∅

[∑
j∈C

(
θj,C
zj

)1/γC
]γC

, (3.17)

where 2D \ ∅ is the power set of D = {1, . . . , d}. The parameters satisfy γC ∈ (0, 1]

and for each j there is a marginal condition that
∑

C∈2D\∅ θj,C = 1, with θj,C = 0

if j ̸∈ C. Notice that for singleton sets the values γ{1}, . . . , γ{d} are irrelevant; for

convenience we assume that each of these is equal to 1.

The parameters θj,C play no role in determining the structure of the gauge

function, except for where they lead to certain sets of variables being discounted

as not taking extreme values simultaneously. We therefore consider a modification

of V that allows us to derive the associated gauge function in a simpler manner.

Define

V ∗(z) =
∑

C∈2D\∅

θC

[∑
j∈C

(
1

zj

)1/γC
]γC

, (3.18)

with γC as before, and

θC =

1 Variables in C can be simultaneously extreme

0 Variables in C cannot be simultaneously extreme.

In other words, θC = 1 when the corresponding spectral measure H places mass on

BC . For each variable j = 1, . . . , d there must be at least one θC = 1 for j ∈ C. The
distribution function exp{−V ∗(ex)} is a multivariate max-stable distribution with

asymmetric logistic type dependence and Gumbel margins with non-zero location

and unit scale. Distributions with unit-scale Gumbel margins have the same limit

sets as distributions with exactly unit exponential margins (Nolde and Wadsworth,

2022). There is one further difference between the models defined by exponent
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functions (3.17) and (3.18): when θC = 0 in (3.18), this “switches off” the group

of variables corresponding to C with no effect on other groups. With (3.17), if

θj,C = 0 for a single j ∈ C, then the set of variables that can be simultaneously

extreme corresponds to θC\{j}, meaning that there could be two (or more) different

γ parameters corresponding to the same set of variables. The function V ∗ in (3.18)

is restricted to a single γ parameter per group of variables.

We define the collection of sets CJ to be all of those containing the index set

J ⊂ {1, . . . , d}. For example, with d = 3, C{1} = {{1}, {1, 2}, {1, 3}, {1, 2, 3}} and
C{1,2} = {{1, 2}, {1, 2, 3}}. Here we outline the important steps in derivation of the

gauge function for d = 3.

The partial derivatives of V ∗(z) are, for k, l ∈ {1, 2, 3}:

V ∗{k}(z) =
∑

Ck∈C{k}

θCk
κCk

z
−1/γCk

−1
k

[∑
j∈Ck

z
−1/γCk
j

]γCk
−1

V ∗{k,l}(z) =
∑

Ckl∈C{k,l}

θCk,l
κCk,l

z
−1/γCkl

−1
k z

−1/γCkl
−1

l

[∑
j∈Ckl

z
−1/γCkl
j

]γCkl
−2

V ∗{1,2,3}(z) =
∑

C123∈C{1,2,3}

θC123κC123z
−1/γC123

−1
1 z

−1/γC123
−1

2 z
−1/γC123

−1
3

[ ∑
j∈C123

z
−1/γC123
j

]γC123
−3

= θ{1,2,3}κ{1,2,3}z
−1/γ{1,2,3}−1
1 z

−1/γ{1,2,3}−1
2 z

−1/γ{1,2,3}−1
3

[
3∑
j=1

z
−1/γ{1,2,3}
j

]γ{1,2,3}−3
,

with κC ̸= 0 representing constant terms. Consequently,

V ∗{1}(e
tx)V ∗{2}(e

tx)V ∗{3}(e
tx)

=
∑

C1∈C{1}

∑
C2∈C{2}

∑
C3∈C{3}

{θC1θC2θC3κC1κC2κC3

e
−tx1

(
1

γC1
+1

)
−tx2

(
1

γC2
+1

)
−tx3

(
1

γC3
+1

)

e
−tminj∈C1

xj

(
1− 1

γC1

)
−tminj∈C2

xj

(
1− 1

γC2

)
−tminj∈C3

xj

(
1− 1

γC3

)}
[1 + o(1)],
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V ∗{j}(e
tx)V ∗{k,l}(e

tx)

=
∑

Cj∈C{j}

∑
Ckl∈C{k,l}

{
θCj

θCkl
κCj

κCkl
e
−txj

(
1

γCj
+1

)
−txk

(
1

γCkl
+1

)
−txl

(
1

γCkl
+1

)

e
−tmini∈Cj

xi

(
1− 1

γCj

)
−tmini∈Ckl

xi

(
1− 2

γCkl

)}
[1 + o(1)],

V ∗{1,2,3}(e
tx)

=
∑

C123∈C{1,2,3}

θC123κC123e
−tx1

(
1

γC123
+1

)
−tx2

(
1

γC123
+1

)
−tx3

(
1

γC123
+1

)
+tminj∈C123

xj

(
1− 3

γC123

)

= θ{1,2,3}κ{1,2,3}e
−tx1

(
1

γ{1,2,3}
+1

)
−tx2

(
1

γ{1,2,3}
+1

)
−tx3

(
1

γ{1,2,3}
+1

)
+tminj∈{1,2,3} xj

(
1− 3

γ{1,2,3}

)
.

The density of the distribution in non-centred Gumbel margins is

exp{−V ∗(etx)}et
∑d

j=1 xj
∑
π∈Π

∏
s∈π

−Vs(etx),

and the gauge function is derived through the minimum of all non-zero terms coming

from the partial derivatives. To this end, we define C+J to be the collection of all sets

that contain the index set J and for which θJ = 1. For example, when d = 3 and

θ{1} = θ{1,2,3} = 0 and all other θJ = 1 then C+{1} = {{1, 2}, {1, 3}}. For d = 3 this

yields the following expression for g(x):

min

 min
C1∈C+{1},C2∈C+{2},

C3∈C+{3}

[
x1
γC1

+
x2
γC2

+
x3
γC3

+min
j∈C1

xj

(
1− 1

γC1

)
+min

j∈C2

xj

(
1− 1

γC2

)

+min
j∈C3

xj

(
1− 1

γC3

)]
,

min
C1∈C+{1},C23∈C+{2,3}

[
x1
γC1

+
x2
γC23

+
x3
γC23

+min
j∈C1

xj

(
1− 1

γC1

)
+ min

j∈C23

xj

(
1− 2

γC23

)]
,

min
C2∈C+{2},C13∈C+{1,3}

[
x1
γC13

+
x2
γC2

+
x3
γC13

+min
j∈C2

xj

(
1− 1

γC2

)
+ min

j∈C13

xj

(
1− 2

γC13

)]
,
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min
C3∈C+{3},C12∈C+{1,2}

[
x1
γC12

+
x2
γC12

+
x3
γC3

+min
j∈C3

xj

(
1− 1

γC3

)
+ min

j∈C12

xj

(
1− 2

γC12

)]
,

min
C123∈C+{1,2,3}

[
x1
γC123

+
x2
γC123

+
x3
γC123

+ min
j∈C123

xj

(
1− 3

γC123

)]}
.

From the derivation and form of this gauge function, we observe that the general

form for any dimension d is

g(x) = min
π∈Π

min
Cs∈C+s :s∈π

[∑
s∈π

(∑
j∈s

xj
γCs

+min
j∈Cs

xj

(
1− |s|

γCs

))]
.
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3.8.5 Example limit sets obtained by mixing gauge func-

tions

3.8.5.1 Mixing via minimization

Figure 3.20 displays illustrations of limit sets that arise from mixing two gauge

functions by minimization: g(x1, x2) = min{g[1](x1, x2), g[2](x1, x2)}.
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Figure 3.20: Illustration of limit sets (grey shaded region) arising from taking the

minimum of two component gauge functions. Left: g[1](x1, x2) = (x1 + x2)/γ +

(1 − 2/γ)min(x1, x2) with γ = 0.5, g[2](x1, x2) = (x1 + x2 − 2ρ(x1x2)
1/2)/(1 − ρ2)

with ρ = 0.5; centre: g[1](x1, x2) = (x
1/γ
1 + x

1/γ
2 )γ with γ = 0.5, g[2](x1, x2) =

(x1 + x2 − 2ρ(x1x2)
1/2)/(1 − ρ2) with ρ = 0.8; right: g[1](x1, x2) = (x1 + x2)/γ +

(1− 2/γ)min(x1, x2) with γ = 0.5, g[2](x1, x2) = max((x1−x2)/θ, (x2−x1)/θ, (x1+
x2)/(2− θ)) with θ = 0.8.

3.8.5.2 Additive mixing

Some examples of shapes obtainable by additively mixing gauge functions with d = 2

are presented in Figure 3.5. Figure 3.21 displays some examples with d = 3.
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Figure 3.21: Illustration of limit sets (region between blue surface and planes xj = 0)

arising from additively mixing gauge functions corresponding to the Gaussian

distribution with ρ = (0.5, 0.5, 0.5), and the asymmetric logistic distribution with

spectral measure placing mass on B{1,2},B{1,3},B{2,3}, and parameters γ{1,2} =

γ{1,3} = γ{2,3} = 0.5. From left to right the weights are a1 = 1, 2, 3, with g[1]

the Gaussian gauge.

3.8.6 Choice of k

We describe an investigation into the choice of k, as discussed in Section 4.3.5,

illustrating that overall that the methodology is relatively insensitive to the precise

value selected, as long as it is in the feasible range. Since we require k ≥ 1 such that

B ⊂ {x ∈ Rd
+ :
∑d

j=1 xj > kr0(x/
∑d

j=1 xj)}, the feasible range for k is [1, k⋆], where

k⋆ is the maximum value such that the inequality k < r0(x/
∑d

j=1 xj)/(
∑d

j=1 xj)

holds for all x ∈ B. In practice we may approximate k⋆ by k∗, where for a fixed

number of points x̃1, . . . , x̃m on the boundary of B, and grid of values for k, we

check the inequality

k <

∑d
j=1 x̃l,j

r0

(
x̃l/
∑d

j=1 x̃l,j

)
and take k∗ to be the largest value k such that this holds for all l = 1, . . . ,m.

We summarize the steps we used to find k∗ below: in particular, for d = 2 and a

rectangular region B, we use the vertices as x̃l, l = 1, 2, 3, 4.

1. For the region B = [x1, x2]× [y1, y2], consider the corner points x̃1 = (x1, y1),
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x̃2 = (x1, y2), x̃3 = (x2, y1), and x̃4 = (x2, y2).

2. On a mesh w of the unit simplex S1, find the point w̃l that is closest to

x̃l/
∑d

j=1 x̃l,j for l = 1, 2, 3, 4 for which we have a value of the threshold r0(w̃l).

3. Beginning with k = 1, increase k by increments of 0.10, and find the largest

value of k such that k <
∑d

j=1 x̃l,j/r0(w̃l) is satisfied for all l ∈ {1, 2, 3, 4}.
Denote this largest k value by k∗.

Setting k = k∗ ensures that we sample close to the region B. Figure 3.22 below shows

samples of X | R′ > k∗ for regions B1, B2, and B3, as defined in Section 3.5.1 for a

single simulated dataset and fitted threshold r0(w). We observe that the procedure

used to obtain k∗ ensures that extremal samples start very close to the boundary of

the region of interest.

To assess the sensitivity of probability estimates to the choice of k, we consider

the first three examples from the d = 2 simulation study in Section 3.5.1. For 200

repetitions, we fit our geometric models and estimate Pr(X ∈ B1), Pr(X ∈ B2)

and Pr(X ∈ B3) by simulating from X | R′ > k on a regularly spaced grid of 30 k

values in the range [1, k∗]. Figure 3.23 below shows that probability estimates remain

relatively unchanged as k varies from 1 to k∗. It is worth noting that confidence

intervals are wider for k closer to 1, and we sometimes lose accuracy as k reaches

k∗. We believe this is because of the approximation involved in finding k∗ rather

than k⋆, which means that the inequality k∗ < r0(x/
∑d

j=1 xj)/(
∑d

j=1 xj) may fail

for a small set of points x ∈ B. As such, we recommend taking an intermediate k

that is slightly smaller than k∗.
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Figure 3.22: Samples of X | R′ > k∗ for k∗ obtained by regions B1, B2, and B3

(left to right) generated from models fitted on bivariate logistic (top row), Gaussian

(middle row), and inverted logistic (bottom row) data. Blue points represent the

original sample, the black line represents the threshold r0(w) found using rolling-

windows method, and the green points are samples of X | R′ > k∗.
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Figure 3.23: Probability estimates for increasing k ∈ [1, k∗] for models fitted on

bivariate logistic (top row), Gaussian (middle row), and inverted logistic (bottom

row) data. Solid black line represents the mean over the 200 repetitions, grey shaded

regions represent 95% pointwise sample confidence intervals. True probabilities

are given by the red dashed line. From left to right, estimates are of Pr(X ∈
B1),Pr(X ∈ B2) and Pr(X ∈ B3), respectively. For the first few k values, most

estimates of Pr(X ∈ B3) are zero for the logistic distribution.
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3.8.7 Additional simulation study figures

3.8.7.1 d = 2

Figure 3.24 shows examples of the four datasets for the d = 2 simulation study,

and three sets of interest B1 = (10, 12)× (10, 12), B2 = (10, 12)× (6, 8), and B3 =

(10, 12)× (2, 4).
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Figure 3.24: d = 2: Example data from distributions (I) (top left), (II) (top right),

(III) (bottom left) and (IV) (bottom right), and illustration of sets B1, B2, B3 (purple

shading).

Figure 3.25 displays estimates of the limit set shape via non-parametric

estimation of g using rolling-windows quantiles, as described in Section 3.4.1, and

parametric estimation from the maximum likelihood estimates of the gauge function
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parameters. We display parametric estimates using both all fits from the correct

gauge function, and only the fits where the correct gauge function returned the

minimum AIC. For distributions (I), (II), (III) and (IV), this is 82.5%, 41.5%,

39.5% and 82%, respectively. The non-parametric estimates do not quite join to

the axes because we ascribe the rolling-windows estimate of r0(w) to the centre of

each window for w ∈ [0, 1]. For distribution (III) we note that the non-parametric

estimates display lower variability than the parametric ones. In spite of this,

the performance of the method for probability estimation, which relies both on

non-parametric estimation of r0(w) and parametric estimation of g, appears quite

reasonable.

3.8.7.2 d = 3

Figure 3.26 depicts examples of the three datasets for the d = 3 simulation study,

along with sets of interest B1 = (8, 10) × (8, 10) × (0.01, 3), B2 = (8, 10) × (5, 7) ×
(0.01, 3) and (8, 10) × (2, 4) × (0.01, 3). Figure 3.27 displays boxplots relating only

to the geometric approach for d = 3 from Figure 3.9, with a clearer vertical scale.

Although there is a downwards bias in the estimation, the geometric approach still

provides reasonable estimates in these difficult cases.
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Figure 3.25: Non-parametric (left column) and parametric estimates (centre and

right columns) of unit level sets of g. The unit level sets of the true g are shown

in red. Top-bottom: distributions (I), (II), (III) and (IV), respectively. The centre

column includes all parametric estimates from the correct gauge function; the right

column includes only those parametric estimates where the true model had the

lowest AIC.
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Figure 3.26: d = 3: Example data from distributions (I), (II) and (III) (left to right),

and illustration of sets B1, B2, B3 (purple boxes).
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Figure 3.27: Boxplots of probability estimates for Pr(X ∈ B3) for d = 3 under

the geometric approach. Left: for distribution (I); right: for distribution (III). For

clarity only a single boxplot, corresponding to that labelled G3 in Section 3.5.2, is

included in the right panel.

3.8.8 Additional figures for river flow analysis

Figures 3.28 and 3.29 display plots of χC(u) for the remaining groups of variables.

The bottom row of Figure 3.29 displays the PP and exponential QQ plots for the

fit of model (3.5).
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Figure 3.28: Empirical (solid line) estimates of χC(u) with approximate pointwise

95% confidence intervals (grey shaded region), and model-based estimate (dashed

line) for groups C = {1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, and {3, 4} (top left–bottom

right).
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Figure 3.29: Top row: Empirical (solid line) estimates of χC(u) with approximate

pointwise 95% confidence interval (grey shaded region), and model-based estimate

(dashed line) for groups C = {1, 2, 4} and {2, 3, 4}. Bottom row: PP and exponential

QQ plots for the fitted geometric model with Gaussian gauge function.
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Chapter 4

On the stability and Bayesian

semi-parametric modelling of

multivariate geometric

exceedances

Abstract

Under a pseudo-radial directional decomposition of d-dimensional random vectors in

light-tailed margins, we show that the point process of recentered and renormalised

radial components and directions have a Poisson point process representation, where

the radial component follows an exponential distribution. The memoryless property

of the exponential distribution allows for the estimation of return sets, defined by the

complement of probability sets and expressed in terms of return periods. Building on

the limit Poisson point process likelihood, we develop parsimonious statistical models

that leverage theoretical links between the parameters of the limit distribution.

These models facilitate Bayesian inference for return sets with arbitrarily large

return period and for probabilities of unobserved rare events, and include directional

information from observations outside probability sets. The framework supports
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efficient computations in dimensions two and three, along with diagnostics for

assessing convergence to the limiting distribution and quality of fit. We validate

the methods through illustrative simulations and demonstrate their utility via case

studies involving hydrological and oceanographic data, showcasing the potential for

robust and interpretable analysis of multivariate extremes.

Disclaimer

This chapter represents work completed with Ioannis Papastathopoulos and Lambert

De Monte at the University of Edinburgh, primarily from January to September

2023, with periodic updates in the following months. My main contributions were in

developing the directional model in Section 4.2.2, developing the standardisation of

margins in Section 4.3.1, high quantile estimation in Section 4.3.2, model selection

and validation techniques in Section 4.3.7, the return sets and their illustrative

examples in Section 4.3.6, the real data examples in Sections 4.4 and 4.5 with their

accompanying Appendices 4.7.6 and 4.7.7, the derivations of the radial and angular

densities in Appendices 4.7.4 and 4.7.5, respectively, and writing the introduction

and concluding discussion. I also contributed to the remaining material, but in more

of an advisory role. Additional material that I did not work on was left out, but the

reader is referred to Papastathopoulos et al. (2025) when necessary. The notation

used in this chapter may vary somewhat from the rest of the thesis. For example,

random vectors rescaled by their norm are called directions in this chapter but are

called angles in the rest of the thesis.

4.1 Introduction

The multivariate nature of extreme events casts a shadow of potentially devastating

consequences upon ecosystems, infrastructures, as well as financial, economic, and

insurance sectors. Knowledge of the frequency and magnitude of extreme events
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is crucial in enhancing planning strategies and adaptation efforts. The statistical

properties of univariate extremes are well-established (Balkema and de Haan, 1974;

Pickands, 1975; Davison and Smith, 1990), but statistical inference for multivariate

random processes is much more intricate: one must analyse how random processes

interact with and influence each other. A common way to describe the extremal

dependence structure of a real-valued random vector X = (X1, . . . , Xd) is through

the coefficient of tail dependence

χq(A) = P
[ ⋂
j∈A

{Fj(Xj) > q}
]/

(1− q), q ∈ (0, 1), A ⊆ {1, . . . , d} , |A| > 1,

(4.1)

where Fj is the cumulative distribution function of Xj. When limq→1 χq(A) = 0, the

variables in A are unlikely to grow large together. Conversely, when limq→1 χq(A) >

0, the variables in A are likely to simultaneously exhibit extreme values. The

different dependence structures that can be present within subgroups of the marginal

variables ofX can make inference for rare events challenging and lead to inaccuracies

in extrapolation.

Classical approaches to multivariate extreme events often rely on the framework

of multivariate regular variation (MRV) (de Haan and Resnick, 1977), which posits

that the point processes of exceedances of a random vector over a high threshold,

when suitably renormalised, converge in distribution to a non-degenerate non-

homogenous Poisson point process (de Haan, 1984). This provides a framework for

understanding the joint behaviour of extreme observations and leads to meaningful

limit distributions that can be used for statistical inference of multivariate extremes.

In practice, MRV is applied in a way that does not adequately describe relationships

among asymptotically independent random variables (Nolde and Wadsworth, 2022).

This is due to the type of the renormalisation that is employed: given a random

sample of n d-dimensional observations, all components are normalised by the same

amount (see Figure 4.1). This leads to only considering the dependence structure

when all d variables are large.

Another drawback of MRV is the limited set of directions in the multivariate
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space in which one can extrapolate the model. Under MRV, a common way to

estimate the probability of lying in an extremal set is to shift the set linearly

and perform empirical probability estimation on the translated set. When the

translated set does not contain observations from the initial dataset, the estimate

the probability of interest is inevitably 0. To correct the joint rate of tail decay

in the case of weaker extremal dependence, the notion of hidden regular variation

(HRV) was introduced (Ledford and Tawn, 1996, 1997). However, HRV also suffers

from the drawback that it does not allow extrapolation along directions where not

all variables are simultaneously large. To extrapolate to a wider range of extremal

regions with a wider array of dependence structures, the frameworks of conditional

extremes (Heffernan and Tawn, 2004) and angular dependence (Wadsworth and

Tawn, 2013) have been introduced, but statistical methodology based on these

frameworks suffers from drawbacks. Despite its wide applicability and widespread

adoption, the conditional extremal inference method of Heffernan and Tawn (2004)

is based on composite likelihood methods and on gluing separate models post-

fit, making statistical inference and computations unwieldy. While the angular

dependence method of Wadsworth and Tawn (2013) permits extrapolation in regions

where variables are not simultaneously extreme, it is only useful for joint survival

regions. Recently, a characterisation of extremal dependence through the limiting

geometry of observations from X has become of interest. The limit set, denoted by

G, whose boundary arises as the limiting hull of appropriately scaled sample clouds

Nn = {X1/rn, . . . ,Xn/rn} as n→∞, provides insight into the extremal dependence

structure ofX. The gauge function, denoted by gG, whose unit level set is in one-to-

one correspondence with the boundary of the limit set, has been shown to connect

several known coefficients describing extremal dependence of known copulas (Nolde,

2014; Nolde and Wadsworth, 2022).

Wadsworth and Campbell (2024) proposed a framework for performing statistical

inference for multivariate extremes using this geometric approach. Using a radial-

directional decomposition, this framework treats the gauge function evaluated at
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Figure 4.1: Directions along which different frameworks allow for extrapolation

to tail regions of a bivariate river flow dataset in Laplace margins: MRV (left),

conditional extremes given X2 and X1 are large (centre-left and centre-right), and

geometric extremes (right), with Qq illustrating the posterior mean of the quantile

set at q = 0.95 (details presented in Section 4.3). The support of the distribution of

exceedances is inscribed by the region containing the arrows.

directions as a rate parameter of a left-truncated gamma model for the distribution

of radii conditioned on directions on the unit simplex. Inference for the gauge

function and its associated limit set is based on parametric models derived from

known copulas in d-dimensional random vectors with standard exponential margins,

and a maximum likelihood approach is implemented within the rate parameter

of the truncated gamma distribution. The result is a new statistical inference

method for estimating extremal probabilities with great flexibility relative to state-

of-the-art methods in multivariate extremes. Also in exponential margins, but in

a bivariate setting, Simpson and Tawn (2024a) model the conditional distribution

of the excess radii given directions on the simplex via the generalised Pareto (GP)

distribution (Pickands, 1975). In this framework, the gauge function is seen as a

rate parameter of the GP distribution and is modelled via generalised additive

models (Wood, 2017). Majumder et al. (2025) also propose a statistical method

to estimate the bivariate gauge function and the shape of its associated limit set

using Bézier splines.

In this work, we develop a framework that extends beyond the cone Rd
+ by
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leveraging the structure of weak limits of suitably radially renormalized multivariate

exceedances. Multivariate exceedances are observations that lie within a return set,

defined as the complement of a probability set. Given a d-dimensional distribution, a

probability set is a set in Rd where the the probability of lying within is prespecified.

Among the infinite class of probability, we identify quantile sets, defined through

the quantile of the radial distribution at a given direction. The quantile set derives

its name from its role as a d-dimensional generalisation of quantiles, addressing

challenges in multivariate extreme value theory that arise from the absence of natural

ordering in Rd (Barnett, 1976). This concept parallels the quantile regions introduced

by Hallin et al. (2021), but our definition is specifically designed for extrapolation

beyond the observed data.

By specifying an appropriate sequence of quantile sets, we show under mild

conditions that the framework of MRV can be extended to the cone Rd \ {0}
for random vectors with light-tailed margins. In this multivariate setting, our

framework enables the modelling of the entire joint tail, accommodating scenarios

where subsets of components are extreme. This approach can capture behaviours

across the entire spectrum of multivariate space and reveal hidden dependencies,

thereby bridging the gap between theory and practice. Using radially recentred

and rescaled exceedances over high quantile sets, we characterise non-trivial limit

distributions on Rd, termed radially-stable exponential distributions. The radial

stability properties of these families of distributions permit extrapolation beyond

the range of observed data along any direction (see Figure 4.1) and naturally lead

to the notion of return sets, a geometric d-dimensional extension of the univariate

(upper-tail) return level. This yields an interpretable way to communicate the risk

associated with extreme multivariate events allowing decision-makers, policymakers,

and the general public to understand the likelihood of experiencing impact from

joint extreme events. Throughout our work, inference is done in a Bayesian manner,

allowing us us to obtain inferences for any functional of the joint tail distribution.

Our methods account for multiple sources of uncertainty in the estimation, including

105



that of uncertainty in the estimation of the marginal tails as well as the multivariate

threshold, which is typically not accounted for in previous statistical methods for

multivariate extremes. We use use prediction intervals for functionals of interest,

allowing us to quantify uncertainty via simultaneous prediction bands when the

functional of interest consists of the boundary of a distribution-dependent set.

The work is organised as follows. In Section 4.2, we introduce the main

results, which includes the weak convergence of radially recentred and rescaled

exceedances to a Poisson point process. Our findings lead to a novel class of limit

multivariate distributions that are presented in Section 4.2.3. Section 4.3 details

methodology for statistical inference of extremes using hierarchical Bayesian models

with latent Gaussian random effects on Euclidean spheres. Finally, Sections 4.4 and

4.5 illustrates the merits of our approach on a two-dimensional hydrological dataset

and a three-dimensional oceanographic dataset, respectively. Publicly available code

can be accessed via our R package geometricExtremes on GitHub.

4.2 Theory

4.2.1 Scaling and limit sets

Given a d-dimensional random vector X with joint density fX , interest lies in

characterising its tail region. While some methods focus on modelling the Cartesian

representation ofX directly, it can sometimes be more convenient to model radiiR =

∥X∥ ∈ R+ and directionsW =X/∥X∥ ∈ Sd−1. Here, Sd−1 := {x ∈ Rd : ∥x∥ = 1}
is the (d − 1)-dimensional simplex corresponding to some choice of norm ∥·∥. The

approach of Wadsworth and Campbell (2024) uses the L1 norm and, under certain

assumptions on the distribution of X, they show that the conditional distribution

R | {W , R > r0(W )} for some high radial threshold r0(·) can be modelled used a

left-truncated Gamma distribution whose rate parameter is given by values of the

gauge function gG(w). Their statistical inference methodology rests on regularity

assumptions on fX , which itself depends on the margins of X following a light-
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tailed von Mises distribution. That is, Xj having distribution function satisfying

1 − Fj(x) ∼ e−φ(x) as x → ∞, where φ is a C2 function with a positive derivative

such that (1/φ′(x))′ → 0 for x→∞. In practice, their methodology is implemented

with standard exponential margins, meaning the domain ofX is the positive orthant,

Rd
+. We extend on thesis ideas by allowing the domain of X to be the the entire

space Rd, and show under regularity assumptions that the random point measure

Pn(·) :=
n∑
i=1

δ(an(Wi)−1(Ri−bn(Wi)),Wi)(·) ; n = 1, 2, . . . , (4.2)

converges to a Poisson point process (PPP) as n → ∞. In the expression (4.2), δ

denotes the Dirac measure,

δx(A) =

1 ; x ∈ A

0 ; x /∈ A
.

For more information on the convergence of Pn see Proposition 2 of Papastathopou-

los et al. (2025). The intensity measure of this Poisson point process has two

components: one corresponding to directions and the other to renormalised radial

exceedances conditioned on these directions. The component corresponding to

renormalised radial exceedances is given by the density of the generalised Pareto

distribution (GPD). Papastathopoulos et al. (2025) therefore suggest that radial

exceedances can be modelled via the GPD, whose shape parameter changes based

on the margins ofX. In the case of light-tailed von Mises margins, this is simplified

to modelling radial exceedances via the exponential distribution.

Verifying the proposition of convergence to a PPP directly can be challenging.

In this section, we introduce a proposition that provides easily verifiable sufficient

conditions for this convergence. With a view for more straightforward statistical

modelling of extremes, this work will focus on the special case where the margins

of X are von Mises. We note that these results extend to more general margins

(see Sections 2.1 and 2.2 of Papastathopoulos et al. (2025)), but this is beyond the

required scope for this chapter.
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In order to establish convergence to a PPP, the notion of radial functions

corresponding to limit sets and quantile sets needs to be defined. Suppose that

G is a non-degenerate limit set with gauge function gG. Then we define the radial

function of gG to be rG(w) = 1/gG(w) for w ∈ Sd−1. This can be thought of as

the distance from the origin to the boundary of the limit set G at the direction w.

Gauge functions can in principle be zero-valued; however, throughout this work we

will assume gG(w) is strictly positive on the domain Sd−1. This ensures that rG is

always well-defined. In addition to limit sets, the geometric framework considers

exceedances above high quantiles of the radii R given the directionW . Given some

value q ∈ (0, 1) close to 1, define the radial quantile function rQq to be the radial

value such that the probability of lying below it is q at a given direction w ∈ Sd−1,

rQq(w) := inf
{
r ∈ R : FR|W (r | w) ≥ q

}
.

Under this framework, the limit set G and the quantile set Qq are defined through

their respective radial functions via

G :=
⋃

w∈Sd−1

{trG(w)w : t ∈ [0, 1]} ,

Qq :=
⋃

w∈Sd−1

{
trQq(w)w : t ∈ [0, 1]

}
.

Let ⋆ denote the collection of star-shaped compact subsets of Rd \ {0} (or “star-
bodies”), then by definition, we have G,Qq ∈ ⋆. Further let PW (dw) denote

the intensity measure associated with directions W . Under a limiting regularity

condition on the joint density of X, the radial functions rQq and rG can be used as

the location and scale functions respectively in the convergence of radial exceedances

to a Poisson point process.

Proposition 4.1. Suppose that the random vector X is absolutely continuous with

respect to the Lebesgue measure on Rd, has von Mises margins, and joint density fX .

Let G ∈⋆ be described by continuous 1-homogeneous gauge function gG : Rd → R+.

Suppose that there exists ψ : R+ → R+, and a ρ > 0 such that

− log fX(tx)

ψ(t)
→ gG(x)

ρ, x ∈ Rd \ {0}. (4.3)
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as t→∞ uniformly on Sd−1, then

P1/(1−q)(·) :=
⌈1/(1−q)⌉∑

i=1

δ(a1/(1−q)(Wi)−1(Ri−b1/(1−q)(Wi)),Wi)(·)

converges to a Poisson point process with intensity measure e−zdzPW (dw) as

q → 1 with normalising functions b1/(1−q)(w) = rQq(w) and a1/(1−q)(w) =

rG(w)ρ/ψ′(rQq(w)).

A proof is given in Appendix 4.7.1. Proposition 4.1 states the radial functions

rQq and rG can act as appropriate standardising functions such that the limiting

distribution of exceedances of Qq follow a standard exponential distribution as

q → 1. Note that the assumptions in Proposition 4.1 guarantees that a suitable

sequence of scaling constants rn can be found so that the random point-set

Nn = {X1/rn, . . . ,Xn/rn} converges in probability onto a limit set G having radial

function rG (Nolde and Wadsworth, 2022). While this is holds for random vectors

X with von Mises margins, we assume through the remaining work that the

margins are standardised to follow the standard Laplace distribution. Following

from Nolde and Wadsworth (2022), this setting has scaling function ψ(t) = t and

ρ = 1 in the convergence (4.3). Therefore, radii are recentred using b1/(1−q) := rQq

and exceedances are renormalised using a1/(1−q) = rG. Using this, renormalised

exceedances are expressed as (R− rQq(w))/rG(w) | {W = w, R > rQq(W )}, which
will converge to an exponential distribution as q → 1. This is established in more

detail in Section 4.2.3, where a joint distribution of renormalised exceedances and

directions is presented. For convenience, this work will assume Further note that

throughout this work, we define directions using the L2, (or “Euclidean”) norm.

Therefore, for our purposes, Sd−1 is the d-dimensional unit sphere.

