
THE USE OF LARGE LANGUAGE
MODELS TO AUTOMATICALLY
CATEGORISE USER FEEDBACK

FOR GAMES

Callum Hemingway

BSc (Hons). Software Engineering (Game Development)

A dissertation submitted for the degree of
Msc. By Research, Computer Science

Supervised by Professor of Software Engineering, Tracy Hall

School of Computing and Communications

Lancaster University

October, 2025



Declaration

I declare that the work presented in this dissertation is, to the best of my knowledge and
belief, original and my own work. The material has not been submitted, either in whole or
in part, for a degree at this, or any other university. Estimated word count is: 17672

Name: Callum Hemingway
Date: October, 2025

i



THE USE OF LARGE LANGUAGE MODELS TO AUTOMATICALLY
CATEGORISE USER FEEDBACK FOR GAMES

Callum Hemingway, BSc (Hons). Software Engineering (Game Development).
School of Computing and Communications, Lancaster University

A dissertation submitted for the degree of Msc. By Research in Computer Science.
October, 2025

Abstract

This study investigates the use of large language models (LLMs) to automate the categori-
sation of unstructured and informal bug reports for video games, aiming to assist developers
in organising their feedback more effectively. The study seeks to answer two research
questions: ”How useful do developers find categories produced by Large Language Models?
and ”How reliable are different popular Large Language Models at categorising unstructured
and informal bug reports for games? ”

A dataset of unstructured and informal bug reports was collected from the video game
distribution platform Steam, a random sample of posts from this data set was then used to
generate 10 primary categories and 10-sub categories based on a selected primary category.

To answer the first research question video game developers were approached through
the survey participant tool Prolific and instructed to rate the generated categories based
on their perceived usefulness, with the option to include additional qualitative feedback for
each category. From this, developers appeared to rate higher level (more vague) categories
as being more useful, indicating that to developers usefulness of bug report categories is tied
to the frequency in which bug reports will be assigned to the category. However, multiple
developers expressed concern in the form of optional qualitative feedback that the vagueness
of the categories would reduce the practicality of using them in real world scenarios.

To answer the second research question, three popular LLMs were used to categorise the
same sample data set. Cohen’s Kappa, a measure of Inter-Rater Reliability, was then used
to compare the reliability of each model’s categorisations amongst each other and a human
reviewer. The findings from this suggest that even older models can perform this task with
high reliability, and newer and potentially more expensive and demanding models are not
required for this task.
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Chapter 1

Introduction

With the rise of digital distribution platforms and self-publishing, the market for independent
(indie) games has undergone an extreme and continuous expansion (See Figure 7.2 in
Appendix B.2). Characterised as games produced by single individuals or small development
teams, independent (indie) games have quickly become the majority in terms of the
development scale of games released on Steam, one of the largest digital distribution platform
for PC games (See Figure 7.3 in Appendix B.2) This evolution of game development
has allowed for countless creative projects to reach players, offering consumers innovative
gameplay mechanics, unique story narratives, and experimental art styles that otherwise
would not have reached customers. However, it has also created a highly saturated market
with thousands of titles competing for players annually. Because of this saturation, ensuring
that games are both performant and meet user expectations of quality is of vitally important
to developers.

When a user experiences an issue within a game product, they may report this issue to
the developers in the form of a bug report. In cases where there are many bug reports that
focus on varying issues, developers may quickly become overwhelmed. Processing these bug
reports into groups or categories helps developers identify trends and problem areas, and
makes high volumes of bug reports easier to address (Anvik and Murphy, 2011). Processing
bug reports is itself a demanding task and developers may not have the time or resources
to do so efficiently. Creating a process to automatically complete this bug report processing
task reduces this development limitation and allows developers to dedicate more resources
into defect correction. Creating an automated approach to bug report processing is the goal
of this study.
Steam, as the largest distributor of PC games, not only serves as a store front for games,
but also provides tools for community engagement, the most relevant of which for this study
being ”Discussion Pages” where players can report bugs, suggest improvements, and share
experiences. For independent developers that lack the infrastructure to manage their own
dedicated support channels, these discussion pages offer a simple method and forum for
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Chapter 1. Introduction

collecting user feedback. Whilst the accessibility of these forums ensures that feedback
remains abundant for games with a healthy player base, it can quickly become cumbersome.
For games that achieve even moderate levels of popularity, the sheer volume of player reported
issues and suggestions can become overwhelming for smaller teams with limited human
resources. As a result, developers may struggle to prioritise and address the most critical
issues in a timely manner, leaving players dissatisfied and potentially hindering the game’s
overall success.

Triaging bug reports is not exclusive to video game development, with a substantial level
of research being conducted in a Software Engineering context. According to Anvik et al,
individual developers tasked with triaging bug reports, the triagers, typically have two main
goals (Anvik and Murphy, 2011).. The first is to aid developers in improving the product
by ensuring the bug report repository has the smallest set of the highest quality and most
useful bug reports, allowing developers to focus on the issues that will lead to the most
productive improvements. For example, triagers may remove bug reports that focus on the
same issue as already existing bug reports, this is known as repository-oriented decision
making. The second goal, which is most relevant to this study, is to organise reports to ease
their integration into development. This organisation may be done in various ways, such as
organising reports based on individual developer strengths and weaknesses, or by organising
the reports based on the element of the product that is affected by the bug. This is known
as development-oriented decision making.

Attempting to automate this process of bug report/feedback organisation is a long
standing topic of research in Software Engineering. Clustering techniques such as X-Means
and K-Means clustering have been used to group similar bug reports together. Whilst
K-Means is primarily useful for numerical data. Luaphol et al. (Luaphol et al., 2018 )
completed research utilising various weighting methods to use K-Means to cluster bug reports.
This approach requires the prerequisite knowledge of the number of clusters (groups) before
clustering can take place X-Means, on the other hand, does not require this information.
Limsettho et al. (Limsettho et al., 2014). used X-Means clustering alongside pre-processing
techniques to significant success where their unsupervised approach was comparable to
supervised approaches that required prior knowledge of the dataset.

In recent years, powerful Large Language Models such as OpenAI’s 1 GPT models have
demonstrated Natural Language Processing (NLP) capabilities far beyond the abilities of
traditional methods (Chen et al., 2025, Hendy et al., 2023, Brown et al., 2020). Generative
Pre-Trained Transformer (GPT) models have demonstrated the ability to process, transform,
and create context-aware text that is both coherent and usable. More so, this ability is not
limited to a single language, with these models being able to perform with many various
languages effectively( Hendy et al., 2023). Existing clustering techniques tend to rely on
term frequency and the weighting of words to cluster similar reports together (Luaphol et al.,
2018, Limsettho et al., 2014,) Large Language Models on the other hand have the ability to

1https://openai.com/

2



Chapter 1. Introduction

understand information based on more than just the frequency of words and to understand
the context surrounding information it is given, this means that LLMs have the potential to
understand, unstructured, informal bug reports that are lacking in vocabulary and may not
be effectively categorised by previous methods.

These abilities propose an exciting opportunity to explore automated bug categorisation
without the pre-processing and preparation required by more traditional methods, with what
may prove to be stronger results.

This study is motivated by the desire to help game developers make development-oriented
triage decisions by automatically organising their unstructured and informal user feedback
by the product (game) component affected by the issue reported. This task is typically
demanding and diverts effort away from defect correction in the game product to project and
bug report management (Anvik and Murphy, 2011 ). The study aims to achieve this through
the use of Large Language Models to generate bug report categories based on the affected
game component and then the further use of LLMs to categorise bug reports from various
games into these generated categories.

To this end, the study seeks to answer two research questions:

Research Question One: How useful do developers find bug categories produced by Large
Language Models for games?

Research Question Two: How reliable are different popular Large Language Models at
categorising unstructured and informal bug reports for games?

The first question is motivated by the desire to help developers to organise their bug
report feedback effectively regardless of their games genre. This is important as creating
a set of bug categories that is overly specific to certain games over others reduces its use
cases and the amount of developers it can help. To do this, an accessible and up-to-date
LLM was selected to produce categories and sub-categories from a sample dataset of bug
reports that was collected from Steam. These categories were then placed into a survey that
had participants rate their perceived usefulness. The participants were recruited through the
online recruitment tool, ”Prolific.” The participant pool was made up of people currently
working in the video games industry and those likely to have game development experience
based on criteria I created through Prolific. A screening survey was used to assure that
participants had the required expertise to provide the desired feedback. Standard deviation
was calculated to understand how united or divided developers were on their ratings. From
this, ”Technical Issues & Crashes” was the highest rated primary category, had the lowest
standard deviation, and was the most frequently assigned primary category by the LLM
models.

The second question is motivated by the desire to provide developers with useful

3



Chapter 1. Introduction

information regarding the reliability of various LLM models to aid them in their selection
of one, that they would otherwise have to research themselves. To answer this question, an
experiment was conducted where three publicly accessible LLMs were provided with the same
bug report data that was collected from Steam and prompted to categorise the provided data
into 10 pre-determined categories pertaining to the nature of the problem reported. A small
sub-categorisation test was conducted where the most frequently assigned primary category
by the three models was selected for sub-categorisation. The selected primary category was
broken down into 10 sub-categories following the same approach used to create primary
categorisations. Inter-Rater Reliability was then determined through the use of Cohen’s
Kappa statistics. Cohen’s Kappa takes two pairs of raters (in this case the raters are the
models being used to categorise the bug report data) and determines how reliable they are in
their categorisations whilst accounting for the possibility of the raters agreeing by chance, this
is important to understand whether the models have any level of meaningful disagreement
regarding categorisations. The results of this experiment suggested a high level of inter-rater
reliability for each of the pairs of models, indicating that older, cheaper models were still
capable of completing the task to an acceptable degree alongside the more expensive and
newer models, further allowing developers to preserve resources.

My hope is that the findings of this study will help developers in their effort to improve
the standards of their video game products by demonstrating a way of efficiently categorising
the issues affecting their games. In this dissertation I will explain the methodology used, the
experiment process, the results of the experiments followed by a conclusion where I explore
possible next steps for research.
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Chapter 2

Background

In complex software products, the presence of issues or problems in the software is both
common and to be expected. These issues are typically referred to as ”Bugs” or ”Defects,
” (Runeson, Alexandersson, and Nyholm, 2007). To document and track these problems,
developers and testers create defect reports, also commonly referred to as bug reports. A
bug report is record that describes a software issue in detail, typically written in natural
language such as standard English or any other language the writer chooses.

Issue trackers are development software applications that help development teams
communicate and coordinate the management of bug and defect reports (Johnson and Dubois,
2003, Lee, D. Kim, and Jung, 2019). Additionally, issue tracking systems are used to
manage the relationships between software defects (Sandusky, Gasser, and Ripoche, 2004).
An example of an issue tracking system is Bugzilla 2, which is used by large projects such as
Mozilla 3 and Eclipse 4 (Jalbert and Weimer, 2008).

Software defects are often not isolated and often have various relationships with other
reported bugs/defects. Two common relationships between bug reports are duplication
and dependency. When a newly reported bug describes an issue that has already been
identified and documented, this is known as a duplication relationship. The second significant
relationship between bug reports, dependency, is identified when the testing, development or
resolution of a report is blocked by another unresolved issue that may have a separate bug
report. In this scenario, the dependent issue cannot be addressed until the blocking issue is
resolved (Sandusky, Gasser, and Ripoche, 2004).

Timely defect identification and correction are essential practices in software engineering
(Jeong, S. Kim, and Zimmermann, 2009). Whilst issue tracking software helps manage bug
reports (Johnson and Dubois, 2003,Lee, D. Kim, and Jung, 2019,) manual triage is still
necessary. Triaging involves reviewing individual bug reports to determine their validity and

2https://www.bugzilla.org/
3https://www.mozilla.org/
4https://www.eclipse.org/
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categorising them appropriately for the development process. However, this process diverts
time and effort away from product development and toward project management (Anvik and
Murphy, 2011 ).

The triager, the individual responsible for triaging bug reports, has two primary
objectives. The first is to maintain a streamlined bug report repository, ensuring that only
the most relevant and high quality reports are included. This helps developers focus on the
issues that will have the greatest impact on improving the product. For example, the triager
identifies and removes prior mentioned duplicate reports to prevent redundancy (Sandusky,
Gasser, and Ripoche, 2004,Anvik and Murphy, 2011 ). This aspect of triage is known as
repository-oriented decision making.

The second goal of the triagers is to organise reports for seamless integration into the
development process. This involves categorising reports based on variety of factors, such
as the affected product component/element or the developer assigned to resolve the issue.
The individual act of assigning developers to reports can itself be a demanding task that is
complex and error prone (Jeong, S. Kim, and Zimmermann, 2009). This aspect of triage is
known as development-oriented decision making.

Bug and defect reports often contain implicit information that requires additional
processing to interpret (Bettenburg et al., 2008, Herzig, Just, and Zeller, 2013). Whilst
manual inspection for this purpose is highly accurate, it is time-consuming and impractical
in may cases. Bug categorisation has been identified as a valuable technique to address this
issue (Limsettho et al., 2014) by aiding in issue/defect management and helping developers
to identify the underlying structure of the project.

Word level classification of bug reports is not novel. Various supervised learning
approaches have been used to classify bug reports against other types of feedback to varying
success. Naive Bayes and Logistic Regression was used to separate bug reports from other
submitted feedback by Antoniol et. al in 2008, with their research indicating that their
methods can achieve between 77% and 82% accuracy (Antoniol et al., 2008).

Separating bugs from other kinds of data is useful, but more recently unsupervised
learning approaches have also be used to group similar bug reports together as well (Luaphol
et al., 2018, Limsettho et al., 2014).

For example, Luaphol et al. (2018) introduced an approach to use unsupervised learning
to group bug reports via Constraint-based K-means clustering. First, the bug report sample
was pre-processed: punctuation, numbers and stop-words were removed. Following this, the
words and their respective weighting (importance) were represented in the form of bag of
words. Term Frequency (TF), Term Frequency-Inverse Document (TF-IDF) Frequency, and
BM25 were the different methods used to weight the words in the bug report sample (Luaphol
et al., 2018). Following this pre-processing and preparation, K-Means clustering was used to
group similar bug reports together with two additional constraints to the K-Means method.
The number of clusters is based on the number of meta-bugs, with each meta-bug serving as
the cluster centroid. After testing the precision, recall and F-Measure of the TF, TF-IDF and
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BM25 weighting methods, the average scores were 0.37, 0.83 and 0.51 respectively. These
results are regarded as quite low.

X-Means, unlike K-Means, does not require prerequisite information such as the number
of clusters in order to function (Limsettho et al., 2014. ) Limsettho et al. used an X-Means
clustering approach combined with extensive pre-processing such as topic modelling as well
as the previously described pre-processing steps used for Luaphol et al. K-Means method to
create an automatic approach for clustering bug reports that produced results comparable
to that of supervised learning approaches.

The prior methods listed above are forms of Natural Language Processing (NLP) (Luaphol
et al., 2018, Limsettho et al., 2014, Antoniol et al., 2008). In recent years, NLP capabilities
have undergone extensive progression, primarily attributed to Large Language Models
(LLMs) (Chen et al., 2025). Popular LLMs rooted in transformer architecture undergo
extensive training based on enormous quantities of web-based text. These models have
extensively demonstrated the ability to process information and generate responses to user
inputs known as prompts, with the latest Generative Pre-Trained Models (GPT) having
garnered significant attention due to their ability to generate coherent context-aware text
(Hendy et al., 2023, Brown et al., 2020). Some LLMs such as OpenAI’s GPT models have
demonstrated a strong ability to process, transform and work in multiple languages to gain
understanding of content and generate translations (Hendy et al., 2023).

The Natural Language Processing abilities of Large Language Models provides an
opportunity to explore clustering and bug report categorisation without the pre-processing
and training required for other methods.

Large Language Models have previously been used in Software Engineering for many
different tasks. For example, Fruntke and Krinke (Fruntke and Krinke, 2025) investigated
the use of LLMs to automate the repair of defects caused by dependency changes in Java
projects with promising results. This was done using two approaches, an agentic approach
where LLMs were used alongside automated tools and a recursive zero-shot approach where
an LLM with no prior training on the specific project was tasked with fixing the issue, with
its prompts being improved iteratively. This resulted in repair success rates of up to 23% for
the agentic approach and up to 19% for the recursive zero-shot approach.

Hossain et al. (Hossain et al., 2024. )developed a system using LLMs to locate and repair
bugs in code. Token-Granulated Bug Localization and Repair -or TOGGLE- integrates
three models to locate the bug at a token level, another to address tokenizer inconsistencies,
and a final model that is deployed to fix the bug. This approach saw extremely promising
performance on the CodeXGLUE benchmark (a collection of datasets and benchmarks used
to both test and train Machine-Learning and LLM abilities) as well as other Automated
Program Repair datasets.

Alongside repairing bug defects, Plein et al. (Plein et al., 2024) proposed using LLMs
(specifically ChatGPT and CodeGPT) to create test cases for bug repair to promising results.
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Chapter 3

Methodology

This chapter covers the methodology of my research, the implementation of this methodology
and the specific actions taken will be implemented in the following Experiments chapter.

3.1 Data Collection & Sample Preparation

3.1.1 Data Collection Source and Selection Criteria

To begin the study, a dataset of unstructured and informal user feedback was systematically
collected from Valve’s 5 video game distribution platform and online retailer: Steam 6. This
platform was chosen for this project because of its prominence in the gaming sector and its
vast collection of video game titles and software available on its store front, it is also a hub for
discussions about games and offers forums to comment about the game, share experiences,
and most importantly for this study: offer user feedback to developers to improve their games.
At the time of writing, Steam hosts an unparalleled number of games, with more than one
hundred thousand titles available in its extensive library. Furthermore, more than 12,000
games were released on the platform in 2023 alone, highlighting its constantly expanding
nature (Statista, 2025). This extensive and dynamic ecosystem provided an ideal source for
gathering relevant data on bug reports and user feedback from a variety of games.

To collect a sufficient sample of user feedback, a carefully curated subset of no more
than 17 games was selected from Steam’s vast library of available titles. These games were
selected based on specific criteria designed to ensure a high level of quality, relevance, and
diversity in the dataset. The primary criteria for each game is that it must have a dedicated
discussion category exclusively for bug reports and issues. These dedicated pages are required
for the purpose of reducing the likelihood of unrelated and none useful data contaminating the
dataset, which ensured that the collected information/data was primarily focused on technical

5https://www.valvesoftware.com/en/
6https://store.steampowered.com/
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issues, issues and user-reported issues. This approach has the advantage of providing highly
relevant data whilst minimising noise and streamlining subsequent data analysis once all data
has been collected.

