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Abstract—Fault detection plays a critical role in ensuring
the reliability and safety of wind turbine operation. With the
growing availability of operational data, data-driven approaches
have become increasingly prevalent. This paper proposes a fault
detection method based on the Quantum Long Short-Term
Memory network (QLSTM). The model is trained by supervisory
control and data acquisition (SCADA) data to capture temporal
dependencies among multiple sensor signals under healthy con-
ditions, forming a Normal Behavior Model (NBM). Residuals
between predicted and practical measurement values are com-
puted and evaluated using the T-distribution method to establish
a threshold for anomaly identification. Experiments conducted
on SCADA data show that the proposed method outperforms
the conventional LSTM in terms of modeling accuracy, detection
sensitivity, and early fault warning capability, achieving a 7.67
hours earlier fault detection and demonstrating the potential of
quantum machine learning (QML) in wind turbine condition
monitoring.

Index Terms—Wind turbine, condition monitoring, deep learn-
ing, quantum machine learning

I. INTRODUCTION

Wind power has become an important part of global renew-
able energy systems and has seen rapid growth in recent years.
According to the Global Wind Energy Council (GWEC), the
total installed capacity reached 1021 GW in 2024, and annual
additions are still growing steadily [1]. As wind turbines
operate in harsh environments, their reliability becomes more
of a concern. Components such as gearboxes, generators, and
bearings often face failures due to complex loads and harsh
conditions, which can lead to unexpected shutdowns or even
serious damage [2]. Therefore, improving fault detection is
essential to increase availability and thus reduce maintenance
costs [3].

In recent years, data-driven methods have become widely
used for wind turbine fault detection. Machine learning (ML)
models like convolutional neural networks (CNNs) and re-
current neural networks (RNNs) have achieved good results
in learning nonlinear patterns and time dependencies from
operational data [4], [5]. However, as model structures grow
more complex, their performance gains become limited, while
the demand for computational resources rises sharply [6].
This poses challenges for deployment in environments with
restricted computing capacity.
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Quantum machine learning (QML), which combines quan-
tum computing with learning methods, offers a possible so-
lution to the limitations of conventional machine learning
(CML) [7]. QML has shown strong learning and generalization
abilities in areas such as finance, image processing, and natural
language tasks [8]—[10]. The quantum long short-term memory
network (QLSTM) builds on standard LSTM by integrating
parameterized quantum circuit (PQC), aiming to improve its
ability to model temporal features. Using QLSTM for wind
turbine fault detection is therefore meaningful from both
theoretical and practical perspectives.

This study presents a wind turbine fault detection approach
based on QLSTM. Supervisory control and data acquisition
(SCADA) data are first preprocessed by removing outliers
and fault points to construct a fault-free time-series dataset
under normal operating conditions. QLSTM is then applied
to learn temporal dependencies across multiple variables and
to build a normal behavior model (NBM). A fault threshold
is determined by using a residual-based method grounded
in the T-distribution. Experimental results indicate that the
proposed approach achieves better performance than con-
ventional LSTM models in terms of R2, root mean square
error (RMSE), and early fault detection, demonstrating its
potential for practical application in condition monitoring of
wind turbines.

The main contributions of this work are summarized as fol-
lows. 1) A novel QLSTM-based NBM framework is proposed
for unsupervised fault detection in wind turbines. By embed-
ding PQCs into LSTM gates, the model enhances its capacity
to capture long-term dependencies in multivariate SCADA
data. 2) A statistically principled fault detection mechanism is
developed by combining residuals with a T-distribution-based
thresholding method, enabling anomaly detection without re-
liance on fault labels. 3) The proposed method demonstrates
that QML can be effectively applied to wind turbine condition
monitoring, providing a generalizable architecture for data-
driven modeling and anomaly identification under complex
operating conditions.

The rest of this paper is structured as follows. Section
II reviews related work on wind turbine fault detection and
quantum machine learning. Section III describes the proposed
QLSTM-based method, covering model architecture, and fault



detection procedure. Section IV reports and analyzes the
experimental results. Finally, Section V concludes the paper.

