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ABSTRACT

The Euclid Space Telescope will image about 14 000 deg2 of the extragalactic sky at visible and near-infrared wavelengths, providing a dataset of
unprecedented size and richness that will facilitate a multitude of studies into the evolution of galaxies. Although spectroscopy will also be available
for some of the galaxies, in the vast majority of cases the main source of information will come from broadband images and data products thereof
(i.e. photometry). Therefore, there is a pressing need to identify or develop scalable yet reliable methodologies to estimate the redshift and physical
properties of galaxies using broadband photometry from Euclid. Optionally, such methods could also include ground-based optical photometry.
To address this need, we present a novel method developed as part of a ‘data challenge’ within the Euclid Collaboration to estimate the redshift,
stellar mass, star-formation rate, specific star-formation rate, E(B− V), and age of galaxies using mock Euclid and ground-based photometry. The
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main novelty of our property-estimation pipeline is its use of the CatBoost implementation of gradient-boosted regression-trees together with
chained regression and an intelligent, automatic optimisation of the training data. The pipeline also includes a computationally efficient method to
estimate prediction uncertainties, and, in the absence of ground-truth labels, it provides accurate predictions for metrics of model performance up
to z ∼ 2. We applied our pipeline to several datasets consisting of mock Euclid broadband photometry and mock ground-based ugriz photometry,
with the objective of evaluating the performance of our methodology for estimating the redshift and physical properties of galaxies detected in the
Euclid Wide Survey. The statistical metrics of prediction residuals vary depending on which mock catalogue and filters are tested. Nonetheless, the
quality of our photometric redshift and physical property estimates are highly competitive overall, validating our modelling approach. However,
at z >∼ 3.5, the relative sparsity of galaxies resulted in unreliable redshift and physical property estimates, which we argue could be mitigated
by building catalogues with better sampling of z >∼ 3.5 galaxies or by switching to the use of spectral energy distribution fitting in this regime.
We also find that the inclusion of ground-based optical photometry significantly improves the quality of the property estimation, highlighting the
importance of combining Euclid data with ancillary ground-based data from such surveys as the Vera C. Rubin Observatory Legacy Survey of
Space and Time and UNIONS.

Key words. Galaxies: photometry – Galaxies: high-redshift – Galaxies: evolution – Galaxies: general

1. Introduction

Large-area observational surveys play an increasingly pivotal
role in the adjacent fields of cosmology, astronomy, and astro-
physics. By observing many millions, or even billions, of sources
at high spatial resolution and with point-spread-function sta-
bility, such surveys – for example, the Square Kilometer Array
(Dewdney et al. 2009), the 4-metre Multi-Object Spectroscopic
Telescope (Guiglion et al. 2019), the Nancy Grace Roman
Space Telescope (Akeson et al. 2019), the Vera C. Rubin Obser-
vatory Legacy Survey of Space and Time (LSST; Ivezić et al.
2019), and the Dark Energy Spectroscopic Instrument survey
(Dey et al. 2019) – aim to test and refine cosmological theory
while also generating extremely rich datasets, enabling a
multitude of extragalactic science questions to be potentially
addressed. During the next several years and beyond, the Euclid
Space Telescope will significantly boost our understanding of
the evolution of galaxies across cosmic time. A ∼ 14 000 deg2

area of the extragalactic sky will be imaged at visible and
near-infrared (NIR) wavelengths to a 5σ point-source depth of
26.2 mag1 in the IE (R+I+Z) filter of the Visible Instrument (VIS;
Euclid Collaboration: Cropper et al. 2025), and 24.5 mag in the
YE, JE, and HE filters (Euclid Collaboration: Scaramella et al.
2022; Euclid Collaboration: Schirmer et al. 2022) of the
Near-Infrared Spectrometer and Photometer (NISP;
Euclid Collaboration: Jahnke et al. 2025). Three additional
fields with a combined area of 53 deg2 will be observed two
magnitudes deeper to a 5σ depth of 28.2 mag in the IE band and
26.5 mag in the YE, JE, and HE bands.

The Euclid surveys will provide multi-colour broad-
band imaging and allow for the detection of approximately
12 billion sources at a 3σ significance or higher. The
surveys are also expected to yield spectroscopic redshifts
for roughly 35 million galaxies (e.g. Laureijs et al. 2011;
Euclid Collaboration: Mellier et al. 2025). Thus, Euclid obser-
vations are expected to make a diversity of unique extragalac-
tic science possible, especially when combined with multi-
wavelength observations from other large surveys, includ-
ing the detection and study of very large samples of star-
forming, passive, or active galaxies across cosmic time (see
Euclid Collaboration: Mellier et al. 2025).

A crucial step towards extracting science from these
data is the assignment of labels using parameters mea-
sured from images in order to provide a characterisa-
tion of each galaxy (e.g. redshift, stellar mass, star-
formation activity, and the presence of nuclear activity). A
widespread methodology is the use of software that com-

? e-mail: Andrew.Humphrey@astro.up.pt
1 We use AB magnitudes here.

pares spectral templates to an observed photometric spec-
tral energy distribution (SED) or spectrum, deriving physi-
cal parameters from best-fitting templates (e.g. Arnouts et al.
1999; Bolzonella, Miralles & Pelló 2000; Cid Fernandes et al.
2005; Ilbert et al. 2006; da Cunha, Charlot & Elbaz 2008;
Noll et al. 2009; Laigle et al. 2016; Gomes & Papaderos 2017;
Carnall et al. 2018; Johnson et al. 2021; Pacifici et al. 2023).
However, because the computation time typically scales linearly
with the number of objects to be fitted, this family of meth-
ods can become very expensive computationally when applied
to very large sets of data (i.e.� 106 objects).

Machine-learning methods offer an alternative (or comple-
mentary) approach that can be significantly more scalable than
traditional template-fitting methods. Most of the computational
cost is front-loaded in the model training phase, with inference
having only a marginal cost per object. Supervised learning is
currently the most popular machine-learning paradigm for the
classification of galaxies and for the estimation of their redshift
and physical properties. In the supervised paradigm, the model
training process usually involves learning a function that aims
to map observed values (e.g. magnitudes and colours) to labels
(e.g. object class and redshift) using a statistical learning algo-
rithm such as a decision tree ensemble (e.g. Breiman 2001) or an
artificial neural network (e.g. McCulloch & Pitts 1943; Hinton
1989). Once trained, the model is then used for label inference
at a relatively low computational cost (e.g. Hemmati et al. 2019).
Potential limitations can include the need for a large amount of
training data, biases, or issues with interpretability.

Helped by the availability of ready-to-use machine-learning
methods in open-source packages such as Scikit-Learn
(Pedregosa et al. 2011), there is now an exponentially grow-
ing body of literature related to the application of supervised
machine learning for source classification and the estimation
of the redshift and physical properties of galaxies. Among
the most fundamental tasks is the classification of sources us-
ing broadband photometry data, including the separation of
sources into stars, quasars, and galaxies (e.g. Bai et al. 2019;
Clarke et al. 2020; Cunha & Humphrey 2022) and the selection
of specific classes of galaxies or quasars (e.g. Cavuoti et al.
2014; Signor et al. 2024; Euclid Collaboration: Humphrey et al.
2023; Cunha et al. 2024). There has also been a multi-
tude of studies in which deep-learning techniques are ap-
plied to the problem of automatically classifying galaxy im-
ages, with impressive results (e.g. Dieleman, Willett & Dambre
2015; Huertas-Company et al. 2015; Domínguez Sánchez et al.
2018; Tuccillo et al. 2018; Nolte et al. 2019; Bowles et al. 2021;
Bretonnière et al. 2021; Li et al. 2022a), or for the identification
and modelling of gravitational lenses (e.g. Petrillo et al. 2017;
Gentile et al. 2023).
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Another common use case for supervised learning is the
estimation of galaxy redshifts (e.g. Collister & Lahav 2004;
Brescia et al. 2013; Cavuoti et al. 2017; Pasquet et al. 2019;
Razim et al. 2021; Guarneri et al. 2021; Carvajal et al. 2021;
Cunha & Humphrey 2022; Li et al. 2022b). Despite usually
lacking the physical foundations of traditional template-fitting
methods, supervised machine learning has been found, un-
der some circumstances, to outperform traditional methods
(Euclid Collaboration: Desprez et al. 2020). The reason for this
is primarily due to differences in inductive bias and greater free-
dom in how observables are used. For instance, supervised learn-
ing algorithms may learn priors from the training data, can learn
how to optimally weight observational inputs to obtain more
accurate prediction outputs, and have the ability to recognise
hidden relationships or physics that are not included in galaxy
template recipes (see e.g. Euclid Collaboration: Humphrey et al.
2023).