Additionally, each selected game must have had at least 50 relevant discussion posts/entries
in the games dedicated bug report discussion area. This minimum threshold ensured that
the dataset is sufficiently large enough to allow for meaningful analysis and also cover a wide
range of issues. NOTE- This has now been noted as a Threat to Validity. Using these
criteria ensured that the dataset is both manageable and rich in relevant content, providing
a solid foundation to work from.

For the purpose of enhancing the variety and comprehensiveness of the dataset produced,
the selected games spanned different genres, in this case five genres were selected for
collection: Horror, Survival, Shooter, Puzzle, and Sandbox. These genres were carefully
chosen to capture a diverse array ofGameplay Mechanics, user interaction experiences, and
potential technical challenges. By incorporating games from these vastly genres the study
aimed to capture a broad spectrum of technical issues and user feedback, ensuring that the
dataset is representative of a wider gaming landscape.

An example and breakdown of the layout and content of a Steam game’s Bug Report
section of their discussion page can be found in figure 3.1. The ”bug section” that has been
highlighted shows the dedicated discussion page section for reporting bugs and issues; the
individual user posts have also been highlighted.
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Figure 3.1: Steam: Bug Report section of Subnautica’s Discussion Page
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Figure 3.2: Statista: Number of peak concurrent Steam users worldwide from 2015 to 2023

3.1.2 Data Extraction/Collection

Once the games were selected, the next step was to collect the bug reports/user feedback
posts from their respective discussion pages on Steam. This presented a challenge as Steam’s
API does not extend to its discussion pages. In this case, a custom HTML scraper was
developed and deployed to efficiently extract the necessary data. The use of a HTML
scraper significantly reduced the time and effort required for data collection whilst ensuring
consistency in the extracted information. It is important to note that prior to this it was
confirmed by Steam’s ”Robots.txt” page 7 that HTML scraping is permitted on Steam thus
ensuring that this approach is both ethical and compliant with the platform’s policies/terms
of use.

7https://store.steampowered.com/robots.txt
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The custom HTML scraper had to efficiently navigate the discussion pages of the selected
games and extract relevant information regarding each bug report entry. To ensure that the
dataset was comprehensive, structured, and well-suited for a wide range of analyses the data
collected included the following:

The title of the post. Providing a concise summary of the issue that will often reflect the
user’s initial understanding of the problem they are facing.

The content of the post. A detailed description of the issue as it is presented and understood
by the user plagued by it. This is perhaps the most important piece of data to collect as it
should provide useful insights into the nature, severity, and context of the problem occurring.

The date and time of posting. If so desired, this will allow for temporal trends to be analysed,
for example: identifying periods of increased bug report activity. Though this is not the kind
of analysis this study seeks to conduct.

The date and time of post collection. This will allow for an accurate assessment of the
timeliness of the data. The URL/Web address of the post. This facilitated easy access to
the original source for the purpose of verification and potential further analysis.

The Steam username of the original poster. In the event that this approach was used in
real world scenarios with real developers, it may be beneficial to identify the most frequent
bug reporters and to provide insight into user engagement.

3.1.3 Addressing multilingual challenges

Steam’s discussion pages are not region-specific, meaning that they attract and allow users
from all over the world. As a result, bug reports posted to these discussion pages can be
very varied in languages, reflecting the global nature of the platform’s user base that initially
made it very desirable but now presents a small challenge. Whilst many Large Language
Models are capable of understanding and processing multiple languages (Hendy et al., 2023).
it is still important that any human reviewer is able to fully comprehend the dataset during
any form of analysis, manual annotation or validation. Translation of the collected posts
was required. As the GPT models possess the ability to translate posts themselves, these
translations were not provided to the models. The purpose of these translations was to allow
for a human reviewer to easily understand the content of a post regardless of the language it
was written in, not for the purpose of LLM categorisation.

To begin, it was helpful for both analysis and translation purposes that the language that

12



Chapter 3. Methodology 3.2. Categorisation

the post is written in is detected, identified, and labelled. I used Helsinki NLP 8 combined
with Python’s Lang Detect library to automatically detect foreign languages and create
translations where needed. Encoding of this information was done in UTF-8 to allow for
special characters.

The translated text was then added to the dataset, with separate fields created for the
translated title and the translated content of the post. This approach offered the advantage
of preserving both the translated and original versions of the posts, allowing for flexibility
when it comes to analysis.

3.2 Categorisation

3.2.1 Selecting LLM models

Once a well-structured and comprehensive dataset had been produced, the next step was
selecting the appropriate Large Language Models (LLMs) to analyse and categorise the data.
For the study’s approach to appeal to wide range of developers, the publicly available GPT
models developed by OpenAI were chosen. These models offered several key advantages that
make them ideal for the task at hand.

The main reason for selecting OpenAI’s GPT models is that they are immensely popular
and have experienced widespread adoption. As of the time of writing, GPT models are
amongst the most widely used LLMs available across various industries (Hendy et al., 2023).
. Because of this, the approach will potentially be more appealing to a larger audience
of game developers, regardless of their familiarity with machine learning technologies and
techniques.

Moreover, OpenAI’s GPT models eliminate the need for significant dedicated computa-
tional resources by the developer. Unlike local LLMs, which require high-end and powerful
hardware to run, OpenAI’s GPT models operate via the cloud, with users being able to use
the models via API calls. By removing this barrier, the use of these models makes this study’s
approach accessible to both small independent (indie) developers with limited resources as
well as large studios seeking more scalable solutions.

However, OpenAI’s GPT models all charge a fee based on the amount of tokens that the
user inputs and the model outputs. This ”Pay-Per-Token” model introduces the need for
developers to carefully consider and evaluate the trade-off between cost and usability when
choosing which model they wish to use to categorise their dataset. To achieve this, three
models were selected to be systematically compared: GPT 3.5 Turbo, GPT 4 and GPT 4
Turbo (note at the time of the study GPT 4 Turbo was the newest model available). By
applying each model to the same dataset and analysing how they agree and differ in their
categorisations, the study presented a clear indication of their relevant strengths, weaknesses,

8https://huggingface.co/Helsinki-NLP
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and overall performance. This should provide developers with practical insights into which
model strikes the best balance between cost efficiency and utility for them.

3.2.2 Generating Categories

Once the dataset had been compiled and the Large Language Models had been selected, the
next step in the categorisation process is to generate categories for later use. To ensure that
the categories generated accurately reflect the larger dataset, it was important to start by
selecting a random sample. Random sampling prevents bias in the generation of categories
and ensures that the categories generated reflect the diversity of the issues in the original
dataset. For example: if the dataset contains posts from multiple different games, focusing
only on one game or one type of bug could result in categories that are too narrow or irrelevant
to other games in the dataset.

The size of the random sample was also important. If the sample was too small it may
fail to capture the variety of issues present in the dataset, leading to poor usability in the
categories generated. If the sample was too large it may have become difficult to process
efficiently and effectively.

Random selection was implemented using the python ”random” module to generate
pseudo-random numbers, these numbers were then used to select rows from the data file
containing the bug reports. A process was then implemented to prevent duplicate entries in
the randomly selected sample.

After selecting the random sample, the next step was to provide it to one of OpenAI’s
GPT models and instruct the model to generate categories based on the sample data. These
instructions were made clear and specific to ensure that the categories are usable and neither
too high level nor too low level to be used across the entire dataset. To this end, the amount
of categories generated was also important to consider. Finding a practical starting point
to aim for in the number of categories is vital to strike a balance between generality and
specificity. This will be further explained in the next chapter.

A significant technical challenge when working with OpenAI’s GPT models is the
limitation imposed by the context windows. Each model has a maximum number of tokens
it can process at a time, this window is comprised of both the input tokens (the post and
categorisation instructions) and the output tokens (the categorisation). The context windows
can vary greatly between different models meaning that some models are capable of processing
more data than others (IBM-Context-Windows.) If the sample dataset is too large to fit
within a model’s context window, some of the dataset will need to be excluded. This could
result in categories that are biased or incomplete because the model wasn’t able to consider
the full extent/scope of the sample. To address this concern, the model with largest context
window was used for generating the categories, even though it is more costly.
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3.2.3 Assigning and Comparing Categorisations

Due to the Pay-Per-Token model used by the OpenAI GPT models, it is essential for users
to have a clear understanding of how each model categorises the same dataset to make an
informed decision about which model is the most cost efficient whilst meeting their needs.

Comparing the three selected models (GPT 3.5 Turbo, GPT 4, GPT 4 Turbo) was not as
straightforward as simply evaluating how many categorisation tasks each model performed
”correctly.” This is because the task of categorising bug reports/user feedback is inherently
subjective, with posts containing different overlapping elements. A single post may fit into
multiple categories depending on its wording, context, or the ambiguity/definition of the
categories provided. For an example using hypothetical categories: a report about a game
freezing during loading screens could be categorised under ”Performance Issues” or ”Loading
Errors”, or even both depending on how the categories are defined and how the post is
interpreted. Because of this, a more nuanced approach was necessary for determining the
effectiveness of the models compared to each other.

To compare these models effectively, a measure of agreement between their individual
outputs was required. For this, Inter-Rater Reliability (abbreviated to IRR) is appropriate
for this purpose, specifically using Cohen’s Kappa scores. Cohen’s Kappa was well suited for
this task as it not only measures the level of agreement between the two raters/models but
also accounts for the likelihood of agreement happening by sheer chance (cohens-kappa).
This is important for a task like categorisation where some categories may be more likely
to appear more than others. Without accounting for chance, the agreement between models
could be inflated providing the user with inaccurate data to base their decision on. This
decision is supported by Kolesnyk et al. who determined that the use of Cohen’s Kappa for
the comparison of human experts and ML classification is justified and effective (Kolesnyk
and Khairova, 2022). Cohen’s Kappa is also very easy to understand, a score of 1 indicates
a perfect agreement, a score of 0 indicates no agreement beyond sheer chance, and a score
below 0 (a negative score) indicates agreement even worse than chance, the full range of
Cohen’s Kappa interpretations is displayed in Table 3.1.

Cohen’s Kappa Interpretation
Less than 0 Agreement worse than Chance

0 No Agreement
0.10-0.20 Slight Agreement
0.21-0.40 Fair Agreement
0.41-0.60 Moderate Agreement
0.61-0.80 Substantial Agreement
0.81-0.99 Near Perfect Agreement

1 Perfect Agreement

Table 3.1: Cohen’s Kappa Score Interpretation
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Cohen’s Kappa is calculated as follows.

κ ≡ po − pe
1− pe

= 1− 1− po
1− pe

po = Observed agreement between raters. pe = Hypothetical probability of chance
agreement.

To begin, a representative sample of posts was drawn from the dataset for the models to
categorise. To ensure that the results are unbiased and representative of the larger dataset,
the sample was randomly selected. This prevented potential biases introduced by cherry-
picking or small/narrow data samples, in practice this should ensure that the study reflects
the model’s real world performance against a variety of bug reports/user feedback.

Reiterating what was previously stated about OpenAI’s GPT models: each model can
only process a set amount of input and output tokens at a time, with this value varying
greatly between models. Because of these differences in context windows, it was necessary
that each model be given one bug report to categorise at a time, with the posts being
processed sequentially instead of all at once.

Further more, another key consideration was the stateless nature of the OpenAI GPT
models. Unlike ChatGPT, which can maintain a memory of the conversation, these models do
not retain any prior inputs nor outputs once a task is completed. As a result, the instructions
given for categorisation had to be repeated for every bug report.

To ensure cost efficiency is maintained for the user, minimising the number of tokens
used in each interaction/use of the models is crucial. A practical and effective way to
achieve this without compromising the usability of the results was to assign each category a
unique number/key and instruct the model to only respond with the number corresponding
to the assigned category for the post. This approach significantly reduced the output tokens
generated by the model therefore lowering the cost of the categorisation process.

Once the categories had been assigned by the selected models, Cohen’s Kappa scores
were used to measure the level of agreement between each of them. Specifically, comparing
the outputs of Open AI’s GPT 3.5 Turbo, GPT 4, and GPT 4 Turbo against each other in
pairs. This resulted in three sets of comparisons: GPT 3.5 Turbo vs GPT 4, GPT 4 vs GPT
4 Turbo, and GPT 4 Turbo vs GPT 3.5 Turbo. Once the Cohen’s Kappa scores had been
calculated, they were presented in a simple table for the user to review.

GPT 3.5 Turbo GPT 4 GPT 4 Turbo
GPT 3.5 Turbo N/A 0.5 0.5

GPT 4 0.6 N/A 0.6
GPT 4 Turbo 0.7 0.7 N/A

Table 3.2: Example Cohen’s Kappa Score Table (GPT models only)
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While Cohen’s Kappa scores between models provided extremely valuable insight into
the consistency of the models’ outputs, they did not directly make any statement about the
accuracy of those outputs. Essentially, high agreement between models doesn’t necessarily
mean that the categorisations are accurate or agree with what a human might consider
accurate. In this case, consistency is not the same as accuracy. To address this limitation, a
human reviewer or reviewers was introduced into the process to establish a baseline of what
a human might consider correct categorisation.

The same sample of posts that was provided to the models was then provided to a human
reviewer with the same instructions that were provided to the models. These posts were then
manually reviewed and categorised by the reviewer. Whilst this approach did not serve as a
measure of what 100 percent accurate categorisation would be, it did serve to show the user
how similar the model categorisations are to a standard human categorisation approach.

Since the data included posts written in multiple varying languages it was crucial to ensure
that the human reviewer could understand the content of non-English posts. The translations
generated during the data collection phase were used here. By providing both the original
and translated versions of the posts to the reviewer, the accuracy of manual categorisation is
maintained regardless of the original language the post was written in and ensures that the
reviewer could interpret the content as intended and categorise it appropriately.

Once the human reviewer had categorised the sample dataset, Cohen’s Kappa scores were
then calculated between each of OpenAI’s GPT models and the reviewer’s categorisations,
this offered some view into how the models align with human judgement, giving more insight
into their ”accuracy.”

GPT 3.5 Turbo GPT 4 GPT 4 Turbo Reviewer
GPT 3.5 Turbo N/A 0.5 0.5 0.8

GPT 4 0.6 N/A 0.6 0.8
GPT 4 Turbo 0.7 0.7 N/A 0.8

Reviewer 0.8 0.8 0.8 N/A

Table 3.3: Example Cohen’s Kappa Score Table (GPT models and Human Reviewer)

3.3 Sub-Categorisation

3.3.1 Generating Sub-Categories for Enhanced Usability

After the main categories had been generated, assigned to the dataset, and compared across
models, the next step to increase the usability of the approach of this study was the creation
and implementation of sub-categories. Sub-categories offered users lower level/specific
insights and provided expanded context into the issue at hand, which is particularly useful
when dealing with diverse and complex problems across the user’s dataset. Additionally,
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from a research perspective, by dividing one or more of the primary/main categories into
smaller more specific classifications, the study can explore whether additional levels of detail
improve the utility of the study’s approach whilst keeping the process manageable.

However, sub-categorisation needed to be approached carefully. With 10 primary
categories in use, dividing all categories into 10 sub-categories each would result in a messy
and overly complex system, making analysis extremely complicated and defeating the purpose
of simplification. Instead, this process focused on the most frequently assigned category
within the dataset sample, as this category represented the largest concentration of data and
offered the best opportunity for further analysis.

Once the main category for sub-categorisation had been selected, the next step was
creating the new sample dataset. Since the posts for the main categorisations were already
randomly selected to ensure unbiased representation of the dataset, the sample for sub-
categorisations was directly extracted from the posts that were previously assigned the desired
category. This straightforward approach eliminated the need to conduct a new round of
random sampling and categorisation, whilst preserving consistency within the the dataset.

With the new sample dataset ready, the process of generating sub-categories began. This
process mirrored the approach used to create the main categories but also include additional
context to guide the model and prevent overlap with existing primary categorisations. The
same GPT model used for generating the primary categories was used for sub-categorisation
in order to maintain consistency.

The model needed to be provided with additional context in order to generate meaningful
sub-categories. The model was informed of the category that the posts belong to, as well
as the other existing primary categories so that overlap was avoided to ensure the highest
level of usability in the sub-categories. As with the primary categories, the number of sub-
categories to be generated was also important to avoid the categories being too low level (too
specific) or too high level (too broad) to use. To begin, 10 sub-categories were generated as
this maintained consistency with the primary categorisation process.

3.3.2 Assigning and Comparing Sub-Categorisations

Whilst the same principles of calculating Cohen’s Kappa and Inter-Rater Reliability applied
to sub-categories as they did to the main categories, there was an extra layer of complexity
when dealing with the sub-categories. This complexity was entirely due to the differences
in how the models assigned posts to the selected primary category that was divided into
the sub-categories. Each of the models (GPT 3.5 Turbo, GPT 4, and GPT 4 Turbo,) had
variations in their interpretations of what posts belong to the select primary category. These
differences meant that there were essentially three distinct samples of posts assigned to the
primary category by GPT 3.5 Turbo, GPT 4, and GPT 4 Turbo. Creating complexity in
the evaluation process as the IRR evaluations for sub-categories had to take into account not
only the sub-categorisation itself but the differences in the primary categorisation as well.
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For each of the three models a sample of posts was extracted from the original dataset.
These samples were comprised of the posts that each model placed into the selected primary
category during the primary categorisation stage. Once again, because the models did not
completely agree on what belongs in the primary category, these samples had differences in
content.

Once the samples had been extracted, each model categorised the sample into the pre-
defined sub-categories. This approach was a near complete reprisal of the approach used to
categorise the sample into the primary categories. The instructions for sub-categorisation
were consistent across models and ensured clarity and minimise ambiguity in the models
categorisation process. Posts were processed individually and sequentially to accommodate
for the different context windows of the models and to avoid any potential bias caused by
variations in token limitations or the contextual understanding that may have changed due
to the token limitations. This was repeated three times for each of the samples produced in
the previous step: the GPT 3.5 Turbo sample, the GPT 4 sample, and the GPT 4 Turbo
sample.

Following the categorisations of the three samples by the three models, once again Inter-
Rater Reliability was used to measure the consistency between models. Cohen’s Kappa was
again used to quantify the degree of agreement between each pair of models/raters (GPT
3.5 Turbo vs GPT 4, GPT 4 vs GPT 4 Turbo, GPT 4 Turbo vs GPT 3.5 Turbo) whilst still
accounting for chance agreement. Importantly, Cohen’s Kappa between model pairs were
calculated three times for all three datasets.

