1	Influence of biochar particle size on ¹⁴ C-phenanthrene extractability and mineralisation in soil
2	Chisom Ejileugha and Kirk T. Semple*
3	
4	Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, United Kingdom
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	*Corresponding author: k.semple@lancaster.ac.uk
17	

Abstract

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

Biochar can influence the bioaccessibility and biodegradation of polycyclic aromatic hydrocarbons (PAHs) in soil, but the role of biochar particle size in this process remains largely underexplored. In this study, soil was spiked with ¹²C- & ¹⁴C-phenanthrene and subsequently amended with biochar of <0.6 mm and 2 – 4 mm particle size at 0.0%, 0.1%, 1.0%, and 10.0%, respectively. The amended soils were aged for 60 d and ¹⁴C-phenanthrene extractability and mineralisation were monitored at 1 d, 15 d, 30 d, 45 d, and 60 d. The total residual ¹⁴C-activity and extractable fractions reduced over time with increasing biochar amounts irrespective of biochar particle size. Similarly, longer lag phases, slower rates, and lower extents of mineralisation were observed over time with increasing biochar amounts. Solvent extractability and reduction in residual ¹⁴C-activity were higher in <0.6 mm amended soils, which were attributed to a higher surface area and shorter diffusion pathway. Hydroxypropyl-β-cyclodextrin (HP-β-CD) extracted ¹⁴C-phenanthrene correlated with the extents of mineralisation with stronger agreement in < 0.6 mm amended soils ($R^2 = 0.77 - 0.86$) than in 2 - 4 mm amended soils ($R^2 = 0.57 - 0.82$). The weakest correlation was observed at 10.0% of 2 - 4 mm. This study demonstrated HP-β-CD's potential for predicting phenanthrene microbial degradation in biochar-amended soils and highlighted the influence of biochar particle size on phenanthrene bioaccessibility and biodegradability. These findings are important for mitigating phenanthrene risks in soil and optimising its sorption stability using biochar.

36

Keywords: bioaccessibility, biochar, cyclodextrin, mineralisation, polycyclic aromatic hydrocarbon.

38

1 Introduction

39 40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

Polycyclic aromatic hydrocarbons (PAHs) are organic chemicals with two or more benzene rings (Lawal, 2017). They can be produced from the incomplete combustion of fossil fuels or organic matter (Quilliam et al., 2013; Lawal, 2017). They are considered to be persistent organic pollutants (POPs) as they display persistent, toxic and bioaccumulatory properties and pose risks to human and environmental health (Wu et al., 2019; Patel et al., 2020). PAHs are hydrophobic and can sorb to soil, making soil a sink for PAHs in the environment (Okere and Semple, 2012). PAHs may also have negative impacts on soil health and function; however, organic amendments can be used to reduce these impacts of PAHs by reducing PAH mobility and bioaccessibility (Puglisi et al., 2007; Sigmund et al., 2018; Kaur and Sharma, 2020). PAHs have different molecular weights, ring numbers, and structural complexity which influence their hydrophobicity, bioaccessibility, biodegradation, and environmental persistence (Riding et al., 2013). As a result, PAHs with high molecular weight, ring number, and complex structure are more recalcitrant to biodegradation and persist more in the environment (Stroud et al., 2007; Papadopoulos, Reid et al., 2007; Baldantoni et al., 2017). Soilindigenous microbes can biodegrade PAHs, but susceptibility to biodegradation is influenced by their bioavailability (Reid et al., 2001). Thus, the biodegradation of most PAHs in soil is not limited by microbial population or catabolic ability but by their desorption and bioavailability (Semple et al., 2006; Allan et al., 2007).

58

59

60

61

62

Recently, environmental remediation strategies have moved towards more sustainable approaches, where possible (Patel et al., 2020). The use of biochar as an amendment for PAH-contaminated soil, is cost-effective, environmentally friendly, and sustainable (Zahed et al., 2021; Guo et al., 2021; Guo et al., 2022). Biochar has been demonstrated to improve soil physicochemical properties and soil

microbial activities thereby improving PAH biodegradation (Kong et al., 2021). Biochar can also mitigate the impact of PAHs in the soil through sorption by transferring PAHs in the soil to biochar thereby reducing the leaching and bioaccessibility of PAHs in soil (Chen & Yuan, 2011; Ogbonnaya et al., 2014; Jimenez et al., 2018). Reduction in bioaccessibility reduces potential exposure thereby mitigating possible toxicity, and the bioaccesible concentration of a PAH is of interest in risk assessment as it controls potential biodegradation and toxicity (Riding et al., 2013; Semple et al., 2013; Umeh et al., 2017). Non-exhaustive extraction techniques (NEETs) have been demonstrated as effective for predicting the concentration of PAHs available for microbial degradation (e.g. Alexander & Kelsey, 1997; Reid et al., 2000; Rhodes et al., 2008a; Rhodes et al., 2008b; Semple et al., 2013; Cachada et al., 2014; Oyelami et al., 2014; Ogbonnaya et al., 2016; Cao et al., 2022). In this study, hydroxypropyl-β-cyclodextrin (HP-β-CD) solvent extraction (a NEET) was used to predict ¹⁴Cphenanthrene microbial degradation because it has been demonstrated as an efficient, reliable, and time-effective technique for predicting PAH microbial degradation in soil (e.g., Patterson et al., 2004; Swindell & Reid, 2006; Semple et al., 2006; Papadopoulos et al., 2007; Bernhardt et al., 2013; Ogbonnaya et al., 2014; Adedigba et al., 2018; Leech et al., 2020; Vázquez-Cuevas et al., 2021; Posada-Baquero et al., 2022; Jin et al., 2023).

79

80

81

82

83

84

85

86

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

Biochar improves the sorption of PAHs in soil which is dependent on the properties of biochar, soil, PAHs, and soil-biochar contact duration (Zhang et al., 2010). Studies have demonstrated that HP-β-CD extraction and microbial degradation in soil amended with black carbon reduces with an increase in contact time and amendment amount (Rhodes et al., 2008a; Rhodes et al., 2010; Rhodes et al., 2012; Ogbonnaya et al., 2014a; Ogbonnaya et al., 2014b, Oyelami et al., 2014; Oyelami et al., 2015; Ogbonnaya et al., 2016). Additionally, desorption could predict PAH mineralisation in black carbon amended soils (Oyelami et al., 2014; Ogbonnaya et al., 2014a; Ogbonnaya et al., 2016; Yu et al.,

2016), but desorption could not predict mineralisation at higher black carbon amounts (Rhodes et al., 2008a; Rhodes et al., 2012). This raises concern about the suitability of HP-β-CD extraction for predicting the mineralisation of PAHs in soils amended with black carbon. In addition, phenanthrene biodegradation exceeded solvent extraction in past studies (Rhodes et al., 2008a; Rhodes et al., 2012; Ogbonnaya et al., 2016) though phenanthrene desorption has been reported to be higher than mineralised (Oyelami et al., 2014; Kang et al., 2019). There is notable information in the literature regarding the sorption and desorption behaviour of biochar and a disparity in the impact of biochar particle size on PAH mineralisation. Fine particle biochar has been shown to demonstrate higher sorption capacities and rates compared to coarse particle biochar (Kang et al., 2018; Kang et al., 2019; Jin et al., 2022; He et al., 2022). However, it has also exhibited higher desorption for phenanthrene (Kang et al., 2019), ammonium nitrogen (He et al., 2022), and phosphorus (Sarfraz et al., 2020). Additionally, while powdered biochar (<250 μm) showed greater phenanthrene mineralisation than raw biochar (<2-4 mm) (Kang et al., 2019), contradictory findings indicate that coarse biochar (3–7 mm) resulted in higher phenanthrene mineralisation than fine biochar (≤2 mm) (Ogbonnaya et al., 2014a; Ogbonnaya et al., 2014b). These conflicting results warrant further investigation. Therefore, we hypothesized that phenanthrene extractability and mineralisation kinetics in soil are mediated by the particle size of biochar, which influences sorption – desorption dynamics due to differences in surface area, particle number, and diffusion pathway.

105

106

107

108

109

110

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

Although studies have demonstrated that fine particle biochar can improve microbial activity and abundance in soil (Chen et al., 2017; Sarfraz et al., 2020; Zhao et al., 2020; Özenç et al., 2023), and smaller particle-sized biochar can enhance soil pH and water holding capacity, influencing the mobility and accessibility of PAHs (Chen et al., 2017; Liao & Thomas, 2019; Sarfraz et al., 2020), there remains insufficient information on how biochar particle size affects PAH extractability and

mineralisation. While it is widely accepted that fine biochar particles have higher sorption capacities (Kang et al., 2018; Kang et al., 2019; Jin et al., 2022; He et al., 2022), most studies focus on the impact of biochar particle size on soil physicochemical properties (e.g., Singh et al., 2010; Yao et al., 2012; Jin et al., 2016; Pratiwi et al., 2016; Xu et al., 2016; Esmaeelnejad et al., 2017; Lim et al., 2017; Lim & Spokas, 2018; Billah et al., 2019; Duarte et al., 2019; Alghamdi et al., 2020; Edeh et al., 2021; Özenç et al., 2023). Therefore, this study investigated the effect of biochar particle size on ¹⁴C-phenanthrene bioaccessibility and mineralisation, which are crucial for predicting phenanthrene fate and behaviour in soil, enhancing remediation strategies, and mitigating the long-term environmental and health risks of phenanthrene contamination in soil.

