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Abstract

We study the Lagrangian isotopy classification of Lagrangian spheres in the Milnor
fibre, By, 4, of the cyclic quotient surface T-singularity 5}2(1, dpq — 1). We prove
that there is a finitely generated group of symplectomorphisms such that the orbit of
a fixed Lagrangian sphere exhausts the set of Lagrangian isotopy classes. Previous
classifications of Lagrangian spheres have been established in simpler symplectic
4-manifolds that admit global genus 0 Lefschetz fibrations, which By, , does not.
We construct Lefschetz fibrations for which the Lagrangian spheres are isotopic to
matching cycles, which reduces the problem to a computation involving the mapping
class group of a surface. These fibrations are constructed using the techniques of
J-holomorphic curves and Symplectic Field Theory, culminating in the construction
of a J-holomorphic foliation by cylinders of 7*S%  Our calculations provide
evidence towards the symplectic mapping class group of B, , being generated by
Lagrangian sphere Dehn twists and another type of symplectomorphism arising as

the monodromy of the #(1, pq — 1) singularity.
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Chapter 1

Introduction

1.1 Lagrangian isotopy problems

Let (M, w) be a symplectic manifold. That is, a smooth manifold M equipped with a
closed, and non-degenerate 2-form w. In symplectic topology, one is often concerned

with the study of certain submanifolds called Lagrangians.

Definition 1.1.1. A Lagrangian submanifold L of (M,w) is a half-dimensional
submanifold' on which the restriction of the symplectic form to the tangent bundle

T L vanishes. That is, dim L = %dim M, and w|rp = 0.

There are various notions of equivalence of Lagrangians, and in this work,
we focus on isotopy equivalence. Before stating what this means, recall that a
symplectomorphism of (M, w) is a diffeomorphism ¢ : M — M such that ¢*w = w.
A stronger notion is that of a Hamiltonian diffeomorphism. Let H : M — R be
a smooth function — referred to as a Hamiltonian in symplectic geometry — and

consider the vector field equation
www=w(V,)=—dH.

Non-degeneracy of w implies that this has a unique solution, which we write as

Vir. The Hamiltonian flow ¢f — also called a Hamiltonian isotopy — of H is

IElementary linear algebra implies that the dimension of a symplectic manifold is always even.



Chapter 1. Introduction

defined to be the flow of the vector field V. Note that (¢1)*w = w, so these are
symplectomorphisms. The time-1 flow ¢! is called a Hamiltonian diffeomorphism

of (M,w).

Definition 1.1.2. Let L,L" C (M,w) be two Lagrangian submanifolds. We say
that L and L’ are

1. Lagrangian isotopic if there exists a smooth isotopy L; such that Ly = L,

L; = L', and L, is Lagrangian for each ¢.

2. symplectic isotopic if there exists an isotopy ¢, : M — M of symplectomor-

phisms such that ¢g = idy; and ¢;(L) = L.

3. Hamiltonian isotopic if there exists a Hamiltonian isotopy ¢ such that

¢'(L) =L".
These properties are listed in increasing order of strength, that is
Hamiltonian isotopic = symplectic isotopic = Lagrangian isotopic.

In general, these are strict implications; two Lagrangian isotopic submanifolds are
not necessarily symplectic isotopic, and so on.

We focus on a particular instance of this isotopy classification: that of Lagrangian
2-spheres in a certain family of symplectic 4-manifolds. Elementary symplectic
geometry shows that the above notions of isotopy equivalence are the same for
Lagrangian spheres of dimension n > 1. This is due to basic isotopy extension
results [38, §3.4] combined with the fact that the first de Rham cohomology group
vanishes: H'(S™) =0, for n > 1.

Classifications of Lagrangian spheres have been achieved in various cases:
starting with Hind [23] who proved that every Lagrangian sphere in S? x S? is

Hamiltonian isotopic to the anti-diagonal®> A = {(z,—z) € S? x S?}. Evans [17]

2Here the symplectic form on S? x S§? is obtained by taking the direct product of a volume form
on S? with itself, so the factors S? x {point} and {point} x S? have equal symplectic area. We’ll

call this the monotone form.



1.1. Lagrangian isotopy problems

then proved a similar theorem for Lagrangian spheres in certain del Pezzo surfaces.?
These theorems give examples of symplectic manifolds where Lagrangian knotting
does not occur, that is, two Lagrangian spheres are Lagrangian isotopic if, and only
if, they are smoothly isotopic.

On the other hand, Seidel proved [11] that Lagrangian knotting occurs in general.
The proof revolves around a special symplectomorphism associated to a Lagrangian
sphere L called a generalised Dehn twist® 7,. Many of Seidel’s papers give the
explicit construction of the Dehn twist, and we refer to [18].° The headline is
that the squared twist 72 is smoothly isotopic to the identity map, but it may, or
may not, be symplectically isotopic depending on the ambient symplectic manifold
(M,w). For example, in T*S? equipped with the canonical symplectic form weay,
— defined in Equation (1.3.5) — any iterate 7% of the Dehn twist about the zero-
section is not isotopic to the identity map through symplectomorphisms. In fact,
more is true: 7 generates the symplectic mapping class group of (T*S?, weay), which
is defined to be the group of connected components of the group of compactly-
supported symplectomorphisms, see [13]. However, the squared Dehn twist about
the antidiagonal in 5% x S? (again with the monotone form) is symplectically isotopic
to the identity map.

Despite this, classifications of Lagrangian spheres in manifolds where knotting
occurs have been achieved. Consider the Milnor fibre of the A,, surface singularity.

That is, the complex manifold W,, given by the equation
Wn = {(21722,23) | Z% + Z% + Z:?Jrl = 1} C Cg.

Equipped with the restriction of the symplectic form wes = %Zle dz; A dz;, this

is a symplectic 4-manifold. In [24], Hind proves that any Lagrangian sphere in

3A symplectic del Pezzo surface is either S2 x S2 or CP? blown-up in n < 9 generic points
equipped with an anticanonical Ké&hler form [15, Definition 1.3]. Evans proves that no Lagrangian

knotting occurs in the n = 2, 3,4 cases.
4Tn the case n = 1 this is the classical Dehn twist.
5Although, the authoritative reference for generalised Dehn twists should probably Seidel’s

thesis [42].



Chapter 1. Introduction

Wi or W, is Lagrangian isotopic to one obtained from a finite set of “standard”
Lagrangian spheres by applying Dehn twists about these standard spheres. Wu [57]
then extended this result to all W,,. One can rephrase these results as saying that
the only symplectic knotting of Lagrangian spheres in the A, Milnor fibres comes
from Dehn twists. The main result of this thesis proves the corresponding result
for a similar class of symplectic manifolds, which are also Milnor fibres of complex

surface singularities, see Theorem 1.2.2 for the statement.

1.2 Cyclic quotient surface singularities and B, ,

Let n > 1 be an integer and let a > 1 be coprime to n. Consider the action of the

group of n-th roots of unity, T',,, on C? with weights (1,a):

pe (2, y) = (pz, py).

The quotient space C?/T',, is a singular manifold called the cyclic quotient surface
singularity of type %(1, a). Now let d, p,q > 0 be integers with p > ¢ coprime. The

Agp—1 singularity is the variety
{(21,22,23) € C* | 2120 = Zéip}a

and the group I', acts on it with weights (1, —1,¢). The cyclic quotient singularity
W;(l,dpq — 1) is analytically isomorphic to the quotient Ag,_;/I', via the map
C?/Tape — Agp-1/Tp : (z,y) — (2%,y zy). The symplectic manifold B, is
defined to be the Milnor fibre of this singularity. Its symplectic structure is inherited

from C? since the I, action is by symplectomorphisms. As a result, we can explicitly

d
Bapg = (leg — H(zg — i))/f‘p.
=1

Remark 1.2.1. Observe that we can recover the case of the Milnor fibres of the A;_;

write

singularities, Wy_;, by setting p =1 and ¢ = 1.5

6After a holomorphic change of coordinates ((1,¢2) = (3(21 + 22), (21 — 22)) the equation

%

4



1.2. Cyclic quotient surface singularities and By, ,

Figure 1.1: A fundamental action domain for Bg,,. The labels indicate the
primitive integer direction of each arrow and ray. Drawn here is the case (d,p,q) =

(2,2,1).

Following §7.4 of [17], Bgp, can be equipped with a Hamiltonian system that
gives it the structure of an almost toric manifold. A fundamental action domain
for this system is shown in Figure 1.1. This picture determines By,, up to
symplectomorphism, and is useful for visualising its topology. Over the dotted lines
connecting the crosses live d — 1 Lagrangian 2-spheres, and over the line connecting
the unique vertex of the wedge to the leftmost cross lives a Lagrangian CW-complex
called a (p,q)-pinwheel. This is a Lagrangian immersion of a 2-disc, which is an
embedding on the interior, and maps p-to-1 on the boundary [30, 19]. We shall refer
to these d — 1 spheres as the standard Lagrangian spheres in By, 4, and denote their
associated Dehn twists by 7y,...,74.1. The CW-complex formed by the topological
wedge sum of these d — 1 spheres and the (p, ¢)-pinwheel is called the Lagrangian
skeleton of Bgp .

Similarly to the case of Lagrangian spheres, one can define a symplectomorphism
associated to a Lagrangian (p, ¢)-pinwheel, which we write as 7, ,. The construction
is carried out in Chapter 5. The only thing to note for now is that 7, , is a compactly-
supported symplectomorphism of By, , with support in a neighbourhood of the
pinwheel itself.

We are now ready to state the main result.

for Ag—1 = By, becomes (? + (3 + P(z3) for some polynomial P. An isotopy from P(z) =
— H?Zl(z —1i) to P(z) = z¢ — 1 through polynomials with pairwise distinct non-zero roots then

yields the claimed identification.
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Theorem 1.2.2. Let L C Bg,, be a Lagrangian sphere. Then L is compactly-
supported Hamiltonian isotopic to a sphere obtained by applying a word of symplec-

tomorphisms generated by 1, ..., 741, and 7,4, to a standard sphere.

For a more precise statement, see Theorem 5.3.1.

Remark 1.2.3. This is a natural extension of Wu's result [57] on the A,, Milnor fibres.
In particular, the only symplectic knotting of Lagrangian spheres comes from twists

about the components of the Lagrangian skeleton of By, ,.

1.3 Outline of the proof

At its core, the idea of the proof is to use the theory of Lefschetz fibrations and
matching cycles to construct Lagrangian isotopies of spheres. So, we begin with a

brief recap on the key features of Lefschetz fibrations that are relevant to us.

1.3.1 What is a Lefschetz fibration?

Let M be an 4-dimensional oriented manifold, and S an oriented surface. In this

paper, a Lefschetz fibration will mean the following (taken from [55, Definition 3.18]):

Definition 1.3.1. A Lefschetz fibration is a smooth map 7 : M — S with finitely
many critical points M, and, for each p € M.y, there exist complex coordinate
charts at p € M and 7(p) € S agreeing with the orientations, such that, in these

coordinates, we have

m(21,22) = 23 + 23. (1.3.1)

Remark 1.3.2. 1. In words, this can be interpreted as saying that = is a fibre
bundle away from a (real) codimension 2 subset of singular fibres, each of
which is modelled on the A; node. The fibres are two dimensional surfaces,
the critical fibres being singular. We will often assume that each fibre has at

most 1 singularity.
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2. In general, a Lefschetz fibration isn’t actually a fibration in the topological

sense. Indeed, the most basic example
m:C* = C:m(z1,2) = 27 + 23

reveals that the fibres are not all homotopy equivalent. The smooth fibres
77 4(2) (2 # 0) are homeomorphic to C* = C\{0}, whilst 771(0) is the wedge
sum of two planes C A C.

To introduce symplectic geometry to the story, we consider the situation where
the ambient space M is equipped with a closed 2-form 2 that restricts to a positively
oriented area form on the (smooth parts of the) fibres of 7. This implies that each
fibre M, = 7—!(z) is a symplectic manifold with symplectic form €|,.. This extra
structure picks out a connection on the tangent bundle 7'M by taking the symplectic
orthogonal complement to the tangent spaces of the fibres: for p € M,\ M define
the horizontal space H(p) to be

H(p) := T,M? := {v € T,M | Q(v,w) =0, Yw € T,M.}.

Given an embedded smooth path v : [0, 1] — S\ Suit, we define the parallel transport
along v as with any fibre bundle with connection (see [31, Chapter II], for example).
Explicitly, since dm(p)|m, : H, — Tr)S is a linear isomorphism, we can define the
(unique) vector field X (defined on the pullback v*7) by the condition

(o), (X)) = T (x(0).

The parallel transport of v is defined to be the map 7, : M,©) — M,y which
integrates the vector field X.

Remark 1.3.3. Of course, we need some condition to tell us that 7, is well-defined.
For example, it is enough to assume that 7 has closed fibres, as we’ll make use of in
this thesis. For other cases we’ll justify the existence of 7, as and when we need. A

reference on Lefschetz fibrations in the ezact symplectic setting is [17, Part I11].

7
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1.3.1.1 Vanishing and matching cycles

With this in hand, we can define the notions of vanishing paths, cycles, and thimbles.
A wanishing path is an embedded path 7 : [0, 1] — S such that v~ 1(Sai) = {1}. Let
p1 € M), be a critical point and consider the parallel transport for the restriction
¥s == Yljo,5, 8 < 1. Define the map 7 : M,y — M) from the smooth fibre M,
to the singular one M, ;) by

T = limT, .
s—1 Ye

This is well-defined and continuous [18, Lemma 1.2]. Therefore, we can define the
vanishing cycle V., C M, to be the locus of points that are transported to the

singular point py:
V, = {pe M (o) | 71(p) =p1 € M1y N Mt }-

Define also the vanishing thimble associated to v to be

Ay = U Ty, (V5)-

s€[0,1]

That is, A, is the trace of the vanishing cycle under the parallel transport maps 7, .
It is an embedded 2-ball, as one can prove by expressing A, as the stable manifold
of a hyperbolic vector field [16, Lemma 1.13]. Moreover, it satisfies” Q|ra = 0. The
vanishing cycle V. is the boundary of A,, which is therefore a Lagrangian® S* in

My 0).-

9

Similarly there are matching paths and cycles. A matching path v : [-1,1] — S
is an embedded path such that y7'(Sei) = {—1,1}. Therefore, the restrictions
7" = Y]], and ¥~ 1= v|[_1,0) define two vanishing paths, for which we form the

vanishing thimbles A +. If the corresponding vanishing cycles V.= are equal, we

"We avoid saying the word Lagrangian here, since we aren’t assuming that the 2-form € is

symplectic on the ambient space M.
80f course, saying Lagrangian here is redundant, since any 1-dimensional submanifold of a 2-

dimensional symplectic manifold is Lagrangian. However, in higher dimensions this is still true

and thus non-trivial.



1.83. OQutline of the proof

can glue the two thimbles together to form a Lagrangian 2-sphere ¥, called the

matching cycle. Of course, the condition that V,+ = V,- is not always satisfied, so

.
one needs to be slightly more careful to define X, in general. Provided that V.=
are symplectically isotopic in M, ), these complications can be surmounted, but we

delay talking about them for now. For the full construction in the exact case, see

[17, 16g].

1.3.1.2 Matching cycles and Lagrangian isotopies

Consider an isotopy of matching paths 75 : [—1,1] — S. By finiteness of the set of
critical values S, this is an isotopy rel the end points: 75(£1) = 70(£1). Such
an isotopy gives rise to a Lagrangian isotopy of the corresponding matching cycles.