4.2.2 Probability density function of directions

The point process framework presented in Section 4.2.1 has the important advantage

that it yields a distribution of direction of exceedances of Qq. Let FW be the joint
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distribution function of the directional variable W . Here we present additional

properties of W , including a connection between the distribution of directions and

star-bodies, even in cases where FW partially depends on the limit set G. For

simplicity, we assume throughout that FW is absolutely continuous with respect

to the spherical Lebesgue measure and that it admits a probability density fW .

Denote the radial function rW = fW such that it defines the directional star body,

W :=
⋃

w∈Sd−1

{trW(w)w : t ∈ [0, 1]} ∈⋆. (4.4)

Through (4.4), we observe that any continuous probability density function on

the sphere fW is in one-to-one correspondence with a strongly starshaped set

W with radial function rW , where “strongly starshaped” denotes the halfline

{ t w : t ∈ [0, 1) } not intersecting ∂W more than once for every w ∈ Sd−1.

For W ∈⋆, define the set W1/d with radial functions rW1/d(w) := rW(w)1/d. From

the definition of star-shaped sets, for fW to be a valid density, W must satisfy

1 =

∫
Sd−1

fW (w) dw = d

[
1

d

∫
Sd−1

rW1/d(w)d dw

]
= d|W1/d|

(Klain, 1997, Proposition 1.13). Hence, for some star body L, we construct a valid

directional star body W using

W = Ld/(d|L|). (4.5)

For modelling purposes, we consider three approaches in defining L, and hence,

W . A first possibility for the form of the set L is motivated from the properties of

probability density functions that are homothetic with respect to G (Balkema and

Nolde, 2010). Recall that a joint density fX is termed homothetic if it has level-sets

that are scaled copies of G. This setting is used in the following proposition.

Proposition 4.2. Suppose that fX(x) = f0 (rG(x)
−1) for a decreasing, positive,

continuous function f0 : [0,∞) → [0,∞) and a radial function rG characterizing a

set G ∈⋆. Then L = G.
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The proof of Proposition 4.2 is given in Appendix 4.7.2. Proposition 4.2 states

that homothetic densities have one-to-one correspondence between the density of

directions and G. As a result, under the homothetic framework, an analytic form

of the density of directions can be obtained. Consider the three examples below,

all of which have homothetic densities fX with common radial function, rG(x) =

(x⊤Qx)−1/2 for Q ∈ Rd×d positive definite, but different generators, f0:

Example 4.1. Suppose X follows the multivariate Gaussian distribution with

precision matrix Q and standard normal margins. The density fX is homothetic

with respect to rG and f0(r) = C1 exp(−r−2/2), r > 0, where C1 = [|Q|1/2/(2π)d/2].

Example 4.2. Suppose X follows the multivariate Laplace distribution with

precision matrix Q and standard Laplace margins. The density fX(x) is homothetic

with respect to rG and f0(r) = C2r
−νKν (r

−1), r > 0, where C2 = [|Q|1/2/(2π)d/2],
Kν is the modified Bessel function of the second kind and ν = (2− d)/2.

Example 4.3. Suppose X follows the multivariate Student’s t distribution with ν

degrees of freedom, precision matrix Q, and Student-tν margins. The density fX(x)

is homothetic with respect to rG and

f0(r) = C3 (1 + r−2/ν)
−(ν+d)/2

, r > 0, where C3 = [Γ{(ν+d)/2}|Q|1/2/{(νπ)d/2Γ(ν/2)}].

More details on these derivations are presented in Appendix 4.7.5. In each of the

above examples, Proposition 4.2 gives an analytic form for the star set W . The set

W is common to all examples as it is defined by rdG/(d|G|) for the same rG in all

examples.

The class of homothetic densities, although rich, serves at best as an idealistic

setting. A second option for the form of L is revealed when standardising the

margins of X, a common practice in analysing its tail behaviour of random vectors.

Consider the map T : Rd → Rd,x 7→
(
Ψ←(FXi

(xi)) : i = 1, . . . , d
)
performing a

transformation of the marginal distributions of X, so that the ith element of T (X)
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Figure 4.2: Top row: Circular histogram of 106 directions sampled from W for the

bivariate Gaussian distribution with standard normal margins (left), the bivariate

Gaussian distribution with standard Laplace margins (centre), and from a bivariate

max-stable logistic distribution with Laplace margins (right). A concentric circle

corresponds to a leap of 0.1 in the density of directions. Solid blue lines correspond

to the boundary of Gd/(d|G|), for G of the respective distributions. Bottom row:

Sets [Gd/(d|G|)] · W−1 in red corresponding to discrepancy between the empirical

distribution ofW (given by the above histograms) and Gd/(d|G|) (given by the blue

curves). If the boundary of the red set matches the unit circle (dotted line), then

W and Gd/(d|G|) are in perfect agreement.

follows Ψ, a continuous cumulative distribution function on R. The transformation

preserves the cardinality of the set of input vectors X/∥X∥, ensuring a one-

to-one correspondence with the output vector T (X)/∥T (X)∥. From a geometric

perspective, this means that the densities of X/∥X∥ and T (X)/∥T (X)∥ can

be defined over the same set of points. The distribution of directions, however,

may change when T introduces nonlinearities. For example, suppose that XN
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is distributed according to a multivariate normal distribution with zero mean

and precision matrix Q such that each marginal follows the standard Gaussian

distribution. Let X = F−1L [Φ(XN)], were FL and Φ denote the cumulative

distribution functions of standard Laplace and standard normal random variables,

respectively. While the density of XN is homothetic, thus having uniform rate

of convergence is across directions, the density of X is not homothetic. For the

multivariate Gaussian distribution in Laplace margins, we prove in Appendix 4.7.4.1

that convergence of Proposition 4.1 holds uniformly, with G determined by

rG(w) =
[{

sgn(w)|w|1/2
}⊤

Q
{
sgn(w)|w|1/2

}]−1
, w ∈ Sd−1.

where sgn(w)|w|1/2 = (sgn(wi)|wi|1/2 : i = 1, . . . , d) and sgn(x) = x/|x| denotes
the sign function. From Figure 4.2, there is empirical evidence that the star set W
describing the density of X/∥X∥ is no longer a constant scale multiple of G, but
instead a radial product of G with another star-body. Figure 4.2 also shows that,

after standardising the margins to Laplace, solely using G is not sufficient to capture

the distribution of directions corresponding max-stable logistic random vectors. The

radial function rG corresponding to G is given here by

rG(w) =



[
1
θ

d∑
j=1

wj +
(
1− d

θ

)
min(w)

]−1
; min(w) > 01

θ

∑
j:wj>0

wj +

{ ∑
j:wj<0

(−wj)1/θ
}θ
−1 ; otherwise

, w ∈ Sd−1,

where θ ∈ (0, 1) is the dependence parameter of the max-stable logistic distribution.

The full derivation in Appendix 4.7.4.5.

The empirical analysis of the marginal transformation to Laplace margins and

its effect on the distribution of the directions reveals a case where W can depend

both on G and on some additional star-body B independent of G. The star-body B
captures residual directional variation that is not explained by a homothetic density.

For the practical case where both rW and rG are strictly positive on Sd−1, then we

can consider the form L = B ·G, where B,G ∈⋆ such that B is independent of G. In
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the specific context where f is homothetic with respect to rG, we have B = B1(0),

the Euclidean ball with radius 1 centred at the origin 0.

During inference, it may be that we wish to model directions completely

separately to the limit set G. Therefore, a third possibility for the set L, and

consequently the set W , is to set L = B for some set B independent of G, implying

a case where W is independent of G. This can occur within the class of the radial

exponential distribution, introduced in the following section. In Appendix 4.7.5, we

derive closed-form expressions of the distribution of directions fW for a number of

distributions when the marginal distributions are common and prespecified across

all d components of X. All three setups for the form of L will be considered during

model fitting, as is outlined in Section 4.3.

4.2.3 Radial exponential distributions

We now present a novel family of multivariate distributions, termed radial expo-

nential (rExp) distributions and detail their threshold stability property that makes

them suitable for extrapolation. They arise as the only non-trivial limits of radially

renormalised exceedances above a threshold Qq, as detailed in Section 4.2.1, and

enable the modelling of rare events in a much wider set of joint-tail regions of Rd

than other well-established frameworks of extreme value theory. The rExp class of

distributions are parameterised via members of the class of star bodies ⋆. Before

defining the rExp distribution, note that a star body A ∈⋆ can be written in terms

of its radial function, rA : Sd−1 → R+, through

A =
⋃

w∈Sd−1

{trA(w)w : t ∈ [0, 1]} .

Definition 4.1 (Multivariate radially-stable exponential distributions). A random

vector Z ∈ Rd is said to follow the multivariate radially-stable exponential (rExp)

distribution with location M ∈ ⋆, scale Σ ∈ ⋆, and directional shape W ∈ ⋆, if
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for any Borel set B ⊆ Rd \M,

P [Z ∈ B] =

∫
SB

∫
IB(w)

exp

{
−
(
r − rM(w)

rΣ(w)

)}
rW(w) dr dw,

where SB = {w ∈ Sd−1 : ∃ t > 0 such that tw ∈ B} and IB(w) = {t ∈ R+ : tw ∈
B}.

The rExp distribution presented in Definition 4.1 possesses a stability property

that we here detail through Proposition 4.3.

Proposition 4.3. Let Z ∈ Rd have an rExp distribution with locationM, scale Σ,

and directional shape W, then Z satisfies the radial memoryless property:

P [Z ∈ {M+Br1+r2(0) · Σ}′ | Z ∈ {M+Br1(0) · Σ}′] = P [Z ∈ {M+Br2(0) · Σ}′] ,
(4.6)

where A′ denotes the complement of the set A.

Proof of the stability property in Proposition 4.3 is given in Appendix 4.7.3. In

Section 4.3, we propose a statistical inference method utilising the family of rExp

distributions to extrapolate to extreme regions lying beyond the range of observed

data.

4.3 Statistical inference

4.3.1 Standardisation of margins

Suppose that y1, . . . ,yn, are observations drawn randomly from the distribution

of the random variable Y = (Y1, . . . , Yd)
⊤. When the tails of the original

distribution decay exponentially, we have the flexibility to model a broader

range of extremal dependence structures, not only allowing for both asymptotic

independence and asymptotic dependence, but also allowing for more complex types

of dependencies such as when some coordinates exhibit positive extremal dependence

while others exhibit negative extremal dependence (Keef et al., 2013a; Nolde and
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Wadsworth, 2022). When Y does not have exponential decay, we choose to apply

the transformation Xj = F−1L (F̂j(Yj)) for j = 1, . . . , d, where F−1L is the distribution

function of the standard Laplace distribution, and

F̂j(y) =



[
1−

{
1− ξ̂j,L

(
uj,L − y
σ̂j,L

)}−1/ξ̂j,L
+

]˜̄F j(uj,L) y ≤ uj,L

F̃j(y) uj,L < y ≤ uj,R

1− [1− F̃ (uj,R)]
{
1 + ξ̂j,R

(
y − uj,R
σ̂j,R

)}−1/ξ̂j,R
+

y > uj,R

. (4.7)

F̃j(y) = (n + 1)−1
∑n

i=1 1[yij ≤ y] and ˜̄F j(y) = (n + 1)−1
∑n

i=1 1[yij ≥ y]. The

quantities (σ̂j,L, ξ̂j,L), (σ̂j,R, ξ̂j,R) are scale and shape parameters of generalised Pareto

distributions for the lower (left) and upper (right) tail of the jth margin, which are

obtained using frequentist maximum likelihood estimation and are used to model

the tail decay below and above the thresholds uj,− and uj,+, respectively.

As we perform Bayesian modelling for the multivariate extremal dependence

structure (see Sections 4.3.2 and 4.3.4), modelling the GP parameters (σj,L,ξj,L,σj,R,

ξj,R) in (4.7) would ideally also be done in a Bayesian manner. In this setting,

a posterior distribution is assumed on the joint distribution of the quantiles uj,L

and uj,R. This posterior would then enable for the sampling of candidate thresholds,

above which separate GP models are implemented for the tails. This approach would

more naturally account for uncertainty in the marginal distributions’ parameters

since the posterior distribution of the quantiles propagates this uncertainty forward

into the tail modelling process. However, for simplicity, the thresholds uj,L and uj,R

are presently obtained using high quantiles of the jth marginal distribution, and we

adopt a frequentist maximum likelihood approach in estimating the GP parameters.

In this framework, we propagate the uncertainty in the quantile estimate and the

corresponding GP parameters forward using a bootstrap approach.
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Figure 4.3: Estimated posterior mean setsQq (grey) using q = 0.90 for three different

bivariate datasets (black points) in Laplace margins. From left to right: Laplace,

Gaussian, and max-stable with logistic dependence. The boundaries of the sets Qq
are the estimated posterior mean values.

4.3.2 Quantile regression

Quantile regression methods are typically implemented using a pinball loss func-

tion constructed using the check function (Koenker, 2005) and often without a

distributional model for the density. Yu and Moyeed (2001) propose the use of

the asymmetric Laplace distribution for the model density due to the equivalence

of the negative log density of the asymmetric Laplace with the pinball loss

function; however, the asymmetric Laplace as an adequate model for the data is

precarious in a Bayesian setting. For example, Waldmann et al. (2013) show that the

resulting posterior prediction intervals are not well-calibrated, and this is especially

pronounced for tail quantiles, which are essential in our setup. Fasiolo et al. (2021)

confirm the poor posterior prediction intervals, and show that the scale parameter

of the asymmetric Laplace distribution is arbitrary in a Bayesian framework and

can therefore lead to inaccurate quantile estimates. They instead propose a novel

method for selecting the scale parameter; however, accompanying R code is only

suitable for the bivariate setting, or when modelling for quantiles of R | {W = w}
for w ∈ [0, 2π].

We instead adopt a generalised linear model based approach for quantile
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regression, requiring an adequate distributional model for the density of R | W .

Wadsworth and Campbell (2024) show that the distribution of R |W above a high

threshold can often be approximated by the left-truncated gamma distribution. For

modelling purposes, we therefore choose the gamma distribution for the density

in the tail region of R | W . Within the gamma likelihood fititng, we model

the logarithm of its conditional q-quantile, log rQq(w), using a finite-dimensional

continuously specified Gaussian process prior on Sd−1 using the stochastic partial

differential equation approach by Lindgren et al. (2011). This is described in detail

in Section 4.3.4, and is achieved using the default settings in the INLA package within

R (see www.r-inla.org).

Since estimators of high quantiles are not influenced by the bulk of the

distribution, a likely misspecification between our choice and the true density of

R |W in the body of the distribution is not of concern. Our model choice exploits

the form of the decay of the conditional density of R |W , and allows for Bayesian

inference. Given i.i.d. observations y1, . . . ,yn from a random vector Y , we obtain

the standardised data x = {x1, . . . ,xn} via xi = (F−1(F̂1(yi,1)), . . . , F
−1(F̂d(yi,d)))

⊤

as described in Section 4.3.1. To infer the quantile set Qq of X, we treat x1:n =

{(ri,wi) : i = 1, . . . , n}, with (ri,wi) = (∥xi∥,xi/∥xi∥), as observations from

(R,W ) and apply the gamma quantile regression method detailed above. Figure 4.3

shows posterior mean estimates for Qq on three different bivariate datasets. In it,

we see that we can accurately capture the tail behaviour of R | {W = w} as w varies

in S1 = [0, 2π].

While the gamma model is simple, we remark that it appears to be a good enough

approximation in estimating the high tail quantiles for use in further inference.

In this work, diagnostics for Qq estimated using the gamma model remain purely

visual. Numerical diagnostics are possible (see Campbell and Wadsworth (2024)

or Chapter 5); however, we leave this to future work in the context of the gamma

model and declare it sufficient to use in the estimation the star bodies G and L.
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4.3.3 Conditional likelihood function

SupposeX has been standardised to have standard Laplace margins, we assume that

exceedances of Qq follow an rExp distribution with location Qq and scale G, and
directional shapeW . Given the quantile setQq obtained from the quantile regression

outlines in Section 4.3.2, we use the rExp and distribution distribution to build a

likelihood that will allow inference for G andW . We recall from equation (4.5) that

the set W can be expressed via fW (w) = rL(w)d/(d|L|), where L is a star-body.

Based on Section 4.2.2, we consider three possible models for the directional shape

W :

M1 : L = B, M2 : L = G, M3 : L = B · G, (4.8)

for B ∈ ⋆ independent of G. That is, in M1, we model the directional distribution

completely separate from the rExp distribution. In M2, we use the same gauge

function in the rExp and directional distributions. In M3, we allow for the directional

distribution to be modelled by a star body related to the gauge function used in

the rExp distribution, but we allow for greater flexibility through modification with

another star body. The nested structure of model M2 within the parameter space

of model M3 translates into a bias-variance trade-off as the latter offers additional

flexibility at the cost of a possibly increased variance for the latent set G. A similar

trade-off occurs for G between models M1 and M3 since the former ignores possible

information contained in the observed directions.

Conditionally on the quantile set Qq and the data x1:n = {x1, . . . ,xn}, the

likelihood of θ = (G,L), is given by

L(θ | Qq,x1:n) :=
n∏
i=1

fR,W (ri,wi | θ,Qq), (4.9)

where θ represents a vector of parameters defining G and L. These star bodies

can either be defined through parametric families, or in a semiparametric manner.

Letting Sq := {i ∈ {1, . . . , n} : ri > rQq(wi)} and S ′q := {1, . . . , n}\Sq, the

likelihood (4.9) can be expressed in terms of contributions of the radii {r1, . . . , rn}
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above and below the radial threshold rQq ,

L(θ | Qq,x1:n) =
∏
i∈S′q

fR|R≤rQq (W ),W (ri | wi)fW (wi)

×
∏
i∈Sq

fR|R>rQq (W ),W (ri | wi)fW (wi). (4.10)

Under the assumption that x1:n is a random sample, a consequence of Proposition 5

of Papastathopoulos et al. (2025) is that the distribution of directions corresponding

to exceedance radii is the same as the distribution of all directions. This suggests

that all directions {w1, . . . ,wn} may be used in the likelihood for the inference of

fW = rdL/(d|L|) used to model W | R > rQq(W ). In particular, when models M1

or M3 are used, substantial gains in the inference for G can be attained by also

including in inference the directions at which non-exceedances occur, as illustrated

in the simulation study of Papastathopoulos et al. (2025). As we assume an rExp

distribution is followed in the exceedances only, non-exceedance radii {ri : i ∈ S ′q}
are assumed not to carry information about G and L; we pose that L is constant

with respect to them. Denoting by Sw the set of indices of at least all exceedances

and at most all observations — either Sw = Sq or Sw = {1, . . . , n} — the likelihood

(4.10) reduces to

L(θ | Qq,x1:n)

∝
∏
i∈Sq

fR|R>rQq (W ),W (ri | wi)
∏
i∈Sw

fW (wi) (4.11)

= exp {−|Sw| log(d|L|)}
∏
i∈Sq

fR|W
(
(ri − rQq(wi))/rG(wi) | wi

) ∏
j∈Sw

rL(wj)
d,

where fR|W (z | w) ∝ e−z/rG(w). The likelihood function (4.11) is amenable to

standard likelihood based inference using either frequentist or Bayesian methods

when parametric models are selected for W and G. When interest is in semi-

parametric models, evaluating the likelihood function (4.11) requires computing the

constant d|L|, which makes inference difficult. However, using the Poisson transform

(Baker, 1994), we can map the likelihood into an equivalent likelihood function
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L(θ, γ | Qq,x1:n) of a Poisson point process defined in an expanded space given by

L(θ, γ) = exp [−|Sw|eγ(d|L|)]
∏
i∈Sq

fR|W
(
(ri − rQq(wi))/rGq(wi) | wi

) ∏
i∈Sw

eγrL(wi)
d,

(4.12)

where the latent variable γ estimates the normalising constant d|L|, inferred as

another parameter at no loss of information (Barthelmé and Chopin, 2015). It is

worth noting that through this approach, we still need to compute the volume of L.
However, when taking the logarithm of (4.12) for maximization, the volume |L| is
now on the linear scale and can therefore be estimated numerically in a more stable

and efficient manner based on the method introduced by Simpson et al. (2016); see

also Yuan et al. (2017), Arce Guillen et al. (2023), and Papastathopoulos et al. (2023)

for further applications of this method. Inference can be performed either using

frequentist methods or in a fully Bayesian manner, that is, by assigning suitable

prior distributions on G, L, and γ (Arce Guillen et al., 2023). More details on

statistical inference for the latent variables and on how the fitted models can be

used to perform rare event probability estimation are found in Sections 4.3.4 and

4.3.5.

4.3.4 Inference for latent variables

Given n independent observations x1:n := {r1w1, . . . , rnwn} from X = RW ∈ Rd,

the goal is to estimate the quantile set Qq, the limit set G, and the set L defining the

directional distribution. To do this, we model the logarithms of the random radial

functions rQq , rG and rL as Matérn (Gaussian) fields on Sd−1 using the stochastic

partial differential equation (SPDE) approach by Lindgren et al. (2011), which is

also the default option in the INLA package in R (see www.r-inla.org). In this

setting, the simplex Sd−1 is partitioned using p equally-spaced vertices, and each

radial function is evaluated for some point w ∈ Sd−1 using

r•(w) = r•(w; β•, z•) = exp

{
−
[
β• +

p∑
k=1

z•,khk(w)

]}
, (4.13)
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where hk is a piecewise-linear basis function of order 1, and • is one of either

Qq,G,L (Lindgren et al., 2011). In (4.13), βQq , βG, βL ∈ R are random intercepts,

and zQq , zG, zL ∈ Rp are stochastic weights modelled using a p-variate Gaussian

distribution with zero mean and a sparse p × p precision matrix whose exact

form is given in Lindgren et al. (2011) and again in Papastathopoulos et al.

(2023). In this construction, the collection of parameters used is represented by

θ = (βQq , zQq , βG, zG, βL, zL) ∈ R3p+3.

It follows that the joint posterior distribution of θ fully determines that of

Qq, G and L. Due to the hierarchical structure of all proposed models detailed

in Sections 4.3.2 and 4.3.3, the joint posterior density of θ factorises according to

π[θ | x1:n] = π[βG, zG, βL, zL | βQq , zQq ,x1:n]π[βQq , zQq | x1:n]. During inference, we

begin by fitting the Bayesian gamma log-linear quantile regression model described

in Section 4.3.2 for a predetermined probability q to all observations x1:n. Samples

{(βQq ,i, zQq ,i) : i = 1, . . . , nQq} from the posterior density π[βQq , zQq | x1:n] map to

a set of radial functions {rQq ,i : i = 1, . . . , nQq}, each interpreted as candidate radial

functions of a qth quantile set.

Given a radial function rQq ,i, we define a set of exceedances through

Xi =
{
(rj,wj) ∈ (0,∞)× Sd−1 : rj > rQq ,i(wj), rjwj ∈ Rd, j = 1, . . . , n

}
. (4.14)

We then fit model M1, M2, or M3 to each collection of exceedances Xi using

the likelihood detailed in equation (4.12). This is either done with all angles or

exceedance angles only, leaving with a total of six possible modelling setups. This

procedure yields a conditional posterior density π[βG, zG, βL, zL | βQq ,i, zQq ,i,x1:n]

for each i = 1, . . . , nQq . Sampling nGL realisations jointly from each π[βG, zG, βL, zL |
βQq ,i, zQq ,i,x1:n] provides an assembled sample of nQq ·nGL realisations from the joint

posterior distribution of θ,

{
θi,j =

(
βQq ,i, zQq ,i, βG,(i,j), zG,(i,j), βL,(i,j), zL,(i,j)

)
∈ Θ : i = 1, . . . , nQq , j = 1, . . . , nGL

}
.

(4.15)

For simplicity and without loss, we re-index the sample (4.15) from the posterior
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distribution of θ to {θi : i = 1, . . . , nθ} with nθ := nQq · nGL and use this notation

henceforth.

Uncertainty estimation for the latent fields rQq , rG, and rL is obtained via

prediction intervals (see Bolin and Lindgren, 2018). A (1−α) prediction interval for

the process r• defined on Sd−1 consists of the strip R1−α := ∪w∈Sd−1R1−α(w) defined

through R1−α(w) := [qρ(w)w : q1−ρ(w)w] for some ρ such that qρ(w) and q1−ρ(w)

satisfy

P
[
qρ(w) ≤ r•(w) ≤ q1−ρ(w),w ∈ Sd−1

]
= 1− α.

In the context of our latent fields rQq , rG, and rL, (1 − α) prediction intervals

consist of sets within which the true functions lie entirely with probability 1 − α.
Prediction intervals can be obtained from a sample from the posterior distribution

of a parameter of interest using the excursions package in R (Bolin and Lindgren,

2015, 2017). Throughout the rest of this work, we present prediction intervals for

α = 0.05.

4.3.5 Rare event probability estimation

In multivariate extremes, interest often lies in estimating P[X ∈ B] for some

set B ∈ Rd \ {0} lying outside the range of observable data. The geometric

approach in Wadsworth and Campbell (2024) performs this task by first sampling

directions, then using them to extrapolate radii beyond a high threshold. The radii

and directions are multiplied together to obtain an extremal sample in Cartesian

coordinates, and a Monte Carlo approximation of P[X ∈ B] is obtained. While

shown to be very successful, some difficulties arise. Mainly, the further B lies in the

tails of the distribution of X, the less obvious it becomes on how far one needs to

extrapolate in order to get non-zero probability estimates.

In this work, we bypass this by staying in radial-directional coordinates, and

using the rExp distribution and a sample of directions to give a closed-form

expression for the probability of radii lying in the set of interest given a direction.

In order to do this, we restrict ourselves to starshaped sets B. This covers a wide
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Figure 4.4: Illustration of the proposed probability estimation technique for the set

B = [6, 13]× [6, 13] (in green). Left: the region R+ × SB in grey. Right: The lines

Iinf(w)w (solid line), IB(w)w (dotted line), and Isup(w)w (dashed line) at a fixed

direction w = (0.8, 0.6)⊤ ∈ SB.

variety of cases, as common types of sets of interest are boxes {x ∈ Rd : a ≤ x ≤
b, a, b ∈ Rd} and sets of the form {rw : r > h(w) > 0, r ∈ (0,∞),w ∈ Sd−1} for
some positive function h defined on Sd−1, both starshaped at 0. This is useful in our

setting as it allows for an exact probability calculation with respect to our model

specification for exceedances.

For a set B ∈ Rd \ {0} starshaped at 0, define SB := {w ∈ Sd−1 : rw ∈ B, r ∈
(0,∞]} ⊆ Sd−1 and consider, for any w ∈ SB, the partition Iinf(w) ∪ IB(w) ∪
Isup(w) of (0,∞), where Iinf(w) := (0, rBinf

(w)), IB(w) := [rBinf
(w), rB(w)], and

Isup (w) : = ( rB ( w ) , ∞ ) for the radial function rB(w) of B and the function

rBinf
(w) = inf{r > 0 : rw ∈ B}. An illustration of these subsets is given by

Figure 4.4.

The posterior predictive distribution of

PB|x1:n = P[R ∈ IB(W ),W ∈ SB | x1:n], (4.16)

is given from the posterior density of θ via

PB|x1:n =

∫
R3p+3

P[R ∈ IB(W ),W ∈ SB | θ]π[θ | x1:n] dθ, (4.17)
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where π[θ | x1:n] is obtained following the procedure described in Section 4.3.4.

Since Qq is a latent variable, rQq(w) intersects with Iinf(w), IB(w), or Isup(w) with

non-zero probability for all w ∈ SB. Hence, from total probability, PB|θ := P[R ∈
IB(W ),W ∈ SB | θ] of (4.17) satisfies

PB|θ = P[RW ∈ B,R > rQq(W ) | θ] + P[RW ∈ B,R ≤ rQq(W ) | θ], (4.18)

and our model is best suited for sets B such that the second term in the

equation (4.18) is small. The first term in equation (4.18) decomposes into

P[RW ∈ B,R > rQq(W ) | θ] = P[R ∈ IB(W ) |W ∈ SB, R > rQq(W ),θ]×

× P[W ∈ SB | R > rQq(W ),θ]P[R > rQq(W ) | θ]. (4.19)

By the assumptions detailed in Section 4.3.2, the last term P[R > rQq(W ) | θ] in
equation (4.19) equals 1− q for all θ ∼ π[θ | x1:n]. Following our model formulation

forW , the second term in equation (4.19) corresponds to the predictive distribution

of the angles given θ and is given by

P[W ∈ SB | R > rQq(W ),θ]

=

∫
SB

f̃W |θ(w | θ)dw
/∫

Sd−1

f̃W |θ(w | θ)dw, , (4.20)

where f̃W is a directional density defined by M1, M2, or M3 (see Section 4.2.2). The

integrals in (4.20) are computed efficiently via numerical integration for d = 2 or 3.

The first term in (4.19) is obtained through

P[R ∈ IB(W ) |W ∈ SB, R > rQq(W ),θ]

= EW |W∈SB ,x1:n(P[R ∈ IB(W ) | R > rQq(W ),θ]), (4.21)

where

P[R ∈ IB(w) |W = w, R > rQq(w),θ]

= FR|W

[
max

{
rB(w), rQq(w)

}
− rQq(w)

rGq(w)

∣∣∣∣w
]
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− FR|W
[
max

{
rBinf

(w), rQq(w)
}
− rQq(w)

rGq(w)

∣∣∣∣w
]

= exp

{
−
[
max

{
rBinf

(w), rQq(w)
}
− rQq(w)

rGq(w)

]}

− exp

{
−
[
max

{
rB(w), rQq(w)

}
− rQq(w)

rGq(w)

]}
.

We approximate expectation (4.21) through Monte-Carlo integration by sampling

angles {w̃1, . . . , w̃nw} from fW restricted to the set SB via

n−1w

nw∑
i=1

P[R ∈ IB(w̃i) | R > rQq(w̃i),θ]

as nw →∞. The second term in equation (4.18), P[RW ∈ B,R ≤ rQq(W ) | θ] =: p,

corresponds to a probability over a region in which our model is not specified. This

region occurs where the data is more dense, and is therefore estimated empirically.

For practical reasons, we restrict ourselves to sets B that are starshaped at with

respect to their centrepoint. We acknowledge that this integration-based approach

is less convenient if B is not star-shaped. For more general regions, a sampling-based

approach akin to that of Wadsworth and Campbell (2024) could be used, but this

is omitted in this work.

4.3.6 Return sets

A nice property of the rExp distribution is that one could derive return sets.

Analogously to a univariate return level corresponding to a value expected to be

exceeded by a random variable X once in a certain return period, return sets

correspond to a specific set expected to be attained by a random vector X once

in a certain return period T . For any Bernoulli experiment with probability 1−T−1

of success, a return period T defines the expected number of experiments needed to

obtain one success. Given a random vector X ∈ Rd and an arbitrary set B ∈ Rd,

the event X ∈ B can be interpreted as a Bernoulli experiment with some return

period T . Depending on the properties of X, there can be infinitely many distinct

sets in Rd satisfying this property.

126



Figure 4.5: Top row: 0.95 prediction intervals for the boundaries r1−T−1 of the return

set XT with associated return period T displayed in red. Bottom row: Posterior mean

of the return sets with associated return period (red) defined by the angle-wise

posterior mean of r1−T−1 . Every return set contains all lighter-grey sets. Columns

from left to right: Bivariate Laplace, normal, and max-stable logistic distributions

in Laplace margins.

In this work, given a return period T , we focus on sets of the form

XT =
{
x ∈ Rd : ∥x∥ ≥ rQ1−T−1 (x/∥x∥)

}
,

where rQ1−T−1 (w) is the solution of

Pr
(
R ≥ rQ1−T−1 (w)

∣∣∣W = w
)
= T−1, (4.22)

for w ∈ Sd−1. That is, XT ⊂ Rd is a set in which we expect to observe

observations with probability 1/T . As we model the rExp distribution above

the qth radial quantile, we consider return periods such that T > (1 − q)−1.

By marginalising the rExp distribution from Definition 4.1, we assume rescaled

exceedances conditioned on the direction follows a standard exponential distribution,

i.e., (R− rQq(w))/rG(w) | {W = w, R > rQq(w)} ∼ Exp(1). Therefore, using the

rExp distribution for radial exceedances and solving for rQ1−T−1 (w) in equation
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Figure 4.6: Posterior return set boundaries ∂XT for return periods T = 200 (inner)

and T = 106 (outer) for 3 different bivariate Gaussian mixture distributions. Grey

points are the data in original margins, solid black lines indicate the posterior mean

return set boundaries, with dark grey regions indicating the corresponding 0.95

prediction intervals, bordered by dotted lines.

(4.22) yields

rQ1−T−1 (w) = rQq(w) + rG(w) log((1− q)T )

and the T return set is

XT =
{
x ∈ Rd : x =

[
rQq(w) + rG(w) log((1− q)T )

]
w,w ∈ Sd−1

}
.

In the star body notation, this is equivalent to

XT = [Qq + G ·B{log(T (1−q))}(0)]′.

