COHOMOLOGY OF LIE COALGEBRAS
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ABSTRACT. A Koszul duality-type correspondence between coderived categories of conilpotent
differential graded Lie coalgebras and their Chevalley-Eilenberg differential graded algebras
is established. This gives an interpretation of Lie coalgebra cohomology as a certain kind of
derived functor. A similar correspondence is proved for coderived categories of commutative
cofibrant differential graded algebras and their Harrison differential graded Lie coalgebras.
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1. INTRODUCTION

Cohomology of Lie algebras was introduced over 70 years ago by C. Chevalley and S. Eilenberg
and given a standard textbook treatment in the classical treatise of H. Cartan and S. Eilenberg
[7]. It is conceptually well-understood and is, by now, a standard tool used in Lie theory,
representation theory and homological algebra.

By contrast, cohomology of Lie coalgebras has not been as well studied, even though its
definition through the standard complex is straightforward, and low-dimensional groups have
similar interpretation as in the Lie algebra case @I] The reason is that Lie coalgebras and
comodules over them are much less understood in general than Lie algebras and their modules,
and many of their properties are neither dual nor similar to their Lie counterparts.
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To a lesser extent, the same could be said about associative algebras and modules vs coas-
sociative coalgebras and their comodules. However, the structure theory of coassociative coal-
gebras and comodules has long been well established, and their homological algebra has, some-
what recently, been completely settled in the framework of differential graded (dg) Koszul
duality [19]. A rather striking consequence of the latter is that from a homotopy-theoretic
(or infinity-categorical) perspective, associative algebras and their modules behave similarly to
coassociative coalgebras and comodules (rather than dually as might naively be conjectured).

In light of these developments, it is natural to ask whether similar results hold in the Lie
and coLie cases. An equivalence of model categories relating Lie algebras and cocommutative
coalgebras was developed by Quillen [21] in the context of rational homotopy theory. This was
the earliest manifestation of Koszul duality. It has quite severe grading restrictions on both Lie
algebras and cocommutative coalgebras which were later removed by Hinich [13] at expense of
replacing quasi-isomorphisms with a finer notion of a weak equivalence on the coalgebra side
(and coalgebras were also assumed to be conilpotent which was automatic in Quillen’s original
treatment). This version of Koszul duality underpins a modern approach to deformation theory.
There is also a suitable module-comodule correspondence sketched in |19, Example 6.6].

Similarly, a Koszul correspondence between Lie coalgebras and commutative algebras was
constructed in [16] in the context of disconnected rational homotopy theory. The Lie coalgebras
considered in op. cit. were conilpotent, i.e. filtered colimits of finite dimensional Lie coalgebras
whose dual Lie algebras are nilpotent. This excludes large classes of Lie coalgebras (e.g. those
whose duals are semisimple Lie algebras). There is a good reason (discussed later in the present
paper, cf. Example why Koszul duality cannot be extended to such Lie coalgebras. However,
even for conilpotent Lie coalgebras the Koszul correspondence on the module-comodule level is
far from obvious, the reason being that, unlike in the associative case, not every comodule over
a conilpotent Lie coalgebra is itself conilpotent. This is the main technical difficulty that we
grapple with in this paper.

Given a dg Lie coalgebra g, we consider its category of locally finite comodules, i.e. comodules
that are unions of finite-dimensional ones. This category is isomorphic to the category of
comodules over U¢(g), the universal enveloping coalgebra of g. As such, it has the structure
of a model category whose homotopy category is called the coderived category of g. Let CE(g)
be the Chevalley-Eilenberg complex of g which is a dg commutative algebra. The category of
CE(g)-modules has a model category of its own, and thus, a homotopy category, called the
compactly generated coderived category of CE(g). This homotopy category is different from
the ordinary derived category of CE(g) and is a slight modification of the coderived category
of Positselski’s; its definition is recalled in Section Slightly abusing the notation, we will
suppress the modifier ‘compactly generated’ and call this simply ‘coderived category’ since
Positselski’s version is never used here.

Our first main result, Theorem is that there is a coreflective Quillen adjunction between
locally finite comodules over g and modules over CE(g), provided that g is conilpotent; it
becomes a Quillen equivalence under the additional assumption that g is non-negatively graded
(Theorem. As a consequence, we are able to interpret the Chevalley-Eilenberg cohomology
of g with coefficients in a g-comodule as a derived functor (Corollary. It is quite surprising
that the assumption of non-negative grading needs to be imposed for the Quillen equivalence
statement, however the example of the coderived category of the polynomial de Rham algebra,
cf. Example below, shows that it is unavoidable.

Our second main result gives a similar treatment for modules over cofibrant dg commutative
algebras and comodules over their Harrison dg Lie coalgebras; here the condition of cofibrancy is
parallel to the condition of conilpotency of Lie coalgebras and the result does not hold without
it. This is Theorem [5.5

Dg Lie coalgebras appear naturally in rational homotopy theory as primitive elements in the
cobar constructions of Sullivan minimal models of topological spaces and in connection with
the problem of finding homotopy periods, cf [16,23]. Modules over Sullivan minimal models
correspond, according to our results, to comodules over the corresponding Harrison dg Lie
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coalgebras and, in the case of smooth manifolds, give rise to modules over the corresponding de
Rham algebras. Such modules are known under various other names: flat superconnections, oo-
local systems or cohomologically locally constant sheaves, and they have been well-studied, e.g.
[1,3,8,23] and are, therefore, abundant in nature. It would be interesting to make a systematic
study of the relationship between co-local systems and comodules over the corresponding Lie
coalgebras but we will leave it for future work.

The organization of the paper is as follows. Section 2] introduces notations and conventions
used in this paper. Section [3is a crash course on the fundamentals of Lie coalgebras, including
the construction of a universal enveloping coalgebra and the analogue of the PBW theorem.
We put the focus on conceptual explanation and on instructive examples; a much more detailed
treatment is given in [18]. Of some independent interest here is the notion of a Lie-conilpotent
coassociative coalgebra and the construction of a cofree Lie-conilpotent coassociative coalgebra
sitting between a cofree coassociative coalgebra and a cofree conilpotent coassociative coalge-
bra, cf. Proposition below. Section [4] contains the Koszul duality statement for conilpotent
Lie coalgebras and all necessary preliminaries. A much simpler result involving conilpotent
comodules is also proved; this is Theorem The Koszul equivalence for cofibrant commu-
tative algebras is proved in Section [5| as well as a much simpler statement involving conilpotent
comodules over the Harrison dg Lie coalgebra (Theorem . At the end of this section, a
relationship between Lie comodules and oc-local systems is outlined.

2. NOTATION AND CONVENTIONS

We will work in the category DGVect of differential graded (dg) vector spaces over a fixed
field k of characteristic zero. The objects of DGVect are k-vector spaces with cohomological
Z-grading, supplied with a differential of degree 1; morphisms are linear maps commuting with
the differential. The degree of an element x in a graded vector space will be denoted by |z|.
Given a dg vector space V, its suspension ¥V is another dg vector space with (XV)! = Vi1,
Under the functor # of k-linear duality, we have (V*)! := (V %)%,

We will use the language of pseudocompact (pc) vector spaces. A pc (graded) vector space is a
projective limit of finite-dimensional vector spaces and morphisms of pc vector spaces are always
assumed to be continuous with respect to the linearly compact topology of the projective limit.
Similarly a pc dg vector space is a pc graded vector space supplied with a graded differential of
cohomological degree 1 squaring to zero. The category of pc dg vector spaces will be denoted by
DGVectp. The functor of continuous linear duality establishes an anti-equivalence between the
categories of (discrete) graded vector spaces and pc graded vector spaces and so the category
DGVect®P, the opposite to DGVect, is equivalent to DGVectp.. Since DGVect is symmetric
monoidal with respect to the graded tensor product, so is DGVect? and therefore, DGVectp..
The monoidal product of two pc graded spaces V and U will be denoted by V ® U; note that
this is not the tensor product of V and U viewed as discrete graded vector spaces unless either
V or U is finite-dimensional.

For two dg vector spaces U and V' we will write Hom (U, V') for the dg vector space of their
homomorphisms (note that this is not the set of morphisms from U to V and the latter is the
set of cocyclies in this dg vector space).

A dg algebra is just a monoid in DGVect; it is thus a dg vector space A supplied with an
associative and unital multiplication A ®@ A — A. Similarly, a dg pc algebra is a monoid in
DGVectpe; by the anti-equivalence of the latter category with DGVect, a dg pc algebra is the
same as a comonoid in DGVect, i.e. a dg coalgebra. A dg Lie algebra is a Lie object in DG Vect,
i.e. a dg vector space g supplied with an anti-commutative bracket g&®g — g satisfying the
Jacobi identity; similarly, a dg pc Lie algebra is a Lie object in DGVect,.. A dg Lie coalgebra
is a vector space g with the cobracket g — g ®g making the dual space g* into a Lie object in
DGVecty.. Since a Lie object in DGVect,, is equivalent to a Lie co-object in DGVect, then a
dg pc Lie algebra carries the same information as a dg Lie coalgebra.
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Given a dg algebra or dg Lie algebra A, we consider its category Mod(A) of left dg A-modules;
these are dg vector spaces V supplied with an action map AQV — V satisfying the usual axioms.
If A is a dg coalgebra or a dg Lie coalgebra, we can similarly denote by Comod(A) the category
of left dg A-comodules. We also need the notion of a bicomodule over a dg coalgebra A; it is
a dg vector space supplied with a left coaction V — A ® V and a right action V — V ® A,
compatible in the usual way. For a dg algebra A, a twisted A-module is a dg module whose
underlying graded A-module is free, i.e. it is isomorphic to A ® V for a graded vector space
Vi if dimV < oo, we say that the twisted module is finitely generated. Similarly, a twisted
comodule over a dg coalgebra C is one whose underlying graded C-comodule is cofree, i.e. of
the form C' ® V for a graded vector space V.

The category Mod(A) for a dg algebra A has two model structures relevant to this paper: the
compactly generated model structure of the second kind mentioned in the introduction and the
ordinary projective model structure (with weak equivalences being quasi-isomorphisms); simi-
larly for a dg coalgebra A, the category Comod(A) has a model structure with weak equivalences
being maps with coacyclic cofiber [19, Section 8§].

To alleviate the language, from now on, we will generally omit the modifier ‘dg’ in the rest
of the paper; e.g. ‘Lie coalgebra’ will mean ‘dg Lie coalgebra’, modules and comodules will
likewise be assumed to be dg etc.

