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Abstract:  The control of speech can be modelled as a dynamical
system in which articulators are driven toward target positions. These
models are typically evaluated using fleshpoint data, such as electro-
magnetic articulography (EMA), but recent methodological advances
make ultrasound imaging a promising alternative. We evaluate whether
the parameters of a linear harmonic oscillator can be reliably estimated
from ultrasound tongue kinematics and compare these with parame-
ters estimated from simultaneously-recorded EMA data. We find that
ultrasound and EMA yield comparable dynamical parameters, while
mandibular short tendon tracking also adequately captures jaw mo-
tion. This supports using ultrasound kinematics to evaluate dynamical

articulatory models.



1. Introduction

A major goal in the study of speech communication is understanding the nature of articu-
latory control. A common approach is to cast this problem in terms of a dynamical system
with point attractor dynamics, where a small number of parameters drive the vocal tract
to a stable equilibrium position (Browman and Goldstein, 1986; Fowler, 1980; Gafos, 2006;
Saltzman and Munhall, 1989; Tilsen, 2016). A standard model in this framework is the

linear harmonic oscillator,

mi + bi + kx =0 (1)

where m is mass (typically m = 1), k is a stiffness coefficient, and b is a damping co-
efficient, usually set to critically damped b = 2v/mk. Gestural activation can be governed by
step activation, with gestural parameters changing instantaneously at the point of activation
and remaining constant over the activation interval.

In this study we focus on whether the parameters of a linear harmonic oscillator
can be estimated from ultrasound tongue imaging data, which we compare with the more
common method of fitting to electromagnetic articulography (EMA) data. A major barrier
to this goal is that the linear harmonic oscillator is known to be a poor fit to empirical
articulatory trajectories, as it predicts overly short time-to-peak velocity, meaning that it
is inappropriate for evaluating how the model can fit different data modalities. There are
three common solutions to this issue. The first allows gestural activation to vary over time
(Byrd and Saltzman, 1998), which adds extrinsic complexity to the model. The second

is a nonlinear model, such as adding a cubic term to the linear model (Kirkham, 2025b;



Sorensen and Gafos, 2016), or novel nonlinear models (Stern and Shaw, 2025). The third
is to abandon oscillatory models and develop new time-dependent (i.e. non-autonomous)
models (Elie et al., 2023). All three approaches add significant complexity, but we take an
alternative route, which is to retain the simple linear oscillator with step activation, but
simply relax the critical damping constraint. This allows for a simple autonomous model
that is generally more accurate than critically damped models (Kirkham, 2024, 2025a). We
note that all of the above models focus only on piecewise dynamics, such as the movement
between articulatory targets, so our decision to relax critical damping only adds a small level
of complexity compared with nonlinear or non-autonomous models.

An important aspect of adjudicating between different models is evaluating their fit to
empirical data, which allows us to establish prospective parameters for articulatory control.
In other words: given an empirical articulatory trajectory, which model parameter values
would be required to reproduce its dynamics? To date, the majority of dynamical articula-
tory model development has focused on fleshpoint tracking data, such as X-ray microbeam
and EMA (Elie et al., 2023; Iskarous, 2016; Kirkham, 2025a; Stern and Shaw, 2025), with
some applications to MRI data (Lammert ef al., 2013). Such data has a number of shortcom-
ings, including limited information on the tongue posterior (EMA), invasive data collection
(EMA, MRI), and limited portability (EMA, MRI). Ultrasound imaging largely overcomes
these issues and provides good imaging of the tongue, as well as hyoid and mandibular
short tendon (Wrench and Balch-Tomes, 2022), but suffers from lower frame rates and noisy
images. Despite this, recent advances suggest it is possible to derive kinematics from ultra-

sound, either via tracking manually-identified fanlines (Strycharczuk and Scobbie, 2015) or



anatomically-defined landmarks using deep learning (Wrench and Balch-Tomes, 2022). For
example, Wrench and Balch-Tomes (2022) trained a deep learning model on human-labelled
data, where anatomically-defined landmarks were placed along the tongue. The accuracy of
landmarking was comparable to between-human differences, allowing for automated frame-
to-frame tracking of fleshpoint-like trajectory data, which also showed reasonable agreement
with EMA.

