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SU MMARY

Phase I clinical trials are essential to bringing novel therapies from chemical development to widespread
use. Traditional approaches to dose-finding in Phase I trials, such as the ‘3 + 3’ method and the continual
reassessment method (CRM), provide a principled approach for escalating across dose levels. However,
these methods lack the ability to incorporate uncertainty regarding the dose-toxicity ordering as found in
combination drug trials. Under this setting, dose levels vary across multiple drugs simultaneously, leading
to multiple possible dose-toxicity orderings. The CRM for partial ordering (POCRM) extends to these
settings by allowing for multiple dose-toxicity orderings. In this work, it is shown that the POCRM is
vulnerable to ‘estimation incoherency’ whereby toxicity estimates shift in an illogical way, threatening
patient safety and undermining clinician trust in dose-finding models. To this end, the Bayesian model
averaged POCRM (BMA-POCRM) is formalized. BMA-POCRM uses Bayesian model averaging to take
into account all possible orderings simultaneously, reducing the frequency of estimation incoherencies. We
derive novel theoretical guarantees on the estimation coherency of the POCRM and BMA-POCRM. The
effectiveness of BMA-POCRM in drug combination settings is demonstrated through a specific instance
of estimate incoherency of POCRM and simulation studies. The results highlight the improved safety,
accuracy, and reduced occurrence of estimate incoherency in trials applying the BMA-POCRM relative
to the POCRM model.
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1. INTRODUCTION
An aim of in-patient Phase I clinical trials is to determine the maximum tolerable dose (MTD) from
a range of dose levels for progression into Phase II trials. The MTD is the dose level that matches the
target probability of unwanted effects, sometimes called the target toxicity rate (TTR). Depending
on the setting, the MTD can be either a dose level for a single agent or a combination of dose levels
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Table 1. 3 × 2 setting resulting in 6 dose levels.

Drug B

1 2

Drug A 3 d5 d6
2 d3 d4
1 d1 d2

in a multi-agent setting. A common approach to determining the MTD is to use the number of dose-
limiting toxicities (DLTs), simply called toxicities, on each dose to compute a probability of toxicity.
The definition of a DLT and the desired TTR are set in advance of a trial, hence, by estimating the
risk of DLT for each dose, the dose level with a toxicity rate closest to the TTR can be selected. Dose-
escalation procedures aim to estimate the location of the true MTD given a TTR and sequential
patient DLT data.

Approaches to dose-escalation in Phase I clinical trials frequently rely on the assumption of
simple dose orderings. In the case of single drug Phase I trials, a simple ordering can be constructed
by assuming a monotonic increasing relationship between dose level and toxicity. That is, higher
doses of a drug are assumed to be more toxic than lower doses. For example, suppose there are dose
levels d1, . . . , d4, where a higher index indicates a higher dose level. This means that d1 < . . . < d4
implies the following simple ordering assuming dose-toxicity monotonicity,

d1 → d2 → d3 → d4.

This also implies that d2 is more toxic than d1, d3 is more toxic than both d1 and d2 and so forth.
The continual reassessment method (CRM) is one such approach that is based on the assumption
of monotonicity. It utilizes a Bayesian framework to update estimates of the risk of toxicity to
guide dose-escalation based on a given toxicity ordering of doses (O’Quigley et al. 1990). Several
independent studies have shown that escalation based on the CRM leads to favourable operating
characteristics for finding the true MTD in single-agent clinical trials. With the growing need
for combination drug trials, where the toxicity profile of joint administration of 2 or more drugs
is investigated, methods that allow for potential uncertainties in the ordering of dose levels are
necessary (Mozgunov et al. 2020).

Escalation of multiple drugs concurrently creates uncertainty in the dose-escalation process as
the change in dose toxicity is not obvious for diagonal transitions in dose level, eg where one
drug increases in dose level and the other decreases. Specifically, it may be reasonable to assume
monotonicity for a single drug, however, this does not extend to multiple changes in dose level.
In Table 1, the 3-by-2 dose level configuration for a dual drug combination trial with 3 dose levels
for drug A and 2 dose levels for drug B is shown. Here, it is unknown prior to the trial whether
toxicity increases or decreases with a shift between d2 and d3 and likewise for d4 and d5. Based on
this dose-level matrix, the 5 simple orderings comprising the partial ordering of dose levels are,

1 : d1 → d2 → d3 → d4 → d5 → d6,

2 : d1 → d3 → d5 → d2 → d4 → d6,

3 : d1 → d3 → d2 → d5 → d4 → d6,

4 : d1 → d2 → d3 → d5 → d4 → d6,

5 : d1 → d3 → d2 → d4 → d5 → d6.

Several procedures have been developed to handle the problem of uncertain dose-toxicity orderings,
which is a problem that also persists in dose-schedule (Mozgunov and Jaki 2019) and combination-
schedule settings (Riviere et al. 2015; Mozgunov et al. 2022). Ivanova and Wang (2004) developed
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the up-and-down design for combinations using an isotonic regression combined with the Narayana
design to escalate doses algorithmically (Ivanova et al. 2003). A further development updated
this method to utilize a T-statistic (Ivanova and Kim 2009) for escalation decisions. Furthermore,
Yin and Yuan (2009) have developed the Bayesian copula regression-based model, which uses a
Bayesian scheme similar to the CRM to update posterior estimates of toxicity and recommend dose
allocation decisions. Most recently, Mozgunov et al. (2020) proposed a beta-distributed surface-
free approach to handling drug combination trials, successful in reducing the average number of
toxicities within a trial. The CRM for partial orderings (POCRM), developed by Wages et al.
(2011), extends the Bayesian framework of the CRM to allow for several dose-toxicity orderings
to be specified. For a more complete reporting of recently developed adaptive methods for Phase I
clinical trials, we refer the reader to Barnett et al. (2024) and Liu et al. (2024).

Furthermore, the POCRM addresses the problem of uncertainty in dose-toxicity orderings by
selecting from the set of proposed dose-toxicity orderings for each cohort in the trial. Given a set
of simple orderings that are pre-specified, POCRM selects the most likely ordering and uses this
to recommend the next dose to be assigned in the trial via the CRM. This approach is particularly
favourable as it allows for flexibility in the dose-toxicity ordering used for dose recommendation.
However, it also significantly limits the performance of the model as, particularly in cases with a large
number of dose combinations, not all possible orderings can be considered by the model since the
model can only consider orderings given a priori. It can be argued that the true MTD will be selected
regardless of whether the correct dose ordering is present, however, since the proposed orderings
alter toxicity estimates, they also guide dose-escalation. In the combination setting, multiple doses
that have a toxicity close to the TTR may be present. Therefore, inaccurate estimation of the risk of
toxicity may lead to the incorrect conclusion that there is only a single potential MTD. In this case,
not only is escalation important but also point estimation of dose toxicity rates. Another instance
under which this method can pose challenges is where multiple orderings have a similar posterior
probability leading to the uncertainty in dose orderings being disregarded as only the model with
the highest posterior probability is selected at each step. This article also explores the prevalence of
illogical large changes in dose-toxicity estimates present in practice caused by shifts in the simple
ordering with the greatest posterior probability.