The estimation of physical properties of galaxies,
such as stellar mass and star-formation rate (SFR),
represents yet another attractive application for super-
vised learning (e.g. Ucci et al. 2018; Bonjean et al. 2019;
Delli Veneri et al. 2019; Mucesh et al. 2021; Simet et al. 2021;
Euclid Collaboration: Bisigello et al. 2023). This endeavour
promises to be highly fruitful, facilitating the study of galaxy
evolution across cosmic time with the enormous samples of
galaxies that will soon become available from wide-area surveys
such as those to be performed by Rubin/LSST and Euclid.

Beyond the purely supervised paradigm, there is a sub-
stantial number of extragalactic studies using unsupervised
or semi-supervised machine-learning methods. For instance,
Humphrey et al. (2023) recently demonstrated that the semi-
supervised method known as ‘pseudo-labelling’ (Lee 2013) can
be used to significantly improve some supervised machine-
learning models by allowing the algorithm to also learn about
the properties of the unlabelled (i.e. test) data. In addition,
Cunha et al. (2024) presented a novel semi-supervised learning
methodology for the identification of obscured quasars at high
redshift. Unsupervised methods, which generally do not make
use of labels, have also been employed for a number of different
tasks, including the separation of sources into statistically mean-
ingful classes or clusters (e.g. Logan & Fotopoulou 2020) and
the identification of rare or anomalous sources (e.g. Reis et al.
2018; Pruzhinskaya et al. 2019; Solarz et al. 2020).

A number of more exotic methods to augment supervised
machine learning have also been explored. These include ac-
tive learning, where the model outputs help the user to im-
prove the training data so as to improve model quality (e.g.
Liu et al. 2025); meta-learning, where a machine-learning al-
gorithm learns about itself or other models (e.g. Zitlau et al.
2016; Euclid Collaboration: Humphrey et al. 2023); and hy-
brid approaches, where results from traditional template-fitting
methods are combined with machine-learning methods (e.g.
Cavuoti et al. 2017; Fotopoulou & Paltani 2018).

In this study, we describe a novel supervised-learning
methodology for the estimation of the redshift and physical prop-
erties of galaxies using broadband photometry measurements
as input data. Although our work is focused on the application
of this method to Euclid, LSST, and UNIONS (Chambers et al.
2020) photometry, we emphasise that our methodology is data
agnostic and can be readily adapted and used with essentially
any tabular dataset.

Our methodology aims to overcome a number of short-
comings in ML-based workflows for galaxy physical prop-
erty estimation. In particular, our approach combines (i) the

state-of-the-art CatBoost learning algorithm, (ii) an intelli-
gent algorithm to optimise the composition of the input data,
(iii) an attention mechanism that gives the learning algo-
rithm awareness of multiple labels at once, and (iv) an ef-
ficient machine-learning-based method to estimate prediction
uncertainties. We emphasise that this study was performed
in the context of a ‘data challenge’ within the Euclid Col-
laboration (see also Euclid Collaboration: Bisigello et al. 2023;
Euclid Collaboration: Enia et al. 2024), and as such, its scope is
limited to presenting our methodology and its results when ap-
plied to several mock Euclid galaxy catalogues. More detailed
benchmarking and a comparison between different methods is
presented in Euclid Collaboration: Enia et al. (2024).

This paper is structured as follows. In Sect. 2 we describe
the rescaling of labels. Next, in Sect. 3, we define the different
combinations of filters we use as test cases. In Sect. 4 the datasets
are described. The metrics we use to evaluate model quality are
detailed in Sect. 5. The machine-learning pipeline is presented
in Sect. 6. In Sect. 7 the results are described, and in Sect. 8 we
present our conclusions.

2. Target label scalings

This study is principally concerned with the estimation of the
redshift (z),2 stellar mass (M), and SFR of galaxies. Before
model training begins, most of the target labels are modified or
rescaled to provide a distribution that is more straightforward for
the learning algorithm to work with.

In the case of redshift, our pipeline adds the scalar value 1
to the redshifts prior to the model training. Experiments as part
of this study, and our prior experience, indicate that using 1 + z
generally gives superior results.

All but one of the other target labels are rescaled to have a
logarithmic distribution, which our experiments and previous ex-
perience show generally improves model quality. The reference
values3 of M are rescaled as

Mref = log10

(
stellar mass

M�

)
, (1)

those of the SFR are rescaled as

SFRref = log10

(
SFR

M� yr−1

)
, (2)

and those of the specific star-formation rate (sSFR) are rescaled
as

sSFRref = log10

(
sSFR
yr−1

)
. (3)

Another label that is interesting to predict is the stellar age
(hereinafter referred to simply as ‘age’), defined as the time since
the start of the first episode of star-formation. The age is rescaled
as

ageref = log10

(
stellar age

yr

)
. (4)

All the quoted (or plotted) values of M, SFR, sSFR, or age
have been rescaled as described above. However, the colour-
excess E(B − V) values do not require transformation since they
are already logarithmic.
2 We use the term ‘redshift’ and the symbol ‘z’ interchangeably, with
the aim of minimising ambiguity with the z-band filter.
3 Throughout this paper, the reference (or ground-truth) of a variable
are denoted by the ‘ref’ subscript suffix, and the estimated (predicted)
values are denoted by the ‘est’ subscript suffix.
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3. Test cases

In the interest of ‘open science’ and reproducibility, our initial
test case makes use of a subset of the publicly available COS-
MOS 2015 photometry catalogue of Laigle et al. (2016). This
catalogue contains deep, multi-band photometry over the 2 deg2

area of the COSMOS field, and provides high-quality photo-
metric redshifts, M estimates, and other physical properties or
parameters; the authors used the spectral template-fitting code
LePhare (Arnouts et al. 2007; Ilbert et al. 2006) to derive these
properties, adopting a Chabrier initial mass function (Chabrier
2003). The COSMOS 2015 catalogue adopts a flat cosmology
with dimensionless Hubble parameter h = 0.7, mass density
Ωm = 0.3, and cosmological constant ΩΛ = 0.7.

We use 3′′ aperture photometry in the u, B, V , r, i+, z+, Y , J,
H, Ks bands, corrected for Galactic extinction as prescribed in
Laigle et al. (2016). We include only galaxies using the TYPE=0
criterion, which excludes active galactic nuclei (AGNs) and
stars. We note that excluding AGNs alters the bias of the sam-
ple, since galaxies in which the central supermassive black hole
is undergoing significant accretion-driven growth are no longer
present. We also exclude sources with photometric redshift val-
ues lower than 0 or higher than 9.9, to avoid unphysical redshift
values. The selected galaxies also have good-quality photometry,
with all sources having FLAG_PETER and FLAG_HJMCC equal to
0. To probe a generally similar region of magnitude-space as the
Euclid Wide Survey, we use only galaxies with H ≤ 24 mag,
corresponding to an H-band signal-to-noise ratio (S/N) cutof
∼ 3.6. The resulting catalogue contains 194 349 galaxies. To al-
low other teams to benchmark their methods against ours, we
make this dataset available on Zenodo.

We also define several test cases that represent expected real-
world use cases for Euclid photometry, with ≥ 3σ or ≥ 10σ
detections, with or without ancillary ground-based photometry
from, for example, LSST (Ivezić et al. 2019) or UNIONS (e.g.
Chambers et al. 2020). In all cases, AGNs and sources with a
detection in X-rays were excluded.

Thus, our test cases are as follows:

– Case 0: COSMOS 2015 u, B, V , r, i+, z+, Y , J, H, Ks bands
(H ≤ 24 mag);

– Case 1: Euclid only (≥ 3σ detections);
– Case 2: Euclid only (≥ 10σ detections);
– Case 3: Euclid (≥ 3σ detections) and ugriz bands (including

non-detections);
– Case 4: Euclid (≥ 10σ detections) and ugriz bands (includ-

ing non-detections);

The number of galaxies (N) used for each combination of
case and catalogue, and the main characteristics thereof, are
shown in Table 2. In the interest of open science, the data used
for Case 0 have been made available at Zenodo (see Sect. 8).

4. Mock Euclid galaxy catalogues

In Fig. 1 we show the distribution of galaxies as a function of
HE or redshift, for the four Euclid mock catalogues used in this
study. The construction of the mock catalogues is described be-
low. We note that in all catalogues, SFR and sSFR are instanta-
neous quantities.