2 Materials and methods

2.1 Sample collection.

The soil sample was collected from Hillam Farm green energy site in Cockerham Lancaster, United Kingdom (latitude 53.97, longitude -2.84). Soil in this area is described as loamy and sandy soils with naturally high groundwater and peaty surface (LandIS Soilscapes viewer, 2025). The soil was airdried, sieved through a 2 mm mesh to remove unwanted materials (stones, debris, etc.), and was stored at 4 °C. Biochar was purchased from a commercial source (SoilFixers), Royal Wootton Bassett, United Kingdom. The properties of the biochar and soil are shown in Table 1 and Table 2, respectively.

 Table 1: Biochar properties and pyrolysis conditions as provided by the supplier (SoilFixers, UK). This describes the biochar and not the separated particle size fractions.

Parameter	Value
Feedstock	Hardwood logs
Pyrolysis equipment	Retort Kiln
Pyrolysis temperature	700 – 900 °C
Pyrolysis duration	5 – 12 h
Particle size	0 – 8 mm
рН	8.8 – 10
Volatiles	9 – 15%
Ash max.	3 – 6%
Moisture max.	8 – 12%
C Fixed	>76%

Table 2: Properties of the soil sample used in this study. Values are in mean ± SD except the values for sand, silt, and clay

Parameters	Value
Sand (%)	71.43
Silt (%)	26.19
Clay (%)	2.38
Soil texture	Sandy loam
рН	7.28±0.03
Electrical conductivity (μS cm ⁻¹)	382±4.36
Organic matter (%)	6.47±0.25
C:N	10.36±0.08
Total carbon (mg/kg)	102.41±4.44
Total organic carbon (mg/kg)	98.85±3.58
Inorganic carbon (mg/kg)	3.56±1.02
Ammonium nitrogen (mg/kg)	0.37±0.01

Nitrate nitrogen (mg/kg)	
--------------------------	--

3.61±0.15

143

2.2 Soil spiking and amendment

144145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

Soil (2.1 kg; dw) was rehydrated to field moisture content (30%) and was spiked with ¹²C and 9-¹⁴Cphenanthrene (100 mg/kg and 3,800 DPM/g; dw) (Reid et al., 2000; Doick et al., 2003; Stokes et al., 2005). Soil (approx. 1/4) was initially spiked using acetone as the carrier solvent at a 1:20 (v/w) solvent-to-soil ratio. This portion was left in a fume hood for 3 h to allow complete volatilisation of the solvent. The remaining soil was subsequently added in three equal portions, with thorough mixing after each addition to ensure uniform distribution of the contaminant and overall homogeneity. The spiked soil was mixed thoroughly in a glass bowl using a stainless-steel spoon (Doick et al., 2003). Soil (300 g; dw) was weighed into a clean glass bowl, rehydrated, and spiked with ¹²C-phenanthrene as ¹²C blank. Soil (300 g) for ¹⁴C-blank was weighed into a clean glass bowl. The remaining soil was amended with biochar (<0.6 mm and 2 – 4 mm particle size) at 0.1 %, 1.0%, and 10%, respectively. The soils (amended and blank) were weighed (100 g; n = 3) into amber bottles, covered with loose Teflon-lined screw caps, to allow ambient oxygen exchange, and incubated in the dark at 21 ± 2 °C for 60 d. The incubated soils were sampled at 1 d, 15 d, 30 d, 45 d, and 60 d to measure the total residual ¹⁴C-activity, solvent extractability, and mineralisation kinetics. Prior to each sampling, the soil field moisture condition (30%) was maintained with sterile distilled water by weighing the bottles and replacing lost moisture.

162

2.3 Determination of total ¹⁴C – activity in the soil

Soil (1.0 g) from the treatment conditions, was weighed into a cellulose combustion cone and Combustaid (200 μ l) was added to the soil (Reid et al., 2000; Doick et al., 2003; Stokes et al., 2004; Doick et al., 2005). The soil was combusted for 3 min using a sample oxidiser (Packard 307). The released $^{14}CO_2$ was trapped with 10 ml of CarbonTrap and was delivered into a 20 ml vial with 10 ml of CarbonCount as a scintillation fluid. The efficiency (>96%) of the sample oxidiser to trap the evolved $^{14}CO_2$ was determined before combustion. The 20 ml vial was stored in the dark for 24 h before quantifying for 10 min with a liquid scintillation counter (LSC; Canberra Packard Tri-Carb 2250CA).

2.4 Extractability of ¹⁴C – phenanthrene in the soil

2.4.1 Dichloromethane (DCM) extraction of ¹⁴C – phenanthrene

Soil (1.5 g) from the soil incubations, was weighed into a 50 ml Teflon-lined centrifuge tube. Anhydrous sodium sulphate (1.5 g) was added to the soil and 20 ml of DCM was added to the tube (Reid et al., 2000; Doick et al., 2003; Papadopoulos, Paton et al., 2007; Rhodes et al., 2008b). All tubes were tightly closed and placed in an orbital shaker at 100 RPM for 24 h. Afterwards, the tubes were centrifuged at 4000 RPM for 1 h. The supernatant (5 ml) was pipetted into a 20 ml vial, and 14 ml of Ultima Goldstar scintillation fluid was added to the vial. The vial was stored in the dark for 24 h before quantifying for 10 min using an LSC. The remaining supernatant was safely and carefully discarded.

2.4.2 Hydroxypropyl-β-cyclodextrin (HP-β-CD) extraction of ¹⁴C – phenanthrene

Soil (1.5 g) from the soil incubations, was weighed into a 50 ml Teflon-lined centrifuge tube, and 25 ml of 50 mM HP-β-CD solution was added to the tube (Reid et al., 2000; Stokes et al., 2005; Doick et al., 2006; Papadopoulos, Reid et al., 2007). All tubes were sealed and placed on an orbital shaker at 100 RPM for 24 h. Afterwards, the tubes were centrifuged at 4000 RPM for 1 h. The supernatant (5 ml) was transferred into a 20 ml vial and 14 ml of Ultima Goldstar scintillation fluid was added to the vial. The vial was stored in the dark for 24 h before quantifying for 10 mins using an LSC. The remaining supernatant was properly discarded.

2.5 Respirometric monitoring of ¹⁴C – phenanthrene mineralisation in soil

Soil (10 ± 0.2 g) from the soil treatment conditions, was weighed into a 250 ml modified Schott bottle and 30 ml of sterile MBS (1:3 soil – liquid ratio) was added to the soil to form a slurry (Reid et al., 2001; Doick et al., 2003; Allan et al., 2007). A 7 ml vial containing 1 ml of 1 M NaOH was attached to the bottle to trap evolved 14 CO₂. The bottles were tightly closed, placed on an orbital shaker (100 RPM) and monitored at 21 ± 2 °C. The bottles were sampled at 3 h intervals for an initial 9 h, then daily for 14 d. At each sampling, the 7 ml vial was removed and replaced with a fresh vial. Then, 5 ml Ultima Goldstar scintillation fluid was added to the sampled vial. The sampled vial was stored for 24 h in the dark before quantifying using LSC.

2.6 Statistical analysis

The data was processed using MS Excel and analysed using IBM SPSS 28. Data plots were done using SigmaPlot. Data were analysed using a one-way analysis of variance (ANOVA), Tukey's HSD post hoc, independent sample t-test, and simple linear regression. The lag phases were calculated as the time

taken to mineralise 5% of the ¹⁴C-phenanthrene, the fastest rates as the highest residual ¹⁴C-phenanthrene mineralised per hour, and the extents of mineralisation as the cumulative ¹⁴C-phenanthrene mineralised in 14 d. All were calculated from the residual activity at each contact time.

3 Results

3.1 Temporal changes in the total residual ¹⁴C-phenanthrene activity in the amended soils

The total residual 14 C-phenanthrene activity in the amended soils was monitored at 1-60 d (Figure 1). The residual 14 C-activity is expressed as a percentage of the initial spiked 14 C-activity. Noticeably, the residual 14 C-activity in the amended soils reduced as the soil contact duration increased in <0.6 mm and 2-4 mm amendments (Figure 1). The decrease followed a similar trend irrespective of amendment particle size. However, the residual activity was lower in <0.6 mm amended soils. As expected, the residual 14 C-activity was higher at 1 d and lower at 60 d (all p < 0.05) compared to other contact times. In soils amended with <0.6 mm, the residual 14 C-activity at 0.1% biochar application was lower than in 1.0% (p > 0.05) and 10.0% (p < 0.05) at 60 d (Figure 1). The 10.0% biochar amount showed higher (p < 0.05) residual activity at 60 d compared to other amended soils in both particle size fractions. In soils amended with 2-4 mm, the residual 14 C-activity at 1.0% amendment was lower than in 0.1% (p > 0.05) and 10.0% (p < 0.05) at the end of incubation (Figure 1). Noticeably, at 15 d, 10.0% of 2-4 mm had only lost 1.77% of the initial spiked activity. Overall, at 60 d, <0.6 mm amended soil lost 61.64 - 75.91% of the initial spiked activity, while 2-4 mm amended soils lost 58.38 - 61.29% of the initial spiked activity.