That is, X, is a Lagrangian isotopy from X, to X,,. Therefore, we have a map
{matching paths}/isotopy — {Lagrangian spheres}/Lagrangian isotopy. (1.3.2)

In general, this map is neither injective nor surjective, meaning that two non-isotopic
matching paths can give rise to Lagrangian isotopic matching cycles, and not every
Lagrangian sphere need be realised as the matching cycle of a matching path [17,
Example 16.12]. The grand plan of the proof of Theorem 1.2.2 is to show that, in

9 such that the above map is a

the case of By, ,, there exists a Lefschetz fibration
bijection. Most of the work involved is proving surjectivity, for which we employ
the theory of .J-holomorphic curves. We state this as a theorem, as it is the main

technical achievement of this thesis:

Theorem 1.3.4 (Corollary 4.3.3). There exists a genus 0 Lefschetz fibration defined
on an open dense subset of By, such that any Lagrangian sphere L is Lagrangian

1sotopic to a matching cycle.

The main theorem (Theorem 1.2.2) follows from this and a computation involving

the theory of mapping class groups of surfaces, see Chapter 5.

9A Lefschetz fibration of sorts. See Section 2.5.
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Remark 1.3.5. Contrast the above with work of Auroux, Munoz, and Presas [3]
where they prove a similar theorem. However, they construct a Lefschetz fibration
for each Lagrangian sphere, whereas we construct a single Lefschetz fibration for

which all Lagrangian spheres are isotopic to matching cycles.

1.3.2 What is a J-holomorphic curve?

Most of the technical drive behind the proof comes from the theory of J-holomorphic

curves in symplectic manifolds.

Definition 1.3.6. Let M be a smooth manifold. An almost complex structure on
M is an endomorphism of the tangent bundle J : TM — TM such that J? = —1.
Suppose we have a Riemann surface (X, j) and a map w : ¥ — M. We say that u
is a (g, J)-holomorphic curve (or simply J-holomorphic if the complex structure on

the domain is understood) if it satisfies the differential equation
Jodu=duoj. (1.3.3)

The classic example of a J-holomorphic curve is a holomorphic curve in a complex
manifold. They have seen fantastic applications in symplectic topology — especially
in dimension 4 — since Gromov originally introduced them in a groundbreaking
paper [22] in 1985.

We'll use J-holomorphic curves to construct Lefschetz fibrations on By, , that
are somehow adapted to the Lagrangian sphere L C By, ,. Eventually, we end up
with a Lefschetz fibration for which L is Lagrangian isotopic to a matching cycle,
proving surjectivity of the map in Equation (1.3.2).

The basic idea is as follows. Given an almost complex structure .J, we consider
a family of J-holomorphic curves, called a moduli space, written M(.J), comprised
of an open dense subset of smooth curves M(.J), and finitely many singular curves
OM(J) :== M(J)\M(J). The singular curves come in two types: genus zero nodal
curves with exactly two components, and a unique ezotic curve which generally has

many genus 0 components. On the complement of the exotic curve, the natural

10



1.83. OQutline of the proof

map 7y : Bap, — M(J) defined by mapping a point to the unique curve it lies
on is a Lefschetz fibration. Therefore, we seek an almost complex structure J —
adapted to L in some way — such that L is Lagrangian isotopic to a matching cycle
of ;. We will construct such a J through a technique called neck stretching (the
details of which are outlined in Section 1.3.3). This is not quite enough, however,
since we want a single Lefschetz fibration whose matching cycles exhaust the set of
Lagrangian isotopy classes of spheres. We resolve this via a basic argument involving
the connectivity of the space of almost complex structures. Indeed, a 1-parameter
family of almost complex structures J; yields a 1-parameter family of Lefschetz
fibrations 7y := 7, and corresponding Lagrangian isotopies between their matching
cycles. With this in mind, fix a reference almost complex structure J.f and its
corresponding Lefschetz fibration e := 7 . Then we can choose a homotopy Js
from Jy = J to J; = Jyt to obtain a Lagrangian isotopy from L to a matching cycle
of Tyef.

A few comments are in order about the above sketch. Firstly, we discuss the
smoothness of 7; and M(J).  The subset M(J) is a smooth manifold under
certain conditions. Proving this is a long and technical argument involving applying
the implicit function theorem in infinite dimensions. A comprehensive reference on
the case of closed J-holomorphic curves is [37] (in particular, see Chapter 3 therein
for the proof of smoothness of the moduli space). Fortunately for us, in dimension
4 there are exceptionally powerful automatic transversality results [25, 52] which
guarantee that the moduli space of smooth curves M(J) is a smooth manifold under
simple conditions. For example, in the case of a closed genus 0 curve u : S? — M,

a neighbourhood of u is a smooth manifold if
c1(u) = (uw"'TM) > 0,

where ¢; (u*T'M) is the first Chern number'? of w*TM.
One can assign a topology to M(J) which agrees with the manifold topology on
the subset M(J). Indeed, a remarkable insight of the paper [22] demonstrated that

10For an embedded J-holomorphic curve u : ¥ — M with u,[X] = A € Ho(M;Z) the adjunction

11
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there is a well-behaved compactness theory for J-holomorphic curves in the presence

of a symplectic form which tames J, in the sense that, for all v € TM non-zero,
w(v, Jv) > 0. (1.3.4)

The full details of the theory we tacitly use here can be found in [37, Chapters 4—
6]. To sketch what can happen, take a sequence of closed J-holomorphic curves
u, : ¥ — M with uniformly bounded symplectic area,'! that is, there exists C' > 0

such that
E(u,) == / uyw < C.
>

Suppose further that the L*°-norm of the derivatives is unbounded:
sup ||duy || L= = oo.

Then u, has a subsequence that converges to a singular J-holomorphic curve. This
type of convergence is known as bubbling, since a finite portion of the energy F(u,)
gets concentrated to a point as v — oo, and (after reparametrising) one sees another
J-holomorphic curve emerging at this point. In this thesis, we will largely deal with
the simplest case where the limiting singular curve is a nodal curve with two genus
0 components. The example of the family of smooth conics (zy = €z?) c CP?
degenerating to the singular one (zy = 0) as € — 0 illustrates the picture well.'?

Under this notion of convergence, M(.J) will be a (compact) metric space, but in

general it is no longer a manifold. However, in the simple cases considered here, the

formula [37, Theorem 2.6.4] states that

c(u) =A-A+x(2).

" This uniform bound will always be satisfied for us, since we will only consider sequences of
curves that represent the same homology class.

12The parametrisation u, : C — CP? : u.(w) = [w? : € : w] converges O to the line ug (w) =
[w: 0 :1]. In this example, the bubbling happens at the point w = 0. Using the map ¢, :
B% (0) = C : ¢.(w) = ew, we reparametrise u, to see the bubble forming: u. o ¢. converges to

ug (W) =10:1:w].

12



1.83. OQutline of the proof

complement of the exotic curve can be equipped with a smooth structure that agrees
with that given by the implicit function theorem on the locus of smooth curves.

Secondly, we need to justify the claim that the maps 7y : Bg,, — M(J) are
actually Lefschetz fibrations. The singular curves with two components that appear
in M(J) form the critical fibres of the map 7; : By, — M(J). This claim implicitly
depends on showing that the local coordinate form in Equation (1.3.1) holds at the
nodal points of these curves, which follows from an argument of Wendl and Lisi
sketched in [55, Appendix A]. We discuss it here in Section 2.5.

Thirdly, we outline why 1-parameter families of almost complex structures Js
give rise to 1-parameter families of Lefschetz fibrations m,. This amounts to showing
that, as we vary the almost complex structure J, the structure of the moduli spaces
M(J,) is essentially unchanged. In practise it requires showing that no further
bubbling occurs as we vary J, which is done in Section 2.4.2. This analysis is
heavily reliant on two big results: (1) automatic tranversality, which ensures that
when we deform J there are still solutions to Equation (1.3.3); and, (2) positivity
of intersections, which gives strong geometric constraints on J-holomorphic curves.
Positivity of intersections was first proved in full generality by McDuff [36]. The

statement relevant to us is:

Theorem 1.3.7 (Positivity of intersections). Let u : ¥ — M, and v : ¥ — M be
two closed J-holomorphic curves such that u='(imv) contains no non-empty open
set. Then the intersection number u-v = u,[X] - v.[Y'] is non-negative, and it equals

0 if, and only if, u and v are disjoint.

Finally, we briefly discuss the motivation for using neck stretching to construct an
almost complex structure adapted to L, and specifically, why one would expect this
to produce a Lefschetz fibration with a matching cycle isotopic to L. The starting
point is Weinstein’s Lagrangian neighbourhood theorem [51]. Recall the canonical
1-form A.a, defined on the cotangent bundle of any smooth manifold M. Given
coordinates (qi,...,q,) on M, let (p1,...,Dn,q1,---,qs) be the induced coordinates
on T*M, so that the point (p1,...,Pn, q1, - - -, qn) represents the covector > 7 | p;dg;.

13



Chapter 1. Introduction

In these coordinates, A..n has the following form:

n
>\can - szd%
=1

We define the canonical symplectic form on T*M by
Wean = d/\can- (135)

Notice that the zero-section 0, C T*M is Lagrangian with respect to wean. We-
instein’s Lagrangian neighbourhood theorem says that any Lagrangian L C (V,w)
diffeomorphic to M in some symplectic manifold (N,w) admits a neighbourhood
symplectomorphic to a neighbourhood of 0y C (T*M,wean). This means we can
understand the symplectic geometry locally in a neighbourhood of a Lagrangian
simply by considering its cotangent bundle.

The following example acts as a local model for a Lefschetz fibration in a

neighbourhood of a Lagrangian sphere:

Example 1.3.8. Let Q = (27+25+22 = 1) C C? be the affine quadric equipped with
the restriction of the standard symplectic form on C3. This is symplectomorphic
to (T%S5%, Wean) [12, Lemma 18.1] via a symplectomorphism that identifies the zero-
section with the real locus of (). The projection 7o : @ — C : 7(2) = 23 is a
genus 0 Lefschetz fibration with exactly two singular fibres Wél(:i:l). Moreover, the
matching cycle of the path v : [—1,1] — C : v(t) = t is exactly the real locus RQ.

See Figure 1.2 for a cartoon of 7.

Weinstein’s Lagrangian neighbourhood theorem allows us to compare Lefschetz
fibrations on B, , to mg by restricting them to a neighbourhood of a Lagrangian
sphere L. Starting with an initial almost complex structure J, neck stretching yields
a specific deformation J; of J such that, for ¢ > 0, the J;-holomorphic curves that
pass through a fixed neighbourhood of L closely resemble the fibres of mg. As L is
identified with the real locus R(Q) in the above model, and R(Q is a matching cycle
of mg, one might hope that, in some sense, L is close to being a matching cycle of
7y, for large t. We formalise this in Chapter 4 and prove that ¢ can be chosen large

enough so that L is Lagrangian isotopic to a matching cycle of 7,.

14



1.83. OQutline of the proof

VAN R RAN

Figure 1.2: A cartoon of the Lefschetz fibration mg : ) — C on the affine quadric
(. The shaded sphere is the real locus, which is the matching cycle corresponding
to the dashed matching path drawn in the base. It intersects the regular central

fibre in the vanishing cycle, indicated in the figure by the dotted circle.

1.3.3 What is neck stretching?

Neck stretching, or the splitting construction, is a process by which we alter an
almost complex structure in a neighbourhood of a particular hypersurface of a
symplectic manifold. We refer to [14, §1.3], [0, §3.4], or [9, §2.7] for the full
construction, as we will only need a special case of it here. Note that the Lagrangian
isotopy theorems mentioned earlier [23, 15] crucially rely on it.

Consider a Lagrangian L of a closed symplectic manifold (X,w) and equip L
with a Riemannian metric. This allows us to define the sphere bundle of covectors

of a fixed length:

ThL:={veT"L| |v| = R}.

Along with the restriction of the canonical 1-form Acan, the pair (T5L, Acan) is an

example of a contact manifold. For us, this will mean the following;:

Definition 1.3.9. Let M be a manifold of dimension 2n — 1. A contact form

15



Chapter 1. Introduction

A € QM) is a 1-form satisfying
AA AT £0.

The distribution & = ker A is called the contact structure and the pair (M,€) is a
contact manifold. Notice that the pair (£,d\) forms a symplectic vector bundle.
That is, d restricts to a non-degenerate form on each contact plane &,.

The manifold R x M equipped with the 2-form d(e"\) is symplectic and the pair
(R x M,d(e")\)) is called the symplectisation of (M, \).

Remark 1.3.10. 1. We give this general definition to condense the notation
slightly, although the reader should keep in mind that we will only be interested
in the case where (M, \) = (T5L, A\can) as above.

2. For an example of neck stretching around a Lagrangian submanifold other than
a sphere see the work of Dimitroglou-Rizell, Ivrii, and Goodman [l 1] where
they prove the nearby Lagrangian conjecture for 7*7T? Examples of stretching

around non-orientable Lagrangian surfaces can be found in [39, 10].

3. The map
O:RxTHL — T L\Of : ©(r,v) =€'v

is an exact symplectomorphism. That is, it satisfies,

o~ Acan =e" )\can

THL-

Therefore, by the Weinstein Lagrangian neighbourhood theorem, some portion
[—€, €] x T} L symplectically embeds into M. We'll call this the neck region,

or simply the neck.
On symplectisations, we can define a special class of almost complex structures,

but to do so, we need to take the taming condition (1.3.4) one step further:

Definition 1.3.11. An almost complex structure J on a symplectic vector bundle

(E,w) — X is called compatible with w when it satisfies the taming condition of

16



1.83. OQutline of the proof

Equation (1.3.4) and w is J-invariant: for all u,v € E,

w(Ju, Jv) = w(u,v). (1.3.6)
This is equivalent to saying that the tensor field g defined by

g(u,v) == w(u, Jv)
is a bundle metric on F.

On R x M there are two special vector fields: 0, given by the R-coordinate, and
the Reeb vector field Ry defined by

A(Ry) =1, and (g, dX = 0.

Definition 1.3.12. We say that an almost complex structure J on a symplectisation

R x M is cylindrical when
1. JO, = Ry,
2. J is invariant under R-translation, and

3. the restriction J|¢ of J to the contact structure £ is a compatible almost

complex structure on the symplectic vector bundle (§,d\) — M.

Since the neck region is symplectomorphic to part of a symplectisation, we can
consider the class of almost complex structures J on X that restrict to a cylindrical
almost complex structure Jy; on the neck [—¢, €] x M. These are sometimes called
almost complex structures that are adapted to the hypersurface {0} x M C X, but we
will often abuse language and call them cylindrical. The process of neck stretching
is to start with one of these adapted almost complex structures and replace the
neck with larger and larger portions [—t — €, €] x M of R x M along with an almost
complex structure that is cylindrical along this longer neck. More precisely, following

[, §2.7] excise the neck region to obtain a compact manifold" ¥ := X\ (—¢,¢) x M

13Tn [9] this is denoted by Xj.
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Chapter 1. Introduction

with boundary Y = M_ LI M, where M1 = {£e} x M C X. Form the stretched
manifold X; by
Xy =Y Unum, [—t—€,€¢ x M,

which is diffeomorphic to X. Define the almost complex structure .J; on X; by

J, onY

Jy, on [—t—¢€€l x M.
The family of almost complex structures J; is called a neck stretch of J.