To provide users of this method with a baseline for comparison, a human reviewer once
again categorised the same datasets/samples using the same instructions provided to the
models. The human reviewer’s sub-categorisations offered a reference point and allowed for
evaluation of how closely the models align with reasonable human judgement. This did not
provide definitive insight into the accuracy of the models, but did increase the usability of
the approach by providing additional context to the user.

Whilst repeating the process three times for all three post samples may seem superfluous,
it allowed for an analysis of how sub-categorisation agreement/alignment/consistency may
differ depending on the composition of the dataset.

3.4 Further Improvements

3.4.1 Determining Causes for Disagreements

Further improvements were made to the categorisation process. Understanding the root
causes of a model’s underperformance was central to these efforts.

For this process, a model was first selected to be evaluated, to this end, an evaluation of the
prior used OpenAI GPT models was required. Users may choose to evaluate whichever model
they are currently working with, but for the purposes of this study the decision was data
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driven, relying on the previously calculated performance metrics. Specifically, the selection
was based on Inter-Rater Reliability and the Cohen’s Kappa scores that measure the level of
agreement between the model’s outputs and those of the human reviewer.

To begin, the average Cohen’s Kappa score for each model was calculated across the
primary categorisation sample. Once the average scores were calculated, the model with
the lowest average Cohen’s Kappa score was identified as the target for improvement. By
focusing on the model most in need of refinement, this approach ensured that efforts were
directed where they will have the greatest impact.

The next step was a detailed comparison of the primary categorisation outputs generated
by the selected model and those produced by the human reviewer. For this comparison,
posts where there was a disagreement between the two raters was extracted and compiled
into a new dataset, referred to as the ”Disagreement Sample.” Each post in the Disagreement
Sample underwent review by a human reviewer, the post and each rater’s categorisation of it
should were provided and the reviewer categorised each post according to the perceived reason
for disagreement between the two raters. In contrast to the previously used categorisation
approaches, in this part of the experiment categories were created dynamically, allowing the
reviewer to identify and label new reasons for disagreement as they emerged in the sample.

For example, a GPT model and Human Reviewer may have disagreed due to a different
understanding of the post, or due to the post being multi-faceted with the different reviewers
prioritising different aspects.

3.5 Collecting Feedback from Game Developers

3.5.1 Survey Production & Screening Preparation

To ascertain feedback from real world developers regarding the usefulness of the categories
produced, a survey was produced. The survey asked the developers to rate the generated
primary and sub-categories by usefulness, optional qualitative data was collected. Qualitative
data regarding each category had to be optional to increase participant retention due to the
large number of categories being analysed. This has been noted as a potential threat to
validity. Other information regarding the developer regarding the number of bug reports
they have worked with, their experience shipping games and their general experience in the
field was also collected at this stage to allow for potential analysis of trends that arise in this
information.

To ensure that participants had the prerequisite knowledge to offer meaningful feedback,
a screening survey was used (Danilova et al., 2021).
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3.5.2 Survey Distribution & Participant Pools

Prolific was used to distribute the survey to participants as it not only has a large participant
pool but also allows researchers to find participants based on their industry experience. Two
groups were created, individuals who work within the Games Industry professionally and
individuals who are likely to have some form of Game Development experience. This was to
ensure that both formally employed and hobbyist developers are included, as the majority
of games released on Steam (the place where the bug reports were collected) are designated
as ”indie games” (Statista, 2024b). This has been noted as a potential threat to validity and
is elaborated on later. The screening survey was then distributed to the two groups, those
who pass the screening survey were then invited to the primary survey.

3.5.3 Results Analysis

Once the survey was completed, the usefulness ratings of the primary and sub-categories
displayed which categories developers found most and least useful. To determine how united
developers are regarding these usefulness ratings, standard deviation was then calculated
for the ratings of each category. The frequency in which the categories were assigned to
the sample datasets were compared to the newly collected usefulness ratings to analyse the
correlation between frequency and developer rated usefulness.
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Chapter 4

Experiments

This section follows the process of executing the methods detailed previously.

4.1 Preparing to create the dataset

The experiment began with the collection of unstructured user feedback from the digital
distribution platform Steam. As described in the Methodology Chapter, to ensure the variety
and comprehensiveness of the dataset, five genres were carefully selected to capture a broad
and diverse array of Gameplay Mechanics, player experiences and technical challenges. These
genres were: Horror, Survival, Shooter, Puzzle, and Sandbox. From these genres, a total of
17 games were identified and selected for inclusion in the study. The selection process ensured
that the games represented key aspects of their respective genres and offered sufficient data
for meaningful analysis.

The selected games and genres are as follows:

Horror Survival Shooter Sandbox Puzzle
Hello Neighbor Subnautica Warframe Factorio The Talos

Principle 2
Hello Neighbor 2 Subnautica

Below Zero
Day Z The

Witness
The Forest Stranded

Deep
Payday 2 Obduction

Phasmophobia Rust Payday 3 Stray

Table 4.1: Games by Genre

The games were chosen based on two criteria. First, each game needed to have a dedicated
”bug reports,” ”technical issues” or otherwise similar dedicated category within its Steam

22



Chapter 4. Experiments 4.2. HTML scraping

discussion page. This ensured that the data collected would be directly relevant to the topic of
technical problem reporting, minimising the inclusion of irrelevant or off-topic posts. Second,
the dedicated bug report category must have at least 50 relevant posts. This threshold was
established to guarantee that each game contributed a meaningful volume of data to the
dataset whilst avoiding games with limited activity.

4.2 HTML scraping

After selecting the games, a custom HTML scraper was developed to gather posts from the
bug report discussion section of each title. The scraper was implemented in Python and used
the Requests library to fetch web pages and BeautifulSoup4 to parse and process the HTML
data. The scraper was designed to methodically navigate the discussion section of each game
and extract specific information from the HTML structure.

Once the location of each important data point had been manually located within the
HTML, the scraping process began by accessing the discussion page directories, which lists
all posts within the bug report section. From each page in these directories, the following
pieces of information were extracted from each post:

The game name, using the ”apphub Appname” class in the HTML.

The links to each individual post, using the ”forum topic overlay” class.

The post titles, using the ”forum Topic name” class.

The reply counts, using the ”forum Topic Reply count” class.

The username of the Original Poster (OP), using the ”forum Topic op” class.

To achieve this, the scraper utilised the specific HTML classes mentioned above to locate
and extract the relevant data. Each piece of information was processed with BeautifulSoup4
to strip away unnecessary HTML code and other extraneous elements, ensuring that only
the desired content was retained. The processed data was then stored in respective arrays,
creating a structured collection of information for later use and storage.

Whilst the discussion page directories provided valuable metadata for each post, they did
not include the main text of the posts themselves. To address this, the URLs collected for
the individual posts were used to navigate to their respective pages and extract their content.
Extracting the main text of the posts proved to be slightly more complex than retrieving the
metadata due to the way the content was embedded in the HTML.

The scraper identified the main text by locating ”script” tags with the attribute
”type=’text/JavaScript’.” Since the HTML contained multiple script tags, the keyword
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”InitializeForumTopic” was used to pinpoint the specific tag containing the desired content.
After identifying the relevant script tag, the scraper performed additional processing to
remove unnecessary JavaScript code and other extraneous syntax.

Some posts contained special characters that triggered Unicode escape sequences, leading
to encoding issues during processing. To resolve this, the text content was encoded in UTF-
8 and decoded using the Unicode Escape codec. This step replaced the escape sequences
with their corresponding characters, ensuring that the text was both properly formatted and
readable. Once the processing was complete, the extracted text was added to the array of
post contents, which was then integrated with the metadata collected at the first stage.

This two step process (scraping the discussion directories for metadata and then
navigating to individual posts for their main content) was repeated for each game, each
discussion directory page in the bug report section, and each post listed on those pages.

During the data collection process, an unexpected challenge arose: the number of posts
retrieved by the scraper was lower than the total number of posts listed in the discussion
page directories. Initially, this discrepancy was suspected to be a result of user error in the
script, However, further investigation and communication with Steam Support confirmed that
inactive posts were systematically removed from the discussion page directories over time (See
Appendix C/Figure 7.5). This practice was implemented by Steam to reduce server load and
improve performance. Attempts to access these old posts through the Internet Archive/Way
Back Machine failed.

According to Steam Support, these inactive posts could not be accessed through the
discussion pages unless their exact titles were known and individually searched. Since the
titles of inactive posts were unavailable, it was not possible to include them in the dataset. As
a result, the study was limited to active posts that were still publicly accessible. While this
limitation introduced a potential bias toward more recent discussions, it did not significantly
impact the study’s goals, as the primary objective was to create an approach/process to allow
developers to analyse currently active bug reports.

After completing the HTML scraping process, the dataset produced consisted of over
4,500 posts from the bug report discussion sections of the 17 selected games.

4.3 Generating Primary Categories

OpenAI’s GPT models were used to generate categories based on comments provided to it. To
ensure there was no bias, the sample provided was selected randomly, with no cherry picking.
This random sampling helped to ensure that the categories created by the model(s) were based
on the entire range of the games selected, instead of just a few. One technical limitation of
working with GPT (and other) large language models is their respective ”Context Windows.”
Context Windows refers to the amount of tokens that the models can remember at any single
time, a token being the words, character sets or combinations of words and punctuation that
LLMs use to process information (Bergmann, 2023). Because of this token limitation, the
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Models & Human Reviewer for Primary Categorisations

sample provided to the GPT models to generate categories had to be small enough to be used
by the model with the lowest context window whilst also providing enough data to generate
useful categories. The number of posts used for this dataset was 225, as posts can vary in
length and therefore token count, this number (225 Posts) is not a strict representation of
the maximum number of posts the models can handle, however it was found to be around
the average maximum number of posts that GPT 3.5 Turbo could process.

The creation of categories was facilitated by a simple prompt of the instruction to generate
10 categories based on the data provided, followed by the 225 randomly selected posts.

Final Prompt: ”This sample contains bug reports from various games across multiple
genres. Generate 10 categories for these bug reports and return them to me, make sure the
categories are neither too specific nor too broad to be useful for the majority of games...”

The 225 collected posts were then added to the end of this string.
The final categories produced by this prompt are shown in the results section in Table

5.1.

4.4 Assigning Primary Categories and Evaluating Inter-

Rater Reliability Results between Models & Hu-

man Reviewer for Primary Categorisations

As previously mentioned, OpenAI’s GPT models have limited context windows. To
accommodate lower context windows, posts were provided to the models sequentially rather
than in bulk. To compare the categorisations produced, Inter-Rater Reliability was measured.
Inter-Rater Reliability (IRR) is a measure of the consistency and agreement between multiple
raters in their assessment of the same information. In the case of this study, raters refers to
the GPT models used to produce categorisations as well as an additional human reviewer, the
information assessed being the categorisations assigned to the post sample. A single human
reviewer categorising the same sample as the GPT models is not indicative of the models’
accuracy, but instead offers a comparison point for each of the models. Once again, a random
sample of 225 posts was selected. At this stage, prompt engineering, the process of creating
a prompt or instruction to achieve the best results from a LLM, was employed Chen et al.,
2025). As instructing a model to place a comment into a category is very simple, this small
process of prompt engineering was designed to limit the number of tokens required by the
LLM to complete the task. Specifically, the inclusion of an instruction to limit responses to a
single character was a cost saving measure to decrease the number of output tokens required
by the model.

Example Final Categorisation Prompt:
To begin the prompt the LLM was provided with the instructions for categorisation:
”Place this comment in the most fitting category : 1. Gameplay Bugs & Glitches.

2. Technical Issues & Crashes. 3. Game Progression Blocks. 4. Graphics & Rendering

25



Chapter 4. Experiments 4.5. Generating Sub-Categories

Problems. 5. Controls & Input Recognition. 6. Multiplayer & Connectivity Issues. 7. User
Interface & Experience Problems. 8. Audio Issues. 9. Installation & Update Problems.
10. Achievements & Rewards Issues. Limit response to single character, the number of the
category, no text other than that value: ”

This was then followed by a user post, for example:
”The game crashes with my internet on and my laptop is an Acer Nitro 5. The game just

crashes whenever I launch it with internet on so I can’t play mods and with internet off it is
fine.”

For this study,Inter-Rater Reliability was measured using a statistical measure called
Cohen’s Kappa. Cohen’s Kappa is a value that represents the level of agreement between
raters whilst accounting for the possibility of them agreeing by chance. Cohen’s Kappa was
calculated for each pair of raters (including the human reviewer).

4.5 Generating Sub-Categories

The most frequent primary category assigned to the posts was selected for sub-categorisation
tests. The primary category selected for sub-categorisation was ”Technical Issues & Crashes.”
The following prompt was produced to generate 10 Sub-Categories based on this primary
category,

Sub-Categorisation Final Prompt: ”These comments are from the category
Technical Issues and Crash Reports, from these comments, generate 10 sub categories and
return them to me, make sure there is no overlap with the following categories: 1. Gameplay
Bugs & Glitches. 3. Game Progression Blocks. 4. Graphics & Rendering Problems. 5.
Controls & Input Recognition. 6. Multiplayer & Connectivity Issues. 7. User Interface
& Experience Problems. 8. Audio Issues. 9. Installation & Update Problems. 10.
Achievements & Rewards Issues..”

The collected posts from the selected primary category were then added to the end of
this string.

The inclusion of primary categories was necessitated when test sub-categories were
producing categories that overlapped with existing primary categories. the result of this
prompt are shown in the results section in Table 5.9.

4.6 Assigning Sub-Categories and Evaluating Inter-

Rater Reliability Results between Models & Hu-

man Reviewer for Sub-Categorisations

As each of the models assigned a different amount of posts to this primary category, multiple
sample datasets of posts were be extracted from each of the models primary categorisations.
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For each of these datasets, the posts within them were categorised in the same manner as the
production of primary categorisations, instead substituted with the generated sub-categories
and with the additional context provided to the models regarding the primary category they
pertain to.

Example Final Sub-Categorisation Prompt: To begin the prompt the LLM was
provided with the instructions for sub-categorisation:

”Place this comment in the most fitting category: 1. Specific Mission/Levels Crashes
2. Device-Specific Issues 3. Performance Issues (FPS Drops/Stutters) 4. Crash on
Launch/Startup 5. In-Game Freeze/Crash 6. Asset Loading Errors 7. Memory Management
and Leaks 8. Game Integrity and Corruption 9. Hardware Compatability Issues 10. Post-
Update Problems Limit response to single character, the number of the category, no text
other than that value: ”

This was then followed by a user post, for example:
”Frequent crashes since updatetitle says it all.”
For each of the datasets, Cohen’s Kappa values were calculated for all pairs of raters.

The mean of these scores were then calculated.

4.7 Creating Survey & Screening Survey

To gain quantitative and qualitative data regarding developer reception of the categories
produced, a survey was created. Recruiting developers with the desired skill set can be
difficult. Prolific, an online survey participant pool, made this simpler by giving surveyors
access to a wide array of participants based on different criteria such as profession, hobbies,
location and more. However, it was still vital to personally ensure that these participants
recruited from Prolific had the necessary skills to provide usable data. This was done through
the use of screening surveys to test participant knowledge, allowing those who succeed to
continue to the main survey and those who don’t to be excluded, (Danilova et al., 2021).

Developers were split into two groups based of Prolific user data: Games Industry partici-
pants, who actively work in the games industry, and None-Games Industry participants, who
whilst not reporting to work in the games industry, are likely to have knowledge regarding the
video game development process as well as the importance of certain issues as they pertain to
video games. This was done to allow for hobbyist/none-professional developers to be included
in the study. Both groups had to pass the screening survey to continue.

The screening survey asked a variety of questions beginning with general skill information:

1. Which of these game engines do you have experience working with (Select
ALL engines that apply). -This question had 2 fake answers to attempt to catch
those who answer questions falsely.

2. What roles have you held in game development projects?
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3. Which of these programming languages have you used to develop a game?
(The game itself, not things related to the game such as websites or
launchers).

Following this, questions to test respondents knowledge were taken from a paper by
Danilova et al., 2021.

Following the screening survey , developers were presented with the primary study survey
where they rated how useful they thought each primary and sub-category would be, as well
as optionally providing qualitative responses regarding extra thoughts and opinions they had
over the categories.

These surveys were both piloted twice, the result of which was fixing formatting issues
with the survey where certain questions that should have been multiple choice weren’t, as
well as removing ambiguity from the phrasing of certain questions to make them clearer.

The screening and primary survey in their complete form can be found in Appendix E.1
(Figure 7.6) and E.2 (Figure 7.7) respectively.
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Results & Discussion

There were multiple categories generated before a final set of primary categories was selected,
the selected categories were chosen as they were the clearest set of category names that
encompass the largest amount of issues affecting the majority of games without being too
specific towards one genre or one type of game. The results of this can be seen in Table 5.1.

Initial Category Test Second Category Test Selected Final Categories
1. Bugs & Glitches. 1. Game Crashes and Freezes. 1. Gameplay Bugs & Glitches.
2. Technical Issues. 2. Progression Halting Bugs. 2. Technical Issues & Crashes

3. Server & Multiplayer. 3. Startup and Initialization Errors. 3. Game Progression Blocks
4. UI Problems. 4. Graphics and Rendering Problems. 4. Graphics & Rendering Problems

5. Save Corruption. 5. Input and Control Issues. 5. Controls & Input Recognition
6. Support & Community. 6. Account and Access Restrictions. 6. Multiplayer & Connectivity Issues

7. Localization. 7. Save Data Corruption and Loss. 7. User Interface & Experience Problems
8. Content & Progress. 8. Multiplayer Connectivity and Matchmaking. 8. Audio Issues

9. Feedback & Suggestions. 9. Vehicle and Object Interactions Bugs. 9. Installation & Update Problems
10. Optimisation. 10. Game Optimization and Performance. 10. Achievements & Rewards Issues

Table 5.1: Test Categories Generated and Selected Final Primary Categories Generated

The selected final categories shown in Table 5.1 are applicable to the majority of games
released on Steam, with the exception of ”6. Multiplayer & Connectivity Issues” which only
applies to games with online content. Developers may instead wish to focus their categories on
more specific and unique aspects of their games, such as gameplay mechanics or systems. This
may prove to offer more useful information on a game-by-game basis, however, developers
should take care that their produced categories do not exclude more generic and high level
issues that are not unique to their game or their gameplay systems.

5.1 Test Categorisation Results

To determine if the experiment was worth pursuing, an initial test was conducted on the
initial set of categories generated. The initial categorisations test shown in Tables 5.2 and
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5.3 demonstrated that not only were the GPT model categorisations reliable with each other,
but also with the human reviewer as well. These results showed that there was a substantial
level of agreement between all the pairs of raters. The lowest scoring pair of the models was
GPT 4 Turbo and GPT 3.5 Turbo, the highest scoring pair of the models was GPT 4 and
GPT 4 Turbo. Amongst the human reviewer comparisons, GPT 4 Turbo had the lowest level
of agreement with the reviewer.