In practice, we obtain return sets XT given data by first fitting the rExp

distribution in the Bayesian semi-parametric manner described in Section 4.3.4.

Then, by sampling the functions rQq ,i and rG,i, i = 1, . . . , nθ from the posterior

distribution of θ, we obtain posterior mean estimates for XT along with the

associated prediction intervals. Figure 4.5 displays return sets return sets of period

T ∈ {100, 1000, 10000} estimated using samples drawn from the bivariate Laplace,

Gaussian, and max-stable logistic distributions in standard Laplace margins.
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As an illustrative example, we recreate the task of return set boundary estimation

in the case of bivariate Gaussian mixture data presented in Section 4 of Hallin

et al. (2021). Our approach differs in that it is non-empirical, and we are able to

extrapolate to higher levels than observed in the data with uncertainty computed for

our estimates. This is exemplified in Figure 4.6, in which the return level curves ∂XT

are shown for return periods T = 200 and T = 106. For each mixture distribution, we

generate n = 50, 000 datapoints and fit a quantile regression model with threshold at

the q = 0.9 level. For Bayesian inference, we used the M3 hierarchical structure. For

display purposes, 20 posterior observations of rQq were drawn and a joint radial-

directional model was fit at each of these observations. There were 50 draws of

posterior return level curves drawn for each of these models for a total of 1,000

return level curves for which to obtain posterior mean and credible intervals for

each plot in Figure 4.6.

4.3.7 Model selection and validation

Our model formulation gives rise to various modelling choices needing to be

assessed and validated. For instance, as discussed in Section 4.3.3, selecting the

most appropriate model within the set of candidate models M1, M2, and M3

given observed data amounts to analysing the properties of the distribution of

(R,W ) | R > rQq(W ) with respect to the association between gG and fW . Another

modelling choice requiring assessment is that of the set of angles contributing to

likelihood (4.12) since it translates into a bias-variance trade-off for G and L.
Further, hyper-parameters values imposed on the prior distributions of Qq, G, and L
imply a priori information on the differentiability properties of their boundaries (see

Section 4.3.4), and their impact on the posterior may need assessment. Finally, the

usual concern of the sensitivity of the posterior distribution of the latent variables

to the return period for the latent threshold function rQq (Section 4.3.2) remains.

We detail possible methods for model selection and validation below.

The nested structure of model M2 within the parameter space of model M3 raises
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the question of whether model M2 can serve as a sensible simplification of model

M3 given observed data x1:n = {r1w1, . . . , rnwn}. As discussed in Section 4.3.3,

evidence for a constant rB in model M3 points to evidence that M2 can serve as an

sensible simplification of M3, or equivalently that the observed data x1:n may come

from a process following a homothetic density with respect to its gauge function

gG. The sensitivity of the posterior distributions of the latent parameters to the

remaining modelling choices can be assessed through the quality of the calibration

of the posterior predictive distribution to the observed data. Given a set of observed

exceedances Xi of a sampled latent function rQq ,i (see expression (4.14)), we wish

to assess the calibration of the predictive distribution for the excess variable R −
rQq ,i(W ) | R > rQq ,i(W ). We thus compare each observed excess rj − rQq ,i(wj)

with the quantile of the Exponential(rG(wj)), with log rG(w) = βG + ψ(w)⊤zG

and (βG, zG) ∼ π[βG, zG | βQq ,i, zQq ,i,x1:n]. We draw exceedance radii {r̃1, . . . , r̃ns}
from their predictive distribution Exp(rG(wj)), and define the empirical distribution

function Fwj ,ns(r) := ns
−1∑ns

k=1 1[r̃k ≤ r], for r ∈ (0,∞). A probability-probability

(PP) plot for the exceedances Xi is then given by{(
j

|Xi|+ 1
, p(j)

)
: j = 1, . . . , |Xi|

}
, (4.23)

where p(j) denotes the j-th order statistic of the sample {Fwj ,ns(rj − rQq ,i(wj)) :

j = 1, . . . , |Xi|}. A quantile-quantile (QQ) plot in unit exponential margins for the

exceedances Xi is then easily obtained via probability-probability (PP) plot for the

exceedances Xi via{(
− log

(
1− j

|Xi|+ 1

)
,− log

(
1− p(j)

))
: j = 1, . . . , |Xi|

}
. (4.24)

In a similar fashion, we can obtain PP plots for the predictive distribution of

W | R > rQq ,i(W ). This is achieved by sampling angles {w̃1, . . . , w̃ns} from

the predictive density fW |βG ,zG ,βB,zB,x1:n where (βG, zG, βB, zB) ∼ π[βG, zG, βB, zB |
βQq ,i, zQ,i,x1:n]. We transform the sampled and the observed directions from X to

spherical coordinates (or “angles”), respectively denoted {φ̃j = (φ̃1,j, . . . , φ̃d−1,j) ∈
Φ : j = 1, . . . , ns} and {φj = (φ1,j, . . . , φd−1,j) ∈ Φ : j = 1, . . . , |Xi|}. Using these,
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we consider the empirical distribution function Fns(φ) := ns
−1∑ns

k=1 1[φ̃k ≤ φ]. A
PP plot for the calibration of the predictive distribution of angles to the observed

angles in Xi is then given by expression (4.23) with p(j) denoting the j-th order

statistic of the sample {Fns(φj) : j = 1, . . . , |Xi|}. Note that in dimensions d > 2,

we cannot obtain QQ plots corresponding to these directional PP plots, as there is

no obvious inverse of the multivariate empirical distribution function Fns .

In addition to assessing the agreement of the fitted posterior with the underlying

model via PP and QQ plots, it is of interest to see how well the posterior model

approximates extreme probabilities. To do this, we estimate values of the coefficient

of tail dependence, χq(A), defined in (4.1), on models fitted with data drawn from

distributions of dimensions d = 2 and 3. These values are compared to their

empirical values. For a value of q close to 1, estimating χq(A) amounts to estimating

the probability of lying in the region

Bq := {x ∈ Rd : xj ∈ (− log(2(1− q)),∞) if j ∈ A, xj ∈ (−∞,∞) if j /∈ A}.

Using posterior models fitted on data, the posterior probability estimation procedure

presented in Section 4.3.5 is used with region Bq, we are able to obtain an estimate

P̂ (X ∈ Bq). When dividing by (1−q), a posterior estimate χ̂q(A) for the coefficient

of tail dependence is obtained. This is done on a fine grid of values q ∈ [0.95, 1].

Furthermore, posterior confidence intervals of the models’ estimates are compared

to bootstrap confidence intervals of the empirical estimates. In addition to being a

diagnostic for how well posterior models can estimate large values, χq(A) estimates

could also give insight on the tail dependence structure of the data’s underlying

distribution. For example, if χ̂q(A) → 0 as q → 1, then the posterior model

concludes that the components in A do not achieve simultaneous extremes. If values

of χ̂q(A) agree with their empirical counterparts as q → 1, it is a good indication

that the posterior captures the tail behaviour when all d components of the random

vector grow large.
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4.4 River flow data analysis

The flexibility and accuracy of our Bayesian modelling approach is illustrated by

performing inference on a bivariate dataset of river flow measurements (m3/s)

displaying a complicated dependence structure. First analysed in Keef et al. (2013a),

we focus on daily measurements of the rivers Pang and Windrush, each tributaries

of the River Thames in southern England, from 1968 to 2008. For the purposes

of this data analysis, we make the simplifying assumption of temporal stationarity

between daily measurements. Once standardised to Laplace margins, we use the

data x1:n in the hierarchical modelling approach outlined in Section 4.3. For

the threshold model, we fit the hierarchical Bayesian gamma quantile regression

model for the quantile set Qq at the q = 0.95 probability level, and sample

nQ = 20 posterior observations of the radial threshold, rQq ,1, . . . , rQq ,20, from

π[βQ, zQ|x1:n]. The assumption of exponential radial excesses (rExp) is made,

and models M1, M2, M3 are fitted, each using all directions and exceedance

directions. For each model and posterior threshold rQq ,i, nGL = 50 samples are

taken from the posterior distribution π[βG, zG, βL, zL|βQ,i, zQ,i,x1:n], resulting in

nθ = 1000. In Appendix 4.7.6, we compare observed posterior boundaries of the

scaling set G obtained from rG,1, . . . , rG,1000 to log(n/2)-scaled data, and posterior

angular densities forW = Ld/(d|L|) obtained from rL,1, . . . , rL,1000 to their empirical

counterparts. This is done for all six fitted models. Though this visual check, it is

determined that model M2 is preferred when fitted with exceedance directions only,

and will henceforth be considered for this dataset.

Figure 4.7 displays a posterior mean boundary of the scaling set G, or gauge

function unit level set, that seems to accurately capture the behaviour of scaled

data. This leads to the belief that we can accurately capture the tail dependence

behaviour across the entire bivariate tail region of the data’s underlying distribution.

Also in Figure 4.7, we show our ability to extrapolate information far beyond the

reach of observable data by displaying return sets in Laplace margins, with increasing

uncertainty as the return period T increases, which is sensible. Lastly, Figure 4.7
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Figure 4.7: Fitted posterior star bodies on Thames tributary data. Left: Posterior

mean boundary of the scaling set G (solid line) with 0.95 prediction intervals (in

grey), with log(n/2)-scaled data in Laplace margins. Centre: Prediction intervals

for the boundary of river flow return sets. From dark to light grey: T = 103, 105,

and T = 109 days for data in standard Laplace margins. Right: Posterior mean

boundary of the directional distribution set W (solid line) with 0.95 prediction

intervals (in grey), empirical estimate (histogram).

shows good agreement between the estimated posterior density of directions, fW ,

with the corresponding directional histogram. To check posterior model fit’s

predictive performance, values of χq, whose expression is presented in (4.1), at high

levels q increasing to 1. In it, we see that the posterior model’s probability estimates

closely follows the empirical counterpart, with good coverage of confidence intervals.

This shows the posterior model’s good ability at capturing the joint tail behaviour

of river flow measurements at these particular sites.

Additional posterior model goodness-of-fit diagnostics are presented in Ap-

pendix 4.7.6. The QQ plots in Figures 4.19 show that there is good agreement with

the empirical and model-based estimates in their abilities to extrapolate exceedances

to extreme values. Figure 4.20 shows PP plots for directions generated from the

posterior distribution of rW have good agreement with the empirical distribution of

the directions.
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Figure 4.8: χq values for the pair of marginal variables corresponding to the

rivers Pang and Windrush. Solid line is an empirical estimate with 95% bootstrap

confidence intervals in light grey, and the dashed line is a model-based estimate with

95% posterior confidence intervals in dark grey.

4.5 Newlyn wave heights data analysis

We apply our methodology to a dataset of dimension d = 3 consisting of hourly

measurements of wave height YH , in meters, wave period YP , in seconds, and surge

YS, in meters, measured over the period 1971–1977 at the Newlyn port in south-west

England. The dataset was first analysed in Coles and Tawn (1994) in the case where

asymptotic dependence was assumed between all three variables. Although a typical

assumption, Wadsworth and Campbell (2024) show that asymptotic independence

is a more reasonable assumption. Here, we revisit this data with a more flexible

approach also enabling the modelling of negative dependence. Following previous

literature, we analyse componentwise maxima over 15-hour periods, resulting in

a dataset of n = 2, 894 observations. The margins YH , YP , YS of the data are

unknown and are therefore standardised to standard Laplace using methods from

Section 4.3.1. This results in observations x1:n := {xi = (xH,i, xP,i, xS,i)
⊤ : i =

1, . . . , n} interpreted as random draws from X = (XH , XP , XS).

We begin by fitting the hierarchical Bayesian gamma quantile regression model
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Figure 4.9: Newlyn wave data fitted posterior star bodies. Left: Posterior mean

boundary of the scaling set G, with log(n/2)-scaled data in Laplace margins. Centre:

Posterior mean return set with T = 103 and data in Laplace margins. Right:

Posterior mean return set with T = 104 and data in Laplace margins. X1, X2,

and X3 refer to the wave height, period, and surge variables, respectively.

to x1:n for the quantile set Qq at the q = 0.9 probability level. For each of nQq = 20

samples rQq ,1, . . . , rQq ,20 from the posterior distribution π[βQq , zQq |x1:n] of Qq. Using
these posterior samples, we assume that the exceedances of Qq,i follow an rExp

distribution exactly, and fit the models M1, M2, and M3 to them using both

exceedance directions and all directions. and posterior threshold rQq ,i, nGL = 50

samples are taken from the posterior distribution π[βG, zG, βL, zL|βQ,i, zQ,i,x1:n],

resulting in nθ = 1000. In Appendix 4.7.7, we compare observed posterior

boundaries of the scaling set G obtained from rG,1, . . . , rG,1000 to log(n/2)-scaled

data for all six fitted models. This visual check leads to the belief that model M2

is preferred when fitted with exceedance directions only, and will henceforth be

considered for this dataset. Figure 4.9 shows the posterior mean of the boundary

of G obtained from model M2, as well as the posterior means of the boundary of

the return sets ∂XT for T = 103 and 104. Though Figure 4.9, we see that the model

captures the extremal dependence structure of our dataset well as observed through

the correspondence between the posterior mean of G and the scaled sample cloud.

These diagnostics suggest a well-performing posterior model. To check its
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Figure 4.10: χq values for all pairwise combinations of marginal variables and for

all three marginal variables of the Newlyn wave dataset. Solid line is an empirical

estimate with 95% bootstrap confidence intervals in light grey, and the dashed line

is a model-based estimate with 95% posterior confidence intervals in dark grey.

performance in predicting tail behaviour, χq(A) values are computed for large q

approaching 1 for all combinations of variables A ⊆ {H,P, S} of length at least 2

(pairs and the entire triplet). Figure 4.10 displays posterior mean estimates of χq(A)

with their empirically-computed counterparts. Results show agreement between the

estimates, with good coverage of confidence intervals. This suggests the ability of

the posterior model fit in capturing the joint tail behaviour of the Newlyn data’s

underlying distribution.

Coles and Tawn (1994) introduce a structure variable Q(v;Y ), interpreted as

the volume of water (in cubic meters, m3) overtopping the sea-wall per unit length

(in meters, m) over a fixed duration (in seconds, s), and measured in m3s−1m−1 for

a sea-wall v meters in height. More precisely,

Q(v;Y ) = a1YSYP exp{a2 (v − YS − l)/(YPY ∗H1/2)}.

The wave height component Y ∗H is a calibration of the wave height marginal variable

YH to approximate the off-shore wave height, since measurements are taken on-

shore. We estimate the sea-wall height structure variable vp (in meters, m) for

which the discharge rate value Q(vp;Y ) is expected to exceed the design standard

of 0.002m3s−1m−1 with probability p. Setting V = Q−1(0.002;Y ), vp is the solution

to P(V > vp) = p. As in Bortot et al. (2000), we fix the sea-wall design feature

constants to a1 = 0.25, a2 = 26, and tidal level relative to the seabed to l = 4.3.
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We obtain three separate estimates for vp at a range of p values. First, an

empirical estimate of vp is obtained by using the empirical quantile function on

values of the structure variable V computed from the dataset. Second, a univariate

generalised Pareto (GP) model is fitted using the dataset’s computed values of

V obtained from the dataset, and quantiles are then obtained for vp. Finally, we

compare these with prediction intervals for vp obtained from our fitted model M2.

This consists of first sampling a collection of new datasets {Y1:n,k = {Y1,k, . . . ,Yn,k} :

k = 1, . . . , 200}, each comprising n = 2, 894 observations,. These are used to collect

a sample of wall heights {vp,k : k = 1, . . . , 200} where each vp,k is the p-quantile of

{Vj,k = Q−1(0.002;Yj,k) : j = 1, . . . , n}. For a sequence of p ∈ (0.9, 1), we consider

the p-wise mean and the 95% confidence intervals based on equal-tailed quantiles of

the sample of sea wall heights.

To generate a new data set Ỹ1:n,k, we randomly sample one of the nQq

realisations from the posterior distribution π[βQq , zQ|x1:n], label it rQ,k, as well

as one of the nG,L = 50 realisations from the conditional posterior distribution

of π[βG, zG, βL, zL|βQq , zQ,k,x1:n], and label it (rG,k, rL,k). The new sample X1:n,k

is then constructed by sampling with replacement ⌈q · n⌉ observations from the

original observations falling in Qq,k, and ⌈(1− q) · n⌉ observations from an rExp

distribution with location Qq,k, scale Gk, and directional shape Wk = Ldk/(d|Lk|),
before transforming the sample to original margins using the probability integral

transform via the standard Laplace distribution function and then inverse transform

via the inverse marginal model F̂j specified in Section 4.3.1. Figure 4.11 includes the

resulting estimates of vp plotted against − log(− log(1− p)) for a range of p values.

Compared to the empirical and GP distribution fit approach, our method accurately

estimates the sea-wall height variable vp across all values of p ∈ (0, 0.10). The larger

prediction intervals corresponding to our method can be attributed to our more

holistic account of uncertainty via a joint model for extreme events, in contrast with

a structured variable approach. Our method hence reveals that risk may have been

underestimated by such previous methods.
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Figure 4.11: Estimated return levels for sea-wall height. Presented are results from

empirical fits (solid black line), GP (dotted black line), and our semi-parametric

method (dashed black line). Grey regions correspond to 95% confidence intervals.

Additional posterior model goodness-of-fit diagnostics are presented in Ap-

pendix 4.7.7. The QQ plots in Figures 4.22 show that there is good agreement with

the empirical and model-based estimates in their abilities to extrapolate exceedances

to extreme values. Figure 4.23 shows PP plots for directions generated from the

posterior distribution of directions W have good agreement with the empirical

counterpart.

4.6 Discussion

This work introduces a framework for defining quantile sets and return sets in

multivariate extreme value analysis, emphasizing the role of these sets in capturing

the geometry of extreme events. Central to this framework is the identification of

return sets under a radial-directional decomposition, which describes exceedances

across all directions and provides a natural representation of the geometry of a

sample cloud. Importantly, in our framework these return sets arise through the use

of normalising functions that lead to the weak convergence of radially renormalised

sample clouds to a novel Poisson point process. This builds upon recent results on

the convergence of scaled sample clouds and allowing for extrapolation of return
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sets, with Bayesian inference allowing for the estimation of uncertainty.

In appendices, we show that this point process convergence on exceedance radii

holds for a number of multivariate distributions whose margins are pre-specified.

This wide applicability is further demonstrated through the modelling of real-

world datasets. Using the assumed limiting distributions, we are able to accurately

characterise the multivariate tail of these datasets. While the theory on radial

exponential exceedances presented here holds for any dimension d ≥ 2, our Bayesian

semiparametric inference procedure is currently only supported for data of at most

three variables. This is due to the difficulty in obtaining a sparse precision matrix

for the stochastic partial differential equation approximation of Matérn Gaussian

fields on Sd−1 for d > 3. Mainly, on these hyperspheres, it is left to future work to

triangulate the space and define appropriate bases functions. Once this is done, then

work can begin on updating the methods shown in this chapter to higher dimensions.

In parallel independent work, Simpson and Tawn (2024b) introduced methodol-

ogy for obtaining environmental contours, which are similar to our notion of return

sets, further demonstrating the utility of the geometric approach for representing

risk. The recent developments show the broad applicability of return sets in the

geometric framework, as evidenced by their use in recent works, including Mackay

and Jonathan (2024), Murphy-Barltrop et al. (2024a), Mackay et al. (2024),

Campbell and Wadsworth (2024), and De Monte et al. (2025). This emerging

research highlights promising directions and the potential for significant impact in

risk assessment and the communication of risk.
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4.7 Appendix

4.7.1 Density convergence of rescaled radial excess variable

Proof of Proposition 4.1. Begin by noticing that

P
[
R− rQq(w)

rGq(w)
≤ z

∣∣∣ R > rQq(W ),W = w

]

=
P
[
R−rQq (w)

rGq (w)
≤ z, R > rQq(w),W = w

]
P
[
R > rQq(w),W = w

]
=

P
[
R ≤ rQq(w) + rGq(w)z,R > rQq(w),W = w

]∫∞
rQq (w)

fR,W (s,w)ds

=
P [R ≤ zq(w),W = w]− P

[
R ≤ rQq(w),W = w

]∫∞
rQq (w)

fR,W (s,w)ds

where zq(w) = rQq(w) + rGq(w)z and w ∈ Sd−1. Taking the partial derivative with

respect to z, obtain the density of radial exceedances at a given direction,

∂

∂z
P
[
R− rQq(w)

rGq(w)
≤ z

∣∣∣ R > rQq(W ),W = w

]
=
rGq(w)fR,W (zq(w),w)∫∞
rQq (w)

fR,W (s,w) ds

=
rGq(w)zq(w)d−1fX(zq(w)w)∫∞

rQq (w)
fR,W (s,w) ds

. (4.25)

Rewrite the integral in the denominator of (4.25) as∫ ∞
rQq (w)

fR,W (s,w) ds =

∫ ∞
rQq (w)

sd−1fX(sw) ds

=

∫ ∞
rQq (w)

sd−1 exp[−ψ(s){−{log fX(sw)}/ψ(s)}]ds

∼
∫ ∞
rQq (w)

sd−1 exp[−ψ(s)gG(w)ρ]ds.

as q → 1, where the asymptotic equivalence holds by the uniform convergence

assumption in (4.3). Without loss, ψ can be taken smooth (Lemma 1.4, Seneta

(1976)) so that dkψ(t)/dtk exists for all t > 0 and k ∈ N. Using this,∫ ∞
rQq (w)

sd−1 exp[−ψ(s)gG(w)ρ]ds =

∫ ∞
rQq (w)

sd−1

[
d
ds
exp[−ψ(s)gG(w)ρ]

−gG(w)ρψ′(s)

]
ds
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∼ rQq(w)d−1
[
exp[−ψ(rQq(w))gG(w)ρ]

gG(w)ρψ′(rQq(w))

]
as q → 1, where the asymptotic equivalence holds by recursively performing

integration by parts. Putting this limiting result into (4.25), obtain

∂

∂z
P
[
R− rQq(w)

rGq(w)
≤ z

∣∣∣ R > rQq(W ),W = w

]
∼ rGq(w)zq(w)d−1

rQq(w)d−1
fX(zq(w)w)gG(w)ρψ′(rQq(w)) exp[ψ(rQq(w))gG(w)ρ]

∼ rGq(w)zq(w)d−1

rQq(w)d−1
gG(w)ρψ′(rQq(w)) exp[−gG(w)ρ{ψ(zq(w))− ψ(rQq(w))}]

∼ rGq(w)gG(w)ρψ′(rQq(w)) exp[−gG(w)ρ{ψ(zq(w))− ψ(rQq(w))}]

as q → 1, where the third line holds by the convergence assumption (4.3) of fX

and the fourth line holds by factoring out rQq(w) from zq(w)d−1 := [rQq(w) +

rGq(w)z]d−1. A Taylor expansion of ψ(zq(w)) about rQq(w) and local uniform

convergence give ψ(zq(w)) = ψ(rQq(w)) + ψ′(rQq(w))rGq(w)z + o(1) as q → 1.

Thus,

∂

∂z
P
[
R− rQq(w)

rGq(w)
≤ z

∣∣∣ R > rQq(W ),W = w

]
∼ rGq(w)gG(w)ρψ′(rQq(w)) exp[−gG(w)ρ{ψ′(rQq(w))rGq(w)z + o(1)}]

∼ rGq(w)gG(w)ρψ′(rQq(w)) exp[−gG(w)ρψ′(rQq(w))rGq(w)z][1 + o(1)]

→ exp(−z),

as q → 1 whenever rGq(w) ∼ {ψ′(rQq(w))gG(w)ρ}−1. Without loss, set rGq(w) :=

{ψ′(rQq(w))gG(w)ρ}−1 throughout.

Suppose we have the interval [a, b], 0 < a < b < ∞, and arbitrary set S ⊂
Sd−1. Using the normalising equations rQ and rG, the point process of recentred and

rescaled radii and of directions Pn has mean measure

nPr

[
R− rQ1−n−1 (W )

rG(W )
∈ [a, b], R > rQ1−n−1 (W ),W ∈ S

]
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= n

∫
S

b∫
a

Pr

[
R− rQ1−n−1 (W )

rG(W )
= z,R > rQ1−n−1 (W ),W = w

]
dzdw

Bringing n inside the integral, the intensity measure of Pn defined in equation (4.2)

is therefore,

nPr

[
R− rQ1−n−1 (W )

rG(W )
= z,W = w, R > rQ1−n−1 (W )

]
dzdw

= nPr

[
R− rQ1−n−1 (w)

rG(w)
= z

∣∣∣∣∣W = w, R > rQ1−n−1 (W )

]
Pr
[
W = w

∣∣∣R > rQ1−n−1 (W )
]

× Pr
[
R > rQ1−n−1 (W )

]
dzdw

= Pr

[
R− rQ1−n−1 (w)

rG(w)
= z

∣∣∣∣∣W = w, R > rQ1−n−1 (W )

]
× Pr

[
W = w

∣∣∣R > rQ1−n−1 (W )
]
dzdw,

where the last equality holds because rQ1−n−1 is defined such that Pr
[
R > rQ1−n−1 (W )

]
=

n−1. A consequence of Proposition 5 of Papastathopoulos et al. (2025) is that

Pr[W = w | R > rQ1−n−1 (W )] = Pr[W = w]. With this in mind, the intensity

measure becomes

Pr

[
R− rQ1−n−1 (w)

rG(w)
= z

∣∣∣∣∣W = w, R > rQ1−n−1 (W )

]
Pr [W = w] dzdw

= Pr

[
R− rQ1−n−1 (w)

rG(w)
= z

∣∣∣∣∣W = w, R > rQ1−n−1 (W )

]
dzPW (dw)

=
∂

∂z
Pr

[
R− rQ1−n−1 (w)

rG(w)
≤ z

∣∣∣∣∣W = w

]
dzPW (dw)

−→ e−zdzPW (dw)

as n→∞.
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4.7.2 Marginal density of directional variable under homo-

thetic density

Proof of Proposition (4.2). Suppose that f(x) = f0(gG(x)), x ∈ Rd. Then,

fW (w) =

∫ ∞
0

fR,W (r,w) dr =
1

gG(w)d

∫ ∞
0

sd−1f0(s) ds =
1

d |G| gG(w)d
,(4.26)

where the last equality follows from Balkema and Nolde (2010, see Section 3.1).

4.7.3 Stability of the radial Exponential distribution

Proof of stability equation (4.6). Let the random vector Z ∈ Rd follow an rExp

distribution with locationM, scale Σ, and angular component W . Then,

P [Z ∈ {M+Br1+r2(0) · Σ}′ | Z ∈ {M+Br1(0) · Σ}′]

=
P [Z ∈ {M+Br1+r2(0) · Σ}′]
P [Z ∈ {M+Br1(0) · Σ}′]

=
P [{∥Z∥ − rM (Z/∥Z∥)}/rΣ (Z/∥Z∥) > r1 + r2]

P [{∥Z∥ − rM (Z/∥Z∥)}/rΣ (Z/∥Z∥) > r1]

=
exp{−(r1 + r2)}

exp{−r1}
= exp{−r2} = P [Z ∈ {M+Br2(0)}′ · Σ] .

4.7.4 Convergence to gauge functions for d-dimensional

copulas

Proposition 4.1 is the central theoretical result of this work. In it, it is stated that,

when rescaled appropriately, the negative log joint density of the d-dimensional

random vector whose margins are von Mises must converge to the gauge function

gG raised to some power ρ > 0. Furthermore, this convergence must be uniform in

the domain Sd−1. This is a central assumption that must be verified to motivate

the use of the rExp distribution for inference on the multivariate tail. In this
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section of the appendix, we do this for numerous multivariate distributions whose

margins are standardised to follow the standard Laplace distribution. In addition,

we acknowledge that these ideas extend beyond von Mises margins; see Proposition

6 in Papastathopoulos et al. (2025). To this end, we also show similar uniform

convergence results for multivariate distributions in margins that are not von Mises.

However, statistical inference in these multivariate tails are left to future work.

4.7.4.1 Multivariate Gaussian distribution, standard Laplace margins

The negative logarithm of the probability density function of the standard d-

dimensional normal copula with standard Laplace margins and positive-definite

precision matrix Q is standard d-dimensional normal copula with standard Laplace

margins and positive-definite precision matrix Q is

− log f(tx) =− 1

2
log |Q|+ d log 2 + t

d∑
i=1

|xt,i|+
1

2
H(t,x)⊤(Q− I)H(t,x)

where H : R+ × Rd → Rd is defined by H(t,x) = (H(t, xi) : i = 1, . . . , d),

with H(t, y) := Φ−1{FL(ty)}, for t > 0 and y ∈ R. Using Mill’s ratio to obtain an

asymptotic expansion of H(t, y) as t grows arbitrarily large, we conclude that the

convergence condition (4.3) in Proposition 4.1 are satisfied with ψ(t) = t, ρ = 1,

and gauge function

gG(x) =
[
sgn(x)|x|1/2

]⊤
Q
[
sgn(x)|x|1/2

]
To inspect the convergence rate of (4.3), rewrite − log f(tx) as

− log f(tx) = tgG(x) + (log t)u1(x) + u2(x) + o(1) as t→∞, (4.27)

where

u1(x) = −
1

2

[
sgn(x)|x|1/2

]⊤
(Q− I)

[
sgn(x)|x|−1/2

]
u2(x) =

[
sgn(x)|x|1/2

]⊤
(Q− I)

[
sgn(x) log 2|x|−1/2

]
−

−1

2

[
sgn(x)|x|1/2

]⊤
(Q− I)

[
sgn(x) log(4π|x|)|x|−1/2

]
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−1

2
log |Q|+ d log 2. (4.28)

We note that careful attention needs to be given to establish that the convergence

(4.3) holds uniformly. The asymptotic expansion in (4.27) is valid for large t

when all xi ̸= 0, and loses validity when at least one xi is equal to 0. This is a

result of the asymptotic expansion of H(t, xi) and H(t, xi)
2, both depending on

t and xi, resulting in non-uniform behaviour. When xi = 0, the expansions of

H(t, xi) and H(t, xi)
2 collapse to zero, while for xi ̸= 0, the leading term grows

as t1/2 with logarithmic corrections. This difference in growth rates reflects the

non-uniformity in xi, as the expansion behaves differently near the origin and

away from it, complicating the asymptotic analysis of − log f(tx) whenever x is

near an axis. In Supplementary Material 3.1 of Papastathopoulos et al. (2025),

we show that a uniform asymptotic expansion exists, by proving − log f(tx)/t

converges locally uniformly to a continuous gauge function via the continuous

mapping theorem (see, for example, Section 3.2.3 of Resnick (2007)). That is,

we prove that − log f(tx)/t → gG(x) as t → ∞, uniformly on compact sets in

the variable x ∈ Rd, by showing that − log f(txt)/t converges to gG(x) whenever

xt → x ∈ Rd. Consequently, because Sd−1 is compact, the convergence is uniform

on Sd−1 and therefore, the condition (4.3) of Proposition 4.1 are satisfied.

4.7.4.2 Multivariate Laplace distribution, standard Laplace margins

The joint density of the d-variate Laplace distribution in standard Laplace margins

with positive definite precision matrix Q is

f(tx) =
21+

d
2 |Q|1/2

(2π)d/2
tv
(

1

22
x⊤Qx

)v/2
Kv

{
t
(
x⊤Qx

)1/2}
for t > 0, where v = (2− d)/2 and Kv is the modified Bessel function of the second

kind (Kotz et al., 2001). Therefore,

− log f(tx)

= −
(
1 +

d

2

)
log 2 +

d

2
log (2π)− 1

2
log |Q|+ v log(2/t)− v

2
log
(
x⊤Qx

)
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− log
[
Kv

{
t
(
x⊤Qx

)1/2}]
Asymptotically, we have Kv(z) ∼ (π/2z)1/2 e−z (1 +O(z−1)) as z → ∞ (Paris,

2017). Applying the negative logarithm, obtain

− logKv(z) ∼ −
1

2
log
(π
2

)
+

1

2
log z + z +O(z−1).

Substituting this in the expression for − log f(tx), obtain

− log f(tx) ∼−
(
1 +

d

2

)
log 2 +

d

2
log 2π − 1

2
|Q| − v log t+ v log 2− v

2
log
(
x⊤Qx

)
− 1

2
log
(π
2

)
+

1

2
log t+

1

4
log
(
x⊤Qx

)
+ t
(
x⊤Qx

)1/2
+O(t−1).

Therefore, the converge condition (4.3) in Proposition 4.1 holds with ψ(t) = t,

ρ = 1, and gG(x) =
(
x⊤Qx

)1/2
. To inspect the rate of convergence of (4.3) by

writing − log f(tx) as

− log f(tx) = tgG(x) + (log t)u1(x) + u2(x) + o(1)

for t→∞, where the higher order terms are given by

u1(x) =
1

2
− v

and

u2(x) = −
(
1 +

d

2
− v
)
log 2+

d

2
log 2π−1

2
log |Q|−1

2
log
(π
2

)
+

(
1

4
− v

2

)
log
(
x⊤Qx

)
.