3.2 Temporal changes in the extractability of ¹⁴C-phenanthrene in amended soils

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

The extraction of ¹⁴C-phenanthrene using DCM and HP-β-CD in the amended soils was measured over the 60 d incubation (Figure 2 and Figure 3). This was expressed as a percentage of the residual ¹⁴C-activity at each sampling time point. Noticeably, DCM and HP-β-CD extractability of ¹⁴Cphenanthrene decreased over time in soils amended with < 0.6 mm and 2 - 4 mm (Figure 2; Figure 3). The DCM-extractable ¹⁴C-phenanthrene was substantially higher than the HP-β-CD-extractable ¹⁴C-phenanthrene in the amended soils regardless of particle size. The DCM-extractable ¹⁴Cphenanthrene at 1 d was higher than that at 15 – 60 d, and that at 60 d was significantly lower than that at 1-45 d (p < 0.05). At the end of incubation, in soils amended with <0.6 mm biochar particle size fraction, the DCM-extractable ¹⁴C-phenanthrene in soil amended with 10.0% biochar was lower than in other amended soil (p < 0.05), and the DCM-extractable 14 C-activity in soil amended with 1.0% biochar was lower (p > 0.05) than at 0.1% (Figure 2). Also, in soils amended with 2 – 4 mm, the DCM-extractable ¹⁴C-phenanthrene at 10.0% was lower than other amended soils (p < 0.05), and the DCM extractable 14 C-activity at 1.0% was lower (p > 0.05) than at 0.1%. All biochar amended soils had lower DCM-extractable ¹⁴C-activity than the control regardless of the particle size (Figure 2), which was significant (p < 0.05) for all 2 – 4 mm amended soils and significant (p < 0.05) for all <0.6 mm amended soils except soil amended with 0.1% biochar (Figure 2). Furthermore, at 60 d, in soils amended with <0.6 mm, HP-β-CD-extractable ¹⁴C-phenanthrene at 10.0% was lower than at 1.0% (p > 0.05) and 0.1% (p < 0.05), and that at 1.0% amendment was lower (p > 0.05) than at 0.1% (Figure 3). In soils amended with 2-4 mm, the HP- β -CD-extractable 14 C-phenanthrene at 10.0% amendment was lower (p < 0.05) than at 1% and 0.1%, while there was significant (p > 0.05) difference between 1.0% and 0.1% (Figure 3). Generally, the reduction in solvent extractability increased with an increase in biochar amount in < 0.6 mm and 2 – 4 mm amended soils. Additionally, < 0.6 mm amended soils had higher extractability than 2 – 4 mm amended soils (p > 0.05).

261

3.3 Temporal changes in ¹⁴C-phenanthrene catabolism in amended soils

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

262

The lag phases, rates, and extents of ¹⁴C-phenanthrene mineralisation were monitored in the soil treatments from 1 – 60 d (Table 3; Figure 4; Figure 5). The mineralisation kinetics were calculated from the residual ¹⁴C-activity at each sampling time point. Noticeably, the lag phases were longer, degradation rates were slower, and the extents of mineralisation were lower over time in <0.6 mm and 2 – 4 mm amended soils (Table 3, Figure 4, and Figure 5). In <0.6 mm amended soils, there were no significant differences between the lag phases at 1 d and 30 d (p > 0.05). The lag phases at other contact times were longer than at 15 d (Table 3; p < 0.001), with those at 60 d significantly longer than at 1–45 d (p < 0.05), and at 45 d longer than at 1–30 d (p < 0.05). The fastest rates at 15 d were more rapid than the rates at 1 d, 30 d, 45 d, and 60 d (Table 3; p < 0.001). The rates at 1 d were faster than at 30 - 60 d (p < 0.01), while rates at 30 d were faster than at 45 d (p < 0.01), with no significant difference between 45 and 60 d (p > 0.05). There were no significant differences in the extents of mineralisation at 1 d and 15 d (p > 0.05), but both contact times showed significantly higher extents of mineralisation than 30 - 60 d (Table 3; Figure 4; p < 0.001). The extents of mineralisation at 30 d were significantly higher than at 45 - 60 d (p < 0.01), but there were no significant differences between the extents of mineralisation at 45 d and 60 d (Figure 4; p > 0.05).

279

280

281

282

283

284

In <0.6 mm amended soils, significant differences (p < 0.05) were observed in lag phases in the amended soils on 1 d, 30 d, and 45 d, while there were no significant differences (p > 0.05) in lag phases at 15 d and 60 d. The lag phases ranged from 35.8 - 67.6 h on 1 d, 53.3 - 83.6 h on 30 d, and 184.3 - 192.6 h on 60 d. The control had shorter lag phases than amended soils at 45 d and 60 d. The lag phases in the amended soils were not significantly different at 60 d (p > 0.05), but all

amended soils showed longer lag phases than the control (p < 0.001). There was no significant difference in the fastest rates in amended soils from 15 – 60 d. The rates ranged from 0.3 - 0.8 %¹⁴CO₂/h on 1 d, 0.3 - 0.4 %¹⁴CO₂/h on 30 d, and 0.1 - 0.1 %¹⁴CO₂/h on 60 d. Significantly (p < 0.05) higher rates were observed in 0.1% at 1 d compared to other amended soils. The control displayed faster rates than all amended soils from 30 - 60 d. Significant differences (p < 0.05) were observed in the extents of mineralisation in the amended soils from 1 - 15 d, with no significant differences (p > 0.05) observed from 30 - 60 d. The extents of mineralisation ranged from 26.8 - 53.6% on 1 d, 23.1 - 26.2% on 30 d, and 9.0 - 9.5% on 60 d. The soil amended at 10.0% showed significantly (p < 0.05) lower extents of mineralisation at 1 d and had overall lower extents of mineralisation compared to other amendment levels. The amended soils showed significantly (p < 0.05) higher extents of mineralisation than the control from 15 - 30 d. The extents of mineralisation in the control at 60 d was higher than in all amended soils (p < 0.05).

In 2 – 4 mm amended soils, there were no significant differences in lag phases at 1 d and 15 d (p > 0.05), but the lag phases at 15 d were significantly shorter than 30 – 60 d (p < 0.001). There were no significant differences in lag phases at 30 – 60 d (p > 0.05). The lag phases ranged from 27.3 – 39.7 h on 1 d, 131.4 – 202.0 h on 30 d, and 140.7 – 202.9 h on 60 d. There were no significant differences in the rates at 1 d and 15 d (p > 0.05), but both contact times showed faster rates than 30 – 60 d (Table 3; p < 0.001). The rates at 30 d were faster than at 45 d (p < 0.05), and there were no significant differences in rates at 45 d and 60 d (p > 0.05). The rates ranged from $0.9 - 1.1 \%^{14}CO_2/h$ on 1 d, $0.2 - 0.3 \%^{14}CO_2/h$ on 30 d, and $0.1 - 0.2 \%^{14}CO_2/h$ on 60 d. The extents of mineralisation at 1 d were higher (p < 0.001) than at 15 d, and the extents of mineralisation at 15 d were higher (p < 0.001) than at 30 – 60 d (Table 3, Figure 5). There were no significant differences in the extents of mineralisation at 30 – 60 d (p > 0.05). The extents of mineralisation ranged from 45.5 – 69.5% on 1

d, 9.5 - 13.1% on 30 d, and 8.3 - 13.1% on 60 d. Significant (p < 0.05) difference in lag phases were observed in the amended soils from 1 - 60 d. The control showed shorter lag phases than all amended soils from 30 – 60 d. The soil amended at 10.0% showed longer lag phases than the control from 1 – 60 d. At 15 d, the lag phases at 10.0% amendment were longer than in other soil treatment conditions (Table 3; p < 0.05). At 30 d, the lag phases at 1.0% amendment were longer than in other soil treatment conditions (p < 0.05). The control had significantly (p < 0.05 shorter lag phases at 60 d compared to amended soils. There were no significant (p > 0.05) differences in fastest rates in the amended soils on 1 d and from 30 - 60 d. Significantly (p < 0.05) slower rates were observed in 10.0% at 15 d compared to other amended soils. The control showed higher rates than the amended soils from 30 - 60 d. There were significant differences (p < 0.05) in the extents of mineralisation in the amended soils from 1-15 d, but the differences in the extents of mineralisation from 30-60 d were not significant (p > 0.05). At 1 d, the extents of mineralisation at 1.0% and 0.1% amendment were significantly higher (Figure 5; p < 0.001) than at 10.0% amendment and in the control. Also, at 15 d, the extents of mineralisation at 10.0% amendment were significantly lower than in other soil treatment conditions (p < 0.001). The soil amended at 10.0% showed significantly (p < 0.05) lower extents of mineralisation than other amendment levels from 1 - 15 d, and had overall lower extents of mineralisation compared to other amendment conditions. The differences in the extents of mineralisation observed at 0.1% and 1.0% amendment from 1 – 60 d were not statistically significant (p > 0.05).