The above suggests that ultrasound is a candidate for estimating dynamical model
parameters from data. This would be a substantial step forwards for evaluating dynamical
models, as ultrasound is cheaper, less invasive, and provides richer information about lingual
motion. It stands to reason that being able to accurately estimate dynamical parameters
from ultrasound would open up a new range of applications for fieldwork and clinical data,
which would facilitate model evaluation across more diverse samples and languages. In this
study, we compare task dynamic parameters derived from simultaneous EMA and ultrasound
data during vowel production. We focus on estimating the parameters of an undamped linear
harmonic oscillator (i.e. Equation 1 but without the critical damping constraint). We use
this model because it is simple and has known characteristics, which makes it an attractive
case study for comparing model parameters estimated from ultrasound and EMA data. We
expect that the same principles should apply to more complex models, but we use the simple

model to establish a straightforward comparison without too many degrees-of-freedom.

2. Methods

2.1 Speakers and stimuli



The data set comprises simultaneous electromagnetic articulography and ultrasound tongue
imaging data, which was recorded concurrently from six female speakers of Northern Anglo
British English. The materials comprised the full set of British English vowels in /bV/ and
/bVd/ contexts in two carrier phrases: She said X and She said X eagerly. Fach speaker
produced four repetitions of 29 words in two carrier phrases, except for one speaker who
produced five repetitions. We excluded some blocks from two speakers due to excessive

ultrasound probe movement. In total, we analyse 1095 tokens.

2.2 Instrumentation

EMA data were recorded using a Carstens AG501, with sensors placed on the tongue tip,
tongue mid, tongue dorsum, upper/lower lip and lower teeth, with reference sensors located
on the maxilla, nasion, and mastoids. The EMA data were recorded at 1250 Hz, filtered
using a 50 Hz low-pass Kaiser-windowed filter (5 Hz for reference sensors), head corrected,
and rotated to the occlusal plane. Ultrasound data were recorded in Articulate Assistant
Advanced (Wrench, 2022) at ~81 Hz using a Telemed MicrUS scanner with a 20-mm radius,
64-element, 2-MHz probe. The ultrasound probe was stabilised using a headset (Spreafico
et al., 2018). Audio was recorded at 48 kHz using a Beyerdynamic Opus 55 microphone
and pre-amplified using a Grace Designs m101 preamplifier. Audio, EMA and ultrasound
data were time synchronized by aligning a TTL pulse that was triggered at the time of
each prompt presentation and recorded onto each system. For further details of temporal

synchronization and analysis of probe motion see Kirkham et al. (2023).

2.8 Data processing



Acoustic data were forced-aligned using Montreal Forced Aligner (McAuliffe et al., 2017)
and subsequently hand-corrected, which was used to segment the articulatory data based
on the labelled CV interval. Anatomical landmarks in the ultrasound images were tracked
in each frame using DeepLabCub (Mathis et al., 2018), which is a deep learning algorithm
for markerless pose-estimation. We specifically used a pre-trained tongue model with 11
points at anatomical landmarks along the tongue, as well as points corresponding to the
short tendon and hyoid bone (Wrench and Balch-Tomes, 2022). Figure 1 (left) shows that
knot 1 is located at the tongue root and knot 11 is located at the tongue tip, with all
knots specified for x/y dimensions (Strycharczuk et al., 2025; Wrench and Balch-Tomes,
2022). Knots were exported as Cartesian coordinates (in mm) and rotated parallel to the
occlusal plane (estimated using a bite plate recording for each speaker). The EMA data
were downsampled to the ultrasound frame rate, and EMA /ultrasound measures were then
projected to a shared origin by centering, but without scaling in order to retain dimension-
specific variation in movement range. The ultrasound data is noisy compared with the EMA
data, so the ultrasound and EMA signals were both smoothed using the 5th-order Discrete
Cosine Transform. See Figure 1 (right) for an example, which clearly shows the necessity of
smoothing the ultrasound position data. Note that the EMA and ultrasound signals appear
to capture the same underlying signal, but with a small time lag. This is likely a consequence
of the EMA and ultrasound spatial points capturing slightly different locations on the tongue
dorsum. Unfortunately, it is not straightforward to quantify specific relations between the
EMA sensor locations and DLC knot locations, because the EMA sensors are not visible in

the ultrasound image, so our selection of equivalent locations is a rough approximation.
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Fig. 1. Left: Location of DLC knots estimated for each ultrasound frame (knot 1 is tongue root,
knot 11 is tongue tip, H is hyoid, M is mandible, ST is short tendon). Right: Raw and smoothed

data for TD horizontal position from EMA and ultrasound in the word bar.