4.7.4.3 Multivariate max-stable distribution, standard Fréchet margins

The joint density of max-stable random vectors when the margins of x are standard

Fréchet margins is given by

f(x) =

(∑
π∈Π

(−1)|π|
∏
s∈π

Vs(x)

)
exp {−V (x)} ,
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where Π is the set of all partitions of the set of indices {1, . . . , d}, and V (x) is a

−1-homogeneous exponent function. As a result, Vs(x) is −(1 + |s|)-homogeneous,

and we have

f(tx) =

(∑
π∈Π

(−1)|π|
∏
s∈π

t−(1+|s|)Vs(x)

)
exp

{
−t−1V (x)

}
=

(∑
π∈Π

(−1)|π|t−(|π|+d)
∏
s∈π

Vs(x)

)[
1 +O(t−1V (x))

]
=

min
π∈Π

{
(−1)|π|t−(|π|+d)

∏
s∈π

Vs(x)

}
+
∑

π∈Π\π∗

(−1)|π|t−(|π|+d)
∏
s∈π

Vs(x)


×
[
1 +O(t−1V (x))

]
, (4.29)

where π∗ is the solution to the minimisation problem in (4.29). As t → ∞, the

solution of which is π∗ = {{1, . . . , d}}, and therefore |π∗| = 1. This results in

f(tx) =

−t−(1+d)V{1,...,d}(x) + ∑
π∈Π:|π|>1

(−1)|π|t−(|π|+d)
∏
s∈π

Vs(x)

[1 +O(t−1V (x))
]
.

Therefore, the following convergence holds,

f(tx)

t−(d+1)
→ −V{1,...,d}(x) =: gG(x)

−(d+1)

as t→∞. This convergence means that f(tx) has the asymptotic form

f(tx) ∼ t−(d+1)gG(x)
−(d+1) +

d−1∑
k=1

t−(d+k+1)uk(x)

as t→∞, where the higher order terms are given by

uk(x) = (−1)k+1
∑

π∈Π(k+1)

∏
s∈π

Vs(x)

for k ∈ {1, . . . , d−1}. In this notation, Π(k) ⊂ Π is such that |π| = k for all π ∈ Π(k).

Note that in the context of Proposition 6 (iii) in Papastathopoulos et al. (2025),

this convergence implies that radial exceedances of the form (R− rQq(w))/rQq(w)) |
{W = w, R > rQq(W )} follows a generalised Pareto distribution with shape

parameter (or “tail index”) ξ = 1.
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Further note that g depends on the type of dependence, i.e., the exponent

function V . For example, in the logistic setting with dependence parameter

θ ∈ (0, 1), we have V (x) =
(∑d

j=1 x
−1/θ
j

)θ
. The expression of gG is therefore given

by the solution of

gG(x)
−(d+1) =− V{1,...,d}(x)

=− (−θ)−d
[
d−1∏
k=0

(θ − k)
](

d∏
k=1

xk

)− 1
θ
−1( d∑

j=1

x
−1/θ
j

)θ−d

=θ−d+1

[
d−1∏
k=1

(k − θ)
](

d∏
k=1

xk

)− 1
θ
−1( d∑

j=1

x
−1/θ
j

)θ−d

.

Furthermore, the −(|s| + 1)-homogeneous |s|-order partial derivative of V with

respect to inputs whose indices are in s in the higher-order terms uk is given by

Vs(x) = (−θ)−|s|
|s|−1∏
k=0

(θ − k)

(∏
k∈s

xk

)− 1
θ
−1( d∑

j=1

x
−1/θ
j

)θ−|s|

.

4.7.4.4 Multivariate inverted max-stable distribution, standard expo-

nential margins

The class of multivariate inverted max-stable distributions is usually represented in

exponential margins, and has a joint distribution function

F (x) = e−ℓ(x)

where ℓ is the 1-homogeneous stable tail dependence function, and is defined by the

−1-homogeneous exponent function V (see Appendix 4.7.4.3) through the relation

ℓ(x) = V (1/x). The joint density in exponential margins is given by

f(x) =

(∑
π∈Π

(−1)|π|
∏
s∈π

ℓs(x)

)
exp {−ℓ(x)}

where ℓs(x) = Vs(1/x)(−1)|s|
∏

j∈s x
−2
j is (1 − |s|)-homogeneous. Therefore, the

convergence condition (4.3) in Proposition 4.1 holds with ψ(t) = t, ρ = 1, and
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gauge function gG(x) = ℓ(x). The convergence rate of (4.3) can be inspected by

writing − log f(tx) as

− log f(tx) = tgG(x) + u(tx)

where the and higher order term

u(tx) =− log

[
(−1)d

d∏
j=1

ℓ{j}(x) +O(t−1)

]

=− log

[
(−1)d

d∏
j=1

ℓ{j}(x) + o(1)

]

as t→∞.

4.7.4.5 Multivariate max-stable and inverted max-stable distributions

with logistic dependence, Laplace margins

The joint density function in Fréchet margins is

fF (z) =

(∑
π∈Π

(−1)|π|
∏
s∈π

Vs(z)

)
exp {−V (z)}

where V (z) =
(∑d

j=1 z
−1/θ
j

)θ
is a −1-homogeneous exponent function with depen-

dence parameter θ ∈ (0, 1), and Vs is the |s|-order partial derivative of V with respect

to inputs whose indices are in s. Let Π be the set of all partitions of the set of indices

{1, . . . , d}, and let π be the set of all partitions of an arbitrary element in Π. To

obtain the joint density in Laplace margins, change of variables in implemented.

Suppose zt(xj) = z(txj) for t > 0 and j ∈ {1, . . . , d}. If xj < 0 (or zt(xj) <

(log 2)−1), then we perform the change of variables from Fréchet to Laplace margins

zt(xj) =

(
− log

(
1

2
etxj
))−1

= (−txj)−1
(
1− log 2 (−txj)−1 +O(t−2)

)
with derivative given by

d

d(txj)
zt(xj) = (−txj)−2

(
1− 2 log 2 (−txj)−1 +O(t−2)

)
.
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If xj > 0 (or zt(xj) > (log 2)−1), then

zt(xj) =

(
− log

(
1− 1

2
e−txj

))−1
= 2etxj − 1

2
+O

(
e−txj

)
with derivative given by

d

d(txj)
zt(xj) = 2etxj +O

(
e−txj

)
.

Lastly, if xj = 0, then zt(xj) = (log 2)−1. By the inverse function and chain rules,

d

d(txj)
zt(xj) =

fL(txj)

fF
(
F−1F (FL(txj))

) =


e−t|xj |

etxj(log( 1
2
etxj))

2 ; xj < 0

1
2
e−t|xj |

(1− 1
2
e−txj)(log(1− 1

2
e−txj))

2 ; xj > 0

xj→0−−−→ (log 2)−2,

where fL and FL are the univariate density and distribution functions of the standard

Laplace distribution, respectively. For a vector x = (x1, . . . , xd)
⊤, let A,B,C ⊂

{1, . . . , d} be the set of indices such that xj is positive, negative, and zero for j ∈
A,B,C, respectively such that |A|+ |B|+ |C| = d. By change of variables, the joint

density for the max-stable distribution with logistic dependence in Laplace margins

is

f(tx) =

∣∣∣∣∣
d∏
j=1

d

d(txj)
zt(xj)

∣∣∣∣∣ fF (z(tx1), . . . , z(txd))

=(−1)d+1

{
d−1∏
ℓ=0

(
1− ℓ

θ

)}
2−

|A|
θ t(

1
θ
−1)|B|+1− d

θ (log 2)−2|C|

(∏
k∈B

(−xk)
1
θ
−1

)

×
(∑
k∈B

(−xk)1/θ
)θ−d

× exp

−t
1
θ

∑
j∈A

xj +

(∑
k∈B

(−xk)1/θ
)θ (

1 +O
(
e−

t
θ
minj∈A xj

)
+O(t−1)

)
× (1 + o(1))

as t→∞. Applying the negative logarithm, obtain the following expression
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− log f(tx) =− log

[
(−1)d+1

{
d−1∏
ℓ=0

(
1− ℓ

θ

)}
2−

|A|
θ (log 2)−2|C|

]
−
(
1

θ
− 1

)∑
k∈B

log(−xk)

− (θ − d) log
(∑
k∈B

(−xk)1/θ
)

+

{
−
(
1

θ
− 1

)
|B| − 1 +

d

θ

}
log t

+ t

1
θ

∑
j∈A

xj +

{∑
k∈B

(−xk)1/θ
}θ {

1 +O
(
e−

t
θ
minj∈A xj

)
+O(t−1)

}+ o(1)

From this, we see that the convergence assumption (4.3) in Proposition 4.1 is satisfied

with ψ(t) = t, ρ = 1, and

gG(x) =
1

θ

∑
j∈A

xj +

{∑
k∈B

(−xk)1/θ
}θ

.

The rate of convergence of (4.3) can be inspected by writing − log f(tx) as

− log f(tx) = tgG(x) + (log t)u1(x) + u2(x),

with higher order terms are given by

u1(x) = −
(
1

θ
− 1

)
|B| − 1 +

d

θ

and

u2(x) =− log

[
(−1)d+12−

|A|
θ

(log 2)−2|C|

{
d−1∏
ℓ=0

(
1− ℓ

θ

)}]
−
(
1

θ
−1
)∑
k∈B

log(−xk)

−(θ − d) log
{∑
k∈B

(−xk)1/θ
}

+ o(1)

There are 2 special cases to consider:

• special case 1: Suppose xj > 0 ∀ j ∈ {1, . . . , d} and let x(d) = minj=1,...,d xj.

Here, the joint log-density is

− log f(tx) =− log

[
2−1(−1)d

{
d−1∏
ℓ=1

(
1− ℓ

θ

)}]
+ t

{
1

θ

d∑
j=1

xj +

(
1− d

θ

)
x(d)

}
+

+ 2−1e−tx(d) (1 + o(1)) + o(1) = tgG(x) + u1(x) + o(1)
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as t→∞, where the gauge function is

gG(x) =
1

θ

d∑
j=1

xj +

(
1− d

θ

)
min

k=1,...,d
xk

and the higher order term is

u1(x) = − log

[
2−1(−1)d+1

{
d−1∏
ℓ=1

(
1− ℓ

θ

)}]
.

• special case 2: Suppose xj < 0 ∀ j ∈ {1, . . . , d}. Here, we have

− log f(tx) =tgG(x) + (log t)u1(x) + u2(x) + o(1)

as t→∞, where the gauge function is

gG(x) =

{
d∑
j=1

(−xj)1/θ
}θ

the higher order terms are given by

u1(x) = d− 1

and

u2(x) = − log

(−1)d+1

{
d−1∏
ℓ=0

(
1− ℓ

θ

)}{ d∏
j=1

(−xj)
} 1

θ
−1{ d∑

j=1

(−xj)1/θ
}θ−d

 .
The case of inverted logistic dependence, defined by the joint distribution

function in Fréchet margins

FF (z) = exp {−V (z)}

is similar, amounting to a translation x 7→ −x. For more detail on these derivations,

the reader is referred to Supplementary Material 3.5 of Papastathopoulos et al.

(2025).
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4.7.4.6 Multivariate Student’s tν distribution, Student-tν margins, ν > 0

Suppose Q positive definite and ν > 0. The joint density can be expressed as

f(x) = f0(gG(x)), where the homothetic function f0 and the gG function is given by

f0(s) = kν,Q(1 + ν−1s2)−
1
2
(ν+d),

gG(x) =
(
x⊤Qx

)1/2
,

where kν,Q = Γ
(
ν+d
2

)
/
{
Γ
(
ν
2

)
νd/2πd/2 |Q|−1/2

}
. Note that in the context of Propo-

sition 6 (iii) in Papastathopoulos et al. (2025), we have

f(tx)

ψ(t)
→ gG(x)

−(d+ξ−1) (4.30)

for ψ(t) = kν,Qν
1
2
(ν+d)t−(ν+d) as t → ∞. This convergence implies that radial

exceedances of the form (R− rQq(w))/ν−1rQq(w)) | {W = w, R > rQq(W )} follows
a generalised Pareto distribution with ξ = ν−1.

To study the rate of convergence in (4.30), note that this convergence result

means that f(tx) can be written as

f(tx) = ψ(t)gG(x)
−(d+ξ−1) + u(x)

, where the higher-order term is

u(x) =

f(tx)
ψ(t)
− gG(x)−(ν+d)

t−2

=t2
[
ψ(t)−1kν,Qν

1
2
(ν+d)t−(ν+d)gG(x)

−(ν+d) {1 + νt−2gG(x)
−2}− 1

2
(ν+d) − gG(x)−(ν+d)

]
=t2

[
gG(x)

−(ν+d)
{
1− 1

2
(ν + d)νt−2gG(x)

−2 +O(t−4)

}
− gG(x)−(ν+d)

]
=− 1

2
(ν + d)νgG(x)

−2−(ν+d) +O(t−2)

=− 1

2
(ν + d)νgG(x)

−2−(ν+d) + o(1)

as t→∞.
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4.7.4.7 Multivariate Student’s tν distribution, ν > 0, standard Laplace

margins

The multivariate t-distribution with positive definite precision matrix Q = (qij)
d
i,j=1

and with univariate t-distribution margins with ν degrees of freedom is given has

joint density

ftν (z) =kν,Q

(
1 +

1

ν

d∑
j=1

qjjz
2
j +

2

ν

∑
1≤j<k≤d

qjkzjzk

)− 1
2
(ν+d)

where kν,Q = Γ
(
ν+d
2

)
/
{
Γ
(
ν
2

)
νd/2πd/2 |Q|−1/2

}
. Perform the change of variables

to the standard Laplace distribution, where we take advantage of a univariate

t-distribution analogue of Mill’s ratio (Soms, 1976). Let Ftν be the distribution

function of the univariate t-distribution with ν degrees of freedom, respectively.

Suppose z = z(tx) > 0 (or x > 0), then for t > 0 large, the change of variables from

the t-distribution to the standard Laplace distribution

tx =− log [2 {1− Ftν (z(tx))}]

=− log

[
2Γ
(
ν+1
2

)
ν(

1−ν
2 )

Γ
(
ν
2

)√
νπ

]
+ ν log z(tx) +O

(
z(tx)−2

)
.

Inverting this transformation, obtain

z(tx) =cνe
t
ν
x
(
1 +O

(
e

−2t
ν

))
,

with partial derivative with respect to tx given by

d

dtx
z(tx) =

cν
ν
e

t
ν
x
(
1 +O

(
e

−2t
ν

))
,

where cν =
{
2Γ
(
ν+1
2

)
ν(

1−ν
2 )Γ

(
ν
2

)−1
(νπ)−1/2

}1/ν

. When z(tx) < 0 (or x < 0), the

transformation to Laplace margins is

tx = log [2Ftν (z(tx))]

= log 2 + log [1− Ftν (−z(tx))] .

154



Negating,

−tx =− log 2− log (1− Ftν (−z(tx)))

=− log

[
2Γ
(
ν+1
2

)
ν(

1−ν
2 )

Γ
(
ν
2

)√
νπ

]
+ ν log(−z(tx)) +O

(
z(tx)−2

)
.

Inverting this transformation,

z(tx) =− cνe
t
ν
|x|
(
1 +O

(
e

−2t
ν

))
,

with partial derivative

d

dtx
z(tx) =

cν
ν
e

t
ν
|x|
(
1 +O

(
e

−2t
ν

))
.

Therefore, by change of variables, obtain the joint density in Laplace margins

f(tx) =

∣∣∣∣∣
d∏
j=1

d

d(txj)
z(txj)

∣∣∣∣∣ ftν (z(tx1), . . . , z(txd))
=
cdνkν,Q
νd

exp

{
t

ν

d∑
j=1

|xj|
}
qj⋆j⋆c

2
ν

ν
exp

{
−t
(
1 +

d

ν

)
max
j=1,...,d

|xj|
}
(1 + o(1)),

as t→∞. where j⋆ is the index such that |xj⋆| = maxj=1,...,d |xj|. Taking the negative
logarithm, observe that the convergence condition (4.3) holds with ψ(t) = t, ρ = 1,

and gauge function

gG(x) =−
1

ν

d∑
j=1

|xj|+
(
1 +

d

ν

)
max
j=1,...,d

|xj| ,

To inspect the rate of convergence of (4.3), write − log f(tx) as

− log f(tx) =tgG(x) + u(x),

and note the higher order term is

u(x) =− log

(
cd+2
ν kν,Qqj⋆j⋆

νd+1

)
+ o(1)

as t→∞.
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4.7.4.8 Wishart distribution

For a d × d positive definite matrix X, the Wishart distribution with ν degrees of

freedom and positive definite scale matrix V has density function

fX(X) = 2−(νd)/2 det(V)−ν/2Γd(ν/2)
−1 det(X)

1
2
(ν−d−1)e−

1
2
tr(V−1X)

Therefore, the convergence condition (4.3) in Proposition 4.1 holds with ψ(t) = t,

ρ = 1, and gG(X) = 1
2
tr (V−1X). To inspect the rate of convergence, rewrite

− log fX(tX) as tgG(X)+(log t)u1(X)+u2(X), where u1(X) =
(
−d

2
(ν − d− 1)

)
and

u2(X) = −1
2
(ν − d − 1) log det(X) + log

(
2−(νd)2 det(V)−ν/2Γd(ν/2)

−1) are higher-

order terms.
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4.7.5 Directional densities

In Section 4.2.2, we give the exact form of the directional density fW corresponding

to the d-dimensional homothetic Gaussian, Laplace, Student’s t distributions in their

canonical margins, all of which are homothetic. In this appendix, we give the full

derivations. In this appendix, we further derive the density fW corresponding to

the max-stable, inverted max-stable, and Wishart distributions in their canonical

margins.

4.7.5.1 Multivariate Gaussian distribution, standard normal margins

The joint density can be written in the form f(x) = f0(gG(x)), where f(s) =

(2π)−d/2 |Q|1/2 exp {−s2/2}. By (4.26),

fW (w) =gG(x)
−d

∞∫
0

sd−1f0(s)ds = (2π)−d/2 |Q|1/2
(
w⊤Qw

)−d/2 ∞∫
0

sd−1e−
1
2
s2ds

=Γ(d/2)2
d
2
−1(2π)−d/2 |Q|1/2

(
w⊤Qw

)−d/2
= Γ(d/2)2−1π−d/2 |Q|1/2

(
w⊤Qw

)−d/2

π 0

3π 2

π 2

Figure 4.12: Directional density for the bivariate Gaussian distribution, standard

Gaussian margins, with Q−111 = Q−122 = 1, Q−112 = Q−121 = 0.8, plotted over an empirical

sample
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4.7.5.2 Multivariate Laplace distribution, standard Laplace margins

We have f[L](x) = f0(gG(x)), where f0(s) = |Q|1/2(2π)−d/2svKv(s). By (4.26), the

density of angles is

fW (w) =

∞∫
0

rd−1f0(rgG(w))dr = gG(w)−d
∞∫
0

sd−1f0(s)ds

=|Q|1/2(2π)−d/2
(
w⊤Qw

)−d/2 ∞∫
0

sd+v−1Kv(s)ds

=Γ(d/2)2
d
2
−1(2π)−d/2 |Q|1/2

(
w⊤Qw

)−d/2
=Γ(d/2)2−1π−d/2 |Q|1/2

(
w⊤Qw

)−d/2

where the expression for the integral can be found in equation 16. of Section 6.561

of Gradshteyn and Ryzhik (2014) and equation 10.43.19 of Olver et al. (2019).

π 0

3π 2

π 2

Figure 4.13: Directional density for the bivariate Laplace distribution, standard

Laplace margins, with Q−111 = Q−122 = 1, Q−112 = Q−121 = 0.5, plotted over an empirical

sample
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4.7.5.3 Multivariate Student tν distribution, Student tν margins, ν > 0

We have f(x) = f0(gG(x)), where f0(s) = kν,Q (1 + ν−1s2)
− 1

2
(ν+d)

. By (4.26), the

density of angles is

fW (w) =

∞∫
0

rd−1f0(rgG(w))dr = gG(w)−d
∞∫
0

sd−1f0(s)ds

=kν,Q
(
w⊤Qw

)−d/2 ∞∫
0

sd−1
(
1 + ν−1s2

)− 1
2
(ν+d)

ds

=Γ

(
ν + d

2

)
Γ
(ν
2

)−1
ν−d/2π−d/2 |Q|1/2

(
w⊤Qw

)−d/2
ν−1+d/2

× Γ

(
ν + d

2

)−1
Γ
(ν
2

)
Γ
(
1 +

ν

2

)
=Γ

(
d

2

)
2−1/2π−d/2 |Q|1/2

(
w⊤Qw

)−d/2

π 0

3π 2

π 2

Figure 4.14: Directional density for the bivariate Student tν distribution, tν margins,

with ν = 5 and Q−111 = Q−122 = 1, Q−112 = Q−121 = 0.6, plotted over an empirical sample
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4.7.5.4 Multivariate max-stable distribution, standard Fréchet margins

For a general −1-homogeneous exponent function,

fW (w) =

∞∫
0

rd−1f(rw)dr

=

∞∫
0

rd−1

[∑
π∈Π

(−1)|π|
∏
s∈π

Vs(rw)

]
e−V (rw)dr

=
∑
π∈Π

(−1)|π|
[∏
s∈π

Vs(w)

] ∞∫
0

rd−
∑

s∈π(1+|s|)−1e−r
−1V (w)dr

=
∑
π∈Π

(−1)|π|
[∏
s∈π

Vs(w)

]
Γ

{∑
s∈π

(1 + |s|)− d
}
V (w)

∑
s∈π(1+|s|)−d

Suppose we fix d = 2, and we assume we have logistic dependence and Fréchet

margins, then the exponent function is given by V (x, y) = (x−1/θ + y−1/θ)θ, and the

true directional density fW can be plotted against an empirical sample of angles

(see Figure 4.15).

π 0

3π 2

π 2

Figure 4.15: Directional density for the bivariate max-stable logistic distribution,

standard Fréchet margins, with dependence parameter θ = 0.3, plotted over an

empirical sample

160



4.7.5.5 Multivariate inverted max-stable distributions, standard expo-

nential margins

Recall, from subsubsection 4.7.4.4 that the first order gauge function for inverted

max-stable distributions in exponential margins is given by the 1-homogeneous

stable tail dependence function, gG(x) = ℓ(x). With this in mind, the density

of angles in this setting is given by

fW (w) =

∞∫
0

rd−1f(rw)dr

=

∞∫
0

rd−1

[∑
π∈Π

(−1)|π|
∏
s∈π

ℓs(rw)

]
e−ℓ(rw)dr

=
∑
π∈Π

(−1)|π|
[∏
s∈π

ℓs(w)

] ∞∫
0

rd+
∑

s∈π(1−|s|)−1e−rℓ(w)dr

=
∑
π∈Π

(−1)|π|
[∏
s∈π

ℓs(w)

]
Γ

{
d+

∑
s∈π

(1− |s|)
}
ℓ(w)d+

∑
s∈π(1−|s|)

=

[∑
π∈Π

(−1)|π|
[∏
s∈π

ℓs(w)

]
Γ

{
d+

∑
s∈π

(1− |s|)
}
gG(w)

∑
s∈π(1−|s|)

]
gG(w)d,

thus following the expression given in equation (4.5) from Section 4.2.2. Suppose

we fix d = 2, and we assume we have logistic dependence and standard exponential

margins, then the exponent function is given by ℓ(x, y) = (x1/θ + y1/θ)θ, and the

true directional density fW can be plotted against an empirical sample of angles

(see Figure 4.16).
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π 0

3π 2

π 2

Figure 4.16: Directional density for the bivariate inverted max-stable logistic

distribution, standard exponential margins, with dependence parameter θ = 0.7,

plotted over an empirical sample

4.7.5.6 Wishart distribution

The density of angles is computed using

fW(W) =

∞∫
0

rd−1fX(rW)dr

=2−(νd)/2 det(V)−ν/2Γd(ν/2)
−1 det(W)

1
2
(ν−d−1)

× Γ

(
d

2
(1 + ν − d)

)(
1

2
tr
(
V−1W

))− d
2
(1+ν−d)

where in this setting, radii and angles are defined using a matrix norm; R = ∥X∥,
W = X/∥X∥.
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4.7.6 Posterior model fits on river data

On the bivariate Thames tributary data, we fit models using the three architectures

M1, M2, and M3 using data exceeding a high posterior quantile estimate and on

all available data. Figures 4.17 and 4.18 show posterior mean limit set boundary

and posterior directional densities for each of the six fitted models. In these figures,

we see that the fitted model associated with the M2 architecture and fitted on

exceedance data only is best. This model’s posterior limit set agrees most with log n-

scaled data, while the posterior mean directional density is in good agreement with

an empirical sample of angles. The posterior QQ plots in Figure 4.19 corresponding

to this optimal model shows good agreement with the radial exceedance model and

the underlying exponential distribution, while the PP plots in 4.20 show general

agreement between the posterior and the underlying directional models.
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Figure 4.17: Posterior estimates of the unit level set gG(x) = 1 for the river flow

dataset. The black line corresponds to the posterior mean, with the 0.95 prediction

interval shaded in grey. Black points are the original data in Laplace margins scaled

by log(n/2). Dashed border line is the unit box. . Top row: model M1. Middle row:

model M2. Bottom row: model M3. Left: fitting using only exceedances. Right:

fitting using all observations. M1, M2, and M3 define the angle density kernel, as

described in section 4.3.3
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Figure 4.18: Posterior estimates of the mean angle density for the river flow dataset

with 0.95 prediction intervals. The empirical density of angles is given by the

underlying histogram. Top row: model M1. Middle row: model M2. Bottom row:

model M3. Left: fitting using only exceedances. Right: fitting using all observations.

M1, M2, and M3 define the angle density kernel, as described in section 4.3.3.
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Figure 4.19: QQ plots for the Thames tributary river flow dataset exceedance model

for 9 sampled posterior thresholds rQq(w), with 95% confidence intervals.
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Figure 4.20: PP plots for the Thames tributary river flow dataset directional model,

with 95% confidence intervals.
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4.7.7 Posterior model fits on Newlyn wave height data

On the three-dimensional Newlyn wave data, we fit models using the three

architectures M1, M2, and M3 using data exceeding a high posterior quantile estimate

and on all available data. Figure 4.21 show posterior mean limit set boundaries

for each of the six fitted models. In these figures, we see that the fitted model

associated with the M2 architecture and fitted on exceedance data only agrees

most with log n-scaled data, though all models fit well. The posterior QQ plots

in Figure 4.22 corresponding to this optimal model shows good agreement with

the radial exceedance model and the underlying exponential distribution, while the

PP plots in 4.23 show good agreement between the posterior and the underlying

directional models. In Section 4.5 of the main body of this manuscript we see that

this model is also very accurate in estimating other diagnostics. One diagnostic not

mentioned in Section 4.5 of the main body is plots of χq(A), defined in equation (4.1)

in Section 4.1 of the main body. Figure 4.10 shows posterior mean estimates of χq(A)

for A ∈ {HP,HS, PS,HPS} and for q ∈ (0.9, 1) with posterior 95% confidence

intervals. Wadsworth and Campbell (2024) establish that the variable groups HP ,

PS, and HPS are asymptotically independent, and that HS is asymptotically

dependent. With this in mind, we conclude that our posterior joint model is able

to accurately describe the extremal dependence structure presented in this dataset.

Figure 4.10 correctly shows posterior estimates of χq(A) tending to 0 as q tends to

1 for the asymptotically independent groups, and tending to a nonzero value close

to the empirical estimate for the asymptotically dependent pair HS.
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Figure 4.21: Posterior mean estimates of the unit level set ∂G for the wave dataset.

Black points are the original data in Laplace margins scaled by log(n/2). Top row:

model M1. Middle row: model M2. Bottom row: model M3. Left: fitting using only

exceedances. Right: fitting using all observations. M1, M2, and M3 define the angle

density kernel, as described in section 4.3.3.
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Figure 4.22: QQ plots for the Newlyn wave dataset exceedance model for 9 sampled

posterior thresholds rQq(w), with 95% confidence intervals.
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Figure 4.23: PP plots for the Newlyn wave dataset directional model, with 95%

confidence intervals.
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Chapter 5

Piecewise-linear modelling of

multivariate geometric extremes

Abstract

A recent development in extreme value modelling uses the geometry of the dataset

to perform inference on the multivariate tail. A key quantity in this inference is the

gauge function, whose values define this geometry. Methodology proposed to date for

capturing the gauge function either lacks flexibility due to parametric specifications,

or relies on complex neural network specifications in dimensions greater than three.

We propose a semiparametric gauge function that is piecewise-linear, making it

simple to interpret and provides a good approximation for the true underlying gauge

function. This linearity also makes optimization tasks computationally inexpensive.

The piecewise-linear gauge function can be used to define both a radial and an

angular model, allowing for the joint fitting of extremal pseudo-polar coordinates, a

key aspect of this geometric framework. We further expand the toolkit for geometric

extremal modelling through the estimation of high radial quantiles at given angular

values via kernel density estimation. We apply the new methodology to air pollution

data, which exhibits a complex extremal dependence structure.
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5.1 Introduction

5.1.1 Multivariate geometric extremes

In multivariate extreme value analysis, interest lies in characterizing the extremal

dependence structure of random vectors. LetX = (X1, . . . , Xd)
⊤ be a d-dimensional

random vector with components Xj representing measurements of a simultaneous

process. For example, X may comprise measurements of d different air pollutants

at a single site, contemporaneous river flows at d locations, or values of d different

stock returns. Such multivariate vectors can exhibit complex dependence structures,

with some variables experiencing simultaneous extremes while others are smaller.

Recently, the framework of geometric extremes has emerged as a tool for modelling

extremes of potentially complex dependence structures (Wadsworth and Campbell,

2024; Papastathopoulos et al., 2025). When X has common light-tailed margins

(i.e., satisfy a von Mises condition), often achieved via a transformation, a useful

geometric interpretation of multivariate extremes arises.

For a wide variety of distributions, the scaled sample cloud of independent copies

of light-tailed random vectors, {X1/rn, . . . ,Xn/rn}, converges onto a limit set G

(Davis et al., 1988; Kinoshita and Resnick, 1991; Balkema and Nolde, 2010). The

limit set can be characterized by the gauge function, g, where g : Rd → R is 1-

homogeneous, through the relation G =
{
x ∈ Rd : g(x) ≤ 1

}
. The scaling sequence

rn depends on the margins. In standard exponential or Laplace margins, for example,

a suitable scaling factor is rn = log n, in which case the coordinatewise supremum of

G is given by (1, . . . , 1)⊤. The coordinatewise infimum is (0, . . . , 0)⊤ for exponential

margins or (−1, . . . ,−1)⊤ for Laplace margins. This means that g(x) ≥ ∥x∥∞,
where ∥·∥∞ is the max-norm. When X has exponential or Laplace margins, density

fX(x), and g is continuous, the gauge function can be obtained via

g(x) = lim
t→∞
− log fX(tx)/t, (5.1)

(Balkema and Nolde, 2010; Nolde and Wadsworth, 2022). The boundary ∂G of the

limit set is given by the unit level set of the gauge function g(x) = 1. Nolde

171



(2014) and Nolde and Wadsworth (2022) show how g can be used to describe

the extremal dependence structure of known distributions, while Wadsworth and

Campbell (2024) introduced methodology to perform inference with g. In contrast

to alternative statistical methods for multivariate extremes, inference based on

this new geometric framework can capture highly complex extremal dependence

structures and permits extrapolation in regions where only some variables are large

simultaneously. Therefore, estimating g, or equivalently G, is crucial to multivariate

extremal inference.

The limit set, and therefore the gauge function, provide us with a useful

description of the extremal dependence structure of the random vector X by telling

us which groups of variables exhibit simultaneous extremes while the remaining

variables are of smaller order. Let D = {1, . . . , d} and C ⊆ D. We say that the

variables in group C can be simultaneously extreme while the others are smaller if

there exists zC such that g(zC) = 1, where zCj = 1 for all j ∈ C and zCj = γj for

all j ∈ D \ C, for some γj ∈ [0, 1) in exponential margins or γj ∈ [−1, 1) in Laplace

margins. Note these are points of intersection of the limit set boundary with the

boundary box [0, 1]d or [−1, 1]d. The collection of sets C ⊆ D with g(zC) = 1 is

denoted by C. Each variable must be represented at least once in C, since the

coordinatewise supremum is (1, . . . , 1)⊤. Figure 5.1 displays bivariate examples

with C = {{1} , {2}} and C = {{1, 2}}. Examples for d = 3 are also displayed

with C = {{1, 2} , {1, 3} , {2, 3}} and C = {{1, 2, 3}}. Note that our definition of

simultaneous extremes based on g is slightly different to definitions that arise in the

framework of multivariate regular variation (e.g., Goix et al. (2017)), although the

two will often overlap theoretically and are essentially indistinguishable at a practical

level. We therefore prefer this simple definition when working in the geometric

framework.