3. LIE COALGEBRAS, THEIR COMODULES AND UNIVERSAL ENVELOPING COALGEBRAS

3.1. Universal enveloping coalgebras of Lie coalgebras. Let g be a Lie coalgebra. Then
its linear dual g* is a pc Lie algebra and the functor of (continuous) linear duality establishes
an anti-equivalence between Lie coalgebras and pc Lie algebras. Furthermore, there is a functor
associating to any coassociative coalgebra its cocommutator Lie coalgebra. This functor C' —
L(C) is easiest to describe using the anti-equivalence mentioned above. Namely, L(C) is the
Lie coalgebra that is continuous linear dual to the pc Lie algebra L(C*), the commutator Lie
algebra of the pc algebra C*. The following result holds:

Theorem 3.1. The functor C — L(C) from coassociative coalgebras to Lie coalgebras admits
a right adjoint, g — U(g), called the universal enveloping coalgebra of the Lie coalgebra g.

Proof. In the non-dg case this is established in [18] and the extension to the dg case is straight-
forward. (]

Remark 3.2. The construction of U(g) is given explicitly as follows. First assume that g is
locally finite, in other words, it is the union of its finite dimensional Lie subcoalgebras; if this
is not the case, then replace g by its largest locally finite Lie subcoalgebra. It is thus sufficient
to define U¢(g) for a finite dimensional g since in general U¢(g) =~ colim, U°(g,) where the
colimit is taken over all finite dimensional Lie subcoalgebras of g. For a finite dimensional g,
the coalgebra U¢(g) is defined as U°(g*), the Sweedler dual of the ordinary enveloping algebra
U(g*) of the Lie algebra g*; see [24, Chapter 6] regarding the notion of the Sweedler dual. Recall
that for an algebra A, its Sweedler dual is the set of linear functions f on A such that ker f
contains an ideal of finite codimension; in the dg setting this is modified by requiring that ker f
contains a dg ideal of finite codimension. More precisely, the Sweedler dual of an associative
algebra A is given by A := lim (A/I.)* where the direct limit is taken over all two-sided dg
ideals of finite codimension. Equivalently, U°(g) determined by setting its dual [U¢(g)|* to be
U(g*), the pseudo-compact completion of U(g*) (and then recovering U°(g) as the continuous
dual). The latter is defined for any algebra A as A := lim A, where the inverse limit is taken
over all finite-dimensional quotient algebras A, of A.

Remark 3.3. The coalgebra U¢(g) is a Hopf algebra. Indeed, let g be finite-dimensional, then
the ordinary enveloping algebra U(g*) of g* is known to be a Hopf algebra with the coproduct
A :U(g*) — U(g*)®U(g*) and this map induces a coproduct on the pseudocompact completion
U(g*) — U(g*)®U(g*) making U(g*) into a pseudocompact bialgebra and dualizing, we see that
U¢(g) is a bialgebra; the existence of an antipode is likewise straightforward.

4



Remark 3.4. Corresponding to the identity map on U°(g) is a map of Lie coalgebras U¢(g) — g
(or its more familiar dual g* — U(g*)). According to [18], the dual map is surjective if and
only if g is locally finite. In contrast, for nonlocally-finite Lie coalgebras, this map can even be
zero; this happens when a Lie coalgebra has no nontrivial finite-dimensional Lie subcoalgebras.
For example, such is the Lie coalgebra whose linear dual is the Lie algebra of derivations of the
formal power series ring k[[z]].

Recall that a comodule over a Lie coalgebra g is a vector space M together with a coaction
M — g®M satisfying a certain comodule analogue of the coJacobi identity, cf. for example [9,
Definition 2.3]. The above coaction is equivalent to a map g* ®M* — M* and if dim M < oo
this is further equivalent to a map of pc Lie algebras g* — End(M*) =~ End(M) specifying a
continuous action of the pc Lie algebra g* on the finite-dimensional vector space M.

Recall that modules over Lie algebras are in one-to-one correspondence with modules over
their universal enveloping algebras. For Lie coalgebras, the analogous statement is formulated
as follows.

Proposition 3.5. Let g be a Lie coalgebra. Then U¢(g)-Comod, the category of comodules over
U¢(g) is isomorphic to the category of locally finite g-comodules, i.e. those g-comodules which
are unions of its finite-dimensional subcomodules.

Proof. Let M be a finite dimensional g-comodule determined by the coaction M — g@M. This
coaction is equivalent to a continuous map g* — End(M), and the comodule condition translates
into the latter map being a homomorphism of pc Lie algebras. This, by the universal property of
the universal enveloping algebra, is equivalent to a continuous algebra map [U¢(g)]* — End(M)
or to a U(g)-comodule structure on M. So we obtain an isomorphism between the categories
of finite-dimensional g-comodules and finite-dimensional U¢(g)-comodules. This extends to an
isomorphism between locally finite g-comodules and locally finite U(g)-comodules (which are
all U¢(g)-comodules). O

Remark 3.6. Since U¢(g) is a Hopf algebra, it follows that locally finite g-comodules have the
structure of the tensor category; given two locally finite g-comodules M and N, their tensor
product M @ N as well as Hom(M, N) have structures of (locally finite) g-comodules.

Example 3.7. Let g be the dual of a semisimple Lie algebra; assume that k is algebraically
closed. Then every finite-dimensional (and therefore locally finite) representation of g* is
semisimple, so every U¢(g)-comodule and it follows that the coalgebra U¢(g) is cosemisim-
ple. As such, it is a sum of simple (matrix) coalgebras ), End(V,), where V,, ranges through
isoclasses of irreducible representations of g*.

It is instructive to compare [U(g)]* = U(g*) with U(g*), the usual universal enveloping
algebra of g*. By the argument above, we have U(g*) = [],End(V,). The completion map
U(g*) ~ U(g*) is determined by the collection of action maps U(g*) — End(V,,) associated with
the given irreducible representations of g* on V. It is well-known that any nonzero element in
U(g*) acts nontrivially in some finite-dimensional representation of g*, and thus the completion
map embeds U(g*) as a subalgebra of U(g*) containing 3’ End(V,). In other words, we have
the following inclusions of associative algebras:

> End(V,) © U(g*) « [ [End(Va) = U(g*).

Example 3.8. Let g be the one-dimensional abelian Lie coalgebra. In that case U°(g) is the
cofree coalgebra on k. Again, let us assume that k is algebraically closed. In that case U(g*)
is the pc completion of the polynomial algebra k[x], and it is isomorphic to [ [, k[[za]] where
a runs through all points of k. The completion map k[z] — [], k[[za]] takes = € k[z] to
[1,(za — ).

It can also be expressed as the convolution algebra Hom(k[k], k[[z]]) = Map(k, k[[z]]) where
k[k] is the group algebra of the additive group of k and Map(k, k[[x]]) stands for the set of
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maps of sets k — k[[z]]. Indeed, the algebra Map(k, k[[z]]) with the pointwise multiplication
is clearly isomorphic to [, k[[za]]-

Moreover, U(g*) is a Hopf algebra where its diagonal is induced from the multiplication on
k[k] and the diagonal on k[z] with x being primitive.

If k has characteristic zero (as per our standing assumption), we can also express U¢(g) as
k[k] ® k[z]. As a Hopf algebra, it is a tensor product of Hopf algebras k[k] and k[z] where
k[k]| has the diagonal as a group algebra and the diagonal in k[x] is specified by requiring that
x be primitive.

Example 3.9. This is a generalization of Example Let V be a vector space. There is a
functor V +— L¢(V) associating to V' the cofree Lie coalgebra, cf. [18]. The functor V — L(V)
is right adjoint to the forgetful functor from Lie coalgebras to vector spaces. The union of finite-
dimensional Lie subcoalgebras in £°(V) is the cofree locally finite Lie coalgebra on V; we denote
it by L(V). Then U(LY(V)) = US(Lj(V)) = T(V) is the cofree coassociative coalgebra on
V, see [24, Theorem 6.4.1] regarding the construction of T¢(V'). For V finite-dimensional, it can
be described as the Sweedler dual to the free algebra T(V*) and in general, as the colimit of
the coalgebras T¢(W') where W ranges through finite-dimensional subspaces of V. Equivalently
(for a finite-dimensional V'), T¢(V') is described by requiring that its pc dual algebra is T(V*),
the completion of the free algebra T(V*) by all two-sided ideals of finite codimension.

We need some standard results about the relationship between bicomodules over universal
enveloping coalgebras and one-sided modules. Let C' be a dg Hopf algebra with a bijective
antipode S and consider the map m : C ® C°? — (' so that a ® b — aS_l(b). Then m is a
coalgebra map and so, every C-bicomodule M (which is by definition a C'® C°P-comodule) can
be viewed as a C-comodule by corestriction along m. We will denote this C-comodule by M?d.
The following result holds; it will later be applied when C' is an enveloping coalgebra of a Lie
coalgebra.

Proposition 3.10. Let C be a dg Hopf algebra and M be a C ® C°P-comodule. Then there is
a natural isomorphism

RHOmC®COp_ComOd (M, C) = RHomC—Comod (Mad, k) .

Proof. Passing to the dual pc algebra A := C* and its pc module N := M*, we can rewrite the
desired isomorphism as follows:

RHom ag 40p-Mod (A, N) = RHom g_vioq (k, N29).

This is well-known in the context of ordinary derived functors for bimodules over Hopf algebras
and the proof carries over to the pc context; we will indicate the main steps.
Step 1: there is an isomorphism of A-bimodules

(3.1) A-> (AR AP)®4 k

where A acts on the right hand side of by left and right multiplication and it acts on
A® A°P by the map m* : A > A® A° dual to m. The map A —» (A® A°?) ®4 k is given by
a+— a®1®1 and the inverse map is given by a @ b® 1 +> ab. This is verified in |25, Lemma
9.4.2] in the discrete case and carries over verbatim to the pc case.

Step 2: the right A-module A @ A°P given by m™* is isomorphic to A4 ® Ay where Ay
indicates the regular right A-module and Ay — the vector space A with the trivial (i.e. factoring
through the augmentation) A-module structure. The isomorphism Ay ® Ay — A ® A°P is
given by a ®@ b — (1 ® S*)(a ® b). In particular, A ® A°P with this A-module structure, is
(topologically) free (and so cofibrant; this is equivalent to the dual C-comodule C'® C°P being
cofree and therefore fibrant). This is verified in [6, Lemma 2.2] in the discrete case and carries
over verbatim to the pc case.
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Step 3. We have the following isomorphisms:
RHomagaor (A, N) = RHomagaor ((A® AP) ®4 k, N) by step 1
~ RHom gga00 (A ® AP) @Y% k, N) by step 2
~ RHom (k, N*9),
which finishes the proof. U

Remark 3.11. The graded vector space RHomcgceor-comod (M, C) is isomorphic to HH(C, M),
the Hochschild cohomology of C' with coefficients in M, cf. for example [12,15,]22] regarding
the Hochschild cohomology of coalgebras.

3.2. Conilpotent Lie coalgebras. Examples discussed above show that universal enveloping
coalgebras of Lie coalgebras exhibit rather different behaviour than ordinary universal envelop-
ing algebras of Lie algebras. There is, however, a class of Lie coalgebras admitting a different
definition of a universal enveloping ‘coalgebra’, which is rather close to the classical picture.