To address the challenges associated with ordering selection and uncertainty quantification
during trials, the original POCRM is extended by applying Bayesian model averaging (BMA) in
this work. Previously, BMA has been applied to the original CRM (Yin and Yuan 2009), where
it was highly successful in improving dose allocation for single-agent trials, particularly for small
sample Phase I trials (Conaway et al. 2004). The novel Bayesian model averaged POCRM (BMA-
POCRM) design, that we propose in this work, aims to incorporate uncertainty in the toxicity
ordering with the aim of making more flexible dose-toxicity estimates, which are not limited to
following a single predefined ordering, and take into account the additional uncertainty implied by
a partial ordering.

Previous work by Zhang et al. (2023) has considered the application of BMA to the POCRM
for a different problem to the one considered here. They consider the problem of a large number
of combination levels, resulting in the original POCRM being hard to specify or having poor
operating characteristics due to a small spacing between skeleton values. To tackle this, the authors
apply CRM only to a subset of combination levels and then use model averaging within that ‘local’
space. Instead, in this article, we consider averaging across the whole grid that concerns the original
POCRM. Another distinction of this work to Zhang et al. (2023) is that we propose to apply BMA
to the ordering-specific posterior distributions of the toxicity probabilities to obtain an averaged
(mixture) posterior distribution of toxicity probabilities. This is opposed to applying BMA to the
ordering-specific point estimates of the toxicity probabilities proposed in Zhang et al. (2023). We
argue that it is beneficial to work with the mixture posterior as it can be directly used to derive other
summary quantities, such as 95% credible interval around the point estimates, and the probability
of overdosing. Another approach for the BMA was proposed by Wages et al. (2011), which apply
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BMA to the ordering-specific recommended doses and is fundamentally different to ours and Zhang
et al. (2023) approaches. We compare these 3 BMA approaches in Section 6.3.

The primary motivation for this work is to mitigate the risk of potentially counterintuitive
recommendations and estimations that a dose-finding model might imply. Clinicians’ trust is an es-
sential aspect of running real-world adaptive clinical trials with more advanced statistical modelling
(Mozgunov et al. 2022). Even if a clinical trial design has good statistical properties, as confirmed
via a simulation study, the design may not be implemented in practice if its recommendations are
not aligned with clinical reasoning or the totality of the trial data (Yap et al. 2017). A lack of trust
in the design can lead to the recommendations given by the model being overruled or disregarded,
even in the presence of evidence that supports the model’s decision.

Escalation coherency (Cheung 2005; Tighiouart and Rogatko 2010; Wheeler 2018) has been
proposed as a formal means of evaluating whether the escalation decisions made by an adaptive
model are in line with observed outcomes. In particular, this type of coherency implies that designs
that recommend dose escalation following a DLT or de-escalation after observing no DLT are
not desirable. Beyond escalation decisions, adaptive models can be used to inform Dose Review
Committee’s (also called Safety Review Committee’s) by providing an adequate summary of the
dose toxicity risk across dose-combinations. In this case, the toxicity risk estimates themselves
rather than the escalation recommendations are used to guide decisions. Hence, it is crucial that
the estimates are reliable and intuitive. That is, that they are aligned with the clinical understanding
of the increasing toxicity risk with the dose. This motivates the concept of estimation coherency,
proposed in this article, which evaluates the consistency and interpretability of toxicity estimates in
light of sequential trial observations and known dose relationships.

The objective of this article is 2-fold: (i) to formally define the POCRM based on model averag-
ing and comprehensively evaluate its statistical properties in a simulation study; and (ii) to define
the concept of estimation incoherence, emphasize its impact on the real-life implementation, and
to demonstrate how BMA can tackle this problem for the POCRM. The general framework of the
Bayesian CRM is outlined along with the POCRM and the novel method BMA-POCRM in Section
2. Section 3 provides clear motivation for the development of BMA-POCRM. Here, the novel
concept of estimation coherency is introduced, which measures the consistency of dose toxicity
estimate updates with respect to the given dose toxicity orderings. Furthermore, we provide a case
study of the performance of BMA-POCRM and POCRM on real trial data in Section 4. In Section
5, theoretical results for estimation coherency under 2 × 2 grid sizes are given for the POCRM and
BMA-POCRM. Together, the evidence from the case study, theory, and further simulation results
in Section 6 show that BMA-POCRM improves the accuracy, safety and operating characteristics
with more intuitive escalation and de-escalation decisions. Finally, a discussion and analysis of the
results are presented in Section 7.

2. METHODS
2.1. General framework

Consider a setting with a partial ordering corresponding to M simple orderings and K dose levels,
{d1, . . . , dK}. Following a framework similar to that set by the original CRM (O’Quigley et al.
1990), let Xj be the dose level assigned to the j-th patient where xj ∈ {d1, . . . , dK} and let Yj be
a binary random variable for whether patient j experiences a DLT.

For a particular ordering m ∈ {1, . . . , M}, the risk of DLT at dk ∈ {d1, . . . , dK} is modelled as,

R̂(dk)= Pr[Yj = 1|Xj = dk] = ψm(dk, am),

where R̂(dk) is the estimated risk of DLT at dk,ψm is the working model under ordering m (Wages
et al. 2011), with ordering-specific parameter am. A wide range of specifications can be selected
for the working model, each with their own associated assumptions regarding the dose-toxicity
relationship and parameter estimation approaches (Cheung and Chappell 2002). A necessary
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assumption of the working model is that the relationship between dose level and dose toxicity is
monotonic under a given simple ordering. This allows for multiple models to be specified based on
the defined set of simple orderings, with each model corresponding to a specific ordering of doses.

The dose level for the next cohort of patients is allocated by minimizing the difference between
estimated risk of DLT and the TTR, which can be expressed as the following criterion,

xj+1 = arg min
dk

|R̂(dk)− θ |, (1)

where θ is the TTR. By repeating this estimation-minimization process until the stopping condi-
tions are satisfied, an estimate for the true MTD is obtained, which is the dose recommended by
the model following the final cohort of patients.