328

329

330

331

332

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

At 1 d, 2 – 4 amended soils (0.1% and 1.0%) showed non-significant shorter lag phases (p > 0.05), but significantly faster rates and higher extents of mineralisation (p < 0.05) compared to \leq 0.6 mm (0.1% and 1.0%) amended soils (Table 3, Figure 4, Figure 5). Soil amended with 2 – 4 mm at 10.0% showed statistically significant (p < 0.05) shorter lag phases, faster rates, and greater extents of

mineralisation at 1 d compared to soil amended with <0.6 mm at 10.0%. At 15 d, <0.6 mm amended soils showed significantly (p < 0.05) shorter lag phases and faster rates than 2 – 4 mm amended soils. The extents of mineralisation in soil amended at 1.0% with <0.6 mm was not significantly (p > 0.05) higher than in soil amended at 1.0% with 2 – 4 mm at 15 d. However, the extents of mineralisation at 15 d in <0.6 mm (0.1% and 10%) amended soil were higher (p < 0.05) than in 2 – 4 amended soils (0.1% and 10%). At 30 d, <0.6 mm amended soils showed significantly shorter lag phases, faster rates, and higher extents of mineralisation compared to 2 – 4 mm treatments (Table 3; p < 0.05). The extents of mineralisation significantly reduced at 30 d in soils amended with 2 – 4 mm (Table 3). Noticeably, at 15 d, there was an obvious significant (p < 0.05) reduction in the extent of mineralisation (15.4%), with slower rate (0.3 % 14 CO₂/h), and longer lag phase (100.7 h) at 10.0% amendment for 2 – 4 mm (Table 3) compared to 10.0% of <0.6 mm at 56.3%, 1.1 % 14 CO₂/h, and 13.4 h, respectively. There was no significant (p > 0.05) difference in degradation rates from 30 – 60 d, and in the extents of mineralisation from 45 – 60 d in <0.6 mm and 2 – 4 mm amended soils (Table 3).

Table 3: Mineralisation kinetics for soils amended with <0.6 mm and 2-4 mm biochar at 0.0%, 0.1%, 1.0%, and 10.0%. The table shows lag phases, the fastest rates, and extents of mineralisation. Values are in mean \pm SEM (n = 3).

Contact time (days)	Particle size (mm)	Amendment amount (%)	Lag phase (h)	Fastest rate (% ¹⁴ CO ₂ /h)	Extent of mineralisation (%)
1		0.0	37.88±1.62	0.63 ± 0.03	47.54 ± 2.28
	<0.6	0.1	35.78±5.65	0.83 ± 0.29	53.57 ± 4.52
		1.0	46.79±9.73	0.54 ± 0.26	41.31 ± 5.41
		10.0	67.58±9.62	0.33 ± 0.07	26.75 ± 3.69
	2 – 4	0.1	27.27±2.21	0.89 ± 0.02	69.54 ± 5.75
		1.0	29.10±4.01	1.12 ± 0.09	65.36 ± 5.55
		10.0	39.66±2.99	0.91 ± 0.17	45.50 ± 3.80
15		0.0	27.40±6.39	0.79 ± 0.15	40.52 ± 5.18
	<0.6	0.1	16.37±4.33	1.09 ± 0.13	52.62 ± 0.97
		1.0	12.78±3.33	1.27 ± 0.12	46.14 ± 3.58
		10.0	13.43±4.37	1.14 ± 0.21	56.30 ± 3.37
	2 – 4	0.1	30.28±5.67	0.70 ± 0.13	38.91 ± 3.95
		1.0	23.52±2.73	0.88 ± 0.05	42.02 ± 3.62
		10.0	100.71±15.03	0.31 ± 0.03	15.44 ± 2.24
30		0.0	75.28±8.46	0.42 ± 0.09	18.82 ± 1.86
30	<0.6	0.1	53.25±4.93	0.42 ± 0.03 0.44 ± 0.02	26.21 ± 2.35
	1010	1.0	61.60±2.29	0.30 ± 0.11	24.15 ± 1.17
		10.0	82.58±29.73	0.31 ± 0.13	23.10 ± 4.33
	2 – 4	0.1	131.35±24.75	0.26 ± 0.07	13.12 ± 2.89
		1.0	201.95±49.13	0.14 ± 0.03	9.48 ± 2.65
		10.0	144.34±1.09	0.23 ± 0.03	10.83 ± 0.15
45		0.0	115.16±20.56	0.16 ± 0.01	15.84 ± 3.50
13	<0.6	0.1	163.68±26.83	0.09 ± 0.03	11.05 ± 1.70
		1.0	124.01±12.19	0.14 ± 0.02	14.14 ± 0.95
		10.0	155.75±33.46	0.14 ± 0.01	11.76 ± 2.12
	2 – 4	0.1	165.20±39.04	0.15 ± 0.02	11.78 ± 3.34
		1.0	124.40±26.45	0.12 ± 0.04	15.26 ± 3.42
		10.0	142.60±21.06	0.16 ± 0.04	12.54 ± 2.02
60		0.0	98.74 ± 17.96	0.40 ± 0.05	16.86 ± 3.00
	<0.6	0.1	192.62±40.62	0.09 ± 0.03	9.48 ± 1.58
	-	1.0	183.45 ± 6.11	0.11 ± 0.04	8.97 ± 0.36
		10.0	184.32±13.58	0.22 ± 0.02	8.96 ± 0.68
	2 – 4	0.1	202.93±8.24	0.10 ± 0.01	8.27 ± 0.33
		1.0	140.74±37.75	0.23 ± 0.02	13.07 ± 2.83
		10.0	195.35±47.12	0.21 ± 0.01	9.98 ± 2.69

3.4 Relationship between HP-β-CD extracted ¹⁴C-phenanthrene and extents of mineralisation

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

The relationship between the HP-β-CD extracted ¹⁴C-phenanthrene and the extents of mineralisation was examined to check the suitability of HP-β-CD solvent extraction for predicting ¹⁴C-phenanthrene microbial degradation in the biochar amended soils. The HP-β-CD extracted ¹⁴Cphenanthrene correlated with the extents of mineralisation in the amended soil but this was influenced by the level of amendment and particle size. In <0.6 mm amended soils, at 0.1% amendment, HP- β -CD extracted ¹⁴C-phenanthrene correlated with extents of mineralisation (R² = 0.86, slope = 0.99, intercept = -16.37). At 1.0% amendment, HP- β -CD extracted ¹⁴C-activity (R² = 0.77, slope = 0.85, intercept = -1.22) also correlated with the extents of mineralisation, and at 10.0% amendment, HP- β -CD extracted ¹⁴C-activity (R² = 0.82, slope = 0.65, intercept = 0.85) correlated with the extents of mineralisation. Similarly, in 2 – 4 mm amended soils, at 0.1% amendment, the HP-β-CD extracted ¹⁴C-phenanthrene also showed a relationship with the extents of mineralisation $(R^2 = 0.82, slope = 0.68, intercept = -20.06)$. Also, at 1.0% amendment, HP- β -CD ($R^2 = 0.73, slope = 0.68$) 0.46, intercept = -7.01) correlated with the extents of mineralisation. Furthermore, at 10.0% amendment, HP- β -CD extracted ¹⁴C-activity (R² = 0.57, slope = 0.54, intercept = -3.26) correlated with the extents of mineralisation.

4 Discussions

371372

4.1 Changes in the total residual ¹⁴C-phenanthrene in the amended soils

373374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

The initial recovery of spiked ¹⁴C-phenanthrene ranged from 86.69% to 100.75%, meeting the acceptable variability threshold (<20%) required to validate spiking procedures (Doick et al., 2003). The reduction in the initial recovered ¹⁴C-phenanthrene activity was attributed to volatilisation, adhesion to the blending vessel, and soil heterogeneity, which can create subsystems with varying contaminant concentrations (Doick et al., 2003). Additional factors such as sampling variation and potential microbial degradation within 1 d may have also contributed to reduced ¹⁴C-activity. Indigenous soil microbes, capable of degrading PAHs, may play a significant role in this reduction, which is consistent with previous findings (Macleod and Semple, 2000; Doick et al., 2005 Couling et al., 2010; Okere et al., 2017). Comparisons between sterile and non-sterile soils further highlight the influence of soil microbiota on residual ¹⁴C-activity (Macleod and Semple, 2000; Oyelami et al., 2014). Residual ¹⁴C-phenanthrene activity decreased over time in both amended soils, with greater reductions observed in soils amended with < 0.6 mm. This trend aligns with findings by Ogbonnaya et al. (2014a) that residual activity reduced in similar manner over time in soil in soil amended with ≤2 mm and 3 - 7 mm biochar. At a 10.0% biochar amendment level, residual ¹⁴C-activity was higher regardless of particle size compared to 0.1% and 1.0%, indicating reduced ¹⁴C-phenanthrene losses. The higher sorption capacity at 10.0% amendment minimized volatilisation and biodegradation (Rhodes et al., 2008a; Ogbonnaya et al., 2016; Bielska et al., 2018).