II. RELATED WORK

Wind turbine fault detection techniques have mainly relied
on expert knowledge and physical models, where dynamic
behaviors of wind turbine components are modeled and thresh-
olds are defined for anomaly identification [11]. However,
these methods require a deep understanding of system dy-
namics and are often difficult to generalize under complex and
varying operating conditions. With advances in sensor technol-
ogy, modern wind turbines generate large volumes of high-
frequency, long-duration, and multivariate operational data.
Signal processing-based approaches have therefore emerged,
utilizing techniques such as wavelet transform and fast Fourier
transform (FFT) in combination with statistical analysis to
achieve an efficient fault detection [12]. Despite their effective-
ness in certain scenarios, these methods rely heavily on manual
feature extraction and offer limited capability in modeling
nonlinear systems, leading to challenges in robustness and
generalization under real-world conditions.

To address these limitations, ML algorithms such as support
vector machine (SVM), random forest (RF), and extreme
gradient boosting (XGBoost) have been introduced. These
models are relatively simple in structure and can achieve high
classification accuracy and efficiency when combined with
well-engineered features [13]. However, the performance of
ML models remains highly dependent on feature engineering.
They also lack the ability to automatically capture temporal
dependencies, making them less effective in scenarios involv-
ing complex conditions, compound faults, or long-term time
series data.

In recent years, deep learning (DL) methods have been
widely applied in wind turbine fault detection. CNN, known
for its strength in spatial feature extraction, has been exten-
sively used for modeling vibration signals and image-based
monitoring data. In [14], a multi-channel CNN was employed
to model three-axis vibration signals for multi-class blade
fault identification. In [15], a 3-dimension (3D) CNN was
applied to hyperspectral images of turbine blades for surface
defect detection. To handle compound fault scenarios, [16]
proposed a hybrid architecture combining 3D CNN, attention
mechanisms, and LSTM to extract spatiotemporal features,
achieving promising results across multiple fault types.

Given the strong temporal characteristics of wind turbine
operational data, RNN and its variants have also been widely
adopted. In [17], an LSTM-based NBM was constructed and
combined with distribution-based divergence measures for
unsupervised fault detection. In [5], a CNN-LSTM model
with an attention mechanism was designed to enhance fea-
ture weighting, significantly improving prediction accuracy.
Furthermore, [18] employed a graph attention network (GAT)
to model the spatiotemporal dependencies in SCADA data,
outperforming CNN-LSTM baselines on multiple metrics. In
[19], the robustness and performance of Transformer-based

architectures under different feature selection strategies were
validated, particularly in terms of F1 score and recall.

Meanwhile, QML has emerged as a promising paradigm in
wind turbine condition monitoring. In [20], a hybrid quantum-
classical framework was proposed for processing ultrasonic
blade images, where quantum neural network (QNN) achieved
over 20% higher accuracy than artificial neural network
(ANN). In [21], the dimension of SCADA data was reduced
via PCA and autoencoders, and the performance of multi-
kernel SVMs was compared with quantum SVM (QSVM),
reporting 94.5% accuracy for Gaussian SVM and 92.5%
for QSVM. Further developments in QML for wind turbine
condition monitoring can be found in [22].

These studies have preliminarily demonstrated the feasibil-
ity and potential of QML in wind turbine condition monitor-
ing. However, most existing work focuses on benchmarking
against classical methods and employs relatively simple QML
architectures.