2.2. Continual reassessment method for partial ordering
Under the Bayesian framework of the POCRM, a potentially ordering-specific prior distribution for
the model parameters, fm(am), and a prior probability for each ordering p(m)where

∑M
m= 1 p(m)=

1 and p(m)≥ 0 ∀m is required.
Since Y is binary, the likelihood takes the form of a Bernoulli random variable, where each patient

in a cohort either experiences or does not experience a DLT. The observed data up to patient j is
defined as �j = {x1, y1, . . . , xj, yj}. This gives the following likelihood under ordering m after the
inclusion of j patients in the trial,

Lm(am|�j)=

j∏
l=1

{ψm(xl, am)}yl{1 − ψm(xl, am)}1−yl , (2)

where xl is the dose allocated to patient l, and yl is the binary variable denoting whether patient
l experiences a DLT and �j contains the paired patient data (xl, yl). Given the likelihood, the
posterior density for the parameter am under the m-th model is given by

fm(am|�j)=
Lm(am|�j)fm(am)∫

A Lm(am|�j)f (am)dam
. (3)

That is, each model will have a unique posterior distribution for am, as each model implies a unique
ordering of doses. The posterior probabilities for each ordering are also obtained via Bayes’ rule as
follows,

p(m|�j)=
p(m)

∫
A Lm(am|�j)fm(am)dam∑M

m′=1 p(m′)
∫
A Lm′(am|�j)f (am)dam

. (4)

The model used for dose allocation is selected by maximizing the posterior model probabilities,

m∗
= arg max

m
p(m|�j), (5)

which results in a single partial ordering being selected for downstream estimation. The posterior
density corresponding to this model is then used to estimate a posterior mean for parameter am,

âm∗ =

∫
A

amfm∗(am|�j)dam, (6)

which can be plugged directly into the working model to obtain an estimate for the risk of DLT for
the k-th dose,

R̂(dk)= ψb(dk, âm∗), (7)

from which the next dose is allocated using the criterion expressed in Equation (1).
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2.3. Bayesian model averaging POCRM (BMA-POCRM)
Suppose that rather than selecting a single model or ordering for each dose allocation in the trial, all
orderings are taken into account before making the next decision on dose allocation. BMA (Raftery
et al. 1997) would allow for estimates for probability of toxicity under multiple orderings to be
combined for a single probability across several models. This is done by combining the available
posterior information on the set of parameters am and the M model probabilities. BMA can be
applied such that it accounts for the full posterior distribution of the set of parameters am. This
allows for incorporating uncertainty in am and partial orderings before obtaining a point estimate
of the risk of DLT of each dose level.

By applying a change of variables to fm(am|�j), the working model for R(dk) is expressed as a
probability distribution. Although R(dk) is a useful expression for interpretation, R(dk) for each k is
estimated independently of the others, hence, R(dk) is not a function of dk but a function of am since
R(dk)= ψm(dk, am). The change in variable is R(dk)= ψm(dk, am) such that from the combined
posterior distribution the following probability distribution function for R(dk) can be obtained. We
compute the density for R(dk) directly from the ordering-specific densities as follows:

fm(R(dk)|�j)=

∣∣∣∣dψ−1
m (dk, R(dk))

dR(dk)

∣∣∣∣ fm(am|�j). (8)

Applying BMA, we obtain the combined posterior distribution for the risk of toxicity,

g(R(dk)|�j)=

M∑
m=1

p(m|�j)fm(R(dk)|�j), (9)

which is independent of ordering. The expectation for the risk of toxicity under dose dk is then,

E[R(dk)] =

∫ 1

0
R

(
dk) g(R(dk)|�j

)
d{R(dk)}. (10)

Finally, dose allocation is carried out under this framework by setting R̂(dk)= E[R(dk)] and
applying the criterion described in Section 2.1.

3. COHERENCY IN THE PRESENCE OF PARTIAL ORDERING
3.1. Defining estimation coherency

Coherence in Phase I clinical trials is a useful concept for assessing the theoretical qualities of trial
methodology. Throughout this article, coherence, which is defined based on escalation and de-
escalation behaviour of a dose-finding model, is referred to as escalation coherence. In practice, an
escalation coherent design will benefit patient safety as it reduces the likelihood of assigning an
overly toxic dose to a patient or cohort but will also ensure that the maximal dose level considered
safe is administered. Expanding to the drug combination setting, Park and Liu (2020) introduce
definitions of strong and weak coherency, both of which rely on evaluating the characteristics of
escalation and de-escalation to define coherency. A definition of escalation coherency which is
equally applicable to both single-agent and dual-agent combination trials is also presented.

There are 2 sets of doses that are relevant to escalation coherency. Let En and Dn contain the
candidate dose levels for escalation and de-escalation, respectively, for dose allocation Xn.

Definition 1 (Escalation Coherency). A design is coherent in dose escalation if
Pr[Xn+ 1 ∈ En|Yn = 1] = 0 for n = 1, . . . , d − 1 and is coherent in dose de-escalation if
Pr[Xn+ 1 ∈ Dn|Yn = 0] = 0 for n = 1, . . . , d − 1. A design is escalation coherent if dose
escalation and de-escalation are coherent.



Biostatistics, 2025, 26(1), kxaf035 · 7

This definition emphasizes the sole concept of dose selection. Whereas, during the administra-
tion of a real-world trial, there is frequent interface between domain expert and dose-escalation
model. Domain experts use both the given toxicity estimates and the recommended next dose to
make a final escalation decision. This is exceedingly relevant to the combination setting where there
could be several combinations to choose from at any given point in the trial. To address the need
for both toxicity estimates and dose escalation recommendations to be coherent, the following
specification of estimation coherency is introduced.

Definition 2 (Two-sided Estimation Coherency). Suppose we are given a partial ordering over a
set of doses, from which M total orderings are derived. Let Im(di) denote the index of dose di in
the m-th ordering. If dose di is more toxic than dose dj in ordering m, then Im(dj) < Im(di), and
vice versa.

For each dose di, define:

• The set of universally less toxic doses:

νi =
{

dj : Im(dj) < Im(di) ∀m
}

,

• The set of universally more toxic doses:

ξi =
{

dj : Im(dj) > Im(di) ∀m
}

.

A design is said to be 2-sided estimation coherent if it satisfies:

(i) Following no DLT at dose di, the estimated toxicity risk R̂(dj) decreases for all dj ∈ νi ∪ ξi.
(ii) Following a DLT at dose di, the estimated toxicity risk R̂(dj) increases for all dj ∈ νi ∪ ξi.

Throughout this work, we refer to 2-sided estimation coherency simply as estimation coherency.
We also define a less strict subclass of estimation coherency called one-sided estimation coherency
as follows:

Definition 3 (One-sided Estimation Coherency). Following the setup and notation from
Definition 2, a design is said to be 1-sided estimation coherent if it satisfies:

(i) Following no DLT at dose di, the estimated toxicity risk R̂(dj) decreases for all dj ∈ νi,
(ii) Following a DLT at dose di, the estimated toxicity risk R̂(dj) increases for all dj ∈ ξi.