Definition 3.12. A finite-dimensional Lie coalgebra g is called conilpotent if its linear dual Lie
algebra g* is nilpotent (i.e. there exists N € N such that any Lie word in g* of length > N
is zero). A (not necessarily finite-dimensional) Lie coalgebra is conilpotent if it is a union of
finite-dimensional conilpotent Lie coalgebras.

A finite-dimensional comodule M over g is conilpotent if M™* is nilpotent over g*, i.e. there
exists N € N such that any word in g* of length > N acts as zero in M*. A (not necessarily
finite dimensional) g-comodule M is conilpotent if it is a union of finite-dimensional conilpotent
g-comodules.

There is a parallel definition of a conilpotent coassociative coalgebra and a corresponding
conilpotent comodule, cf. [20] for details. Note that in older sources such as |24] a conilpotent
coalgebra is called irreducible.

Definition 3.13. Let C be a coaugmented finite-dimensional coalgebra; denote by C the cok-
ernel of the coaugmentation k — ('; it is thus a noncounital coalgebra. Then C' is called
conilpotent if C" s nilpotent, i.e. there exists N € N such that any product of more than N
elements in C" vanishes. A not necessarily finite-dimensional coalgebra C' is conilpotent if it is
a union of finite-dimensional conilpotent coalgebras.

Given a coalgebra C' with a coaugmentation € : k — C, there is a unique maximal conilpotent
subcoalgebra Cgo, — C with a compatible coaugmentation; this is just the union of all conilpo-
tent subcoalgebras of C' containing the image of €. From the point of view of dual pc algebras,
(Ceon)™ is the completion of C* at the ideal of the augmentation (dual to the coaugmentation of
(). For a Lie coalgebra g, the union of its conilpotent Lie subcoalgebras is itself a conilpotent
Lie subcoalgebra geon and its dual geon™ is the completion of g* with respect to the wordlength
of Lie monomials.

The following result is obtained using standard techniques, see e.g. [24, Corollary 8.0.9] in
the associative case.

Proposition 3.14. The functor C — Ceon from the category of coaugmented coalgebras to
conilpotent coalgebras is right adjoint to the natural inclusion functor. The functor g — gcon
from Lie coalgebras to conilpotent Lie coalgebras is likewise right adjoint to the inclusion functor.

Remark 3.15. One can similarly define a conilpotent finite-dimensional comodule M over a
conilpotent coalgebra C' by the condition that any product of sufficiently many elements of C'*
acts as zero on M* and, furthermore, extend this definition to arbitrary comodules. One quickly
observes however, that any comodule over a conilpotent coalgebra is itself conilpotent making
such a definition extraneous. In contrast, not all comodules over a conilpotent Lie coalgebra
are conilpotent. Indeed, let g be the one-dimensional Lie coalgebra concentrated in degree zero
and the zero bracket. A g-comodule is just a vector space V together with an endomorphism f
7



of V', which can be arbitrary. If dim V' < oo then the corresponding g-comodule is conilpotent
if and only if the endomorphism f is nilpotent. This phenomenon is related to the fact that the
universal enveloping coalgebra of a conilpotent Lie coalgebra need not itself to be conilpotent.

A closely related notion to conilpotency (both in the associative and Lie algebras setting) is
that of pronilpotency.

Definition 3.16. An augmented algebra A with the augmentation ideal I is pronilpotent if it
is complete with respect to the I-adic filtration:
Ax~limA/I"
2
n
Similarly, a Lie algebra g is pronilpotent if it is a projective limit of its nilpotent quotients;
more precisely, denoting by g,, the Lie ideal in g generated by Lie bracket of length n, we have:
g=limg/g,.
n

Proposition 3.17. Let C be a conilpotent coaugmented coalgebra. Then C* is pronilpotent.
Similarly, if g is a conilpotent Lie coalgebra, then g* is pronilpotent.

Proof. Consider the collection of two-sided ideals of finite codimension of C*. They form a
category with morphisms being inclusions of ideals. We have C* = @a C*/1, since C* is a pc
algebra. Note that by our assumption on C, all algebras C*/I, have nilpotent augmentation
ideals. Now consider the category formed by the powers I of the augmentation ideal I in C*
and one map between any two objects corresponding to the natural inclusion. This is cofinal
inside the category of all ideals of finite codimension and so we have

C* = lim C*/I, = lim lim C*/I,, = lim C*/I".

e n Ig,cI™ n
So, C* is pronilpotent as claimed. The proof for a conilpotent Lie coalgebra is similar. O

Remark 3.18. Of course, not every pronilpotent algebra or Lie algebra is pc. For example, a
countably-dimensional abelian Lie algebra is pronilpotent according to Definition but it is
not pc. Such pronilpotent (Lie) algebras cannot be duals to (Lie) coalgebras.

Example 3.19. The cofree conilpotent coalgebra on a vector space V is the tensor coalgebra
Teon(V) = @n=0V®". The diagonal is given by the formula

Al ®...Qvy,)
n—1
= 1QWI®..Qu)+ ) (1®...Qu)®Ur1®...QU) + (11 ® ... RV D L.
k=1

where v; € Vi = 1,2,.... It is easy to see that Teon(V) = [T(V)]con. In the case dimV < oo,
the dual pc algebra to Teon (V) is T(V*), the completion of T(V*) at the maximal ideal generated
by V*. As the name indicates, the functor V +— T.on (V) is right adjoint to the forgetful functor
from conilpotent coalgebras to vector spaces.

The coalgebra Teon (V') is in fact a Hopf algebra. Its dual Hopf algebra (when V is finite-
dimensional) is 7'(V*) with the diagonal determined by the requirement that the elements in
V* be primitive.

Similarly, the cofree conilpotent Lie coalgebra Lqon(V) on a vector space V is given by
[L£(V)]con, the maximal conilpotent Lie coalgebra in the cofree Lie coalgebra on V. It is well-
known that (under the condition dimV' < o) the pc Lie algebra [Leon(V)]* can be identified
with the Lie subalgebra of primitive elements in the Hopf algebra T'(V*) described above.

Definition 3.20. Let g be a Lie coalgebra. Then its conilpotent universal enveloping coalgebra
Ucon(g) is defined as Ueon(g) := [U°(g)]con-
8



Remark 3.21. By definition, Ucon(g) is conilpotent. If g is finite-dimensional, then [Ucon(g)]* =
fJ(g*), the universal enveloping algebra of g* completed at the augmentation ideal. The coal-
gebra Ugon(g) can be trivial, i.e. isomorphic to k; such is the case when g is semisimple. In
contrast, if g is conilpotent, then g* embeds into [Ucon(g)]* this is well-known if g is finite-
dimensional (and so g* is nilpotent) and is easy to prove in general.

Given a Ucop(g)-comodule M (necessarily conilpotent), the corestriction determines a struc-
ture of a conilpotent U¢(g)-comodule on M and thus, that of a conilpotent g-comodule on
M. Conversely, by universal properties of U¢(g) and Ucon(g), every conilpotent g-comodule
corresponds to a Ugopn(g)-comodule. We obtain the following result.

Proposition 3.22. The categories of conilpotent g-comodules and Ugon(g)-comodules are equiv-
alent.

So, to a vector space V, we associated two Lie coalgebras: L{;(V'), the cofree locally finite Lie
coalgebra and L.on(V), the cofree conilpotent Lie coalgebra. They have universal enveloping
coalgebras U¢(L(V)) = T¢(V) and Ucon(Leon(V)) = Teon(V'), which are the cofree coassocia-
tive coalgebra and cofree conilpotent coassociative coalgebra respectively. We will need another
coassociative coalgebra canonically associated to V.

Definition 3.23. The restricted cofree coalgebra, on a vector space V is defined as
Tﬁes(v) = UC(,CCOH(V)),
the universal enveloping coalgebra of Leon (V).

Note that if dimV = 1, then TS (V) = T¢(V); however if V is concentrated in degree
zero and has dimension at least 2, then T¢ (V) is a proper subcoalgebra of T(V'). We have,
therefore, the following inclusions of coalgebras T¢(V) 2 TS (V) 2 Teon(V).

Just as Teon (V') and T¢(V), the coalgebra TS, (V') satisfies an appropriate universal property.
Let us call a coassociative coalgebra C' Lie-conilpotent if its associated Lie coalgebra L(C') is
conilpotent. Clearly, any conilpotent coassociative coalgebra is Lie-conilpotent, however there
exist non-conilpotent coassociative coalgebras that are Lie-conilpotent, with TS (V) being the
universal example. The following result follows from unwrapping the definitions.

Proposition 3.24. The functor V — TV from vector spaces to Lie-conilpotent coassociative

coalgebras is right adjoint to the forgetful functor.

Given a pc vector space U, denote by T (U) the pc algebra dual to TS (U*). It has an
obvious universal property dual to that of TS (U*) with respect to maps to Lie-nilpotent pc
algebras (i.e. those whose associated pc Lie algebras are pronilpotent). For later use, we will
establish some homological properties of Ty, (U) similar to those of T(U), cf. [11, Proposition

res
2.4].

v

Lemma 3.25. For any pc vector space U, there is a T}

(U)-bimodule resolution of the form

(3.2) TY(U) @U @ Ty (U) —5 T (U) ® T (U) 2 Ty (U).

where m is the multiplication map and d(l1@u®1) =u®1—1®u forueU.

Proof. Note that for any (pc or not) algebra A, the kernel of the multiplication map A® A — A
is Q4, the A-bimodule of noncommutative differentials for A, and it has the property that any
derivation of A with values in an A-bimodule M is in a 1-1 correspondence with A-bimodule
maps Q(A) — M. Combined with the universal property of T, (U), this implies that

Qry ) = Tres(U) @U @ Ty (U).

That the map d : Qrpy ) = Tyes(U) ® Ty (U) is as claimed follows e.g. from the comparison
of (3.2) with a well-known two-term bimodule resolution of the ordinary tensor algebra of U
(viewed as a discrete vector space) over itself. (]

9



Corollary 3.26. Given a pc module M over T, (U), there is the following two-term resolution
of M :

Tr.U)Q@U®M— T, (U)® M— M.
where the righthand arrow is the action of T, (U) on M and the lefthand arrow has the form

res
I@u@m—u@m—1Qum.
Proof. This is obtained by tensoring (3.2)) with M over T\,

res

(). 0

3.3. PBW theorem. Recall that in the ordinary setting of Lie algebras and their universal
enveloping algebras, we have an injection h — U(h) from a Lie algebra b into its universal
enveloping algebra. There is, furthermore, a filtration on U(h) where F,(U(h)) is formed by
linear combinations of monomials in h of length no more than p. The PBW theorem states
that the associated graded to U(h) is isomorphic as a Hopf algebra to S(h), the symmetric
algebra on h. There is an analogue of this statement for universal enveloping coalgebras due
to Michaelis [18] which states that for a Lie coalgebra g, the graded vector spaces gr U¢(g)
and grS°(g) are isomorphic as Hopf algebras. Here S¢(g) stands for the cofree cocommutative
coalgebra on the vector space g and it is rather bigger than the ordinary symmetric (co)algebra.
It is noted in op. cit. that without taking gr(S¢) the statement is not true.