2.4 Feature extraction

We analyse horizontal and vertical movements of the tongue dorsum (TD) and jaw (JAW).
TD is a standard measurement dimension in the EMA literature, while JAW is an additional
dimension that can be tracked using EMA and ultrasound. In the EMA data, TD is defined
by the horizontal and vertical coordinates of the tongue dorsum sensor, while JAW is defined
by the horizontal and vertical coordinates of the lower teeth sensor. In the ultrasound data,
TD is the horizontal and vertical coordinates of DL.C knot 5 and JAW is the mandibular short
tendon knot (Strycharczuk et al., 2025). We use these knots as possible ultrasound correlates
of TD and JAW, but it was not possible to verify that these represent identical physical
locations as the EMA sensors. Our analysis instead focuses on how each signal captures
the relative distances between vowels, rather than raw comparisons. Position and velocity

trajectories were segmented into separate gestures, defined as an interval bounded by two



zero-crossings in the velocity signal. Diphthongs and some long monophthongs can have two
distinct velocity peaks (Strycharczuk et al., 2024) and we also included closure and release
gestures. We only retained trajectories for which there exists a matching EMA /ultrasound
pair within a given sensor/dimension (e.g. TDx). In total, we analyse 2093 trajectories (630
TDx, 549 TDy, 504 JAWx, 410 JAWy). The different trajectory counts for x/y dimensions
are a consequence of their different movement dynamics, which is not an issue for our present

analysis, where we compare parameter estimation separately within dimensions.

2.5 Parameter estimation and evaluation

We estimate the coefficients for the parameters b, k, T" of a linear harmonic oscillator

T+bi+k(x—T)=0 (2)

using constrained least squares. We optimize over the generic objective function in

(3), where X is a time series of derivatives, ©(X) is a feature library comprised of the model
parameters in (2), and Z is the coefficient matrix to be optimized.

|IX —O(X)Z||? subject to C¢ =d (3)

min

[1]
N | —

We specifically solve for the acceleration of the system and integrate to obtain position
and velocity trajectories that are evaluated against empirical data. We split the second-order
differential equation into two first-order equations (1) y = &; (2) § = —by — kx, with the first
equation subject to the linear constraint y = 1.0# to reduce model complexity (Champion
et al., 2020). We use a maximum of 30 iterations to allow convergence of the optimization

algorithm. After discovering optimal coefficients, we generate a simulated trajectory by
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solving a linear harmonic oscillator using the discovered coefficients and quantify fit between
the modelled and empirical trajectories using R? values. This essentially follows the same
process as in Kirkham (2025a), but without any thresholding parameters, meaning that all

model terms are used in fitting to data.

3. Results

3.1 Model fit and parameter comparisons

Table 1 shows R? summary statistics for the fit between data and model predictions, with
all variables at R? > 0.9. This suggests that good model fits can be achieved and that fitting
accuracy is comparable between EMA and ultrasound, but that TD models fit slightly more
accurately than JAW models. We visualize example velocity fits for TDx from each modality
in Figure 2, which represents three tokens selected using a fixed random seed. It is apparent
that the fits are qualitatively similar between EMA and ultrasound, with some small errors
in the model predictions for each trajectory. We also note slight variation in the underlying
data between modalities. This is likely to arise from similar sources as in Figure 1, where
we observe small time lags or slight durational differences.

Parameter values from EMA and ultrasound were then compared using the Bayesian
hierarchical regression model: y; ~ N(a + as[si] + (8 + Bw[wi]) - modality;, o), where y;
is an observation of the outcome variable, « is the intercept , § is the effect of modality
(EMA /ultrasound), 3, ~ N(0,75) is a by-word random slope for the effect of modality,
as ~ N (0, 74) is a speaker-level random intercept , and all other priors are weakly informative
N ~ (0,2). We ran MCMC sampling for 1000 warm-up iterations and 2000 sampling

iterations using 4 chains, with the step size initialized at 0.1. Models were fitted using Stan



——data ==-model

EMA Ultrasound

pnq

pakonq

Velocity
3
U
4
U

Ang

0.0 0.1 02 03 00 0.1 0.2 03
Time (s)

Fig. 2. A random sample of three example velocity fits between EMA and Ultrasound for TDx.
Tokens were selected using a fixed random seed and each word represents the same underlying

token produced by a speaker. All fits are R? > 0.92.

v2.36 (Stan Development Team, 2024). In all cases, EMA is the baseline variable, so the
values represent how ultrasound differs from EMA.