III. RESEARCH METHOD
A. Fault Detection Process

In this study, the NBM serves as the foundation for
wind turbine fault detection. The aim of NBM is to capture
typical operational patterns under healthy conditions, such
that significant deviations between actual measurements and
model predictions can be regarded as the potential faults. The
complete implementation of the NBM construction, including
all model configurations and training settings, is detailed
in Algorithm 1. The overall detection process is illustrated
in Figure 1. Initially, raw SCADA data are collected and
processed through cleaning and variable selection to obtain
fault-free samples. These samples are then used to train the
NBM, which is implemented using a QLSTM network in this
work. Once trained, the model is applied to the test dataset to
generate predictions, and the residuals between predicted and
observed values are computed. These residuals are compared
against the predefined threshold: values exceeding the thresh-
old indicate a fault and trigger an alarm, while values within
the threshold range suggest normal operation. This approach
enables accurate detection of abnormal behavior and supports
the reliable operation of wind turbines.

B. Quantum Long-short Term Memory Network

QLSTM was first proposed in [23] as a hybrid quantum-
classical architecture designed to enhance the representational
capacity of CML by incorporating PQC, particularly under the
constraints of current quantum hardware. While maintaining
the overall structure of LSTM, QLSTM replaces the key
gating units with PQCs, enabling quantum-enhanced temporal
modeling. As illustrated in Figure 2, PQCs are used to replace
the forget gate (f;), input gate (i;), candidate memory update
(C’t), and output gate (o). At each time step, the input z; is fed
into the corresponding PQC, followed by a nonlinear activation
function to control memory and state updates. Specifically,
the forget gate is computed by applying a sigmoid activation
to the output of PQC,(z;), as shown in Equation (1); the
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Fig. 1. Process of NBM-based fault detection.

input gate and candidate memory are similarly computed using
PQCy(z;) and PQCs(x;), respectively, as in Equations (2)
and (3). The cell state is updated by combining the previous
memory with the new candidate, as defined in Equation (4);
the output gate and final hidden state are obtained using
Equations (5) and (6). In these equations, PQC; denotes the
output of the i-th parameterized quantum circuit, ¢ is the
sigmoid activation function, tanh is the hyperbolic tangent
function, and ® denotes the Hadamard (element-wise) product.

fr = o(PQCy () (D

iy = 0(PQCy(x)) 2)

Cy = tanh(PQCy(x)) (3)
Co=fi0Ci1+i,0C )
or = o(PQCy(w¢)) (5)

hi = PQC;(0; © tanh(Cy)) (6)

C. Thresholding Method

In this study, a residual-based thresholding method is imple-
mented using the T'-distribution to detect fault. This approach
assumes that the model residuals under fault-free conditions
follow a Gaussian-like distribution. After training the NBM on
healthy data, we obtain the residuals by comparing predicted
values and measurement values and then compute their sample
mean e, standard deviation o, and sample size N. To define

Algorithm 1 Construction of NBM via QLSTM

Require: Fault-free SCADA dataset D = {X,y}, where X €
RN*4 denotes N samples with d variables, and y € RY
is the target variable sequence

Ensure: Trained QLSTM model representing NBM

1: Step 1: Training Environment and Runtime
2. Hardware: Intel® Core™ i5 - 12600 KF CPU, 64 GB
RAM, NVIDIA GeForce RTX 4070 Ti SUPER GPU

. Software: Qiskit, TorchQuantum, Pytorch

: Approximate training time: 150 minutes per run

: Step 2: Data preparation

. Select d input variables based on physical relevance to the

target y
7: Set sliding window size W = 40, prediction horizon H =
6
g: fori=1to N-W — H do

AN LK AW

Construct input window X; € R"X4 from
[Ti, Tit1, s Tigw 1]

10:  Assign label y; = y;yw+pm {Forecast target H steps
ahead}

11: end for

12: Step 3: QLSTM network configuration

13: Initialize a two-layer QLSTM model:

14: - First layer: 128 hidden units; Second layer: 64 hidden
units

15: - Replace all LSTM gates with 6-qubit PQC

16: - Activation functions: sigmoid for gates, tanh for
memory updates

17: Step 4: Model Training and Selection

18: Set batch size = 256, optimizer = Adam, loss function =
Mean Squared Error (MSE)