To perform statistical inference using the gauge function, it is useful to consider

the radial-angular decomposition X 7−→ (R,W ) = (∥X∥ ,X/∥X∥) ∈ R+ × Sd−1,
where ∥·∥ is a norm and Sd−1 =

{
x ∈ Rd : ∥x∥ = 1

}
. We emphasize here that
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Figure 5.1: Illustration of limit set boundaries and their interpretation in terms

of simultaneous extremes. Left: Example where extreme events occur separately.

Center-left: Example where extreme events occur together. Center-right: Example

where only pairs of variables grow large together. Right: Example where all three

variables grow large simultaneously.

this decomposition is made in light-tailed margins, and therefore is fundamentally

different to radial-angular decompositions in heavy-tailed margins, which are a

mainstay of “classical” multivariate extremes, in which multivariate regular variation

plays a key role (see, for example, Beirlant et al. (2006), Chapter 8). When

appropriate, the the L1 norm is preferred for its simplicity, defined by ∥x∥1 =∑d
j=1 |xj|. In the radial-angular framework, we are interested in X = RW when

the conditional variable R | W achieves large values. Wadsworth and Campbell

(2024) explain that, when working with exponential-tailed variables and the L1

norm, the limiting behaviour in equation (5.1) leads to the asymptotic distribution of

R | {W = w} with density fR|W (r | w) ∝ rd−1 exp {−rg(w) [1 + o(1)]} as r → ∞,

where g(w) is the gauge function corresponding to the joint distribution of (R,W )

evaluated at w ∈ Sd−1. However, they showed that in a wide variety of examples,

the same asymptotic form also holds with the [1+o(1)] outside of the exponent, i.e.,

fR|W (r | w) ∝ rd−1 exp {−rg(w)} [1 + o(1)] as r →∞. (5.2)

This suggests that a gamma model is asymptotically appropriate for large values

of R | W . This limiting density is shown to hold very broadly, although for the

multivariate Gaussian dependence structure, the shape parameter of the gamma

distribution also depends on w. Nonetheless, Wadsworth and Campbell (2024)
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demonstrate that it is typically not problematic to assume that this parameter is

constant. Given τ ∈ (0, 1) close to 1 and setting rτ (w) as the τ th quantile value of

R | {W = w}, Wadsworth and Campbell (2024) model R | {W = w, R > rτ (w)}
with a truncated gamma distribution with rate parameter g(w), using parametric

forms of the gauge function g derived from known copulas to perform statistical

inference with high accuracy, showing how to use this fitted model for inference on

extremal probabilities through simulation of X | {R > rτ (W )}.

5.1.2 Semiparametric estimation of the gauge function

For dimensions d ≥ 3 in particular, the current suite of parametric models

employed in Wadsworth and Campbell (2024) may not be sufficiently flexible for

real datasets, where the dependence structure can be complicated. Therefore, the

natural consideration is to develop semiparametric approaches for approximating

g. Simpson and Tawn (2024a), Majumder et al. (2025), and Papastathopoulos

et al. (2025) all aim to do this, the latter two in a Bayesian manner. The

methods in Simpson and Tawn (2024a) and Majumder et al. (2025) approximate

g in the bivariate case, and use these estimates to describe the underlying tail

dependence structure. The theoretical guarantees in Papastathopoulos et al.

(2025) are generalized for d-dimensions, and Bayesian inference using the integrated

nested Laplace approximation (INLA) is suitable for problems of dimension 2 or 3.

Simpson and Tawn (2024a) and Papastathopoulos et al. (2025) model exceedances

{R− rτ (w)} | {W = w, R > rτ (w)} using a generalized Pareto distribution in place

of the truncated gamma distribution. When far enough into the tails, both choices

should perform well, but the truncated gamma form may be more accurate at finite

levels, especially for larger d. Deep learning methods to estimate the shape of

the limit set have been explored for statistical inference using feed-forward neural

networks and generative modelling through normalizing flows in Murphy-Barltrop

et al. (2024b) and De Monte et al. (2025), respectively, indicating potential for

higher-dimensional inference.
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Figure 5.2: log n-scaled bivariate Gaussian data in standard exponential margins,

with true limit set boundary given by the solid line. The piecewise-linear limit set

boundary is given by the dashed line using 5, 7, and 9 reference angles (left to right).

In this work, we present a simple and interpretable piecewise-linear representa-

tion of g. Given a choice of reference angles in Sd−1, the parameters of g define

the distance from the origin to the boundary of G at these reference angles. The

value of g is given by linear interpolation between these points. When d ≥ 3, a

triangulation is also required to define the linear interpolation; we use a Delaunay

triangulation. The simple construction of our gauge function has numerous benefits.

The main benefit is a model for large radii and exceedance angles can be easily

obtained with quick convergence to maximum likelihood estimates for parameters.

Figure 5.2 demonstrates what our proposed limit set boundary would look like in the

bivariate setting when working in exponential margins. The piecewise-linear limit

set boundary represents a rough approximation of the truth, derived using the limit

(5.1). The approximation is closer to the truth as the number of reference angles

increases; however, this increases the number of parameters to estimate leading to a

typical bias-variance trade-off. This is addressed in our work using a regularization

approach. Piecewise-linear approaches have been used recently in different contexts

for extreme value analysis. Barlow et al. (2023) define non-stationary shape and scale

parameters of the generalized Pareto distributions in a piecewise-linear manner in

the presence of covariates for univariate peaks-over-threshold modelling. Winterstein

et al. (1993), Huseby et al. (2013), and Mackay and de Hauteclocque (2023) all use

linearisations of the Rd to estimate and visualize environmental contours, which are
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multivariate sets used to approximate the occurrence of extreme events.

As in Wadsworth and Campbell (2024), we model large radii using the truncated

gamma distribution with rate parameter given by the gauge function value. This

leads to a likelihood from which the parameters of the piecewise-linear gauge can be

estimated. When simulating from the distribution of X | {R > rτ (W )}, two things

are required: the distribution of W | {R > rτ (W )} and the distribution of R |
{W = w, R > rτ (w)}. The second of these is given by the truncated gamma model,

while for the first, Wadsworth and Campbell (2024) used the empirical distribution

of W | {R > rτ (W )}. A natural progression, particularly for higher dimensions,

is also to estimate a semiparametric form for this. We propose an angular density

inspired by the homothetic case presented in Balkema and Nolde (2010), with joint

density equivalent to the one used in Papastathopoulos et al. (2025). Specifically, a

valid density for W over Sd−1 is fW (w) = g(w)−d/{dvol(G)} , where g is a gauge

function for the set G. We emphasize here that this density can be expressed and

fitted independently of R |W , so that the gauge function g in the angular density

need not correspond to the gauge function in equation (5.2). This is discussed in

greater detail in Section 5.4.1. The major advantage to our piecewise-linear setting

is that the normalizing constant for this joint density has an explicit form, rendering

its estimation simple.

When standardizing the margins of a given dataset, the choice of marginal

distribution is a nuanced one. If negative dependence arises, then the limit

definition of the gauge function in equation (5.1) may not hold on the axes

in exponential margins, and Laplace margins are preferred for revealing greater

structure. Furthermore, if the dataset has negative values in its original margins,

then it may be more intuitive to use Laplace margins, as it preserves the domain

to all orthants of Rd. In many cases, real datasets are positive-valued and have

no negative associations, and so exponential margins are a suitable choice. While

the methodology presented is suitable for data with any choice of von Mises

margins, we choose to model data in standard exponential margins for simplicity.
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In Appendix 5.8.10, we explain the differences required to work in standard Laplace

margins.

The outline of the paper is as follows. In Section 5.2, we detail the piecewise-

linear construction of a gauge function, and consider the calculation of the angular

density normalizing constant, vol(G). As we only consider radial values above a

threshold, a good estimate of rτ (w) is needed. The empirical version presented

in Wadsworth and Campbell (2024) and quantile regression techniques are not

currently well-suited to higher dimensions. In Section 5.3, we propose a new

approach for the estimation of rτ (w) based on kernel density estimation. Section 5.4

covers how we fit our piecewise-linear models including a regularization technique

for when there are many parameters. We also consider diagnostics and probability

estimation techniques using our models. In Section 5.5, simulation studies show

that repeated fits of the piecewise-linear model are comparable to parametric models

where knowledge of the true copula is exploited. Section 5.6 details an application to

extremes of four air pollutants, demonstrating that the piecewise-linear model can

be used to perform statistical inference in dimensions where other semiparametric

methods struggle.

In order to select the best hyperparameters for high quantile estimation, model

penalization, as well as assessing probability estimates, we assess our models on

datasets generated from the following multivariate distributions, all in standard

exponential margins.

(I) d = 2 logistic with dependence parameter α = 0.4. C = {{1, 2}}.

(II) d = 2 logistic with dependence parameter α = 0.8. C = {{1, 2}}, but with

weaker dependence than (I).

(III) d = 2 Gaussian distribution, correlation ρ = 0.8. C = {{1} , {2}}.

(IV) d = 2 inverted logistic with dependence parameter α = 0.7. C = {{1} , {2}}.

(V) d = 3 asymmetric logistic with dependence parameters α{1,2} = α{1,3} =

α{2,3} = 0.4. C = {{1, 2} , {2, 3} , {1, 3}}.
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Figure 5.3: Piecewise-linear gauge function construction illustration for d = 2. Left:

Partition of S1 with reference angles w⋆1 = 0, w⋆2 = 0.25, w⋆3 = 0.5, w⋆4 = 0.75,

and w⋆5 = 1. Middle: Coplanar vectors C(1), C(2), C(3), and C(4) (green arrows)

for pre-set parameter values θ1 = 0.36, θ2 = 1.17, θ3 = 1.8, θ4 = 1.17, and θ5 = 0.36.

Right: Limit set at chosen parameter values. Solid line indicates the unit level set

of the piecewise-linear gauge function at the chosen parameter and reference angle

values. Dashed lines indicate the distances dictated by the parameter values.

(VI) d = 3 asymmetric logistic, with dependence parameters α{1} = α{1,2} =

α{2,3} = 0.4. C = {{1} , {1, 2} , {2, 3}}.

(VII) d = 3 equally-weighted mixture of asymmetric logistic and Gaussian. The

Gaussian correlations are ρ12 = ρ13 = ρ23 = 0.6 and asymmetric logistic de-

pendence parameters α{1,2} = α{1,2,3} = 0.4. C = {{1} , {2} , {3} , {1, 2} , {1, 2, 3}}.

A more detailed catalogue of these distributions is presented in Appendix 5.8.2.

5.2 A piecewise-linear model

5.2.1 The piecewise-linear gauge function

Construction of the piecewise-linear gauge function, denoted gpwl, relies on segment-

ing the simplex Sd−1 using N nodes called reference angles. A parameter value is

assigned at each reference angle, defining the distance from the origin to the limit

set boundary at that angle: for each reference angle w⋆ ∈ Sd−1, the parameter
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corresponds to the value 1/gpwl(w
⋆). Because the true gauge function g satisfies

g(x) ≥ ∥x∥∞, a parameter at location w⋆ has an upper bound of 1/∥w⋆∥∞.
Depending on the dimension, straight lines, planes, or hyperplanes are used to

connect these limit set boundary values.

To provide intuition into the general approach, we begin by illustrating for

d = 2. Taking the L1 norm in our radial-angular decomposition, reference

angles can be defined by scalar values in [0, 1]. Let
{
w⋆1, w⋆2, . . . , w⋆N

}
be

an increasing sequence of reference angles such that w⋆1 = 0 and w⋆N =

1. This partition of the interval [0, 1] has N − 1 segments with vertices

{w⋆1, w⋆2} , {w⋆2, w⋆3} , . . . ,
{
w⋆N−1, w⋆N

}
. Further let θ = (θ1, . . . , θN)

⊤ be N pos-

itive parameter values with θk = 1/gpwl(w
⋆k, 1− w⋆k). To define gpwl, we consider

coplanar vectors, C(k) =
(
θkw

⋆k − θk+1w
⋆k+1, θk(1− w⋆k)− θk+1(1− w⋆k+1)

)⊤
, k =

1, . . . , N − 1, an example of which is displayed in Figure 5.3. The equation

of the line interpolating from θk
(
w⋆k, 1− w⋆k

)⊤
to θk+1

(
w⋆k+1, 1− w⋆k+1

)⊤
is(

C
(k)
2 x− C(k)

1 y
)
/
(
C

(k)
2 θkw

⋆k − C(k)
1 θk(1− w⋆k)

)
; therefore, gpwl(x, y;θ) is given by

N−1∑
k=1

1(w⋆k,w⋆k+1)

(
x

x+ y

) [
θk(1− w⋆k)− θk+1(1− w⋆k+1)

]
x−

[
θkw

⋆k − θk+1w
⋆k+1

]
y

[θk(1− w⋆k)− θk+1(1− w⋆k+1)] θkw⋆k − [θkw⋆k − θk+1w⋆k+1] θk(1− w⋆k)
(5.3)

for (x, y) ∈ R2
+, where 1A(x) is an indicator function with value 1 if x ∈ A and

0 otherwise. Figure 5.3 displays an example in which a piecewise-linear gauge

function is used to approximate the gauge function corresponding to the bivariate

Gaussian distribution, gN(x, y; ρ) = (1− ρ2)−1
(
x+ y − 2ρ(xy)1/2

)
. The N = 5

reference angles correspond to an equally-spaced mesh, and parameters are set to

θk = 1/gN(w
⋆k, 1− w⋆k; ρ). The resulting limit set in Figure 5.3 does not satisfy the

coordinatewise supremum property because of the absence of a reference angle w⋆

such that gN(w
⋆, 1−w⋆; ρ) =

∥∥(w⋆, 1− w⋆)⊤∥∥∞. When performing inference, we will

develop an algorithm to ensure that limit set estimates can have the coordinatewise

supremum (1, . . . , 1)⊤.

In dimensions d ≥ 3, denote the set of N ≥ d reference angles
{
w⋆1, . . . ,w⋆N

}
,
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each lying in the simplex Sd−1. We partition Sd−1 using a Delaunay triangulation

(Delaunay, 1934) with a point set based on the N reference angles. Given a set

of N (d − 1)-dimensional reference angles, the Delaunay triangulation creates a

partition of Sd−1 comprised of M regions with vertices given by these reference

angles. These regions are constructed in such a way that their surface area (or

volume) is maximized, leading to no insignificant segments. While there is no

direct one-to-one correspondence between the number of reference angles N and

the number of partitions M in the resulting Delaunay triangulation, it is known

that M is between O(N) and O(N ⌈(d−1)/2⌉) in general d-dimensions. When d = 3,

the stronger statement of N−2 ≤M ≤ 2N−5 holds (Ber et al., 2008). Each region

of the Delaunay triangulation, △(k) ⊂ Sd−1, k ∈ {1, . . . ,M}, is defined by d vertices

w⋆(k),1, . . . ,w⋆(k),d. Given the parameter values θ = (θ1, . . . , θN)
⊤ ∈ RN

+ , we define

θ(k) = (θ
(k)
1 , . . . , θ

(k)
d )⊤ as the parameters from θ associated with the d vertices of

△(k). Define the (d− 1)× d coplanar matrix C(k) for triangulation k ∈ {1, . . . ,M}
where the ith row is given by the vector

C
(k)
i,· = θ

(k)
1

(
w⋆(k),1

)⊤ − θ(k)i+1

(
w⋆(k),i+1

)⊤ ∈ Rd ; i = 1, . . . , d− 1.

For an arbitrary angle w ∈ △(k), gpwl(w;θ) = n(k)⊤w/n(k)⊤θ
(k)
1 w

⋆(k),1, where the

normal vector n(k) ∈ Rd to the plane defined by vertices θ
(k)
1 w

⋆(k),1, . . . , θ
(k)
d w

⋆(k),d

is

n(k) =
d∑
j=1

(−1)j+1 det
(
C

(k)
·,−j

)
ej . (5.4)

In equation (5.4), C
(k)
·,−j is the matrix C(k) with the jth column removed, and ej the

jth standard unit vector, a vector of length d of zeros except for a 1 in the jth entry.

Performing the summation over all regions in the Delaunay triangulation gives the

proposed piecewise-linear gauge function

gpwl(x;θ) =
M∑
k=1

1△(k) (x/∥x∥) n(k)⊤x

n(k)⊤θ
(k)
1 w

⋆(k),1
, x ∈ Rd

+, (5.5)

which is 1-homogeneous and continuous in x. Note that the formulation of the d = 2

case in equation (5.3) is covered by equation (5.5), but was described separately to
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Figure 5.4: Piecewise-linear gauge function construction illustration for d = 3.

Left to right: Delaunay triangulation based on N = 4 chosen reference angles;

the resulting coplanar vectors; limit set boundary.

give an intuition in the bivariate setting.

As an illustration, suppose d = 3 and N = 4, with w⋆1,w⋆2,w⋆3 chosen to lie

on each of the vertices, and w⋆4 in the center of the S2 simplex. As displayed in

Figure 5.4, the resulting Delaunay triangulation gives M = 3 regions: △(1) has

vertices {w⋆1,w⋆3,w⋆4}, △(2) has vertices {w⋆2,w⋆3,w⋆4}, and △(3) has vertices

{w⋆1,w⋆2,w⋆4}. Each region has two coplanar vectors that make up the following

coplanar matrices of dimension 2× 3,

C(1) =

θ1 (w⋆1)
⊤ − θ3 (w⋆3)

⊤

θ1 (w
⋆1)
⊤ − θ4 (w⋆4)

⊤

 , C(2) =

θ2 (w⋆2)
⊤ − θ3 (w⋆3)

⊤

θ2 (w
⋆2)
⊤ − θ4 (w⋆4)

⊤

 ,

C(3) =

θ1 (w⋆1)
⊤ − θ2 (w⋆2)

⊤

θ1 (w
⋆1)
⊤ − θ4 (w⋆4)

⊤

 ,

the rows of which are represented by the arrows in Figure 5.4. For θ =

(0.5, 0.5, 0.5, 3)⊤, the unit level set of gpwl is evaluated and is also displayed in

Figure 5.4.

5.2.2 Angular model

Given that the geometric approach uses a pseudo-radial-angular decomposition, it

is desirable to model the distribution of angles W | {R > rτ (W )} with a flexible
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semiparametric model. This should reduce issues with the curse of dimensionality

that can arise when using the empirical distribution ofW | {R > rτ (W )} in higher

dimensions, and even in lower dimensions may be helpful for ensuring the ability to

estimate non-zero extremal probabilities. The form of fW given in Section 5.1 arises

as the exact angular density for a certain type of homothetic density (Balkema

and Nolde, 2010). Specifically, given a gauge function g, a valid joint density is

fX̃(x) = exp {−g(x)}/{d!vol(G)}, as considered in some examples of Nolde and

Wadsworth (2022). The margins X̃ are near-exponential sub-asymptotically, and

are exactly exponential asymptotically. For R = ∥X̃∥ and W = X̃/∥X̃∥, we have

fR|W (r | w) = rd−1 exp {−rg(w)}/{d!vol(G)} and fW (x) = g(x)−d/{dvol(G)}.
This suggests that if the extremes of X are well-approximated by the density fX̃

then the anglesW might be well-approximated by the density fW , where the gauge

function is the same as the one in the gamma distribution of R |W . However, when

this approximation is poor, this still presents a way to construct a flexible model for

fW via a gauge function g that can be parametrized independently of that used in

the truncated gamma distribution. Papastathopoulos et al. (2025) and De Monte

et al. (2025) both use this form of fW for probability estimation, the former in the

Bayesian context where the gauge function is modelled by Matérn Gaussian random

fields and the latter in the normalizing flows framework.

When fitting the model fW via maximum likelihood estimation, the computation

of vol(G) needs to be done at every likelihood evaluation, which can be

computationally expensive if the form of this volume is not explicit. Numerical

integration methods may be possible, but drastically slow down maximum likelihood

estimation. Papastathopoulos et al. (2025) estimate the volume during model fitting

via a latent variable in the likelihood, and a numerical integration procedure is

performed during posterior prediction. Due to the piecewise-linear nature of gpwl,

the corresponding vol(Gpwl) is easily obtained, as the unit level set defines the union

of M d-dimensional faces. In particular, computing vol(Gpwl) is reduced to solving

M determinants of d× d matrices, whose columns correspond to the vertices of the
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Figure 5.5: Left: Histogram of exceedance angles from bivariate Gaussian data, with

fitted fW (w) for N = 5, 8, 11 reference angles. Center: Histogram of exceedance

angles from a d = 3 mixture model. Right: A fit of fW (w) on this data with

reference angles overlaid.

M piecewise-linear regions that make up the set Gpwl.

Proposition 5.1. For the piecewise-linear gauge function gpwl in equation (5.5),

the volume of the corresponding set Gpwl is given by

vol(Gpwl) =
1

d!

M∑
k=1

∣∣∣det(θ(k)1 w
⋆(k),1 θ

(k)
2 w

⋆(k),2 . . . θ
(k)
d w

⋆(k),d

)∣∣∣
The proof of Proposition 5.1 is given in Appendix 5.8.1.

We illustrate this construction with two examples. First, consider data from

distribution (III), Gaussian dependence with exponential margins. Taking W =

X/∥X∥, we model fW (w) = gpwl(w)−d/{dvol(Gpwl)} without any knowledge of

the underlying joint distribution. After doing so, Figure 5.5 shows a good fit of

the estimated density using regularly-spaced reference angles over the empirical

distribution of exceedance angles, with the fit improving as N increases. Secondly,

consider distribution (VII), which has a difficult angular structure to capture.

Nonetheless, using the piecewise-linear method with N = 7 reference angles, a fitted

model for fW aligns reasonably well with the empirical distribution, both shown in

Figure 5.5. Further diagnostics on samples obtained from the fitted density fW

using MCMC for these datasets are presented in Appendix 5.8.6. We note that

in all density fits we implement regularization techniques to ensure smoothness
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of parameter estimates across neighbouring regions. This is covered in detail in

Section 5.4.2.

5.3 High quantile estimation

The truncated gamma distribution for R | W holds asymptotically, and therefore

is fitted using datapoints which exceed a threshold. To define this threshold,

denote exceedance radii as observations from the distribution corresponding to

R | {W = w, R > r̃(w)}. For a probability level τ ∈ (0, 1) close to 1, a candidate

for the radial threshold is the quantile rτ (w) corresponding to the solution to

FR|W (rτ (w) | w) = τ . This is a natural choice, and, as Wadsworth and Campbell

(2024) point out, leads to an independent estimate of the gauge function through

the relation g(w) ≈ Cτ/rτ (w), thus can be helpful for model checking. They

consider two approaches to estimate rτ (w). For d = 2 they suggest additive

quantile regression (AQR, Fasiolo et al. (2021)), but this could not be extended

for d > 2 using available methodology due to a lack of basis functions defined on

the simplex. A second approach using an empirical binning method was instead

implemented when d ≥ 2. This requires splitting the simplex into overlapping

bins and computing the empirical τ quantile of R | {W = w} in each bin to

which the angle w belongs. The radial threshold value at new angles is computed

using local means with threshold values already computed in the overlapping bins.

Such an approach is not ideal as d increases, as very little data may be observed

in certain bins. Furthermore, it provides a very rough approximation of rτ (w).

Papastathopoulos et al. (2025) model log (rτ (w)) using a Matérn Gaussian random

field, with implementation currently suitable for dimension d ≤ 3.

Given the semiparametric nature of our proposed piecewise-linear approach to

modelling R | W , a good estimate of the radial quantile across all angles in the

simplex is needed to avoid regions of Sd−1 about which little is known. To overcome

some of the issues that persist in current methods, we develop a new approach based
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on kernel density estimation (KDE). This method gives smooth results, akin to the

AQR approach, and is better suited for higher dimensions than purely empirical

estimation. We begin with the integral

FR|W (r | w) =

r∫
0

fR,W (r̃,w)

fW (w)
dr̃ , (5.6)

and adopt kernel-based estimates for the densities fR,W and fW :

f̂R,W (r,w) =
1

n

n∑
i=1

kR

(
r − ri
hR

)
kW

(
w −wi

hW

)
1

hR

1

hd−1W

(5.7)

f̂W (w) =
1

n

n∑
i=1

kW

(
w −wi

hW

)
1

hd−1W

, (5.8)

where hR, hW > 0, are bandwidths (or smoothing parameters), and kR, kW are

kernels. Substituting (5.7) and (5.8) into (5.6),

F̂R|W (r | w) =

n∑
i=1

kW

(
w−wi

hW

) r∫
0

kR

(
r̃−ri
hR

)
1
hR
dr̃

n∑
i=1

kW

(
w−wi

hW

) =

n∑
i=1

kW

(
w−wi

hW

)
KR

(
r−ri
hR

)
n∑
i=1

kW

(
w−wi

hW

) ,

where KR is the distribution function associated with the kernel density kR. An

estimate of rτ (w) can be obtained by solving for r in F̂R|W (r | w) = τ using

numerical inversion methods presented in Brent (2013). The choice of kernel density

and bandwidths will affect the smoothness of the estimate of rτ (w). In practice, we

employ the univariate Gaussian kernel for kR and its multivariate counterpart for

kW , with identity correlation matrix.

As a performance diagnostic for quantile estimates, we propose a metric based

on K-fold cross-validation of the check function, commonly used as the objective

function in quantile regression (Koenker and Bassett Jr, 1978). For K ∈ N, we split

the data x1, . . . ,xn into a fitting set of length nfit = n−⌊n/K⌋ and a evaluation set

of length neval = ⌊n/K⌋. On the kth set of fitting data, we obtain a radial threshold

r
(k)
τ (w; · ), k = 1, . . . , K. In KDE-based estimation, the obtained threshold values

depend on the bandwidth hW . In the empirical procedure of Wadsworth and

Campbell (2024), it depends on the amount of bin overlap. Once obtained, the
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mean of the check function is evaluated on the evaluation data, resulting in the

following score on the K cross-validation partitions,

S(·) = 1

K

K∑
k=1

1

neval

neval∑
i=1

[
ri − r(k)τ (wi; · )

] [
τ − 1(−∞,0)

(
ri − r(k)τ (wi; · )

)]
.

The bandwidth or the amount of bin overlap are hyperparameters which control how

smooth the radial threshold is. A smoothing parameter whose score S(·) is closest
to zero is thought of as the optimal hyperparameter setting.

Appendix 5.8.4 provides a full comparison of the Gaussian kernel to a kernel

whose support is compact and the empirical method described above. This shows

little difference in the quality of quantile estimates between the methods for d = 2, 3,

but we prefer the KDE approach for the ability to evaluate rτ (w) for any w ∈ Sd−1.
From a study on d = 2, 3 datasets in Appendix 5.8.4, we found that optimal values

of hW when using the Gaussian kernel were often in the neighbourhood of 0.05. We

also show that varying the radial bandwidth made little difference in the performance

of the quantile estimate, so we choose to fix hR = 0.05.

5.4 Inference

5.4.1 Model fitting

Given a dataset comprised of n d-dimensional observations, we first transform the

margins to standard exponential. This is achieved via non or semiparametric

estimation of the margins. The standardized datapoints x1, . . . ,xn are then

transformed to radii r1, . . . , rn and angles w1, . . . ,wn, and an estimate of rτ (wi)

is obtained at a high quantile τ using the kernel density estimation approach

from Section 5.3. Given that we have well-defined densities for radial and angular

components, we can choose to model W and R | {W = w} separately or jointly
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using the following likelihood functions,

LW (θ; r1:n,w1:n) ∝
∏

i : ri>rτ (wi)

vol(Gpwl(θ))
−1gpwl(wi;θ)

−d

LR|W (θ; r1:n,w1:n) ∝
∏

i : ri>rτ (wi)

fGa(ri; d, gpwl(wi;θ))

1− FGa(rτ (wi); d, gpwl(wi;θ))

LR,W (θ; r1:n,w1:n) = LR|W (θ)LW (θ),

where fGa(·; d, g(w)) and FGa(·; d, g(w)) are the density and distribution functions

of the gamma distribution with shape parameter d and rate parameter gpwl(w;θ).

In this setting, there are two ways to fit a joint model for (R,W ) | {R > rτ (W )}.
One can implement a joint approach by maximizing LR,W . This results in lower

variability of parameter estimates of gpwl via the use of more data. However,

potential bias can occur if gpwl is taken to be the same for the radial and the angular

models when the joint tail density of the random vector X is not well represented

by the homothetic form discussed in Section 5.2.2. Instead a two step approach of

maximizing LW and LR|W separately, and having models for W | {R > rτ (W )}
and R | {W = w, R > rτ (w)} can be implemented. One may also wish to model

R | {W = w} alone if the empirical distribution ofW is suitable for all estimation

tasks. Each of these settings is considered extensively in simulation studies.

Maximizing these likelihoods leads to parameter values that do not guarantee

the marginal condition on the limit set, that max(Gpwl) = 1. Algorithm 1 in

Appendix 5.8.5 provides an adjustment to the parameter estimation procedure to

ensure this condition holds. In it, a piecewise-linear model is first fitted via maximum

likelihood using the likelihood of interest, L•. The parameter(s) that correspond to

location where the limit set is at its largest value, but does not lie on the unit

box boundary, is then divided by the fitted gauge function value at that location.

These parameters are fixed and the likelihood of interest is then re-maximized with

respect to the remaining parameters at the starting values given by the maximum

likelihood estimates of the previous fit. This is repeated until max(Gpwl) = 1.

This bounding procedure is suitable when maximizing LR|W and LR,W , as there

is no such constraint in the angular model. Both unbounded and bounded gauges
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are fitted in simulation studies and compared for their bias in extremal probability

estimates. We additionally make note of a parameter redundancy in the angular

model fW (w) = gpwl(w)−d/{dvol(Gpwl)}, notably, fW (w; cθ) = fW (w;θ) for any

constant c > 0. To remedy this when using LW , we fix θ1 = 1, and maximize over

the remaining N−1 parameters. We further note our choice to fix the gamma shape

parameter at the dimension d to simplify model fitting, as the number of parameters

is large in our piecewise-linear setting. In experiments, we found that estimating

the shape parameter, as is done in Wadsworth and Campbell (2024), lead to little

difference in terms of bias in extremal probability estimates.

5.4.2 The reference angles and penalization

5.4.2.1 Choosing the reference angles

The choice of reference angles is important for the quality of the approximation to the

underlying gauge function. In essence, there are two ways of choosing the reference

angles for gpwl. The first is to strategically choose them where the underlying

limit set boundary has a cusp or a change in direction. This is hard to do in

practice without using knowledge of the true gauge function, but would lead to a

model with fewer parameters. We opt for a second approach, setting a relatively

fine mesh of reference angles. The result is more parameters than are perhaps

needed, requiring some form of penalization during model fitting, to be discussed in

Section 5.4.2.2. When d = 2, we take an equally spaced mesh, ensuring a reference

angle is placed at w = 1/2, which allows for capturing whether or not the variables

exhibit simultaneous extremes. In practice, we found N = 11 to be a good choice for

approximating bivariate gauge functions. For d = 3, we partition at the subset of

nodes {0, 1/6, 2/6, . . . , 1}2 which lie in S2, giving a triangulation of S2 with N = 28

nodes, as displayed in Figure 5.21 in Appendix 5.8.8. For d ≥ 4, the grid-based

approach leads to a very large number of angles. A sparser approach is to initially

place reference angles at the edges ej, j = 1, . . . , d and the center (1/d, . . . , 1/d)⊤ of

Sd−1, along with an angle at the center of all subfaces of Sd−1, adding further angles

188



if diagnostics indicate the need.

5.4.2.2 Gradient-based penalization

If we maximize the likelihoods from Section 5.4.1 with a large number of reference

angles N , the amount of data contributing to each parameter may be small, leading

to high variability in parameter estimates. To remedy this, we propose penalizing

the gradients of gpwl so that they do not vary too much on either side of the reference

angle locations. Linearity makes the gradient of gpwl from equation (5.5) simple to

calculate:

∇gpwl(x;θ) =
M∑
k=1

1△(k) (x/∥x∥) n(k)

n(k)⊤θ
(k)
1 w

⋆(k),1
.

As the gradients do not change within a segment of the triangulated simplex,

we define ∇g(k)θ = n(k)/n(k)⊤θ
(k)
1 w

⋆(k),1 to be the gradient of gpwl(·;θ) on △(k).