BMA mitigates estimation incoherence by softening transitions between competing orderings of
toxicity. Instead of committing to a single ordering at each step, BMA performs a weighted averaging
of the toxicity estimates across all plausible orderings according to their posterior probabilities. This
smoothing effect dampens abrupt shifts in toxicity estimates that can occur when switching between
models, thereby reducing the likelihood of incoherent updates following new observations. It will
be shown in the theoretical results (Section 5) and simulation study (Section 6) below that all
estimation incoherencies of the POCRM occur when there is a change in the selected ordering.

Both 2-sided and 1-sided estimation coherencies act as an essential check for dose-finding mod-
els. By ensuring a model coincides with both the prior knowledge implied by the partial ordering
and most recently gained information, it is able to detect changes which are potentially misaligned
with the assumption of increasing toxicity within a dose and may endanger the trustworthiness of
the model.

Another quantity associated with estimation coherency is the magnitude of changes in toxicity
estimates. Large changes in toxicity estimates indicate large changes in model belief, and whilst these
changes do not harm patients directly, they can be undesirable to clinicians overseeing a real-world
trial. We comment on these types of changes where relevant.
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Table 2. Sets for detecting estimation incoherencies, where νi is the set of doses always less toxic than
dose i and ξi is the set of doses always more toxic than dose i.

Dose level, i νi ξi

1 ∅ {d2, d3, d4, d5, d6}
2 {d1} {d4, d6}
3 {d1} {d4, d5, d6}
4 {d1, d2, d3} {d6}
5 {d1, d3} {d6}
6 {d1, d2, d3, d4, d5} ∅

3.2. Illustrative example
The POCRM is particularly vulnerable to estimation incoherencies. Here, a specific example of
estimation incoherency under the POCRM is explored.

Consider the 3 × 2 drug combination design shown in Table 1. The model skeleton for both
the POCRM and BMA-POCRM is generated using the getprior function (Cheung 2019)
with δ(halfwidth) = 0.02 and ν(prior MTD) = 2. These parameters were selected based on a
hyperparameter tuning process as described in Section S.2. There are several candidates for a
working modelψm(dk, am). Throughout this work, we use the parametrization of the power model
given in Wages et al. (2011) with the following form,

ψm(dk, am)= αamk, k = 1, . . . , K

where am ∈ [0, ∞) and 0< αm1 < . . . ,< αmK is the probability skeleton, which represents the
prior estimates of dose toxicity at each dose level under ordering m. The prior distribution of am is
Normal with mean 0 and variance 1.34 as suggested by Wages et al. (2011). Furthermore, we also
explored different variance parameters for the working model, however, in Section S.3, we show that
the selected variance of the normal prior has no impact on model performance. We use a cohort
size of 1 with a TTR of 0.4. Applying the partial ordering specification recommended by Wages and
Conaway (2013), the following 6 simple orderings are used for both POCRM and BMA-POCRM,
of which 5 are unique,

m = 1 : d1 → d2 → d3 → d4 → d5 → d6,

m = 2 : d1 → d3 → d5 → d2 → d4 → d6,

m = 3 : d1 → d3 → d2 → d5 → d4 → d6,

m = 4 : d1 → d2 → d3 → d4 → d5 → d6,

m = 5 : d1 → d2 → d3 → d5 → d4 → d6,

m = 6 : d1 → d3 → d2 → d4 → d5 → d6.

This set of orderings is the complete set of possible orderings, assuming that dose-toxicities increase
monotonically only where the dose level increases in only one drug of the combination. At the start
of the trial, the a priori probability for each ordering is equal.

From these simple orderings one can obtain the sets of interest νi and ξi for each dose as shown
for each dose level in Table 2. The sets used to check for estimation incoherencies are composed
as follows. For d2, ν2 = {d1} and ξ2 = {d4, d6}. This is obtained by considering that d1 is less toxic
than d2 under every simple ordering, and both d4 and d6 are more toxic than d2 under every simple
ordering. These sets exist for each dose level and can be used following each Bayesian probability
update to detect any estimation incoherencies.

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxaf035#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxaf035#supplementary-data
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Table 3. Model probabilities and dose-toxicity estimates for POCRM and BMA-POCRM dose-escalation
frameworks in a setting with a TTR of 0.4.

Method Cohort p(·|x) : (posterior model probability)

m = 1 m = 2 m = 3 m = 4 m = 5 m = 6

POCRM 11 0.1568 0.1497 0.1878 0.1568 0.1582 0.1906
12 0.1743 0.1091 0.1840 0.1743 0.1840 0.1743

BMA-POCRM 11 0.1568 0.1497 0.1878 0.1568 0.1582 0.1906
12 0.1743 0.1091 0.1840 0.1743 0.1840 0.1743

Method Cohort R(·) : (estimated probability of toxicity)

d1 d2 d3 d4 d5 d6

POCRM 11 0.0672 0.3261 0.1756 0.4859 0.6282 0.7412
12 0.0331 0.1114 0.2432 0.5562 0.4023 0.6853

BMA-POCRM 11 0.0802 0.2671 0.2371 0.5247 0.5019 0.7111
12 0.0654 0.2281 0.2210 0.4975 0.4860 0.6933

The recommended dose levels and selected orderings following each cohort are shown with an underline. Incoherencies are shown
in bold. Note: Despite, the recommended dose-level given by BMA-POCRM being d5 following cohort 11, d2 is treated as the
recommended dose to maintain consistency for comparison of POCRM and BMA-POCRM.

3.3. Applying POCRM with model selection
1,000 simulations were initiated with the first estimation incoherency identified in the second
simulated trial at the induction of cohort 12. At this point in the trial, the posterior ordering
probabilities are shown in Table 3. The dose allocations and DLTs observed up to and including
cohort 11 are as follows,

n[11]
= (1, 0, 1, 6, 2, 1),

y[11]
= (0, 0, 0, 3, 1, 1),

where the i-th entry in n ∈ Z6 is the number of patients assigned to the i-th dose level, di, and y ∈ Z6

is the number of patients that experienced a DLT after being assigned dose level di. As seen in
Table 3, following the induction of cohort 11, d2 is recommended as the next dose by POCRM.
Hence, cohort 12 is inducted and administered d2, which yields the following allocation vectors,

n[12]
= (1, 1, 1, 6, 2, 1),

y[12]
= (0, 0, 0, 3, 1, 1),

where no new DLT is observed for d2.
Recalling the set of doses with known toxicity relative to d2 in Section 3.2, since no DLT is

observed at d2 the dose-toxicity estimates for all dose levels in ν2 ∪ ξ2 = {d1, d4, d6} are expected
to decrease. However, in Table 3, an increase in the toxicity estimate for d4 from 0.49 to 0.56 is
observed. This is a change of +0.07 despite there being no information gained from the previous
cohort that indicates a greater toxicity of d4. Throughout the coming analyses, the occurrence
of estimation incoherencies is considered as a key operating characteristic of the methods being
studied.