4.1. Int Wide

The Int Wide catalogue was produced by Bisigello et al.
(2020) to simulate the Euclid Wide Survey

121416182022
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Fig. 1. Histograms of the number of sources as a function of HE for the
Int Wide, SED Wide, EURISKO, and SPRITZ mock Euclid catalogues
(top), or the number of sources as a function of redshift (bottom). For
consistency with the test cases described in Sect. 3, we include only
sources that have a ≥ 3σ detection in the YE, JE, and HE filters. The
histogram for COSMOS 2015 (Case 0; not shown) is similar to those of
the Int Wide and SED Wide catalogues.

(Euclid Collaboration: Scaramella et al. 2022), and is derived
from the COSMOS2015 catalogue of Laigle et al. (2016). The
Int Wide catalogue initially included the Canada-France Imaging
Survey u filter (CFIS/u) band and the Euclid IE, YE, JE, HE bands
(Bisigello et al. 2020), and was later expanded to also include the
Rubin/LSST griz, Wide-field Infrared Survey Explorer 3.4 and
4.6 µm (Wright et al. 2010) and 20 cm Very Large Array bands
(Euclid Collaboration: Humphrey et al. 2023). The construction
of the catalogue was described in detail by Bisigello et al.
(2020) and Euclid Collaboration: Humphrey et al. (2023); here
we provide a summary of the steps used in the construction.
The COSMOS2015 multi-wavelength catalogue of Laigle et al.
(2016) was the starting point. All sources that are labelled as
stars or X-ray sources were removed and so were sources that
were masked in optical broadbands, reducing the catalogue to
518 404 objects at z ≤ 6. Next, a broken-line template from
the ultraviolet to the infrared was produced for each source
by interpolation over the broadband photometry. Finally, the
template was convolved with the Euclid IE, YE, JE, and HE filters
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(Euclid Collaboration: Schirmer et al. 2022) to derive mock
Euclid photometry.

Since the photometric errors are similar to (or
larger than) those expected for the Euclid Wide Survey
(Euclid Collaboration: Scaramella et al. 2022), it was not
necessary to inject any artificial photometric scatter. It is
important to note that although this catalogue is also based on
the COSMOS2015 catalogue, the selection criteria differ from
those used in Case 0 described in Sect. 3. This mock catalogue
uses the cosmological parameter values h = 0.7, Ωm = 0.3, and
ΩΛ = 0.7 and the same Chabrier initial mass function (Chabrier
2003).

4.2. SED Wide

The SED Wide catalogue was also produced by Bisigello et al.
(2020), using an alternative methodology to that described in
Sect. 4.1. As before, objects labelled as X-ray sources or stars,
and sources that were flagged as having been masked in opti-
cal broadbands, were first removed. The spectral template-fitting
code LePhare was then used to perform fitting of the COS-
MOS2015 photometry with a large set of Bruzual & Charlot
(2003) templates. Redshifts were fixed at their COSMOS2015
values from Laigle et al. (2016). Metallicities of Z� or 0.4 Z�
were considered, while star-formation histories with an e-folding
timescale τ between 0.1 and 10 Gyr, and ages from 0.1 to 12
Gyr, were used. These ranges were chosen to strike a balance
between having a manageable number of templates, and hav-
ing physically reasonable coverage of the parameter space. The
reddening law of Calzetti et al. (2000) was adopted, and 12 val-
ues of colour excess between 0 to 1 were considered. For each
galaxy, the best template was identified via a χ2 minimisation.
This template was then convolved with the Euclid filter trans-
mission functions, to produce mock broadband photometry. Fi-
nally, random (Gaussian) noise was added to this mock pho-
tometry, corresponding to the expected photometric errors in
the Euclid Wide Survey (Euclid Collaboration: Scaramella et al.
2022). Ten copies of each source were produced, using dif-
ferent random noise realisations. It is important to note that
the resulting mock photometry SED is a synthetic representa-
tion of the observed one, and for some sources the photom-
etry or colours differ significantly from their observed values
(see also Euclid Collaboration: Humphrey et al. 2023). This cat-
alogue adopts the same cosmology as used in Sect. 4.1.

4.3. EURISKO

The EUclid and Rubin photometry Inferred from SED fitting
of Kids Observations (EURISKO) is a semi-empirical sample
based on ∼ 122 500 galaxies with KiDS+ViKING photometry
from Data Release 4 of the Kilo Degree Survey (KiDS-DR4) at
z < 0.5 (Kuijken et al. 2019).

To assemble the sample, we have extracted a random set of
10 KiDS tiles (1 deg2 each, five in the north and five in the south
caps) from KiDS-DR4 release, after removing masked regions,
corresponding to a total effective area of ∼ 6.9 deg2. The tiles
are also in KiDS-DR3. The catalogues are publicly available.4
We have extracted from the catalogues:

– The nine-band GaAP magnitudes (u, g, r, i,Z,Y, J,H,Ks),
which are in AB format, and already corrected for Galactic
extinction (using the Schlafly & Finkbeiner 2011 prescrip-
tion);

4 kids.strw.leidenuniv.nl/.../KiDS_Synoptic_Table_Catalogview.php

– photometric redshifts, determined using BPZ by the KiDS
collaboration;

– the FLUX_RADIUS, used as an indicator of galaxy size, con-
verted to arcsec using the OmegaCam pixel scale 0.2 arc-
sec/pix;

– the 2DOPHOT star-galaxy separation, SG2DPHOT, which is
equal to 0 for galaxies; and

– the MASK parameter to select galaxies with the safest pho-
tometry, not affected, for example, by star halos.

The following selection criteria were applied: (a) SG2DPHOT
= 0 to select galaxies; (b) MASK = 0 to remove objects in masked
regions; and (c) photometric redshift < 0.5. The dataset was orig-
inally created to support studies of the low-z Universe.

To create the mock Euclid and LSST magnitudes, we used
LePhare to perform χ2 fitting between the stellar population
synthesis theoretical models and KiDS data. With the redshift
fixed at the value determined by the KiDS collaboration (see
above), we fit the models to the data using the nine GaAP bands
(excluding for each galaxy the bands not available from the fit)
and adopt Bruzual & Charlot (2003) synthetic models, assuming
a Chabrier initial mass function (Chabrier 2003), implementing
different metallicities in the range 0.2–2.5 Z�, an exponential
SFR with time duration τ from 0.1 to 30 Gyr and galaxy ages
up to 13.5 Gyr. Internal extinction was accounted for using the
Calzetti extinction curve and E(B−V) = 0, 0.1, 0.2, 0.3, 0.4, 0.5.
Emission lines were added using the prescription provided in
LePhare. A flat cosmology was adopted, with dimensionless
Hubble constant h = 0.7, mass density parameter Ωm = 0.3, and
cosmological constant ΩΛ = 0.7. After running LePhare, and
a best-fitted model was found, model magnitudes were obtained
for Euclid and Rubin/LSST bands.

To determine realistic errors on the output magnitudes, we
used

d f =
√

d f 2
bkg + d f 2

obj =
flim

S/N
r

rref

√
1 +

f
fskyπr2 , (5)

which depends on galaxy flux, f , limiting flux, flim (10σ de-
tection limit), the related S/N, the sky surface brightness, fsky, a
typical galaxy radius, r, and a reference value for it at the magni-
tude limit, rref . This corresponds to the contribution of the Pois-
son noise associated with the number of photons received from
the background and from the source; rather than estimating it
precisely from the detector properties, we instead rescale it to
correspond to the median S/N at the limiting magnitude. For the
value of r we adopt the FLUX_RADIUS, assuming (for simplic-
ity) that it is constant as a function of wavelength. For rref we
adopt the value 0′′.39, which is the median value of galaxies in
the KiDS r-band magnitude range 24.5–25.0. We use limiting
magnitudes at 10σ (S/N = 10). The resulting errors are con-
verted to magnitude errors using a standard error propagation as
dm = 2.5 d f / [ ln(10) f ] , an approximation that results in errors
that are symmetric in magnitudes.

4.4. SPRITZ

The Spectro-Photometric Realisations of Infrared-selected Tar-
gets at all-z (SPRITZ; Bisigello et al. 2021) was derived us-
ing the IR luminosity functions observed by Herschel up to
z ∼3.5 (Gruppioni et al. 2013), the K-band luminosity function
of elliptical galaxies (Arnouts et al. 2007; Cirasuolo et al. 2007;
Beare et al. 2019), and the galaxy stellar-mass function of dwarf-
irregular galaxies (Huertas-Company et al. 2016; Moffett et al.
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2016). The simulation contains star-forming galaxies (i.e. spi-
rals, starbursts, and dwarfs), passive galaxies, AGNs, and com-
posite systems where an AGN is present but is not the dominant
source of power.