These results were promising enough to continue with the experiment and the production
of new categories and further tests.

GPT 3.5 Turbo vs GPT 4 GPT 4 vs GPT 4 Turbo GPT 4 Turbo vs GPT 3.5 Turbo
0.643 0.750 0.582

Table 5.2: Cohen’s Kappa Scores between GPT Models, Selected Primary Categories, Initial
Categorisation

GPT 3.5 Turbo vs Reviewer GPT 4 vs Reviewer GPT 4 Turbo vs Reviewer
0.585 0.597 0.570

Table 5.3: Cohen’s Kappa Scores between GPT Models and Human Reviewer, Selected
Primary Categories, Initial Categorisation

30



Chapter 5. Results & Discussion 5.2. Primary Categorisation Results

5.2 Primary Categorisation Results

Category Avg.
Frequency

Freq: (Original)
GPT 3.5 Turbo

Freq:
GPT 4

Freq:
GPT 4
Turbo

2. Technical Issues &
Crashes

70 71 67 72

1. Gameplay Bugs &
Glitches.

44 58 42 32

3. Game Progression
Blocks

31.667 9 43 43

4. Graphics & Rendering
Problems

21.667 21 21 23

6. Multiplayer &
Connectivity Issues

19 21 17 19

5. Controls & Input
Recognition

10.667 8 14 10

10. Achievements &
Rewards Issues

10 9 10 11

7. User Interface &
Experience Problems

8.333 15 4 6

9. Installation & Update
Problems

5 8 2 5

8. Audio Issues 3.667 4 4 3

Table 5.4: Frequency of Primary Categorisations by Models (Sorted by Average Frequency)

After each model had assigned the posts in the sample to the 10 final primary categorises
generated previously, the frequency of each assigned category was counted across the three
models as seen in Table5.4. To attempt to answer the second research question for this study,
”How reliable are different popular Large Language Models at categorising unstructured
and informal bug reports for games?” the frequency of each category in each model’s
categorisations was compared to see how the models categorise the data similarly, and perhaps
more importantly, how they categorise the same data differently.

The average frequency for each category was then calculated. The average/mean value
of the frequency in which the GPT models assigned each category is important and useful
as it provides a single value that can later be used to compare against the average usefulness
rating calculated from each participant’s rating of the category during the developer survey,
this will be expanded upon later.

Among the categories, ”Technical Issues & Crashes” was the most frequently assigned,
with an average occurrence/frequency of 70 within a dataset of 225. The second most frequent
category, Gameplay Bugs & Glitches, had much lower mean frequency of 44, 38% lower than
Technical Issues & Crashes (see Table 5.4). These two categories are the highest level
categories, encompassing the most amount of potential issues without being specific about
what the issues entail. This suggests that when the models were not able to assign posts to
any of the more specific categories (for example: Audio Issues) they were placed into one of
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these two categories.
The uniquely high mean frequency of ”Technical Issues & Crashes” invites some interest

analysis. The first and most obvious being that it is the most important category and the most
common reason for users posting to Steam regarding bug reports. The second relates to the
scope of the categories. As the categorisation prompt tells the models to place a comment
into the most relevant category, posts that contain multiple issues are likely to be placed
into a category that best summarises the post as a whole rather than the individual issues
discussed. For instance, a post may talk about graphics and audio problems. Whilst both
of these issues have their own dedicated categories - ”Graphics & Rendering Problems” and
”Audio Issues” respectively- the model may place them into ”Technical Issues & Crashes,”
a category that might encompass both, to avoid prioritising one issue over the other. This
has been noted as a threat to validity.

Whilst the two most frequently assigned categories were consistently assigned across all
the models, this is not the case for the third most frequent category, ”Game Progression
Blocks.” As see in Table5.4, both GPT 4 and GPT 4 Turbo assigned this category to 43
posts, a relatively high frequency compared to other categories, whereas GPT 3.5 Turbo
only assigned it 9 times. This vast difference suggests that GPT 3.5 Turbo assigns less
importance to this category compared to its newer counterparts. The only other such case in
where GPT 3.5 Turbo appears to disagree with the newer models is in the assignments of the
”User Interface & Experience Problems” category, where it assigned noticeably more posts to
the category compared to GPT 4 and GPT 4 Turbo. This suggests that the newer GPT 4 and
GPT 4 Turbo models categorise certain types of bug reports differently than the older model,
partially answering the second research question, however due to the subjectivity inherent
in this form of categorisation it cannot be stated whether this represents an improvement or
reduction in the accuracy of categorisations produced by these two models (GPT 4, 4 Turbo)
compared to the older GPT 3.5 Turbo.

5.3 Inter-Rater Reliability Results between Model &

Human Reviewer Primary Categorisations

Following the initial categorisation by both the human reviewer and the selected models,
Inter-Rater Reliability/Cohen’s Kappa scores for the raters’ assignment of the primary
categories were calculated. Inter-Rater Reliability offers a direct method of answering the
second research question by directly comparing the raters (the models and human reviewer)
categorisations against each other and producing a single score for each pair of that represents
their Inter-Rater Reliability with each other whilst accounting for the possibility of them
agreeing by chance.
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GPT 3.5 Turbo vs GPT 4 GPT 4 vs GPT 4 Turbo GPT 4 Turbo vs GPT 3.5 Turbo
0.574 0.716 0.581

Table 5.5: Cohen’s Kappa Scores between GPT Models, Selected Primary Categories, Initial
Categorisation

To begin, the models were compared against each other. As seen in Table 5.5 GPT 4
and GPT 4 Turbo demonstrated the highest Inter-Rater Reliability in their categorisations,
scoring 0.12 higher than the next most reliable pair. Interpreting the Cohen’s Kappa using
table 3.1 previously shown in the methodology, GPT 4 and GPT 4 Turbo display substantial
agreement with each other whilst only showing moderate agreement with GPT 3.5 Turbo’s
categorisations. This shows that GPT 4 and GPT 4 Turbo are both more meaningly more
reliable (using Inter-Rater Reliability) with each other than either are with GPT 3.5 Turbo.

GPT 3.5 Turbo vs Reviewer GPT 4 vs Reviewer GPT 4 Turbo vs Reviewer
0.597 0.628 0.635

Table 5.6: Cohen’s Kappa Scores between GPT Models and Human Reviewer, Selected
Primary Categories, Initial Categorisation

Following the comparison of the models against each other, each model’s categorisations
were compared to the human reviewer’s categorisations. This was once again done using
Cohen’s Kappa scores to determine Inter-Rater Reliability. Interestingly, Table 5.6 shows a
clear positive correlation between the GPT model recency and alignment with the human
reviewer. Once again the Cohen’s Kappa scores were interpreted using table 3.1 . GPT 3.5
Turbo and the human reviewer were found to have moderate agreement whilst GPT 4 and the
human reviewer and GPT 4 Turbo and the human reviewer were found to have substantial
agreement, though this is not due to a large difference in scores (only a 0.38 difference between
GPT 3.5 Turbo and GPT 4 Turbo scores with the human reviewer) and instead in the way
the thresholds are defined. This still suggests that newer GPT models are more likely to
categorise feedback in a manner more similar to human judgement, potentially indicating
improvements in their ability to interpret and classify user reported feedback accurately.
Though this improvement would be subtle.
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5.4 Primary Categories Disagreement Analysis & Im-

provements

Cause Frequency
Ambiguous Criteria 15
Subjectivity 26
Multi-Faceted Issue 21
Insufficient Context Provided 4
Different Understanding of Comment 4

Table 5.7: Frequency of Disagreement Causes between GPT 3.5 Turbo Primary
Categorisations and the Human Reviewer’s Categorisations

Following the primary categorisations, a breakdown of the disagreements between the least
reliable model (GPT 3.5 Turbo) and the human reviewer was conducted with the goal of
improving the models Inter-Rater Reliability by improving the prompt used to categorise
the data. The causes for disagreement fell into 5 different categories, Ambiguous Criteria,
Subjectivity, Multi-Faceted Issues, Insufficient Context, and Different Understanding of
Comment (See Table 5.7). The most common of these being Subjectivity and the post
holding Multi-Faceted issues. These issues are largely entwined, as a model or reviewer will
place a post with Multi-faceted issues into the category they believe is most important.

For example, the post: ”I have a problemI reinstalled windows and after installing steam.
I logged into the game and found that my progress was missing for some reason I didn’t
understand. Although it seems like there should be cloud saving.” was placed into the primary
category ”Game Progression Blocks” by the GPT model, and into the primary category
”Technical Issues & Crashes” by the human reviewer. This disagreement was deemed to
be due to the post holding Multi-Faceted Issues due to the problem being a technical issue
(saving not working) which was then causing game progression issues.

To attempt to improve GPT 3.5 Turbo’s Inter-Rater Reliability with other models
and the reviewer, the prompt was modified to include the fully explained category
definitions/descriptions instead of just the category name.
Original Prompt:
”Place this comment the most fitting category: 1. Gameplay Bugs & Glitches. 2. Technical
Issues & Crashes. 3. Game Progression Blocks. 4. Graphics & Rendering Problems. 5.
Controls & Input Recognition. 6. Multiplayer & Connectivity Issues. 7. User Interface
& Experience Problems. 8. Audio Issues. 9. Installation & Update Problems. 10.
Achievements & Rewards Issues. Limit response to single character, the number of the
category, no text other than that value: ”
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New Prompt:
”Place this comment the most fitting category:
1. Gameplay Bugs & Glitches- This category includes any reports of in-game behaviour not
working as intended, such as player or object movement issues, creatures acting strangely, or
mechanics not functioning correctly.
2. Technical Issues & Crashes- Comments about the game crashing, freezing, or not launching
properly fit here. This includes problems with the games performance on specific hardware
and error messages received upon launch or during gameplay.
3. Game Progression Blocks- This category is for issues where players get stuck in a specific
part of the game due to a bug or an unclear game mechanic, preventing them from progressing
further.
4. Graphics & Rendering Problems- Issues related to the game’s visual aspects, such as
textures not loading, lighting issues, or any anomalies in the game’s graphical presentation,
belong here.
5. Controls & Input Recognition- Comments reporting problems with game controls, such as
keybindings not working, controller issues, or difficulties with input devices, are categorized
here.
6. Multiplayer & Connectivity Issues- This covers any issues related to playing the game in a
multiplayer setting, including server connection problems, desync issues, or difficulty joining
or hosting games.
7. User Interface & Experience Problems- Issues with the games UI, such as inventory
management problems, unclear objectives, or HUD display issues, would be compiled under
this category.
8. Audio Issues- This category involves problems with the games sound, including missing
or distorted audio, volume issues, or specific sounds not playing correctly.
9. Installation & Update Problems- Comments about difficulties installing the game,
updating it, or issues arising from patches and game updates are included here.
10. Achievements & Rewards Issues- Problems related to in-game achievements not being
awarded, reward items not appearing, or other issues concerning the games reward system
are sorted into this category.
GPT you should Limit response to single character, the number of the category, no text other
than that value: ”

Cohen’s Kappa Old GPT 3.5 Turbo Old GPT 4 Old GPT 4 Turbo Human
New GPT 3.5 Turbo 0.574 0.618 0.587 0.584
Old GPT 3.5 Turbo - 0.643 0.582 0.585

Table 5.8: GPT 3.5 Turbo Recategorisation Test

The sample dataset was re-categorised by GPT 3.5 Turbo using the modified prompt,
the results of which are shown in 5.8. There were very subtle improvements in Inter-Rater
Reliability between the new GPT 3.5 Turbo categorisations and the GPT 4 Turbo and Human
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Reviewer categorisations following recategorisations, though each of these improvements were
less than a 0.1 increase. Interestingly, the new GPT 3.5 Turbo recategorisations and the GPT
4 categorisations became less reliable by 0.3, the largest difference between the old GPT 3.5
Turbo pairs and the new GPT 3.5 Turbo pairs. In the context of the second research question,
this shows that the prompt used to categorise data holds substantial relevance to the Inter-
Rater Reliability of the models in addition to the recency in which they were released, as by
removing ambiguity in the meaning of the categories, the model was better able to categorise
the data, albeit subtly in this case.

5.5 Sub-Category Generation Results

To further answer the second research question and to understand how reliable the GPT
models are with assigning posts to sub-categories, the primary category with the highest
average assignment frequency by the three models was selected to undergo sub-categorisation.
As previously shown in table5.4 , ”Technical Issues & Crashes,” with an average frequency of
70, had the highest average frequency across the primary categories. Repeating the process
in which the primary categories were generated, sub-categories were produced. Like with the
primary category generation, there were some unused categories generated at this stage as
well. The unused and selected sub-categories are shown in Table 5.9.

Initial Category Test Selected Final Categories
Controls Issues. 1. Specific Mission/Level Crashes

2. Missing Assets. 2. Device-Specific Issues
3. Objective Progression. 3. Performance Issues (FPS Drops/Stutters)

4. Performance. 4. Crash On Launch/Startup Issues
5. Visual/Audio Glitches. 5. In-Game Freeze/Crash

6. Artificial Intelligence Issues. 6. Asset Loading Errors
7. Combat Issues. 7. Memory Management/Leaks
8. Game Stability. 8. Game Integrity and Corruption Problems
9. Interaction. 9. Hardware Compatability Issues

10. Achievement Issues. 10. Post-Update Problems

Table 5.9: Test Categories Generated and Selected Final Sub-Categories Generated
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5.6 Sub-Categorisation Results

After ”Technical Issues & Crashes” was selected for sub-categorisation, the posts assigned to
the category by each model were collected into 3 different sample datasets consisting of the
posts assigned to this category by GPT 3.5 Turbo, GPT 4, and GPT 4 Turbo.

The following tables (Table 5.10, Table 5.11and Table 5.12) represent how the GPT
models categorised the three prior mentioned new sample datasets. Table 5.10 shows how
each model categorised posts deemed to be in the ”Technical Issues & Crashes” by GPT 3.5
Turbo, Table5.11 does the same for posts assigned to this primary category by GPT 4, and
Table 5.12 shows the same for posts assigned to ”Technical Issues & Crashes” by GPT 4
Turbo.

Category Avg.
Frequency

Freq: GPT 3.5
Turbo

Freq:
GPT 4

Freq:
GPT 4
Turbo

4. Crash On
Launch/Startup Issues

25 25 25 25

5. In-Game Freeze/Crash 24.333 29 22 22
2. Device-Specific Issues 5 9 3 3
1. Specific Mission/Level
Crashes

4 2 5 5

6. Asset Loading Errors 3.667 3 4 4
7. Memory
Management/Leaks

2.667 2 3 3

10. Post-Update Problems 2.667 0 4 4
8. Game Integrity and
Corruption Problems

2 0 3 3

3. Performance Issues
(FPS Drops/Stutters)

1 1 1 1

9. Hardware Compatability
Issues

0.667 0 1 1

Table 5.10: GPT 3.5 Turbo Dataset: Frequency of Primary Categorisations by Models
(Sorted by Average Frequency)
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Category Avg.
Frequency

Freq: GPT 3.5
Turbo

Freq:
GPT 4

Freq:
GPT 4
Turbo

4. Crash On
Launch/Startup Issues

22.333 23 20 24

5. In-Game Freeze/Crash 17.333 24 10 18
3. Performance Issues
(FPS Drops/Stutters)

6.667 6 9 5

9. Hardware Compatability
Issues

4.667 3 7 4

10. Post-Update Problems 4.667 2 8 4
1. Specific Mission/Level
Crashes

3.333 1 6 3

2. Device-Specific Issues 3.333 6 2 2
7. Memory
Management/Leaks

1.333 1 1 2

8. Game Integrity and
Corruption Problems

1.333 0 2 2

6. Asset Loading Errors 1 0 1 2

Table 5.11: GPT 4 Dataset: Frequency of Sub-Categorisations by Models (Sorted by Average
Frequency)

Category Avg.
Frequency

Freq: GPT 3.5
Turbo

Freq:
GPT 4

Freq:
GPT 4
Turbo

4. Crash On
Launch/Startup Issues

23 22 21 26

5. In-Game Freeze/Crash 19 27 11 19
9. Hardware Compatability
Issues

6.333 6 9 4

3. Performance Issues
(FPS Drops/Stutters)

5.667 3 9 5

10. Post-Update Problems 4.333 1 8 4
2. Device-Specific Issues 4 7 2 3
1. Specific Mission/Level
Crashes

2.667 0 5 3

8. Game Integrity and
Corruption Problems

2.667 2 3 3

7. Memory
Management/Leaks

2 2 2 2

6. Asset Loading Errors 1.333 1 1 2

Table 5.12: GPT 4 Turbo Dataset: Frequency of Sub-Categorisations by Models (Sorted by
Average Frequency)

From these categories, the mean frequency of categorisations by the three models was
calculated to create an average dataset from the three sub-categorisation samples (see Table
5.13).
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Category Avg.
Frequency

Freq: GPT 3.5
Turbo

Freq:
GPT 4

Freq:
GPT 4
Turbo

1. Specific Mission/Level
Crashes

3.333 1 5.333 3.666

2. Device-Specific Issues 4.111 7.333 2.333 2.666
3. Performance Issues
(FPS Drops/Stutters)

4.444 3.333 6.333 3.666

4. Crash On
Launch/Startup Issues

23.444 23.333 22 25

5. In-Game Freeze/Crash 20.222 26.666 14.333 19.666
6. Asset Loading Errors 2 1.333 2 2.666
7. Memory
Management/Leaks

2 1.666 2 2.333

8. Game Integrity and
Corruption Problems

2 0.666 2.666 2.666

9. Hardware Compatability
Issues

3.888 3 5.666 3

10. Post-Update Problems 3.888 1 6.666 4

Table 5.13: Combined Dataset: Frequency of Sub-Categorisations by Models (Sorted by
Average Frequency)

The two most frequent categories, ”Crash on Launch/Startup Issues” and ”In-Game
Freeze/Crash,” were consistent across all 3 models, being the first and second most frequent
sub-category respectively. These two categories were vastly more occurrent than any other
category across all of the datasets (See Table 5.10, Table 5.11 and Table 5.12). Unlike
in the primary categorisations where ”Technical Issues & Crashes” and ”Gameplay Bugs
& Glitches” were likewise far more frequent than other categories (see Table 5.4), these
frequent sub-categories do not appear to be any more or less vague than other sub-categories
and do not seem to be umbrella categories that may encompass other smaller sub-categories.
Therefore, it is likely that these categories are simply more genuinely occurrent in the dataset.