This example illustrates the often illogical changes in toxicity estimates observed under the
POCRM. Since toxicity estimates guide clinicians and affect the next allocated dose, it is crucial
that changes in these toxicity estimates are robust to scrutiny.
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3.4. Applying BMA-POCRM
Again, under this setting, the dose-toxicity estimates for all dose levels in ν2 ∪ ξ2 = {d1, d4, d6}
are expected to decrease or remain the same as there was no DLT observed for d2. Returning to
the results presented in Table 3 for BMA-POCRM, for all doses in ν2 ∪ ξ2 the toxicity estimate
decreases. Conversely to POCRM, BMA-POCRM remains coherent with respect to estimation
coherency in this case. Furthermore, POCRM exhibits several large changes in toxicity estimates
here. The estimates corresponding to doses d2 and d5 change by −0.2147 and −0.2259, respectively.
For BMA-POCRM, these doses change by −0.039 and −0.0159, respectively, where they also
correspond to the greatest change in toxicity estimates among the candidates. In Section S.8, we
demonstrate empirically that the POCRM is estimation incoherent due to changes in the selected
dose ordering. Specifically, it is demonstrated that this is mitigated by the BMA-POCRM since it
does not select a single ordering model.

4. CASE STUDY
To consider the performance of BMA-POCRM in comparison to POCRM in a real-world setting,
we apply these methods to a Phase I study dosing patients combinations of neratinib and tem-
sirolimus (Gandhi et al. 2014). This trial involved 52 patients treated on 12 doses in a 4-by-4 grid
of possible neratinib-temsirolimus combinations with a TTR of θ = 1/3. The remaining 4 doses
in the grid were never assigned to patients in the original trial. A DLT is defined as an inability
to maintain the prescribed dose for the first 28 days of treatment due to treatment-related toxicity.
The 2 initial cohorts consisted of 2 patients each were enrolled simultaneously with: (i) 160 mg of
neratinib/15 mg of temsirolimus; and (ii) 120 mg of neratinib/25 mg of temsirolimus.

We apply BMA-POCRM using the same parameters and orderings as specified in Section 3.2.
The full trial data and results used for these simulations can be found in Section S.5.

The aim here is to identify incoherencies and large changes in toxicity estimates. By showing that
these occur in real-world trials we aim to further motivate the use of BMA-POCRM in practice.

4.1. Data generation
To allow for a fair evaluation of model-guided dose escalation, we use the original trial data to
conduct a case study according to the scheme outlined by Barnett et al. (2024). We define a fixed
set of 52 patient dose responses for each dose. Here, we denote the number of patients assigned to
dose j by nj and the number of observed DLTs under dose j by yj.

To define a fixed set of 52 patient dose responses for each dose we take the first nj responses to be
a random permutation of responses from the original study. The remaining 52 − nj responses are
generated from a Beta(1 + yj, 1 + nj − yj) distribution by first sampling a probability of DLT and
sampling a binary response from a Bernoulli distribution with the given probability of DLT. Where
no patients are assigned to a dose combination in the real study, probabilities are generated from a
Beta(3, 3) distribution instead. As each method allocates a dose to each cohort, the ordered set of
responses corresponding to each dose is used to determine treatment response sequentially. This
ensures that the nth patient allocated to each dose, regardless of method of dose escalation used,
will have the same response to treatment.

4.2. Results
Figure 1 shows that the range of magnitude of changes in toxicity estimate for POCRM is larger than
for BMA-POCRM. The range is shown to be [–0.17, 0.18] and [–0.37, 0.35] for BMA-POCRM and
POCRM, respectively.

Table 4 shows an example of a cohort where the large change in toxicity estimate is particularly
great. After assigning d8 to cohort 3, we observe a DLT, which leads to several incoherencies and
large changes in toxicity estimates for the estimates that are to be used to assign doses to cohort
4. For POCRM, we observe 2 changes that are > 25, for d4 and the administered dose d8. We
also observe 2 estimate incoherencies for doses d5 and d6, which we know are less toxic than d8

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxaf035#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxaf035#supplementary-data
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Fig. 1. Distribution of the magnitude of changes in toxicity estimates in the motivating trial simulation.
Whiskers indicate range of maximum and minimum values observed.

Fig. 2. Incoherencies that occurred in motivating trial.

according to the partial orderings corresponding to this trial setting. For this cohort, the toxicity
estimates given by BMA-POCRM do not yield any incoherencies or large changes as is true for the
remainder of the motivating trial, as shown in Fig. 2.

Figure 2 shows that incoherencies only occurred for POCRM in the motivating trial, whilst
BMA-POCRM solved this problem completely. The incoherencies shown for steps 3–4 correspond
to the results in Table 4. The full dose allocations can be found in Section S.5.

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxaf035#supplementary-data
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Table 4. Example of a sudden change in toxicity estimates under POCRM in the motivating trial.

R(·) : (estimated probability of toxicity)

Method Cohort d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11 d12 dsel ysel

3 0.00 0.00 0.01 0.04 0.08 0.15 0.23 0.33 0.43 0.53 0.61 0.69 d8 1
POCRM 4 0.00 0.01 0.07 0.32 0.03 0.14 0.42 0.68 0.22 0.51 0.75 0.60 – –

3 0.01 0.04 0.13 0.25 0.06 0.13 0.29 0.48 0.18 0.36 0.52 0.41 d10 0
BMA-POCRM 4 0.01 0.02 0.09 0.20 0.03 0.08 0.22 0.41 0.11 0.27 0.44 0.32 – –
Any sudden changes (ie those greater than 0.25) and any incoherencies are shown in bold.

Table 5. 2 × 2 setting resulting in 4 dose levels.

Drug B

1 2

Drug A 2 d3 d4
1 d1 d2

5. CONDITIONS FOR ESTIMATION COHERENCY
This section provides sufficient conditions for the estimation coherency of the POCRM with model
selection (POCRM) and the BMA-POCRM in the setting of 2 × 2 combinations, shown in Table 5.
Throughout this section, coherence of the CRM defined in Cheung (2005) is assumed. Suppose
the 2 orderings

1 : d1 → d2 → d3 → d4, 2 : d1 → d3 → d2 → d4,

are both included with equal prior ordering probabilities p(1)= p(2)= 1/2. Consider the one-
parameter power model ψm(dk, am)= αam,k, where (αm,k)

K
k= 1 is a permutation of the mono-

tonically increasing toxicity skeletons α = (α1, . . . ,αk) under ordering m. Suppose patients are
enrolled one at a time. Let â(j)m , m = 1, 2, be the posterior estimate of the model parameter am after
the first j patients.

By the estimation coherency of the CRM (Cheung 2005), the POCRM is estimation-coherent
from the jth to the (j + 1)th patient if the selected ordering is the same. On the other hand, if,
without loss of generality, the selected ordering changed from ordering 1 to ordering 2, then, after
observing a non-DLT at d1, there is no guarantee that the estimated DLT probability at d2 ∈ ν1 will
decrease. This is formalized in Lemma 1. A sufficient condition for the coherence of the POCRM
is summarized in Theorem 2 below.