A set of SED models (Polletta et al. 2007; Rieke et al. 2009;
Gruppioni et al. 2010; Bianchi et al. 2018), with a Chabrier
initial mass function (Chabrier 2003), was assigned to each
simulated galaxy, and photometric fluxes expected in the Eu-
clid filters were then extracted. Photometric (Gaussian) noise
consistent with that expected in the Euclid Wide Survey
(Euclid Collaboration: Scaramella et al. 2022) was added. Phys-
ical properties (e.g. M and SFR) were then assigned, consid-
ering theoretical or empirical relations, or directly from the
SED assigned to each simulated galaxy. In the construction of
this mock catalogue, Bisigello et al. (2021) adopted a Λ cold
dark matter cosmology with a dimensionless Hubble parameter
h = 0.7, a mass density Ωm = 0.27, and a cosmological constant
ΩΛ = 0.73.

Overall, SPRITZ is consistent with a large set of observa-
tions, including luminosity functions and number counts from X-
ray to radio, the global galaxy stellar-mass function, and the SFR
versus stellar-mass plane. See Bisigello et al. (2021) for more
details on the simulation and for additional comparison with ob-
servations. Before making use of the SPRITZ Euclid Wide Sur-
vey mock catalogue, we remove galaxies containing an AGN
(i.e. AGN objects and composite objects). Finally, we randomly
under-sampled the SPRITZ catalogue to reduce the number of
sources to a manageable size (∼ 300 000 sources).

5. Metrics of model quality

The metrics we used to quantify the quality of our redshift and
physical property estimates are detailed below. In the case of red-
shift, the metric formulae require a division by 1 + z to transform
the residuals from linear to relative scale. For the other prop-
erties, such a transformation is not necessary, since they are al-
ready logarithmic. Unless otherwise stated, the statistical metrics
are calculated over all galaxies in the test set, with all galaxies
therein being weighted equally.

5.1. Redshift metrics

To quantify the degree to which our redshift estimations are
in error, we adopt the normalised median absolute deviation
(NMAD). This metric includes scaling factors such that the re-
sult is approximately equivalent to the standard relative devia-
tion, with a reduced impact from extremely outlying errors. We
calculated the NMAD as

NMAD = 1.48 median
(
|zest − zref |

1 + zref

)
, (6)

where zest is the estimated redshift, and zref is the ‘ground-truth’
reference redshift value. The NMAD is broadly equivalent to the
standard deviation; smaller values of this metric indicate higher-
quality redshift predictions. In addition, we defined the fraction
of catastrophic outliers ( fout; see e.g. Hildebrandt et al. 2010) us-
ing the criterion
|zest − zref |

1 + zref
> 0.15 ; (7)

we also calculated the overall bias in the redshift estimations as

bias = median
(

zest − zref

1 + zref

)
, (8)

where values closer to zero are better.

5.2. Physical parameter metrics

For the physical property estimates, we calculate NMAD, fout,
and the bias using formulae that differ slightly to those in
Sect. 5.1. In this case, we calculate NMAD as

NMAD = 1.48 median |yest − yref | , (9)

where yest is the estimated value of the physical property, and yref
is its ‘ground-truth’ value.

For physical properties, we consider a prediction to be an
outlier if it differs from the true value by a factor of two or
more (i.e. 0.3 dex; see also Euclid Collaboration: Bisigello et al.
2023). Thus, since the physical conditions are in log scale, fout
was calculated as

|yest − yref | > 0.3 . (10)

We calculated the bias in the physical property estimates as

bias = median (yest − yref) . (11)

In addition, we calculated the mean absolute error (MAE) of our
physical property estimations as

MAE =

∑
|yest − yref |

n
, (12)

where n is the number of samples. Smaller values of MAE indi-
cate smaller errors, on average.

Finally, we also calculated the coefficient of determination,
R2, as

R2 =

∑
|yest − yref |∑
|yest − ȳref |

, (13)

where ȳref is the mean value of yref . A higher value of R2 indi-
cates a higher-quality model, with a maximum possible value of
1.

6. The property-estimation pipeline

6.1. Data pre-processing

Before the models are trained, it is necessary to perform several
pre-processing steps to transform and prepare the data for train-
ing. These steps are described below.

6.1.1. Broadband colours

Broadband magnitudes form the starting basis of the features
used for training the machine-learning models. Even though
these magnitudes contain information on the SED of a galaxy,
the task of the learning algorithm can be made simpler by also in-
cluding broadband colours. This strategy is backed-up by exper-
iments we conducted, where removal of some colours, or using
only the magnitudes, resulted in lower-performing models (re-
quiring more iterations or producing lower-quality predictions).
Thus, we compute all possible broadband colour (unique) per-
mutations, which are included as features along with the magni-
tude values. In the case where one or both magnitudes in a colour
are missing, that colour is flagged as missing. See Sect. 6.2 for
further details about this issue.
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6.2. Missing data imputation strategy

Since real survey data will contain samples with missing values,
due to non-detections or other circumstances, it is imperative that
any methodology to estimate galaxy physical properties is able
to work with missing data. This allows for larger and richer sam-
ples, and potentially higher-quality models since non-detections
often carry information about the redshift and properties of those
galaxies (e.g. Steidel et al. 1996). Our missing value imputation
approach follows that of Euclid Collaboration: Humphrey et al.
(2023), who replaced missing values with a ‘magic value’ of
−99.9, under the premise that decision-tree ensembles such as
the one used herein will use the presence of missing values to
perform splits where useful. Although our pipeline has the capa-
bility to impute different values to denote different origins of the
missing values (i.e. not observed, masked, or not detected), in
the interest of simplicity we herein impute a only a single magic
value. In a future study, we will explore more complex method-
ologies for flagging missing photometry, with the objective of
providing the learning algorithm with a more direct and granular
representation of the nature of missing photometry values.

6.3. Additional pre-processing steps

The dataset is split randomly into training and test sets, with a
ratio of 2:1. This ratio, although somewhat arbitrary, was chosen
to obtain what we expect to be a reasonable balance between
having a large training sample (to train stronger models), and a
test set that is large enough for the metrics of model performance
to be representative of the overall dataset. A classical validation
set is not needed with our methodology, since our pipeline does
not need to perform hyperparameter optimisation.

The training and test sets have essentially identical depths in
all bands, since they are drawn from the same mock catalogue.
Transfer learning, where significantly different datasets are used
for training and inference, is beyond the scope of this study, and
is deferred to a possible future publication.

The features are standardised by subtracting the mean value
and dividing by the standard deviation, where both statistics are
calculated in the training set only. Missing values are ignored
during this process and are thus propagated to the input datasets
unchanged.

6.4. The learning algorithm

Gradient-boosting tree methods (see Friedman 2001) combine
multiple weak models, typically single-tree models, to build a
stronger prediction model. In a nutshell, this class of algorithm
trains a series of weak models on top of each other, where at
each iteration a new weak model is trained to predict the error
from the previous iteration, and this new model is combined with
the previous model to reduce the error. Over the course of this
procedure, a strong model is built.
CatBoost5 is a state-of-the-art gradient-boosting tree

method, which contains a number of relevant innovations, in-
cluding the use of ‘ordered boosting’ to overcome overfitting,
and ‘oblivious trees’ to improve speed and provide additional
regularisation. CatBoost was selected for this study because it
was, arguably, the most advanced gradient-boosting tree method
to be publicly available at the time.

5 https://catboost.ai; version 0.26

Table 1. Fixed CatBoostRegressor hyperparameters.

Hyperparameter Simple model Complex model
n_estimators 500 2000
max_depth 4 10

6.4.1. CatBoostRegressor hyperparameters

In this study, our CatBoostRegressor models are instantiated
with one of two sets of hyperparameters. The ‘simple model’ is a
light-weight model that requires relatively few resources to train.
It is used within our pipeline when the compromise between
speed of training and model performance needs to favour the for-
mer. For instance, the simple model is used in the re-weighting
procedure (Sect. 6.4.2), and for various checks or tests where a
quick result is needed and maximal model performance is not
required.

The ‘complex model’, on the other hand, uses higher values
for the parameters n_estimators and max_depth, to maximise
model quality. The values of these hyperparameters are listed in
Table 1. All other hyperparameters are left unspecified, which
allows the CatBoostRegressor instance to dynamically select
or change their values using internal heuristics, adapting to the
properties of the training set (Prokhorenkova et al. 2018).

From the available objective (loss) functions, we selected the
one that is most similar to the NMAD formula used for a partic-
ular label. For redshift, we used the mean absolute percentage
error, and for other properties we used the mean absolute error
objective function.

We emphasise that operation of our pipeline is agnostic with
respect to the physical assumptions, such as the adopted initial
mass function or the cosmology, and it is neither possible nor
relevant to impose such assumptions thereupon. For instance, in
the event that a different cosmology is adopted, causing the la-
bel values to be differently scaled, our pipeline simply learns a
different mapping between the input features and the labels.