The most frequent category, ”Crash on Launch/Startup Issues,” had such a high frequency
that it’s mean frequency across the 3 datasets was larger than the mean frequency of
the 7 least occurrent categories combined (see Table 5.13).. This has various interesting
implications, the first is that these are simply much more common in the dataset, the
second is that players are more likely to report issues that actively prevent them from
playing the game (not being able to progress due to crashing) than smaller, less destructive
issues such as loading issues. The third, perhaps more useful implication, is that players
do not have the technical expertise or experience to identify more complicated issues such
as ”Memory Management/Leaks” on their own, instead only reporting the symptoms of the
issue (crashing, lag, etc). without being able to articulate the cause.
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5.7 Inter-Rater Reliability Results between Model &

Human Reviewer Sub-Categorisations

With sub-categorisations complete, each model’s categorisations were compared using
Cohen’s Kappa to determine Inter-Rater Reliability in each of the 3 produced datasets.
When comparing the model’s categorisations against each other, GPT 4 and GPT 4 Turbo
was the pair with the highest level of Inter-Rater Reliability in the GPT 3.5 Turbo and GPT
4 datasets, whereas GPT 4 Turbo and GPT 3.5 Turbo had the highest level of Inter-Rater
Reliability in the GPT 4 Turbo dataset. Notably, GPT 3.5 Turbo and GPT 4 was consistently
the least reliable pair across all datasets.

As seen in Table 5.14 GPT 4 and GPT 4 Turbo was the pair with the highest mean
Inter-Rater Reliability, followed by GPT 4 and GPT 3.5 Turbo, and then by GPT 3.5 Turbo
and GPT 4. These results shown in Table 5.14 indicate a substantial drop in the Inter-Rater
Reliability of the GPT 3.5 Turbo vs GPT 4 Turbo and GPT 4 vs GPT 4 Turbo pairs compared
to their Cohen’s Kappa from the primary categorisations (see Table 5.5). This shows that
the GPT models are less reliable with each other when categorising posts into lower level
sub-categories than they were with categorising the higher level primary categories.

GPT 3.5 Turbo vs
GPT 4

GPT 4 vs GPT 4
Turbo

GPT 4 Turbo vs GPT
3.5 Turbo

GPT 3.5
Turbo
Dataset

0.359 0.579 0.523

GPT 4
Dataset

0.442 0.685 0.601

GPT 4 Turbo
Dataset

0.438 0.588 0.615

Mean 0.413 0.617 0.580

Table 5.14: Cohen’s Kappa Scores between GPT Models, Sub-Categories

Similarly to the primary categorisation results seen in Table 5.6, the results shown in
Table 5.15 show that there was a positive correlation between the recency of the model and
the meanInter-Rater Reliability score between that model and the human reviewer.

Table 5.15 shows that as the recency of the model that produced each dataset increased,
the Inter-Rater Reliability score of each model with the human reviewer also increased, with
the exception of the GPT 4 dataset where GPT 4 had a decrease in its Inter-Rater Reliability
between its categorisations and that of the human reviewer.
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GPT 3.5 Turbo vs
Reviewer

GPT 4 vs Reviewer GPT 4 Turbo vs
Reviewer

GPT 3.5
Turbo
Dataset

0.427 0.580 0.616

GPT 4
Dataset

0.585 0.536 0.708

GPT 4 Turbo
Dataset

0.619 0.603 0.719

Mean 0.544 0.573 0.681

Table 5.15: Cohen’s Kappa Scores between GPT Models and Human Reviewer, Sub-
Categories

5.8 Survey Quantitive Results

Research Question One asks” How useful do developers find categories produced by Large
Language Models?” To attempt to answer this, a survey was conducted using Prolific that
asked people employed in the Games Industry and people who aren’t currently employed in
the industry yet like game development experience to rate the usefulness of the produced
categories.

To ensure that developers had the prerequisite knowledge to provide meaningful and
usable data, a screening survey was produced that tested basic knowledge. Two screening
surveys were conducted with two participant pools based on the previous mentioned criteria,
the Games Industry participant pool and the None Games Industry participant pool which
had 100 responses each. People who passed this survey were later invited to the primary
survey.

The primary survey had 101 total usable responses made up of the Games Industry
participant pool and the None Games Industry participant pool which had 38 and 63 usable
responses respectively.

For each primary and sub-category, developers were required to rate the category on a
scale of 1-4, with the option to provide none-required qualitative feedback.

5.8.1 Usefulness Ratings, Assignment Frequency & Standard De-
viation values across Primary Categories.

Using the average usefulness ratings (measured on a scale of 1-4, ”Not Useful At all” to
”Extremely Useful”) collected from the results from the Games Industry Participant Pool
and the Non-Games Industry Participant Pool provides a straightforward measure of each
category’s perceived usability in the eyes of developers.

Standard deviation was used as a metric to assess the level of agreement amongst
developers regarding the usefulness of the categories. Whilst the average/mean rating
indicates the overall perceived usefulness of a category by developers, standard deviation
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reveals the spread and variance in said ratings. A low standard deviation suggests that most
developers rated the category similarly, indicating a large level of agreement. In contrast a
high standard deviation indicates greater variability/variety in responses, showing a lack of
agreement. For example, the primary category ”Technical Issues & Crashes” had an average
usefulness rating of 3.663 and a standard deviation of 0.605 in those ratings, this indicates
that developers both found this to be a largely useful category and were quite united in their
opinion regarding this category.

Table 5.16 shows the combined participant pool’s (Games Industry pool combined with
the None-Games Industry pool) usefulness ratings and standard deviation of the usefulness
ratings for the primary categories produced by the LLM models. Table 5.17 shows the
combined pool average rating of the primary categories as well as the average frequency in
which posts were assigned to this category by the three GPT models.

The second primary category, ”Technical Issues & Crashes,” proved to be the highest-
rated category across both participant pools and the most frequently assigned category by all
models across all datasets. These results indicate that real world game developers identify
this category as being the most useful, with these findings being re-enforced by the GPT
models which found it to describe the largest number of issues reported. This can be seen
Table 5.17 which reports the combined pool figures. As seen in Table 5.16, the standard
deviation score for this category was the lowest of all categories across both participant
pools, signifying the highest level of agreement amongst respondents. The combined pool’s
standard deviation for the usefulness of this category was 0.60, which was significantly lower
than the next lowest score of 0.70. This shows that developers were extremely united in their
interpretations of this category’s usefulness.

”Gameplay Bugs & Glitches,” despite being ranked 2nd and 3rd by rating and frequency
respectively, had a notably higher standard deviation than ”Technical Issues & Crashes.”
Indicating that whilst may developers find the category to be useful, there are some who
disagree and find it to be none useful.

According to the combined participant pool’s results shown in Table 5.16 , the mean
usefulness rating for the primary categories was 3.1043, ”Very Useful.” The mean standard
deviation for usefulness ratings for the primary categories was 0.766, indicating that
developers were largely united regarding their ratings of these categories. The usefulness
ratings of all primary categories fell below 1, whilst there was some variance in standard
deviation, this statistic shows that there was no signifiant variance in the developer ratings
at all. This collectively shows that Large Language Models are quite capable of generating
useful bug report categories for games when provided with sample bug report data.
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Not
Useful
At All

Slightly
Useful

Very
Useful

Extremely
Useful

Average (1-4) Standard
Deviation

2. Technical Issues &
Crashes

1 4 22 71 3.663 0.6051459185

4. Graphics &
Rendering Problems

0 20 49 29 3.092 0.7011176892

5. Controls & Input
Recognition

0 22 46 30 3.082 0.7238427694

3. Game Progression
Blocks

1 11 34 50 3.385 0.7270057265

1. Gameplay Bugs &
Glitches.

2 10 36 51 3.374 0.746518635

6. Multiplayer &
Connectivity Issues

0 23 37 37 3.144 0.7731271447

8. Audio Issues 3 39 37 19 2.735 0.8024327858
7. User Interface &
Experience Problems

2 31 35 31 2.960 0.8399036972

10. Achievements &
Rewards Issues

7 41 33 16 2.598 0.8453608247

9. Installation &
Update Problems

5 24 34 35 3.010 0.8977852336

Table 5.16: Primary Categories Combined Frequency of Ratings, Average Rating and
Standard Deviation (Sorted by Standard Deviation Low to High

Category Combined
Avg. Rating

Avg.
Frequency

Ranking
by
Rating

Ranking
by Fre-
quency

1. Gameplay Bugs &
Glitches.

3.373737374 44 3 2

2. Technical Issues &
Crashes

3.663265306 70 1 1

3. Game Progression
Blocks

3.385416667 31.66666667 2 3

4. Graphics &
Rendering Problems

3.091836735 21.66666667 5 4

5. Controls & Input
Recognition

3.081632653 10.66666667 6 6

6. Multiplayer &
Connectivity Issues

3.144329897 19 4 5

7. User Interface &
Experience Problems

2.95959596 8.333333333 8 8

8. Audio Issues 2.734693878 3.666666667 9 10
9. Installation &
Update Problems

3.010204082 5 7 9

10. Achievements &
Rewards Issues

2.597938144 10 10 7

Table 5.17: Primary Categories Combined Average Usefulness Rating (1-4 Not Useful at all
- Extremely Useful) and Average Frequency Assigned by Models
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5.8.2 Usefulness Ratings & Standard Deviation values across Sub-
Categories.

This same process was repeated for the sub-categories produced. Table 5.19 shows the
combined participant pool’s (Games Industry pool combined with the None-Games Industry
pool) usefulness ratings and standard deviation of the usefulness ratings for the sub-categories
produced by the LLM models. Table 5.18 shows the combined pool average rating of the
sub-categories as well as the average frequency in which posts were assigned to this category
by the three GPT models.

According to the combined participant pool’s average usefulness ratings of the sub-
categories shown in Table 5.19, the average usefulness rating for the sub-categories produced
by LLM models was 3.249, which is slightly higher than the average usefulness rating of the
primary categories, though not by a meaningful amount. The standard deviation for the
average usefulness ratings of the sub-categories was 0.776, which like the primary categories
standard deviation for this score, is quite low. For the sub-categories, Table5.18 shows that
there was a weaker correlation between the average usefulness rating of the category and the
average frequency in which models assigned posts to the category. This indicates that whilst
developers may find these sub-categories to be useful, they were not frequently used by the
GPT models.

These overall results indicate that like with the primary categories, LLM models are
capable of generating useful Sub-Categories for game developers.
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Category Combined
Avg. Rating

Avg.
Frequency

Ranking
by
Rating

Ranking
by Fre-
quency

1. Specific
Mission/Level Crashes

3.39 3.777777778 3 7

2. Device-Specific
Issues

3.252525253 4 4 6

3. Performance Issues
(FPS Drops/Stutters)

3.12 5.222222222 5 3

4. Crash On
Launch/Startup Issues

3.49 22.55555556 2 1

5. In-Game
Freeze/Crash

3.489795918 19.22222222 1 2

6. Asset Loading
Errors

3.04040404 1.777777778 8 10

7. Memory
Management/Leaks

3.288659794 1.888888889 7 9

8. Game Integrity and
Corruption Problems

3.288659794 2.111111111 6 8

9. Hardware
Compatability Issues

2.97 4.666666667 10 4

10. Post-Update
Problems

3.15625 4 9 5

Table 5.18: Sub-Categories Combined Average Usefulness Rating (1-4 Not Useful at all -
Extremely Useful) and Average Frequency Assigned by Models

Not
Useful
At All

Slightly
Useful

Very
Useful

Extremely
Useful

Average (1-4) Standard
Deviation

5. In-Game
Freeze/Crash

0 5 40 53 3.489795918 0.5932425246

4. Crash On
Launch/Startup Issues

1 7 34 58 3.49 0.6707458535

1. Specific
Mission/Level Crashes

1 12 34 53 3.39 0.7334166619

3. Performance Issues
(FPS Drops/Stutters)

0 25 38 37 3.12 0.7782030583

7. Memory
Management/Leaks

1 17 32 47 3.288659794 0.7859430331

2. Device-Specific
Issues

1 19 33 46 3.252525253 0.7957390865

6. Asset Loading
Errors

2 24 41 32 3.04040404 0.8030144208

8. Game Integrity and
Corruption Problems

3 14 32 48 3.288659794 0.8243555795

10. Post-Update
Problems

5 16 34 41 3.15625 0.8818555839

9. Hardware
Compatability Issues

4 30 31 35 2.97 0.899499861

Table 5.19: Sub- Categories Combined Frequency of Ratings, Average Rating and Standard
Deviation
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5.9 Breakdown of Qualitative Responses

5.9.1 Qualitative Responses regarding Primary Categories

During the survey, respondents were given the option to provide additional feedback for
each primary and sub-category they were presented with. In total, there were 230 optional
qualitative responses in the combined participant pool, the breakdown of which can be seen
in Table 5.20. Some of this additional qualitative feedback offered insights into how the
categories could be improved, whilst others were general comments. Similarly to the previous
disagreement analysis, these comments were placed into 9 categories based on the information
they contain:
Development Impact - These comments speak of the ways and magnitude that a category
may impact product development.
Too Generic/ Too High Level- These comments indicate concerns that the category is too
high level or too vague to be useful.
Too Specific/ Too Low Level- These comments indicate concerns that the category is too low
level or too specific to be useful.
High Importance- These comments indicate that the respondent finds the category to be of
high importance.
Low Importance- These comments indicate that the respondent finds the category to be of
low importance.
Player Perspective- These comments speak of the ways issues in this category affect players.
Reporting/ Communication- These comments speak, indicate concerns with, and suggest
methods in which these issues can be reported by players.
Understanding- These comments indicate a difficulty to understand what the category entails.
Other- This category is for miscellaneous comments that don’t fit into the previously
described categories and are not frequent enough for a category of their own.

As seen in Table 5.20, the majority of comments were placed into two categories: Low
importance, where users reported that a category would not be very useful, and high
importance, where they would report a category would be very useful. Of these two categories,
comments attributing high importance to primary categories were vastly more occurrent than
comments attributing low importance. In order, ”Gameplay Bugs & Glitches”, ”Technical
Issues & Crashes”, ”Game Progression Blocks”, and ”Installation & Update Problems” were
attributed the highest level of importance. Interestingly, despite having the fourth most
comments stating its high level of importance, ”Installation & Update Problems” was actually
rated the least useful category by the combined pool. There were not many comments
attributing low importance to the primary categories, though ”Achievements & Rewards
Issues” had the highest number of these comments. This provides further detail in answering
Research Question One, where more information regarding the usefulness of these categories
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is now available.
Whilst the majority of comments were regarding the importance of the categories they

were discussing, the second largest number of comments were regarding the scope/specificity
of the categories. These comments were split into two categories respectively: High Level,
where users would report concerns regarding ambiguity, genericness, and overlap between
this and other categories and Low Level, where users would report concerns and comments
regarding niche-ness and specificity.

Table 5.20 shows that despite having high usefulness ratings and being assigned frequently
by the GPT models ”Gameplay Bugs & Glitches” and ”Technical Issues & Crashes” both had
numerous comments indicating that these categories were too high level to be useful. These
results suggest that the high frequency of these categories in the GPT datasets is because
they are the most generic and encompass a variety of differing bugs and issues and perhaps
developers would be better suited if these categories were replaced with more specific ones.

Category Development
Impact

Too Generic/
Too High
Level

Too Specific/
Too Low
Level

High
Importance

Low
Importance

Player
Perspective

Reporting/
Communica-
tion

Understanding Other Total

1. Gameplay Bugs &
Glitches.

4 13 0 10 0 3 5 2 1 38

2. Technical Issues &
Crashes

2 9 0 9 0 7 3 2 1 33

3. Game Progression
Blocks

1 1 0 10 0 5 4 1 3 25

4. Graphics &
Rendering Problems

0 4 0 6 2 1 2 0 6 21

5. Controls & Input
Recognition

1 1 2 4 0 5 1 1 2 17

6. Multiplayer &
Connectivity Issues

5 3 1 5 0 3 1 0 3 21

7. User Interface &
Experience Problems

2 6 0 2 3 2 3 2 2 22

8. Audio Issues 1 2 0 5 3 2 2 0 1 16
9. Installation &
Update Problems

2 3 0 8 0 3 2 0 0 18

10. Achievements &
Rewards Issues

0 2 2 1 5 5 0 0 4 19

Table 5.20: Combined Pool Qualitative Feedback for Primary Categories Breakdown

5.9.2 Qualitative Responses regarding Sub-Categories

As qualitative feedback served as an optional addition to the quantitative feedback, users
were not required to provide it. Due to this, there was not enough data for meaningful
analysis, with only 111 comments provided that was evenly distributed across each category
of feedback, there is not enough information to draw conclusions regarding any sub-category
from this feedback.
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5.10 Discussion

In bug triage, development-oriented decision making involves categorising bug reports based
on a variety of factors, one of which is the element of the product affected by the issue/defect
Anvik and Murphy, 2011. Our results show that LLMs are capable of identifying the elements
of the product (In this case games) effected by bug reports that are provided to the LLMs,
generating categories. Our results also show that LLMs are effective at placing bug reports
into these categories provided to it. Allowing LLMs to perform the categorisation element
of development-oriented triage unsupervised. This has previously been an expensive and
time-consuming process for developers.

Historically, when clustering bug reports the process has been to group similar reports
together using a clustering method of choice and then prescribing a label to these clusters
(Luaphol et al., 2018,Limsettho et al., 2014). The results presented in this study strongly
show that Large Language Models are capable of placing bug reports into pre-determined
categories, effectively allowing developers to seek out groups of bug reports that approach
or detail a desired issue rather than clustering bug reports together based on similarity and
then evaluating what these clusters contain. This has interesting implications for the future
of bug triage, for example a developer may have a pre-existing group of bug or defect reports
that describe a certain problem, the developer will now have the ability to check if future
bug reports also present the same problem.

However, these past approaches still have merits. Due to the limited context windows of
the varying LLM models, grouping posts together based on similarities may not be applicable
on a large scale, meaning that if developers want to create these clusters they may still be
better served by traditional methods. These methods could also act complementary to each
other, breaking posts down into smaller categories and then grouping them based on similarity
to further aid developers.

In addition to this, our results show that despite certain bug reports lacking in formality,
structure and proper vocabulary, Large Language Models are still effective at categorising
these reports based on the context present in the bug report. These types of reports would
not be ideal for previous clustering methods that rely on various methods of calculating and
weighting term-frequency to cluster reports together (Luaphol et al., 2018,Limsettho et al.,
2014).
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Threats to Validity

6.1 Data Collection Criteria

During data collection, one of the selection criteria for games based on the minimum number
of posts/entries in their Steam bug report discussion section is 50. This introduces the
possibility that games that provide meaningful bug reports that fail to meet this threshold
will be excluded. Potentially excluding useful data.