A neck stretch J; has no well-defined limit on X as t — oo. However, due to
their R-invariant nature on the neck, they can be seen to converge (on compact
subsets) to almost complex structures on either the symplectisation R x M, or the
completed* symplectic manifold Y = Y Uy, [—¢,00) x M Uy, (—00, €] x M. Taking
a monotonic sequence t; — oo and the corresponding neck stretch J, = J;,, we
consider sequences fi : % — X} of Ji-holomorphic curves with uniformly bounded
energy.'” To make sense of a limit of f;, as k — oo we need to recall the notion of

a holomorphic building. Essentially, this is a map F': ¥* — X* from a (potentially

disconnected and punctured) Riemann surface ¥* = |_|l],\7:0 »®) to the manifold
N
X =YUul| |[RxM,
v=1

where the restriction F*) = F | to each level maps into

W)X ifv=0,N+1
X® =

Rx M, ifv=1,...,N

4The completion of a symplectic manifold W with contact-type boundary (M, \) is obtained
by gluing on infinite half-cylinders of the form [0,00) x M or (—o0,0] x M. The distinction
between these cases comes from the fact that each connected component M’ of M has a collar
neighbourhood symplectomorphic to ((—e, 0] x M, d(e*"\)). The sign of oo in the intervals agrees

with the sign of r in d(e*"\).
15The definition of energy is a little technical in general [5, §6.1]. However, in our case, as we are

neck stretching around a contact-type hypersurface in a closed manifold, the energy bound will be

automatically satisfied by considering sequences of homologous curves.
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1.83. OQutline of the proof

Rx M

Figure 1.3: An example of a genus 1 holomorphic building with 3 levels: a top and

bottom, and one symplectisation level in between.

The limits of the neck stretch sequence J; fit together into an almost complex
structure J* on X*, with respect to which F is J*-holomorphic. That is, F®)
is a J®)-holomorphic curve in X). One should imagine the curves f, becoming
stretched so much as £ — oo that they “break” into multiple curves in the limit. See
Figure 1.3 for a picture illustrating the level structure of a holomorphic building.
See also [5, Figure 11] and [9, Figure 1] for more sophisticated cartoons of what

happens.

We will only consider the case where M is a separating hypersurface in X,
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Chapter 1. Introduction

meaning that Y = X\ (—e¢, €) x M has two connected components'® Y. This means
that X© =Y decomposes into two components Xj(co), which are the completions of
Y.. The 0-level of a holomorphic building then naturally splits into two components
called the top and bottom levels: £ = Ef) U Y® and Ff) = F|E(f) maps into
Xj(to). As the completions of the symplectic manifolds Y, Xio) come equipped with

symplectic forms w™ satisfying:
(X' wh) = (X\L,w) and (X, w™) = (T*L, dAean).

Moreover, the stretched manifolds X; can be equipped with natural symplectic

structures [9, Example 2.4]:

;

w, on Yy,
wr=49d(e"\), on[—t—¢€¢€ x M,

e tw, onY_,

\

which converge (on compact subsets and after rescaling by e in the case of X (,0)) to
the familiar symplectic forms w on XJ(FO) = X\L and d\,, on X (_0) =T

The power of this technique will come from our understanding of J-holomorphic
curves in X' = T*L =~ T*S2. It follows from the techniques of Hind [23] and
automatic transversality [52] that any cylindrical almost complex structure on 7*S?
admits two transverse foliations by J-holomorphic planes (once punctured spheres).
These are analogous to the transversely intersecting foliations of S?x S? by horizontal
[S? x {point}] and vertical [{point} x S?] spheres. The relevant facts are collected
in Section 3.3.

Using these foliations, and intersection theory for punctured .J-holomorphic
curves [50], we deduce what happens to the curves in the moduli spaces M(.J,)
as t — oo. This is the purpose of Section 3.4. They give rise to a J-holomorphic

foliation of 7*S? by cylinders (copies of C* = C\{0}) in the limit, whose leaves

form the fibres of a Lefschetz fibration akin to mg of Example 1.3.8. The crucial

16The sign of Y corresponds to that of the boundary Yy = {+e} x M.
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1.83. OQutline of the proof

consequence of this is that our Lagrangian sphere L will be a matching cycle of
the limiting Lefschetz fibration. We then apply a uniform convergence argument to
show that, for sufficiently large neck stretches (sufficiently large ¢), L is Lagrangian
isotopic to a matching cycle of one of the Lefschetz fibrations 7 : By, , — M(J).

This is covered in Chapter 4.

1.3.4 Compactifying By, ,

The previous discussion is almost enough to prove Theorem 1.3.4. However, we
have oversimplified some details for the sake of narrative clarity. Perhaps the most
glaring omission is that the domain of the Lefschetz fibration 7 : By, , — M(J)
is non-compact, but in Section 1.3.3 we quietly assumed that the ambient manifold
X was closed. The construction of the map m actually goes as follows. First,
in Section 2.2, we find a suitable compactification X,,, (of a suitable subset) of
Bg,, whose symplectic geometry reflects enough of that of By,, to be able to
construct the Lagrangian isotopy in Xg,, and the pull this back to By, Then
we consider the moduli space of genus 0 curves living in a distinguished homology
class F' € Hy(X4pq; Z) satisfying F?2 = F - F = 0, and show that it has the nice
compactification and invariance (under deformations of J) properties described in
Section 1.3.2. This is carried out in Section 2.4.

The purpose of compactifying is to make use of the simpler theory of closed J-
holomorphic curves in closed symplectic manifolds. Compactifying gives a method
to control the bubbling that occurs as we vary J, and ultimately prove that this
is well behaved (Corollary 2.4.16). Otherwise, working directly with By, , would
force one to work with punctured curves. This approach would need an alternative
argument to control bubbling/breaking.'”

The method of producing the compactification X,,, comes from the almost

17 Although, the author believes this is achievable and even desirable, in fact, since this would
avoid annoying arguments like Lemma 4.3.2. However, the compactness theory for punctured

curves is more complicated.
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Figure 1.4:  The symplectic cut performed to “chop off” the non-compact end
of Bypg The cut is indicated by the dash-dot line which has primitive integer
direction <r, Tq%), where r is the unique integer 0 < r < p such that r¢ =1 mod p.
The preimage of the area below the horizontal dashed line is a compact symplectic
submanifold with boundary whose symplectic completion is symplectomorphic to
By Drawn here is the most basic example (d,p,q) = (2,2,1). However, this is

not indicative of the general case: when ¢ > 1 the dash dot line corresponding to

the symplectic cut will have positive gradient. See Figure 1.5 for another example.

toric structure on By, .. Using a technique called symplectic cut (originally due to
Lerman [33]) one can essentially “chop off” the non-compact end of By, , to obtain
a closed symplectic manifold (see Figure 1.4). Doing so introduces a number of
singularities, which must be resolved to produce a smooth manifold. All this is done

in Lemma 2.2.1. The requisite knowledge is presented lucidly in [17].
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1.83. OQutline of the proof

(2,1)

(18, 11)

Figure 1.5:  Another example of By, , after cutting. Here (d,p,q) = (2,3,2) is
drawn. As is clear, the pictures quickly become unwieldy in this form. See Figure 2.7
for an integral affine transformation of the fundamental action domain of By, , that

behaves better under increasing the values (d, p, q).
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Chapter 2

A compactification of B,;, , and its

Y2
Lefschetz fibrations

This chapter achieves two goals. Firstly, we use an almost toric structure on By, ,
to construct a compactification X = X,,, via a series of symplectic cuts (see
Lemma 2.2.1). Secondly, we show that for every almost complex structure J on X
satisfying some constraints (but importantly including any almost complex structure
arising from neck stretching) there exists a J-holomorphic foliation of X whose leaves

form a Lefschetz fibration (Proposition 2.5.1) on an open dense subset.

2.1 Spiel on toric base diagrams

In this chapter we use a little of the theory of (almost) toric geometry. As mentioned
in the introduction, the requisite knowledge can be found in [17] and the references
therein. We state the main definition of a Delzant polytope here for convenience

(taken from Definition 3.5 in [17]).

Definition 2.1.1. A rational convex polytope P (which we will call a moment
polytope or simply a polytope) is a subset of R defined as the intersection of a finite
collection of half spaces {x € R™ | Y." | oyx; < b} with a; € Z and b € R. We say

that P is a Delzant polytope if it is a convex rational polytope such that every point
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2.1. Spiel on toric base diagrams

on a k-dimensional facet has a neighbourhood that is integral affine isomorphic (an
isomorphism of the form Az + b with A € SL,(Z) and b € R") to a neighbourhood
of the origin in the polytope [0, 00)" % x R*. A vertex of a polytope is called Delzant
if the germ of the polytope at that vertex is Delzant.

Remark 2.1.2. 1. The Delzant condition is important since it means that the

symplectic manifold corresponding to the polytope is smooth.

2. Importantly, as we only work with 4-dimensional symplectic manifolds
(corresponding to m = 2 in the above definition), a vertex v of a polygon
is Delzant if, and only if,! the primitive integer vectors u and w pointing along

the edges that meet at v form a matrix u A w with determinant +1.

Let p,q € Z be such that ged(p,q) = 1, then write 0 < r < p for the unique
integer such that ¢gr =1 mod p. Consider the singular toric manifold with the non-

Delzant moment polygon, I1(p, q), shown in Figure 2.1. Asin [17, §4.5], we can use

%(Lp - T)

1
1(1,q) (p,q)
Figure 2.1: The moment polygon II(p, q).

symplectic cuts to resolve the cyclic quotient singularities present in the symplectic
orbifold corresponding to the polygon II(p, ¢). The minimal resolution of II(p, q) is

a smooth toric manifold with moment polygon sketched in Figure 2.2.

Denote the continued fractions 2 = [zy,... 2] and -2 = [y1, ..., ys]. We use

'Note that, for n-dimensional facets (interior points) the Delzant condition is trivial, and for n—1
dimensional facets (faces) the condition is automatically satisfied since they lie on hypersurfaces
of the form {z € R™ | >_"" | a;x; = b}. Therefore, checking the vertices of a 2-dimensional polygon

is enough to verify whether it is Delzant or not.
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Figure 2.2: The minimal resolution of II(p, ¢). The vertices are marked for clarity.
The labels —xz;, and —y; represent the self-intersection numbers of the symplectic
spheres that live above the corresponding edges. The label (p,q) indicates the

primitive integer direction of its edge.

the Hirzebruch-Jung convention for continued fractions, meaning;:

1
[xl,...,xm] =0 1
ZEQ—.

1

Tm

Recall that a zero continued fraction (ZCF) is one which evaluates to zero:
lai,...,q;] = 0.
Blowing up [aq, ..., ;| corresponds to replacing it with any one of the following:
a1 +1,...,4), [a1,...,a; + 1,1, a;01 + 1,... 4, or [a1,...,a; 4+ 1,1],

all of which are ZCFs themselves [17, Example 9.10]. The reverse operation is
called blow down, and any ZCF admits a blow down to [1,1] [17, Lemma 9.11].
The following lemma collects some facts that we will use when constructing the

compactification.

Lemma 2.1.3. 1. The continued fraction x = [v1,...,%m, L,y1,...,Yx] is a
ZCF. Then, since x;,y; > 2, there is a unique sequence of blow ups from

the ZCF [1,1] to x.
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2.1. Spiel on toric base diagrams

2. The symplectic sphere corresponding to the edge marked (p,q) in the polygon

of Figure 2.2 has self intersection —1.

Proof. (1). The fact that x = 0 follows from a simple computation using the relation

gr =1 mod n. Since

we calculate that

—r r
1—[y1,...,yk]_1:1—p = —.
p p

Since the continued fraction of £ is just the reverse of that of g, we find that

1 P |
== = [Tmy.--, L1,
1—[917--~,?/k]71 r
which we use to see
1
= 1 —
X 1 Ty — 1
_ 1
Tm—[Tm,..-, 1]
Since
1
T — | Ty 1] = —
| U=
it follows that x = 0.
As is well-known, see for example [17, Lemma 9.11], every ZCF can be obtained

from [1,1] via iterated blow up, and the uniqueness follows from the observation
that y has a unique entry equal to 1. Therefore, the initial blow up must be [1, 1] —
[2,1,2], and subsequent blow ups must be adjacent to the unique 1 entry in the
ZCF.?

(2). We prove this by direct computation. Consider the part of the polygon
shown in Figure 2.3(a). Recall that each of the vertices were the result of resolving a
singularity corresponding to the polygon 7(p, a) in Figure 2.3(b) for some 0 < a < p.
In particular, let A € SLy(Z) be the unique matrix that maps the vertex of 7(p, a)
to the %(1,]) — r) vertex in Figure 2.1. That is, A satisfies

0,)A=(-p,—q), and  (0,)A™" = (p,a).

2For example, [2,1,2] — [3,1,2,2] is permissible, whilst [2,1,2] — [1,3,1,2] isn’t.
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Chapter 2. A compactification of By, , and its Lefschetz fibrations

(7, 6)

Figure 2.3: (a) A neighbourhood of the edge (p,q) in the polygon of Figure 2.2.
(b) the moment polygon 7(p,a).

Then, since (o, 8) = (1,0)A we have that’ 0 < & = a < p. A similar argument
shows that 0 < v < p.

Both vertices in Figure 2.3(a) are Delzant, which means

—0p + vq = det b =1, and
(2.1.1)
a f
—aq + [p = det = 1.
-pP —q
Reducing modulo p yields ¥ = —a mod p, which, combined with the fact that
0 < a,vy < p, means 7 = p— «. Lemma 3.20 of [17], asserts that the self intersection
of the (p, q)-edge is given by
det = —yfB + da.
o
Therefore, in view of equation (2.1.1), we have that
—yB + da = ——= = -1,
which completes the proof. O
3Indeed,
Ail . * *
-1, .
so that



2.2.  Compactification construction

Remark 2.1.4. A more conceptual way to prove statement (2) above is to use the

fact that there is a unique series of blow ups

(1L,1] = [x1, oy Ty Lyt -, Yk

and perform the corresponding symplectic blow ups as in Figure 2.4. Indeed,
Example 9.10 and Corollary 9.13 of [17] show that the combinatorics of these two

procedures are the same. Thus, we obtain two families of toric moment polygons,

ANANAA ANANAS

(1,1) (2,1)
[1,1] 2,1,2] 2,2,1, 3]

(3,2)

Figure 2.4: An example of blowing up the toric manifold associated to the ZCF
[1,1]. The symplectic cuts made are labelled with the primitive integer direction

they point in. The vertices are marked for clarity.

one from resolving all the polygons II(p, q), and the other from blowing up ZCFs.
Note in particular that the second family of polygons will necessarily have a unique
edge with self intersection —1. An inductive argument on the length of the blow-
ups of the ZCF's shows that these families coincide, from which it follows that the
(p,q) edge in Figure 2.2 must be a —1-curve, since all the other edges are of self

intersection at most —2.

2.2 Compactification construction

The Fubini-Study form wpg on CP? can be defined as the symplectic reduction
of (C* wes) with respect to the Hamiltonian £|z|? at the regular level (1[z]* =

1) [17, Example 4.9]." Tt has a Hamiltonian torus action with moment polygon

4Equivalently, in each of the usual affine coordinate patches on CP? we have

wrs = 1001og(1 + |z1[* + |22[*).
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%(Lp - T‘)

Figure 2.5:  (a) The moment polygon of (CP? wpg). (b) The almost toric base
diagram of the compactification X (modulo resolving the marked singularities as in

Figure 2.2).

(b) My
><.' ........ I

Figure 2.6: (a) A symplectic cut at a Delzant vertex. (b) A non-toric blow up at

an edge of a moment polygon.