6.4.2. Re-weighting attention mechanism

The CatBoostRegressor algorithm allows the user to specify
the weight for each training example, such that a training ex-
ample can be made more important (or less so) in the model
training process. A higher weight for an example (i.e. a galaxy
or galaxy subset) results in it having a greater importance in the
model training. Our objective here is for the pipeline to learn
which subsets of the training data are more (or less) valuable for
the model training. This approach can be viewed as analogous to
‘attention’ mechanisms used in some deep-learning architectures
(e.g. Vaswani et al. 2017).

Prior to training the model, weights for different subsets of
the training set are optimised on a per-label basis, using a grid-
search. Specifically, the training data are first divided into multi-
ple bins in label-space, and the default weight of 1 is initially as-
signed to all bins. Next, the bins and the possible weight-values
are iterated over, with a simple model being trained at each of
these iteration. The performance of these models is evaluated
using the relevant NMAD formula and cross-validation, and the
weight-values that result in the lowest NMAD score are adopted.
In the case where the NMAD is not affected by the choice of
weight-value, the default weight of 1 is kept.

For the results presented herein, this re-weighting process
is performed only for the redshift, M, and SFR labels. When
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properties other than these are modelled, the weights determined
for redshift are adopted by default.

Compared to the case where the training examples are all
weighted equally, the re-weighting procedure typically gives an
improvement in the redshift NMAD score of ∼ 10%, with the
physical property estimates also usually receiving a significant
improvement in their NMAD scores. These results highlight the
usefulness of optimising the composition (weighting) of training
data for a given generalisation task, and highlights the fact that a
less representative training distribution may allow for a stronger
model to be trained (e.g. Euclid Collaboration: Bisigello et al.
2023).

6.4.3. Model training: Chained regression

Our pipeline applies the ‘chained regression’ methodology (e.g.
Read et al. 2011; Cunha & Humphrey 2022) to the problem of
predicting several scalar labels that exhibit significant covari-
ance. In practical terms, the idea is to allow the learning algo-
rithm to discover the covariance between the labels by iteratively
predicting each label, with knowledge of its previous predictions
of all the labels.

Our implementation of chained regression performs the fol-
lowing steps, which are summarised in Fig. 2. First, the training
data is split into two folds of equal size, to allow out-of-fold
(OOF) predictions to be made for the entire training set, with-
out the risk of overfitting that is often present when a model is
trained and predicts on the same examples. Next, for each of
the two folds, a regression model is trained to predict one label,
using the training data (the colours and magnitudes) as input.
The model trained on one of the folds is used to predict OOF
labels for the other fold, and vice versa. The OOF predictions
are then appended as a new feature in the training. This is re-
peated sequentially for each label that is to be predicted. This
constitutes one iteration of our chained regression pipeline. The
second iteration starts again with the first label, this time using
the training data with the previous OOF predictions as input. The
new OOF predictions are appended as new features. In this way,
each model that is trained has an awareness of previous label
predictions. The procedure is repeated for the desired number of
iterations, or until convergence is observed. Here, we find that
four iterations is sufficient for convergence, which we define as
detecting no significant additional improvement in the NMAD
metric.

The final result of the model training is a regressor chain:
a series of individual regression models that must be applied in
the order in which they were trained. Predictions on unseen (test)
data are made by applying the model chain to the test data. Due
to the two-fold model training scheme we employ, there are two
models, and thus two sets of predictions at each step in the re-
gression chain; the two predictions are averaged to obtain a sin-
gle prediction.

6.5. Estimating confidence intervals

6.5.1. Modelling prediction errors

In addition to point-estimates for redshift and the physical prop-
erties, it is also important to estimate confidence intervals for
each prediction. For the properties estimated by the pipeline, un-
certainties corresponding to the 68% confidence interval are es-
timated by modelling the residuals between the predicted true
labels (i.e. |yest − yref |).

Fig. 2. Flow diagram summarising the main steps in our chained regres-
sion implementation. In the first step, a CatBoostRegressor model is
trained using the training data features X and training data labels y (not
shown) for one of the galaxy properties as inputs. The resulting model
then provides predictions ˆyp,i for this galaxy property, both for the test
set and the training set. These predictions are merged into to the train-
ing and test datasets as a new feature. This process is continued until
each property has been predicted the required number of times, at which
point the loop is stopped and the final predictions for each property are
obtained.

We train a CatBoostRegressor ‘simple model’ that aims to
directly predict the uncertainty in the individual redshift or phys-
ical property estimates. For this task, the training data comprises
the training data used previously in Sect. 6.4, including the pre-
dicted values of redshift and physical conditions. In this case, the
target labels are generated by subtracting the ground truth value
from the predicted value of redshift or the physical properties.
Although the model is trained to attempt to predict the residu-
als, its output predictions are essentially equivalent to the typical
residual for each object, since the object-to-object randomness
in the residuals cannot be predicted by the model. Due to the
nature of this task, the Poisson objective function was used.

In Fig. B.1 we show the distribution of residuals with respect
to the predicted 68% confidence interval, when predicting red-
shift, M or SFR, using the Int Wide catalogue with the Case 4
configuration. This figure confirms that the predicted uncertainty
values are consistent with the measured 68% uncertainties.

6.5.2. Estimating pipeline performance on unlabelled data

Our pipeline also estimates the quality of its predictions on un-
labelled data, using the results of the uncertainty modelling de-
scribed above (Sect. 6.5.1), with the assumption that the true er-
rors (i.e. |yest−yref |) are equal to the estimated errors. This is anal-
ogous to the ‘confidence-based performance estimation’ method
applied to binary classification by Humphrey et al. (2022). Fig-
ure B.2 shows results from testing the performance of our er-
ror estimation method in different redshift bins. For redshift, the
NMAD metric was estimated as

NMADest = median
(

∆zest

1 + zest

)
, (14)
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where ∆zest is the predicted 68% uncertainty of zest. Similarly,
the NMAD metric was estimated for the physical properties as

NMADest = median ( ∆yest ) , (15)

where ∆yest is the predicted 68% uncertainty of the estimated
physical property value yest.

We use two different binning strategies. The first corresponds
to the case where the ground truth is available, and thus the
sources are binned by redshift using zref . In the second method,
the binning is performed using zest, and represents the ‘real-
world’ case where the ground-truth labels are not available. Nev-
ertheless, the results are similar when using either of the two
binning methods.

From Fig. B.2, we note that in the 0 ≤ z <∼ 2.5 range, the
values of NMADest are very similar to the measured values of
NMAD, for the physical properties M and SFR. At z >∼ 2.5, the
measured NMAD increases much more rapidly with z than does
NMADest. In the case of redshift, the NMADest is consistent with
the measured NMAD only up to z ∼ 1. The cause of the under-
estimation of NMAD at high redshift is likely due to the relative
sparsity of high-redshift sources in the training set, which makes
it more challenging to learn the mapping between the broadband
SED and the target properties.

6.6. Computational efficiency

Among the well-known benefits of many machine-learning
methods is their computational efficiency compared to that of
some traditional SED-fitting methods. To provide some context
about the relatively minimal computing resources that are re-
quired to run our pipeline, we have timed its execution on a mid-
range laptop with a quad-core Intel i5-8350U CPU and 16 Giga-
bytes of RAM, running an Ubuntu Linux operating system. The
total time required to perform all the steps in our pipeline, train-
ing on 71 015 randomly chosen examples from the Int Wide cat-
alogue, using four iterations of chained regression, and six labels
(redshift, SFR, sSFR, M, age, and E(B − V)), is approximately
48 min for Case 1 (Euclid photometry and colours only) or 1 h
52 min for Case 3 (Euclid and ugriz). Once trained, the inference
(prediction) of the labels is extremely fast, returning predictions
for all six labels at a rate of ∼ 1.2 × 10−4 s per galaxy, or ∼ 30 h
per billion galaxies. Our pipeline scales well with larger datasets
and is set up to leverage power high-performance computing.

7. Results

7.1. Metric averaging methodology

It is crucial to ensure the metrics of model quality that we quote
are representative, and not significantly influenced by a fortu-
itous (or unlucky) train-test split. Thus, the metric values are av-
eraged over several runs, using a different random seed for the
train-test splitting each time, to ensure the results are represen-
tative. The number of runs per case ranged between five and ten,
depending on the number of galaxies in the training dataset. As
a general rule, having more galaxies resulted in a longer model
training time, but a smaller variance in the metrics between runs.

The typical uncertainty on the average values of the metrics
varies between the different cases, and between the different met-
rics, but is usually smaller than 10% of the metric value. In cases
where the number of galaxies is highest (e.g. Case 0), the vari-
ance between runs is negligible.