Further define Iℓ as the collection of pairs of indices of neighbouring segments

in the Delaunay triangulation containing the vertex w⋆ℓ, where ℓ ∈ {1, . . . , N}.
Neighbouring segments of the Delaunay triangulation are defined as segments that

have d− 1 matching vertices. For example, in the triangulation of S2 in Figure 5.4,

we have I1 = {(1, 3)}, I2 = {(2, 3)}, I3 = {(1, 2)}, and I4 = {(1, 2), (2, 3), (1, 3)}
with |I1| = |I2| = |I3| = 1 and |I4| = 3. Given a likelihood L• from Section 5.4.1,

we add a penalty to give the objective function

− logL•(θ; r1:n,w1:n) + λ
1

N

N∑
ℓ=1

1

|Iℓ|
∑

(i,j)∈Iℓ

∥∇g(i)θ −∇g
(j)
θ ∥22 . (5.9)

This penalty term can be interpreted as the average sum of squared differences

between neighbouring segment gradients at each node of the Delaunay triangulation.

Figure 5.6 illustrates the effect of this penalty on two and three-dimensional data.

We propose to select the penalty value λ via K-fold cross-validation. As

described in Section 5.3, the dataset is split into a fitting and an evaluation set.

For each value of λ on a grid, we fit the model by minimizing (5.9), and evaluate

the negative log-likelihood on the evaluation set, repeating this K times to yield

CV(λ) = K−1
∑K

k=1− logL•(θ̂λ,k; r
(k)
1:neval

,w
(k)
1:neval

). The parameter vector θ̂λ,k is the
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Figure 5.6: Left: d = 2 fitted unit level set of gpwl using N = 11 equally-spaced

reference angles on a dataset generated from distribution (I). The first panel has

no penalty; the second panel uses the gradient penalty with λ = 1 and is bounded

using Algorithm 1 in Appendix 5.8.5. Right: d = 3 fitted unit level set of gpwl using

N = 28 reference angles on a dataset generated from distribution (V). The first

panel has no penalty; the second panel uses the gradient penalty with λ = 1 and is

bounded using Algorithm 1 in Appendix 5.8.5.

minimizer of (5.9) evaluated at the kth fitting set, and the λ value that minimizes

CV(λ) is said to be optimal. In Appendix 5.8.7, we compute the median CV(λ)

value across repeatedly-generated datasets from distributions (I)–(VII) with K = 4.

The optimal value of λ naturally depends on the underlying distribution. Overall,

selecting λ in the neighbourhood of 1 is generally acceptable when minimizing the

negative log-likelihoods associated with the conditional radial model or the joint

model, while a value of λ = 20 is suitable when minimizing the negative log-

likelihood associated with the angular model. These penalty strength values are

used henceforth.

5.4.3 Probability estimation

We perform extrapolation using a sampling-based approach in a similar manner

to Wadsworth and Campbell (2024). First, n∗ samples are drawn from W |
{R > rτ (W )}, with each one used to draw a conditional sample from the

truncated gamma distribution R | {W = w, R > rτ (w)}. Once sampled, the

exceedance angles w∗1, . . . ,w
∗
n∗ and radii r∗1, . . . , r

∗
n∗ are multiplied, resulting in
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samples x∗1, . . . ,x
∗
n∗ from X | {R > rτ (W )}. Given an extremal set B ⊂{

x ∈ Rd : ∥x∥ > rτ (x/∥x∥)
}
, probabilities can be estimated via

P̂r(X ∈ B) = P̂r(X ∈ B | R > rτ (W ))P̂r(R > rτ (W ))

=

[
1

n∗

n∗∑
i=1

1B(x
∗
i )

][
1

n

n∑
i=1

1(rτ (wi),∞)(ri)

]
.

In our approach, we have the option of a semiparametric model for W |
{R > rτ (W )} with joint density fW . To sample from fW , we use Metropolis-

Hastings MCMC with a beta or Dirichlet proposal density. The performance of

this MCMC is assessed in Appendix 5.8.6.

5.4.4 Model performance and diagnostics

Several measures of goodness-of-fit for multivariate extremes align well with our

piecewise-linear method. Wadsworth and Campbell (2024) assess the performance

of a fitted truncated gamma model for exceedance radii R | {W = w, R > rτ (w)}
through probability-probability (PP) and quantile-quantile (QQ) plots. Plots of the

fitted limit set boundary are also useful, since the shape should broadly correspond

to that of the scaled sample clouds. Simpson et al. (2020) present methodology

for estimating the collection of sets C experiencing simultaneous extremes. The

methodology depends on several tuning parameters, but provides helpful insight

into possible structures, that is independent of gauge function estimation. To that

end, plots of the limit set boundary can be compared to findings based on the

Simpson et al. (2020) coefficients to determine weather or not we accurately capture

the extremal dependence structure of a dataset. For d ≤ 3, plotting the limit set

boundary is straightforward. In higher dimensions, one needs to project the gauge

functions down to d = 3 via minimization over the d− 3 components. One can plot

the unit level set of the projection

g(x{1,...,d}\J ;θ) = min
xJ∈Rd−3

+

g(x;θ) (5.10)
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where J ⊂ {1, . . . , d} is an index set of size |J | = d− 3. For example, when d = 4,

we plot four unit level sets minimizing over each of the four variables individually.

In order to perform these minimizations, we opt to evaluate g(x;θ) on a mesh of

xJ values in [0, 1]d−3, and take the minimum value, which we found this to be less

computationally expensive than other optimization methods. The size of the mesh

is important: too small, and the resulting minima may be incorrect; too large, and

the computation time will be high. In practice, a mesh of length 50d−3 was used in

d > 3. Furthermore, all fitted gauge functions are bounded using Algorithm 1 in

Appendix 5.8.5, so the reduced domain [0, 1]d−3 is sufficient rather than minimizing

over the entire Rd−3
+ space.

Another potential goodness-of-fit measure is in the use of return-level curves

(Papastathopoulos et al., 2025), sometimes also referred to as a version of

“environmental contours” (Simpson and Tawn, 2024b). Given a return period T ,

the return-level curve defines a lower-bound of an open set such that we expect to

see proportion T−1 points lying beyond this curve. As we only model above the

threshold rτ (w), we consider T such that 1 − T−1 ≥ τ . The return curve in the

truncated gamma setting is then defined as

R(T ) =
{
x ∈ Rd

+

∣∣x = F−1Ga

[
1− T−1; d, g(w,θ)

]
w, w ∈ Sd−1

}
.

The full derivation of this expression is given in Appendix 5.8.3. Once such a

curve is obtained, comparing the proportion of exceedances of R(T ) in our data to

the expected value of T−1 is one way to assess the predictive performance of the

piecewise-linear model.

A check of how well our model captures the extremal dependence structure of

the data in the joint tail can be assessed via estimates of the extremal coefficient

χC(u) =

(
1

1− u

)
Pr (FX(Xj) > u , j ∈ C , C ⊆ {1, . . . , d}) ,

for sufficiently high values of u < 1, where FX is the distribution function common

to all margins. An empirical estimate of χC(u) can be compared to a model-

based estimate, obtained via the methods in Section 5.4.3, where the extremal set
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considered is BC
u =

{
x ∈ Rd

+

∣∣xj > F−1X (u) , j ∈ C
}
. The value of u used needs to

be high enough such that BC
u ⊂

{
x ∈ Rd

+

∣∣∥x∥ ≥ rτ (x/∥x∥)
}
. The boundary of this

region in Rd
+ is x = rτ (w)w, w = x/∥x∥ ∈ Sd−1. For any coordinate xj, we want

u such that rτ (w)wj > F−1X (u) for all j ∈ C, i.e., minj∈C xj = minj∈C rτ (w)wj >

F−1X (u). To find the maximum point on this boundary in each coordinate we consider

maxw∈Sd−1
rτ (w)wj. The minimum value of u at which we can start estimating

χC(u) is therefore given by u0 = FX
(
maxw∈Sd−1

minj∈C rτ (w)wj
)
. In practice, u0

can be obtained by taking the maximum over a mesh of values w ∈ Sd−1. Lastly,

the empirical distribution of exceedance anglesW | {R > rτ (W )} can be compared

to the fitted distribution through density plots (d = 2), or comparing marginal

histograms of the sample with those obtained by simulation from the fitted density

(d > 2).

5.5 Simulation studies

An overarching goal in multivariate extreme value inference is estimation of

Pr (X ∈ B), where B ⊂ Rd is an extremal set generally lying outside the range

of the data. The parametric geometric approach of Wadsworth and Campbell

(2024) showed greater accuracy and flexibility in estimating Pr (X ∈ B) compared

to competing methods. Here, we will consider the case of d = 2, 3 for three different

extremal sets B1, B2, B3 for each dimension setting. We compare probability

estimates obtained using the form of the true gauge as the rate of the truncated

gamma, with parametric estimation of its parameters, and with those obtained

using the piecewise-linear gauge. Because the parametric approach uses knowledge

of the true gauge function and the piecewise-linear approach does not, the results

here are intended to compete with those of Wadsworth and Campbell (2024), not

to outperform them. In the simulation studies, we consider distributions (I)–(VII),

exhibiting a variety of extremal dependence structures.

For each distribution, we generate n = 5000 observations, and use the KDE
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Figure 5.7: d = 2 simulation study probability estimates associated with

distributions (I)–(IV) (top to bottom) across replicated model fits. “Par” refers

to modelling with knowledge of the true parametric gauge function, “PWL” is

semiparametric modelling using the piecewise-linear approach. Solid line is the true

probability.

approach with Gaussian kernel to estimate the quantiles rτ (w) for τ = 0.95 and

bandwidths hR = 0.05, hW = 0.05. After obtaining rτ (w), we first fit parametric
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Figure 5.8: d = 3 extremal probability estimates associated with distributions

(V)–(VII) (top to bottom) across replicated model fits. “Par” refers to modelling

with knowledge of the true parametric gauge function, “PWL” is semiparametric

modelling using the piecewise-linear approach. Solid line is the true probability.

models via maximization of LR|W with knowledge of the true gauge function. As in

Wadsworth and Campbell (2024), the empirical distribution of W | {R > rτ (W )}
is used for probability estimation. For the piecewise-linear model, we consider six

options for model fitting:

SS1: R | {W , R > rτ (W )} unbounded; empirical distribution for W |
{R > rτ (W )}.

SS2: R | {W , R > rτ (W )} bounded; empirical distribution for W | {R > rτ (W )}.

SS3: R | {W , R > rτ (W )} unbounded; model for W | {R > rτ (W )}.
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SS4: R | {W , R > rτ (W )} bounded; model for W | {R > rτ (W )}.

SS5: Unbounded joint model for (R,W ) | {R > rτ (W )}.

SS6: Bounded joint model for (R,W ) | {R > rτ (W )}.

Bounding is done via Algorithm 1 in Appendix 5.8.5, and likelihoods for R | W ,

W , and (R,W ) are given in Section 5.4.1. All six settings are considered when

performing model fitting. In all cases we use penalized fitting on regular grid of

reference angles. For each fitted model, n∗ = 50, 000 exceedance observations are

generated and probabilities Pr(X ∈ Bi), i = 1, 2, 3, are estimated and compared

with the true probabilities. This procedure is repeated 200 times.

We first consider the bivariate distributions (I)–(IV), with B1 = [10, 12]×[10, 12],
B2 = [10, 12]×[6, 8], and B3 = [10, 12]×[2, 4]. In comparing probability estimates to

the true values, SS1–SS4 perform similarly, with a slight preference for SS2 and SS4.

The similarity of these shows that the angular fit from maximizing LW performs as

well as its empirical counterpart. SS5 and SS6 tend to show more bias as the W

distribution impacts the estimation of gpwl. The probability estimates from SS4

are displayed in the boxplots in Figure 5.7, demonstrating that our semiparametric

approach is comparable to the parametric method despite using no knowledge of the

underlying distribution. A full summary of all possible d = 2 model fits is presented

in Appendix 5.8.8.1.

A similar conclusion can me made from the trivariate data generated from

distributions (V)–(VII). Here, the extremal regions are defined as B1 = [8, 10] ×
[8, 10]× [0.01, 3], B2 = [8, 10]× [5, 7]× [0.01, 3], and B3 = [8, 10]× [2, 4]× [0.01, 3].

In comparing probability estimates to the true values, it was found that while SS4

performed slightly worse overall to the other simulation study setups, this approach

is still largely comparable to the parametric method, but without knowledge of the

underlying distribution (see Figure 5.8). A full summary of all possible d = 3 model

fits is presented in Appendix 5.8.8.2.

Figure 5.9 displays fitted unit level sets of the piecewise-linear gauge function
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Figure 5.9: Top row: 200 estimates of the gauge function unit level sets (in grey) on

data generated from distributions (I)–(IV) (left to right), with the gauge function at

median parameter values in blue, and the true unit level set given by the dashed line.

Bottom row: Gauge function unit level sets evaluated at median parameter values

(in blue) with the true unit level set (in red) on data generated from distributions

(V)–(VII) (left to right).

obtained using the bounding algorithm when performing inference on the

distribution of R | {W , R > rτ (W )} (setting SS2 and SS4). From this, we see

that parameter values across 200 fits produce limit sets that are flexible enough to

capture a wide range of tail behaviours. We remark the slight difficulty in capturing

asymptotic dependence in distribution (II), or in capturing one of the mixing

components of distribution (VII). However, this is not a concern as probability

estimates for these distributions have little overall bias. The limit set estimates for

the remaining simulation study setups are displayed in Appendix 5.8.8.
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Figure 5.10: Projections of the estimated unit level set of gpwl on 4-dimensional

air pollution data with log(n)-scaled data. Gauge functions are projected to 3-

dimensions using equation (5.10) with J = {1} , {2} , {3} , {4} (left to right).

5.6 Application to air pollution measurements

We consider air pollution measurements from the Automatic Urban and Rural

Network (AURN), a UK-based air quality monitoring network. For the North

Kensington site in London, we gather hourly measurements from April 1996 to June

2024 for carbon monoxide (CO, mg/m3), nitrogen dioxide (NO2, µg/m
3), particles

with a diameter of 10 µm or less (PM10, mg/m3), and nitric oxide (NO, µg/m3).

These are labelled 1, 2, 3, and 4 for brevity. We take the daily maxima over the

247,296 hourly measurements to avoid daily trends, and only consider measurements

from October to April, inclusive, to reduce seasonal trends. Any measurements with

missing data are excluded. The final dataset has n = 5, 584 observations. There is no

negative association between these measurements, so the margins are standardized

to exponential using the empirical distribution function below the 0.95 quantile

marginal threshold and a generalized Pareto distribution function fitted above this

threshold, as outlined in Coles and Tawn (1991).

The radial quantile rτ (w), w ∈ S3, is estimated at τ = 0.70, to increase the

amount of exceedance data, while still focusing primarily on high values. We note

that lower thresholds have been used in Simpson and Tawn (2024b) and Murphy-

Barltrop et al. (2024b) without inducing large biases. The angular bandwidth

was set to hW = 0.075. This is slightly higher than the bandwidth used in
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simulation studies, but we felt that this helped eliminate excessive noise in the

threshold estimate. A triangulation was obtained by first considering the vertices

e1, e2, e3, e4 ∈ R4, the center of the S3 simplex, (1/4, 1/4, 1/4, 1/4)⊤, and the center

of the subfaces S2,S1. Once obtained, additional reference angles were placed in

the center of each triangle from the resulting initial Delaunay triangulation. The

final result is N = 39 reference angles. We fit the conditional radial component

R | {W = w, R > rτ (w)} by minimizing the associated penalized negative log-

likelihood with penalty strength λ = 1 and bounding using Algorithm 1 in

Appendix 5.8.5. The corresponding angular model W | {R > rτ (W )} was fit

separately, with λ = 20.

Using the coefficients of extremal dependence from Simpson et al. (2020), we

conclude that all four variables can grow large simultaneously, while PM10 can

grow large when the remaining pollutants are jointly small. The projected three-

dimensional unit level sets displayed in Figure 5.10 appear able to capture the

joint tail dependence, with perhaps slight difficulty capturing the behaviour of

PM10 when the remaining variables are jointly small (i.e., we do not have exactly

gpwl(γ1, γ2, 1, γ3) = 1 for γ1, γ2, γ3 < 1). However, the estimate is not far off, and we

are able to capture this behaviour in a d = 3 fit, as is shown in Appendix 5.8.9.2.

Also by our findings with the Simpson et al. (2020) coefficients, values of χC(u) are

expected to be positive for all values of u ∈ [0, 1] for any collection of variables

C ⊆ {1, 2, 3, 4}. This is demonstrated by our estimated values, displayed in

Figure 5.11 and in Figure 5.39 in Appendix 5.8.9.1, showing a general agreement with

the corresponding empirical values. Note that probability estimates were obtained

from extremal samples using our fitted angular model; therefore, good probability

estimates indicate a well-fitted angular model. Figure 5.40 in Appendix 5.8.9.1

shows good agreement between estimated and true return levels T ∈ [10, 1000],

while the PP and QQ plots in Figure 5.41 generally show good agreement between

the fitted model and the truncated gamma distribution. In Appendix 5.8.9.2 we

present a three-dimensional fit to a subset of the pollutants for comparison, showing
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Figure 5.11: Model-based and empirical χC(u) plots with C = {1, 2}, {1, 2, 3}, and
{1, 2, 3, 4} for the pollution dataset. Solid lines are empirical values, and dashed

lines are estimated using the piecewise-linear model. Shaded regions represent 7-

day 95% block bootstrap confidence intervals.

agreement with the four-dimensional findings in detecting extremal tail behaviour.

5.7 Concluding remarks

In this work, we aimed to bypass the current difficulties in semiparametric modelling

of multivariate extreme values through the geometric approach by proposing a simple

piecewise-linear construction. Furthermore, the piecewise-linear construction allows

for easy computation of the volume of its limit set, which in turn allows for efficient

fitting of an angular model. Its calculation relies on standard operations of linear

algebra, rendering it quick to evaluate and perform estimation on, including the

use of gradient-based penalties. Simulation studies show that our semiparametric

method is comparable to parametric methods using the true model forms, but

without knowledge of the underlying distribution of the dataset. A difficulty in

our proposed method is selecting the reference angles at which parameters are to be

estimated. To avoid choosing these angles, we selected a regular grid on the simplex

Sd−1 for d = 2, 3, while opting for a sparser approach with d ≥ 4. In unreported

results, we were able to fit our model in dimension d = 5, but faced difficulties

with choice of reference angles. Future avenues of work include the development of
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a method for selecting only important reference angles with a view to performing

modelling in higher dimensions, or a way of eliminating unimportant parameters

through a different type of penalization, leading to models with fewer parameters

but potentially higher predictive performance.

Acknowledgments, data availability, and code.

AURN data was imported using the importAURN function within the openair

package in R, but is publicly available at https://uk-air.defra.gov.uk/

networks/network-info?view=aurn. Code associated with this article can be

found at https://github.com/ryancampbell514/PWLExtremes.

5.8 Appendix

5.8.1 Volume of GPWL

Proof of Proposition 5.1. The limit set Gpwl with a piecewise-linear boundary is

a union of subregions defined by parameters and reference angles. Therefore, its

volume can be decomposed in the following manner:

vol(Gpwl) =
M∑
k=1

vol
(
θ(k)△(k)

)
,

where θ(k)△(k) ⊂ Rd is the region with vertices at θ
(k)
1 w

⋆(k),1, . . . , θ
(k)
d w

⋆(k),d, and the

origin if working in the positive orthant. Any point x ∈ θ(k)△(k) can be written as

x =
d∑
j=1

θ
(k)
j ajw

⋆(k),j ; aj ≥ 0∀ j,
d∑
j=1

aj = 1

where

θ
(k)
j w

⋆(k),j =
(
θ
(k)
1 w

⋆(k),1 θ
(k)
2 w

⋆(k),2 . . . θ
(k)
d w

⋆(k),d

)
ej.

Let M(k) =
(
θ
(k)
1 w

⋆(k),1 θ
(k)
2 w

⋆(k),2 . . . θ
(k)
d w

⋆(k),d

)
be the change of basis matrix,

then we can write

x = M(k)
d∑
j=1

ajej ; aj ≥ 0 ∀ j,
d∑
j=1

aj = 1.
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Note that
∑d

j=1 ajej defines any point in the simplex Sd−1; therefore, it follows that

vol
(
θ(k)△(k)

)
=

∫
θ(k)△(k)

dx =
∣∣∣det(M(k)

)∣∣∣ ∫
Sd−1

du

=
∣∣∣det(θ(k)1 w

⋆(k),1 θ
(k)
2 w

⋆(k),2 . . . θ
(k)
d w

⋆(k),d

)∣∣∣ 1/d!,
where 1/d! is the volume of the d− 1-dimensional simplex (Stein, 1966).

5.8.2 Catalogue of considered multivariate distributions

5.8.2.1 Logistic

The joint distribution function in standard Fréchet margins is given by

FF (x;α) = exp {−V (x;α)} , V (x;α) =

(
d∑
j=1

x
−1/α
j

)α

,

where V is the −1-homogeneous exponent function, and α ∈ (0, 1] controls the

strength of dependence. The corresponding parametric gauge function is obtained

by differentiating FF to obtain the joint density fF , performing a change of variables

to standard exponential margins, and taking the limit (5.1) to obtain

g(x;α) =
1

α

(
d∑
j=1

xj

)
+

(
1− d

α

)
min {x1, . . . , xd} .

5.8.2.2 Gaussian

Consider the matrix Σij = ρij, i, j ∈ {1, . . . , d} where ρij = Corr(Xi, Xj) > 0. The

gauge function is obtained by performing a change of variables of a joint multivariate

normal density with covariance matrix Σ in standard normal margins to standard

exponential margins, then taking the limit (5.1). This results in the following

g(x; Σ) =
√
x
⊤
Σ−1
√
x. (5.11)

In equation (5.11), all operations performed on vectors are done componentwise.

The case with some ρij < 0 is given for Laplace margins in equation (5.14).
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5.8.2.3 Inverted logistic

The inverted logistic distribution is most simply presented by its joint survival

function in standard exponential margins,

F̄E(x, y;α) = exp {−V (1/x;α)} , V (1/x;α) =

(
d∑
j=1

x
1/α
j

)α

,

where α ∈ (0, 1] controls the rate at which the d marginal variables grow large

together. The corresponding parametric gauge function is obtained by differentiating

F̄E to obtain the joint density fE and taking the limit (5.1) to obtain

g(x;α) = V (1/x;α).

5.8.2.4 Asymmetric logistic

The joint distribution function in Fréchet margins is given by

FF (x;α) = exp {−V (x;α)} ,

where V is a prespecified −1-homogeneous exponent function, depending on the

desired dependence structure. In general, V is given by

V (x;ϕ,α) =
∑
C∈PD

ϕC

(∑
j∈C

x
−1/αC

j

)αC

, (5.12)

where PD is the power set of indices D = {1, . . . , d},

ϕC =

1 ; variables C can grow large simultaneously.

0 ; otherwise

,

and αC ∈ (0, 1] controls the dependence in group C. Additional parameters are

required in (5.12) to make the margins standard Fréchet, though these do not affect

the limiting gauge function and so are omitted. Here, the gauge function is obtained

by differentiating FF to obtain the joint density fF , performing a change of variables

to standard Gumbel margins. The standard Gumbel and standard exponential

distribution are asymptotically equivalent in Rd
+, and therefore we can obtain the
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gauge function in the usual way (see Wadsworth and Campbell (2024)). The true

gauge is given by

g(x;α) = min
π∈Π

min
C∈C+s : s∈π

[∑
s∈π

(∑
j∈s

xj
αC

+

(
1− |s|

αC

)
min
j∈C

xj

)]

where Π is the set of all partitions of D, where C+s denotes a collection of indices

corresponding to a group obtaining simultaneous extremes, i.e., when ϕs = 1.

5.8.2.5 Mixture model

Consider a mixture model with exponential margins whose joint density is given by

f(x;θ1,θ2) = pf1(x;θ1) + (1− p)f2(x;θ2),

where f1 and f2 are joint densities with respective parameters θ1 and θ2 in

exponential margins, and p ∈ (0, 1), with p = 0.5 throughout this work. The

corresponding gauge function is given by

g(x;θ1,θ2) = min {g1(x;θ1), g2(x;θ2)} ,

where g1 and g2 are the gauge functions corresponding to the joint densities of f1

and f2, respectively.

5.8.3 Truncated gamma return level sets

For a given return period T , set R(T ) ⊂ Rd to be the corresponding return level

set. For T = 1/(1− τ), where τ is the level at which we do quantile regression, we

have

R(1/(1− τ)) =
{
x ∈ Rd

+

∣∣x = rτ (w)w, w ∈ Sd−1
}
.

For general T , we have

Pr (R ≥ r1−T−1(w)) =T−1.
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It follows that, for T ≥ (1− τ)−1,

Pr (R ≥ r1−T−1(w)|W = w)

= Pr (R ≥ r1−T−1(w)|R ≥ rτ (w),W = w) Pr (R ≥ rτ (w)|W = w)

=
F̄Ga [r1−T−1(w); d, g(w)]

F̄Ga [rτ (w); d, g(w)]
× F̄Ga [rτ (w); d, g(w)]

= T−1,

where F−1Ga [·; d, g(w,θ)] is the quantile function corresponding to the gamma

distribution with shape parameter d and rate parameter g(w,θ). Therefore,

r1−T−1(w) = F−1Ga [1− T−1; d, g(w,θ)], and the return level set is therefore given

by the curve

R(T ) =
{
x ∈ Rd

+

∣∣x = F−1Ga

[
1− T−1; d, g(w,θ)

]
w, w ∈ Sd−1

}
.

5.8.4 Quantile estimation
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Figure 5.12: Left to right: Gaussian PDF, Gaussian CDF, Epanechnikov PDF, and

Epanechnikov CDF

The kernel density estimation (KDE) approach of obtaining quantiles introduced

in Section 5.3 is an important step before obtaining maximum likelihood estimates

of parameters of our piecewise-linear model. Given the compact domain Sd−1, the
use of compactly-supported kernels may be of interest. Here, we compare the

Gaussian kernel to the Epanechnikov kernel (Epanechnikov, 1969), which has a

bounded support and is defined by

k(u) = 1(−1,1)(u)
3

4
(1− u2)
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and

K(u) =


0 ;u ≤ −1
3
4

[
u(1− 1

3
u2) + 2

3

]
;−1 < u < 1

1 ;u ≥ 1

.

Both kernels’ associated densities (PDFs) and distribution functions (CDFs) are

shown in Figure 5.12.

Using the quantile score proposed in Section 5.3 with K = 5, we assess how well

our KDE-based quantile estimation performs as the smoothing hyperparameter hW

increases when using the Gaussian and Epanechnikov kernels. Figure 5.13 shows

these scores for d = 2 and d = 3 datasets (I)–(VII) at the quantile level τ = 0.95,

comparing to the empirical binning method of quantile estimation as the amount

of overlapping increases. Note that for simplicity there is no boundary correction

for either kernel in our KDE methodology. This would be important for actual

density estimation, but we are simply searching for approximate high quantiles of

R | W . Because of its bounded support, the Epanechnikov kernel was found

to be computationally cheaper to evaluate compared to the Gaussian kernel in

the d = 2 case. However, quantile estimates are not visually better than using

the Gaussian kernel, as is shown in Figure 5.14, and the Epanechnikov kernel is

more computationally expensive to evaluate in R than the Gaussian kernel in the

d ≥ 3 setting, as the Gaussian kernel has an efficient multivariate evaluation using

functions in the mvtnorm package in R, while the Epanechnikov setting requires

taking products of the univariate kernels. For this reason, we continue using the

Gaussian kernel exclusively in KDE quantile estimation for dimensions d ≥ 3.

Figures 5.14 and 5.15 display the quantile boundaries rτ (w)w for w ∈ Sd−1 and

τ = 0.95 at the specified adopted smoothing parameters for datasets (I)–(VII).

Quantile score values at optimal levels of hW are shown in Table 5.1. Results show

that the KDE approach results in estimation quality similar to the empirical method

in dimensions d = 2, 3.

The empirical binning method can lead to empty regions in higher dimensions,
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Dataset (I) (II) (III) (IV) (V) (VI) (VII)

KDE score 0.2329 0.2296 0.2562 0.2282 0.2919 0.2656 0.3119

empirical score 0.2324 0.2291 0.2557 0.2280 0.2890 0.2643 0.3125

Table 5.1: Median scores of repeated quantile estimates for the KDE approach with

Gaussian kernel and the empirical binning approach of Wadsworth and Campbell

(2024) at their optimal smoothing hyperparameters.

leading to the inability to estimate quantiles in the entire Sd−1 simplex. In the

empirical method, given a new angle w ∈ Sd−1, a local average of quantile values

rτ (wi) already estimated are taken for angles wi neighbouring w. Therefore, we are

entirely dependent on the radial quantile values of the dataset. If there is insufficient

data to estimate the radial quantile on a given dataset, then one may not be able

to estimate radial quantiles at new angles. This problem does not arise in the

KDE approach, i.e., we can evaluate rτ (w) for all w ∈ Sd−1. We note that the

quantile performance score of distributions (II) and (IV) are near-independent of

the amount of smoothing applied to the quantile estimation procedure. For these

two distributions, rτ (w) does not depend strongly on w for this value of τ . This

threshold is therefore easy to estimate regardless of the amount of smoothing applied.

Different dependence structures have different optimal bandwidths, but hW = 0.05

is close to optimal in all cases. In accompanying code, users can instead allow

for automatic selection of hW using K-fold cross-validation scoring on the check

function S(hW ) defined in Section 5.3. Figure 5.16 demonstrates that, for a fixed

value of hW , varying the radial bandwidth hR has no effect on the quality of radial

quantile estimates.
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Figure 5.13: Median quantile estimation scores at τ = 0.95 for data generated

from distributions (I)–(III) (top row), (VII)– (VI) (middle row), and (VII) (bottom

row). Quantiles are estimated using KDE with the Gaussian and the Epanechnikov

kernels, and empirically.
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Figure 5.14: Left to right: empirical and KDE-based threshold estimates for d = 2

on datasets (I)–(IV) with τ = 0.95. The Gaussian and Epanechnikov kernels use

bandwidth values hR = 0.05 and optimal values for hW and amount of bin overlap

governed by the scores in Figure 5.13.
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Figure 5.15: Left to right: empirical (top row), Gaussian KDE (middle row), and

Epanechnikov KDE (bottom row) threshold estimates for d = 3 on datasets (V)–

(VII) (left to right) with τ = 0.95. The Gaussian and Epanechnikov kernels use

bandwidth values hR = 0.05 and optimal values for hW and bin overlap governed

by the scores in Figure 5.13.
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Figure 5.16: Median KDE quantile estimation scores at τ = 0.95 as hR varies with

fixed hW = 0.05 for data generated from distributions (I)–(III) (top row), (VII)–

(VI) (middle row), and (VII) (bottom row).
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5.8.5 Algorithm: gauge function unit level set bounding

The following describes the bounded model fitting algorithm, introduced in

Section 5.4.1 and implemented throughout the simulation studies and real data

applications in Sections 5.5 and 5.6, respectively.

Algorithm 1: Bounding the piecewise-linear limit set during model fitting

Input: ri,wi, threshold estimates rτ (wi), likelihood LR,W or LR|W ,

reference angle set
{
w⋆1, . . . ,w⋆N

}
θ̂ ← argmaxθL•(θ; r1:n,w1:n);

F ← ∅;
while max

(
w⋆ij /g(w

⋆i; θ̂)
)
̸= 1 ∀ i = 1, . . . , N and j = 1, . . . , d do

F ←
F ⋃{i ∈ {1, . . . , N} : w⋆ij /g(w⋆i; θ̂) > w

⋆{1,...,N}\i
j /g(w⋆{1,...,N}\i; θ̂), j ∈ {1, . . . , d}

}
;

θ̂F ← θ̂F/g(w
⋆F ; θ̂);

θ̂−F ← argmaxθ−F
L•(θ−F ; r1:n,w1:n,θF)

end

Return: Scaled parameter estimates θ̂ ∈ RN
+

5.8.6 Angular fit examples

5.8.6.1 Gaussian distribution (III), d = 2

We model the angles of data generated from a bivariate Gaussian distribution with

correlation ρ = 0.8, using the density fW (w) = gpwl(w)−d/{dvol(Gpwl)} and gpwl

specified piecewise-linearly using equation (5.5). Included in Figure 5.5 are estimates

of the density fW for increasing number of parameters N . Figure 5.17 shows samples

from this fitted density using MCMC with a uniform proposal density and a beta

density whose parameters were fitted using the exceedance angles of the dataset. The

beta proposal is preferred, as the MCMC acceptance rate is much higher, leading

to a more efficient sampling algorithm.
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Figure 5.17: Left: empirical distribution ofW | {R > rτ (W )}; center/right: samples

drawn via MCMC on fitted model, using uniform (center) and beta (right) proposals.
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5.8.6.2 Mixture model (VII), d = 3

Using data sampled from the mixture distribution (VII), we fit the exceedance angle

model fW . Figure 5.18 includes the estimated density plotted on the S2 simplex.