19: for j =1 to 5 do

20:  Train the QLSTM model on {X;,y;} using randomly

initialized weights

21:  Evaluate validation performance by computing RMSE;

22: end for

23: Select the model M™ with the lowest validation RMSE

24: return Final trained QLSTM model M* as the Normal
Behavior Model (NBM)

a statistical threshold for fault detection, we calculate the
upper confidence bound of the residual distribution at a given
confidence level (1 — «), in this study, the confidence level is
set to 99%. This is computed based on the T-distribution as
follows.

r=ée+ %ta/g(N—l) 7

Here, tq/o(N — 1) is the critical value from the T-
distribution with N —1 degrees of freedom. During inference,
if a residual exceeds the threshold 7, the corresponding data
point is flagged as fault. This method provides a statistically
interpretable and computationally efficient thresholding strat-
egy that is well-suited for wind turbine fault detection.
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Fig. 2. Structure of QLSTM.

IV. EXPERIMENTAL RESULTS AND DISCUSSION
A. Data Description

The SCADA dataset used in this study was obtained from
a wind turbine that experienced an abnormal rise in gearbox
oil sump temperature in 2011. The turbine has a rated wind
speed of 15 m/s and a cut-out wind speed of 25 m/s. During
operation, a gearbox oil over-temperature alarm was triggered
at 09:47 on June 4, leading to an emergency shutdown. The
SCADA system recorded measurement values at a 2-second
interval, which were subsequently averaged and archived at
10-minute intervals. The dataset includes readings from 128
sensors, capturing parameters such as temperatures, pressures,
active power, vibrations, wind speeds, and digital control
signals.

Figure 3 shows the scatter plot of active power versus
wind speed. When the wind speed ranges from 3 m/s to
15 m/s, active power increases accordingly. Beyond 15 m/s,
the power output stabilizes around the rated value. Ideally, the
power curve should exhibit an S-shaped profile under normal
conditions. However, due to the fault, the wind turbine shows
underperformance at certain periods when the turbine fails to
reach rated power even at the optimal wind speeds, resulting
in significant outliers.

To build a reliable NBM, the raw data must be preprocessed
to exclude periods associated with alarms or faults. Figure 4
presents the power—wind speed relationship after data clean-
ing, which more accurately represents the turbine’s normal
operational characteristics and serves as a robust foundation
for model training.

B. Variable Selection

The abnormal rise in gearbox oil sump temperature is
typically caused by excessive load, insufficient lubrication,
or mechanical damage in gears or bearings, which results in
increased frictional heat. As shown in Figure 5 and Figure
6, which present the time-series data of gearbox bearing
temperature and oil sump temperature respectively, a sharp
increase in bearing temperature can be observed near the fault
time point marked by the red dashed line. This sudden rise
in bearing temperature subsequently leads to an abnormal
increase in oil sump temperature, ultimately triggering the
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Fig. 3. Original active power vs. wind speed curve.
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Fig. 4. Fault-free active power vs. wind speed curve.

over-temperature alarm. This indicates that the oil temperature
anomaly is a consequence of the bearing overheating. Based
on this fault mechanism, the gearbox bearing temperature is
selected as the target variable for the fault detection model.
To improve the performance of the model, variables such as
gearbox oil sump temperature, generator speed, gearbox oil
pressure, rotor speed, and active power that are closely related
to the bearing temperature are selected as input features.
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Fig. 5. Time-series data of gearbox bearing temperature.

C. Performance on Test Dataset

On the test dataset, LSTM achieves an R? score of 0.9358
and an RMSE of 2.2775, while QLSTM achieves an R? score
of 0.9446 and an RMSE of 1.9308. Figure 7 illustrates the
comparison between the predicted values and measurement
values for LSTM and QLSTM. As shown in the figure,
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Fig. 6. Time-series data of gearbox oil sump temperature.

QLSTM exhibits better fitting performance on fault-free data,
indicating a stronger modeling capability for normal behavior
and lower overall prediction error.
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Fig. 7. Measurement values vs. prediction values of LSTM and QLSTM.