392

4.2 Changes in DCM and HP-β-CD extractability of ¹⁴C-phenanthrene in the soils

393 394

395

396

The solvent extractability of ¹⁴C-phenanthrene declined over time, with greater reductions observed at higher amendment levels regardless of biochar particle size. Extractability decreased

progressively, with the reduction at 60 d being more significant than at earlier time points (1 - 45 d). This aligns with studies showing that prolonged soil-PAH contact time enhances aging, leading to reduced PAH extractability in soil (Alexander & Kelsey, 1997; White et al., 1997; Macleod and Semple, 2000; Doick et al., 2005; Bielská et al., 2013). The reduction in solvent extractability of ¹⁴Cphenanthrene was greater in the 10.0% amendment than in the 1.0% and 0.1% amendments. This supports previous findings that extractability decreases as black carbon content increases (Rhodes et al., 2008a; Ogbonnaya et al., 2014a; Yu et al., 2016; Ogbonnaya et al., 2016). Biochar addition resulted in reduced HP-β-CD extractability, with more significant effects at 5% and 10% amendments compared to 1% in soils amended with ≤2 mm and 3 - 7 mm biochar (Ogbonnaya et al., 2014a). The DCM extraction yielded higher ¹⁴C-phenanthrene activity than HP-β-CD in all amended soils, which is consistent with the fact that HP-β-CD is a non-exhaustive extraction solvent (Reid et al., 2000; Semple et al., 2007). As noted by Doick et al. (2003), neither contaminant concentration nor spiking procedure significantly affects DCM or HP-β-CD extractability. Therefore, the observed differences in extracted ¹⁴C-activity were attributed to aging, soil heterogeneity, biochar particle size, and biochar amount as these factors have been demonstrated to affect extractability in past studies (Alexander & Kelsey, 1997; Macleod & Semple, 2000; Doick et al., 2003; Doick et al., 2005; Rhodes et al., 2008a; Ogbonnaya et al., 2014a; Ogbonnaya et al., 2016).

414

415

416

417

418

419

420

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

Biochar's sorption capacity can be influenced by pore size, particle size, and surface area (Zhang et al., 2010; He et al., 2022). Fine particle biochar has a higher surface area and sorption capacity than coarse biochar (He et al., 2022). Smaller particles improved phenanthrene sorption rate and capacity (Kang et al., 2018), likely due to more exposed pores per unit surface area. In this study, soils amended with fine particle biochar (<0.6 mm) showed higher solvent extractability and reduced residual ¹⁴C-activity. This may be due to the larger surface area and shorter diffusion pathways of

smaller biochar particles, which provide more improved sorption but enhance microbial degradation through faster desorption. Smaller biochar particles offer a larger surface area, providing more sites for phenanthrene sorption and microbial colonisation compared to larger particles. However, smaller particles have shorter diffusion pathways for phenanthrene movement, allowing faster sorption but also faster desorption, while larger particles have longer diffusion pathways likely due to longer pores and slower intraparticle diffusion, therefore slowing sorption rate and the desorption of sorbed phenanthrene. These differences imply that smaller particles not only enhance the efficiency of phenanthrene sorption but can also support more effective microbial degradation by providing better microbial accessibility and faster desorption of phenanthrene. Recent studies support these assumptions (Kang et al., 2018; Kang et al., 2019; Sarfraz et al., 2020; Jin et al., 2022; He et al., 2022). The increased surface contact of fine particle biochar with water or solvents enhances desorption (Sarfraz et al., 2020). Additionally, the interaction of the biochar with soil organic matter may result in the blockage of biochar pores and sorption sites (Liu et a., 2018), and this is higher in smaller particle size fraction due to higher surface area. This could reduce the sorption capacity of the biochar resulting in more phenanthrene been reversibly sorbed to soil organic matter thereby increasing the extractable fraction. However, if sorption site coating and pore blockage occur after contaminant sorption, they may hinder desorption and reduce extractability. Furthermore, dissolved organic carbon (DOC) increases the desorption of phenanthrene in soil resulting to greater extraction (Lou et al., 2019). This effect could also be higher in <0.6 mm amended soils as it has been reported that smaller particle size biochar releases more DOC in soil compared to higher particle size (Liu et al., 2016). Therefore, despite the higher sorption efficiency of fine particle biochar, coarse biochar may offer better long-term sorption stability.

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

4.3 Changes in ¹⁴C-phenanthrene mineralisation in the amended soils

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

444

Soil-PAH contact time affects PAH bioavailability and catabolism (Macleod and Semple, 2000; Reid et al., 2001; Wu et al., 2013; Wu et al., 2014; Omoni et al., 2020). In this study, ¹⁴C-phenanthrene catabolism decreased with an increase in contact time. This is consistent with the findings in earlier studies (Rhodes et al., 2008a; Ogbonnaya et al., 2014a; Ogbonnaya et al., 2014b; Ogbonnaya et al., 2016; Omoni et al., 2020). Similarly, the amount of biochar added to the soils also influenced ¹⁴Cphenanthrene mineralisation. Higher amounts of biochar (e.g. 10.0%) led to reduced mineralisation irrespective of biochar particle size. This is consistent with earlier findings where increase in amounts of black carbon caused a reduction in extents of mineralisation (Rhodes et al., 2008a; Ogbonnaya et al., 2014a; Oyelami et al., 2015, Ogbonnaya et al., 2016; Bielska et al., 2018). This is likely due to PAH sorption and decreased bioavailability (Ogbonnaya et al., 2016). Additionally, considering the reduced mineralisation with increase in contact time and biochar amounts, over time and under higher biochar amount, phenanthrene could become increasingly associated with soil organic matter, mineral surfaces, and biochar, or diffuse into soil and biochar pores making it inaccessible to soil microbes. These processes limit the fraction of phenanthrene available for microbial degradation. Therefore, as bioavailable phenanthrene declines, microbial populations may experience reduced substrate exposure, leading to the downregulation of key catabolic enzymes involved in phenanthrene degradation.

463

464

465

466

467

In this study, higher mineralisation was observed in <0.6 mm amended soils compared to 2 – 4 mm at 15-30 d. This is consistent with the reports of Kang et al. (2019) who reported higher phenanthrene biodegradation with powdered biochar (<250 μ m) compared to raw biochar (<2 mm). In contrast, Ogbonnaya et al. (2014a) reported higher extractability and extents of mineralisation in

soil amended with biochar of 3-7 mm particle size fraction compared to ≤ 2 mm amended soil. However, the biochar properties may vary due to differences in feedstock, pyrolysis conditions, and state of weathering (Semple et al., 2013). For instance, powdered sewage sludge biochar (<250 µm) showed substantially higher phenanthrene desorption than raw sewage sludge biochar (<2 mm) but the difference in powdered and raw rice husk biochar was negligible (Kang et al., 2019). This was attributed to difference in chemical structure (aromaticity) of sewage sludge biochar and rice husk biochar. Over time, biochar of different particle size fractions but from same feedstock and pyrolysis conditions may offer similar effect on phenanthrene mineralisation as similar lag phases, degradation rates, and extents of mineralisation were observed in <0.6 mm and 2 – 4 mm amended soil from 45 d in this study. Generally, the lag phases and extents of mineralisation in soil amended with 10.0% of 2 – 4 mm biochar particle size fraction were respectively longer and lower than the control at 1 - 60 d. Ogbonnaya et al. (2014b) reported non-significant lower extents of mineralisation at 1.0% amendment compared to the control in \leq 2 mm and 3 – 7 mm amended soils. Also, in soils amended at 1.0% using black carbon, the control showed better rates and extents of mineralisation than amended soils (Yu et al., 2016). Therefore, ≤1.0% biochar amendment could be more beneficial if the objective is to enhance contaminant biodegradation.

484

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

4.4 Relationship between HP-β-CD extractability and microbial degradation

486

487

488

489

490

491

485

According to Semple et al. (2007), the bioaccessible concentration provides a more realistic description of the microbial degradation endpoint for an organic contaminant in soil. Over two decades, non-exhaustive extraction using HP-β-CD has been demonstrated as a robust and reliable predictor of PAH microbial availability in soil (Reid et al., 2000; Stokes et al., 2005; Doick et al., 2006; Papadopoulos et al., 2007; Rhodes et al., 2008b; Ogbonnaya et al., 2014; Adedigba et al., 2018;

Vázquez-Cuevas et al., 2021; Posada-Baguero et al., 2022; Jin et al., 2023). HP-β-CD extraction has been demonstrated to be suitable for predicting microbial degradation of PAHs in soil amended with black carbon (Rhodes et al., 2008a; Ogbonnaya et al., 2014a; Oyelami et al., 2014; Ogbonnaya et al., 2016; Yu et al., 2016). HP-β-CD extraction predicts the extents of mineralisation better than DCM extraction as DCM extraction overpredicts microbial degradation (Reid et al., 2000; Doick et al., 2003; Papadopoulos, Paton et al., 2007; Adedigba et al., 2018). In this study, the HP-β-CD extracted ¹⁴C-phenanthrene showed a strong association with the extents of ¹⁴C-phenanthrene mineralisation, which is consistent with earlier reports (Wu et al., 2013; Adedigba et al., 2018; Vázquez-Cuevas et al., 2021; Posada-Baquero et al., 2022). However, the correlation was lower in 2 -4 mm amended soils ($R^2 = 0.82 - 0.57$) than in < 0.6 mm amended soils ($R^2 = 0.86 - 0.77$), especially at 10.0% of 2 – 4 mm amendment. Linear regression revealed a strong relationship between HP-β-CD extracted and total mineralisation at 0.1% amendment ($R^2 = 0.67$, slope = 0.95), but the R^2 and slope for 0.5 - 5% activated carbon amendment ranged from 0.51 - 0.13 and 2.19 - 12.73 respectively, indicating that HP-β-CD underpredicted total mineralisation at higher amendment (Rhodes et al., 2008a). Similar findings with a weaker correlation after 0.1% amendment were reported by Rhodes et al. (2012). Ogbonnaya et al. (2014a) demonstrated that HP-β-CD extraction was in good agreement with the extents of mineralisation in ≤2 mm and 3 – 7 mm biochar amended soils, but the correlation was better in ≤2 mm biochar compared to 3 – 7 mm biochar. Therefore, the amount and particle size of biochar influence the efficiency of HP-β-CD extraction for prediction microbial degradation of phenanthrene.