Samples obtained using the uniform and a fitted Dirichlet proposal show reasonable

agreement with the underlying true angular distribution, as suggested by agreement

with the empirical density. Marginal samples as seen in Figure 5.19 show that

both the uniform and Dirichlet proposals reasonably capture the behaviour of the

underlying angular distribution.
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Figure 5.18: d = 3 mixture model example: Top-left: Unit level set of the

gauge function, g. Top-middle: Dataset and estimated high quantiles. Top-

right: Fit of fW (w) with reference angles overlaid. Bottom-left: histogram of

W | {R > rτ (W )}. Bottom-middle and bottom-right: Histogram densities of an

MCMC sample of exceedance angles using the fitted fW using a uniform and a

Dirichlet proposal, respectively.
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Figure 5.19: d = 3 mixture model example: Marginal sample of exceedance angles

using the empirical distribution of exceedance angles (top row), MCMC on the fitted

density fW with uniform proposal (middle row) and Dirichlet proposal (bottom row).
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5.8.7 Choosing the gradient penalty strength, λ

In Section 5.4.2, a gradient penalty is introduced. To select the best penalty

strength λ ≥ 0, a K-fold cross-validation score on negative log-likelihood (NLL)

is implemented. This score is based on negative log-likelihood values at parameters

obtained from a fitting set and evaluated on a hold-out set, and is explicitly given

by

CV(λ) =
1

K

K∑
k=1

− logL•

(
θ̂λ,k; r1:nk

,w1:nk

)
,

where − logL• is the negative log-likelihood associated with one of the three

likelihood functions introduced in Section 5.4.1, θ̂λ,k is the vector of parameter values

obtained from the kth fitting set of datapoints with gradient penalty with strength

λ ≥ 0, and (r1:nk
,w1:nk

) are held-out evaluation radii and angle data. Figure 5.20

shows these scores with K = 4 and n = 5000 on a mesh of λ values. From top to

bottom, the score is a median value obtained across 20 datasets from distributions

(I)–(VII). Columns 1–2 correspond to fitting the radial model conditioned on angles

by maximizing LR|W unbounded and bounded using Algorithm 1 in Appendix 5.8.5,

respectively. Columns 3–4 correspond to jointly fitting the radial-angular model by

maximizing LR,W unbounded and bounded using Algorithm 1 in Appendix 5.8.5,

respectively. Column 5 corresponds to fitting the angular model by maximizing LW .

As expected, the optimal degree of smoothing λ depends on the underlying

dependence structure of the data. In bivariate data (rows 1–4 in Figure 5.20),

Gaussian data from distribution (III) requires the least smoothing as the true limit

set is curved and therefore changes in the gradient of each segment are desirable.

For distributions such as (II) and (IV) (rows 2 and 4 in Figure 5.20), a flatter

limit set is desired, meaning a higher λ is preferred. To account for this change in

optimal smoothing hyperparameter, the code in our GitHub repository allows the

user to not specify λ, and a K-fold cross-validation scoring procedure on − logL• is

performed instead. In three-dimensions (rows 5–7 in Figure 5.20), a good middle-

ground would be λ = 1 for the radial and joint models, while a λ value of around
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20 seems appropriate when fitting the angular model on its own.
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Figure 5.20: Cross-validation scores for models (left to right, see text) fitted using

data generated from distributions (I)–(VII) (top to bottom) for varying λ.
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5.8.8 Simulation studies
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Figure 5.21: A mesh of N = 28 reference angles (points) and the resulting Delaunay

triangulation (solid lines) on the S2 simplex. This setting is used throughout all

d = 3 model fits in simulation studies and in real data examples.

As described in Section 5.5, there are six settings for fitting the piecewise-linear

model for inference on multivariate extremes, labelled SS1–SS6. Here, we outline

results for all possible settings for distributions (I)–(VII) in dimensions d = 2, 3, and

compare probability estimates and estimates of the unit level set boundary when

using N = 11 equally-spaced scalar-valued reference angles from 0 to 1, inclusive.

In each case, 200 datasets of length n = 5000 are generated. In each replication,

rτ (w) is first estimated at the τ = 0.95 threshold, using the KDE approach with

Gaussian kernel, and a probability estimate is obtained for each extremal region.

Furthermore, in the d = 2 setting we plot all 200 limit set boundaries in gray, the

limit set boundary obtained at the median parameter values in blue, and the true

limit set boundary using a black-dashed line. For d = 3, the piecewise-linear limit set

boundary is plotted in blue at median parameter values across the 200 replications,

and the true limit set boundary is plotted in red. Here, we use N = 28 reference

angles, and the resulting triangulation of S2 is presented in Figure 5.21. Based on

the penalty strength findings in Appendix 5.8.7, we fix the penalty strength λ = 1

for the radial and joint fits, while setting λ = 20 for the angular model fit.
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In summary, for d = 2, settings SS1,3 and SS2,4 produce similar results, showing

no particular advantage or disadvantage of modelling the angles separately compared

to the corresponding empirical distribution. The joint fitting procedures of SS5,6

lead to good estimates in the case of distribution (I), but an increased bias in the

probability estimates when fW is not well-approximated by the same g in used in the

radial model (distributions (II)–(IV)). Similarly, SS5 and SS6 induce more bias in

the d = 3 distributions, while SS1,3 and SS2,4 perform similarly well overall. These

findings can be seen in Tables 5.2 and 5.3, which present root mean squared error

(RMSE) of the log-probability estimates. In it, we see that the piecewise-linear

model fitting method competes well across dimensions two and three and across

different distributions exhibiting a variety of extremal dependence properties. We

note that SS5 and SS6 often have the lowest RMSEs due to reduced variance, but

we place high value on unbiasedness. Therefore, for as an overall well-performing

model, we report the bounded model fit presented in the setup of SS4 in the main

body of this paper.

5.8.8.1 Simulation studies, d = 2
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Figure 5.22: Probability estimates for distribution (I). True values shown by the

solid line. Regions of interest Bi, i = 1, 2, 3, is given in the title, with results for B3

given with and without outliers for clarity.
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Figure 5.23: (a)–(d): Estimates of the unit level set of g for distribution (I). (e)

Estimated angular density fW , with a sample histogram from one sample.
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Figure 5.24: Probability estimates for distribution (II). True values shown by the

solid line. Regions of interest Bi, i = 1, 2, 3, is given in the title, with results for B3

given with and without outliers for clarity.
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Figure 5.25: Estimates of the unit level set of g for distribution (II). Right:

Estimated angular density fW , with a sample histogram from one sample.
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Figure 5.26: Probability estimates for distribution (III). True values shown by the

solid line. Regions of interest Bi, i = 1, 2, 3, is given in the title, with results for B3

given with and without outliers for clarity.
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Figure 5.27: Estimates of the unit level set of g for distribution (III). Right:

Estimated angular density fW , with a sample histogram from one sample.
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Figure 5.28: Probability estimates for distribution (IV). True values shown by the

solid line. Regions of interest Bi, i = 1, 2, 3, is given in the title, with results for B1

given with and without outliers for clarity.
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Figure 5.29: Estimates of the unit level set of g for distribution (IV). Right:

Estimated angular density fW , with a sample histogram from one sample.
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Region Setup
Dataset

(I) (II) (III) (IV)

par 0.2670 0.2524 1.1132 0.9905

SS1 0.7950 1.0998 0.7816 1.2671

B1: SS2 0.3167 0.9566 0.7066 1.2783

[10, 12]× [10, 12] SS3 0.8459 1.1404 0.8426 1.2419

SS4 0.3649 1.0080 0.7416 1.2394

SS5 0.4612 1.8284 0.5763 0.9888

SS6 0.2854 1.5669 0.5549 1.2728

par 0.4907 0.3959 0.5417 0.7207

SS1 1.0007 0.8023 0.7236 0.9285

B2: SS2 1.2271 0.6999 0.3941 0.9454

[10, 12]× [6, 8] SS3 1.1980 0.7814 0.7913 0.8845

SS4 1.4300 0.6766 0.4049 0.9165

SS5 0.7527 0.9328 0.4590 0.6808

SS6 0.6201 0.7472 0.3237 0.9139

par 1.4067 0.6098 1.3380 0.3382

SS1 1.7740 0.9179 1.4381 0.7816

B3: SS2 1.8884 0.9132 1.4235 0.6507

[10, 12]× [2, 4] SS3 1.7109 0.8893 1.5709 0.8128

SS4 1.7456 0.8883 1.4856 0.6604

SS5 1.1383 0.7200 1.8508 0.6130

SS6 1.1220 0.9341 1.7152 0.4824

Table 5.2: RMSE across the 200 log-probability estimates for d = 2 simulation

studies.
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5.8.8.2 Simulation studies, d = 3
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Figure 5.30: Probability estimates for distribution (V). True values shown by the

solid line. Regions of interest Bi, i = 1, 2, 3, is given in the title, with results for B3

given with and without outliers for clarity.
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Figure 5.31: Blue: median estimates of the unit level set of g for distribution (V).

Red: true unit level set.
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Figure 5.32: Top row: Marginal sample of exceedance angles generated of a sample

from distribution (V). Rows 2–4: Marginal MCMC samples of exceedance angles

from SS3/4, SS5, and SS6, respectively.
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Figure 5.33: Probability estimates for distribution (VI). True values shown by the

solid line. Regions of interest Bi, i = 1, 2, 3, is given in the title.

Figure 5.34: Blue: median estimates of the unit level set of g for distribution (VI).

Red: true unit level set.
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Figure 5.35: Top row: Marginal sample of exceedance angles generated of a sample

from distribution (VI). Rows 2–4: Marginal MCMC samples of exceedance angles

from SS3/4, SS5, and SS6, respectively.
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Figure 5.36: Probability estimates for distribution (VII). True values shown by the

solid line.Regions of interest Bi, i = 1, 2, 3, is given in the title.

Figure 5.37: Blue: median estimates of the unit level set of g for distribution (VII).

Red: true unit level set.
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Figure 5.38: Top row: Marginal sample of exceedance angles generated of a sample

from distribution (VII). Rows 2–4: Marginal MCMC samples of exceedance angles

from SS3/4, SS5, and SS6, respectively.
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Region Setup
Dataset

(V) (VI) (VII)

par 0.4718 0.4689 0.7422

SS1 1.3973 1.1510 1.7031

B1: SS2 1.1761 1.1103 1.7008

[8, 10]× [8, 10]× [0.01, 3] SS3 1.5858 1.3787 1.9959

SS4 2.0826 1.3474 1.9339

SS5 0.8018 1.0215 1.6056

SS6 0.6658 0.7964 1.4271

par 1.4549 0.7504 0.9414

SS1 1.0077 0.8387 1.0864

B2: SS2 1.0606 0.8052 0.9941

[8, 10]× [5, 7]× [0.01, 3] SS3 0.9270 0.8290 1.0006

SS4 1.2132 0.7997 0.9698

SS5 0.5057 0.4495 0.7624

SS6 0.4467 0.4743 0.6673

par 1.9727 0.3831 0.8872

SS1 1.4190 1.0705 1.1091

B3: SS2 1.9127 1.0473 1.0885

[8, 10]× [2, 4]× [0.01, 3] SS3 1.3386 1.0461 1.1305

SS4 1.7715 1.0070 1.1027

SS5 0.8836 0.5683 0.5294

SS6 0.8710 0.5276 0.5009

Table 5.3: RMSE across the 200 log-probability estimates for d = 3 simulation

studies.
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5.8.9 Additional pollution data results

5.8.9.1 Setting 1: d = 4

Here, we present additional diagnostic plots for the d = 4 pollution data example

from Section 5.6, in which we aim to estimate the tail behaviour of the pollutants

CO, NO, PM10, and NO2. In Figure 5.39, we show plots of χC(u) for high values

of u for all combinations of indices C ⊆ {1, 2, 3, 4}. Values of χC(u) are estimated

empirically and with a truncated gamma model (5.2) with gauge function estimated

piecewise-linearly. We see strong agreement between the empirical values and those

from the fitted model. Furthermore, all model estimates capture the asymptotic

positive association between the variables in C, as was suggested by tools introduced

in Simpson et al. (2020). This demonstrates the ability of both the fitted radial and

angular models to capture the extremal dependence of the for pollutants.

Figure 5.40 shows accurate estimated return level periods corresponding to curves

R(T ) against T on the log-scale. Estimates are formed by counting the proportion

of points exceeding the computed boundary and taking the reciprocal as an estimate

of the return period T , with good matching to the true values. The PP and QQ plots

in Figure 5.41 show the fitted model for exceedance radii R | {W = w, R > rτ (W )}
is in general agreement with the theoretical truncated gamma model (5.2), further

validating our proposed modelling approach.
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Figure 5.39: χC(u) plots estimated empirically (solid line) and piecewise-linearly

(dashed line) on the d = 4 pollution dataset. Black solid lines are empirical values,

and blue dashed lines are estimated using the piecewise-linear model. Shaded regions

represent 7-day 95% block bootstrap confidence intervals.

236



3 4 5 6 7

3
4

5
6

7

log(T), true

lo
g(

T
),

 e
st

im
at

ed

Figure 5.40: d = 4 pollution fitted piecewise-linear gauge estimated return periods

(log-scale) compared to true values T ∈ {10, 20, 30, . . . , 1000}.
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Figure 5.41: d = 4 pollution PP and QQ plots, with 95% 7-day block bootstrap

confidence intervals in grey.
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5.8.9.2 Setting 2: d = 3

We now consider the three-dimensional setting of modelling measurements of CO,

NO2, and PM10, encoded as in the four-dimensional setting as variables 1, 2, and

3. The first step in modelling is to obtain rτ (w), w ∈ S2, using the KDE approach

of Section 5.3 with a Gaussian kernel with angular bandwidth hW = 0.075. Here,

we take τ = 0.95 as the quantile associated with our threshold rτ (w). Figure 5.42

shows the resulting threshold curve rτ (w)w for values w ∈ S2. Next, we obtain

a triangulation using a grid of N = 28 reference angles at {0, 1/6, . . . , 1}3 within

the simplex S2, displayed in Figure 5.21 in Appendix 5.8.8. Like the in the d =

4 setting, we fit the conditional radial model for R | {W = w, R > rτ (w)} with

penalty strength λ = 1 with bounding using Algorithm 1 in Appendix 5.8.5, along

with the angular model for W | {R > rτ (W )} with penalty strength λ = 20.

In employing methods from Simpson et al. (2020), it was estimated that all

three variables can obtain large values simultaneously, while PM10 can grow large

when CO and NO2 are both small, i.e., C = {{3} , {1, 2, 3}}. The resulting limit set

boundary in 5.42 is in agreement with this, since g(1, 1, 1) = 1 and g(γ1, γ2, 1) = 1

for γ1 = 0.673 and γ2 = 0.3471. The results from the methods in Simpson

et al. (2020) also imply that values of χC(u) are expected to be positive for all

values of u ∈ [0, 1] for any collection of variables C ⊆ {1, 2, 3}. The χC(u)

plots of Figure 5.43 also indicate this possibility, and show that our piecewise-

linear model is in close agreement with the empirical estimates, demonstrating good

capability of the angular and radial models in capturing the extremal behaviour of

the data. Figure 5.44 shows that our model accurately estimates return periods,

with three different return-level sets also displayed. Furthermore, the PP and

QQ plot in Figure 5.45 show that the fitted truncated gamma model for R |
{W = w, R > rτ (w)} agrees with the theoretical model.

238



Figure 5.42: Left: d = 3 pollution dataset, with the radial threshold r0.95(w). Right:

estimated gauge function unit level set with log(n)-scaled data.
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Figure 5.43: χC(u) plots estimated empirically (solid line) and piecewise-linearly

(dashed line) on the d = 3 pollution dataset. From left to right: C =

{1, 2} , {1, 3} , {2, 3} , {1, 2, 3}. Variables 1, 2, and 3 correspond to pollutants CO,

NO2, and PM10, respectively. Shaded regions represent 7-day 95% block bootstrap

confidence intervals.
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Figure 5.44: Left: d = 3 pollution fitted piecewise-linear gauge estimated return

periods (log-scale), compared to true values T ∈ {10, 20, 30, . . . , 1000}. 95% 7-day

block bootstrap confidence intervals are shown in grey. Center-left–right: T =

50, 100, 1000 day return level set boundaries.
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Figure 5.45: d = 3 pollution PP and QQ plots, with 95% 7-day block bootstrap

confidence intervals in grey.
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5.8.10 Piecewise-linear models for data in standard Laplace

margins

In this section, we outline adaptations to the methodology for working in standard

Laplace, rather than standard exponential, margins. For d = 2, this is

straightforward, and we demonstrate the methodology. For d > 2, it is more complex

to represent the (d − 1)-dimensional L1 manifold S(+,−)
d−1 =

{
x ∈ Rd

∣∣∥x∥1 = 1
}
in

Rd−1. Figure 5.49 gives a demonstration of S(+,−)
2 in three dimensions. From this

figure alone, the task of projecting to (d−1)-dimensions, implementing the Delaunay

triangulation on this lower-dimensional space, and recovering d-dimensional vectors

from their lower-dimensional L1 representation can be seen as difficult when not

restricting to the positive orthant, and is left to future work.

Mackay and Jonathan (2024) provide a useful L1-based decomposition of

bivariate copies of X = (X1, X2)
⊤ when the margins X1, X2 follow the standard

Laplace distribution,

(R,W ) =

(
|X1|+ |X2| , ε

(
X2

|X1|+ |X2|

)(
1− X1

|X1|+ |X2|

))
∈ R+ × [−2, 2),

where ε(u) = 1 when u ≥ 0 and ε(u) = −1 otherwise. In this setting, we can recover

the corresponding Cartesian vectors using

(X1, X2)
⊤ = R

(
1− |W |

|1− |W ||+ |1− |W − 1|| ,
1− |W − 1|

|1− |W ||+ |1− |W − 1||

)⊤
∈ R2.

(5.13)

With this representation, it is possible to use the piecewise-linear framework

outlined in this paper. Take, for example, the bivariate Gaussian distribution

with standard Gaussian margins and correlation ρ < 0. When transforming to

standard exponential margins, the limit set cannot be defined on the axes through

a continuous gauge. However, in standard Laplace margins, the gauge function is

well-defined in its R2 domain. In standard Laplace margins, this gauge function is

given in general d-dimensions by

g(x; Σ) =
(
sign(x)

√
|x|
)⊤

Σ−1
(
sign(x)

√
|x|
)
. (5.14)
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In equation (5.14), all operations performed on vectors are done componentwise.

We illustrate the estimation of this gauge function piecewise-linearly in a

simulation study with data generated from the bivariate Gaussian distribution

with standard Laplace margins and correlation ρ = −0.5. We generate n = 5000

datapoints, and perform KDE-based quantile estimation at τ = 0.90. After defining

a regular grid ofN = 15 reference angles from [−2, 2), including−2, we fit the models

SS1–SS6 outlined in Section 5.5, and draw samples from these models to estimate

the probability of lying in the regions B1 = [5, 9]× [5, 9], B2 = [10, 14]× [−2, 2], and
B3 = [10, 14] × [−14,−10]. This is repeated 200 times. The estimated unbounded

and bounded limit set boundaries from modelling R| {W = w,R > rτ (w)} and

(R,W )| {R > rτ (W )} are displayed in Figure 5.46, where good agreement with the

true gauge functions is shown. Angular models in the setting of SS3/4, SS5, and

SS6 are shown in Figure 5.47. All models show good agreement with a histogram of

exceedance angles. Probability estimates are displayed in Figure 5.48, where models

in the settings SS2 and SS4 perform best overall. A further adjustment needs to be

taken when sampling the anglesW from the density fW introduced in Section 5.2.2.

In our MCMC algorithm, a beta proposal distribution is used. Sampled angles need

to be shifted to the [−2, 2) domain using the transformation W ′ = 4W − 2 before

proceeding to sampling radii and obtaining extremal points using (5.13).
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Figure 5.46: 200 estimates of the unit level set of gpwl on model fits using the setup

SS1, SS2, SS5, and SS6 (left to right) for the Gaussian distribution in standard

Laplace margins, with median value given by the solid line. The true unit level set

is given by the dashed line.
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Figure 5.49: The simplex S(+,−)
2 is given by the boundary of the above surface plot.
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Chapter 6

The geometric properties of

generalised Pareto random vectors

Abstract

The multivariate generalised Pareto (MGP) distribution describes the limiting

behaviour of random vectors whose componentwise maximum exceeds a large

threshold, and is therefore important to the study of multivariate extreme value

analysis. A feature of MGP random vectors is that they can be represented

stochastically, allowing for their construction from any unbounded multivariate

distribution. In this work, we show that the limit set of scaled sample clouds of MGP

random vectors can be obtained through the geometry of one of the components of

the spectral representation. When MGP random vectors do not have a non-trivial

limit set, an alternative coordinate system is introduced to inspect their geometric

and tail dependence properties.

6.1 Introduction

Peaks-over-threshold (POT) modelling has been a mainstay in extreme value

analysis since its formalisation in the univariate setting (Pickands, 1975), and has

since been successfully used to model data from applications ranging from hydrology
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to finance (see, for example, Chapter 4.4 in Coles (2001)). Suppose Y is a random

variable used to denote values of some process. In the POT framework, inference is

performed by assuming that for large r0,

Y − r | {r > r0} ∼ GP(r0, σ, ξ),

where GP(r0, σ, ξ) is the generalised Pareto distribution with location, scale, and

shape parameters (r0, σ, ξ) ∈ R × R+ × R. The GP distribution is most-commonly

characterised by its conditional survival function,

Pr(Y > r | Y > r0) =

[
1 + ξ

(
r − r0
σ

)]−1/ξ
+

.

The GP distribution arises as the limiting family for exceedances of high thresholds

for a wide variety of underlying distributions. Given this fact, it is a natural

modelling choice for extrapolation above high thresholds, beyond the range of any

observed data. This makes it a powerful tool, and the need arises for a multivariate

extension.

Suppose now that Y = (Y1, . . . , Yd)
⊤ is a d-dimensional random vector, with

each component representing measurements of a simultaneous process. Introduced

in Rootzén and Tajvidi (2006) and further formalised in Rootzén et al. (2018a)

and Rootzén et al. (2018b), the multivariate generalised Pareto (MGP) arises

when studying excesses of Y when at least one of its components exceeds a

component of a threshold vector, Yj > r0,j. Rootzén et al. (2018b) focus on

the theoretical properties of the MGP distributions and their associated random

vectors. Namely, they introduce different parametrisations, derive the joint densities,

marginal distributions, tail dependence coefficients, and establish threshold stability.

Rootzén et al. (2018b) further derives a stochastic representation, showing that one

could easily construct an MGP random vector from a random vector of unbounded

domain. Kiriliouk et al. (2019) derive parametric MGP distributions using the

stochastic representation from several known copulas, introduce statistical inference

procedures, and apply the MGP model on financial and environmental data.
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The multivariate POT MGP framework is inherently linked to the notion of

multivariate regular variation (MRV) (Wan, 2024). Due to the connection to

MRV, there are several drawbacks in working with MGP random vectors. Most

prominent is the limitation in extrapolation directions. When modelling random

vectors using the MGP distribution, one can only extrapolate along the direction

of simultaneous growth. Therefore, this restricts the range of extremal probabilities

that could be estimated. Furthermore, the MGP has an extremal tail decay rate

that is only suitable for random vectors whose components are asymptotically

dependent, meaning that more general scenarios cannot be accounted for. The

geometric inference approach for the tail behaviour of random vectors presented in

Wadsworth and Campbell (2024) bypasses these issues by modelling the tail decay

across the entire domain of the random vector through use of the truncated gamma

distribution. One drawback of the geometric framework however is that the popular

Hüsler-Reiss MGP model (e.g., Engelke et al. (2015); Engelke and Hitz (2020)) has

a degenerate limit set (Nolde and Wadsworth, 2022). In this work, we look closely

at limit sets for MGP distributions. We derive the form of the limit set for a large

class of MGP random vectors, and show how to handle degenerate cases like the

Hüsler-Reiss with alternative coordinate systems.

We begin in Section 6.2 by covering the essential background knowledge required

for linking the MGP distribution setting to the geometric framework of multivariate

extremes. Section 6.3 discusses the geometry of MGP random vectors, with several

examples displayed. Alternative statistical inference for MGP random vectors

is illustrated in Section 6.4 using the geometric approach from Wadsworth and

Campbell (2024). Section 6.5 discusses how useful geometry of MGP random vectors

can be obtained when the usual limiting behaviour is degenerate. We finish with a

discussion on the benefits and drawbacks of the MGP and geometric frameworks in

Section 6.6.
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6.2 Background

6.2.1 The multivariate generalised Pareto distribution

Before we inspect the geometric properties of MGP random vectors, it is important

to characterise them in the classical sense. Suppose a random vector Y is in the

domain of attraction of a generalised extreme value distribution (GEV) with joint

distribution function G. In other words, there exists suitable sequences {an} and

{bn} such that, for i.i.d. copies Y1,Y2, . . . of Y ,

Pr

[
maxi=1,...,n Yi − bn

an
≤ y

]
−→ G(y) (6.1)

as n→∞, where maxi=1,...,n Yi denotes the componentwise maximum of Y1, . . . ,Yn.

Here and throughout, operations on vectors are done componentwise. The margins

of this GEV distribution follow a univariate GEV with parameters (µj, σj, ξj). If

the convergence (6.1) holds, then the distribution of exceedances of Y converges to

a MGP random vector, X:

max

{
Y − bn
an

,η

}
≤ y

∣∣∣∣{∃ j s.t. Yj > bn,j} −→X (6.2)

as n→∞, where η is the collection of d lower endpoints of the marginal distributions

of G. The distribution function of the MGP random vector X has the form

F (x) = Pr(X ≤ x) = logG(min{x,0})− logG(x)

logG(0)

and the margins Xj have conditional distribution {Xj | Xj > 0} ∼ GP(0, σj, ξj).

To focus on dependence, suppose the components Yj of the random vector Y follow

the standard exponential distribution. Then if convergence (6.2) holds, we have

Y − r | {max(Y ) > r} −→X

as r →∞, whereX is an MGP random vector with σj = 1 and ξj = 0, j = 1, . . . , d.

This standardised characterisation is important when establishing the stochastic

representation of MGP random vectors. It is established in Rootzén et al. (2018b)
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that a standard MGP random vector is equal in distribution to a so-called spectral

random vector and a scalar standard exponential random variable,

X
d
= E1+ S, (6.3)

where E and S are independent, and max(S) = 0. The spectral vector S arises

from Y through the limit

Y −max(Y ) | {max(Y ) > r} −→ S

as r → ∞. Using the stochastic representation (6.3), one can construct MGP

random vectors from any unbounded random vector. Suppose T lives on an

unbounded domain in Rd. Rootzén et al. (2018b) construct a valid spectral vector

S by setting S = T − max(T ), and therefore, X
d
= E1 + T − max(T ). This

stochastic representation will be essential in analysing the geometric properties of

MGP random vectors. After establishing some necessary background, we will show

how MGP random vectors X have an inherent geometry that is solely linked to the

geometry of the spectral component, S.

6.2.2 Geometric extremes

The geometric approach to multivariate extremes (Nolde, 2014; Nolde and

Wadsworth, 2022; Wadsworth and Campbell, 2024) induces more generality than

the frameworks of MGP vectors and, by extension, MRV. In it, interest lies in

characterising the multivariate tail above high quantiles of functions of random

vectors. Suppose the d-dimensional random vector Y has exponential margins and

joint density function f . The main assumption behind the geometric approach is

that the rescaled negative log-density tends towards a non-degenerate limiting gauge

function,

−r−1 log f(ry) −→ g(y) (6.4)

as r → ∞. The gauge function g is positive, scalar-valued, and 1-homogeneous.

Wadsworth and Campbell (2024) show that if (6.4) holds with g continuous, then
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it is typically reasonable to assume the model

∥Y ∥ | {∥Y ∥ > r0(w),Y /∥Y ∥ = w} ∼ truncGamma(α, g(w)) (6.5)

as r0(w)→∞, where r0(w) is a high threshold of ∥Y ∥ | {Y /∥Y ∥ = w}. In (6.5),

truncGamma refers to the truncated gamma distribution, a univariate distribution

most easily defined through its density function,

ftG(r;α, g(w), r0(w)) = fG(r;α, g(w))/F̄G(r0(w);α, g(w))

for r > r0(w), where fG and F̄G are the density and survival function of the gamma

distribution, respectively.

If the convergence assumption on the log-density (6.4) holds with g continuous,

it then follows that scaled sample clouds of the form Nn = {Y1/log n, . . . ,Yn/log n}
converge onto a limit set G = {x ∈ Rd | g(x) ≤ 1}. The intrinsic link between the

limit set G and the gauge function g means that knowledge of g can give information

about the geometric properties of a random vector. These properties were first

explored in Balkema et al. (2010), Balkema and Nolde (2010), Balkema and Nolde

(2012), Nolde (2014), and more recently in Nolde and Wadsworth (2022), where it

was shown that knowledge of g gives information as to which groups of variables in

the random vector Y grow large simultaneously. Furthermore, g gives information

on the degree of dependence or independence in the joint tails between groups of

variables. Together with the truncated gamma approach to inference, the geometric

framework allows for inference across the entire tail region of random vectors, making

it a powerful tool in overcoming some of the limitations of the MRV assumption.

With this in mind, studying the geometric properties of MGP random vectors may

provide a useful link between the geometric framework and classical multivariate

extreme value analysis.
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6.3 The limit set associated with MGP random

vectors

In order to inspect the geometric properties of MGP random vectors, it is first

necessary to study its joint density. Theorem 15 of Rootzén et al. (2018b)

characterises the joint density of MGP random vectors X through its stochastic

representation, E + S. The joint density of the resulting MGP is given by

fX(x) = 1R+(max(x)) exp{−max(x)}fS(x−max(x)), (6.6)

where max(x) = maxj∈{1,...,d} xj and fS is a Lebesgue density on the (d − 1)-

dimensional constrained space S = {s ∈ Rd : max(s) = 0}. Using this expression

for the joint density, it is possible to obtain the corresponding gauge function under

certain conditions.

Proposition 6.1 (Gauge function of MGP random vectors). Suppose

− log fS(tx)/t −→ gS(x), where gS is a continuous gauge function defined

on the domain S, then {Sk/log n}nk=1 tends to a non-degenerate limit set defined

by the gauge function gS. Furthermore, log n-scaled sample clouds of MGP random

vectors {Xn/log n}nk=1 converge onto a limit set with the associated gauge function

gX(x) = max(x) + gS(x−max(x)) (6.7)

and is defined on the space
{
x ∈ Rd : max(x) ≥ 0

}
.

The proof of the first statement in Proposition 6.1 follows as in Proposition 2

of Nolde and Wadsworth (2022). The form of gX in (6.7) follows directly from

the density (6.6). We can also independently derive (6.7) as a consequence of the

findings in Nolde and Wadsworth (2022) on the gauge functions of additive mixtures

of independent random vectors, we derive the equivalent result by minimising over

the domain S of the spectral random vector S,
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gX(x) = min
a : x−a∈S

a+ gS(x− a)

=max(x) + gS(x−max(x)).

Given some random vector T following a multivariate distribution with an

unbounded domain, we can generate spectral random vectors using the relation

S = T − max(T ). For this reason, we refer to T as a generator of an MGP-

distributed random vector. By Theorem 12 of Rootzén et al. (2018b), we obtain the

density for X

fX(x) =1R+(max(x)) exp{−max(x)}
∞∫

−∞

fT (x+ s)ds

=1R+(max(x)) exp{−max(x)}
∞∫
0

fT (x+ log t)t−1dt

This implies that, for x ∈ Rd and assuming T has density fT ,

fS(x−max(x)) =

∞∫
−∞

fT (x+ s)ds =

∞∫
0

fT (x+ log t)t−1dt (6.8)

Using this knowledge, beginning with a known distribution T , it is possible to

obtain the corresponding MGP gauge function. In what follows, we derive the

spectral gauge function gS and the resulting MGP gauge function gX from generators

previously examined by Kiriliouk et al. (2019), where the density fS in equation (6.8)

was derived given T .

Example: Generators with independent Gumbel components, equal scale

parameters Suppose Tj ∼ Gumbel(α, βj). We have

fS(x−max(x)) = αd−1Γ(d)
d∏
j=1

e−α(xj−βj)

(
d∑
j=1

e−α(xj−βj)

)−d
Therefore, spectral random vectors associated with independent Gumbel generators

have gauge function

gS(x−max(x)) = α
d∑
j=1

xj − dαmin(x).
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Figure 6.1: Right: Marginal histogram of a sample from the spectral random vector

associated to the bivariate independent Gumbel generator with rate α = 0.5. Left:

the limit set associated to the resulting bivariate MGP random vector.