Table 2 shows the mean effect of measurement modality on parameter estimation,
along with 95% credible intervals. In summary, when 8 < 0 it means that the ultrasound-
estimated parameter is on average lower than the EMA-estimated parameter, whereas when
£ > 0 the ultrasound-estimated parameter is on average higher than the EMA-estimated
parameter. We find that the credible intervals cross zero across every variable for £ and
b, suggesting no systematic difference between EMA and ultrasound in these parameters,
largely due to a high degree of variability. The estimated T difference is much narrower,

where TDx, JAWx and JAWy have systematically lower estimated T values in ultrasound
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Table 1. R? model fit statistics for each vari- Table 2. Bayesian mean and 95% CIs for
able, which summarizes the accuracy of model  each parameter, which represents how much the

fits to empirical data. ultrasound-estimated parameters deviate from

the EMA-estimated parameters.
Variable Modality N R? R?0 R? min, max

Parameter Variable B 95% CI

TDx EMA 630 0.95 0.09 0.23, 1.00

US 630 0.95 0.09  0.32, 1.00 r TDx  —1.20 [-2.35, ~0.06]

TDy 0.29 [-0.32, +0.92]
TDy EMA 549 0.94 0.09 0.38, 1.00

JAWx  —0.45 [—0.74, —0.17]
UsS 549 0.95 0.10  0.37, 1.00

JAWy —1.36 [—1.81, —0.91]

JAWx EMA 504 0.90 0.15 0.27, 1.00

k TDx  —0.49 [—3.96, +2.74]
Us 504 0.93 0.13  0.29, 1.00

TDy 0.86 [—2.38, +4.13]

JAWy EMA 410 0.92 0.12  0.36, 1.00
JAWx  2.29 [—0.81, +5.22]

UsS 410 0.93 0.12 0.32, 1.00

JAWy  0.38 [—2.88, +3.69]

b TDx —0.11 [-3.25, +3.07]

TDy 0.07 [-3.18, +3.29]

JAWx  1.91 [—1.21, +5.08]

JAWy 0.13 [—3.00, +3.34]
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(i.e. all 95% CIs are below zero). The TDy ultrasound 7" values are on average higher than

the EMA values (8 = 0.29), but this is the one case for T' where the credible interval includes

positive and negative values, indicating high uncertainty and no systematic differences.

3.2 Word-specific differences

We now investigate word-level effects to compare how the estimated parameters pattern be-
tween different words/vowels. This is important because EMA and ultrasound track points
on the tongue in different ways, so we expect systematic effects of vowel height and anterior-
ity. We visualize the difference between EMA and ultrasound modalities using the model’s
intercept and random slope coefficients, where EMA is the baseline. Note that each variable
has a different range, so we focus on within-variable differences rather than between-variable
comparisons.

Figure 3 shows word-level effects for the target parameter T in x/y space for TD
and JAW, which represents the magnitude and direction of the difference between EMA
and ultrasound. TD shows a systematic effect where front and high vowels, such as bee,
bead, booed, beer, have a lower and more posterior target for ultrasound parameters than
EMA. Notably, these differences are consistent with previous research on how different ul-
trasound knots estimate vowel articulation, whereby the tongue dorsum knot underestimates
the height and anteriority of front vowels (Strycharczuk et al., 2025). The results for JAW
also show a systematic difference, although over a smaller range. Ultrasound underestimates
the JAW target relative to EMA for front vowels (e.g. beed, booed, bid) and overestimates
it in some low vowels (e.g. bar). This is likely an artefact of probe stabilisation. In an

ultrasound experiment, the probe is placed under the chin in its neutral position. When the
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Fig. 3. By-word effects showing how ultrasound-estimated 7' (target) values differ from EMA-
estimated values. Word labels show estimated means; blue lines show 95% credible intervals. A

value of zero indicates that ultrasound parameters do not differ from EMA parameters.

jaw is lowered for the production of a low vowel, the soft tissue is squeezed against the probe,
which can underestimate the distance between the short tendon and the probe, which leads
to overestimation of the vertical JAW target.

Figure 4 shows word-level random slope coefficients for the stiffness parameter k£ and
damping parameter b. In both cases, the majority of words cluster around zero with wide
credible intervals. This indicates higher variability in measurement and a lack of systematic
differences between EMA and ultrasound, except for a higher average k and lower average
b in TDy for bore. The JAW results show similar patterns, with near complete overlap,
although note that bar was removed from the JAW plots (but not the modelling) due to

extremely wide credible intervals that skewed the plotting range. Note that variability in k&
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Fig. 4. By-word effects showing how ultrasound-estimated k (stiffness) and b (damping) values
differ from EMA-estimated values. Word labels show estimated means; blue lines show 95% credible
intervals. A value of zero indicates that ultrasound parameters do not differ from EMA parameters.
Note that the word bar has been removed from the JAW plots due to excessively large confidence

intervals (crossing zero in both dimensions) that distort the axis ranges.

and b estimation occurs in both EMA and ultrasound data, so it is not necessarily the case
that only one modality produces extreme estimates. Overall, this suggests that estimation
of k and b is not systematically different between EMA and ultrasound, but that estimates

are much more variable than for the target (7') parameter.