6.1.1 Optional Qualitative Feedback

One limitation of this study is that qualitative feedback from Game Developers was optional
instead of required, this choice was made as to incentivise as many completed surveys as
possible by reducing the time required to complete it. Unfortunately, this low amount of
data has limited the exploration of what could be done to improve the categories produced.

6.1.2 Generalisability

To keep this study focused and to ensure that the researcher could understand the content of
any collected data, its scope was limited exclusively to PC games on the Steam distribution
platform for data collection. This does have implications for the generalisability of the results.
First, the data collected may be representative of the types of bugs appearing in PC games but
not representative of the issues affecting console games (for example, PlayStation or Xbox
games). Second, the data collected may be representative of the types of bugs appearing
for PC games on the Steam platform but may not be representative of the types of issues
affecting games on other platforms that may have different methods for bug reporting. Third,
and most importantly, this evaluation of GPT models is representative only of their usage
with video game bug report data, and may not be representative of their reliability with bug
reports from other types of Software.
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6.2 Survey Participant Pools

When recruiting from Prolific, it became apparent that recruiting participants solely from
the Games Industry was not feasible due to the number of participants available and the
low likelihood of all of them responding. To counter this, additional criteria was developed
for a second participant pool that would target people that likely had game development
experience, with them explicitly having software development experience and experience
playing games.

This introduced the possible issue that this additional criteria would not work and results
would be skewed by none-game developers. To counter this, a screening survey was produced
that tested the knowledge of participants to ensure that developers had the prerequisite
knowledge to provide meaningful feedback.

In the survey, there was not a significant difference in the mean average usefulness rating of
the primary categories nor the sub-categories, this can be seen in Tables 7.36 and 7.35 for the
None-Game Industry pool and Games Industry Pool for the Primary categories and Tables
7.38 and 7.37 for the Sub-categories, these tables can also be used to view the individual
standard deviation for the average usefulness rating of primary and sub-categories in each
participant pool.

There was not a significant level of variety between the standard deviation for the average
usefulness rating of the primary categories in the Games Industry pool and the None-Games
Industry pool, except for three categories. The highest of these being ”Achievements &
Rewards Issues,” which had a score of 0.741 in the None-Games Industry pool and 0.967 in
the Games Industry Pool, a difference of 0.226. This category was rated slightly more useful
by the Games Industry pool than the None-Games Industry pool, whilst also having a lowest
level of agreement in the Games Industry pool than the None-Games Industry pool.

The second of these categories, ”Game Progression Blocks,” had a notably higher standard
deviation in the Games Industry pool than in the None-Games Industry pool, scoring 0.792
and 0.679 respectively. Despite this, it still had the 2nd highest combined pool average
rating, indicating that whilst both pools generally found this category very useful, the Games
Industry participants were more divided on the matter.

The third category with large variation in standard deviation between pools is ”Installa-
tion & Update Problems.” The category had a Games Industry pool standard deviation of
0.953 and a None-Games Industry pool standard deviation of 0.861, once again indicating
that the Games Industry pool was less united on the matter of its usefulness than the None-
Games Industry pool. However, unlike the ”Game Progression Blocks” category this category
ranked lower in usefulness, being the 7th most useful category.

After calculating the mean standard deviation for the usefulness ratings of all categories,
the Games Industry pool had a much higher mean standard deviation than the None-Games
industry participants, having values of 0.976 and 0.741 respectively. This shows that there
was substantially less uniformity in the responses of the Games Industry participants than
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the None-Games Industry Participants.
The difference between the standard deviation of the Games Developers pool and the

None-Game developers pool was larger in the sub-categories than with the primary categories.
With the average difference in Standard Deviation between the two pools being 0.1222 (See
Table 5.19).

Overall, the difference in Average Usefulness Ratings and Standard Deviation scores
across both participant pools is negligible, though it was worth noting.
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Chapter 7

Conclusion

The first research question for this study was ”How useful do developers find categories
produced by Large Language Models?” To answer this question developers were presented
with categories generated by Large Language Models based on a dataset of bug reports and
user feedback from games of various genres and asked to rate them based on usefulness.
The mean usefulness scores were then calculated for each category, as well as the standard
deviation being calculated for each score to indicate how much variance there was amongst the
developers regarding the score of these categories. This was done for 10 primary categories
and 10 sub-categories based on a selected primary category. Following the rating of the
primary and sub-categories, developers were presented with the option to provide additional
qualitative feedback regarding each category.

Higher level (more vague) categories were rated as more useful by developers than lower
level, more specific categories. These findings indicate a correlation between what developers
think will be most frequent and what developers think will be the most useful. However,
multiple developers used the optional qualitative feedback question to express concern that
the vagueness of these categories would in fact make them less practical for real world
applications, which is in conflict with the ratings provided by developers regarding the
categories.

The second research question for this study was ”How reliable are different popular Large
Language Models at categorising unstructured and informal bug reports for games?” To
answer this question three popular selected to categorise a sample dataset of unstructured
and informal bug reports collected from Steam. Cohen’s Kappa, a statistical measure of
Inter-Rater Reliability, was used to assess how reliably the models agreed with each other
and with a human reviewers classifications of the same data. The findings suggest that even
older LLMs which may lack features and advancements as compared to newer models are
still capable of reliably completing the task with results comparable to those of a human
reviewer. Despite this, there was still a positive correlation between the recency of a model
and the Inter-Rater Reliability between that models categorisations and that of the reviewer.
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Chapter 7. Conclusion

I believe the natural next steps to this investigation is to test other Large Language
Models to see how they perform compared to OpenAI’s GPT models. The integration of
LLM categorisations into existing issue tracking systems also provides ample opportunities
for research. As our results indicate that LLMs are capable of performing the categorisation
element of Development-Oriented decision making in triage, I believe it would be valuable to
explore how capable LLMs are at performing Repository-Oriented Decision Making, where
the goal is to reduce the number of bug reports in a repository and prioritise the best, smallest
sample of bug reports (Anvik and Murphy, 2011).

The approaches to categorisation used in this study could also be consolidated and
packaged into a single tool for developers to use to categorise their user feedback.
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Appendix

Appendix A: Cohen’s Kappa Calculation Tables for GPT models &
Human Reviewer Comparisons

Appendix A1: Cohen’s Kappa Calculation Tables for Old Categories

Appendix A1.1: GPT 3.5 Turbo vs GPT 4

GPT 3.5 Turbo GPT 4 Expected Agreement
Frequency 1. Bugs &
Glitches

90 93 0.1653333333

Frequency 2. Technical
Issues

90 80 0.1422222222

Frequency 3. Server &
Multiplayer

12 19 0.004503703704

Frequency 4. UI Problems 1 3 0.00005925925926
Frequency 5. Save
Corruption

6 10 0.001185185185

Frequency 6. Support &
Community

1 1 0.00001975308642

Frequency 7. Localization 2 2 0.00007901234568
Frequency 8. Content &
Progression

6 2 0.000237037037

Frequency 9. Feedback &
Suggestions

8 11 0.001738271605

Frequency 10.
Optimization

9 4 0.0007111111111

Number of Comments 225
Sum Expected Agreement 0.3160888889
Agreements 170
Observed Agreements 0.7555555556
Cohen’s Kappa 0.6425786327

Table 7.1: Cohen’s Kappa Calculation Table, Old Categories: GPT 3.5 Turbo vs GPT 4

Appendix A1.2: GPT 4 vs GPT 4 Turbo
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GPT 4 GPT 4
Turbo

Expected Agreement

Frequency 1. Bugs &
Glitches

93 88 0.1602318114

Frequency 2. Technical
Issues

80 74 0.1159057091

Frequency 3. Server &
Multiplayer

19 27 0.01004385621

Frequency 4. UI Problems 3 5 0.0002936800063
Frequency 5. Save
Corruption

10 12 0.00234944005

Frequency 6. Support &
Community

1 0 0

Frequency 7. Localization 2 3 0.0001174720025
Frequency 8. Content &
Progression

2 4 0.0001566293367

Frequency 9. Feedback &
Suggestions

11 9 0.001938288041

Frequency 10.
Optimization

4 4 0.0003132586733

Number of Comments 226
Sum Expected Agreement 0.2913501449
Agreements 186
Observed Agreements 0.8230088496
Cohen’s Kappa 0.7502417461

Table 7.2: Cohen’s Kappa Calculation Table, Old Categories: GPT 4 vs GPT 4 Turbo

Appendix A1.3: GPT 4 Turbo vs GPT 3.5 Turbo
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GPT 4 Turbo GPT 3.5
Turbo

Expected Agreement

Frequency 1. Bugs &
Glitches

88 90 0.1564444444

Frequency 2. Technical
Issues

74 90 0.1315555556

Frequency 3. Server &
Multiplayer

27 12 0.0064

Frequency 4. UI Problems 5 1 0.0000987654321
Frequency 5. Save
Corruption

12 6 0.001422222222

Frequency 6. Support &
Community

0 1 0

Frequency 7. Localization 3 2 0.0001185185185
Frequency 8. Content &
Progression

4 6 0.0004740740741

Frequency 9. Feedback &
Suggestions

9 8 0.001422222222

Frequency 10.
Optimization

4 9 0.0007111111111

Number of Comments 225
Sum Expected Agreement 0.2986469136
Agreements 159
Observed Agreements 0.7066666667
Cohen’s Kappa 0.5817608292

Table 7.3: Cohen’s Kappa Calculation Table, Old Categories: GPT 4 Turbo vs GPT 3.5
Turbo

Appendix A1.4: GPT 3.5 Turbo vs Human Reviewer
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GPT 3.5 Turbo Human Expected Agreement
Frequency 1. Bugs &
Glitches

90 83 0.1475555556

Frequency 2. Technical
Issues

90 77 0.1368888889

Frequency 3. Server &
Multiplayer

12 8 0.001896296296

Frequency 4. UI Problems 1 3 0.00005925925926
Frequency 5. Save
Corruption

6 6 0.0007111111111

Frequency 6. Support &
Community

1 10 0.0001975308642

Frequency 7. Localization 2 2 0.00007901234568
Frequency 8. Content &
Progression

6 13 0.001540740741

Frequency 9. Feedback &
Suggestions

8 12 0.001896296296

Frequency 10.
Optimization

9 11 0.001955555556

Number of Comments 225
Sum Expected Agreement 0.2927802469
Agreements 159
Observed Agreements 0.7066666667
Cohen’s Kappa 0.585230288

Table 7.4: Cohen’s Kappa Calculation Table, Old Categories: GPT 3.5 Turbo vs Human
Reviewer

Appendix A1.5: GPT 4 vs Human Reviewer
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GPT 4 Human Expected Agreement
Frequency 1. Bugs &
Glitches

93 83 0.1524740741

Frequency 2. Technical
Issues

80 77 0.1216790123

Frequency 3. Server &
Multiplayer

19 8 0.003002469136

Frequency 4. UI Problems 3 3 0.0001777777778
Frequency 5. Save
Corruption

10 6 0.001185185185

Frequency 6. Support &
Community

1 10 0.0001975308642

Frequency 7. Localization 2 2 0.00007901234568
Frequency 8. Content &
Progression

2 13 0.0005135802469

Frequency 9. Feedback &
Suggestions

11 12 0.002607407407

Frequency 10.
Optimization

4 11 0.0008691358025

Number of Comments 225
Sum Expected Agreement 0.2827851852
Agreements 160
Observed Agreements 0.7111111111
Cohen’s Kappa 0.597207304

Table 7.5: Cohen’s Kappa Calculation Table, Old Categories: GPT 4 vs Human Reviewer

Appendix A1.6: GPT 4 Turbo vs Human Reviewer
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GPT 4 Turbo Human Expected Agreement
Frequency 1. Bugs &
Glitches

88 83 0.1442765432

Frequency 2. Technical
Issues

74 77 0.1125530864

Frequency 3. Server &
Multiplayer

27 8 0.004266666667

Frequency 4. UI Problems 5 3 0.0002962962963
Frequency 5. Save
Corruption

12 6 0.001422222222

Frequency 6. Support &
Community

0 10 0

Frequency 7. Localization 3 2 0.0001185185185
Frequency 8. Content &
Progression

4 13 0.001027160494

Frequency 9. Feedback &
Suggestions

9 12 0.002133333333

Frequency 10.
Optimization

4 11 0.0008691358025

Number of Comments 225
Sum Expected Agreement 0.266962963
Agreements 154
Observed Agreements 0.6844444444
Cohen’s Kappa 0.5695230396

Table 7.6: Cohen’s Kappa Calculation Table, Old Categories: GPT 4 Turbo vs Human
Reviewer

Appendix A2: Cohen’s Kappa Calculation Tables for New Categories

Appendix A2.1: GPT 3.5 Turbo vs GPT 4
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GPT 3.5 Turbo GPT 4 Expected Agreement
Frequency 1. Gameplay
Bugs & Glitches

58 42 0.04854910714

Frequency 2. Technical
Issues & Crashes

71 67 0.09480628189

Frequency 3. Game
Progression Blocks

9 43 0.007712850765

Frequency 4. Graphics &
Rendering Problems

21 21 0.0087890625

Frequency 5. Controls &
Input Recognition

8 14 0.002232142857

Frequency 6. Multiplayer
& Connectivity Issues

21 17 0.007114955357

Frequency 7. User Interface
& Experience Problems

15 4 0.001195790816

Frequency 8. Audio issues 4 4 0.000318877551
Frequency 9. Installation
& Update Problems

8 2 0.000318877551

Frequency 10.
Achievements & Rewards
Issues

9 10 0.001793686224

Number of Comments 224
Sum Expected Agreement 0.1728316327
Agreements 145
Observed Agreements 0.6473214286
Cohen’s Kappa 0.5736314572

Table 7.7: Cohen’s Kappa Calculation Table, New Categories: GPT 3.5 Turbo vs GPT 4

Appendix A2.2: GPT 4 vs GPT 4 Turbo
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GPT 4 GPT 4
Turbo

Expected Agreement

Frequency 1. Gameplay
Bugs & Glitches

42 32 0.02678571429

Frequency 2. Technical
Issues & Crashes

67 72 0.09614158163

Frequency 3. Game
Progression Blocks

43 43 0.03685028699

Frequency 4. Graphics &
Rendering Problems

21 23 0.009626116071

Frequency 5. Controls &
Input Recognition

14 10 0.002790178571

Frequency 6. Multiplayer
& Connectivity Issues

17 19 0.006437340561

Frequency 7. User Interface
& Experience Problems

4 6 0.0004783163265

Frequency 8. Audio issues 4 3 0.0002391581633
Frequency 9. Installation
& Update Problems

2 5 0.0001992984694

Frequency 10.
Achievements & Rewards
Issues

10 11 0.002192283163

Number of Comments 224
Sum Expected Agreement 0.1817402742
Agreements 172
Observed Agreements 0.7678571429
Cohen’s Kappa 0.7162968556

Table 7.8: Cohen’s Kappa Calculation Table, New Categories: GPT 4 vs GPT 4 Turbo

Appendix A2.3: GPT 4 Turbo vs GPT 3.5 Turbo
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GPT 4 Turbo GPT 3.5
Turbo

Expected Agreement

Frequency 1. Gameplay
Bugs & Glitches

32 58 0.03698979592

Frequency 2. Technical
Issues & Crashes

72 71 0.1018813776

Frequency 3. Game
Progression Blocks

43 9 0.007712850765

Frequency 4. Graphics &
Rendering Problems

23 21 0.009626116071

Frequency 5. Controls &
Input Recognition

10 8 0.001594387755

Frequency 6. Multiplayer
& Connectivity Issues

19 21 0.007952008929

Frequency 7. User Interface
& Experience Problems

6 15 0.001793686224

Frequency 8. Audio issues 3 4 0.0002391581633
Frequency 9. Installation
& Update Problems

5 8 0.0007971938776

Frequency 10.
Achievements & Rewards
Issues

11 9 0.001973054847

Number of Comments 224
Sum Expected Agreement 0.1705596301
Agreements 146
Observed Agreements 0.6517857143
Cohen’s Kappa 0.5801816522

Table 7.9: Cohen’s Kappa Calculation Table, New Categories: GPT 4 Turbo vs GPT 3.5
Turbo

Appendix A2.4: GPT 3.5 Turbo vs Human Reviewer
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GPT 3.5 Turbo Human Expected Agreement
Frequency 1. Gameplay
Bugs & Glitches

58 63 0.07217777778

Frequency 2. Technical
Issues & Crashes

71 90 0.1262222222

Frequency 3. Game
Progression Blocks

9 16 0.002844444444

Frequency 4. Graphics &
Rendering Problems

21 14 0.005807407407

Frequency 5. Controls &
Input Recognition

8 9 0.001422222222

Frequency 6. Multiplayer
& Connectivity Issues

21 13 0.005392592593

Frequency 7. User Interface
& Experience Problems

15 5 0.001481481481

Frequency 8. Audio issues 4 6 0.0004740740741
Frequency 9. Installation
& Update Problems

8 2 0.0003160493827

Frequency 10.
Achievements & Rewards
Issues

9 7 0.001244444444

Number of Comments 225
Sum Expected Agreement 0.217382716
Agreements 154
Observed Agreements 0.6844444444
Cohen’s Kappa 0.5967945482

Table 7.10: Cohen’s Kappa Calculation Table, New Categories: GPT 3.5 Turbo vs Human

Appendix A2.5: GPT 4 vs Human Reviewer
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GPT 4 Human Expected Agreement
Frequency 1. Gameplay
Bugs & Glitches

42 63 0.05226666667

Frequency 2. Technical
Issues & Crashes

67 90 0.1191111111

Frequency 3. Game
Progression Blocks

43 16 0.01359012346

Frequency 4. Graphics &
Rendering Problems

21 14 0.005807407407

Frequency 5. Controls &
Input Recognition

14 9 0.002488888889

Frequency 6. Multiplayer
& Connectivity Issues

17 13 0.004365432099

Frequency 7. User Interface
& Experience Problems

4 5 0.0003950617284

Frequency 8. Audio issues 4 6 0.0004740740741
Frequency 9. Installation
& Update Problems

2 2 0.00007901234568

Frequency 10.
Achievements & Rewards
Issues

10 7 0.001382716049

Number of Comments 225
Sum Expected Agreement 0.1999604938
Agreements 158
Observed Agreements 0.7022222222
Cohen’s Kappa 0.6277961582