The statement of the dual PBW theorem was further strengthened in |2, Theorem 4.9] where
it was proved that gr U(g) is, in fact, isomorphic to Scon(g), the conilpotent symmetric coalgebra
on g; note that Scon(g) is rather smaller than S(g). This seemingly paradoxical answer can be
explained as follows (assuming for simplicity that g is finite-dimensional). The PBW filtration
on U¢(g) induces one on (U°(g))* = U(g*). This latter filtration is just the PBW filtration on
U(g*) < U(g*). It is topologically exhaustive (meaning that U, 5 U(g*) = U(g*) is dense in
U(g*)), however it is not exhaustive since U(g*) # U(g*). The usual PBW theorem then gives
that gr U(g*) =~ S(g*), the ordinary symmetric algebra on g* and the dual statement about
gr U¢(g) follows.

Without the dualization, the same phenomenon corresponds to the fact that the PBW filtra-
tion of U¢(g) is not complete. Because of this, the PBW theorem for Lie coalgebras is of limited
utility for homological considerations; we will not use it in this paper.

4. KOSZUL DUALITY I: CONILPOTENT LIE COALGEBRAS

Let g be a Lie coalgebra g. The Chevalley-Eilenberg complex CE(g) has SY!g as its
underlying graded vector space and the differential d in it is defined as d = d; + do where d; is
induced by the internal differential in g and ds is determined by its restriction to ¥~ g which
is, in turn, induced by the cobracket g — g®g. Furthermore, given a g-comodule M, one can
form its Chevalley-Eilenberg complex CE(g, M) whose underlying vector space is SX ' g @M
and the differential is induced by the internal differential in g, cobracket in g and the coaction
of M (see Definition below). Note that under this definition CE(g,k) = CE(g), moreover,
CE(g, M) is a CE(g)-module. It seems that not much is known about this complex; in particular
whether it can be viewed as computing a derived functor in an appropriate model category of
comodules. An attempt to give an answer to this question leads one to the Koszul duality
between g-comodules and CE(g)-modules similar to the Koszul duality between comodules over
a coalgebra and modules over its cobar construction, cf. [19]. However, comodules over Lie
coalgebras are not necessarily locally finite (unlike comodules over coassociative coalgebras)
and this adds an additional subtlety to the theory.

4.1. Bar-cobar adjunctions. Let g be a locally finite Lie coalgebra and M be a locally finite
g-comodule. Let {e;} be a basis in g and {e'} the dual basis in g*. Then the canonical element

€:= Zei ®ec' e CE(g)®g*

is MC and, abusing the notation, we will denote by the same letter the element in CE(g)®U(g*)

corresponding to £ under the canonical inclusion g* — U(g*).
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Now consider the vector space CE(g)®M. Tt is a CE(g)®U(g*)-module and we can twist it
by the element &.

Definition 4.1. The CE(g)-module CE(g, M) := (CE(g) ® M) is called the Chevalley-
Eilenberg complex of g with values in M.

The functor M — CE(g, M) is one part of the bar-cobar adjunction (namely it is the co-
bar construction of M). Given a CE(g)-module N, let us consider N*®U(g*). This is a
CE(g)®U(g*)-module and we can twist it by the element £&. The resulting pc U(g*)-module
N*®U(g*)€] corresponds to a g-comodule with the underlying space N ® U¢(g) called the bar
construction B(N) of the CE(g)-module N.

Theorem 4.2. The functors CE(g,—) and B(—) form an adjoint pair between the categories
of CE(g)-modules and of locally finite g-comodules.

Proof. Let M be a locally finite g-comodule and L be a CE(g)-module. Then we can deduce
that Homcg(g)-moa(CE(g, M), L) has Hom(M, L) = M*®L as its underlying graded vector
space. It is then a U(g*)® CE(g)-module and the differential in it agrees with the differential
in (M*®L)LE].

Similarly, the vector space Homg comod(M, B(L)) is isomorphic to (M*®L)I<]. O

It is, therefore, natural to ask whether the above bar-cobar adjunction can be promoted to a
Quillen equivalence. The following example shows that it is unlikely without restrictions on g
beyond local finiteness.

Example 4.3. Let g be the Lie coalgebra dual to sla(k). Let us assume that k is algebraically
closed. Then CE(g) is an algebra, quasi-isomorphic to A(z), the exterior algebra with one
generator in degree 3. The derived category of CE(g) is equivalent to that of A(x) and the
latter is not semisimple. Thus, any of the finer coderived categories of CE(g) are also not
semisimple. On the other hand, the category of locally finite sly(k)-modules is semisimple and
so the coderived category of U°(g) is likewise semisimple.

4.2. Acyclic abelian Lie coalgebras. As a warm-up, we will compute the coderived cate-
gories for some of the simplest types of conilpotent Lie coalgebras, namely those which are
abelian and have an acyclic differential. These results will also be needed later on.

An abelian acyclic Lie coalgebra is just an acyclic complex of k-vector spaces and as such, it
is decomposed into a direct sum of elementary acyclic complexes of length 2 with basis vectors
z and dx. We will distinguish three types of such complexes:

(1) The degree of x is —1. The corresponding (abelian) Lie coalgebra will be denoted by
g1-

(2) The degree of z is 0. The corresponding (abelian) Lie coalgebra will be denoted by gs.

(3) The degree of z is different from 0 and —1. The corresponding (abelian) Lie coalgebra
will be denoted by gs.

Proposition 4.4. Assume that k is algebraically closed. All three coderived categories above
are semisimple. Moreover:

(1) The coderived category of g, has one simple object ko for any o € k, up to shift. The
endomorphism algebra of every simple object is k and there are no non-zero morphisms
between different simple objects.

(2) The coderived categories of gy and gs each have only one simple object up to shift and
k worth of its endomorphisms.

Proof. The case of g5 is the simplest: the universal enveloping coalgebra of g5 is conilpotent
and its dual is the pc algebra k[[a,da]] for some generator a. The latter algebra is filtered
quasi-isomorphic to k (with respect to the filtrations by the powers of the maximal ideal) and
so the coderived category of U°(gs) is equivalent to the category of graded vector spaces.
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Consider the linear dual of the universal enveloping coalgebra of g,, that is the pc completion
of the ordinary enveloping algebra of g5. Denoting by y and z the dual basis vectors to = and
dx respectively; we see that the enveloping algebra of g3 is k[y,u] with |y| = —1,|u| = 0 and
dy = u. Its pc completion is isomorphic to [ [ o kK[[ya, ua]] with d(ya) = uq — . It is therefore
a coproduct of conilpotent coalgebras, and so every go-comodule is isomorphic to a coproduct
of comodules over coalgebras dual to pc algebras k[[ya, ua]].- One of such coalgebras, namely
the one corresponding to a = 0, is weakly equivalent as a conilpotent coalgebra to k since it
is isomorphic to U¢(gs) for a suitable gs; therefore its coderived category is equivalent to that
of k. For a # 0, the pc algebra k[[ya,uq]] has the property that its multiplicative identity
is exact; this implies that any twisted module over it is chain homotopic to zero. It follows
that the coderived category of g, is equivalent to that of k[[yo, dyo]]*, which is the category of
graded vector spaces.

Finally consider g;. Its linear dual of the universal enveloping coalgebra is the pc completion
of the ordinary enveloping algebra of gf and is isomorphic to [ [ ¢y k[[2a,d2a]]. Here |z,| = 0.
Each of the pc algebras k[[ 24, d24]] is dual to the conilpotent coalgebra whose coderived category
is (as we saw before) the same as that of k. It follows that each such conilpotent coalgebra has
the same coderived category as k so the coderived category of g, is equivalent to that of the
cosemisimple coalgebra [ [, kq, @ € k. The required conclusion follows. O

4.3. Koszul complex for symmetric coalgebras. Koszul complexes are classically used
to construct resolutions of modules of Koszul quadratic algebras, such as S(V'), the symmetric
algebra on a graded vector space V. In this subsection we develop a similar theory for comodules
over the cofree cocommutative coalgebra S¢(V').

Proposition 4.5. Let g be a (dg) vector space viewed as an abelian Lie coalgebra and U¢(g)
be its universal enveloping coalgebra. Then for any locally finite g-comodule M, the unit of the
adjunction

(4.1) M — Bo CE(g, M)
is a weak equivalence as a map between U¢(g)-comodules.

Remark 4.6. Clearly the bar construction of any CE(g, M )-module is a fibrant U¢(g)-comodule;
therefore Proposition supplies a canonical fibrant resolution of any S¢(V')-comodule where
V' is a vector space. It is, therefore, a comodule version of the well-known Koszul resolution of
a module over a symmetric algebra.

Since g is abelian, it decomposes as a direct sum of one-dimensional abelian Lie coalgebras
and the two-dimensional acyclic abelian Lie coalgebras of Proposition As a first step, we
will prove the claim of Proposition for each type separately.

Lemma 4.7. The claim of Proposition [{.5 holds for one-dimensional abelian Lie coalgebras
and for the three types of acyclic Lie coalgebras of Proposition [{.4)

Proof. All of our constructions, including the adjoint pair CE(g, —) and B(—), commute with
scalar extension from k to its algebraic closure. Since a (dg) k-vector space is acyclic if and
only if its scalar extension is, we may assume without loss of generality that k is algebraically
closed.

Suppose that g is one-dimensional and odd. In that case U(g) is an exterior coalgebra on one
generator, so it is conilpotent. The cobar construction Q(U¢(g)) of this coalgebra has underlying
graded vector space TY. ! g and it is isomorphic to CE(g) (as the symmetric and tensor algebras
on an even 1-dimensional vector space are isomorphic); the differentials also agree (being both
sero). The map is just the ordinary cobar-bar resolution of a comodule over a conilpotent
coalgebra, cf. |19, Theorem 6.4].

If g is one-dimensional, even and not concentrated in degree zero, then U°(g) is a conilpotent
symmetric coalgebra on one generator and is the bar construction B(A) of an exterior algebra A
on one generator (here we use that symmetric and tensor coalgebras on an even 1-dimensional
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space coincide). In that case, the functor M — CE(g, M) is the functor from B(A)-comodules
to A-comodules that is part of a Quillen equivalence according to [19]. Again, the conilpotent
Koszul duality for a bar construction, cf. [19, Theorem 6.3] gives that is a weak equivalence.