512

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

5 Conclusions

The higher extractability and mineralisation observed in soils amended with <0.6 mm biochar particles are attributed to higher surface area and shorter diffusion pathways, which facilitate easier desorption and greater bioavailability for microbial degradation. Conversely, larger biochar particles (2–4 mm) exhibit longer diffusion pathways, reducing desorption and bioavailability. Therefore, larger biochar particles may offer better sorption stability in the long-term. This study has also demonstrated that HP- β -CD extraction can effectively predict microbial degradation of ¹⁴C-phenanthrene in biochar-amended soils. However, this prediction is influenced by biochar amount and particle size. This presents a challenge in risk assessment of biochar amended PAH-contaminated soil in predicting microbial degradation endpoint. These findings are important as they highlight the critical role of biochar particle size and amount in determining PAH desorption dynamics, bioaccessibility, and microbial degradation in contaminated soils which are critical for mitigating the adverse impacts of PAHs in soil.

6 Acknowledgement

We appreciate Hillam Farm Cockerham, Lancaster, United Kingdom for providing their site for soil sampling.

7 References

Adedigba, B. M., Ogbonnaya, U. O., Vázquez-Cuevas, G. M., & Semple, K. T. (2018). Optimisation of XAD extraction methodology for the assessment of biodegradation potential of

538	¹⁴ C-phenanthrene in soil. Environmental Technology & Innovation, 9, 140-
539	150. https://doi.org/10.1016/j.eti.2017.11.011
540	Allan, I. J., Semple, K. T., Hare, R. & Reid, B. J. (2007) Cyclodextrin enhanced biodegradation of
541	polycyclic aromatic hydrocarbons and phenols in contaminated soil slurries. Environmental
542	Science & Technology, 41(15), 5498-5504. 10.1021/es0704939
543	Alghamdi, A. G., Alkhasha, A., & Ibrahim, H. M. (2020). Effect of biochar particle size on water
544	retention and availability in a sandy loam soil. Journal of Saudi Chemical Society, 24(12),
545	1042-1050. https://doi.org/10.1016/j.jscs.2020.11.003
546	Alexander, M., & Kelsey, J. W. (1997). Declining bioavailability and inappropriate estimation of risk
547	of persistent compounds [Article]. Environmental Toxicology & Chemistry, 16(3), 582.
548	Baldantoni, D., Morelli, R., Bellino, A., Prati, M. V., Alfani, A., & De Nicola, F. (2017). Anthracene and
549	benzo(a)pyrene degradation in soil is favoured by compost amendment: Perspectives for a
550	bioremediation approach. Journal of Hazardous Materials, 339, 395-400.
551	https://doi.org/10.1016/j.jhazmat.2017.06.043
552	Bernhardt, C., Derz, K., Kördel, W., & Terytze, K. (2013). Applicability of non-exhaustive extraction
553	procedures with Tenax and HPCD [Article]. Journal of Hazardous Materials, 261, 711-717.
554	https://doi.org/10.1016/j.jhazmat.2012.12.021
555	Bielská, L., Smídová, K., & Hofman, J. (2013). Supercritical fluid extraction of persistent organic
556	pollutants from natural and artificial soils and comparison with bioaccumulation in
557	earthworms. Environmental Pollution, 176, 48-54.
558	https://doi.org/10.1016/j.envpol.2013.01.005

- Bielska, L., Skulcova, L., Neuwirthova, N., Cornelissen, G., & Hale, S. E. (2018). Sorption,
 bioavailability and ecotoxic effects of hydrophobic organic compounds in biochar amended
 soils. Science of the Total Environment, 624, 78-86.
 https://doi.org/10.1016/j.scitotenv.2017.12.098
- Billah, M. M., Ahmad, W., & Ali, M. (2019). Biochar particle size and Rhizobia strains effect on the uptake and efficiency of nitrogen in lentils. *Journal of Plant Nutrition*, *42*(15), 1709-1725.
- Cachada, A., Pereira, R., da Silva, E. F., & Duarte, A. C. (2014). The prediction of PAHs bioavailability in soils using chemical methods: State of the art and future challenges [Article]. *Science of the Total Environment*, *472*, 463-480. https://doi.org/10.1016/j.scitotenv.2013.11.038
- Cao, H. H., Li, X. N., Qu, C. S., Gao, M., Cheng, H., Ni, N., Yao, S., Bian, Y. R., Gu, C. G., Jiang, X., &
 Song, Y. (2022). Bioaccessibility and Toxicity Assessment of Polycyclic Aromatic
 Hydrocarbons in Two Contaminated Sites. *Bulletin of Environmental Contamination and Toxicology*, 109(4), 592-599. https://doi.org/10.1007/s00128-022-03530-6
- Chen, B. L., & Yuan, M. X. (2011). Enhanced sorption of polycyclic aromatic hydrocarbons by soil

 amended with biochar. *Journal of Soils and Sediments*, 11(1), 62-71.

 https://doi.org/10.1007/s11368-010-0266-7
- 575 Chen, J., Li, S., Liang, C., Xu, Q., Li, Y., Qin, H., & Fuhrmann, J. J. (2017). Response of microbial
 576 community structure and function to short-term biochar amendment in an intensively
 577 managed bamboo (Phyllostachys praecox) plantation soil: effect of particle size and addition
 578 rate. *Science of the Total Environment*, *574*, 24-33.

Couling, N. R., Towell, M. G., & Semple, K. T. (2010). Biodegradation of PAHs in soil: influence of 579 580 chemical structure, concentration and multiple amendment. Environmental Pollution, 158(11), 3411-3420. https://doi.org/10.1016/j.envpol.2010.07.034 581 de Jesus Duarte, S., Glaser, B., & Pellegrino Cerri, C. E. (2019). Effect of biochar particle size on 582 hydrological and chemical properties of loamy and sandy tropical 583 soils. Agronomy, 9(4), 165. 584 Doick, K. J., Lee, P. H., & Semple, K. T. (2003). Assessment of spiking procedures for the introduction 585 of a phenanthrene-LNAPL mixture into field-wet soil. Environmental Pollution, 126(3), 399-586 406. https://doi.org/10.1016/S0269-7491(03)00230-6 587 588 Doick, K. J., Dew, N. M., & Semple, K. T. (2005). Linking catabolism to cyclodextrin extractability: 589 determination of the microbial availability of PAHs in soil. Environmental science & technology, 39(22), 8858-8864. https://doi.org/10.1021/es0507463 590 Doick, K. J., Clasper, P. J., Urmann, K., & Semple, K. T. (2006). Further validation of the HPCD-591 592 technique for the evaluation of PAH microbial availability in soil. Environmental 593 Pollution, 144(1), 345-354. https://doi.org/10.1016/j.envpol.2005.10.054 594 Edeh, I. G., & Mašek, O. (2022). The role of biochar particle size and hydrophobicity in improving soil hydraulic properties. European Journal of Soil Science, 73(1), e13138. 595 Esmaeelnejad, L., Shorafa, M., Gorji, M., & Hosseini, S. M. (2017). Impacts of woody biochar particle 596

study. Communications in soil science and plant analysis, 48(14), 1710-1718.

size on porosity and hydraulic conductivity of biochar-soil mixtures: an incubation

597

- 599 Guo, J. Y., Yang, S. Q., He, Q. L., Chen, Y. H., Zheng, F., Zhou, H. B., Hou, C. L., Du, B. X., Jiang, S. L., &
- 600 Li, H. (2021). Improving benzo(a)pyrene biodegradation in soil with wheat straw-derived
- biochar amendment: Performance, microbial quantity, CO2 emission, and soil properties.
- Journal of Analytical and Applied Pyrolysis, 156, Article 105132.
- 603 https://doi.org/10.1016/j.jaap.2021.105132
- 604 Guo, S. S., Liu, X. M., & Tang, J. C. (2022). Enhanced degradation of petroleum hydrocarbons by
- immobilizing multiple bacteria on wheat bran biochar and its effect on greenhouse gas
- 606 emission in saline-alkali soil. *Chemosphere*, 286, Article 131663.
- 607 <u>https://doi.org/10.1016/j.chemosphere.2021.131663</u>
- He, Z., Cao, H., Liang, J., Hu, Q., Zhang, Y., Nan, X., & Li, Z. (2022). Effects of biochar particle size on
- sorption and desorption behavior of NH4+-N. *Industrial Crops and Products*, 189, 115837. .
- 610 https://doi.org/10.1016/j.indcrop.2022.115837
- Jimenez, E. M., Acena-Heras, S., Fristak, V., Heinze, S., & Marschner, B. (2018). The effect of biochar
- amendments on phenanthrene sorption, desorption and mineralisation in different soils.
- 613 *Peerj, 6,* Article e5074. https://doi.org/10.7717/peerj.5074
- Jin, Z., Chen, X., Chen, C., Tao, P., Han, Z., & Zhang, X. (2016). Biochar impact on nitrate leaching in
- 615 upland red soil, China. Environmental Earth Sciences, 75, 1-10.
- Jin, Z., Xiao, S., Dong, H., Xiao, J., Tian, R., Chen, J., ... & Li, L. (2022). Adsorption and catalytic
- degradation of organic contaminants by biochar: Overlooked role of biochar's particle
- 618 size. Journal of hazardous materials, 422, 126928.
- 619 https://doi.org/10.1016/j.jhazmat.2021.126928