D. Fault Detection Performance

As this study targets the gearbox bearing over-temperature
fault, the residuals are computed by retaining only the portions
where the measurement values exceed the model prediction.
Using a thresholding method based on the T-distribution, the
fault detection thresholds are determined as 0.4377 for LSTM
and 0.4054 for QLSTM, respectively.

The input data for fault detection spans two days prior to
the fault occurrence. Figure 8 presents the comparison between
the predicted values and measurement values for LSTM and
QLSTM, when exposed to raw input containing faults. A
noticeable temperature rise begins at the sample point 51850,
indicating the onset of abnormal behavior. By comparing the
residuals with the respective thresholds, fault conditions can
be identified. Figure 9 and Figure 10 illustrate the detection
results of both models: QLSTM detects the fault earlier at
sample point 51616 (orange vertical line), whereas LSTM
responds at 51662. The results clearly show that QLSTM
detects the fault 7.67 hours earlier than the conventional LSTM
and exhibits higher sensitivity.

E. Discussion

The experimental results provide empirical evidence that the
proposed QLSTM model outperforms the LSTM in both pre-
diction accuracy and fault detection sensitivity. On the fault-

)

751 —— Measurement H
—~ LSTM i
&£ 70{ — QLs™™ :
£ --- Fault Point !
‘@‘ 65 !
g i
£ 60 i
g :
55 i

1

1

51650 51700 51750 51800

Sample Points

51850 51900

Fig. 8. Measurement values vs. prediction values of LSTM on original dataset.
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Fig. 9. Fault detection performance of LSTM.

free test dataset, QLSTM achieves a higher R? score and lower
RMSE compared to LSTM, indicating stronger generalization
capability and a better fit to normal operating patterns. This
improved modeling of normal behavior enables more accurate
residual computation, which is crucial in residual-based fault
detection frameworks.

In the fault detection task, both models apply one-sided
residual analysis, focusing exclusively on instances where the
actual temperature exceeds the predicted value. This approach
corresponds to the physical behavior typically observed in
bearing overheating faults. Thresholds for fault detection are
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Fig. 10. Fault detection performance of QLSTM.



determined using the T-distribution method, yielding 0.4377
for LSTM and a lower value of 0.4054 for QLSTM. The tighter
residual distribution of QLSTM reflects a higher sensitivity to
subtle deviations.

More significantly, QLSTM detects the bearing fault 7.67
hours earlier than LSTM, offering a substantial advantage
in early fault warning. This earlier detection could provide
operators with additional lead time to implement preventa-
tive maintenance measures, potentially avoiding more severe
mechanical failures. The enhanced responsiveness of QLSTM
highlights the potential of QML in condition monitoring of
the safety-critical industrial tasks.

While QLSTM demonstrates superior performance, it is im-
portant to acknowledge that its advantage partially stems from
the expressive power of parameterized quantum circuits, which
allow the model to capture complex temporal dependencies
with fewer parameters.

V. CONCLUSION

This paper presents a wind turbine fault detection approach
based on the QLSTM. The model is trained to learn the
normal operational behavior of wind turbines using SCADA
data and to identify deviations indicative of faults through
residual-based analysis. A thresholding method based on the
T-distribution is employed to determine fault conditions in a
statistically robust manner.

Experimental validation demonstrates that QLSTM achieves
superior performance over conventional LSTM models, with
a higher R? score, lower RMSE, and earlier fault detection.
Specifically, QLSTM detects gearbox bearing faults one hour
earlier than LSTM, demonstrating its enhanced sensitivity and
early warning capability. These results underline the practical
value of QML in wind turbine condition monitoring.

Future research could investigate the extension of the QL-
STM framework to scenarios involving multiple fault types
and system components. Additionally, exploring the effects of
quantum circuit depth, qubit number, and encoding strategies
may offer further insights into optimizing QML architectures
for real-world deployment as the quantum hardware matures.
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