The case when g is one-dimensional sitting in degree zero is similar to the previous one and
uses the fact that the cofree (nonconilpotent) coalgebra on an even 1-dimensional space is iso-
morphic to the (nonconilpotent) cofree cocommutative coalgebra on the same vector space. We
have U¢(g) = S°(g), the cofree cocommutative coalgebra on g. In that case U¢(g) is the extended
bar construction of an exterior algebra on one generator in degree 1 and the nonconilpotent
Koszul duality [11, Theorem 3.10 (2)] for a bar construction gives the claimed result.

Now suppose that g is a two-dimensional acyclic Lie coalgebra. To show that is a
weak equivalence, it suffices to show that for any (locally finite) g-comodule N, there is an
isomorphism H*[Homye(g) (N, B o CE(g, M))] = [N, M]. where [N, M], stands for the graded
vector space of maps N — M in the coderived category of locally finite g-comodules. Note that

Homye(q) (N, B o CE(g, M)) = CE(g, Hom(N, M));

this isomorphism holds for any Lie coalgebra g, not necessarily acyclic or abelian. It suffices,
therefore, to prove that there is an isomorphism

(4.2) [N, M], ~ H* (CE(g, Hom(N, M))) .

Now let g = gy; then, according to Proposition the coderived category of g is generated
by one simple module k (on which g coacts trivially). Therefore, it suffices to assume that
M = N = k, with the trivial coaction of g. Clearly, CE(g, k) = CE(g) has cohomology sitting
in degree zero only and is isomorphic to k. The space of homotopy classes of maps [k, k], is
likewise isomorphic to k and the map H*(CE(g) = [k, k]|.) is clearly an isomorphism. The case
g = g3 is completely analogous.

The case g = g, is slightly different. Note that CE(g,) = k|z, dz], the polynomial de Rham
algebra in one variable. Recall that the coderived category of locally finite g-comodules is

k,if o =
generated by simple objects ko, a € k so that [kq, kgl. = na ,ﬂ’ Moreover, the g;-
0, otherwise.
comodules k,,kg correspond to the MC elements adz, fdz € k[z,dz]. Set N = k, and =
Mkg. Then Hom(N, M) =~ k,_ 3 and CE(g,, Hom(N, M)) is computed by the twisted complex

k[z, dz][(@=P)d] of K[z, dz]. The differential dl*=#] in k[z, dz]l(*=#)4%] has the form
dl*(w) = dw + (Bdz — adz)w

for w € k[z,dz].

The zeroth cohomology of k|z, dz][(o‘_ﬁ)dz] correspond to polynomials f satisfying the differ-
ential equation

ff+(@=B)f=0

and this equation only has polynomial solutions when o = 5 and in that case the space of
solutions is one-dimensional. The first cohomology corresponds to the quotient space of all
polynomials ¢(z) modulo those of the form p’ + (a — 8)p. The differential equation p'(z) +
(a— B)p(2) = q(2) always has a polynomial solution and we conclude that the first cohomology
group is zero.

So the vector space CE(g;,Hom(k,,kg)) is quasi-isomorphic to k for « = § and to zero
otherwise. It follows that the map is an isomorphism and so the desired claim is proved
for g,. O

Lemma 4.8. Let f, : M, — N, be a finite family of weak equivalences of comodules over
coalgebras Cy,ac € S. Then

(4.3) ® fa: ® M, — ®Na.
aesS a€eS a€esS

is a weak equivalence of ) g Ca-comodules.
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Proof. Suppose first that S consists of two elements. The condition that f : M; — Ny is a
weak equivalence means that the cofiber C(f) of f is coacyclic as a Cq-comodule. The cofiber
of the map M; ® Ms — N; ® My has the form C(f) ® M, and it is clearly coacyclic as a
C1 ® Ca-comodule. Thus, the Cy ® Co-comodules My ® Mo and N1 ® Mo are weakly equivalent.
Similarly N1 ® My and N1 ® No are weakly equivalent, so the claim is proved in this case and
then, by induction, for any finite set S. O

We now return to the proof of Proposition While it relies on a result on solvable Lie
coalgebras belonging to the following subsection, the reader can check that it does not cause
the circularity of the argument.

Proof of Proposition[4.5. Any U¢(g)-comodule is a filtered colimit (union) of its finite-dimensional
subcomodules (as is the case for comodules over any coalgebra). The model category of comod-
ules over a coalgebra is compactly generated and combinatorial and thus, a filtered colimit of
weak equivalences in it is a weak equivalence. This follows (as communicated to us by the ref-
eree) by combining Proposition 7.3 of [10] and Proposition A.1.2.5 of [17]. Therefore, it suffices
to assume that M is finite-dimensional.

Let us first assume that g is finite-dimensional. Note that U¢(g) is isomorphic to a finite
tensor product of coalgebras of the form U¢(h) where b is one of the coalgebras of Lemma
Let us write it as U%(g) = &) eq U(h,) where S is some finite indexing set. Since g is abelian,
M belongs to the triangulated subcategory of the coderived category of U¢(g) generated by
one-dimensional comodules, by virtue of Corollary Hence we may assume that M is one-
dimensional. Thus M = &), .q Ma, for some one-dimensional U¢(h,,)-comodules M,, and the
unit of the adjunction 7 : M — B o CE(g, M) is isomorphic to the tensor product of the units
Na : My — BoCE(g,, M,). By Lemmal[d.7] each 7, is a weak equivalence of U¢(g,,)-comodules,
and it follows by Lemma that n is a weak equivalence of U¢(g)-comodules.

The final step is to remove the restriction that g be finite-dimensional. Given M a finite-
dimensional comodule over an arbitrary abelian Lie coalgebra g, the coaction on M restricts
to some finite-dimensional subcoalgebra of g. For any finite-dimensional subcoalgebra g of g
containing this fixed subcoalgebra, the unit map 77 : M — B o CE(g, M) is defined and is
moreover a weak equivalence by the arguments above. Since B o CE(g, M) is the colimit in
locally finite g-comodules of its submodules B o CE(g, M) over such g, it follows that the unit
map 7 : M — B o CE(g, M) is also a weak equivalence. O

4.4. Koszul duality for locally finite comodules. Recall from [11] that the category A-
Mod of modules over any algebra A has the structure of a compactly generated model category
of second kind where weak equivalences are the maps . — N which induce quasi-isomorphisms
Homa(M, L) — Homu (M, N) for any finitely generated twisted A-module M and fibrations
are surjective maps. This model structure is different, in general, from the standard one;
specifically a quasi-isomorphism of A-modules is not necessarily a weak equivalence in the above
sense. Denote by Perf!!(A) the full subcategory of A-modules formed by finitely generated
twisted A-modules and their retracts up to homotopy; these represent compact objects in the
corresponding homotopy category of A-Mod, the (compactly generated) coderived category of
A. For a conilpotent Lie coalgebra g, we consider this model structure on CE(g)-modules. Note
that, owing to the conilpotency of g, CE(g) is cofibrant as a commutative algebra but not as an
associative algebra.

We need some results about the structure of (dg) modules over finite-dimensional solvable
Lie algebras. Recall that, under the assumption that k is algebraically closed, an ordinary
(ungraded) finite-dimensional module over a solvable finite-dimensional Lie algebra g always
possesses an invariant subspace of dimension 1. It follows that such a module always has a
filtration whose associated graded module is a direct sum of 1-dimensional representations of g.
In the dg situation, the result is slightly more complicated.

Lemma 4.9. Let g be a (dg) finite-dimensional solvable Lie algebra over an algebraically closed

field k and N be a finite-dimensional (dg) g-module that has no proper (dg) g-submodules. Then
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N is either 1-dimensional or 2-dimensional. If N is 2-dimensional, then it is spanned by two
vectors x and dx and the g-module structure on N is given by the formulas:

a(z) = ala)z, a(dr) = ala)dr,
for aeg, la| =0 where a is a linear function on g° and
a(z) =0, a(dx) = alda)x,
foraeg and |a| = —1. If a € g has degree different from 0 or —1, then a acts as zero on N.

Proof. Since g is solvable, we know that IV has a 1-dimensional g-invariant submodule; let x be
its basis vector. Note that any element in g of degree different from zero must act on z trivially
for degree reasons. Therefore, every homogeneous component of x itself spans an invariant
g-submodule and so we assume, without loss of generality, that = is homogeneous. Then for any
a € g with |a] = 0, we have ax = a(a)r for some linear function a on g° and ax = 0 if |a| # 0.
Next,
d(az) = da(z) + (1)1 adz.
If |a| = 0, necessarily da(x) = 0 and a(dx) = a(a)dz. If |a| = —1, then az = 0 and
da(z) = a(da)r = a(dx)
as claimed. A similar reasoning shows that if |a| # 0,1 then ax = a(dx) = 0. O

The next result shows that the existence of this exotic 2-dimensional g-module does not
matter, after all, as it represents zero in the coderived category of locally finite g*-comodules.

Lemma 4.10. Let g be a finite-dimensional (dg) Lie coalgebra over an algebraically closed
field k whose dual g* is solvable and let N be a 2-dimensional g*-module constructed in Lemma
[4.9. Then N is coacyclic as a locally finite g-comodule.

Proof. Consider an abelian Lie algebra spanned by two vectors a and da with |a| = —1 (so it’s
acyclic) and acting on N by the formulas:

(da)(z) = az, (da)(dzx) = a(dx);a(z) = 0,a(dz) = ax

where « € k. Note that the dual to this abelian Lie algebra is the (abelian) Lie coalgebra g, of
Proposition Then it is clear that g* acts on N* through a Lie algebra map g* — g5 and
so, if N* is coacyclic as an go-comodule, it is also coacyclic as an g-comodule.

From the description of gy-comodules in Proposition it follows that all locally finite
go-comodules that are nontrivial in the coderived category of gy-comodules, have nontrivial
cohomology. Since N*, and therefore also N, is acyclic, it represents the zero object in the
coderived category and so, is coacyclic. U

Corollary 4.11. Let g be a finite-dimensional (dg) Lie coalgebra over an algebraically closed
field k whose dual g* is solvable and M be a (dg) finite-dimensional g-comodule. Then M is
weakly equivalent to a comodule having a finite filtration whose subquotients are either one-
dimensional or coacyclic.

Proof. By Lemma the comodule M must have a quotient L that is either two-dimensional
coacyclic or one-dimensional. Then the kernel M; of the map M — L has the dimension less
than dim M and also has a similar quotient. Continuing this process, we obtain a sequence of
g-comodules 0 — M,, — M,_1 — ... — My = M such that each quotient M;/M;_; has the
required form. O

Let us call a Lie coalgebra cosolvable if it is a union of finite-dimensional Lie coalgebras
whose duals are solvable Lie algebras. Then, Corollary has the following straightforward
generalization:

Corollary 4.12. Let g be a cosolvable (e.g. conilpotent) Lie coalgebra over an algebraically
closed field k and M be a locally finite g-comodule. Then M is weakly equivalent to a comodule
having an increasing filtration by subcomodules whose subquotients are either coacyclic or 1-
dimensional.
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Theorem 4.13. Let g be a conilpotent Lie coalgebra. The adjoint pair B(—) and CE(g, —)
determine a Quillen adjunction between model categories U¢(g)-Comod and CE(g)-Mod; more-
over, the composition B o CE(g, —) is an endofunctor on U¢(g)-Comod which induces a functor
isomorphic to the identity on the homotopy category of U¢(g)-Comod.