7.2. Case 0: Proof of concept

The results from applying our pipeline to the Case 0 (COSMOS)
dataset are shown in Table A.1, where the results from predict-
ing redshift, M, SFR, sSFR, E(B−V), or age are given. In Fig. 4,
we plot the estimated properties versus their reference values
(upper row), and plot the distribution of residuals (lower row).

In Table 3 we illustrate the improvement achieved using our
chained regression approach for Case 0, compared to the case
where each label is predicted using a single regression model.
In Fig. 3 we show how the NMAD and fout metrics for red-
shift, M, and SFR improve during four iterations of our pipeline.
The results shown in this figure are the final results from the
pipeline, for a single train-test split, and thus there may be small
differences when compared to the averaged values shown in Ta-
ble A.1. Between the first and second iteration, there is a steep
improvement in these metrics; the improvement continues more
gently until the third or fourth iteration, after which we observe
only a marginal improvement, or none. The size of the improve-
ment varies from property to property, ranging between ∼ 5%
and ∼ 20%, with the redshift predictions showing a notably
large improvement (∼ 15%–20%). These results confirm our hy-
pothesis that predicting several properties simultaneously in a
chained-regression approach can lead to more reliable predic-
tions for each one.

The improvements come from two main effects. First, by
having an awareness of the previous prediction(s) of a label, the
subsequent attempts to model the mapping between the features
and this label can be more efficient, allowing the learning al-
gorithm to spend less time on examples that are already well
modelled, and more time on those examples that are not yet well
modelled. In addition, some labels become less challenging to
model when the learning algorithm has an awareness of the pre-
dicted values of other labels (e.g. having redshift estimates can
facilitate a more accurate estimation of M, and so on).

The metrics obtained for each of the properties are
competitive compared to other results in the literature,
for similar datasets (e.g. Fotopoulou & Paltani 2018;
Euclid Collaboration: Desprez et al. 2020; Cunha & Humphrey
2022; Euclid Collaboration: Bisigello et al. 2023;
Euclid Collaboration: Enia et al. 2024). For instance,
Euclid Collaboration: Bisigello et al. (2023) reported
NMAD(z) ∼ 0.006–0.05, NMAD(M) ∼ 0.04–0.2, and
NMAD(SFR) ∼ 0.3–0.9, with which our metric values for
these quantities overlap. It is particularly noteworthy that our
redshift predictions are characterised by relatively low values
for NMAD, outlier fraction, and bias. However, comparison
between the results of different studies in the literature is fraught
with complications, primarily due to the fact that different
studies almost always adopt their own, somewhat different,
datasets. Thus, we are unable to draw strong conclusions when
comparing our results with those of previous studies.

We also remark on the special case of the problem of esti-
mating the colour excess parameter E(B − V). The fact that the
E(B − V) labels are quantised with steps of 0.1 means, clearly,
that this label in particular contains significant noise (typical er-
ror ∼ 0.025). Thus, it is likely that differences between the label
and predicted values are at least partly due to errors in the label
values, and thus the metric values for our E(B − V) predictions
likely understate the performance of our methodology. Further-
more, the fact that our models predict continuous (rather than
quantised) values means that our predictions for E(B − V) could
potentially be closer to the actual ground truth than the original,
quantised (noisy) labels.
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Table 2. Overview of test cases and catalogues.

Catalogue Case Bands Selection cutoff N
COSMOS 0 uBVri+z+Y JHKs H ≤ 24 mag 194 349
Int Wide 1 Euclid only 3σ (Euclid) 105 993
Int Wide 2 Euclid only 10σ (Euclid) 71 871
Int Wide 3 Euclid + ugriz 3σ (Euclid) 105 993
Int Wide 4 Euclid + ugriz 10σ (Euclid) 71 871
SED Wide 1 Euclid only 3σ (Euclid) 103 422
SED Wide 2 Euclid only 10σ (Euclid) 69 847
SED Wide 3 Euclid + ugriz 3σ (Euclid) 103 467
SED Wide 4 Euclid + ugriz 10σ (Euclid) 69 825
EURISKO 1 Euclid only 3σ (Euclid) 93 827
EURISKO 2 Euclid only 10σ (Euclid) 69 338
EURISKO 3 Euclid + ugriz 3σ (Euclid) 93 827
EURISKO 4 Euclid + ugriz 10σ (Euclid) 69 338
SPRITZ 1 Euclid only 3σ (Euclid) 299 103
SPRITZ 2 Euclid only 10σ (Euclid) 200 309
SPRITZ 3 Euclid + ugriz 3σ (Euclid) 299 103
SPRITZ 4 Euclid + ugriz 10σ (Euclid) 200 309

Notes. We list the photometric bands, selection cutoff, and the number
of galaxies used.

7.3. Euclid mock catalogues

In Figs. 5–9 and Fig. B.3 we plot the results from applying our
pipeline to the mock Euclid datasets described in Sect. 3. The
results are also listed in Table A.1. As a general result, we find
that the metrics vary between the different mock Euclid datasets
and data configuration cases. Unsurprisingly, including optical
broadband photometry (Cases 3 and 4) usually provides a sub-
stantial improvement in model quality, compared to when only
Euclid photometry is used (Cases 1 and 2; e.g. Fig. 9). Fur-
thermore, raising the minimum S/N cutoff from three to ten
also often gives a significant improvement. In other words, the
NMAD, fout, and MAE metrics generally decrease, and R2 gen-
erally increases, from Case 1 through 4. For the Int Wide, SED
Wide and EURISKO catalogues, there is usually a large step-
change in these metrics between Case 2 and Case 3, driven by the
inclusion of the optical bands in Cases 3 and 4. For the SPRITZ
catalogue, the metrics evolve more smoothly across the cases.

In some cases, a horizontal structure is visible in the density
plot (e.g. Fig. 3), indicating a degeneracy that causes the model
to have difficulty choosing between several potential parameter
values. This problem is diminished with the inclusion of optical
photometry and the use of the S/N = 10 cutoff.

Even when using an identical set of filters and the same min-
imum S/N cutoff, the quality of our redshift and physical prop-
erty estimates varies between the catalogues, often dramatically
so. For example, for a given case the metrics we obtain using the
EURISKO catalogue are vastly superior to those obtained for
any of the other catalogues. For EURISKO, the values we obtain
for the NMAD, MAE, and fout metrics are typically a factor of
∼ 2 smaller than those obtained, for a given case, using the other
catalogues. This is at least partly due to the fact that EURISKO
contains a restricted redshift range (0 < z < 0.5), which simpli-
fies substantially the learning problem. For instance, the poten-
tial for redshift and colour degeneracies to confuse the learning
algorithm is greatly reduced, compared to catalogues that do not
have a maximum redshift cutoff.

For the other catalogues, where the formal redshift cutoff is
at z = 6, there are still significant differences in the various met-
rics. In the cases of the redshift, SFR, and sSFR predictions, we
obtained better metric scores for the SPRITZ catalogue than for

Int Wide or SED Wide. However, the reverse is true in the case
of the M predictions.

We find that the metric scores obtained with the Int Wide cat-
alogue are similar to, or significantly better than, those obtained
with the SED Wide catalogue. In particular, the metrics for M,
and (for cases 3 and 4) the metrics for sSFR, E(B−V) and age are
significantly better for Int Wide than for SED Wide. This may
be due to the fact the SED Wide catalogue contains somewhat
simplified energy distributions, potentially erasing complex or
unknown spectral features that are useful for estimating galaxy
properties, making the regression problem more difficult. On the
other hand, it is also possible that the labels of the Int Wide
catalogue are slightly easier to predict, since they are predic-
tions from another code (LePhare in this case) instead of be-
ing ‘ground-truth’ labels, and thus are likely contain simplifying
biases.

Although we have tested the redshift range 0 ≤ z ≤ 6 for all
catalogues (except EURISKO, which is restricted to z ≤ 0.5), we
emphasise that our redshift predictions become rather unreliable
at z >∼ 3.5. This is likely due to the sparsity of examples above
this redshift range in the training data, making it challenging for
the learning algorithm to learn how to reliably map the photom-
etry and colour information to the redshift label. A knock-on ef-
fect of this is that the estimates of the other, physical properties
are likely to be unreliable for galaxies at z >∼ 3.5.

In Fig. B.4 we illustrate how the NMAD metric varies with
redshift, using results from a single model run that used the Case
4 data configuration with the Int Wide catalogue. The NMAD
metric is generally at its lowest at z ∼ 1, showing a gradual
increase towards higher redshifts. In some cases, NMAD also
shows a significant increase towards lower redshifts (M, SFR,
sSFR, E(B − V)).