The resulting MGP distribution has gauge function

gX(x) =max(x) + α
d∑
j=1

xj − dαmin(x).

Example: Generators with independent reverse exponential components

Suppose Tj follows the reverse exponential distribution with rate parameter αj and

location parameter βj. We have

fS(x−max(x)) =

(
d∑
j=1

αj

)−1
e
−
(

d∑
j=1

αj

)
max(x+β) d∏

j=1

αje
αj(xj+βj).

Therefore, spectral random vectors associated with independent reverse exponential

generators have gauge function

gS(x−max(x)) =

(
d∑
j=1

αj

)
max(x)−

d∑
j=1

αjxj

=−α⊤(x−max(x)),

and the resulting MGP distribution has gauge function

gX(x) = max(x)−α⊤(x−max(x)).
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Example: Generators with independent log-gamma components Suppose

Tj ∼ logGamma(αj, 1). We have

fS(x−max(x)) =

Γ

(
d∑
j=1

αj

)
d∏
j=1

Γ(αj)

exp

{
d∑
j=1

αjxj

}(
d∑
j=1

exj

)− d∑
j=1

αj

Therefore, spectral random vectors associated with independent log-gamma

generators have gauge function

gS(x−max(x)) =

(
d∑
j=1

αj

)
max(x)−

d∑
j=1

αjxj

=−α⊤(x−max(x)),

and the resulting MGP distribution vector has gauge function

gX(x) = max(x)−α⊤(x−max(x)).

Note that when considering the d = 2 setting in the above examples with α1 = α2,

gS are all equivalent and produce the same limit set. This can be seen in the

independent Gumbel generator example by adding and subtracting α(x1 + x2). In

fact, in the bivariate setting, all MGP random vectors have the same gauge function

if the spectral component converges to a non-degenerate limit set under log n scaling.

The form of the limit sets described in Proposition 6.1 are illustrated in Figure 6.1.

Proposition 6.2. Suppose X = E1 + S is a bivariate MGP random vector, and

that Proposition 6.1 holds. Define the values θ1, θ2 < 0 such that

θ1 : gS(θ1, 0) = 1

θ2 : gS(0, θ2) = 1;

Equivalently,

|θ1| = 1/gS(−1, 0)

|θ2| = 1/gS(0,−1).
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Then the limit sets of d = 2 MGP random vectors can be obtained by joining the

vertices (1, 1)⊤, (θ1, 0)
⊤, (0, 0)⊤, and (0, θ2). The associated gauge function is given

by

gMGP(x1, x2; θ1, θ2) =
1

θ1
x1 +

1

θ2
x2 +

(
1− 1

θ1
− 1

θ2

)
max(x1, x2),

and the limit set can alternatively be written as G = {(x1, x2) ∈ R2 :

gMGP(x1, x2; θ1, θ2) ≤ 1} ∩ {(x1, x2) ∈ R2 : max(x1, x2) ≥ 0}.

Proof. It is sufficient to derive the gauge function associated to the spectral random

vector S. The gauge function gS must be positive, 1-homogeneous, and have domain

S. Inputs must be of the form (x1, 0) for x1 < 0 or (0, x2) for x2 < 0. By

homogeneity,

gS(x1, x2) =

|x1|g(−1, 0) ; x1 < 0, x2 = 0

|x2|g(0,−1) ; x1 = 0, x2 < 0

=


|x1|
|θ1| ; x1 < 0, x2 = 0

|x2|
|θ2| ; x1 = 0, x2 < 0

=
|x1|
|θ1|

+
|x2|
|θ2|

, (x1, x2) ∈ S.

To ensure the domain S, the gauge function evaluated at a generic point x ∈ R2

is therefore

gS(x1 −max(x1, x2), x2 −max(x1, x2)) =
|x1 −max(x1, x2)|

|θ1|
+
|x2 −max(x1, x2)|

|θ2|

=
x1 −max(x1, x2)

θ1
+
x2 −max(x1, x2)

θ2
.

By (6.7), we recover the desired MGP gauge function gMGP.

For the vertices of the limit set G, gMGP(θ1, 0) = gMGP(0, θ2) = 1 by construction,

and it is clear that gMGP(1, 1) = 1. The straight lines between (θ1, 0)
⊤, (1, 1)⊤, and

(0, θ2)
⊤ on ∂G holds because gMGP(x1, (1 − θ2)x1 + θ2) = 1 for x1 ∈ (0, 1) and

gMGP((1 − θ1)x2 + θ1, x2) = 1 for x2 ∈ (0, 1). The vertex of G at (0, 0)⊤ holds

because S forms part of the boundary ∂G.
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6.4 Statistical inference for MGP random vectors

using the truncated gamma model

Having an expression for the gauge gMGP means that we can use inference tools such

as the one presented in Wadsworth and Campbell (2024) to allow the estimation of

small probabilities when at least one component is large. We will discuss the pros

and cons of this approach in Section 6.6. Suppose the random vector X follows a

MGP, and is constructed using X = E+T −max(T ). In the bivariate case, we can

model

max(X) | {X/max(X) = w,max(X) > u} ∼ truncGamma(a, gMGP(x; θ1, θ2)),

where the model parameters (a, θ1, θ2) can be estimated with the standard maximum

likelihood method.

With this inference set up in mind, one can easily estimate joint tail probabilities

associated with MGP random vectors. Take, for example, the generator T obtained

from bivariate independent Gumbel distribution with rate parameter α = 0.5. Its

true underlying limit set is shown in Figure 6.1. Using the derived expression gMGP,

we can estimate this. Once a high threshold is selected, the gauge function is

fitted using the truncated gamma likelihood approach, and the resulting estimate

is shown in Figure 6.2. Using an extremal sample generated from the truncated

gamma distribution (also shown in Figure 6.2), we estimate the coefficient

χ(u) =
Pr (F1(X1) > u, F2(X2) > u)

1− u
for values of u above u0 = 0.94. This is estimated by simulating 100 datasets,

obtaining an empirical and a fitted geometric model’s estimate for each dataset, and

considering the median estimate of χ(u) for each u value, along with the 0.025 and

0.975 quantiles to give a prediction interval. The results, shown in Figure 6.2), show

a good overall approximation of χ(u) when compared to the empirical counterpart,

with some slight disagreement u approaches 1. However, coverage in the prediction

intervals remains good.
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Figure 6.2: Right: Fitted gMGP using the truncated gamma approach to MGP

data generated from the independent Gumbel distribution with rate α = 0.5.

Centre: Extremal sample above the threshold max(X) = u0 using these fits.

Right: Empirical (in black) and estimated (in blue) median values of χ(u) with

corresponding pointwise 95% prediction intervals.

6.5 Nonstandard behaviour of spectral random

vectors

6.5.1 Nonstandard convergence to gauge functions

What can one do when the primary assumption of Proposition 6.1 is broken; i.e.,

when the spectral gauge function is degenerate under the usual scaling? This is

the case, for example, when working with the MGP distribution with Hüsler Reiss

dependence in standard exponential margins, as examined in Nolde and Wadsworth

(2022). They show that, under the usual log n scaling, scaled sample clouds tend

to a degenerate limit set given by the line {(x1, x2) ∈ [0, 1]2 | x1 = x2}. This limit

set is not useful when trying to understand the extremal dependence properties of

the corresponding bivariate random vector as the dependence parameter changes.

It is for this reason that more general forms of convergence to the gauge function

and limit set need to be considered, akin to the notion of nonstandard multivariate

regular variation (Resnick, 2007, Chapter 6.5.6).

Proposition 6.3 (nonstandard convergence). Suppose X is d-dimensional with
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joint density f , Xj ∼ Fj, and there exists functions bj(t) = F−1j (1 − t−1) such that

log bj(t)/log t→ 0 as t→∞ for each j ∈ {1, . . . , d}. If the following holds,

−(log t)−1 log f(bj(t)xt,j , j = 1, . . . , d) −→ g(x) , (6.9)

for the sequence xt → x as t→∞ and g continuous, then the sample cloud

Nn =

{(
Xi1

b1(n)
, . . . ,

Xid

bd(n)

)
: i = 1, . . . , n

}
converges onto the limit set G = {x ∈ Rd : g(x) ≤ 1}.

Proof. The proof follows similarly to that Proposition 2 of Nolde and Wadsworth

(2022). The mean measure of Nn is given by nP [(Xj/bj(n) , j = 1 . . . , d) ∈ ·] with
corresponding intensity

hn(xn) = n

(
d∏
j=1

bj(n)

)
f(bj(n)xn.j , j = 1, . . . , d)

Therefore,

− log hn(xn) ∼ (g(xn)− 1) log n −→

−∞ ; x ∈ Go

+∞ ; x ∈ Gc

as n → ∞, where Go is the interior of the set G and Gc is the complement of the

set G. The convergence of the mean measure of points Nn onto G gives convergence

in probability of Nn onto G (Balkema and Nolde, 2010; Nolde and Wadsworth,

2022).

To match the scaling used in the standard gauge function convergence (6.4), note

that condition (6.9) is equivalent to

−t−1 log f(bj(et)xt,j , j = 1, . . . , d) −→ g(x) (6.10)

as t→∞. Define the function hj(t) = − log(1− Fj(t)), it then follows that

h−1j (t) = F−1j (1− e−t)

= bj(e
t)
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Putting this into (6.10), equation (6.9) is equivalent to

−t−1 log f(h−1j (t)xt,j , j = 1, . . . , d) −→ g(x). (6.11)

We note that the resulting g may not be 1-homogeneous. To obtain a 1-homogeneous

gauge function g⋆ from g, suppose we restrict ourselves to cases when hj ∈ RVαj
,

αj > 0. Recall the properties of regularly varying univariate functions:

1. h(tx)/h(t)→ xα as t→∞.

2. h ∈ RVα implies h−1 ∈ RV1/α (Resnick, 2007, Proposition 2.6(v)).

Define the transformation x̃j = hj(xj) and let f ∗ be the joint density function of

(X̃1, . . . , X̃d)
⊤ = (h1(X1), . . . , hd(Xd))

⊤. If (6.11) holds, then by change of variables,

so does the following convergence

−t−1 log f ∗(th1(xt,1), . . . , thd(xt,d))

= −t−1 log f ∗(tx̃t,1, . . . , tx̃t,d)

= −t−1 log f(h−11 (tx̃t,1), . . . , h
−1
d (tx̃t,d))− t−1

d∑
j=1

log

(
d

dx̃t,j
h−1j (tx̃t,j)

)
∼ −t−1 log f(h−11 (t)x̃

1/α1

t,1 , . . . , h−1d (t)x̃
1/αd

t,d )

− t−1
d∑
j=1

log

(
x̃
α−1
j −1
t,j

d

dt
h−1j (t)

)
(6.12)

= −t−1 log f(h−11 (t)x̃
1/α1

t,1 , . . . , h−1d (t)x̃
1/αd

t,d )

− t−1
d∑
j=1

log

(
d

dt
h−1j (t)

)
− t−1

d∑
j=1

(α−1j − 1) log (x̃t,j) (6.13)

−→ g(x̃
1/α1

1 , . . . , x̃
1/αd

d ) =: g∗(x̃1, . . . , x̃d)

as t → ∞. The asymptotic equivalence (6.12) as a result of h−1j ∈ RVα−1
j

implying (h−1j )′ ∈ RVα−1
j −1

(see Proposition 2.5 of Resnick (2007)). The first term

in line (6.13) tends to zero as t → ∞ by Proposition 2.6(i) of Resnick (2007).

The result is g∗, the 1-homogeneous gauge function of the limit set associated to

N∗n = {hj(Xij)/log n : j = . . . , d}ni=1 g and its link to g, the gauge function of the
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limit set associated to Nn = {Xij/h
−1(log n) : j = . . . , d}ni=1. The nonstandard

convergence discussed in Proposition 6.3 can be formulated in terms of g∗.

Proposition 6.4 (Standardised nonstandard convergence). Suppose X is d-

dimensional with joint density f , Xj ∼ Fj, and there exists functions hj ∈ RVαj
for

j ∈ {1, . . . , d}. Let f ∗ be the joint density of (h1(X1), . . . , hd(Xd))
⊤. If the following

holds,

−t−1 log f ∗(thj(xt,j) , j = 1, . . . , d) −→ g∗(x)

for the sequence xt → x and g∗ continuous, as t→∞, then the sample cloud

N∗n =

{(
h(Xi1)

log n
, . . . ,

h(Xid)

log n

)
: i = 1, . . . , n

}
converges onto the limit set G∗ = {x ∈ Rd : g∗(x) ≤ 1}.

The proof of Proposition 6.4 follows from Proposition 2 of Nolde and Wadsworth

(2022).

Example: independent exponential and bivariate Gaussian components.

As an illustration of convergence under different marginal scalings, suppose we

consider random vectors of the form (X, Y )⊤ where X and Y are independent

standard exponential and normal random variables. The joint density of (X, Y )

is simply f(x, y) = (2π)−1/2e−x−
1
2
y2 . The marginal functions are h1(t) = t and

h2(t) = − log(1 − Φ(t)) ∼ t2/2, i.e., h2 ∈ RV2. The inverse marginal functions are

therefore h−11 (t) = t and h−12 ∈ RV1/2. For the non-homogeneous gauge function

corresponding to the limit set of the sample cloud Nn =
{(

Xi

logn
, Yi√

2 logn

)}n
i=1

, we

have

−t−1 log f(h−11 (t)x, h−12 (t)y) ∼− t−1 log f(tx,
√
2ty)

−→ g(x, y) = x+ y2

where g is clearly not homogeneous. However, for the gauge function corresponding

to the limit set of the sample cloudN∗n =
{(

Xi

logn
, h2(Yi)

logn

)}n
i=1

, for a sequence yt → y ∈

260



R such that |tyt| → ∞ as t→∞, and letting ỹt = h2(yt), we have the convergence

−t−1 log f ∗(tx, th2(yt)) =− t−1 log f ∗(tx, tỹt)

=− t−1 log f(tx, h−12 (tỹt))− t−1 log
(
d

dỹt
h−12 (tỹt)

)
∼− t−1 log f(tx, h−12 (t)ỹ

1/2
t )− t−1 log

(
d

dt
h−12 (t)ỹ

1/2
t

)
∼− t−1 log f(tx,

√
2tỹ

1/2
t )− t−1 log

(√
2t2−1ỹ

−1/2
t

)
−→ g∗(x, ỹ) = x+ ỹ

Note that g∗(x, y) = g(x, y1/2) is 1-homogeneous, as desired. Further note that the

condition |tyt| → ∞ as t→∞ is needed in order to use Mills’ ratio to establish that

h2(t) := − log(1− Φ(t)) ∈ RV2.

6.5.2 A coordinate transformation

In the case when log n-scaled sample clouds of the spectral random vector do not tend

to a non-degenerate limit set, the geometry of random vectors of the form E + S

is not generally useful in describing extremal dependence between asymptotically

dependent random variables. Instead, in the bivariate setting, consider the joint

behaviour of M = 1
2
(X1 + X2), and V = X1 −M − 1

2
(X1 − X2). Essentially, this

transformation separates the exponential and spectral components of the stochastic

representation into M and V , respectively. Furthermore, V lives on a linear space,

and is therefore easier to handle than S. By change of variables, the joint density

of (M,V ) is given by

fM,V (m, v) =2fX1,X2(m+ v,m− v)

Under the stochastic representation, we have

fM,V (m, v) ∝1R+(m+max(v,−v))e−m−max(v,−v)

× fS(v −max(v,−v),−v −max(v,−v))
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The limit set associated with scaled copies of (M,V ) can be obtained from the

negative-logarithm of fM,V using the aforementioned standard or nonstandard

convergence techniques.

In general d-dimensions, we generalise the transformation to

(M,V ) =

(
d−1

d∑
j=1

Xj,X−d − d−1
d∑
j=1

Xj

)
,

whereX−d is the random vectorX with the final component removed. The resulting

in (M,V ) is a random vector taking values in {(m,v) ∈ Rd : m+max(v,−1⊤v) >
0} with inverse transformationX = (M1+V ,M−1⊤V ) = (X−d, Xd). The density

is therefore

fM,V (m,v) = d fX(m1+ v,m− 1⊤v)

Under the stochastic representation, the (M,V ) coordinate transformation amounts

to studying the behaviour of

(M,V ) =

(
E + d−1

d∑
j=1

Sj, S−d − d−1
d∑
j=1

Sj

)
,

whose joint density can be obtained from fX(x) = 1R+(max(x))e−max(x)fS(x −
max(x)),

fM,V (m,v) =1R+(m+max(v,−1⊤v))e−m−max(v,−1⊤v)

× fS(v −max(v,1⊤v),−1⊤v −max(v,−1⊤v))

In this new coordinate system, interest lies in the behaviour of

−t−1 log fM,V (tm, h
−1(t)v) as t→∞ for some α > 0 such that h−1 ∈ RV1/α.

This coordinate system can be used to study the tail behaviour using the gauge

function for multivariate distributions whose limit sets were previously shown to

the degenerate under the usual log n scaling. The most notable example of this is

the Hüsler-Reiss generalised Pareto distribution (Zhen Wai Olivier and Dombry,

2017), an important example in the literature due to its simple interpretation.

The Hüsler-Reiss model has gained recent popularity in graphical modelling due
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to its precision matrix having correspondence with the extremal graphical structure

(Hentschel et al., 2024). Here, we derive the gauge function in the (M,V ) coordinate

system for the bivariate Hüsler-Reiss model. We show that its tail behaviour is

equivalent to constructing a MGP random vector using a Gaussian generator for T

by comparing the gauge functions of both models.

Example: Gaussian generator This case is of particular interest because of its

similarities with the Hüsler-Reiss dependence structure (Kiriliouk et al., 2019; Wan,

2024). Suppose we have a generator T ∼ MVNd(0,Σ) and let S = T − max(T ).

Kiriliouk et al. (2019) derived the density fS, given by

fS(x−max(x)) =
1

(2π)(d−1)/2 |Σ|1/2 (1⊤Σ−11)1/2
exp

{
−1

2
x⊤
[
Σ−1 − Σ−111⊤Σ−1

1⊤Σ−11

]
x

}

The quadratic form in the exponential term of fS means that

limt→∞−t−1 log fS(tx) = 0 and so the scaled sample cloud {Si/log n}ni=1 tends to a

degenerate limit set at {0}. The resulting MGP random vector E+S therefore has a

limit set which constitutes the diagonal line {x ∈ Rd
+ : x1 = x2 = · · · = xd} coming

from the common exponential component. A more useful geometric interpretation

arises when inspecting (M,V ). Let d = 2 and set A = Σ−1 − Σ−111⊤Σ−1

1⊤Σ−11
. Further

suppose Σ1,1 = Σ2,2 = 1 and Σ1,2 = Σ2,1 = ρ. Then A = 2−1(1−ρ)−1(1, −1)(1, −1)⊤

and the MGP density of X = E + S in the bivariate setting is given by

fX1,X2(x1, x2) ∝ 1R+(max(x1, x2))e
−max(x1,x2) exp

−1

2

(
x1 x2

)
A

x1
x2


Therefore, in the (M,V ) parametrisation,

fM,V (m, v)

∝1R+(m+max(v,−v))e−m−max(v,−v)

× exp

−1

2

m2
(
1 1

)
A

1

1

+ 2mv
(
1 1

)
A

 1

−1

+ v2
(
1 −1

)
A

 1

−1


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Figure 6.3: Limit set boundaries associated to the bivariate MGP random vectors

with the Gaussian generator with correlation in the (M,V ) representation, described

by the gauge function g(m, v) = m + (1 − ρ)−1v2. Left to right: ρ = 0.3, 0.8, 0.95.

Dotted line is the lower-bound of the support of the random vector (M,V ), given

by {(m, v) : m+max(v,−v) = 0}.

=1R+(m+max(v,−v))e−m−max(v,−v)e−(m+v) exp

−1

2
v2
(
1 −1

)
A

 1

−1


Using the marginal function h ∈ RV2 on the V component, the limit set associated

to the sample cloud Nn =
{(

Mi

logn
, Vi√

logn

)}n
i=1

has gauge function

g(m, v) =m+ v2
(
1 −1

)
A

 1

−1


=m+ (1− ρ)−1v2, m+max(v,−v) > 0.

Using g(m, v) one could inspect the geometry of bivariate GP random vectors

generated from the bivariate Gaussian distribution as ρ increases. An example of

this presented in Figure 6.3, where it can be seen that an increase in ρ corresponds

to a narrowing of the limit set.

Example: bivariate generalised Hüsler-Reiss Pareto distribution The

Hüsler-Reiss MGP distribution is parametrised by a positive-definite d×d correlation
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matrix Σ and has exponent measure density in exponential margins

λ(x; Σ) = c exp

{
−1

2

(
x⊤Σ−1x+ d−1

(
Σ−1Γ1+ 21

)⊤
x
)}

where Γij = Σii +Σjj − 2Σij (Hentschel et al., 2024). Nolde and Wadsworth (2022)

showed a degenerate limit set occurs in the bivariate setting, considering when Σ =

2(1− ρ)11⊤. This setting results in the density

f(x, y; Σ) =
λ(x, y; ρ)∫∫

{(u,v):max(u,v)>0} λ(u, v; ρ)du dv

∝ exp

{
−1

2

(
(x− y)2
2(1− ρ) + x+ y

)}
Nolde and Wadsworth (2022) show that the limit set for the sample cloud{(

Xi

logn
, Yi
logn

)}n
i=1

is degenerate, falling on the line x = y.

In studying the degree of asymptotic dependence between X and Y , a better

approach is to consider non-common scalings (as in Propositions 6.3 and 6.4) on the

vector (M,V ), where M = 1
2
(X + Y ), and V = X −M . By change of variables,

fM,V (m, v) =2fX1,X2(m+ v,m− v)

∝e−me−v2/(1−ρ)

with independent marginal distributions M ∼ Exp(1) and V ∼ N (0, (1− ρ)/2).
This establishes that M behaves like an exponential random variable in the right

tail, and that V is univariate Gaussian.

Using h(t) ∈ RV2, the limit set associated to the sample cloud Nn ={(
Mi

logn
, Vi√

logn

)}n
i=1

has gauge function g(m, v) = m + (1 − ρ)−1v2, while limit set

associated to the sample cloud N∗n =
{(

Mi

logn
,
h(Vi)/(1−ρ)

logn

)}n
i=1

has gauge function

g∗(m, v) = m + v. When focusing on Nn =
{(

Mi

logn
, Vi√

logn

)}n
i=1

, which has gauge

function g(m, v; ρ) = m + (1 − ρ)−1v2, note that it is the same as in the Gaussian

generator example and has unit level set displayed in Figure 6.3,. This highlights

their equivalent limiting behaviour, as desired.
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6.6 Discussion

In this work, we brought together multivariate regular variation and the geometric

approach by considering the limit sets of MGP random vectors. Through studying

the (d − 1)-dimensional limit sets of the spectral components of the stochastic

representation of MGP random vectors, we began by showing that all bivariate MGP

random vectors whose spectral component have a non-degenerate limit set under

log n scaling have the same limit set. By studying the corresponding gauge function,

we illustrated how any problem involving inference on such MGP distributions can

be approached as a geometric multivariate extremal inference problem. When the

spectral component does not have a non-degenerate limit set under log n scaling, we

showed that alternative representations of the limit set can be used to effectively

separate the components of the stochastic representation to study the degree of

asymptotic dependence in MGP random vectors. We note that, while many results

are given for general d-dimensional random vectors, we mostly illustrate our findings

in the d = 2 setting, leaving further exploration for future work. In the MGP setting

where, copies of the spectral random vector converge to a valid limit set under log n

scaling, we illustrated that the truncated gamma inference method for geometric

extremes (Wadsworth and Campbell, 2024) can be used when considering the L∞-

norm. While not covered here, this could potentially be extended to the nonstandard

convergence setting by performing a change of variables and inferring the αj values

for the marginal regularly varying functions hj ∈ RVαj
.

Through studying the MGP distribution, this work highlights some connections

between the classical MRV framework and the more recent geometric framework

for inference on the multivariate tail. By showing that one could derive the limit

set of MGP random vectors, it can then be used to study the strength of tail

dependence between the components as in the geometric framework. However, when

studying both methods, their differences also become apparent. While the geometric

framework aims to perform inference across the entire multivariate tail, the MRV

approach only focuses on the region where all d components grow large together. In
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Figure 6.4: Left, centre-left, centre-right: Realisations of Yi − r | {max(Yi) > r},
i = 1, . . . , 1000 for increasing r. The bivariate random vectors Yi have exponential

margins and are generated from a mixture model made up of equally-weighted

Gaussian and max-stable distribution with logistic dependence. Right: Realisations

of Yi | {∥Yi∥1 > rτ (Yi/∥Yi∥1)}.

fact, in studying the limiting behaviour of Yi − r | {max(Yi) > r} as r → ∞ for

copies Y1,Y2, . . . from a random vector Y , a key assumption in MRV is that any

values of of Yi that are not simultaneously extreme will be normalised to −∞. Take,

for example, Y following an equally-weighted mixture of Gaussian and max-stable

distribution with logistic dependence. MRV assumes the Gaussian contribution of

the mixture model, inducing asymptotic independence between the two components

of Y , should disappear when studying limr→∞ Yi−r | {max(Yi) > r} on the interior

of the support {x ∈ Rd : max(x) ≥ 0}. Figure 6.4 shows that, even with a very

large threshold r, this is not satisfied in practice. A much more realistic approach is

presented in the geometric setting. By not restricting to the L∞ threshold, a much

richer representation of the multivariate tail is used, as shown in Figure 6.4, right.

The framework is able to treat both components of the mixture model in a non-

trivial fashion. An immediate drawback of the geometric approach is that, unlike in

the MRV setting, one needs to estimate this radial threshold. In low-dimensions, this

is easily achieved through quantile regression (Fasiolo et al., 2021; Wadsworth and

Campbell, 2024) or Bayesian semi-parametric methods (Papastathopoulos et al.,

2025). In higher dimensions, empirical (Wadsworth and Campbell, 2024) and

kernel density estimation (Campbell and Wadsworth, 2024) approaches have been
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Figure 6.5: Left: Limit set of the modified Gaussian and max-stable logistic mixture

model. Centre: Realisations of Yi−r | {max(Yi) > r}, i = 1, . . . , 1000 for increasing

r = 9.49. Right: Realisations of Yi | {∥Yi∥1 > rτ (Yi/∥Yi∥1)}.

proposed. One could simply use the L∞ threshold in the geometric approach;

however, it may not be descriptive enough to capture extremal behaviour across

the entire domain, particularly for semi-parametric methods.

In many instances, the convergence assumption in MRV makes it impossible

to study regions of the tail away from the joint exceedances. Take, for example,

a bivariate mixture model of equally-weighted max-stable logistic, and a Gaussian

with modified covariance matrix, θ−1Σ, θ > 1. The resulting distribution, whose

limit set is shown in Figure 6.5, has “scaled back” Gaussian components. In studying

Yi − r | {max(Yi) > r}, we see that the Gaussian behaviour is essentially removed,

leaving only the points lying on the joint extremal region shown. In essence, the

MRV framework only allows for studying extremes in this region. It may, however,

be desirable to study the tail behaviour away from the axes, when one variable has

extreme values and the other does not. From the Figure 6.5, right, we see that this

is still possible in the geometric setting for this example.

On the other hand, when interest lies in the behaviour of asymptotically

dependent random vectors and all components large, fitting the spectral component

in the MRV setting leads to more accurate inference compared to the geometric

approach. This is exemplified by the simulation studies in Chapter 3. When

considering bivariate data drawn from a distribution with asymptotically dependent
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components (Figure 3.7), probability estimates for lying in an a region when both

components are large are more accurate and have less variability when using

the MRV approach compared to any other competing framework. Behind this

observation is the fact that the limit set of MGP random vectors only depends on the

lower tail behaviour of the spectral vector S, as exemplified in Proposition 6.2. The

MGP framework allows one to capture the full distribution of S, which offers refined

estimates when extrapolating into regions where all variables are large. However,

MRV was outperformed by the other methods for estimating the probability of

lying in off-diagonal extremal regions, and when using non-asymptotically dependent

data.
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Chapter 7

Concluding Remarks

Throughout this work, focus lay on the geometric approach to multivariate extreme

value analysis. The idea of limiting geometry of scaled sample clouds is nothing new

(Davis et al., 1988; Kinoshita and Resnick, 1991). It was only in recent work (Nolde

and Wadsworth, 2022) that its full potential to characterise the entire tail behaviour

for random vectors with potentially complicated extremal dependence behaviour

came to light. However, many gaps in the literature still existed. Namely, given data,

how does one go about estimating the gauge function that is inherently linked to the

geometry of interest? This was the central focus for much of this work. Chapters 3, 4,

and 5 did this in different ways. Chapters 3 proposed a likelihood-based approach

using parametric assumptions on the gauge function. Chapter 4 introduced model

flexibility by proposing a Bayesian semiparametric framework, but inference only

existed in two and three dimensions. Chapter 5 aims to increase the dimensionality

by proposing a simple piecewise-linear construction for the gauge function. Apart

from estimating the gauge function, Chapters 3, 4, and 5 all introduce methodologies

to estimate the radial threshold, above which we perform inference of the gauge

function. Each have their merit. Furthermore, Chapters 4 and 5 introduce models

for the angular distribution, and show that they can potentially be linked to the

gauge function as well.

In addition to the methodological work done with geometric extremes, theoretical
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considerations were taken. A key feature of the geometric framework is performing

inference in a radial-angular decomposition, rather than in Cartesian coordinates.

Chapter 3 derived the limiting behaviour of the radial component when the original

random vector has exponential margins, showing that its limiting behaviour depends

on the gauge function. Rates of convergence were also provided. Chapter 4

does this as well in Laplace margins, and also angular densities are derived. In

Chapter 6 we derived the limit sets for a wide array of multivariate generalised Pareto

distributions, a family of distributions commonly studied and used in practical

applications.

Any approach for multivariate extremal inference is prone to shortcomings.

While the geometric approach addresses many of these shortcomings, its recent

novelty naturally leads to open-ended areas of exploration. In a radial-angular

decomposition, the geometric approach relies on modelling for exceedances above

a high radial threshold at a given angle. As the underlying distribution is often

intractable, an accurate estimate of this threshold is needed. This is particularly

the case in the semiparametric approaches presented in Chapters 4 and 5. The

proposed methods either don’t scale well to high dimensions due to computational

difficulties or have inaccuracies in regions of the domain with little density. With this

in mind, work needs to be done to bypass these difficulties by improving this high

quantile estimation, or develop methodology to bypass the estimation of this high

quantiles in high-dimensions. Another area that needs further exploration is the

sensitivity of the truncated gamma model fit to the set quantile level for threshold

estimation. Throughout this work, we tend to set the threshold to be the 0.90 or

the 0.95 quantile of the radii conditioned on angles. This was simply set based

on intuition; we need a quantile high enough for the truncated gamma assumption

be approximately hold, but we need it to be low enough to have sufficient data

for maximum likelihood estimation. In the future, a numerical study of the pre-

set quantile’s affect on the quality of the resulting maximum likelihood estimates

is needed. It is clear that a bias-variance trade-off would occur, but it would be
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interesting to see its extent.

Issues also persist when fitting the gauge function to data as the dimension of

the data increases. The parametric models of Chapter 3 are often too rigid for

the complex extremal dependence structure present in real-world applications, the

Bayesian semiparametric method in Chapter 4 rely on basis functions on a mesh

of the angular domain that are only defined in dimensions two and three, and the

piecewise linear approach in Chapter 5 struggles when data is missing in large regions

of the domain, a common feature of high-dimensional data. Machine learning-based

approaches have been introduced (Murphy-Barltrop et al., 2024b; De Monte et al.,

2025), but it is unclear whether or not these are able to capture the tail behaviour

of very complex dependence structures.

The theoretical properties of the geometric approach remain relatively

unexamined. Specifically, the truncated gamma model proposed in Chapter 3

for large radial components of the radial-angular decomposition lacks any of the

classic statistical convergence guarantees. Maximum likelihood estimation is used,

and while it does inherently provide consistency and efficiency properties of the

parameter estimates, it is unclear how they depend on the threshold. The truncated

Gamma holds exactly as the threshold tends to infinity, but how do consistency

results for maximum likelihood estimates depend on the threshold at high but finite

levels? This is of interest, as we only consider these finite thresholds in practical

applications. As a start, this needs to be examined for the truncated gamma

likelihood with parametric gauges defined in Chapter 3.

Despite the current setbacks, there is no denying the potential for the geometric

approach to accurately characterise the entire multivariate tail of a random process.

Its simplicity in inference and probability estimation make it a powerful tool for

researchers and practitioners. A key test in the coming years is how well it performs

in real-world applications that occur in industry. However, based on preliminary

studies, it can be confidently said that the geometric framework should find its

place among the favoured approaches for extreme value analysis.
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