The proofs of all theoretical results are provided in Section S.6 of the Supplementary Materials.

Lemma 1. Given the regularity conditions required for the coherency of the CRM, as specified in
Cheung (2005), estimation-incoherence of the POCRM happens only after a change of the
selected ordering.

Theorem 2 (POCRM coherence). For 2 × 2 combinations with both orderings included with
equal prior probabilities. The POCRM is estimation coherent given the sufficient condition

α
âmin

2
3 ≤ α

âmax
1

2 , α
âmin

1
3 ≤ α

âmax
2

2 , (11)

where âmin
1 = minA1, âmax

1 = max A1, âmin
2 = minA2, âmax

2 = max A2, and
A1 = {log R1/ logα1, log R2/ logα2, log R3/ logα3, log R4/ logα4},
A2 = {log R1/ logα1, log R2/ logα3, log R3/ logα2, log R4/ logα4}, and Rk is the true
toxicity probability at dk.

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxaf035#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxaf035#supplementary-data
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Similarly, a set of sufficient condition for the BMA-POCRM to be estimation coherent is summa-
rized in Theorem 3 below.

Theorem 3 (BMA-POCRM estimation-coherence). For 2 × 2 combinations, when both
orderings are included with equal prior ordering probabilities. A sufficient condition for the
estimation-coherence is

1
1 − logα1

≤ min


α
âmin

2
3

(
αU1

3 − 1
)

1 − α
âmin

1
2 /α

âmax
2

3

,
α
âmin

1
3

(
αU2

3 − 1
)

1 − α
âmin

2
2 /α

âmax
1

3

,

 ,

1
1 − logα4

≤ min


α
âmin

2
3

(
α
U3
3 − 1

)
1 − α

âmin
1

2 /α
âmax

2
3

,
α
âmin

1
3

(
α
U4
3 − 1

)
1 − α

âmin
2

2 /α
âmax

1
3

,

 ,

(12)

where

U1 =
1 − 2 logα1

1 − logα1
âmax

2 −
1

(1 − logα1)2
,U2 =

1 − 2 logα1

1 − logα1
âmax

1 −
1

(1 − logα1)2
,

U3 =
1 − 2 logα4

1 − logα4
âmax

2 −
1

(1 − logα4)2
,U4 =

1 − 2 logα4

1 − logα4
âmax

4 −
1

(1 − logα4)2
,

âmin
1 = minA1, âmax

1 = max A1, âmin
2 = minA2, âmax

2 = max A2, and
A1 = {log R1/ logα1, log R2/ logα2, log R3/ logα3, log R4/ logα4},
A2 = {log R1/ logα1, log R2/ logα3, log R3/ logα2, log R4/ logα4}, and Rk is the true
toxicity probability at dk.

When there is a change of the selected ordering, the estimation coherence of the POCRM guar-
antees the estimation coherence of the BMA-POCRM, which is stated in Theorem 4. However,
when the selected ordering is not changed, the POCRM is guaranteed to be coherent, whereas, it
is still possible for the BMA-POCRM to be incoherent. An example of the BMA-POCRM being
incoherent without a change of the selected ordering is given in Section S.8.

Theorem 4 (coherence of POCRM ⇒ coherence of BMA-POCRM). When there is a change
of the selected ordering from patient j to patient (j + 1), j = 1, 2, . . . , n, if the POCRM is
estimation coherent, the BMA-POCRM is also estimation coherent.

Finally, when the BMA-POCRM is estimation incoherent, the magnitude of the incoherence is
bounded by the magnitude under the POCRM. This is stated in Theorem 5 below.

Theorem 5 (The magnitude of incoherence). When neither the POCRM nor BMA-POCRM
is coherent w.r.t. estimation, let MS and MA be the magnitude of incoherence under the POCRM
and BMA-POCRM, respectively. Then,

MA ≤
1

(1 − logα4)
MS. (13)

The above results imply that, for a 2 × 2 grid, the BMA-POCRM is less often incoherent
than the POCRM, a result that is confirmed by simulations for other grid sizes in Section 6.

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxaf035#supplementary-data
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6. SIMULATION STUDY
6.1. Specification

A simulation study is necessary to evaluate and compare the operating characteristics for POCRM
and BMA-POCRM in a large-scale setting. For this study, a 4-by-4 structure is selected in a 2 drug
combination study. For each scenario, 10, 000 trial simulations are run with a TTR of θ = 0.3 and a
cohort size of 1 for 60 cohorts. As in Section 3, we usegetprior to generate a the model skeletons
with δ = 0.02 and ν = 2, as optimized in Section S.2 and the following orderings obtained as
recommended by Wages and Conaway (2013),

m = 1 : d1 → d2 → d3 → d4 → d5 → d6,

m = 2 : d1 → d3 → d5 → d2 → d4 → d6,

m = 3 : d1 → d3 → d2 → d5 → d4 → d6,

m = 4 : d1 → d2 → d3 → d4 → d5 → d6,

m = 5 : d1 → d2 → d3 → d5 → d4 → d6,

m = 6 : d1 → d3 → d2 → d4 → d5 → d6.

Furthermore, we examine the operating characteristics under various cohort sizes in Web Section
S.4.

There are several candidates for a working model ψm(dk, am). As in the Illustrative Example in
Section 3.2, we use the parametrization of the power model given in Wages et al. (2011) with a
Normal prior on am with mean 0 and variance 1.34 as suggested by Wages et al. (2011). The selected
variance of the normal prior has no impact on model performance as shown in Section S.3. This
working model is applied for both POCRM and BMA-POCRM.

Five metrics are used to assess models in simulation trials according to recommendation accu-
racy, assignment accuracy, and patient safety. In this case, an overly toxic dose is chosen to be any
dose that has a true probability of toxicity greater than 110% of the TTR.

(i) The proportion of correct selections (PCS) is the proportion of trials that recommended
doses with a true probability of toxicity equal to the TTR.

(ii) The proportion of acceptable selections (PAS) is the proportion of trials that recommended
a dose with a true probability of toxicity within [θ − 0.1, θ ], where θ is the TTR.

(iii) Proportion of trials that give overly toxic selections (POTS).
(iv) The number of patients treated at overly toxic doses (NPTOT).
(v) Finally, the estimation coherency of model estimates at the induction of each trial as defined

in Definition 2.

The full specification for all 24 scenarios can be found in Section S.1. Scenarios with both
symmetric and asymmetric true MTD locations are included. The number of accurate orderings
present in the set of candidate orderings is also varied across scenarios. Those found in the left-
most column of Table S1 have no correct orderings, implying that none of the orderings exactly
match the specified probabilities of toxicity. Scenarios found in the middle column are satisfied by a
single ordering in the list of candidate orderings. Finally, those found in the right-most column are
equally satisfied by 2 candidate orderings.