Proof. As in the proof of Proposition [4.5] we may assume, without loss of generality, that k
is algebraically closed. It is immediate that the left adjoint functor CE(g, —) respects cofibra-
tions while the right adjoint B(—) respects fibrations, so the pair (B(—), CE(g, —)) is indeed a
Quillen adjunction. Let L be a locally finite g-comodule, or, equivalently, a U¢(g)-comodule and
consider the natural map L — B CE(g, L). To prove that this is a weak equivalence of U¢(g)-
comodules it suffices to show that for any finite dimensional U¢(g)-comodule M, it induces a
bijection [M, L], — [M, B CE(g, L)]. where [—, —] stands for the graded vector space of maps
in the homotopy category of U¢(g)-comodules. The latter space of maps is computed by resolv-
ing the second argument by a fibrant comodule. Since B CE(g, L) is already fibrant, we have an
isomorphism [M, B CE(g, L)]+ = CE(g, Hom(M, L)). On the other hand, taking the standard
cobar-bar resolution of the U¢(g)-comodule L, we obtain that [M, L], is computed by the com-
plex whose underlying graded vector space is Q(U¢(g)) ® Hom(M, L) and a twisted differential
making it the standard complex computing HH(U®(g), Hom(M, L)), the Hochschild complex of
the coalgebra U¢(g) with coefficients in the bicomodule Hom(M, L). The cohomology of this
complex computes RHomye(g)g(ue(q))er (Hom(M, L), U¢(g)) and therefore, by Proposition
RHomye(q) ([Hom(M, L)), k). The latter, in turn is isomorphic to

Q(Hom(M, L)) := [2(U%(g)) ® [Hom(M, L)]*]¥],

the cobar-construction of the U¢(g)-comodule [Hom(M, L)].

There is a map of algebras Q(U¢(g)) — CE(g) given by the canonical MC element in
Hom(U¢(g), CE(g)) and this determines a map Q(N) := [Q(U%g)) ® N]¢ — CE(g, N) for
any locally finite g-comodule V. We claim that this latter map is a quasi-isomorphism; taking
for N the g-comodule [Hom (M, L)]*? will give the desired statement.

To prove that, recall from Corollary that N possesses a filtration whose subquotients
are one-dimensional g-modules or two-dimensional coacyclic ones. The filtration on N induces
filtrations on Q(N) and on CE(g, N); the map Q(N) — CE(g, N) respects this filtration and if
it is a quasi-isomorphism on the associated subquotients, it will be a quasi-isomorphism overall.
This reduces the desired statement to the case when NV is 1-dimensional or coacyclic. In the latter
case both Q(N) and CE(g, V) have zero cohomology so we are left with the one-dimensional
module N.

To prove that Q(N) — CE(g, N) is a quasi-isomorphism for a 1-dimensional N, note that
Q(N) has the same underlying graded vector space as Q(U(g)) but the differential has the
form dq + &n where £y is the MC element in Q(U¢(g)) corresponding to the g-comodule N.
Similarly, the differential on CE(g, N) has the form dg + £y where we denote (slightly abusing
the notation) the MC element in CE(g, N) corresponding to the g-comodule N by the same
symbol &y .

Now consider the canonical increasing filtration 0 < gy < g; < ... on the conilpotent Lie
coalgebra g whose dual is the lower series filtration on g*: g* > [g*,¢*] 2 [[¢%,9%],6%] > .. ..
In particular, the lowest filtration component g, consists of those elements that vanish on all
commutators of g*. Note that the associated graded Lie coalgebra is abelian. This induces an
exhaustive filtration on CE(g) and on Q(U¢(g)).

Since N is one-dimensional, all commutators of g* vanish on it; this translates into £ being
in the lowest filtration component of CE(g) and similarly for Q(N). Thus, the total differential
on CE(g, N) and on Q(NV) preserve the given filtrations. Next, dcg vanishes on the associated
graded module to CE(g, N) and so, gr CE(g, N) is the Chevalley-Eilenberg complex of the
comodule gr N = N over the Lie coalgebra grg, which is an abelian Lie coalgebra. Similarly,
gr Q(N) is the cobar construction of N as a gr g-comodule. Thus, showing that gr CE(g, N) —
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grQ(N) is a quasi-isomorphism (which implies the desired statement) is equivalent to the map
CE(g, N) - Q(N) being a quasi-isomorphism under the assumption that g is abelian.

To prove this last statement, it suffices to observe that CE(g, N) computes [k, N]. with the
U¢(g)-comodule N being replaced by its Koszul complex which, by Proposition is a fibrant
replacement of N, whereas Q(N) computes the same with the standard cobar-bar resolution of
N. This finishes the proof. U

An immediate consequence of Theorem is an interpretation of the Chevalley-FEilenberg
complex CE(g, M) for a Lie coalgebra g and a g-comodule M as a derived functor in the abelian
category of locally finite g-comodules.

Corollary 4.14. Let g be a conilpotent Lie coalgebra over a field k and M be a locally finite
g-comodule. Then CE(g, M) computes RHom(k, M) in the derived category of locally finite
g-comodules.

Proof. Indeed, RHom(k, M) is computed by (M) but it was shown in the course of the proof
of Theorem that Q(M) and CE(g, M) are quasi-isomorphic. O

Remark 4.15. Theorem exhibits the category H°(g-Comod) as a coreflective subcategory
of H°(CE(g)-Mod) via the functor CE(g, —); in particular this implies that this functor is fully
faithful on the level of homotopy categories. A natural question is whether CE(g, —) is also
essentially surjective up to homotopy, i.e. whether it is part of a Quillen equivalence between
U¢(g)-Comod and CE(g)-Mod. The following example shows that this is not true, in general.

Example 4.16. Let us assume that k is algebraically closed. Let g; be the two-dimensional Lie
coalgebra of Proposition Then, the algebra CE(g) is isomorphic to the ordinary polynomial
de Rham algebra in one variable CE(g) =~ k|z,dz] where |z| = 0. This algebra is quasi-
isomorphic to k and so, its ordinary derived category (and thus, the conilpotent coderived
category of g;) is equivalent to the category of graded k-vector spaces. On the other hand,
the coderived category of k[z,dz] is not trivial. Indeed, any polynomial 1-form in k[z,dz] is
an MC-element, and it is easy to check that for two different such MC-elements w; and ws the
twisted modules k[z, dz]“] and k[z, dz][“?] have no nonzero maps between them (this follows
from the fact that the differential equation fw; —wsf = df does not have polynomial solutions).

Next, Proposition gives us that the coderived category of U¢(g,) is equivalent to that of
an infinite sum of copies of k. The indecomposable 1-dimensional g;-comodule k = k,,a € k
corresponds to an MC element adz € k|z,dz] and thus, to a corresponding twisted k|z, dz]-
module but clearly there are many inequivalent others (which can be viewed as Ly, g-comodules).
So, the cobar construction exhibits the coderived category U¢(g;) as a coreflective subcategory
of the coderived category of CE(g,), but it is not equivalent to it.

This example shows that, in order to obtain a Quillen equivalence between U¢(g)-Comod and
CE(g)-Mod, further restrictions need to be imposed on g. A natural such restriction is for g
to be non-negatively graded; note that the two-dimensional Lie coalgebra of Example is
clearly not of this type. The class of non-negatively graded Lie coalgebras includes ordinary Lie
coalgebras as well as Lie coalgebras associated with rational nilpotent topological spaces.

4.4.1. Comodules over non-negatively graded Lie coalgebras. We will now prove that the functor
CE(g, —) is essentially surjective (on the homotopy category level) in the case when the conilpo-
tent Lie coalgebra g is non-negatively graded. To establish this, we need to recall certain results
on the Koszul duality (or triality) between modules over Lie algebras and co/contra-modules
over their Chevalley-Eilenberg coalgebras.

Let G be a Lie algebra. Then its category of modules G-Mod is equivalent to the category
of U(G)-modules and as such, carries a model category structure with weak equivalences being
quasi-isomorphisms and fibrations being surjective maps. The Chevalley-Eilenberg coalgebra
of G is CE(G) := Scon XG, the cofree conilpotent cocommutative coalgebra on .G with the
differential induced by the internal differential of G and the Lie bracket on G. Given a G-
module M, the (cohomological) Chevalley-Eilenberg complex of G with coefficients in M has
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the form [S’EilG* ®M]5, the MC twisting of the Sy ~1G*-module SY~1G* ® M similar to the
one used in the definition of the Chevalley-Eilenberg complex of a Lie coalgebra. In fact, in the
case when G is finite-dimensional, G* is a Lie coalgebra, and the action map GRM — M gives,
by the tensor-hom adjunction a map M — Hom(G, M) =~ G* ® M giving M the structure of a
G*-comodule. Then we have an isomorphism CE(G, M) =~ CE(G*, M).

An important subtlety in this framework is that the cohomological Chevalley-Eilenberg com-
plex CE(G, M) is a contramodule over the coalgebra CE(G) rather than a comodule. In fact,
there is also the corresponding CE(G)-comodule, the homological Chevalley-Eilenberg com-
plex of G having the form CE,(G, M) = S¢on G ® M with a suitable twisted differential.
The CE(G)-comodule CE(G, M) and the CE(G)-contramodule CE,(G, M) are related by the
comodule-contramodule correspondence and we refer to [19, Section 2,5] for the definition of
contramodules and the comodule-contramodule correspondence.

The category C-Ctrmod of contramodules over any coalgebra C' admits a model structure, cf.
[19, Section 8.2], and the corresponding homotopy category is called the contraderived category
of C'. The following result holds.

Proposition 4.17. Let G be an arbitrary Lie algebra. The functor CE(G, —) is a left Quillen
functor that is part of a Quillen equivalence between G-Mod and CE(G)-Ctrmod. Furthermore,
the functor RHomggq)(CE(G), —) is a left Quillen functor that is part of a Quillen equivalence
between CE(G)-Comod and CE(G)-Ctrmod.

Proof. The first claim is proved in [19, Example 6.6] in the special case when G is an ordinary
(non-dg) Lie algebra and the arguments extend verbatim to the dg case. The second claim is
a general result on the correspondence between comodules and contramodules and is proved
in [19, Section 8.4]. O

The full embedding of the homotopy category of U¢(g)-Comod into that of CE(g)-Mod es-
tablished in Proposition can be improved to an equivalence, under a natural grading
restriction.

Theorem 4.18. Let g be a non-negatively graded conilpotent Lie coalgebra. The adjoint pair
B(—) and CE(g, —) determines a Quillen equivalence between model categories U¢(g)-Comod
and CE(g)-Mod.