Figure 2.5(a). The next result shows that we can perform a series of alterations to
this polygon, called symplectic cuts and non-toric blow ups, to obtain a symplectic
compactification of By, , determined up to symplectic deformation® by the polygon
Figure 2.5(b). Performing a symplectic cut to a Delzant vertex in a moment polygon
is characterised by Figure 2.6(a). The non-toric blow up transforms a polygon as in
Figure 2.6(b). Both of these operations correspond to the symplectic blow up. The

reader may consult Sections 4.4 and 9.1 of [17] for further details.

This definition ensures that f g wrs = 27 for the class H of a projective line.
5The reason this is not “up to symplectomorphism” is because of the freedom of choice over

the affine lengths of the edges introduced by resolving the singularities. However, this is largely

inconsequential.
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Lemma 2.2.1. There exists a number® u > 0 and a symplectic compactification
(X,w) = (Xapg Wapq) of Bapg such that (X,w) is a blow up of (CP?, wrs). The
blow ups compute a basis {H,S, E;,& | 0 <i<n,1 <j<d} of Hy(X) such that
the following holds:

1. H is the class of a line in CP?, S and E; are exceptional curves corresponding
to symplectic cuts, and &; are exceptional curves corresponding to non-toric

blow ups;

2. n=m+k —1 is equal to the number of blow ups

[1,1] = [z1, ..,y Liyr, -, Y]
determined by Lemma 2.1.5;

3. the w-areas of the non-toric curves &; are all equal, that is, there exists | > 0

such that, for each 1 < j <d,

and,

4. define the homology class of a smooth fibre by F':= H — S, then w(F) = 2,
and w(F) > w(E,).

Proof. Consider the almost toric base diagram of By,, shown in Figure 2.7(a).”

r s

Choose A € SLy(Z) such that (0,1)A = (p,q). Writing A = , the condition
P q

det A = 1 ensures that ¢gr = 1 mod p and we may choose A such that 0 < r < p.

Applying A~! to the base diagram then yields Figure 2.7(b). We make a series of

symplectic cuts, shown as dash dot lines in Figure 2.8: first a horizontal one at

6The actual value of W is irrelevant, but one can calculate it to be V2 times the Euclidean

distance of the diagonal edge from the top-right vertex in the polygon shown in Figure 2.5(a).
"Note that the figures drawn here are for the case (d,p,q) = (2,2, 1) but the process works for

all triples.
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Figure 2.7: The figure from left to right shows the effect of the transformation A~
The dashed rays in (b) are included to show the extremes that the solid rays cannot

cross since 0 < r <pand d > 1.

some level above the focus-focus critical values; and then vertical cuts on either
side. Doing so introduces two cyclic quotient singularities, which are marked in the

figure. Taking the minimal resolution yields the desired compactification X.

Figure 2.8:  Performing symplectic cuts (dash dot lines) to compactify By, .
After performing the vertical cuts, we obtain a manifold with two cyclic quotient
singularities, which are marked as bullets in the figure, along with their type. The
dashed line labelled [ indicates the affine displacement of the right hand vertical cut

from the monodromy eigenline.

We now perform a sequence of blow-downs to the base diagram of X terminating
at the moment polygon of CP* (Figure 2.10(b)). This proves that X is a blow-up
of CP? and the sequence of blow-downs we perform picks out the claimed basis
of Ho(X). To this end, we rotate the branch cut by 90° anticlockwise (see [17,
Section 7.2]), to obtain® Figure 2.9(a). The d bites in the diagram correspond to the

exceptional loci of d non-toric blow ups. In particular, they represent a collection

8Note that we continue to draw the base diagram of the singular manifold (Figure 2.8(b))

prior to taking the minimal resolution. This is to make the pictures easier to draw and interpret.
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2.2.  Compactification construction

of d disjoint symplectic —1-spheres. Moreover, each of them has w-area equal to [,
since the focus-focus critical values are all the same affine length [ from the right-
hand vertical edge. Label the homology classes of these spheres by &; and blow
them down to obtain Figure 2.9(b). Observe that the singularities of the resultant

%(Lp - T)

5(L,9)

Figure 2.9: Non-toric blow downs.

manifold are modelled on a reflection about the vertical axis of those of’ II(p,r).
Therefore, the minimal resolution is given by (the reflection of) Figure 2.2. Then
Lemma 2.1.3 implies that there is a unique sequence of toric blow downs to the
polygon in Figure 2.10(a), which is the moment polygon of CIPQ#Q@. Reversing
this process, that is blowing up instead of down, yields the desired sequence of blow
ups from (CP?, uwrs) to (X,w). Labelling the homology classes of the exceptional
loci of the toric blow ups as S and E;, and the non-toric ones as &;, we obtain the
claimed basis

We have established properties (1)—(3), so it remains to show (4). The equality
w(H — S) = 2l can be seen by examining Figure 2.8(b): w(H — 5) is equal to (27
times) the affine length of the horizontal edge and the vertical cuts can be made

equidistant from the monodromy eigenline. The inequality w(H — S) > w(E,)

Drawing the resolved manifold would involve long chains of edges as in Figure 2.2, the precise

directions and lengths of which add nothing to the proof, so we omit them.
9This is not a typo; reflection in the vertical acts as inverse modulo p on the singularity:

L(Lg) = (L),
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H

Figure 2.10: (a) The moment polygon of the toric manifold obtained by blowing
down Xy, The edges are labelled with the corresponding homology classes. (b)
The moment polygon of CP?, obtained by blowing down the edges labelled S and
Ep.

follows from considering Figure 2.11, which is the same polygon as in Figure 2.9(b).

w(F)

e
SR
Figure 2.11: The moment polygon of Figure 2.9(b) with affine lengths indicated.
The edge e points in the (p, —r) direction. Since the edge corresponding to F,, is

obtained by symplectically cutting the bottom edge, we have the inequality w(E,) <
A

The edge corresponding to F), is obtained by symplectic cutting the bottom edge
e of Figure 2.11, so its affine length w(E,,) is strictly smaller than that of e, which
we denote by A. Since e points in the direction (p, —r), we must have that A\p =
w(H — 9), since the top edge is horizontal. As p > 1, we obtain that A < w(H —5).

This completes the proof. O

Remark 2.2.2. The toric boundary D C X is a symplectic divisor of (X,w), meaning
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2.3.  Lagrangian spheres in By,

that is a union of (real) codimension 2 symplectic submanifolds of (X, w). It is a cycle
of transversely intersecting spheres, with each intersection point being positive. We
represent D by the dual intersection graph of its components in Figure 2.12(a).

Removing the components {S,F,S" := H — Ey — Z;l:l E;} yields a subgraph

F
’ ’ m LI
(a) D (b) Dy = @---0—o—o----0
E,

Figure 2.12: (a) The dual intersection graph of the divisor D C X. Vertices are
labelled with the respective homology classes of the component symplectic spheres.
The integers m and k correspond to the lengths of the continued fractions of 1% and
§ respectively, as in Lemma 2.1.3. (b) The subgraph consisting of spheres introduced

by resolving the singularities in the compactification process.

representing the part of the toric boundary obtained by resolving the singularities

in Figure 2.9, which we will call D.

2.3 Lagrangian spheres in B, ,

We classify the homology classes in Hy(Byyq; Z) = 79" that support Lagrangian
spheres. The point of this is to show that, in the compactification X, any Lagrangian
sphere L C Bgp, C X is homologous to e — ¢’ where e, ¢’ € Hy(X;Z) are classes
represented by J-holomorphic —1-curves. This will be important for our neck
stretching analysis performed in Section 3.

The homotopy type of Bg,, is a (p, ¢)-pinwheel wedged with d — 1 spheres [17,
Lemma 7.11]. Moreover, the standard A,;_; configuration of Lagrangian spheres is

a generating set of the second homology:
Hy(Baypy) = Ho(Bapy; Z) = Z(L; - 1 <i<d—1),
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Therefore, the intersection form with respect to this basis is

B S T R
1 -2 1 0 0
0 1 -2 1 o v 0
Q= . ' ' _ - (2.3.1)
0 O 1 -2 1
0 O 0 1 =2

Lemma 2.3.1. The set L C Hy(Bap,) of homology classes represented by

Lagrangian spheres in By, 4 s given by

Proof. Put L' = {£(L; + Liy1 + ...+ L;) | 1 < i < j <d—1}. Recall that the
Picard-Lefschetz formula states that, for the 4-dimensional Dehn twist 77, associated
to a Lagrangian 2-sphere L, the action of 77, on homology is given by
A+ (A-L)L, if A€ H,,
(72)(A) =
A, it Ae Hy, k # 2,
see [18] for example. Since 77, is a symplectomorphism, the image of any Lagrangian

submanifold under 7;, is again Lagrangian. Therefore, by iterating the calculation
(72.)«Liv1 = Liva + (Li - Liza) Li = Liy1 + Ly,

we find that £’ C L.

On the other hand, Weinstein’s Lagrangian tubular neighbourhood theorem [51]
implies that any Lagrangian 2-sphere has self-intersection —2, which reduces the
reverse inclusion £ C £ to a matter of algebra. Indeed, consider the homology class
L = Y% 4;L; of a Lagrangian sphere in By, Then, using Equation (2.3.1), we
have that

d—1 d—2
—2= L2 = —QZCL? + QZaiai—l—l-
=1 i=1
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ap = :]:1, aqg—1 = +1

i) +le o1
(i) +(Ly+ ...+ Lg1)
(11) +1 a; — ai+1 = 17 Ag—1 = —]_
o+1 —Liy1—...— Lg
a1 —a;=—1,a;— a1 =1
1il 1 1
() i + Lit..+L

Figure 2.13: These diagrams demonstrate how the coefficients a; contribute to the
sum in Equation (2.3.3). The left circle represents the value of a;, and the right
that of ag_1; an open circle is 0, whilst a filled one is +1. Adjacent coefficients
(a; and a;41) with the same value are joined with a straight line. As indicated, a
contribution of +1 is made to the sum any time the horizontal line jumps or a circle
is filled. The labels to the right of each diagram detail the non-zero terms of the

sum and the homology class they represent.

Since (a; — ai+1)* = af — 2a;a;41 + a7, ;, we can rearrange the above to obtain

d—2
A+ (a;—ain)? +dd, =2. (2.3.3)
=1

The left-hand side of this equation is a sum of square integers, so it follows that
exactly two of the terms aq, (a; — a;41), or az_1 have modulus equal to 1, whilst the
remainder are zero. From this we deduce that £ C L' by a case-by-case analysis
(although the reader may find Figure 2.13 alone sufficiently convincing).

We must have that |a;| < 1 and that, for some k& > 0, the first k& terms of the
sum S = Z?;f(ai — a;11)? are zero, implying that a; = ... = agy;. There are
three cases (which Figure 2.13 exemplifies): either (i) kK = d — 2 which implies that
a; =...=aq1 =+1,or k <d—2 and S has either (ii) one, or (iii) two non-zero

terms. In the case (ii), there exists i > 1 such that

ajg—1 = O, ay = ... = a,

|CL1 + Cld_1| = 1, and A1 = ... =04g—1-
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On the other hand, for (iii) there exist 1 < i < j < d — 1 such that
ap=...=01=0=aj;1=...=a4-1, and a; = ... = a; = £1.
These equations imply that L € £ and hence £ = L. ]

Remark 2.3.2. The Z-linear map ¢ : Hy(By,,) — R? generated by ¢(L;) = e; — €41,
where ey, ..., ¢eq is the standard Euclidean basis of R?, identifies Ho(Bq,,) with
the Ay lattice in R?. In this context, the calculation of the homology classes of

Lagrangian spheres above is equivalent to computing the roots of Ay ;.

Lemma 2.3.3. The construction of X = X4,, induces an injection Hy(Bgp,) —

Hy(X) sending the generators L; of Ha(Bayp,q) to & — Eiy1 € Ha(X) (up to sign).

Proof. Zooming in to Figure 2.6(b), one can see that each sphere L; has a

neighbourhood N; C Xg,, that looks like that shown in Figure 2.14. The second

Figure 2.14: A neighbourhood of one of the standard Lagrangian spheres L; C X.
homology of N; is freely generated by F,&;, E41 € Hao(X), so we must have
Li = AF + ;& + pisa it

Note that the left edge of the diagram in Figure 2.14 is part of the S sphere, which

is a non-zero class S; in Hy(N;, ON;) satisfying
FSZ:L and EJSZZO,

for 5 =1,7 4+ 1. Therefore, since L; is disjoint from S;, we find that A = 0. Now, L;

must be a —2 class, and so
R T
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2.4. Moduli spaces of fibre curves

which implies that |p;| =1 = |g;4+1|. Finally, the Lagrangian condition ensures that
0 =w(L;) = pw(&) + pipiw(Eiv1) = L(pi + pit1),

which shows that the coefficients p; and ;41 must have opposite sign. Hence, the

result follows. N
Combining the above with Lemma 2.3.1, we have proved the following:

Corollary 2.3.4. Any Lagrangian sphere L C Bq,, C X has homology class of the

form

for some 1 <i+# j <d.

2.4 Moduli spaces of fibre curves

In this section, we examine the J-holomorphic curves of X that represent the
homology class F' = H — S. First, we define the central object of study. Given
an almost complex structure J on X and a complex structure j on S?, define the
moduli space of genus 0 curves in the homology class F, My o(X, F;J), to be the
set'" of maps u : (5%, j) — X satisfying

duoj=Jodu and [u] == u.[S?] = F,

modulo the action of the reparametrisation group Aut(S? j) = PSLy(C). The
present goal is to prove that (after removing a single exotic stable curve) the forgetful
map

Mo (X, F5J) = Moo(X, F; J) (2.4.1)

gives rise to a Lefschetz fibration for all almost complex structures J in some suitable

subset J(A) of the space of compatible structures J(X,w), defined as follows.

10The notation used here is adopted from [37]. We'll often suppress X in the notation

Mo o(X, F; J).
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Definition 2.4.1. Let A be a symplectic divisor in (X, w), and define

J(A) := {J e J(X,w)

each irreducible component of A ad- }

mits a J-holomorphic representative

The reason we're interested in this space of almost complex structures is that
the Lagrangian spheres we consider live in the complement of a divisor in X. Under
neck stretching, the almost complex structure only changes in a small neighbourhood
of the Lagrangian, and so, supposing the initial almost complex structure J; is a
member of J(A), then J; will also be for all ¢t > 0.

Consider the divisor D’ obtained by excising the single component corresponding
to the edge of the toric boundary of X with homology class F,,. That is, D’ is given
by the subgraph of the dual intersection graph of D (Figure 2.12(a)) consisting of
every vertex except the bottom one. We are primarily concerned with the case
where A = D’ in the above definition. We will show that, for each J € J(D'),
there exists a unique J-holomorphic curve in the class F,,. Note that this does not
necessarily mean that J € J (D), since the aforementioned curve may not have the
same image as the F,-component'' of D. Indeed, a priori the Lagrangian sphere
L may intersect the E,-component of D, whereas Corollary 3.4.11 shows that, for
a sufficiently long neck stretch J;, the unique Ji-holomorphic curve of class FE,, is
disjoint from L.

The existence of the J-holomorphic curve in the class F, will then be used to
show that, for all J € J(D'), the curves in the Gromov compactification Mg o(F; J)

come in the following types:
e smooth curves of class F', called a smooth fibre curves;

e nodal curves with exactly 2 components with homology classes &;, F' — &;,

which will correspond to the Lefschetz critical fibres; and

e a single exotic nodal curve uZ, with n + 2 genus 0 components (where n is

1 Although the reader will lose little by ignoring this fact.
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2.4. Moduli spaces of fibre curves

as in Lemma 2.2.1), all, except one (the component covering the unique J-

holomorphic curve in the class E,,), of which cover those of D,, N D'

Moreover, the unique J-holomorphic curves in the classes S and S’ are sections of

the fibration (2.4.1) — see Corollary 2.4.16 and Proposition 2.5.1 for further details.