6.2. Results
In this section, we account for potential numerical inaccuracies in computing the marginal integral
in Equation (3) by restricting incoherency detection to those with absolute value greater than 0.001.

Figure 3 illustrates model performance under all 24 scenarios, and provides an arithmetic mean
performance across scenarios. BMA-POCRM exhibits better PCS and PAS across all scenarios but

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxaf035#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxaf035#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxaf035#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxaf035#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxaf035#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxaf035#supplementary-data
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Fig. 3. A) Arithmetic mean PCS across 10,000 repeated simulations with a cohort size 1 for each scenario.
The mean performance across scenarios is also shown. B) Arithmetic mean PAS across 10,000 repeated
simulations with a cohort size 1 for each scenario. The mean performance across scenarios is also shown.
C) Arithmetic mean POTS across 10,000 repeated simulations with a cohort size 1 for each scenario. The
mean performance across scenarios is also shown. D) Arithmetic mean PTOTD across 10,000 repeated
simulations with a cohort size 1 for each scenario. The mean performance across scenarios is also shown.

scenario 15, indicating that it more consistently selects desirable dose levels following the Phase I
trial simulations.

BMA-POCRM leads to an average increase of 5.2% in PCS when compared to that of POCRM.
Across all scenarios with non-zero PCS, there is an improvement in performance when applying
BMA-POCRM. Considering scenarios 1-13, no scenario shows a lower difference than 2.77%
in favour of BMA-POCRM. Scenario 12 shows the greatest discrepancy between the methods
with BMA-POCRM exceeding POCRM by 10.7%. Likewise, investigating Fig. 3B, BMA-POCRM
leads to an improvement by at least 3.34% and an average of 5.5%. For this measure, scenario 12
leads to the greatest difference in performance with 10.5%. Differences in the number of correct
orderings between scenarios do not clearly favour either method and there is no consistent effect
on performance associated with changes in the number of correct orderings.
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The design matrices for scenarios 14 and 15 are such that there are only overly toxic doses and
doses with a lower toxicity than the TTR, respectively. Under scenario 15, POCRM has a mean
PAS of 85.61%, whilst BMA-POCRM has one of 84.67%. Nearly half of the doses in scenario
15 are considered acceptable by definition. Noting that these doses are in the lower triangular
of the combination matrix, these are the most toxic doses under both drugs. This suggests that
BMA-POCRM is the more conservative approach to dose escalation.

The safety of BMA-POCRM is further supported by Fig. 3C and D, where it recommends
overly toxic doses in a smaller proportion of trials and allocates overly toxic doses to fewer patients,
respectively. This trend is maintained throughout all scenarios and the mean POTS is 4.89% lower
for BMA-POCRM than POCRM. Scenario 2 exhibits the smallest difference between methods
in terms of POTS with a 1.84% decrease in the number of overly toxic selections with BMA-
POCRM. In scenario 12, BMA-POCRM leads to a 10% reduction in the number of overly toxic
doses. Figure 3D shows that on average, at least one cohort less will be assigned an overly toxic
dose.

Figure 4A shows the magnitude and direction of changes in toxicity estimates across all trial
steps in the simulated trials. From Fig. 4A, BMA-POCRM also has less dispersed estimates for each
scenario.

The frequency of incoherencies within simulated trials is shown in Fig. 4B. The previous defini-
tion of estimation incoherency is here applied to evaluate the estimation operating characteristics
of POCRM and BMA-POCRM. In all scenarios but 13, 14, and 15, POCRM leads to at least
90% of trials with at least one estimation incoherent change of toxicity estimates during the trial.
Meanwhile, BMA-POCRM exhibits estimation incoherencies in a worst-case 0.14% of trials under
scenario 10. Further, examining Fig. 4C under scenario 11, the magnitude of estimation incoherent
toxicity estimates is significantly smaller for BMA-POCRM with a maximum incoherent change
in toxicity estimate of 0.060 compared to POCRM for which this is 0.288. The magnitude and
frequency of these incoherencies indicate that they occur as a result of numerical inaccuracies of
the numerical integration scheme used by BMA-POCRM. This excludes Scenario 15 where BMA-
POCRM exhibits some estimation incoherencies, however, this is the safe setting where all dose
toxicity rates are below the TTR. Figure 4D shows that in trials where BMA-POCRM does exhibit
estimation incoherencies, this occurs for a smaller number of cohorts. The distribution of the
number of cohorts where BMA-POCRM exhibits an incoherency is consistently biased towards
zero when compared to those of POCRM.

Wages and Conaway (2013) provide specific recommendations on applying the POCRM. The
indifference interval skeleton parameters they recommend are used to demonstrate that estimation
incoherency remains a problem even with these settings. These results can be found in Sec-
tion S.2. Furthermore, we demonstrate that the BMA-POCRM either equates or improves upon
the POCRM in smaller grid sizes, however, the difference in operating characteristics reduces.
Simulation scenarios and additional results for smaller grid sizes are presented in Section S.4.1.

6.3. Comparisons to other BMA approaches
In this section, our proposed approach is compared to the other 2 BMA strategies in the literature,
Zhang’s approach (Zhang et al. 2023) and Wages’ approach (Wages et al. 2011).

The difference between our proposed approach and Zhang’s approach is that, we apply BMA
on the posterior densities of the toxicity risks fm(R(dk)|�j) to first obtain an averaged (ie mixture)
density g(R(dk)|�j). Then, we take the point estimate with respect to the mixture density R̂(dk)=

ER(dk)∼g[R(dk)]. Zhang’s approach conducted these 2 steps in the different order. They start by
taking the ordering-specific point estimates of the toxicity risks R̂m(dk)= ERm(dk)∼fm[Rm(dk)].
Then, they apply the BMA on the point estimates to obtain the averaged toxicity risk R(dk)=∑M

m= 1 p(m|�j)R̂m(dk).
Despite the reversed order of conducting the 2 steps, Kovačević and Zhang approaches lead to

the same estimates of the estimated toxicity probabilities, as stated in Lemma 6.

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxaf035#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxaf035#supplementary-data
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Fig. 4. A) Distribution of changes in dose toxicity estimates following the induction of each cohort for
simulated trials with cohort size 1. B) Proportion of trials where at least one incoherent estimate is
observed. C) Magnitude of incoherent changes in toxicity estimates. D) Mean number of cohorts with at
least one observed incoherency. Note: Only estimation incoherencies that exceed 0.001 are considered.