Proof. We may assume, without loss of generality, that k is algebraically closed. It suffices to
prove that CE(g, —) is essentially surjective. Since the homotopy category of CE(g)-modules is
generated by finitely generated twisted CE(g)-modules, it further suffices to show that any such
is in the image of CE(g, —). Let us assume, first of all, that dim g < o. A twisted CE(g)-module
has the form M = (CE(g)®V)[] where £ is an MC element in CE(g) ®End(V) and dim V < co.
Note that, since g is non-negatively graded and finite-dimensional, CE(g) is finite-dimensional
in every graded component and CE(g) = CE(g*). So, M can be viewed as a contramodule over
the coalgebra CE,(g) := [CE(g*)]*.

The CE.(g)-comodule corresponding to the contramodule M via the comodule-contramodule
correspondence, has the form N := CE,(g)®V (with a suitable twisted differential). Since N is
a cofree CE,(g)-comodule and dim V' < o0, it follows for any compact (i.e. finite-dimensional)
CEs(g)-comodule L, one has RHomcg, (g)-Comod(L, M) is finite-dimensional. Therefore, M
as an object in the contraderived category of CE.(g), also has this property as well as a g*-
module K corresponding to M via the Koszul equivalence between g*-Mod and CE«(g)-Ctrmod.
Since K is an object in the ordinary derived category of U(g*) and the latter is generated
by a single compact object U(g*), this property of the g*-module K is equivalent to H*(K)
being finite-dimensional. Next, since g is non-negatively graded, U(g*) is non-positively graded.
Using the Postnikov tower of K as a U(g*)-module (which exists since U(g*) is non-positively
graded), we see that K belongs to the thick subcategory containing U(g*)-modules that are
finite-dimensional (and concentrated in a single degree). Every finite-dimensional U(g*)-module
is also a U(g)-comodule. Thus, M belongs to the thick subcategory generated by contramodules
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of the form CE(g,L) where L is finite-dimensional. By Theorem the functor CE(g, —)
is fully faithful on the homotopy category level and it follows that, since each CE(g, L) (by
definition) is in the image of the functor CE(g, —), so is M, as an object in the thick subcategory
generated by CE(g, L), for L finite-dimensional. Thus, the desired claim is proved under the
assumption dim g < o0.

Let now the conilpotent Lie coalgebra g be possibly infinite-dimensional. Then g = |, g,
where g, run through finite-dimensional Lie subcoalgebras of g. Then CE(g,) can be viewed
as a subcomplex of CE(g) and CE(g) = | J, CE(g,). Let M be a twisted module over CE(g)
whose underlying space is CE(g) ® V with dim V' < o0. Because of finite-dimensionality of V,
there exists b := g, such that the differential in M restricts to CE(h) ® V. Denote by N the
corresponding twisted CE(h)-module whose underlying space is CE(h) ® V; the CE(g)-module
M is obtained from N by tensoring up with CE(g).

Since dimbh < oo, there exists a locally finite h-comodule L such that CE(h, L) is weakly
equivalent to N. Since b is a Lie subalgebra of g, L can be viewed as a g-module. We have:

M = N ®cg(y) CE(g) ~ CE(b, L) ®cry) CE(g) = CE(g, L)
and we are done. O

4.5. Conilpotent Koszul duality. We will now discuss the coLie-commutative Koszul duality
for conilpotent modules over a Lie coalgebra. This version is closer to the ordinary dg Koszul
duality in that it does not involve model categories of modules of the second kind.

Let g be a Lie coalgebra and g-Comod.o, be the category of conilpotent g-modules. Recall
from Proposition that g-Comodcon is equivalent to the category Ucon(g)-Comod of comod-
ules over the conilpotent universal enveloping coalgebra of g. As such, it inherits the structure of
a model category. Consider the algebra CE(g) ® [Ucon(g)]*. Then it contains an MC element &,
the image of the canonical MC element in g* ® CE(g). We can then set CE(g, M) := CE(g)®M,
the Chevalley-Eilenberg complex of g with coefficients in M; note that this definition clearly
agrees with that given in Section

Similarly, given a CE(g)-module N, we consider N*®[Ucon(g)]*. This is a CE(g)®[Ucon(g)]*-
module and we can twist it by the element . The resulting pc [Ucon(g)]*-module (N* ®
[Ucon(g)]*)[ﬂ corresponds to a g-comodule with the underlying space N ® U¢on(g) is called the
conilpotent bar construction Beon (V) of the CE(g)-module N.

The following result is an immediate corollary of definitions.

Proposition 4.19. The functor Beon : CE(g)-Mod — Ucon(g)-Comod is right adjoint to
CE(g, —) : Ucon(g)-Comod — CE(g)-Mod. The functor Beon is (isomorphic to) the functor
associating to a CE(g)-module N the maximal conilpotent submodule of B(N').

Informally, one can say that the conilpotent bar-cobar adjunction is obtained from the non-
conilpotent one by restricting to conilpotent g-comodules.

It is natural to ask whether the conilpotent Koszul duality constructed above can be promoted
to a certain Quillen equivalence. For this we must (as before) impose some conditions on g;
indeed if g* is a semisimple Lie algebra, then g has no conilpotent comodules and Ucon(g) = k.
So we assume that g is itself conilpotent. Then we have the following result.

Theorem 4.20. The bar-cobar adjunction determines a Quillen equivalence between the cat-
egory of conilpotent g-comodules (equivalently Uecon(g)-comodules) and the category of CE(g)-
modules where the latter has the standard projective model structure where weak equivalences
are quasi-isomorphisms and fibrations are surjective maps.

Proof. We may assume that k is algebraically closed; the general case follows. Consider the co-

bar construction of the coalgebra Ucon(g); recall that it has the form Q(Ucon(g)) = TS Ucon(g)

with the differential induced by that on Ugon(g) and the coproduct on Ucon(g). If A is an alge-

bra, then an algebra map Q(Ucon(g)) — A is equivalent to an MC element in the convolution

algebra Hom(Ueon(g), A) = AQU(g*). Thus, the canonical MC element in CE(g)®U(g*) deter-

mines an algebra map Q(Ugon(g)) — CE(g). It is now clear that the functor M — CE(g, M)
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from conilpotent g-comodules to CE(g)-modules factors as
Ucon(g)-Comod — Q(Ucon(g))-Mod — CE(g)-Mod

where the first functor above is the part of a Quillen equivalence between comodules over a
(conilpotent) coalgebra and modules over its cobar construction (see [19, Section 8.4]) and the
second is the induction functor coming from the algebra map Q(Ucon(g)) — CE(g) described
above. Both functors are left Quillen, and so, their composition is likewise left Quillen. In order
to prove that this composition is a Quillen equivalence, it suffices to show that Q(Ucon(g)) —
CE(g) is a quasi-isomorphism. It is at this point that the condition of conilpotence of g is
used. Using the filtration on g whose associated graded Lie coalgebra is abelian, the question is
reduced to the case when g itself is abelian, and then, as in the proof of Theorem further
to the case when g is one-dimensional. In the one-dimensional situation there are two cases:
when g is odd (and then Ucon(g) is the exterior coalgebra on one generator) and when g is even
(and then Ucopn(g) is the polynomial coalgebra on one generator). (Note that in the conilpotent
situation there is no special case when g is concentrated in degree zero.) The desired statement
follows from the Koszul resolution as in the non-conilpotent case. Finally, if the abelian Lie
coalgebra g is not finite-dimensional, it is a filtered colimit of finite-dimensional ones and the
claim follows from passing to filtered colimits. O

5. KoszuL DUALITY II: COMMUTATIVE COFIBRANT ALGEBRAS

Given a conilpotent Lie coalgebra g, its Chevalley-Eilenberg complex CE(g) is a cofibrant
commutative augmented algebra (though it is not cofibrant as an associative dg algebra). This
suggests constructing similarly a Koszul duality starting from the model category of the second
kind of modules over an augmented cofibrant commutative algebra. This is what we will do in
this section.

5.1. Bar-cobar adjunctions. Let A be an augmented algebra with augmentation ideal A.
Let us recall that the bar construction of A is the cofree conilpotent coalgebra B(A) :=
(Teon(XA),dp) with the differential dp induced from the internal differential in A and the
multiplication in A. The extended bar construction is the cofree (nonconilpotent) coalgebra
B(A) := (T¢(2A),dy) where the differential dj is similarly induced by the internal differential
in A and its associative multiplication; the details of this construction can be found in [11].
The extended bar construction has a coaugmentation € : k — B(A), and B(A) can be identi-
fied with the maximal conilpotent subcoalgebra in B(A) containing e(k). Alternatively, B(A)
can be defined through its dual pc algebra B*(A) = T(X 'A*) and B(A) through its dual pc
algebra B*(A) = T(X~'A*). The algebra B*(A) is augmented (where the augmentation ideal
is generated by the elements in A*, and the local algebra B*(A) is obtained by localizing at the
augmentation ideal.

Now suppose that A is commutative. In that case B*(A) is a complete Hopf algebra where
the diagonal is specified by declaring the elements in A* to be primitive: A(a) = a ® 1 +
1 ® a for a € X7 1A*; the compatibility of the differential dp with the diagonal follows from
the commutativity of A. The bar construction B(A) is then also a Hopf algebra with the
cocommutative comultiplication being dual to the diagonal in B*(A).

Next, the primitive elements Prim(B*(A)) form a (dg) Lie algebra and, since B*(A) is a
completed tensor algebra on X ~'A*, this Lie algebra will be the completed free Lie algebra:
Prim(B*(A)) = L(X 1 A*).

Definition 5.1. Let A be an augmented commutative algebra.
(1) The Harrison Lie coalgebra of A is the Lie coalgebra dual to £(X1A*). It will be
denoted by Harr(A).

(2) The universal enveloping coalgebra of Harr(A) is called the modified bar construction
of A:

B'(A) := U°(Harr(A)).
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Remark 5.2. It is clear that Harr(A), disregarding its differential, is the cofree conilpotent Lie
coalgebra: Harr(A) = Leon(XA). Considering the cofree (nonconilpotent) Lie coalgebra on YA
leads to an extended version Harr(A) whose universal enveloping coalgebra is B(A). Observe
that there is a natural sequence of inclusions of coalgebras:

(5.1) B(A) c B'(A) c B(A).

Let M be a module over a commutative algebra A; then B'(A) ® M is a module over
B"*(A)°°? @ B"(A) ® A. Indeed, B'(A) is a bimodule over B'*(A) which translates into an
action of B'*(A)°P ® B"*(A) on B'(A) and A acts one the second tensor factor M. Twisting
by the canonical MC element ¢ € B'*(A) ® A, we obtain a B'*(A)°° ® [B"*(A) ® A]*-module
(B'(A) ® M)E]. Disregarding the [B"*(A) ® A]¢-module structure, we obtain a right B'*(A)-
module structure on (B'(4) ® M) which comes from a B'(A)-comodule (or, equivalently, a
locally finite Harr(A)-comodule).