620 Jin, Z., Gu, C., Fan, X., Cai, J., Bian, Y., Song, Y., Sun, C., & Jiang, X. (2023). Novel insights into the 621 predominant factors affecting the bioavailability of polycyclic aromatic hydrocarbons in 622 industrial contaminated areas using PLS-developed model [Article]. Chemosphere, 319, N.PAG-N.PAG. https://doi.org/10.1016/j.chemosphere.2023.138033 623 Kang, S., Jung, J., Choe, J. K., Ok, Y. S., & Choi, Y. (2018). Effect of biochar particle size on hydrophobic 624 organic compound sorption kinetics: applicability of using representative size. Science of the 625 626 Total Environment, 619, 410-418. https://doi.org/10.1016/j.scitotenv.2017.11.129 Kang, S., Kim, G., Choe, J. K., & Choi, Y. (2019). Effect of using powdered biochar and surfactant on 627 628 desorption and biodegradability of phenanthrene sorbed to biochar. Journal of hazardous materials, 371, 253-260. https://doi.org/10.1016/j.jhazmat.2019.02.104 629 630 Kaur, V., & Sharma, P. (2020). Application of Biochar as an Adsorbent and Its Significance on Berseem (Trifolium alexandrinum) Growth Parameters in Farm Soil Contaminated with 631 PAH. Journal of Soil Science and Plant Nutrition, 20(3), 806-819. 632 https://doi.org/10.1007/s42729-019-00167-z 633 Kong, L. L., Song, B. P., Zhang, T. T., Gao, K. N., & Liu, J. Z. (2021). Effects of soil organic matter on 634 biochar application in developing the biodegradation potentials of polycyclic aromatic 635 hydrocarbons (PAHs). Applied Soil Ecology, 167, Article 104046. 636 https://doi.org/10.1016/j.apsoil.2021.104046 637 LandIS Soilscapes viewer, Cranfield Environment Center. https://www.landis.org.uk/soilscapes/. 638 639 Accessed on 31/05/2025. Lawal, A. T., 2017. Polycyclic aromatic hydrocarbons. A review. Cogent environmental science, 3(1), 640

1339841. 10.1080/23311843.2017.1339841.

- Leech, C., Tighe, M. K., Pereg, L., Winter, G., McMillan, M., Esmaeili, A., & Wilson, S. C. (2020).

 Bioaccessibility constrains the co-composting bioremediation of field aged PAH

 contaminated soils [Article]. *International Biodeterioration & Biodegradation*, *149*, N.PAG
 N.PAG. https://doi.org/10.1016/j.ibiod.2020.104922
- 646 Liao, W., & Thomas, S. C. (2019). Biochar particle size and post-pyrolysis mechanical processing 647 affect soil pH, water retention capacity, and plant performance. *Soil Systems*, *3*(1), 14.
- 648 Lim, T. J., Spokas, K. A., Feyereisen, G. W., Weis, R., & Koskinen, W. C. (2017). Influence of biochar 649 particle size and shape on soil hydraulic properties. *J. Environ. Sci. Eng*, *5*, 8-15.
- 650 Lim, T. J., & Spokas, K. (2018). Impact of biochar particle shape and size on saturated hydraulic 651 properties of soil. *Korean Journal of Environmental Agriculture*, *37*(1), 1-8.
- 652 Liu, Z., Dugan, B., Masiello, C. A., Barnes, R. T., Gallagher, M. E., & Gonnermann, H. (2016). Impacts
 653 of biochar concentration and particle size on hydraulic conductivity and DOC leaching of
 654 biochar—sand mixtures. *Journal of Hydrology*, *533*, 461-472.
 655 https://doi.org/10.1016/j.jhydrol.2015.12.007
- 656 Liu, Y., Lonappan, L., Brar, S. K., & Yang, S. (2018). Impact of biochar amendment in agricultural soils
 657 on the sorption, desorption, and degradation of pesticides: a review. *Science of the total*658 *environment*, 645, 60-70. https://doi.org/10.1016/j.scitotenv.2018.07.099
- Luo, L., Chen, Z., Cheng, Y., Lv, J., Cao, D., & Wen, B. (2019). Effects of dissolved organic carbon on desorption of aged phenanthrene from contaminated soils: a mechanistic study. *Environmental Pollution*, 254, 113016.
- https://doi.org/10.1016/j.envpol.2019.113016

- Macleod, C. J. A., Semple, K. T. (2000). Influence of contact time on extractability and degradation of pyrene in soils. *Environmental Science & Technology*, 34(23), 4952-4957.
- 665 10.1021/es000061x.
- Ogbonnaya, O. U., Adebisi, O. O., & Semple, K. T. (2014a). The impact of biochar on the
- bioaccessibility of ¹⁴C-phenanthrene in aged soil. Environmental Science-
- 668 Processes & Impacts, 16(11), 2635-2643. https://doi.org/10.1039/c4em00396a
- Ogbonnaya, U., Oyelami, A., Matthews, J., Adebisi, O., & Semple, K. T. (2014b). Influence of wood
- 670 biochar on phenanthrene catabolism in soils. Environments, 1(1), 60-74.
- 671 <u>https://doi.org/10.3390/environments1010060</u>
- Ogbonnaya, U. O., Thomas, J., Fasina, S. A., & Semple, K. T. (2016). Impact of two contrasting
- biochars on the bioaccessibility of ¹⁴C-naphthalene in soil. Environmental
- 674 *Technology & Innovation, 6,* 80-93. https://doi.org/10.1016/j.eti.2016.07.002
- Okere, U., and Semple, K., 2012. Biodegradation of PAHs in 'pristine'soils from different climatic
- 676 regions. J Bioremed Biodegrad S, 1(2).
- 677 Okere, U. V., Schuster, J. K., Ogbonnaya, U. O., Jones, K. C., & Semple, K. T. (2017). Indigenous 14 C-
- phenanthrene biodegradation in "pristine" woodland and grassland soils from Norway and
- the United Kingdom. Environmental Science: Processes & Impacts, 19(11), 1437-1444.
- 680 https://doi.org/10.1039/C7EM00242D
- Omoni, V. T., Baidoo, P. K., Fagbohungbe, M. O., & Semple, K. T. (2020). The impact of enhanced
- and non-enhanced biochars on the catabolism of 14C-phenanthrene in soil. *Environmental*
- 683 *Technology & Innovation, 20,* 101146. https://doi.org/10.1016/j.eti.2020.101146

684 Oyelami, A., Elegbede, B., & Semple, K. (2014). Impact of Different Types of Activated Carbon on the

Bioaccessibility 14C-phenanthrene in Sterile and Non-Sterile Soils. Environments, 1(2), 137-

- 686 156. https://doi.org/10.3390/environments1020137
- Oyelami, A. O., Ogbonnaya, U., Muotoh, C., & Semple, K. T. (2015). Impact of activated carbon on
- the catabolism of 14 C-phenanthrene in soil. Environmental Science: Processes &
- 689 Impacts, 17(6), 1173-1181. https://doi.org/10.1039/c5em00133a
- 690 Özenç, D. B., Tarakçioğlu, C., Yilmaz, F. I., & Aygün, S. (2023). Changes in Physico-Chemical Properties
- of a Sandy Loam Soil Depending on the Particle Size of Hazelnut Shell-Derived Biochar. *The*
- 692 Philippine Agricultural Scientist, 106(4), 6.

- Papadopoulos, A., Reid, B. J., & Semple, K. T. (2007). Prediction of microbial accessibility of carbon-
- 14-phenanthrene in soil in the presence of pyrene or benzo a pyrene using an aqueous
- 695 cyclodextrin extraction technique. *Journal of Environmental Quality, 36*(5), 1385-1391.
- 696 https://doi.org/10.2134/jeq2006.0467
- Papadopoulos, A., Paton, G. I., Reid, B. J., & Semple, K. T. (2007). Prediction of PAH biodegradation
- in field contaminated soils using a cyclodextrin extraction technique. Journal of
- 699 Environmental Monitoring, 9(6), 516-522. https://doi.org/10.1039/B700720E
- 700 Patel, A. B., Shaikh, S., Jain, K. R., Desai, C., & Madamwar, D. (2020). Polycyclic Aromatic
- 701 Hydrocarbons: Sources, Toxicity, and Remediation Approaches. Frontiers in Microbiology,
- 702 11. 10.3389/fmicb.2020.562813.
- Patterson, C. J., Semple, K. T., & Paton, G. I. (2004). Non-exhaustive extraction techniques (NEETs)
- for the prediction of naphthalene mineralisation in soil. Fems Microbiology Letters, 241(2),
- 705 215-220. https://doi.org/10.1016/j.femsle.2004.10.023

- Posada-Baquero, R., Semple, K. T., Ternero, M., & Ortega-Calvo, J. J. (2022). Determining the bioavailability of benzo(a)pyrene through standardized desorption extraction in a certified reference contaminated soil. *Science of the Total Environment*, *803*, Article 150025. https://doi.org/10.1016/j.scitotenv.2021.150025
- Pratiwi, E. P. A., Hillary, A. K., Fukuda, T., & Shinogi, Y. (2016). The effects of rice husk char on ammonium, nitrate and phosphate retention and leaching in loamy soil. *Geoderma*, *277*, 61-68.
- Puglisi, E., Cappa, F., Fragoulis, G., Trevisan, M. & Del Re, A. a. M. (2007) Bioavailability and degradation of phenanthrene in compost amended soils. *Chemosphere*, 67(3), 548-556.