Theorem 6. (Equivalence of toxicity-based BMA approaches). The BMA-POCRM conducted
under our proposed approach and Zhang’s approach give the same estimated toxicity
probabilities.
Proof. (Theorem 6). Under our proposed approach, the estimated toxicity probability

R̂(dk)=

∫ 1

0
R(dk)g(R(dk)|�j) dR(dk)︸ ︷︷ ︸

our step 2

=

∫ 1

0
R(dk)

M∑
m=1

p(m|�j)fm(R(dk)|�j)︸ ︷︷ ︸
our step 1

dR(dk)
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=

M∑
m=1

p(m|�j)

∫ 1

0
R(dk)fm(R(dk)|�j)dR(dk)︸ ︷︷ ︸

Zhang step 1

=

M∑
m=1

p(m|�j)R̂m(dk)︸ ︷︷ ︸
Zhang step 2

□
The BMA strategy proposed in Wages’ approach is fundamentally different to ours and to
Zhang’s. Let πm(dk|�j)= p(m|�j) if dk is the recommended dose under ordering m, and
πm(dk|�j)= 0 otherwise. Then, the combined probability of recommend dose dk is π(dk|�j)=∑M

m= 1 πm(dk|�j). The dose with the largest π(dk)will be assigned to the next cohort of patients.
Theoretically, since Zhang’s and ours approaches give exactly the same estimated toxicity proba-

bilities, same coherency conditions in Section 5 apply to Zhang’s approach. Despite the equivalence,
having the mixture posterior distribution g(R(dk)|�j) allows direct derivation of other metrics of
interest, such as the 95% credible intervals around point estimates of the toxicity probability, and
the probability of overdosing for each dose. Furthermore, Zhang et al. (2023) focused on fitting
the BMA-POCRM on a ‘local’ subset of 5 doses around the current dose. In reality, estimates for all
dose levels are important to be provided to the Dose Review Committee (as opposed to providing
only the one recommended dose). On the other hand, Wages’ approach does not have a notion of
the averaged toxicity probability estimates, which is the basis for the estimation coherency.

Additional simulations are conducted under Zhang’s approach and Wages’ approach under the
24 scenarios defined in Table S1. Under Zhang’s approach, their proposed BMA strategy has been
extended to the whole 4 × 4 grid to provide estimates for all doses. The same design parameters
are used under all 3 approaches. Explicitly, the same 6 orderings defined in Section 6.1 is used. The
toxicity skeleton is obtained via the getprior() function (Lee and Cheung 2009) with half-
width δ = 0.02 and the MTC (Maximum Tolerated Combination) at ν = 2. The prior mean and
variance are set to 0 and 1.34 as explained in Section 6.1. Figure 5 compares the PCS, PAS, POTS,
and NPTOT between the 3 approaches. As expected, Zhang’s and ours approaches perform the
same, both on average and under each scenario with all the differences being within a simulation
error. Wages’ approach seems to have the lowest PCS and PAS (5% lower in both cases), and highest
POTS and NPTOT (2% higher in both cases) among the 3 approaches. This is both on average
across 24 scenarios and under each scenario. In particular, for the PCS in (Panel A), Wages approach
has the lowest PCS under all scenarios except in scenario 9.

7. DISCUSSION
In this article, the concept of estimation coherency in Phase I clinical trials for drug combinations
is introduced. The application of the POCRM and its operating characteristics in this combination
setting are explored with the proposition of a novel method, BMA-POCRM. This approach
modifies POCRM to take into account uncertainty in dose-toxicity ordering prior to making
dose escalations by applying BMA. To evaluate and compare the POCRM and BMA-POCRM,
a thorough study of their operating characteristics spanning model accuracy, safety and robustness
to estimation incoherency are carried out. The novel method improved on its predecessor in its
ability to select correct and acceptable dose levels for progression to Phase II trials. Moreover, the
BMA-POCRM also led to fewer overly toxic dose recommendations. The occurrence of estimation
incoherencies significantly reduced with the BMA-based method across all scenarios. For example,
whilst for POCRM more than 90% of trials exhibit incoherencies for 21 of 24 scenarios, the worst-
case for BMA-POCRM led to only 3.13% of trials with incoherencies. We demonstrate that these
results are invariant under different dose combination grid sizes and sample sizes and are aligned
with the 4 × 4 grid setting presented regardless of considered setting as seen in Section S.4.1.

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxaf035#supplementary-data
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Fig. 5. Operating characteristics under our Kovačević approach (green), Zhang’s approach (purple), and
Wages’ approach (orange) under 24 scenarios. A) Proportion of correct selection. B) Proportion of
acceptable selection. C) Proportion of over-toxic selection. D) Number of patients assigned to over-toxic
doses. All estimations based on 104 simulations.

Furthermore, we also perform a pilot study in Section S.8 demonstrating that a run-in phase, as
implemented for the 2-stage POCRM marginally reduces but does not eliminate the occurrence of
estimation incoherencies.

The study of operating characteristics shows a clear improvement in performance achieved
by BMA-POCRM. Combining estimates of the probability of toxicity across several candidate
orderings leads to greater flexibility in predictions by the model. POCRM relies on selecting a
single most probable ordering on which it bases dose allocations for the current cohort. Thus, BMA-
POCRM has a distinct advantage in cases where there is weak prior knowledge of the underlying
dose-toxicity orderings. In particular, the BMA component of the model allows for the specification
of intermediary orderings not explicitly included in the original POCRM as shown by the improved

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxaf035#supplementary-data


20 · Kovačević et al.

RMSE (square-root mean squared error) of toxicity estimates across cohort sizes. Even in scenar-
ios where the correct toxicity ordering is included as a candidate, BMA-POCRM outperforms
POCRM. The BMA-POCRM thus has the potential to deliver more intuitive estimates during
the conduct of the trial while demonstrating similar or better operating characteristics to the
original POCRM. Moreover, irrespective of whether 1-sided or 2-sided estimation incoherencies
are evaluated, the BMA-POCRM provides more coherent estimates as shown in Section S10.

Our proposed BMA method has been compared to 2 other alternative BMA methods in the
literature. Zhang’s approach focuses on a local subset of doses and also applies BMA to the toxicity
probabilities, which we shown theoretically is equivalent to our proposal. Wages’ approach applies
BMA to the ordering-specific recommended doses and does not have averaged toxicity estimates.
Theoretically, Zhang’s approach has the same coherency property as our proposed approach,
whereas the notion of estimation equivalence does not apply to Wages’ approach. Simulation results
confirm the equivalence of the 2 toxicity-based approach, which both have slightly better operating
characteristics than Wages’ approach.

Despite the strong performance of the BMA-POCRM in the considered simulations, there
are several aspects of this model that have not yet been explored. A comparison study of the
impact of prior information on BMA-POCRM and POCRM performance is also necessary. This is
particularly relevant when a correct ordering is included as a candidate, prior information may be
available to inform these approaches, potentially leading to favourable performance for POCRM.
Future work should also explore the relative performance of POCRM when restricting the model
selection to only considering orderings with a posterior probability greater than a given threshold.
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