Definition 5.3. The locally finite Harr(A)-comodule (B'(A)® M)l constructed above is called
the modified bar construction of the A-module M. We will write (B'(4) ® M)l as B'(M).

Now let N be a locally finite Harr(A)-comodule (equivalently a B'(A)-comodule). Then AQN
is a APRA® B’ (A)°P-module (where A°°’®A acts on A and B'*(A) acts on the right on N) and
we can twist it by the canonical MC element & in [A°° ® B'*(A)°P]¢ obtaining (A® N)[E]. Then
(A® N)IE will be viewed as an A-module (forgetting the [A°? @ B'*(A)°P]é-module structure).

Proposition 5.4. The functor M — B'(M) : A-Mod — B'(A)-Comod is right adjoint to the
functor (A® =)l : B'(4)-Comod — A-Mod.

Proof. Let N be a B'(A)-comodule and M be an A-module. Then, disregarding differen-
tials, Homp:(4)(N, B'(M)) = Hom(N, M) since B'(M) is a cofree B'(A)-comodule. Note that
Hom(N, M) is a B"*(A) ® A-module where B'*(A) acts on N and A acts on M; inspection
shows that, as (dg) vector spaces we have Homp:(4y(N, B'(M)) = [Hom(N, M)]¥E. Similarly,
Hom((N ® A&, M) =~ [Hom(N, M)]é] and we are done. O

We can now formulate our version of Koszul duality for the Harrison Lie coalgebra.

Theorem 5.5. Let A be a commutative augmented cofibrant algebra.

(1) The pair of adjoint functors (B, (—®A)E]) determines a Quillen adjunction between the
model categories A-Mod and locally finite Harr(A)-comodules; moreover, the composition
B'o(—@A)¥l induces an endofunctor on the homotopy category of locally finite Harr(A)-
comodules that is isomorphic to the identity functor.

(2) If A is connected (i.e. A =k and A" = 0 for n < 0), then the adjoint pair (B', (— ®
A is a Quillen equivalence.

Proof. Note that the functor N — N ® A)¢] associating to a B'(A)-comodule N an A-module,
factors through the corestriction of scalars corresponding to the inclusion of coalgebras B'(A) c
B(A), see . A corestriction of scalars corresponding to any map of coalgebras is a right
Quillen functor on the corresponding comodules; this is not stated explicitly in [19] but follows
at once from the description of the model structure on comodules in Theorem 8.2 of op.cit.

Since the functor N — N®A)E! with N regarded as a B(A)-comodule is right Quillen (in fact
part of a Quillen equivalence), cf. |11, Theorem 3.10], the claim about the Quillen adjunction
follows.

Next, consider the cone C/(i) of the unit adjunction i : N — (B'(A)QAQN))ES1+H1®E] Recall
that, disregarding the differential in A and the bar-differential in B’(A) there is an isomorphism
B'(A) = TS, (ZA) and also A =~ A®k. On the other hand, there is a two-term resolution of the

res

pc T (X1 A*)-module N*, cf. Corollary whose linear dual is isomorphic to C(7). In other

res
words, C'(4) is a total complex of an exact triple of B’(A)-comodules and so, is coacyclic (even
absolutely acyclic). It follows that i is a weak equivalence of B’(A)-comodules. This proves (1).
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Now suppose that A is connected, then Harr(A) is nonnegatively graded. We will use the fact
that the pair of functors (Harr, CE) form an adjunction between conilpotent Lie coalgebras and
commutative algebras; for this see, e.g. [16], Section 9] where, however a different terminology
and notation was adopted in op.cit. The counit map of this adjunction is CE(Harr(A)) — A.

Note the following commutative diagram

OB'(A) L CE(Harr(A))

where the downward arrows i1 and is are units of suitable adjunctions and the horizontal arrow
f is the canonical map QU(g) — CE(g) defined for any Lie coalgebra g (in this case for
g = Harr(A)). We will consider the canonical element £ € MC(Q2B'(A) ® B'(A)) and its image
(f®id)(€) € CE(Harr(A)) ® B'(A). It is clear that (i1 ®id)(&) is the canonical MC element in
A® B'(A), abusing the notation, we will write £ for either of these canonical MC elements.

It follows that the functor N — (N ® A)[¢l : Harr(A4)-Comod — A-Mod can be factored as a
composition

N — CE(Harr(A), N) = (CE(Harr(A)) @ N)&l — (4@ N)E

where the first functor is a Quillen equivalence Harr(A)-Mod — CE(Harr(A))-Comod by Theo-
rem and the second is induced by the counit map CE(Harr(A)) — A. Therefore, it suffices
to show that the latter map induces an equivalence on Perf!l.

Note that the map CE(Harr(A)) — A is the standard cofibrant replacement of the cofibrant
commutative algebra A. There are two model structures for commutative algebras: one suitable
for Z-graded algebras [13] and the other admitting only non-negatively graded ones [5]; in either
structure weak equivalences are simply quasi-isomorphisms. Since A is connected, it is cofibrant
in either model structure. Furthermore, it is known, cf. |5, Proposition 7.11] that any connected
cofibrant commutative algebra X is isomorphic to the tensor product of a minimal algebra
(determined up to an isomorphism by the weak equivalence class of X) and a collection of
copies of contractible algebras of the form S[z,y] with dz = y. We can thus write A ~ M ® D
and CE(Harr(A)) @~ M ® D’ where D and D’ are contractible factors.

We would like to argue that Perf''(M ® D) ~ Perf(M) ~ Perf''(M ® D’). For this recall
that the definition of Perf!'(A) extends to the case where A itself is a dg category rather than
a dg algebra, and moreover, given two dg algebras (or dg categories) X and X', we have a
quasi-equivalence between Perf'! (X @ X') and Perf!(Perf' (X) ® Perf!!(X’)) |12, Lemma 4.16].

Note that the algebra S[x,y| with dz = y and |z|,|y| > 0 can be viewed as a pc algebra and
thus, arguing as in the proof of Proposition we see that its Perf!! is the same as that of
k. Tt follows that Perf'!(A) ~ Perf''(M ® D) ~ Perf!(M) and similarly Perf!'(CE(Harr(A)))
is also quasi-equivalent to Perf!'(M). Moreover, clearly the canonical map CE(Harr(A)) — A
(which is a weak equivalence) induces an equivalence on Perf!! as required. O

5.2. Conilpotent Koszul duality for commutative algebras. For completeness, we formu-
late the conilpotent Koszul duality for modules over commutative algebras; this is in some sense
parallel to the material of Subsection 4.5 and is a straightforward consequence of standard asso-
ciative Koszul duality. Let A be an augmented commutative algebra, not necessarily cofibrant.
We consider the category A-Mod of A-modules. Arguing as in we construct an adjoint
pair of functors (B, (A ® —)i&]) between the category A-Mod and the category of conilpotent
Harr(A)-comodules. Note that the latter is isomorphic to the category of Ucon(Harr(A))-Comod
and as such, has a model structure.

Theorem 5.6. The adjoint pair (B, (A® —)&l) determines a Quillen equivalence between the
category A-Mod with its standard projective model structure (so that weak equivalences are

quasi-isomorphisms) and the category of conilpotent Harr(A)-comodules.
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Proof. The statement of the theorem follows at once from the statement of ordinary Koszul
duality (Quillen equivalence) between A-Mod and B(A)-Comod = Uy, (Harr(A))-Comod, cf.
[19, Theorem 6.3] and |19} Section 8.4]. O

5.3. Rational homotopy theory and L.-local systems. A large class of examples of cofi-
brant commutative algebras comes from rational homotopy theory [5]. Let X be a topological
space and A(X) be its Sullivan minimal model, i.e. a cofibrant commutative algebra quasi-
isomorphic to C*(X), the algebra of singular cochains on X. Note that A(X) is an invariant
of the weak homotopy type of X and, if X is nilpotent of finite type, faithfully records its
rational homotopy type. Thus, the homotopy category of A(X)-Mod (or, equivalently, that
of Harr(A(X))-Comod) is a homotopy invariant of X. We will see that A(X)-modules are re-
lated to ao-local systems on X, also known as cohomologically locally constant sheaves on X,
cf. [1,3,)8] regarding this notion, at least when X is a manifold. We will now briefly outline this
relationship.

Suppose X is a connected smooth manifold and DR(X) is the de Rham algebra of differential
forms on X; we set k = R. Then a finitely generated twisted DR(X)-module or a retract of
such determines an oo-local system on X, cf. [8]. Rational homotopy theory gives a quasi-
isomorphism A(X) — DR(X) and so, a functor Perf'(A(X)) — Perf!!(DR(X)). The objects
of the dg category Perf! (A(X)) will be called L -local systems on X. In other words, we obtain
a functor F' from Lgs-local systems on X to co-local systems on X. This functor deserves further
study which, however, would take us too far afield; so we will limit ourselves with a few simple
observations.

e The category Lo (X) := Perf!!(A(X)) is a homotopy invariant of X.

e Cofibrant (in the usual sense) A(X)-modules correspond to conilpotent Harr(A(X))-
modules; the corresponding co-local systems represent objects in Perf!I(DR(X)). If
such an oo-local system is given by a representation of 71 (X), i.e. is an ordinary local
system, this representation is given by unipotent matrices.

e Since the isomorphism class of A(X) only records the nilpotent rational homotopy type
of X, one does not expect a close relationship between Lg-local systems on X and
oo-local systems on X when X is not nilpotent (e.g. when 71 (X) is not nilpotent).

e Even when X is nilpotent, the functor F' is not an equivalence on the level of homotopy
categories, in general. Indeed, let X be aspherical, i.e. all higher homotopy groups of
X vanish. In that case oo-local systems on X reduce to ordinary local systems on X,
which in turn, are equivalent to flat vector bundles on X. Since the algebra A(X) is
local, every projective module over it is free, and so the resulting perfect DR (X )-module
will likewise be free. That means that the corresponding flat vector bundles on X will
be topologically trivial. In other words, local systems corresponding to topologically
nontrivial flat bundles over X, are not in the image of F.

Example 5.7. Let X = S'. In that case A(X) is the graded algebra H*(X) =~ A(z) with
|z] = 1. Any MC element in A(z) has the form &, := rz where r € R. The corresponding
twisted A(z)-module A(z)[€! gives rise to an Lg-local system on S which is in this case an
ordinary local system corresponding to the character e” of m1(S') =~ Z. The local system
corresponding to the character —1 is not in the image of the functor F'.

More generally, every n-dimensional Ly-local system on Sy is an ordinary local system and
it corresponds to an n-dimensional representation of Z, i.e. an invertible n x n matrix M. Such
a local system is in the image of F' if and only if Jordan blocks corresponding to each negative
eigenvalue of M appear in pairs.
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