4. Discussion
We estimated the parameters of a linear dynamical model from EMA- and ultrasound-
derived kinematic measurements. The model is a reasonably good fit to EMA and ultrasound

kinematics for the tongue dorsum and jaw, which shows that dynamical models can be
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fitted to ultrasound kinematic data with comparable accuracy to EMA data, at least in
the case of British English vowels. Our second aim was to establish the nature of the
estimated parameters. We do find differences between EMA and ultrasound parameters, but
these differences are predictable based on known characteristics of how the ultrasound knot
tracking captures tongue movement. For example, previous research shows that ultrasound
knot 5 underestimates dorsum height in front vowels, but other knots (e.g. anterior knot
7) inaccurately estimate dorsum height in low vowels (Strycharczuk et al., 2025). A post-
hoc comparison shows that the T" parameter estimated from TDy is more highly correlated
with T estimated from knot 7Y (r = 0.83) than from knot 5Y (r = 0.60), where knot 7
captures a more anterior part on the tongue. This is because knot 7Y more substantially
overestimates the target in low vowels in addition to the knot 5 high vowel differences,
making the magnitude of EMA /ultrasound difference more linearly related to vowel height.
In summary, while we find some differences in estimated tongue dorsum target parameters,
these can be explained by the consequences of selecting a specific articulatory dimension to
represent the tongue dorsum. Note also that EMA does not necessarily represent a golden
standard in this respect, given flexibility in EMA sensor placement (Rebernik et al., 2021).
Moreover, ultrasound offers additional opportunities in tracking multiple points from tongue
tip to root. As such, it is of paramount importance to report the precise dimensions used
for model fitting.

Flexibility of point selection is less relevant for JAW, where ultrasound only tracks a
single point. Despite this, JAW targets also vary between EMA and ultrasound, but in a way

that is consistent. Ultrasound underestimates JAW targets in high vowels and overestimates
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in low vowels compared with EMA. Importantly, this variation is not random and is clearly
related to both probe movement and vowel height, suggesting that the mandibular short
tendon tracked in the ultrasound image captures systematic aspects of jaw position, but in a
different manner to the EMA lower teeth sensor. This goes some way towards validating short
tendon tracking as capturing meaningful aspects of vowel articulation, which significantly
expands the utility of ultrasound imaging beyond the tongue surface.

The ultrasound kinematic data are noisier than EMA and the underlying signal may
be slightly obscured even when smoothed, which could be another source of differences.
Wrench and Balch-Tomes (2022) analyse the same data we use in this study and show
that horizontal tongue tip and blade measures correlate well between EMA sensors and
DLC-tracked knots from ultrasound images (r > 0.88), but other articulatory dimensions
have correlation coefficients » < 0.4. This suggests that EMA and ultrasound capture
similar information in the tongue tip horizontal direction, but may capture differential spatial
information for other dimensions. To this end, there is also scope for improving ultrasound
kinematic measures, with an obvious area being better frame-to-frame tracking of DLC
knots. At present, the DLC model estimates kinematics on a frame-by-frame basis, but
inherent noise and measurement inaccuracy mean that knot tracking is unlikely to return a
smooth function of time. One solution is to constrain tracking such that sharp divergences
between frames are penalized. Finally, we focused on fitting a simple dynamical model
to the data: an undamped linear harmonic oscillator. This allowed us to identify unique
models for each token, with clearly interpretable parameters, but in future work it would be

productive to compare more complex models, such as nonlinear dynamical models (Sorensen
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and Gafos, 2016; Stern and Shaw, 2025), as well as nonautonomous models with time-

dependent parameters (Elie et al., 2023).

5. Conclusions

We show that a linear task dynamic model can be fitted to ultrasound kinematic data with
a relatively high degree of accuracy, conditional on sufficient smoothing and segmentation.
The estimated model parameters differ in specific ways between EMA and ultrasound, but
the differences are systematic and are a consequence of the selected measurement dimensions.
As a result, these results broaden the possibilities for lingual kinematic analysis, with ultra-
sound providing information on the tongue posterior, as well as a greater number of points
along the tongue. We also find that tracking the mandibular short tendon allows for mean-
ingful jaw movement dynamics, opening up new directions for the study of inter-articulator

coordination in dynamical theories of speech production.
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