2.4.1 Almost complex structures on symplectic divisors

That J(D’) # 0, follows from straightforward extensions of results on the symplectic
neighbourhood theorem. See Appendix A.1 for the detailed construction. To
apply the results therein, we need to check that the components of D’ intersect
symplectically orthogonally. However, this follows from standard facts on toric
geometry, see [17, §3.2] for example. Indeed, each intersection point between
components of D is modelled on a Delzant corner of the moment polytope of
X, which is fibred symplectomorphic to (C? wez) with its usual toric structure.
The components of D’ correspond to the coordinate planes in C2?, which intersect

symplectically orthogonally. See Figure 2.15 for a cartoon picture of what happens.

D;
fibred
>~ (C?
symplectomorphic
D
Figure 2.15: Intersecting components of the divisor D’ do so symplectically

orthogonally, since any Delzant corner of a moment polytope is integral affine
isomorphic to the standard one. The fibred symplectomorphism sends the pieces

D; and D; to the coordinate planes in C?.
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2.4.2 Non-bubbling under variations of .J

Choose J € J(D'). In this section we show that the class E, admits a J-
holomorphic representative. To this end, recall that the intersection pairing on
Hy(X) = Ho(X;Z) is non-degenerate. Given any subset A C Hy(X) we denote the
orthogonal complement (with respect to the intersection pairing) of the submodule
Z{A) it generates by A'. By non-degeneracy, dim A+ = codim Z(A). This first

result is a basic application of positivity of intersections (Theorem 1.3.7).

Lemma 2.4.2. Let A € Hy(X) be any homology class represented by a nodal J-
holomorphic sphere, that is, there evists A C Ho(X) such that A =, _,Aq
where each A, € A has a J-holomorphic representative. Let C' C D be a connected
subgraph*® of D and suppose that A - C; = 0 for each J-holomorphic component C;
of C, and that, for some i, there exists k; € N such that k;[C;] € A. Then, for all i,

there exist positive integers k; such that k;[C;] € A.

Proof. We induct on the number, m, of irreducible components of C'. The base
case m = 1 is trivial, so assume the result holds for some m > 0. In other words,
C = Uicicms1(Ci) and, for 1 <7 < m, there exist positive integers k; > 0 such
that k;[C;] € A. Note that, by construction, C,,;; has at most two neighbours in

C, each of which it intersects exactly once positively. Therefore, we have that

Cm+1 : in: szz > 0.

=1

Combining this with the assumption that A - C,,.; = 0, we obtain

<A — i kl[Cl]) . Cm+1 < 0.

Positivity of intersections then implies that one of the remaining components A, €
A\{k[C;) | 1 < @ < m} covers Cpyq. Thus, there exists k41 > 0 such that
kmi1[Cmia] € A L

2In the sense of the dual intersection graph of D.
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Lemma 2.4.3. For any J € J(D'), any stable curve of class E, (if it exists) is
smooth: Moo(En; J) = Moo(En; J).

Proof. Consider the connected subgraph C' C D consisting of D minus F, and
its neighbours — that is, C' consists of all the vertices except the bottom three
in Figure 2.12. Said another way, C' is a the maximal subgraph none of whose
components intersect F,. Denote the set of homology classes of the components of
C as C.

Suppose that u = (u,) € Moo(E,; J) is a stable J-holomorphic curve in the class
E,, and that, for some components u, of u and C; of C', we have A, := [u,] = k;[C;].
Since F' € C, and, for all c € C, E,,-¢ = 0, we may apply Lemma 2.4.2 to deduce that
Ag = kgF for some component ug of u, which contradicts w(F) > w(E,) > w(Ap).
Therefore, for all a, ¢ € C, and £k € N, we have A, # kc. Then, positivity of
intersections and E, € C* imply that A, € C* for all a. Indeed, 0 = E,, - ¢ =
YwAa-cand A, -c > 0.

A simple calculation shows that C is a rank n + 2 linearly independent set, and
so, since dim Hy(X) = n + d + 3, to explicitly describe A, it suffices to find a rank
d + 1 linearly independent set in C*. Let £~, ET denote the neighbours of E,, C D
and note that £+ — E~ € C*, since they both intersect E, once positively. Then it

is easily checked that
Ct=Z(E, Bt —E & — &1 :1<j<d).

Recall that during the compactification process of Lemma 2.2.1, the curves E* were
introduced through symplectic cutting the toric boundary during the resolution of
singularities procedure. Since we have choice over the affine lengths of these cuts,
they can be made equal. That is, w(E') = w(F ™). Furthermore, by Lemma 2.2.1,

w(&;) =l does not depend on j, so we find that, for some integers \,, Ay, p1; € Z,

w(Ay) = w ()\nEn FAL(EY—E) + i 1 (& — gjﬂ)) = \w(E,).
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That is, the w-area of u, is an integer multiple of w(E,,). Since

D w(Aa) = w(Ey),
this is only possible if it is in fact equal to w(FE),). Since non-constant J-holomorphic
curves have positive area, this implies that A, = F,, and hence, u = u,, is a smooth

curve. O

Corollary 2.4.4. For any J € J(D'), the class E, admits a J-holomorphic

representative.

Proof. Let J (D', E,) denote the subset of J(D’) of almost complex structures that
admit a J-holomorphic representative of FE,. Section 2.4.1 says that J(D) C
J(D',E,) is non-empty, and so, since c¢;(E,) > 0, we may apply automatic
transversality [25] to show that J(D', E,) is open in J(D'). Moreover, by
Lemma 2.4.3, J(D', E,) is also a closed subset. Indeed, pick a sequence J, €
J (D', E,) converging to J € J(D') and a corresponding sequence of curves
u, € Moo(Ey; J,). Gromov compactness [37, Theorem 5.3.1] ensures that there is a
convergent subsequence u, — u, for some u € /V070(En; J). However, Lemma 2.4.3
states that u must actually be a smooth curve, and so we find that J € J(D', E,).
Thus, since J(D') is connected, we must have that J (D', E,,) = J(D’). O

Remark 2.4.5. Corollary 2.4.4 is a type of non-bubbling result. We can paraphrase
it by saying that “J-holomorphic curves in the class £, do not bubble under
deformations of J € J(D').”

2.4.3 The universal J-holomorphic curve

For J € J(D'), let E; be the image of the unique J-holomorphic curve in the
homology class F,. Recall that the symplectic divisor D, C D is that arising from
the resolution of singularities carried out in Lemma 2.2.1. By replacing the F,-
component of Dy, with E; we obtain a J-holomorphic divisor D, ;. More precisely

this is (Do N D’) U E;. See Figure 2.16 for a sketch of how Do, and D, ; differ in
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Figure 2.16: Part of the divisors Dy, and D ;. The only difference between the
two is the central component: D, ; contains the unique J-holomorphic curve E; in

the class E,,, whereas the E,-component of D, is part of the toric boundary divisor

of X.

a neighbourhood of E;. Excising this divisor we obtain X; := X\ Dy, which we
will show in Section 2.5 is the open dense subset of X on which there exists a genus
0 J-holomorphic Lefschetz fibration.
Following Wendl [55, §7.3.3], we define the universal J-holomorphic curve to be
the forgetful map
Ty Mo ( Xy, F; J) — Moo(Xy, F; J).

Our goal is to prove that these moduli spaces can be endowed with smooth structures
that realise 7; as a smooth Lefschetz fibration. The only notable difference between
our situation and that in [55] is that the target manifold X is not closed. However,
due to the specifics of our situation, we can work around this and show that the
required results of [55, §7.3.4] hold here.

We prove the following results first under a mild genericity condition J € Jree(D')
explained in Definition 2.4.9 below, and then extend them to all J € J(D') by an

automatic transversality and non-bubbling argument as in Corollary 2.4.4.

Remark 2.4.6. The reason we invoke genericity in the first place is that it gives
us a convenient argument to deduce the structure of Mgo(Xy, F;;J). One may
wonder why we don’t just assume genericity henceforth and skip the automatic
transversality argument. The reason is that in Chapter 3 we will have to modify

our almost complex structures a few times, and knowing the results of this section
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apply to all J € J(D') makes those arguments more straightforward.

The reason that genericity is convenient for describing the structure of ﬂo,g(X 5, F;J)
is that, as we harness in the proof of Lemma 2.4.11, it allows us to deduce that non-
smooth stable curves in MO,O(X 7, F; J) are nodal curves with exactly two index 0
components intersecting each other exactly once transversely. This in turn facilitates
the application of the gluing theorem (see for example [55, Corollary 2.39]) to deduce
that each of these nodal curves has a neighbourhood homeomorphic to a 2-disc.

The result describing non-smooth stable curves in MQO(XJ,F ;J) is crucial.
When we drop the genericity assumption, before Lemma 2.4.15, we need to reprove
it, in essence. This is where automatic transversality (combined with non-bubbling
results for certain index 0 curves) enters and tells us that we may still apply gluing

to understand the structure of Mg o(X, F'; J) for non-generic J.

Lemma 2.4.7 (c.f Lemma 7.43 of [55]). The moduli space Moo(Xy, F;J) is

homeomorphic to the complex plane C.

Lemma 2.4.8 (c.f. Lemma 7.45 of [55]). The moduli spaces Mo 1(Xy, F;J) and
M&O(XJ, F; J) admit smooth structures, making them open manifolds of dimension
4 and 2 respectively, such that wy is a Lefschetz fibration with genus zero fibres and

exactly one critical point in each singular fibre.

Definition 2.4.9. Fix J, € J(D') and denote D, := D'UE,,. Let U;, = X\D,, C
X, and consider the subset of almost complex structures Jes(Ujy, Jo) C T (D)
defined to be those that satisfy

J|DJ0 = J|X\UJO = J0|X\UJO = J0|DJ0,

and every J-holomorphic curve that maps an injective point'? into Uy, is Fredholm

regular.'® This is a Baire subset'® [53, Theorem 4.8] (see also [0, Theorem A.4]

13 An injective point of a curve u : ¥ — X is one where u~!(u(2)) = {z} and du(z) is injective.
A curve u is Fredholm regular when the linearisation of the Cauchy-Riemann operator at u is

surjective. Said another way, this means the moduli space near u is cut out transversely and is

thus a smooth manifold.
15 A Baire subset is one which contains a countable intersection of open dense sets.
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and Remark 3.2.3 of [37]) and so we can choose a small perturbation of Jy that lives
in Jreg(Uyy, Jo). We shall abuse notation and denote this set by Jies(D’) since the

choice of Jy does not really matter.

Remark 2.4.10. One should think of the set Uj, above as the set in which almost
complex structures in Jreg(D') are allowed to vary. Note that, since J|p, , =

=]0|DOO7J0 we have that Dy ; = D j, and thus X; = X .

We first prove a result that restricts the form of the non-smooth stable curves in

M[)’O(XJ, F; J)

Lemma 2.4.11. For every generic J € Jree(D'), every non-smooth stable curve
u € MOyO(X(],F; J) is a nodal curve with exactly two transversely intersecting
components u = (uy, ug) satisfying ([u1], [ue]) = (&5, F — &;) for some 1 < j <d.

In particular, there are no multiple covers.

Proof. Let A, be the homology class of an irreducible non-constant component u,
of u = (uy)a. Since u, is disjoint from D ., positivity of intersections implies that
Ay - Dg = 0 for each irreducible component Dg of D, 5,. We write this condition as
A, € Dy ;. Since the components of D, s, form a rank n + 2 linearly independent
set, and dim Hy(X) = n + d + 3, we find that D, ; = Z(F,&; : 1 < j < d). Thus

we may write, for some integers A, i; € Z,
d
Ao =AF+) 1€ (2.4.2)
j=1

We claim that ¢;(A,) > 0 for all non-constant components of u. Indeed, this will
follow from the Fredholm regularity condition of J € Jiee(D'), provided that each
non-constant component passes through Ujy,. Now, by the open mapping theorem, a
J-holomorphic map u,, : S* — D}, is either constant, or covers a component of D, .
However, since A, € Di_o, 7, and the only component of D Jo\ Do sy = *f_]f_gl
disjoint from Do, j, is the F-component, the latter case would imply that A, = F,

which is only possible if u is smooth. Therefore, in the non-smooth case, we conclude

that every component u, passes through U;. However, a priori, u, may not be
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simple, so we pass to its underlying simple curve, say u,. This satisfies the condition
that it maps an injective point into Uy,, and so, it is Fredholm regular, implying
that ¢;(u,) > 0, and thus ¢;(u,) = ¢1(Ay) > 0.

Combining the above with the arguments of Proposition 4.8, Lemma 4.12,
and §4.3 of [55], we deduce that u is a nodal curve with exactly two embedded
components of index 0 intersecting transversely in a single node. Let us relabel the

components as u = (u, uz). Since the index of a curve is given by
ind(u) = 2¢;([u]) — 2 >0, (2.4.3)

we find that ¢;(A;) = 1 for both components (u1, us2) of u. As u; is embedded, the

adjunction formula [37, Theorem 2.6.4] says
Cl<Ai) = AZQ + 2,

implying that A7 = —1 and so }_. 7 = 1, from which we deduce that exactly one

ft; is non-zero, and furthermore, this coefficient is +1. The equation
2\ + i = Cl(AZ') =1

ensures that either A; = &;, or, A; = F' — &;. Finally, the condition

implies that the other component u;,; of u satisfies [u;411] = A;11 = F — A;, from

which the result follows. O]

Remark 2.4.12. We call the types of nodal curves arising from Lemma 2.4.11 curves

of type (&, F —&;).

Proof of Lemma 2.4.7 assuming genericity. A topological manifold structure on
M0,0(X 7, F; J) is constructed via a gluing argument, such as that in the proof
of Lemma 7.43 in [55]. Our application of gluing is valid since Lemma 2.4.11
showed that the only non-smooth stable curves are nodal curves with exactly two

transversely intersecting components.
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It remains to show that Mo o(X;, F; J) is homeomorphic to C. To this end,

recall the evaluation map
ev: Mo1( Xy, F;J) — Xy ev([(u,2)]) = u(z).

In our case, ev is bijective, which follows by a standard foliation and compactness
argument (for example, combine [55, Proposition 2.53], with an argument such as
the end of the proof of Theorem 1.16 of [56]). Moreover, since it’s a proper map,'°
and X is locally compact and Hausdorff, it follows that ev is a homeomorphism
onto X;. Now fix a parametrisation v : S? — X of the divisor component of class
S, and remove the unique point'” from the domain that maps to D4, ;. Then, since
S . F = 1, the composition 7y ocevlowv : C — Mgo(Xy, F;J) is the required

homeomorphism. O

Proof of Lemma 2.4.8 assuming genericity. The smooth structures on the moduli
spaces are constructed through the usual implicit function theorem argument [37,
§3] on the set of Fredholm regular curves, combined with the gluing argument at
the nodes given in [55, Lemma 7.45]. The same result there also shows that 7 also
has a Lefschetz fibration structure at the nodal points. Since these arguments are
inherently local, they also apply to our situation of the non-compact target manifold

Xy. [l

Corollary 2.4.13. For generic J € Joee(D'), the moduli space Mo (X, F; J) is
homeomorphic to Y #kCP?, where Y is a ruled surface over M0,0(XJ,F; J) =2 C,
and k > 0 is the number of nodal fibres. In particular, the FEuler characteristic
satisfies

X(Mo1(Xy, F; J)) =k +2. (2.4.4)

Proof. The homeomorphism claim is Corollary 7.46 of [55], and the Euler charac-

teristic formula then follows from a calculation using elementary properties of .