 10.1016/j.chemosphere.2006.09.058.
- Quilliam, R. S., Rangecroft, S., Emmett, B. A., Deluca, T. H., & Jones, D. L. (2013). Is biochar a source or sink for polycyclic aromatic hydrocarbon (PAH) compounds in agricultural soils? *Global Change Biology Bioenergy*, *5*(2), 96-103. https://doi.org/10.1111/gcbb.12007
- Reid, B. J., Stokes, J. D., Jones, K. C., & Semple, K. T. (2000). Nonexhaustive cyclodextrin-based extraction technique for the evaluation of PAH bioavailability. *Environmental Science & Technology*, *34*(15), 3174-3179. https://doi.org/10.1021/es990946c
- Reid, B. J., MacLeod, C. J. A., Lee, P. H., Morriss, A. W. J., Stokes, J. D., & Semple, K. T. (2001). A simple C-14-respirometric method for assessing microbial catabolic potential and contaminant bioavailability. *Fems Microbiology Letters*, 196(2), 141-146. https://doi.org/10.1111/j.1574-6968.2001.tb10555.x

- 726 Rhodes, A. H., Carlin, A., & Semple, K. T. (2008a). Impact of black carbon in the extraction and
- mineralization of phenanthrene in soil. *Environmental Science & Technology*, 42(3), 740-745.
- 728 <u>https://doi.org/10.1021/es071451n</u>
- 729 Rhodes, A. H., Dew, N. M., & Semple, K. T. (2008b). Relationship between cyclodextrin extraction
- and biodegradation of phenanthrene in soil. Environmental Toxicology and Chemistry, 27(7),
- 731 1488-1495. https://doi.org/10.1897/07-363.1
- Rhodes, A. H., McAllister, L. E., Chen, R., & Semple, K. T. (2010). Impact of activated charcoal on the
- mineralisation of 14C-phenanthrene in soils. *Chemosphere*, 79(4), 463-469.
- 734 https://doi.org/10.1016/j.chemosphere.2010.01.032
- Rhodes, A. H., Riding, M. J., McAllister, L. E., Lee, K., & Semple, K. T. (2012). Influence of activated
- charcoal on desorption kinetics and biodegradation of phenanthrene in soil. *Environmental*
- 737 science & technology, 46(22), 12445-12451. https://doi.org/10.1021/es3025098
- 738 Riding, M. J., Doick, K. J., Martin, F. L., Jones, K. C. & Semple, K. T. (2013) Chemical measures of
- bioavailability/bioaccessibility of PAHs in soil: Fundamentals to application. Journal of
- 740 *Hazardous Materials*, 261, 687-700. 10.1016/j.jhazmat.2013.03.033.
- 741 Sarfraz, R., Yang, W., Wang, S., Zhou, B., & Xing, S. (2020). Short term effects of biochar with
- 742 different particle sizes on phosphorous availability and microbial
- 743 communities. *Chemosphere*, *256*, 126862.
- 744 https://doi.org/10.1016/j.chemosphere.2020.126862
- 745 Semple, K. T., Dew, N. M., Doick, K. J. & Rhodes, A. H. (2006) Can microbial mineralization be used
- to estimate microbial availability of organic contaminants in soil? *Environmental Pollution,*
- 747 140(1), 164-172. 10.1016/j.envpol.2005.06.009.

- Semple, K. T., Riding, M. J., Mcallister, L. E., Sopena-Vazquez, F. & Bending, G. D. (2013) Impact of black carbon on the bioaccessibility of organic contaminants in soil. *Journal of Hazardous*Materials, 261, 808-816. 10.1016/j.jhazmat.2013.03.032.
- Sigmund, G., Poyntner, C., Pinar, G., Kah, M., & Hofmann, T. (2018). Influence of compost and biochar on microbial communities and the sorption/degradation of PAHs and NSO-substituted PAHs in contaminated soils. *Journal of Hazardous Materials*, 345, 107-113.
- Singh, B. P., Hatton, B. J., Singh, B., Cowie, A. L., & Kathuria, A. (2010). Influence of biochars on nitrous oxide emission and nitrogen leaching from two contrasting soils. *Journal of*
- 757 environmental quality, 39(4), 1224-1235.

754

https://doi.org/10.1016/j.jhazmat.2017.11.010

- Stokes, J. D., Jones, K. C., & Semple, K. T. (2004). Effect of pyrene on the availability of phenanthrene in soil. In *In situ and on-site bioremediation-2003. Proceedings of the Seventh International In Situ and On-Site Bioremediation Symposium, Orlando, Florida, USA, 2-5 June, 2003.*Battelle Press.
- Stokes, J. D., Wilkinson, A., Reid, B. J., Jones, K. C., & Semple, K. T. (2005). Prediction of polycyclic aromatic hydrocarbon biodegradation in contaminated soils using an aqueous hydroxypropyl-β-cyclodextrin extraction technique. *Environmental Toxicology and Chemistry: An International Journal*, 24(6), 1325-1330.
- Stroud, J. L., Paton, G. I. & Semple, K. T. (2007) Importance of chemical structure on the development of hydrocarbon catabolism in soil. *Fems Microbiology Letters*, 272(1), 120-126. 10.1111/j.1574-6968.2007.00750.x.

- Swindell, A. L., & Reid, B. J. (2006). Comparison of selected non-exhaustive extraction techniques to
- assess PAH availability in dissimilar soils [Article]. Chemosphere, 62(7), 1126-1134.
- 771 <u>https://doi.org/10.1016/j.chemosphere.2005.05.047</u>
- 772 Umeh, A. C., Duan, L. C., Naidu, R. & Semple, K. T. (2017) Residual hydrophobic organic contaminants
- in soil: Are they a barrier to risk-based approaches for managing contaminated land?
- 774 Environment International, 98, 18-34. 10.1016/j.envint.2016.09.025.
- 775 Vázquez-Cuevas, G. M., Stevens, C. J., & Semple, K. T. (2021). Bioaccessibility of 14C-phenanthrene
- from root amended contaminated soil [Article]. International Biodeterioration &
- 777 Biodegradation, 158, N.PAG-N.PAG. https://doi.org/10.1016/j.ibiod.2020.105164
- White, J. C., Kelsey, J. W., Hatzinger, P. B., & Alexander, M. (1997). Factors affecting sequestration
- and bioavailability of phenanthrene in soils. Environmental Toxicology and Chemistry,
- 780 *16*(10), 2040-2045. https://doi.org/10.1002/etc.5620161008
- 781 Wu, G. Z., Kechavarzi, C., Li, X. G., Sui, H., Pollard, S. J. T., & Coulon, F. (2013). Influence of mature
- compost amendment on total and bioavailable polycyclic aromatic hydrocarbons in
- 783 contaminated soils. *Chemosphere*, 90(8), 2240-2246.
- 784 https://doi.org/10.1016/j.chemosphere.2012.10.003
- 785 Wu, G. Z., Li, X. G., Kechavarzi, C., Sakrabani, R., Sui, H., & Coulon, F. (2014). Influence and
- 786 interactions of multi-factors on the bioavailability of PAHs in compost amended
- 787 contaminated soils. *Chemosphere*, 107, 43-50.
- 788 <u>https://doi.org/10.1016/j.chemosphere.2014.03.035</u>

- Wu, H., Sun, B. & Li, J. (2019) Polycyclic aromatic hydrocarbons in sediments/soils of the rapidly urbanized lower reaches of the river Chaohu, China. *Int J Environ Res Public Health*, 16(13),
- 791 2302. 10.3390/ijerph16132302.
- 792 Xu, N., Tan, G., Wang, H., & Gai, X. (2016). Effect of biochar additions to soil on nitrogen leaching,
- microbial biomass and bacterial community structure. European journal of soil biology, 74,
- 794 1-8.
- Yao, Y., Gao, B., Zhang, M., Inyang, M., & Zimmerman, A. R. (2012). Effect of biochar amendment on
- sorption and leaching of nitrate, ammonium, and phosphate in a sandy
- 797 soil. *Chemosphere*, *89*(11), 1467-1471.
- 798 Yu, L., Vázquez-Cuevas, G., Duan, L., & Semple, K. T. (2016). Buffered cyclodextrin extraction of 14C-
- phenanthrene from black carbon amended soil. Environmental Technology & Innovation, 6,
- 800 177-184. https://doi.org/10.1016/j.eti.2016.09.002
- Zahed, M. A., Salehi, S., Madadi, R. & Hejabi, F. (2021) Biochar as a sustainable product for
- remediation of petroleum contaminated soil. Current Research in Green and Sustainable
- 803 *Chemistry*, 4, 100055. 10.1016/j.crgsc.2021.100055.
- Zhao, R., Wu, J., Jiang, C., & Liu, F. (2020). Effects of biochar particle size and concomitant nitrogen
- fertilization on soil microbial community structure during the maize seedling
- stage. Environmental Science and Pollution Research, 27, 13095-13104.
- Zhang, H. H., Lin, K. D., Wang, H. L., & Gan, J. (2010). Effect of Pinus radiata derived biochars on soil
- sorption and desorption of phenanthrene. Environmental Pollution, 158(9), 2821-2825.
- 809 https://doi.org/10.1016/j.envpol.2010.06.025