Table 7.11: Cohen’s Kappa Calculation Table, New Categories: GPT 4 vs Human

Appendix A2.6: GPT 4 Turbo vs Human Reviewer
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GPT 4 Turbo Human Expected Agreement
Frequency 1. Gameplay
Bugs & Glitches

32 63 0.03982222222

Frequency 2. Technical
Issues & Crashes

72 90 0.128

Frequency 3. Game
Progression Blocks

43 16 0.01359012346

Frequency 4. Graphics &
Rendering Problems

23 14 0.006360493827

Frequency 5. Controls &
Input Recognition

10 9 0.001777777778

Frequency 6. Multiplayer
& Connectivity Issues

19 13 0.004879012346

Frequency 7. User Interface
& Experience Problems

6 5 0.0005925925926

Frequency 8. Audio issues 3 6 0.0003555555556
Frequency 9. Installation
& Update Problems

5 2 0.0001975308642

Frequency 10.
Achievements & Rewards
Issues

11 7 0.001520987654

Number of Comments 225
Sum Expected Agreement 0.1970962963
Agreements 159
Observed Agreements 0.7066666667
Cohen’s Kappa 0.6346593845

Table 7.12: Cohen’s Kappa Calculation Table, New Categories: GPT 4 Turbo vs Human

Appendix A3: Cohen’s Kappa Calculation Tables for Technical Issues & Crashes
Sub-Category

Appendix A3.1: Tables for Sub-Categorisation Models Comparisons using the
GPT 3.5 Turbo ”Technical Issues & Crashes” sample set

Appendix A3.1.1: GPT 3.5 Turbo vs GPT 4
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GPT 3.5 Turbo GPT 4 Expected Agreement
1. Specific Mission/Level
Crashes

2 9 0.003673469388

2. Device-Specific Issues 9 2 0.003673469388
3. Performance Issues
(FPS Drops/Stutters)

1 8 0.001632653061

4. Crash On
Launch/Startup Issues

25 17 0.08673469388

5. In-Game Freeze/Crash 29 13 0.07693877551
6. Asset Loading Errors 3 2 0.001224489796
7. Memory
Management/Leaks

2 2 0.0008163265306

8. Game Integrity and
Corruption Problems

0 4 0

9. Hardware Compatability
Issues

0 8 0

10. Post-Update Problems 0 5 0

Number of Comments 70
Sum Expected Agreement 0.1746938776
Agreements 33
Observed Agreements 0.4714285714
Cohen’s Kappa 0.3595450049

Table 7.13: Cohen’s Kappa Calculation Table, Sub-Categories: GPT 3.5 Turbo vs GPT 4

Appendix A3.1.2: GPT 4 vs GPT 4 Turbo
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GPT 4 GPT 4
Turbo

Expected Agreement

1. Specific Mission/Level
Crashes

9 5 0.008926800238

2. Device-Specific Issues 2 3 0.001190240032
3. Performance Issues
(FPS Drops/Stutters)

8 1 0.001586986709

4. Crash On
Launch/Startup Issues

17 25 0.08430866891

5. In-Game Freeze/Crash 13 22 0.05673477485
6. Asset Loading Errors 2 4 0.001586986709
7. Memory
Management/Leaks

2 3 0.001190240032

8. Game Integrity and
Corruption Problems

4 3 0.002380480063

9. Hardware Compatability
Issues

8 1 0.001586986709

10. Post-Update Problems 5 4 0.003967466772

Number of Comments 71
Sum Expected Agreement 0.163459631
Agreements 46
Observed Agreements 0.6478873239
Cohen’s Kappa 0.5790846573

Table 7.14: Cohen’s Kappa Calculation Table, Sub-Categories: GPT 4 vs GPT 4 Turbo

Appendix A3.1.3: GPT 4 Turbo vs GPT 3.5 Turbo
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GPT 4 Turbo GPT 3.5
Turbo

Expected Agreement

1. Specific Mission/Level
Crashes

5 2 0.001983733386

2. Device-Specific Issues 3 9 0.005356080143
3. Performance Issues
(FPS Drops/Stutters)

1 1 0.0001983733386

4. Crash On
Launch/Startup Issues

25 25 0.1239833366

5. In-Game Freeze/Crash 22 29 0.12656219
6. Asset Loading Errors 4 3 0.002380480063
7. Memory
Management/Leaks

3 2 0.001190240032

8. Game Integrity and
Corruption Problems

3 0 0

9. Hardware Compatability
Issues

1 0 0

10. Post-Update Problems 4 0 0

Number of Comments 71
Sum Expected Agreement 0.2616544336
Agreements 46
Observed Agreements 0.6478873239
Cohen’s Kappa 0.5231058571

Table 7.15: Cohen’s Kappa Calculation Table, Sub-Categories: GPT 4 Turbo vs GPT 3.5
Turbo

Appendix A3.1.4: GPT 3.5 Turbo vs Human Reviewer
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GPT 3.5 Turbo Human Expected Agreement
1. Specific Mission/Level
Crashes

2 4 0.001586986709

2. Device-Specific Issues 9 1 0.001785360048
3. Performance Issues
(FPS Drops/Stutters)

1 2 0.0003967466772

4. Crash On
Launch/Startup Issues

25 17 0.08430866891

5. In-Game Freeze/Crash 29 30 0.1725848046
6. Asset Loading Errors 3 3 0.001785360048
7. Memory
Management/Leaks

2 2 0.0007934933545

8. Game Integrity and
Corruption Problems

0 5 0

9. Hardware Compatability
Issues

0 4 0

10. Post-Update Problems 0 3 0

Number of Comments 71
Sum Expected Agreement 0.2632414204
Agreements 41
Observed Agreements 0.5774647887
Cohen’s Kappa 0.4264943457

Table 7.16: Cohen’s Kappa Calculation Table, Sub-Categories: GPT 3.5 Turbo vs Human

Appendix A3.1.5: GPT 4 vs Human Reviewer
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GPT 4 Human Expected Agreement
1. Specific Mission/Level
Crashes

9 4 0.00714144019

2. Device-Specific Issues 2 1 0.0003967466772
3. Performance Issues
(FPS Drops/Stutters)

8 2 0.003173973418

4. Crash On
Launch/Startup Issues

17 17 0.05732989486

5. In-Game Freeze/Crash 13 30 0.07736560206
6. Asset Loading Errors 2 3 0.001190240032
7. Memory
Management/Leaks

2 2 0.0007934933545

8. Game Integrity and
Corruption Problems

4 5 0.003967466772

9. Hardware Compatability
Issues

8 4 0.006347946836

10. Post-Update Problems 5 3 0.002975600079

Number of Comments 71
Sum Expected Agreement 0.1606824043
Agreements 46
Observed Agreements 0.6478873239
Cohen’s Kappa 0.5804774285

Table 7.17: Cohen’s Kappa Calculation Table, Sub-Categories: GPT 4 vs Human

Appendix A3.1.6: GPT 4 Turbo vs Human Reviewer
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GPT 4 Human Expected Agreement
1. Specific Mission/Level
Crashes

5 4 0.003967466772

2. Device-Specific Issues 3 1 0.0005951200159
3. Performance Issues
(FPS Drops/Stutters)

1 2 0.0003967466772

4. Crash On
Launch/Startup Issues

25 17 0.08430866891

5. In-Game Freeze/Crash 22 30 0.1309264035
6. Asset Loading Errors 4 3 0.002380480063
7. Memory
Management/Leaks

3 2 0.001190240032

8. Game Integrity and
Corruption Problems

3 5 0.002975600079

9. Hardware Compatability
Issues

1 4 0.0007934933545

10. Post-Update Problems 4 3 0.002380480063

Number of Comments 71
Sum Expected Agreement 0.2299146995
Agreements 50
Observed Agreements 0.7042253521
Cohen’s Kappa 0.6159196291

Table 7.18: Cohen’s Kappa Calculation Table, Sub-Categories: GPT 4 Turbo vs Human

Appendix A3.2: Tables for Sub-Categorisation Models Comparisons using the
GPT 4 ”Technical Issues & Crashes” sample set

Appendix A3.1.1: GPT 3.5 Turbo vs GPT 4
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GPT 3.5 Turbo GPT 4 Expected Agreement
1. Specific Mission/Level
Crashes

1 6 0.001377410468

2. Device-Specific Issues 6 2 0.002754820937
3. Performance Issues
(FPS Drops/Stutters)

6 9 0.01239669421

4. Crash On
Launch/Startup Issues

23 20 0.1056014692

5. In-Game Freeze/Crash 24 10 0.05509641873
6. Asset Loading Errors 0 1 0
7. Memory
Management/Leaks

1 1 0.0002295684114

8. Game Integrity and
Corruption Problems

0 2 0

9. Hardware Compatability
Issues

3 7 0.004820936639

10. Post-Update Problems 2 8 0.003673094582

Number of Comments 66
Sum Expected Agreement 0.1859504132
Agreements 36
Observed Agreements 0.5454545455
Cohen’s Kappa 0.4416243655

Table 7.19: Cohen’s Kappa Calculation Table, Sub-Categories: GPT 3.5 Turbo vs GPT 4

Appendix A3.1.2: GPT 4 vs GPT 4 Turbo
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GPT 4 GPT 4
Turbo

Expected Agreement

1. Specific Mission/Level
Crashes

6 3 0.004132231405

2. Device-Specific Issues 2 2 0.0009182736455
3. Performance Issues
(FPS Drops/Stutters)

9 5 0.01033057851

4. Crash On
Launch/Startup Issues

20 24 0.1101928375

5. In-Game Freeze/Crash 10 18 0.04132231405
6. Asset Loading Errors 1 2 0.0004591368228
7. Memory
Management/Leaks

1 2 0.0004591368228

8. Game Integrity and
Corruption Problems

2 2 0.0009182736455

9. Hardware Compatability
Issues

7 4 0.006427915519

10. Post-Update Problems 8 4 0.007346189164

Number of Comments 66
Sum Expected Agreement 0.1825068871
Agreements 49
Observed Agreements 0.7424242424
Cohen’s Kappa 0.6849199663

Table 7.20: Cohen’s Kappa Calculation Table, Sub-Categories: GPT 4 vs GPT 4 Turbo

Appendix A3.1.3: GPT 4 Turbo vs GPT 3.5 Turbo
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GPT 4 Turbo GPT 3.5
Turbo

Expected Agreement

1. Specific Mission/Level
Crashes

3 1 0.0006887052342

2. Device-Specific Issues 2 6 0.002754820937
3. Performance Issues
(FPS Drops/Stutters)

5 6 0.006887052342

4. Crash On
Launch/Startup Issues

24 23 0.1267217631

5. In-Game Freeze/Crash 18 24 0.09917355372
6. Asset Loading Errors 2 0 0
7. Memory
Management/Leaks

2 1 0.0004591368228

8. Game Integrity and
Corruption Problems

2 0 0

9. Hardware Compatability
Issues

4 3 0.002754820937

10. Post-Update Problems 4 2 0.001836547291

Number of Comments 66
Sum Expected Agreement 0.2412764004
Agreements 46
Observed Agreements 0.696969697
Cohen’s Kappa 0.6006051437

Table 7.21: Cohen’s Kappa Calculation Table, Sub-Categories: GPT 4 Turbo vs GPT 3.5
Turbo

Appendix A3.1.4: GPT 3.5 Turbo vs Human Reviewer
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GPT 3.5 Turbo Human Expected Agreement
1. Specific Mission/Level
Crashes

1 4 0.0008401596303

2. Device-Specific Issues 6 2 0.002520478891
3. Performance Issues
(FPS Drops/Stutters)

6 6 0.007561436673

4. Crash On
Launch/Startup Issues

23 18 0.08695652174

5. In-Game Freeze/Crash 24 26 0.1310649023
6. Asset Loading Errors 0 2 0
7. Memory
Management/Leaks

1 3 0.0006301197227

8. Game Integrity and
Corruption Problems

0 4 0

9. Hardware Compatability
Issues

3 2 0.001260239445

10. Post-Update Problems 2 2 0.0008401596303

Number of Comments 69
Sum Expected Agreement 0.2316740181
Agreements 47
Observed Agreements 0.6811594203
Cohen’s Kappa 0.5850191361

Table 7.22: Cohen’s Kappa Calculation Table, Sub-Categories: GPT 3.5 Turbo vs Human

Appendix A3.1.5: GPT 4 vs Human Reviewer
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GPT 4 Human Expected Agreement
1. Specific Mission/Level
Crashes

6 4 0.005040957782

2. Device-Specific Issues 2 2 0.0008401596303
3. Performance Issues
(FPS Drops/Stutters)

9 6 0.01134215501

4. Crash On
Launch/Startup Issues

20 18 0.07561436673

5. In-Game Freeze/Crash 10 26 0.05461037597
6. Asset Loading Errors 1 2 0.0004200798152
7. Memory
Management/Leaks

1 3 0.0006301197227

8. Game Integrity and
Corruption Problems

2 4 0.001680319261

9. Hardware Compatability
Issues

7 2 0.002940558706

10. Post-Update Problems 8 2 0.003360638521

Number of Comments 69
Sum Expected Agreement 0.1564797311
Agreements 42
Observed Agreements 0.6086956522
Cohen’s Kappa 0.5361055777

Table 7.23: Cohen’s Kappa Calculation Table, Sub-Categories: GPT 4 vs Human

Appendix A3.1.6: GPT 4 Turbo vs Human Reviewer
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GPT 4 Human Expected Agreement
1. Specific Mission/Level
Crashes

3 4 0.002520478891

2. Device-Specific Issues 2 2 0.0008401596303
3. Performance Issues
(FPS Drops/Stutters)

5 6 0.006301197227

4. Crash On
Launch/Startup Issues

24 18 0.09073724008

5. In-Game Freeze/Crash 18 26 0.09829867675
6. Asset Loading Errors 2 2 0.0008401596303
7. Memory
Management/Leaks

2 3 0.001260239445

8. Game Integrity and
Corruption Problems

2 4 0.001680319261

9. Hardware Compatability
Issues

4 2 0.001680319261

10. Post-Update Problems 4 2 0.001680319261

Number of Comments 69
Sum Expected Agreement 0.2058391094
Agreements 53
Observed Agreements 0.768115942
Cohen’s Kappa 0.708013753

Table 7.24: Cohen’s Kappa Calculation Table, Sub-Categories: GPT 4 Turbo vs Human

Appendix A3.3: Tables for Sub-Categorisation Models Comparisons using the
GPT 4Turbo ”Technical Issues & Crashes” sample set

Appendix A3.3.1: GPT 3.5 Turbo vs GPT 4
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GPT 3.5 Turbo GPT 4 Expected Agreement
1. Specific Mission/Level
Crashes

0 5 0

2. Device-Specific Issues 7 2 0.002777226741
3. Performance Issues
(FPS Drops/Stutters)

3 9 0.005356080143

4. Crash On
Launch/Startup Issues

22 21 0.09164848244

5. In-Game Freeze/Crash 27 11 0.05891688157
6. Asset Loading Errors 1 1 0.0001983733386
7. Memory
Management/Leaks

2 2 0.0007934933545

8. Game Integrity and
Corruption Problems

2 3 0.001190240032

9. Hardware Compatability
Issues

6 9 0.01071216029

10. Post-Update Problems 1 8 0.001586986709

Number of Comments 71
Sum Expected Agreement 0.1731799246
Agreements 38
Observed Agreements 0.5352112676
Cohen’s Kappa 0.4378598848

Table 7.25: Cohen’s Kappa Calculation Table, Sub-Categories: GPT 3.5 Turbo vs GPT 4

Appendix A3.3.2: GPT 4 vs GPT 4 Turbo
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GPT 4 GPT 4
Turbo

Expected Agreement

1. Specific Mission/Level
Crashes

5 3 0.002975600079

2. Device-Specific Issues 2 3 0.001190240032
3. Performance Issues
(FPS Drops/Stutters)

9 5 0.008926800238

4. Crash On
Launch/Startup Issues

21 26 0.1083118429

5. In-Game Freeze/Crash 11 19 0.04146002777
6. Asset Loading Errors 1 2 0.0003967466772
7. Memory
Management/Leaks

2 2 0.0007934933545

8. Game Integrity and
Corruption Problems

3 3 0.001785360048

9. Hardware Compatability
Issues

9 4 0.00714144019

10. Post-Update Problems 8 4 0.006347946836

Number of Comments 71
Sum Expected Agreement 0.1793294981
Agreements 47
Observed Agreements 0.661971831
Cohen’s Kappa 0.5881073241

Table 7.26: Cohen’s Kappa Calculation Table, Sub-Categories: GPT 4 vs GPT 4 Turbo

Appendix A3.3.3: GPT 4 Turbo vs GPT 3.5 Turbo
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GPT 4 Turbo GPT 3.5
Turbo

Expected Agreement

1. Specific Mission/Level
Crashes

3 0 0

2. Device-Specific Issues 3 7 0.004165840111
3. Performance Issues
(FPS Drops/Stutters)

5 3 0.002975600079

4. Crash On
Launch/Startup Issues

26 22 0.1134695497

5. In-Game Freeze/Crash 19 27 0.1017655227
6. Asset Loading Errors 2 1 0.0003967466772
7. Memory
Management/Leaks

2 2 0.0007934933545

8. Game Integrity and
Corruption Problems

3 2 0.001190240032

9. Hardware Compatability
Issues

4 6 0.004760960127

10. Post-Update Problems 4 1 0.0007934933545

Number of Comments 71
Sum Expected Agreement 0.2303114461
Agreements 50
Observed Agreements 0.7042253521
Cohen’s Kappa 0.6157216495

Table 7.27: Cohen’s Kappa Calculation Table, Sub-Categories: GPT 4 Turbo vs GPT 3.5
Turbo

Appendix A3.3.4: GPT 3.5 Turbo vs Human Reviewer
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GPT 3.5 Turbo Human Expected Agreement
1. Specific Mission/Level
Crashes

0 3 0

2. Device-Specific Issues 7 3 0.004050925926
3. Performance Issues
(FPS Drops/Stutters)

3 5 0.002893518519

4. Crash On
Launch/Startup Issues

22 18 0.07638888889

5. In-Game Freeze/Crash 27 27 0.140625
6. Asset Loading Errors 1 1 0.0001929012346
7. Memory
Management/Leaks

2 2 0.0007716049383

8. Game Integrity and
Corruption Problems

2 4 0.001543209877

9. Hardware Compatability
Issues

6 6 0.006944444444

10. Post-Update Problems 1 3 0.0005787037037

Number of Comments 72
Sum Expected Agreement 0.2339891975
Agreements 51
Observed Agreements 0.7083333333
Cohen’s Kappa 0.6192394863

Table 7.28: Cohen’s Kappa Calculation Table, Sub-Categories: GPT 3.5 Turbo vs Human

Appendix A3.3.5: GPT 4 vs Human Reviewer
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GPT 4 Human Expected Agreement
1. Specific Mission/Level
Crashes

5 3 0.002893518519

2. Device-Specific Issues 2 3 0.001157407407
3. Performance Issues
(FPS Drops/Stutters)

9 5 0.008680555556

4. Crash On
Launch/Startup Issues

21 18 0.07291666667

5. In-Game Freeze/Crash 11 27 0.05729166667
6. Asset Loading Errors 1 1 0.0001929012346
7. Memory
Management/Leaks

2 2 0.0007716049383

8. Game Integrity and
Corruption Problems

3 4 0.002314814815

9. Hardware Compatability
Issues

9 6 0.01041666667

10. Post-Update Problems 8 3 0.00462962963

Number of Comments 72
Sum Expected Agreement 0.1612654321
Agreements 48
Observed Agreements 0.6666666667
Cohen’s Kappa 0.602575897

Table 7.29: Cohen’s Kappa Calculation Table, Sub-Categories: GPT 4 vs Human

Appendix A3.3.6: GPT 4 Turbo vs Human Reviewer
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GPT 4 Human Expected Agreement
1. Specific Mission/Level
Crashes

3 3 0.001736111111

2. Device-Specific Issues 3 3 0.001736111111
3. Performance Issues
(FPS Drops/Stutters)

5 5 0.004822530864

4. Crash On
Launch/Startup Issues

26 18 0.09027777778

5. In-Game Freeze/Crash 19 27 0.09895833333
6. Asset Loading Errors 2 1 0.0003858024691
7. Memory
Management/Leaks

2 2 0.0007716049383

8. Game Integrity and
Corruption Problems

3 4 0.002314814815

9. Hardware Compatability
Issues

4 6 0.00462962963

10. Post-Update Problems 4 3 0.002314814815

Number of Comments 72
Sum Expected Agreement 0.2079475309
Agreements 56
Observed Agreements 0.7777777778
Cohen’s Kappa 0.7194349732

Table 7.30: Cohen’s Kappa Calculation Table, Sub-Categories: GPT 4 Turbo vs Human

Appendix A1: Cohen’s Kappa Calculation Tables for Old Categories Appendix A4.1:
New GPT 3.5 Turbo vs GPT 3.5 Turbo
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New GPT 3.5 Turbo Old GPT 3.5 Turbo Expected Agreement
1. Gameplay Bugs &
Glitches.