16Preimages of compact sets are compact.
17This is the point S N Dy, .
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Specifically, Y is fibred by 2-spheres over C, and so

X(Y) = x(5%)x(C) =2,
and connect summing with CP? increases x by 1. O

Corollary 2.4.14. For every generic J € Jreg(D'), there are exactly d non-smooth
stable curves in Moo(Xy, F; J) given exactly by the curves of type (£, F — &;) for
all1 < j5 <d.

Proof. Since the evaluation map ev : Mo,1(XJ, F;J) — X, is a homeomorphism

and, by Corollary 2.4.13, we have that
#nodal curves + 2 = x (M1 (X, F; J)) = x(X,) =d + 2,

and so there must be exactly d nodal curves in X, all of which are of type (€;, F—¢;)
by Lemma 2.4.11. Since a nodal curve of this type is unique, that is, for each
1 < j < d, there is at most one nodal curve of type (&;, F' — &;), then there is

exactly one for each integer j. O

It is at this moment that we drop the genericity condition. The next result is a
generalisation of Lemma 2.4.11, and it will be used to show that all of the previous

results that relied on genericity continue to hold.

Lemma 2.4.15. For every (not necessarily generic) J € J(D'), a non-smooth

stable curve in Moo(X, F; J) must be of type (€;, F — &;) for some 1 < j < d.

Proof. The argument is similar to that of Corollary 2.4.4. We will show that the
set of almost complex structures J(D’, A) that support a J-holomorphic curve in
the class A € Hy(X), where A is one of the classes £, F' — &, is equal to the whole
space J(D') by automatic transversality and non-bubbling results. The fact that
J (D', A) is non-empty follows immediately from Corollary 2.4.14, so we need only

prove the non-bubbling results.
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Suppose that J € J(D'), assume that A = &;, and let u € Mgy(&;;J) be a
stable curve of class £;. Choose a non-constant component u, of u and note, as in

the proof of Lemma 2.4.3, that Lemma 2.4.2 ensures that
Ay = [Uua) € (Do g U S)*.

Since Dy, U S forms a rank n + 3 linearly independent set in Hy(X), we find that
(Dooy US)t =7Z(&, : 1 < k < d), and so, for some integers p; € Z

d
Aa = Zﬂkgk
k=1

Recall that the areas of the classes & are all equal to [. Thus, we have that w(A,)

is an integer multiple of [:
d
w(Ay) = ZZ -
k=1

However, this is only possible if w(A,) = [, and so we conclude that u = u, is
actually a smooth curve.

Repeating the above argument with &; replaced with F'—&; and S replaced with
S’ shows that F' — &; curves also don’t undergo bubbling. Hence, by the argument
of Corollary 2.4.4, J(D', A) = J(D'). Summarising, we have shown that the classes
&;, F' — &; are J-holomorphic for all J € J(D’). It remains to show that any non-
smooth stable curve must be of type (£;, F — &;).

Suppose that we have a stable curve u € Mgo(X;, F;J) that is not of type
(&, F —¢&j) for all 1 < j < d. Then, since the classes & and F — &; are J-
holomorphic, a simple positivity of intersections argument, akin to Lemma 2.4.2
implies that u has no components in common with £; and F' — &;. In particular, for

any component u, of u, we have that

d 1
Ay € (DOO,J vl @-) = Z(F),
j=1

and so u must actually be a smooth curve. This completes the proof. O

Corollary 2.4.16. For every J € J(D') the compactifying curves in Mo o(X, F; J),
that is, the elements of Moo(X, F; J)\Moo(X, F;J), are given ezactly by:
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o for each 1 < j <d, a nodal curve of type (&;, F — &;), and

e a stable curve uZ, whose components cover those of Dy.;. We call this the

exotic curve in Mo o(X, F; J).
In particular, Moo(X, F; J) is homeomorphic to S®.

Proof. To prove that the curves of type (£;, F'—&;) do indeed exist, we wish to repeat
the argument of Corollary 2.4.14. We achieve this by noting that Lemmata 2.4.7
and 2.4.8 continue to hold in the non-generic case, since the only way they depend
on genericity is to prove that non-smooth stable curves consist only of nodal curves
with exactly two components intersecting transversely, but Lemma 2.4.15 shows that
this continues to hold in the non-generic case. Hence, the result of Corollary 2.4.14
continues to hold.

To see that the stable curve ugo € MQQ(X , F'; J) exists, we use the fact that
ev 1 Mo,(Xs, F;J) — X is a homeomorphism to pick a sequence of smooth
curves u, € My o(X, F;J) passing through points z,, € X converging to € D ;.
Gromov compactness allows us to extract a convergent subsequence u,, — u’_. Since
F? = 0, the image of u/, must be disjoint from all the curves in m071(XJ,F; J),
so it follows that imu’, C D., ;. Unique continuation [37, §2.3] of J-holomorphic

curves implies that each of the non-constant components of u/_ have the same image

J

as a component of D, ;. Hence, uz,

covers Dy j.
Finally, the Gromov topology on MO,O(X , F'; J) realises it as the one point
compactification of Mg o(X,, F;J) = C. Whence we obtain that Mg o(X, F; J)

is homeomorphic to S2. O

2.5 The Lefschetz fibrations 7;: X; — C

The results of Section 2.4.3 allow us to construct Lefschetz fibrations on X; =

X\Dw s for all J € J(D’). This section proves the following proposition.
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Proposition 2.5.1. For every J € J(D’), there ezists a Lefschetz fibration m; :
X; — C which has smooth fibres in the class F', and exactly d nodal fibres of type
(&, F = &)

This almost immediately follows from §2.4.3, however there are a few smoothness

technicalities to check. The aim is to show that the map
X — Moo(Xy, F;J) : o+ the curve passing through z

is a smooth Lefschetz fibration. Precisely, this map is equal to 7; o ev™!, where
Tyt Moi(Xy, F;J) = Moo(Xy, F;J) is the universal curve from the previous
section. We abuse notation and denote this composition by 7, also, as we won’t
make further reference to the universal curve. A detailed proof of the following can
be found in Lemma 6.29 of [31]. We recall it here as our subsequent arguments

crucially depend on it.

Lemma 2.5.2. There exists a unique smooth structure on HO’O(X‘], F; J) such that
the map 7y : X7 — Moo(X;, F; J) is smooth except perhaps at images in X of the
nodes of nodal curves in Moo(Xy, F;J).

Proof. We construct a smooth atlas on MO,O (X, F'; J) making use of the smoothness
and embeddedness properties of the curves in this moduli space. Choose a point
p € X that is not the image of a node, and fix an embedded open 2-disc D,, passing
through p that is transverse to the tangent space of the curve u, € MQO(X 5 F;J)
passing through p. After possibly shrinking D,, we may assume that nearby curves
in some open neighbourhood U C HQO(XJ, F; J) of u, intersect D, exactly once,
transversely. Therefore, we have a homeomorphism U — D,,. We consider U — D,
to be a smooth chart by smoothly identifying D, with the open unit disc in C. We
take the atlas to be the maximal one containing the collection of all such charts, all
of which are smoothly compatible since the foliation MO,O(X 7, F'; J) is smooth. The
claims about smoothness of 7; and uniqueness of the corresponding atlas follow by

construction. O
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Remark 2.5.3. As in Lemma 2.4.7, Mo(Xy, F;J) equipped with the smooth
structure of Lemma 2.5.2 is diffeomorphic to the complex plane C. Indeed, as
a 2-dimensional topological manifold, there is a unique smooth structure up to
diffeomorphism. However, it is not clear that these smooth structures are compatible
with one another. Indeed, smoothness of gluing maps is a subtle question in general
[55, Remark 2.40] [I, Remark 6.30], and one should be careful when discussing

smooth structures on spaces of stable J-holomorphic curves.

Next, we want to show that 7; is smooth over the nodal points. Firstly, we
note a result sketched in the appendix of [55], which explains how moduli spaces of
square zero spheres that degenerate to a single curve with exactly one transverse

node “look like” Lefschetz singular fibres.

Lemma 2.5.4 (Corollary A.3 of [55]). Fach nodal point in X; admits a complex
coordinate chart in which the leaves of the foliation Moo(X;, F;J) are identified

with the fibres of the map my : C* — C : mo(21, 22) = 2129.

Corollary 2.5.5. The map ©; : X; — ./\_/lo,o(XJ, F;J) is a smooth Lefschetz
fibration. The nodal fibres are given exactly by the d nodal curves of type (€;, F —&;).

Proof. Let V' C C be an open neighbourhood of 0 € C and choose a local section
s:V — C? of my. Note that im s is necessarily disjoint from the unique nodal point
0 € C2. Denote one of the coordinate charts given by Lemma 2.5.4 by v : U — C2.
The fact that s is a section and ¢ maps curves in HO,O(XJ, F; J) to fibres of
ensures that the composition ¢ := 701 os:V — Mgo(X,, F;J) is one of the
charts of the atlas constructed in Lemma 2.5.2. Again, as @ maps curves to fibres,

we have that
Ty =¢omyo, (2.5.1)

that is, the following diagram commutes:

v—>r 2

lm lﬂe . (2.5.2)

HO’O(XJ,F; J) (T Vv
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Since the all the maps on the right-hand-side of (2.5.1) are smooth everywhere, we
must have that 7 is smooth at the node. Moreover, by the commutativity of (2.5.2),
the local charts v and ¢ give 7; the structure of a Lefschetz singularity at the node.

The claim about the nodal fibres follows directly from Corollary 2.4.16. O

Proof of Proposition 2.5.1. All that remains to do is identify the moduli spaces
Moo(X;, F; J) with Cfor all J € J(D'). In fact, we consider the subset J' C J(D’)
of almost complex structures that are fixed along T'S C T'X|g. Then, similarly to
the proof of Lemma 2.4.11, we can fix a parametrisation v : S? — X of the S curve
that is J-holomorphic for all J € J’ and such that v(0) is in the F-component of
D and v(oco) = SN Dy y. The condition S - F' = 1 ensures that the composition
myov is a homeomorphism, and moreover, it is a diffeomorphism by construction of
the smooth structure on mo,g(X 7, F'; J) since the transverse disk D, can be taken

to be v(S*\{oo}). This completes the proof. O

Remark 2.5.6. 1. One can visualise the map 7; : X; — C as a Riemann sphere
with d + 2 marked points. Indeed, for each J € J(D'), denote that curves of

type (&, F — &) by uj. Then we define a marked surface by
(5%, (0, 00,07} (u}), ..., 07" (uy))).

As J varies, the d marked points corresponding to Lefschetz singular fibres

move around, whilst the points 0 and co remain fixed.

2. The domain X; of m; depends on J. However, as we shall see later, the
Lagrangian isotopy from L to a matching cycle of 7; occurs away from the
curve u’l. Therefore, by excising a suitable tubular neighbourhood of u’,
we can fix a subset of X on which all of the maps m; are defined (see the

discussion preceding Corollary 4.3.3).
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Chapter 3

Constructing a foliation adapted

to a Lagrangian sphere

In this chapter we apply neck stretching to produce a foliation on 7*S? by J-
holomorphic cylinders with exactly two singular leaves. Crucially, we show that the
smooth leaves intersecting the zero section do so along smooth circles. This then
leads to a J-holomorphic Lefschetz fibration on 7*S? for which the zero section is a
matching cycle.

First, we recall some further details on the neck stretching setup. We then
construct an almost complex structure Jp«g2 on T*S? that is suitable for neck
stretching, and satisfies the property that it is anti-invariant under fibre-wise
multiplication by —1, which is the property that powers the intersection along circles
argument.

The intersection theory for punctured J-holomorphic curves is reviewed in
Section 3.2, as well as explaining how this works in the case of Morse-Bott degenerate
asymptotics. This theory is then used in Section 3.3 to prove some basic facts about
the foliations of T*S5? by J-holomorphic planes constructed by Hind [23].

The bulk of the chapter takes places in Section 3.4 where we apply intersection
theory to analyse the holomorphic buildings that arise as limits of curves under neck

stretching. Finally, Section 3.5 uses the limit analysis to construct a neck stretching

26



3.1.  Neck-stretching, holomorphic buildings, and SFT compactness

sequence J; such that all the curves in ﬂoyg(F ; Ji) that pass through the Weinstein

neighbourhood of L converge to their respective holomorphic buildings as & — oc.

3.1 Neck-stretching, holomorphic buildings, and

SF'T compactness

Recall the neck stretching setup described in Section 1.3.3. Specifically, with
(M, \) = (T} L, Aean), a portion of the symplectisation (—e, €) x M C (Rx M, d(e” X))
symplectically embeds into X. Up to rescaling by the Liouville flow, we can assume

that R = 1. We write Y = X\(—¢,¢) x M as before, and form the stretched

manifolds by inserting longer and longer necks:
Xy =Y Un_um, [—t — €€l x M.

These manifolds are diffeomorphic to Xg = X via a diffeomorphism that extends
one of the form (—t —¢€,€) = (—¢, €). Since the Lagrangian sphere L is disjoint from
the divisor D’ C X, a cylindrical almost complex structure defined on the Weinstein
neighbourhood 7%, L C X of L, can be extended to an element of' [J(D’). Since
neck stretching only alters almost complex structures in the neck region, we have
that J; € J(D’) for all ¢ > 0. Therefore, the results of Section 2.4 apply to J;.
Throughout this chapter we’ll use the rich and technical theory of punctured
J-holomorphic curves and Symplectic Field Theory (SET). We give an overview of
the main relevant definitions, without getting too bogged down in the details.? The
notation used here is that of [9], but the reader may also consult references such as

[5, 14, 54] for different perspectives.

!Choose a tubular neighbourhood of D’ disjoint from TZL and define J here, then extend

arbitrarily everywhere else.
2The reader is cautioned that some important (but inconsequential for the narrative presented

here) technical details are ignored here, and they can assume that any time a reference to the

literature is made, the author is glossing over something not strictly relevant to the narrative here.
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Chapter 3.  Constructing a foliation adapted to a Lagrangian sphere

Consider a non-compact symplectic manifold (W, w) with ends modelled on the
half-symplectisations (—oo,0] x M or [0,00) x M of a contact manifold (M, ).
Given a compatible almost complex structure .J that is cylindrical over the ends, we
consider punctured J-holomorphic curves f : ¥ — W whose domain is a Riemann
surface of finite type. A remarkable property of these curves is that, if they have
finite energy (which we will not define here, see instead [9, 5]) then each of their
punctures is asymptotic to a Reeb orbit of the contact manifold (M, \) [28, 27, 10].
Our main examples will be the manifolds and curves that arise from neck stretching.
In particular, XJ(FO) >~ X\ L is a symplectic manifold with a concave cylindrical end
modelled on (—o0, 0] x T} L, and X9 >~ 7L is one with a convez end modelled on
[0,00) x T} L. The punctured curves in these manifolds will form the components of

a holomorphic building obtained through a compactness theorem described below.

Another important example of a punctured curve is that of a trivial cylinder over a

Reeb orbit:

Example 3.1.1. Given a Reeb orbit « of period T in a contact manifold (M, \),
the trivial cylinder over ~ is the map u, : R x St — R x M defined by

uy (s, t) = (T's,y(t)).

Any cylindrical almost complex structure J on R x M realises u, as a punctured
J-holomorphic curve with exactly one positive and one negative puncture, both

asymptotic to .