Overall, we find a substantial dispersion in metrics of model
quality across the range of mock Euclid catalogues considered
herein, with a strong dependence on whether Euclid photometry
is used alone or with ancillary-optical photometry, and the way
in which the mock catalogue is constructed. As such, we argue
that using a single mock catalogue to simulate the performance
of a method on real Euclid data is potentially risky. Further-
more, we argue that it is not necessarily a simple task to select
the ‘best’ mock catalogue to forecast the model performance on
Euclid data: paradoxically, one may choose between a dataset
with fully realistic spectral shapes, but with biased labels, or a
dataset with simplified spectral shapes and real ‘ground-truth’
labels, but obtaining the best of both worlds (i.e. realistic SEDs
and ‘ground-truth’ labels) is not trivial.

Finally, we emphasise that the reported performance of some
of the models may be optimistic. In the case of the Int Wide and
Case 0 (COSMOS2015) catalogues, the labels we use to assess
model performance are those derived from the SED-fitting of
Laigle et al. (2016), which are not strictly ‘ground-truth’ values,
and which have random or systematic errors with respect to the
actual ground-truth values.

8. Summary and final remarks

We have described a methodology to estimate the redshift and
physical properties of galaxies using broadband photometry in
the context of the Euclid preparation. The pipeline is designed
to be agnostic with respect to the nature of the input catalogue
and the properties to be estimated. A user may use the pipeline to
estimate a variety of other properties for galaxies or the proper-
ties of other classes of astronomical sources, provided a labelled
tabular dataset is available.
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Fig. 4. Density maps showing estimated values versus the reference values for redshift, M, SFR, sSFR, and age for the COSMOS 2015 (Case 0)
dataset. The dashed red line marks the case where the estimated value is equal to the reference value. The dotted red lines mark the area beyond
which an estimated value is an outlier, using the criteria in Sect. 5. The vertical stripes visible in the sSFR and age results are caused by quantisation
of these properties in the ground-truth labels.

Table 3. Example of the improvement in NMAD metric when using our
pipeline compared to a single regressor model for Case 0.

Label Redshift M SFR sSFR E(B − V) Age
Single 0.0337 0.127 0.333 0.373 0.067 0.279
Chained 0.0291 0.118 0.313 0.352 0.048 0.260

The main novelty of our pipeline is its use of the CatBoost
implementation of gradient-boosted regression-trees together
with chained regression and an intelligent, automatic optimisa-
tion of the training data. We have shown that our chained regres-
sion is able to provide significantly better predictions for redshift
and various physical properties compared to when a single re-
gressor is applied in isolation. In addition, we have presented a
computationally efficient method to estimate the prediction un-
certainties and to predict performance metric values in the case
where ground truth is not available.

In this paper, we have applied the pipeline to the problem of
estimating the redshift and the following galaxy physical prop-
erties: log stellar mass (M), log SFR, log sSFR, E(B − V), and
log age. With the objective of evaluating the expected perfor-
mance of our methodology for estimating the redshift and physi-
cal properties of galaxies imaged during the Euclid Wide Survey,
we applied our pipeline to several datasets consisting of mock
Euclid broadband photometry and mock LSST or UNIONS
ugriz photometry, namely, Int Wide, SED Wide, EURISKO, and
SPRITZ. We evaluated the performance of our pipeline using
NMAD, the catastrophic outlier fraction ( fout), and bias for red-
shift or using NMAD, fout, MAE, and the R2 score for physical
properties.

We find that the metrics of model quality show a substan-
tial dispersion across the range of mock Euclid catalogues used,
and there is a strong dependence on whether only Euclid pho-
tometry or Euclid and ancillary photometry is used. In partic-
ular, the inclusion of ground-based optical photometry usually
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Fig. 5. Density maps showing estimated values versus the reference values for redshift, M, SFR, sSFR, and age for the Int Wide mock Euclid
catalogue. Shown are Case 1 (first row), Case 2 (second row), Case 3 (third row), and Case 4 (fourth row). The dashed red line marks the case
where the estimated value is equal to the reference value. The dotted red lines mark the area beyond which an estimated value is an outlier, using
the criteria in Sect. 5. The vertical stripes visible in the sSFR and age results are caused by quantisation of these properties in the ground-truth
labels.

yields a very substantial improvement in the quality of the red-
shift and physical property estimates despite some of these an-
cillary data containing non-detections. We also find that the con-
struction methodology of the mock catalogues has a significant
impact on the metric scores. In the interest of open science and
reproducibility, we also tested our pipeline using a subset of a
publicly available dataset, which we make available on Zenodo.

For the application of our methodology to real photometry
from Euclid and other large surveys, we envisage one of two
main scenarios for the creation of a relevant training dataset. In
the ideal case, one would select an area (or several areas) of the
survey area for which high-quality multiwavelength photometry
and high-quality redshift and physical property estimates already
exist. The training dataset would then be constructed by match-
ing the existing redshift and physical property labels to the Eu-
clid photometry. In the optical case, the training data would have
the same noise properties as the test dataset for which the red-
shift and physical properties are to be predicted. In the event that
the training data have a significantly higher signal-to-noise, ar-

tificial scatter may be introduced to its photometry to mimic the
lower quality of the test dataset.

In the absence of suitable Euclid photometry, a less ideal sce-
nario would be to follow a dataset creation methodology similar
to that employed by Bisigello et al. (2020): photometry from a
suitable area of sky is transformed to obtain expected broadband
magnitudes through the Euclid filters. In both cases, the com-
plexity of real galaxy populations is preserved to a greater extent
than in datasets constructed from template SEDs only.

Due to the sparsity of examples at z >∼ 3.5, the learning al-
gorithm was unable to learn to reliably map the photometric in-
formation to the labels, rendering unreliable the predictions for
redshift and the physical properties above this redshift. A poten-
tial solution for this issue would be to enlarge the training dataset
such that the z >∼ 3.5 range is well populated. Additionally, us-
ing a more complex treatment of missing values, with missing
photometry flagged differently depending on the cause (e.g. a
non-detection versus no coverage), could plausibly be helpful
since it might allow information on the dropout of bluer bands
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Fig. 6. Density maps showing estimated values versus the reference values for redshift, M, SFR, sSFR and age for the SED Wide mock Euclid
catalogue. Shown are Case 1 (first row), Case 2 (second row), Case 3 (third row), and Case 4 (fourth row). The dashed red line marks the case
where the estimated value is equal to the reference value. The dotted red lines mark the area beyond which an estimated value is an outlier, using
the criteria in Sect. 5. The vertical stripes visible in the sSFR and age results are caused by quantisation of these properties in the ground-truth
labels.

at high-z to be utilised more efficiently. Alternatively, traditional
SED fitting could be used in this redshift regime.

Although we have tested our methodology using mock cata-
logues containing only galaxies without an AGN, we emphasise
that there should not be any obstacle to the application of the
methodology to other types of astrophysical objects or datasets.
Provided suitable training data is available, our methodology
could be applied to galaxies hosting an AGN or to stars, among
others.

This paper is part of a wider project to develop and
test methodologies for the estimation of galaxy redshift and
physical properties using Euclid and ground-based photome-
try as part of a ‘data challenge’ within the Euclid Collabora-
tion (see also Euclid Collaboration: Bisigello et al. 2023). The
scope of this paper is limited to presenting our new method-
ology and reporting its performance on several mock Euclid
galaxy catalogues. A comparison between different physical
property estimation methods are presented in a separate paper
(Euclid Collaboration: Enia et al. 2024).

Data and code availability

In the interest of open science, we have made the Case 0 dataset
available at zenodo.org/records/15736757. In addition, we share
a version of our pipeline in a GitHub repository, which can
be accessed at github.com/humphrey-and-the-machine/Euclid-
chained-regression.
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Fig. 7. Density maps showing estimated values versus the reference val-
ues for redshift, M, and SFR for the EURISKO mock Euclid catalogue.
Shown are Case 1 (first row), Case 2 (second row), Case 3 (third row),
and Case 4 (fourth row). The dashed red line marks the case where the
estimated value is equal to the reference value. The dotted red lines
mark the area beyond which an estimated value is an outlier, using the
criteria in Sect. 5.