57 58 0.06588807398

2. Technical Issues &
Crashes

65 71 0.09197624362

3. Game Progression
Blocks

37 9 0.006636639031

4. Graphics & Rendering
Problems

14 21 0.005859375

5. Controls & Input
Recognition

7 8 0.001116071429

6. Multiplayer &
Connectivity Issues

15 21 0.006277901786

7. User Interface &
Experience Problems

3 15 0.0008968431122

8. Audio Issues 5 4 0.0003985969388
9. Installation & Update
Problems

12 8 0.001913265306

10. Achievements &
Rewards Issues

8 9 0.00143494898

Number of Comments 224
Sum Expected Agreement 0.1823979592
Agreements 146
Observed Agreements 0.6517857143
Cohen’s Kappa 0.5741029641

Table 7.31: Cohen’s Kappa Calculation Table, Recategorisation Test: New GPT 3.5 Turbo
vs Old GPT 3.5 Turbo

Appendix A4.2: New GPT 3.5 Turbo vs GPT 4
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New GPT 3.5 Turbo GPT 4 Expected Agreement
1. Gameplay Bugs &
Glitches.

57 42 0.04771205357

2. Technical Issues &
Crashes

65 67 0.08679448342

3. Game Progression
Blocks

37 43 0.03170838648

4. Graphics & Rendering
Problems

14 21 0.005859375

5. Controls & Input
Recognition

7 14 0.001953125

6. Multiplayer &
Connectivity Issues

15 17 0.005082110969

7. User Interface &
Experience Problems

3 4 0.0002391581633

8. Audio Issues 5 4 0.0003985969388
9. Installation & Update
Problems

12 2 0.0004783163265

10. Achievements &
Rewards Issues

8 10 0.001594387755

Number of Comments 224
Sum Expected Agreement 0.1818199936
Agreements 154
Observed Agreements 0.6875
Cohen’s Kappa 0.6180547098

Table 7.32: Cohen’s Kappa Calculation Table, Recategorisation Test: New GPT 3.5 Turbo
vs GPT 4

Appendix A4.3: New GPT 3.5 Turbo vs GPT 4 Turbo
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New GPT 3.5 Turbo GPT 4
Turbo

Expected Agreement

1. Gameplay Bugs &
Glitches.

57 32 0.03635204082

2. Technical Issues &
Crashes

65 72 0.09327168367

3. Game Progression
Blocks

37 43 0.03170838648

4. Graphics & Rendering
Problems

14 23 0.006417410714

5. Controls & Input
Recognition

7 10 0.001395089286

6. Multiplayer &
Connectivity Issues

15 19 0.005680006378

7. User Interface &
Experience Problems

3 6 0.0003587372449

8. Audio Issues 5 3 0.0002989477041
9. Installation & Update
Problems

12 5 0.001195790816

10. Achievements &
Rewards Issues

8 11 0.001753826531

Number of Comments 224
Sum Expected Agreement 0.1784319196
Agreements 148
Observed Agreements 0.6607142857
Cohen’s Kappa 0.5870266599

Table 7.33: Cohen’s Kappa Calculation Table, Recategorisation Test: New GPT 3.5 Turbo
vs GPT 4 Turbo

Appendix A4.4: New GPT 3.5 Turbo vs Human Reviewer
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New GPT 3.5 Turbo Human Expected Agreement
1. Gameplay Bugs &
Glitches.

57 63 0.07093333333

2. Technical Issues &
Crashes

65 90 0.1155555556

3. Game Progression
Blocks

37 16 0.01169382716

4. Graphics & Rendering
Problems

14 14 0.003871604938

5. Controls & Input
Recognition

7 9 0.001244444444

6. Multiplayer &
Connectivity Issues

15 13 0.003851851852

7. User Interface &
Experience Problems

3 5 0.0002962962963

8. Audio Issues 5 6 0.0005925925926
9. Installation & Update
Problems

12 2 0.0004740740741

10. Achievements &
Rewards Issues

8 7 0.00110617284

Number of Comments 225
Sum Expected Agreement 0.2096197531
Agreements 151
Observed Agreements 0.6711111111
Cohen’s Kappa 0.5838852373

Table 7.34: Cohen’s Kappa Calculation Table, Recategorisation Test: New GPT 3.5 Turbo
vs Human Reviewer
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Appendix B: Statista Figures and Statistics for Steam & Epic
Games Platform

Appendix B.1: Number of peak concurrent Steam users worldwide from 2015 to
2023

Figure 7.1: Statista: Number of peak concurrent Steam users worldwide from 2015 to 2023

Statista, 2023

90



Bibliography Bibliography

Appendix B.2: Number of games released on Steam worldwide from 2004 to
2024. 2025

Figure 7.2: Statista: Number of games released on Steam worldwide from 2004 to 2024. 2025

Statista, 2025
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Appendix B.3: Number of games released on Steam worldwide from 2018 to
2023, by developer type

Figure 7.3: Statista: Number of games released on Steam worldwide from 2018 to 2023, by
developer type

Statista, 2024b
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Appendix B.4: Number of games available in the Epic Games Store from 2019
to 2023

Figure 7.4: Statista: Number of games available in the Epic Games Store from 2019 to 2023

Statista, 2024a
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Appendix C: Communication with Steam Support regarding access
of Inactive posts.

Figure 7.5: Communication with Steam Support regarding access of Inactive posts.
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Appendix D: Survey Results

Appendix D1: Primary Categories Standard Deviation

Appendix D1.1: Primary Categories Games Industry Pool Standard Deviation

Not
Useful
At All

Slightly
Useful

Very
Useful

Extremely
Useful

Average (1-4) Standard
Deviation

1. Gameplay Bugs &
Glitches.

0 5 13 19 3.378378378 0.7109700777

2. Technical Issues &
Crashes

0 2 10 25 3.621621622 0.5859319835

3. Game Progression
Blocks

1 4 9 23 3.459459459 0.7916658657

4. Graphics &
Rendering Problems

0 7 17 12 3.138888889 0.7130832029

5. Controls & Input
Recognition

0 7 17 12 3.138888889 0.7130832029

6. Multiplayer &
Connectivity Issues

0 9 13 14 3.138888889 0.787145962

7. User Interface &
Experience Problems

1 10 14 12 3 0.8382736443

8. Audio Issues 1 13 15 7 2.777777778 0.7856742013
9. Installation &
Update Problems

3 6 12 15 3.083333333 0.9537935952

10. Achievements &
Rewards Issues

4 12 11 10 2.72972973 0.9767195135

Table 7.35: Primary Categories Games Industry Frequency of Ratings, Average Rating and
Standard Deviation

Appendix D1.2: Primary Categories None-Games Industry Pool Standard
Deviation
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Not
Useful
At All

Slightly
Useful

Very
Useful

Extremely
Useful

Average (1-4) Standard
Deviation

1. Gameplay Bugs &
Glitches.

2 5 23 32 3.370967742 0.7669350599

2. Technical Issues &
Crashes

1 2 12 46 3.68852459 0.6151364931

3. Game Progression
Blocks

0 7 25 27 3.338983051 0.6792360986

4. Graphics &
Rendering Problems

0 13 32 17 3.064516129 0.6926100179

5. Controls & Input
Recognition

0 15 29 18 3.048387097 0.7279538127

6. Multiplayer &
Connectivity Issues

0 14 24 23 3.147540984 0.7647150026

7. User Interface &
Experience Problems

1 21 21 19 2.935483871 0.8399494559

8. Audio Issues 2 26 22 12 2.709677419 0.8109551671
9. Installation &
Update Problems

2 18 22 20 2.967741935 0.8607525203

10. Achievements &
Rewards Issues

3 29 22 6 2.516666667 0.7414325473

Table 7.36: Primary Categories None-Games Industry Frequency of Ratings, Average Rating
and Standard Deviation

Appendix D2: Sub-Categories Standard Deviation

Appendix D2.1: Sub-Categories Games Industry Pool Standard Deviation
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Not
Useful
At All

Slightly
Useful

Very
Useful

Extremely
Useful

Average (1-4) Standard
Deviation

1. Gameplay Bugs &
Glitches.

0 5 13 19 3.378378378 0.7109700777

2. Technical Issues &
Crashes

0 2 10 25 3.621621622 0.5859319835

3. Game Progression
Blocks

1 4 9 23 3.459459459 0.7916658657

4. Graphics &
Rendering Problems

0 7 17 12 3.138888889 0.7130832029

5. Controls & Input
Recognition

0 7 17 12 3.138888889 0.7130832029

6. Multiplayer &
Connectivity Issues

0 9 13 14 3.138888889 0.787145962

7. User Interface &
Experience Problems

1 10 14 12 3 0.8382736443

8. Audio Issues 1 13 15 7 2.777777778 0.7856742013
9. Installation &
Update Problems

3 6 12 15 3.083333333 0.9537935952

10. Achievements &
Rewards Issues

4 12 11 10 2.72972973 0.9767195135

Table 7.37: Sub-Categories Games Industry Frequency of Ratings, Average Rating and
Standard Deviation

Appendix D2.2: Sub-Categories None-Games Industry Pool Standard Devia-
tion
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Not
Useful
At All

Slightly
Useful

Very
Useful

Extremely
Useful

Average (1-4) Standard
Deviation

1. Gameplay Bugs &
Glitches.

2 5 23 32 3.370967742 0.7669350599

2. Technical Issues &
Crashes

1 2 12 46 3.68852459 0.6151364931

3. Game Progression
Blocks

0 7 25 27 3.338983051 0.6792360986

4. Graphics &
Rendering Problems

0 13 32 17 3.064516129 0.6926100179

5. Controls & Input
Recognition

0 15 29 18 3.048387097 0.7279538127

6. Multiplayer &
Connectivity Issues

0 14 24 23 3.147540984 0.7647150026

7. User Interface &
Experience Problems

1 21 21 19 2.935483871 0.8399494559

8. Audio Issues 2 26 22 12 2.709677419 0.8109551671
9. Installation &
Update Problems

2 18 22 20 2.967741935 0.8607525203

10. Achievements &
Rewards Issues

3 29 22 6 2.516666667 0.7414325473

Table 7.38: Sub-Categories None-Games Industry Frequency of Ratings, Average Rating and
Standard Deviation

Appendix D3: Survey Qualitative Results

Appendix D3.1: Games Industry Pool Qualitative Data Breakdown-Primary
Categories
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Category Development
Impact

Too Generic/
Too High
Level

Too Specific/
Too Low
Level

High
Importance

Low
Importance

Player
Perspective

Reporting/
Communica-
tion

Understanding Other Total

1. Gameplay Bugs &
Glitches.

3 5 0 2 0 2 2 2 1 17

2. Technical Issues &
Crashes

1 4 0 2 0 2 2 2 1 14

3. Game Progression
Blocks

0 0 0 4 0 2 2 0 2 10

4. Graphics &
Rendering Problems

0 3 0 2 1 0 0 0 4 10

5. Controls & Input
Recognition

0 0 1 2 0 2 0 0 1 6

6. Multiplayer &
Connectivity Issues

1 2 0 3 0 2 0 0 1 9

7. User Interface &
Experience Problems

2 2 0 1 1 1 2 1 1 11

8. Audio Issues 0 0 0 3 1 2 0 0 1 7
9. Installation &
Update Problems

1 2 0 3 0 1 1 0 0 8

10. Achievements &
Rewards Issues

0 0 1 1 1 3 0 0 2 8

Table 7.39: Games Industry Pool Qualitative Feedback for Primary Categories Breakdown

Appendix D3.2: None-Games Industry Pool Qualitative Data Breakdown -
Primary Categories

Category Development
Impact

Too Generic/
Too High
Level

Too Specific/
Too Low
Level

High
Importance

Low
Importance

Player
Perspective

Reporting/
Communica-
tion

Understanding Other Total

1. Gameplay Bugs &
Glitches.

1 8 0 8 0 1 3 0 0 21

2. Technical Issues &
Crashes

1 5 0 7 0 5 1 0 0 19

3. Game Progression
Blocks

1 1 0 6 0 3 2 1 1 15

4. Graphics &
Rendering Problems

0 1 0 4 1 1 2 0 2 11

5. Controls & Input
Recognition

1 1 1 2 0 3 1 1 1 11

6. Multiplayer &
Connectivity Issues

4 1 1 2 0 1 1 0 2 12

7. User Interface &
Experience Problems

0 4 0 1 2 1 1 1 1 11

8. Audio Issues 1 2 0 2 2 0 2 0 0 9
9. Installation &
Update Problems

1 1 0 5 0 2 1 0 0 10

10. Achievements &
Rewards Issues

0 2 1 0 4 2 0 0 2 11

Table 7.40: None-Games Industry Pool Qualitative Feedback for Primary Categories
Breakdown

Appendix D3.3: Games Industry Pool Qualitative Data Breakdown-Sub
Categories
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Category Development
Impact

Scope/SpecificityImportance Player
Perspective

Reporting/
Communica-
tion

Understanding Other Total

1. Specific
Mission/Level Crashes

1 2 6 0 1 0 1 11

2. Device-Specific
Issues

0 0 3 0 0 0 2 5

3. Performance Issues
(FPS Drops/Stutters)

0 1 2 2 0 0 0 5

4. Crash On
Launch/Startup Issues

0 0 3 0 0 0 0 3

5. In-Game
Freeze/Crash

0 1 1 1 0 0 0 3

6. Asset Loading
Errors

0 1 1 0 0 0 1 3

7. Memory
Management/Leaks

0 1 1 1 0 1 0 4

8. Game Integrity and
Corruption Problems

1 1 0 1 0 0 1 4

9. Hardware
Compatability Issues

0 1 1 1 1 0 1 5

10. Post-Update
Problems

0 4 0 0 0 2 0 6

Table 7.41: Games Industry Pool Qualitative Feedback for Sub-Categories Breakdown

Appendix D3.4: None-Games Industry Pool Qualitative Data Breakdown -
Sub Categories

Category Development
Impact

Scope/SpecificityImportance Player
Perspective

Reporting/
Communica-
tion

Understanding Other Total

1. Specific
Mission/Level Crashes

4 0 1 1 1 0 0 7

2. Device-Specific
Issues

3 2 1 1 0 1 0 8

3. Performance Issues
(FPS Drops/Stutters)

5 0 2 0 0 0 0 7

4. Crash On
Launch/Startup Issues

1 1 4 0 0 0 1 7

5. In-Game
Freeze/Crash

2 1 1 0 0 0 0 4

6. Asset Loading
Errors

0 0 2 1 0 0 0 3

7. Memory
Management/Leaks

0 0 5 0 2 0 1 8

8. Game Integrity and
Corruption Problems

1 1 1 1 0 0 0 4

9. Hardware
Compatability Issues

3 3 2 0 1 0 1 10

10. Post-Update
Problems

2 0 2 0 0 0 0 4

Table 7.42: None-Games Industry Pool Qualitative Feedback for Sub-Categories Breakdown

Appendix D3.5: Combined Pool Qualitative Data Breakdown -Sub Categories
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Category Development
Impact

Scope/SpecificityImportance Player
Perspective

Reporting/
Communica-
tion

Understanding Other Total

1. Specific
Mission/Level Crashes

5 2 7 1 2 0 1 18

2. Device-Specific
Issues

3 2 4 1 0 1 2 13

3. Performance Issues
(FPS Drops/Stutters)

5 1 4 2 0 0 0 12

4. Crash On
Launch/Startup Issues

1 1 7 0 0 0 1 10

5. In-Game
Freeze/Crash

2 2 2 1 0 0 0 7

6. Asset Loading
Errors

0 1 3 1 0 0 1 6

7. Memory
Management/Leaks

0 1 6 1 2 1 1 12

8. Game Integrity and
Corruption Problems

2 2 1 2 0 0 1 8

9. Hardware
Compatability Issues

3 4 3 1 2 0 2 15

10. Post-Update
Problems

2 4 2 0 0 2 0 10

Table 7.43: None-Games Industry Pool Qualitative Feedback for Sub-Categories Breakdown

Appendix E: Survey Questions

Appendix E.1: Screening Survey Questions

Figure 7.6: Screening Survey
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Appendix E.2: Primary Survey Questions

Figure 7.7: Primary Survey
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