Recall from Section 1.3.3 the split manifold X* and the almost complex structure
J* to which the neck stretching sequence J; converges (on compact subsets). A J*-
holomorphic building in X* is a J*-holomorphic map F' : ¥* — X* where X* is
a (potentially disconnected and non-compact) Riemann surface. Each level F®) :
Y — X® is a finite-energy punctured curve, with each puncture asymptotic to
a Reeb orbit in (M, ). The set of punctures I' is partitioned into positive and
negative sets I't determined by whether the asymptote corresponding to a puncture

lives in either the convex or concave ideal boundary of X ) respectively. Crucially,
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the asymptotics in adjoining levels of a J*-holomorphic building agree. That is, the
v level connects to the (v + 1) level, and the set of positive asymptotics of F®) is
equal to the set of negative asymptotics of F“+1). Amongst other things, this means
we can glue ¥* together into a compact Riemann surface ¥ and F' correspondingly
glues together into a continuous map F : ¥ — X, whence we obtain the homology
class [F] € Hy(X) of the building.?

A stable J*-holomorphic building is one where none of the levels F®) restrict to
constant maps on any sphere component with fewer than 3 nodal points or punctures,
and moreover, that no level F*) is comprised solely of a union of trivial cylinders

over Reeb orbits. We will produce stable J*-holomorphic buildings by using the
SFT compactness theorem [5, Theorem 10.3] [0, Theorem 1.1]:

Theorem 3.1.2 (SFT compactness). Given a neck stretching family J; and a
sequence of Jip-holomorphic curves f : ¥ — X with uniformly bounded energy,

there exists a subsequence converging to a stable J*-holomorphic building F'.

The nature of the convergence is technical (see Definition 2.7 of [9] for the
convention used here in full) and we note just a couple of its properties. For each

level v, up to reparametrisation, there exists a sequence of translations of the maps

[eS)
loc

fi in the neck region so that they converge to the level F®) in the topology.

Additionally, the convergence ensures that of the homology classes:

] = [F] € Hy(X).

In particular, if [f,] = A is independent of k, then [F] = A.

Remark 3.1.3. The neck stretching setup allows us to think about points in the
Weinstein neighbourhood x € Y. = TZ, L as either living in X, or in the completion
X9 >~ 7L, This is useful for phrasing statements like: given a J(®)-holomorphic
curve F(© that forms part of a J*-holomorphic building F, passing through x €
X(_O), there exists a sequence of closed Ji-holomorphic curves f} passing through z

that converges to F'. This phrasing will be used repeatedly in Chapter 4.

3Sometimes we will drop the bar notation and just write [F] when no confusion is possible.
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3.1.1 An almost complex structure adapted to a Lagrangian

sphere

In this section we construct a family of SO(3)-invariant, wea.,-compatible almost
complex structures on 7*S? that can be taken to be cylindrical on the complement
of an arbitrarily small neighbourhood of the zero section. The construction is similar
to Lemma 4.12 of [15], however we make it explicit here to ensure the property of
anti-invariance under fibre-wise multiplication by —1.

First we recall a result taken from Seidel’s thesis [12]. Let 7 : C®> — C be the
map 7(z) = 27+ 23 + 22 and denote by F the restriction of 7 to the real axis R C C.

Equip E with the restriction of the standard Kahler structure (£ = wes, ) on C3.

Lemma 3.1.4 ([12, Lemma 18.1]). The restriction of (FE,Q) to (0,1] is isomorphic
to the trivial symplectic fibre bundle (0,1] x (T*S?, wean). An explicit isomorphism
15 given by:

Uiz =iy (n(z), o e —fely).

Here we have employed the usual embedding 7*S? = {(¢q,p) € R®* x R? | |¢| =
1, {q,p) = 0}, and the fact that wea, = Z?=1 dp; Adg;. Under this identification, fibre-

wise multiplication by —1 (¢, p) — (¢, —p) is identified with complex conjugation.

Remark 3.1.5. In fact, U restricts to an ezact symplectomorphism ¥y : (Es, —y;dz;) —
({s} x T*S?,p;dg;) on each fibre E, = 7~1(s). This is critical for our situation since
cylindrical almost complex structures depend on the Liouville structures present.
Note also that W is equivariant with respect to the diagonal Hamiltonian SO(3)-

action on R3 x R3 = C3.

The almost complex structure induced by the standard one ¢ is not cylindrical
with respect to the contact-type hypersurface T}S?, therefore, we explicitly

construct one that is.

Proposition 3.1.6. There exists a compatible almost complex structure Jrp-g2

on T*S? that is anti-invariant under the anti-symplectomorphism ¢ of fibre-wise
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multiplication by —1, that is, p.Jp+g2 = —Jp+g2. Moreover, Jr«g2 can be made

cylindrical outside of an arbitrarily small neighbourhood of Og2.

Proof. Consider the manifold W := ([0,1] x T*S?)\({0} x Og2). Observe that ¥
extends to a isomorphism FElj\{0} — W that is exact on the fibres. Pushing
forward 4 via U, yields a family of almost complex structures J; on T*S?, defined

only away from the zero-section in the case of Jy. Each of these is anti-invariant

under ¢ and Jy is cylindrical on (T*S*\0g2, Acan) = (R x T7S?, €" Acan

Tl*SQ)'

Choose a smooth function p : R — R that satisfies:

p‘(—oo,i} =1
p’[%,oo) =0

Then Jr-s2(q,p) := Jy(p) (¢, p) is the desired almost complex structure. By altering
p the last claim of the result follows. O]

3.2 Intersection theory of punctured curves

Intersection theory for punctured J-holomorphic curves was first laid out by Siefring
in [50]. In that paper, Siefring assumes a certain non-degeneracy condition on the
contact form. However, as we explain in this section, some of Siefring’s results
apply more widely (with few alterations) to the so-called Morse-Bott degenerate
case considered in this work. We discuss these degeneracy conditions below in
Section 3.2.1, along with the choices that need to be made to define the intersection

number in the degenerate case.

3.2.1 Asymptotic constraints

When considering punctured J-holomorphic curves in a symplectic manifold (W, w, J)
with a cylindrical end modelled on a contact manifold (M, \), there is a non-

degeneracy condition one can ask of a closed Reeb orbit of A. Specifically, let
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v :10,T] — M be tangent to the Reeb vector field Ry so that v(0) = (7). Consider
the contact plane over v(0): &,y = ker A((0)). The Reeb flow ¢; preserves ker ),
and so we can make the following definition: v is non-degenerate when the restriction
d(65*)(7(0)) l¢. o, has no eigenvalue equal to 1. We say that A is non-degenerate when
all of its closed Reeb orbits are non-degenerate.

A problem with this property is that many natural contact forms possessing
symmetry are degenerate. Instead may consider the Morse-Bott degenerate
condition, the full definition of which can be found in Definition 1.7 of [1]. The
important property for us is that Morse-Bott degenerate Reeb orbits come in families
of orbifolds of orbits sharing the same period T. We consider the especially simple
case of (M, \) = (T} 5%, Acan), which has the property that every simple’ Reeb orbit
has the same period, and M = RP? is smoothly foliated by them. This implies
that the quotient of M by the S! action of the Reeb flow is a smooth 2-dimensional
manifold (diffeomorphic to S?).

Associated to any Reeb orbit v is a differential operator called an asymptotic
operator A.,. Somewhat counter intuitively, knowing the precise definition will not
be that useful for what follows.” The reader may consult [54, §3] for the precise
definition along with justifications for the statements we make here. What is more
useful for us is a basic understanding of the spectrum o(A,): it is a discrete set
composed exclusively of real eigenvalues. In dimension 4 (as we consider here) this
property furnishes the definition of a certain winding number function defined on
o(A,) — see Equation (3.2.2).

The non-degeneracy condition of v can now be characterised via its asymptotic
operator as: 0 ¢ o(A,). On the other hand, the Morse-Bott degenerate operators
we handle here satisfy dimker(A,) = 2, which leads to problems in defining the

4A simple Reeb orbit is one with minimal period.
SHowever, we note that in a unitary trivialisation of the bundle v*£, one can always write

A, =—Jy0, — S(t),
where S(t) is a loop of symmetric matrices and Jy is the standard complex structure on C™.
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3.2.  Intersection theory of punctured curves

intersection number and virtual dimensions of moduli spaces of curves. The root of
the problem is that the conventional definition of the Conley-Zehnder index jiqy, via
the spectral flow [10] is undefined. This is resolved by perturbing the asymptotic
operators by a small number ¢ € R\{0} to make them non-degenerate and then
computing the Conley-Zehnder index of the perturbed operator. The sign of €
corresponds® to whether the orbit is considered as constrained or unconstrained in
the moduli problem. That is, whether or not we consider families of curves whose
asymptotic orbits are allowed to move freely.

To make this correspondence precise, let ¥ = Y\I' be a punctured Riemann
surface, where I' = I'" U T~ is the finite set of punctures partitioned into positive
and negative subsets. Suppose that (W,w) has convex and concave ends modelled
on (My,\y) and (M_,\_) respectively, and let f : ¥ — W be a punctured curve
asymptotic to a Reeb orbit v at z € I'. Fix ¢ € R\{0} so that

[—lel, lell Mo (A)\{0} = 0, (3.2.1)

then ~ is constrained if the signs of the puncture z and e agree, otherwise, it is
unconstrained. We shall write v + € to denote the orbit subject to the perturbation

€, which corresponds to the asymptotic operator A + €.

Remark 3.2.1. In the sequel we will always assume (without always saying so) that e
(or often J) has been chosen small enough so that Equation (3.2.1) holds for a fixed
finite collection of asymptotic operators. These collections arise in situations when
one considers curves with multiple punctures, or, more generally, a finite collection
of punctured curves. When considering the asymptotic operators associated to the
orbits of a punctured curve, we will often write A, to denote the operator associated
to the asymptotic orbit of the puncture z € I'. Furthermore, when it is clear from

the context, we sometimes just write A.

6The relationship between the sign of the perturbation and the geometric idea of whether an
orbit is constrained or not is explained in §3.2 of [52]. Specifically, the reader is directed to the
discussion of the splitting T, = W/{’p"s(u*TW) & Vr ® Xr, and the proof of Proposition 3.7

therein.
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Chapter 3.  Constructing a foliation adapted to a Lagrangian sphere

Before proceeding further, we remark on some differences in approaches to

defining the Conley-Zehnder index in the literature.

Remark 3.2.2. As already described, one can define an index in the Morse-Bott
degenerate case by making a choice ¢, € R\{0} for each asymptotic operator A,
and compute the index p, of the perturbed non-degenerate operator A, +c,, as in
Equation (3.5) of [52]; or, one can compute the Robbin-Salamon index ugrs [11] of
the linearised Reeb flow as done in [1]. It turns out that the latter can be realised
as a special case of the former. Indeed, as in [/, §5], denote the linearised Reeb flow

by U* and let A, be the asymptotic operator with parallel transport U*. Then

ez (As £ 68) = s (W)
1
= urs(VU*) F 5 dim ker(U* — 1)
1
= purs(UF) F 5 dimker(AL),

where W+ is the perturbed parallel transport defined in §5.2.3 of [4]. Note that the
left-hand side of the first line is what appears in the index formulas of [52], and the
last line appears in the index formula of 9; of [4, §5].

In the sequel, we shall often use the notation ugrs(7y) to represent the Robbin-

Salamon index of the linearised Reeb flow around the Reeb orbit 7. That is,
prs(7) = prs (V).

3.2.2 Definitions and key results

Now let g : ' — W be another J-holomorphic curve. In defining the intersection
number between f and g, it is important to be precise about the orbit constraints
one considers. Here, we will usually consider the case where every orbit of f and
g is unconstrained, although, we will also consider the opposite case, where every
orbit is constrained. To keep the notation light, we will denote these numbers as
iv(f,g) and ic(f, g) respectively. At times where it is clear from the context which
intersection number we are handling, we shall sometimes refer to them both as the

Siefring intersection number, due to Siefring’s original work [50].
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3.2.  Intersection theory of punctured curves

The numbers iy (f,g) and ic(f,g) are generalisations of the usual intersection
product for closed curves. See [50, §4] for a concise account of the non-degenerate
case, and [52, §4.1] for the corresponding Morse-Bott statements that we use here.
Moreover, there is a further generalisation: that of the intersection number of two
holomorphic buildings. The mantra that we shall justify in this section is that
the intersection theory of buildings arising in the splitting (or neck stretching)
construction behaves almost exactly like that of closed curves.

Before stating the main definitions, we recall some terminology. We adopt the
conventions of Wendl, which differ slightly from Siefring’s; see Remark 4.7 of [50] for
a note on the differences. Given a Reeb orbit « let 7 denote a unitary trivialisation
of the contact bundle v*¢ — St over it.” As is customary, whenever a trivialisation
over a multiple cover is required, we use the pullback of 7 under the covering map
St — S': 0+ k6 and denote this by 7% (although sometimes we abuse notation
and just use 7). Similarly, we write v* for the pullback of v under the k-fold covering

map, and we say that v* is a k-fold cover of 7.

The reader may consult Sections 3 and 4 of the excellent book [56], or the original
paper [20] for full details on the following statements about asymptotic winding
numbers. See also Section 3.1.3 of [50] for a summary of the situation. Relative

to 7, there is a well-defined winding number function wind, : ¢(A) — Z. The

extremal winding numbers o7, are defined as follows:®

o (A) = min{wind} (A) | A € (0,+00) No(A)} ( )
3.2.2
a” (A) = max{wind, (\) | A € (—o00,0) Nc(A)}.
We will also write o () to mean of (A,). Now suppose that v is a simple Reeb

orbit, then we define the numbers

:Fa;(fyk +€) Fai(y"+€) }

Q7 k m N =k .
LY +ey"+€) mmln{ Z -

This definition is extended to all pairs of Reeb orbits by asserting that

DV (v+e+y+€)=0

"Occasionally we will also use ® instead of 7.
80bserve that these definitions are sound, no matter the degeneracy of A.
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Chapter 3.  Constructing a foliation adapted to a Lagrangian sphere

if v and +/ are not covers of the same simple orbit.

The final ingredients needed to state the main definitions are the relative
intersection number f o, g of two punctured curves, and the relative first Chern
number ¢](E) associated to a complex bundle E — ¥ over a punctured curve. The
former is defined to be the usual algebraic count of intersections between f and the
push-off of g in the direction determined by 7 near infinity, and the latter is defined
via algebraic counts of zeros of sections of E that are non-zero and constant near
infinity. For precise definitions see Sections 4.2 and 3.4 of [50] respectively. For a

punctured curve f : 3 — W we'll often use the shorthand ¢7(f) := ¢ (f*TW).

Definition 3.2.3. 1. Let f: ¥ — W and g : >’ — W be punctured holomorphic
curves in an almost complex manifold with cylindrical ends W, then for any
0 > 0 sufficiently small, their constrained and unconstrained intersection

numbers are defined as”

io(f,9)=fe9— >, QilyE07£0),
(z,w)ErEx (IT7)*
iU(fag) ::f.fg_ Z Q;(’Vz:[zéaf)/w:[:(s)-

(z,w)elrEx (I7)*

2. Let F = (FO, ..., F¥))and G = (G©,...,G™)) be holomorphic buildings

in a split manifold, then we define their intersection number to be

N
G) =S P e GO,
=0

3. The normal Chern number of a curve f is defined as

en(f) = () =x(E) £ ) ak(y: F o).
2€l+
9Tn this equation and in those that follow, the notation & indicates that the sum appears twice,

once with a plus sign, and again with a minus sign. For example,

Z Q;('Yz £ 6,70 £0) = Z Ql (V2 + 0, 7w +0)

(z,w)elrEx ()£ (z,w)el+x(I'")+

+ > Q7 (7. — 8, 7w — 6).