Aeronautics and Space Administration, the National Astronomical Observatory
of Japan, the Netherlandse Onderzoekschool Voor Astronomie, the Norwegian
Space Agency, the Research Council of Finland, the Romanian Space Agency,
the State Secretariat for Education, Research, and Innovation (SERI) at the Swiss
Space Office (SSO), and the United Kingdom Space Agency. A complete and de-
tailed list is available on the Euclid web site (www.euclid-ec.org). Based on data
products from observations made with ESO Telescopes at the La Silla Paranal
Observatory under ESO programme ID 179.A-2005 and on data products pro-
duced by TERAPIX and the Cambridge Astronomy Survey Unit on behalf of
the UltraVISTA consortium. In the development of our pipeline, we have made
use of the Scikit-Learn (Pedregosa et al. 2011), Pandas (McKinney 2010),
Numpy (Harris et al. 2020), Scipy (Virtanen et al. 2020), Dask (Rocklin 2015),
and CatBoost (Prokhorenkova et al. 2018) packages for cPython.
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Appendix A: Table of results

Table A.1 shows the results from applying our pipeline to each
catalogue and case.
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Table A.1. Metrics of model performance.

COSMOS︷    ︸︸    ︷ Int Wide︷                                      ︸︸                                      ︷ SED Wide︷                                      ︸︸                                      ︷ EURISKO︷                                          ︸︸                                          ︷ SPRITZ︷                                          ︸︸                                          ︷
Case 0 Case 1 Case 2 Case 3 Case 4 Case 1 Case 2 Case 3 Case 4 Case 1 Case 2 Case 3 Case 4 Case 1 Case 2 Case 3 Case 4

NMAD 0.029 0.103 0.09 0.024 0.02 0.108 0.082 0.031 0.023 0.022 0.025 0.004 0.004 0.139 0.112 0.085 0.052
z fout 0.06 0.25 0.217 0.038 0.027 0.271 0.197 0.044 0.014 0.024 0.027 0.0004 0.0005 0.338 0.272 0.247 0.157

bias −0.0005 −0.0008 0.0006 −0.0002 −0.0001 −0.0004 −0.0004 0.0001 −0.0001 −0.0003 −0.0004 −0.0001 −0.0001 −0.0002 0.0011 0.0004 0.0002
NMAD 0.119 0.178 0.167 0.088 0.078 0.222 0.192 0.134 0.116 0.115 0.112 0.03 0.031 0.351 0.288 0.255 0.189
fout 0.114 0.19 0.167 0.067 0.052 0.261 0.206 0.107 0.07 0.121 0.117 0.009 0.009 0.419 0.349 0.323 0.225

M bias −0.0016 −0.003 −0.001 −0.003 −0.004 −0.0007 −0.005 −0.005 −0.003 −0.0004 −0.0006 −0.0003 −0.0005 −7 × 10−5 0.001 −0.0004 −0.0005
MAE 0.161 0.212 0.195 0.121 0.108 0.266 0.231 0.156 0.126 0.142 0.144 0.036 0.037 0.372 0.319 0.308 0.237
R2 0.83 0.759 0.776 0.87 0.877 0.677 0.717 0.866 0.911 0.907 0.895 0.992 0.991 0.642 0.703 0.71 0.791
NMAD 0.309 0.601 0.652 0.287 0.287 0.663 0.634 0.373 0.364 0.237 0.251 0.043 0.048 0.407 0.347 0.312 0.241
fout 0.379 0.605 0.625 0.354 0.347 0.632 0.618 0.435 0.427 0.311 0.317 0.035 0.04 0.47 0.414 0.383 0.303

SFR bias −0.0091 −0.01 −0.02 −0.01 −0.02 −0.01 −0.02 −0.02 −0.02 −0.003 −0.002 −0.0008 −0.002 −0.0004 0.004 −0.001 0.0005
MAE 0.533 0.895 0.995 0.551 0.628 0.899 0.974 0.644 0.717 0.299 0.303 0.068 0.074 0.431 0.388 0.362 0.297
R2 0.392 0.151 0.14 0.401 0.395 0.214 0.225 0.343 0.343 0.611 0.62 0.955 0.95 0.587 0.629 0.671 0.744
NMAD 0.351 0.544 0.571 0.312 0.303 0.555 0.56 0.414 0.414 0.22 0.228 0.031 0.035 0.198 0.202 0.194 0.196
fout 0.421 0.57 0.586 0.388 0.378 0.576 0.579 0.476 0.475 0.319 0.317 0.042 0.044 0.141 0.155 0.127 0.133

sSFR bias −0.009 −0.004 −0.001 −0.01 −0.02 −0.006 −0.01 −0.02 −0.02 −0.0016 0.0002 −0.0001 −0.0003 0.001 0.002 0.0005 0.002
MAE 0.526 0.808 0.912 0.541 0.615 0.779 0.886 0.655 0.733 0.296 0.287 0.064 0.067 0.187 0.193 0.176 0.177
R2 0.423 0.227 0.214 0.431 0.435 0.303 0.299 0.368 0.384 0.692 0.677 0.965 0.958 0.156 0.184 0.26 0.325
NMAD 0.05 0.104 0.102 0.033 0.033 0.105 0.095 0.071 0.067 0.027 0.035 0.003 0.003
fout 0.02 0.022 0.025 0.01 0.008 0.027 0.026 0.02 0.018 0.012 0.007 0.0002 0.0003

E(B − V) bias 2e-05 0.0006 0.0008 0.0001 0.0001 0.0002 0.0008 0.0009 0.001 0.0006 0.0006 0 −1 × 10−5

MAE 0.062 0.081 0.083 0.052 0.049 0.082 0.081 0.068 0.067 0.049 0.05 0.01 0.011
R2 0.644 0.479 0.475 0.724 0.767 0.451 0.494 0.578 0.604 0.688 0.685 0.967 0.961
NMAD 0.259 0.334 0.318 0.222 0.196 0.341 0.312 0.278 0.246 0.189 0.2 0.032 0.037
fout 0.297 0.391 0.37 0.253 0.222 0.399 0.358 0.308 0.27 0.288 0.286 0.038 0.038

Age bias 0.001 0.002 0.004 −0.002 −0.004 0.006 0.002 −0.001 −0.003 −0.0015 −0.0011 −0.0019 −0.002
MAE 0.239 0.299 0.287 0.209 0.191 0.307 0.29 0.246 0.225 0.24 0.234 0.061 0.064
R2 0.565 0.342 0.35 0.653 0.686 0.306 0.342 0.541 0.58 0.681 0.651 0.966 0.957
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Appendix B: Supplementary figures

B.1. Uncertainty and performance estimation

In this appendix we show supplementary figures related to the
estimation of prediction uncertainties (Fig. B.1), and the estima-
tion of model performance in the absence of ground truth labels
(Fig. B.2), referred to in Sect. 6.5.
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Fig. B.1. Histograms showing the distribution of residuals with respect
to the predicted 68% confidence interval, when predicting redshift, M
or SFR using the Int Wide catalogue with the Case 4 configuration.
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Fig. B.2. Testing the performance of our error estimation method in dif-
ferent redshift bins, for the Int Wide catalogue (Case 4). The dashed
blue line shows the true NMAD values; the lines shows the NMAD
values calculated using our error estimates, with redshift binning per-
formed using the ground-truth (zref ; orange dotted line), with the red-
shift binning done using the estimated redshifts (zest; solid green line).
The grey rectangles just above the x-axis indicate the range of redshift
covered by the bins.

B.2. Additional figures

In this appendix we present supplementary figures referred to in
Sect. 7.3.
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Fig. B.3. Similar to Fig. 9: Bar charts showing the NMAD, fout, MAE, and R2 metrics for the predictions of SFR, sSFR, E(B − V), and age.
The x-axis separates the results by case and catalogue. ‘NA’ indicates that a quantity was not among the predicted labels for that particular mock
catalogue.
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Fig. B.4. Example of how the NMAD metric values vary with redshift. For this test, we used the Case 4 data configuration with the Int Wide
catalogue. The NMAD metric was calculated after using the ground truth redshift labels to bin the data, with bin edges chosen as follows: 0, 0.25,
0.5, 0.75, 1.0, 1.5, 2.0, 3.0, and 6.0.

Article number, page 24


	Introduction
	Target label scalings
	Test cases
	Mock Euclid galaxy catalogues
	Int Wide
	SED Wide
	EURISKO
	SPRITZ

	Metrics of model quality
	Redshift metrics
	Physical parameter metrics

	The property-estimation pipeline
	Data pre-processing
	Broadband colours

	Missing data imputation strategy
	Additional pre-processing steps
	The learning algorithm
	CatBoostRegressor hyperparameters
	Re-weighting attention mechanism
	Model training: Chained regression

	Estimating confidence intervals
	Modelling prediction errors
	Estimating pipeline performance on unlabelled data

	Computational efficiency

	Results
	Metric averaging methodology
	Case 0: Proof of concept
	Euclid mock catalogues

	Summary and final remarks
	Table of results
	Supplementary figures
	Uncertainty and performance estimation
	Additional figures