(z,w)el—x(I'")—
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3.2.  Intersection theory of punctured curves

These definitions are sound since the dependence on the trivialisation 7 cancels
in each of the equations. In particular see Appendix C.5 of [50] for the justification
of this claim for intersections of buildings.

We now state some key results that will be crucial in our analysis of holomorphic
buildings arising from the neck stretching process. First, the adjunction inequality,

which is an immediate corollary of the adjunction formula given in [52, §4].

Theorem 3.2.4 (Adjunction inequality.). Let f : X — W be a punctured curve in

a manifold with cylindrical ends. Then,

iv(f, f) = en(f)-

Next, we have a statement of continuity of the intersection products with respect
to the topology of the moduli spaces of holomorphic buildings. This can be derived

from Lemma 5.7 of [50].

Theorem 3.2.5. If f;. and gy are sequences of closed curves in (Xy, Jy) converging

to holomorphic buildings F' and G respectively under neck stretching, then i(F,G) =
fr - gk for k large.

Finally, the following statement is our justification of the mantra that holomor-
phic buildings in split manifolds behave like closed holomorphic curves. The proof
is given in Section 3.2.3. No novel techniques are involved, so it is only included for

completeness.

Proposition 3.2.6. In the Morse-Bott setting considered here (that is, where the
asymptotic operators associated to punctures of curves satisfy dimker A = 2), the

following holds:

1. The intersection product for holomorphic buildings is additive over the levels
with respect to iy(-,-): for F = (FO .. FN)Y) and G = (GO, ...,GMN)) we

have
N

ZZU F() G

=0
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2. The unconstrained intersection number iy (-, ) is linear with respect to multiple

covers. That is, if f is a d-fold cover of f', then iy(f,g) = d(iv(f’, g)).

3.2.3 Proof of Proposition 3.2.6

We prove Part 1, and Part 2 will be picked up along the way as a corollary of our
techniques. The key is to understand how a common orbit 7 of the buildings F' and
G contributes to the sum Y.~ i (F® G®) as both a positive orbit for (F® G®)
and a negative one for (F*+D GU@+D) Such an orbit is called a breaking orbit, and

the corresponding pair punctures (z,w) are called a breaking pair.

Now,
N
i(F,.G) =Y ig(FD,.GD) = Y~ Br(y. + 6,7 +9),
= brealgizﬁg)pairs
where

Br(v, + €7 +€) =0 (v — 6,7 — €) + QL (7, + €, 7 + €).

is the breaking contribution of the breaking pair (z,w). Henceforth we suppress
the e notation in Br(y + €,7" + €) since it is independent of the number € > 0
chosen, provided that it is small enough. It suffices to show that Br(v,~") = 0 for
all unconstrained orbits v and 7’ in Morse-Bott degenerate families.

Given an asymptotic operator A = A, : ['(v*§) — I'(7*¢) of a Reeb orbit 7,
denote its k-fold cover by A* = A . Consider the map

ker(A) — ker(A*) : f — fi,

sending a section f € ker(A) to its pullback f; under the k-fold covering map

St — SY: 0+ kO. The next lemma shows that it is an linear isomorphism.

Lemma 3.2.7. Suppose that A is the asymptotic operator of a hermaitian line
bundle’ E — S'. Then the map ker(A) — ker(A¥) : f — fy is a linear

1somorphism.

10Which is always the case for us, since we deal only with 4-dimensional manifolds.
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3.2.  Intersection theory of punctured curves

Proof. The map is well-defined since, if f is an eigenfunction of A with eigenvalue
A, then fy, is one of A* with eigenvalue k). Injectivity is easily seen, and surjectivity
follows from the fact that the covering multiplicity of an eigenfunction g of AF is

given by [0, Lemma 3.2]
cov(g) = ged(wind(7* o g), k),

and that the winding function is constant on eigenspaces [26, Lemma 3.4]. Explicitly,

take a non-zero f € ker(A), then f; € ker(A¥) is non-trivial, so
wind(7" o g) = wind(7* o fi) = kwind(7 o f),
and thus cov(g) = k. O

Lemma 3.2.8. Suppose that v is a simple Morse-Bott degenerate Reeb orbit. Then,
for all integers k,m > 0, we have that Br(y*,4™) = 0.

Proof. Recall the definition

:Foz;(yk +e€) Fal(y" +€) }

O k m /:kf .
LY e +€) mmln{ ’ -

Thus,
Br(y%,7™) = min{ma’,(+v* + €), kal,(7" + &)} — max{ma” (v* — ¢), ka” (1" — &)},

and the result then follows from the claim that there exists an integer [ such that,
for all k > 0, o7 (7" +€) = kl = o™ (v* — €). Indeed, from this it follows that all the
terms involved in the min/max functions above are equal to kml.

To prove the claim, recall that wind, : ¢(A) — Z is monotone increasing and
attains each value in Z exactly twice (accounting for multiplicities of eigenvalues).
Therefore, since dim ker(A*) = 2, and ¢ > 0 is chosen such that § < |A| for each non-

zero eigenvalue \ € o(AF) it is clear from the definitions that (compare Figure 3.1)

o’ (A* +§) = wind} . (0) = a” (A" - §).
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O._

Figure 3.1: The effect of perturbing on the spectrum of an asymptotic operator A.

The bullets represent elements of the spectrum.

The previous lemma ensures that any non-zero f € ker(A¥) is a k-fold cover of a
non-zero element of ker(A), and so, windx(0) = kwind}, (0). Setting | = wind, (0)

completes the proof. O

Remark 3.2.9. Note that we can extract a proof of Part 2 of Proposition 3.2.6 from
the proof of the claim above through the observation that it shows that!

oL (AF £ 6) = ka’L(A £6).

Indeed, this is because wind}, (0) = o (A £ 0). Therefore, both components f o, g
and Q7. (7*,7!) scale linearly with the covering number. More precisely, (df) e, g =

d(f e g) and Q7 (v, %) = dQ7L(7*,~"). Hence, iy (df, g) = div(f, g).

3.2.4 Positivity of intersections for curves with degenerate
asymptotics

Siefring’s paper [50] essentially shows that we have positivity of intersections for

punctured curves with Morse-Bott degenerate asymptotics.

Theorem 3.2.10 (Positivity of intersections of punctured curves). Suppose that

f,g are punctured curves such that f~'(img) does nmot contain a non-empty open

HNote the distinction to the non-degenerate case, where this is only an inequality in general,
cf. [56, Proposition C.2]. See also [52, §4.2] for a discussion on covering relations in the degenerate

case, in particular Proposition 4.6 therein, of which this result is a special case.

70



3.2.  Intersection theory of punctured curves

set. Then i.(f,g) > 0, where the notation i, indicates either the constrained or
unconstrained intersection number. Moreover, equality occurs if, and only if, f and

g are disjoint and remain so after homotopy.

We sketch the proof, which essentially depends on two facts. The first is local
positivity of intersections, which is the same story as the case of closed curves,
covered in detail in [37], for example. The second is the asymptotic representation
for a J-holomorphic half-cylinder. This topic has been covered extensively in the
literature, for example [28, 56] cover the non-degenerate case, and [27, 1, 5] cover
the Morse-Bott degenerate case.

Despite the non-degeneracy assertion made in [50], only minor modifications are
required to prove Theorem 3.2.10. The technical results on winding numbers that
power the relevant positivity of intersections results are isolated in Section 3.1.4 of
[50]. These in turn depend on two key ingredients: the asymptotic representative
of the difference between two J-holomorphic half-cylinders (Theorem 3.6 of [50]'?);
and the properties of the winding function'® wind), (Lemma 3.1 of [50]), which is a
summary of the properties proved in Lemmata 3.4-3.7 of [26]. The latter of these
is valid irrespective of whether A is degenerate or not, and the former, as Siefring
remarks in Section 2.2 of [19], only depends on the exponential decay of a half-
cylinder. Therefore, one can apply the decay results of'* [27] and [+, §3.3] (see also
[0, Appendix A, or [10]) to conclude that Theorem 3.6 of [50] holds for punctured
J-holomorphic curves with Morse-Bott asymptotics.

To apply the results in [50], one must be careful about exactly what is meant by

the Conley-Zehnder index that appears there.!” The properties of o7}, ensure that

al(AF0) = al(A),

12Which is stated and proved as Theorem 2.2 in [19].
13Denoted by w(\, [®]) in [50].
4 Note that in [27] the manifold of unparametrised Reeb orbits is assumed to be a circle. The

proof for more general manifolds of orbits (including our case of interest, the 2-sphere) can be

found in either [4, §3.3], or [5, Appendix A], or [410].
5Denoted by u® in [50].

71



Chapter 3.  Constructing a foliation adapted to a Lagrangian sphere

provided that 0 > 0 is sufficiently small. Therefore, if one interprets the definition
of uf, given in [50] literally,'® then the constructions therein'” give the constrained
intersection number ic(+,-). Therefore, positivity of intersections holds for ic. A

special case of Proposition 4.11 of [72] is the inequality
Z'U(ua ’U) > iC(ua U)a

which implies positivity of intersections for iy too.

3.3 J-holomorphic planes in 7*S?

Hind proved'® that, for any cylindrical almost complex structure J on 7*S?, there
are two transverse foliations ML by finite-energy J-holomorphic planes. They are

distinguished by the sign of the intersection with the zero-section 0g2 C T*S?%:

Pre Mi= P, 04 ==+1.

16This is exactly Definition 3.9 of [26]. In particular, in our situation where the Morse-Bott
manifold is the whole contact manifold, and so dimker A = 2, we have that the parity p(y*) (of
the perturbed operator A £ ¢€) is 1. Moreover, comparing the notation of Siefring and Wendl, we

have, for an integer k € Z\{0},
a®(7*) = a3 (M) = zaF (Y ),

where the leftmost sign agrees with the distinction of « as a positive or negative orbit. It then

follows that
p®(vF) = 20" () + p(7") = 202 (M) £ 1) = £p&, (1M £ 6),

where the final equality follows from equation (2.3) of [52].
1"To directly compare the notation that appears in [50] with that used here, one can work

through the definitions to show that

mz DMy
My Mgy max{ Yz ) @ ('Yw )} — _Qi(,yimz\7ryq|umz,,\).

The numbers on the left hand side are used to define the intersection in [50], and those on the

right are used to define the constrained intersection in [52].
18The paper [23] combined with results on automatic transversality.
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As remarked by Evans [15, §6.4], two planes Py € M. of opposite parity
intersect positively exactly once if, and only if, they have distinct asymptotic
orbits. Otherwise, they are disjoint. However, the Siefring intersection “sees” this

intersection, even for planes with a common orbit:

Lemma 3.3.1. 1. The unconstrained intersection of two planes of opposite parity

is equal to 1: iy(Py, P_) = 1.
2. Let Py,Q+ € My be two planes of the same parity. Then iy(Py,Q+) = 0.

Proof. 1. As the Siefring intersection is homotopy invariant, we can perturb the
plane P, to one nearby, say P! in its moduli space, guaranteeing that P and

P_ have distinct orbits. Then iy (P}, P-) = P} - P_ =1, as already noted.

2. As above, we can homotope one of the planes so that it has distinct asymptotic
to the other, ensuring that the asymptotic contribution to the intersection
product is zero and thus iy(Py,Q+) = Py - Q+ = 0, where the last equality
follows since planes of the same parity form a foliation.

]

Proposition 3.3.2. Let u: Y — T*S2 be a punctured J-holomorphic curve. Then

exactly one of the following is true:
1. u s a cover of a plane in My; or,
2. w intersects both types of plane positively. More precisely, iy(u, Py) > 0.

Proof. Assume the first scenario is false, that is, u is not a cover of any Py € M.
Then, Theorem 3.2.10 implies that iy (u, P) > 0. Note that this inequality must
be strict since My is a foliation, and so u intersects one of the planes P in at least

one point. ]

Corollary 3.3.3. Any unconstrained intersection of punctured J-holomorphic

curves in T*S? is non-negative.
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3.4 Analysis of holomorphic limit buildings

3.4.1 Consequences of neck stretching about a Lagrangian

sphere
The following result can be found in essential form in [23, p.315]. See also an
expanded proof in [15, Lemma 7.5]. It is a simple consequence of a curve in a

symplectisation having positive d\-energy and the topology of RP?. We recall the

argument here as we will need a modified version of it later.

Lemma 3.4.1. Suppose that G = (GO©,...,G™)) . ©* — X* is a genus 0
holomorphic building such that Ef) 15 connected and G(f) has only simple punctures.

Then N =0, that s, G has no non-trivial symplectisation levels.

Proof. Let g = (a,u) : ¥ — R x T¥L be a connected component of the
symplectisation level G®) — the one connected to the top level GSB). The maximum
principle implies that g has at least one positive puncture. On the other hand, since
the genus' of G is 0 and G(f) is connected, g has at most, and therefore exactly,
one positive puncture . Moreover, it must have at least one negative puncture, as
otherwise ¥ would be the complex plane and thus g would represent a contraction
of a simple Reeb orbit, which represents the non-trivial element in Wl(RPS) = Zs.

Next we consider the Fqy-energy of g, defined in [5, §5.3] as®

b))

By Lemmata 5.4 and 5.16 of [5] we have that this energy is non-negative and equal
to the difference between the sum of the periods of the positive punctures and the
sum of those of the negative ones. Thus, since v is simple and all simple Reeb orbits
in (T}S?, Acan) have the same period, there is at most one negative puncture, and

therefore, exactly one. Whence we obtain Egy(g) = 0. Theorem 6.11 of [26] then

9The genus of a holomorphic building G : ¥* — X* is the genus of the surface ¥ obtained by

gluing 3* together along its punctures. We will always deal with genus 0 buildings.
20Tn the notation of that paper we have w = dA\.
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implies that ¢ is a reparametrisation of a trivial cylinder. Repeating this argument
shows that every symplectisation level is composed solely of trivial cylinders, a

situation which is ruled out by the stability condition. Hence the result is proved. [

The index formula of a punctured curve will be crucial in the proofs of this

L of a curve is the expected dimension of the moduli space it

section. The index?
lives in, and thus it is often also called the virtual dimension. Let u: ¥ — W be a
punctured J-holomorphic curve with ki positive/negative punctures mapping into

a symplectic manifold with cylindrical ends W. The index of u is given by?*?

ki
ind(u) = 2¢f(u) — x(£) £ 3 iy (A, F9).

i=1

In the notation of [4] and [23], this becomes*
k+ 1
(1) = 261(0) = \(£) £ 3 (ss(o7) & 5 dime7))
i=1

where dim(7) is the dimension of the moduli space of unparametrised Reeb orbits
that v lives in. In our situation, we deal only with genus zero curves with asymptotics
that live in 2-dimensional families. Fixing 7 to be the trivialisation that appears in
Lemma 7 of [23], then we have ugs(7;") = 2cov(q;5), so the index formula reduces

to:

ind(u) = 2 (/@ +hko—1+ci(u) £ icov(vf)) . (3.4.1)

We primarily deal with the cases where one of k. is zero, which simplifies the

formula further. In particular, in the case where u maps into the top level XJ(FO),

we have k, = 0 and so, combined with the fact that cov(y) > 1, we obtain the

2I'The name index comes from the fact that it is equal to the Fredholm index of a certain operator

derived from the Cauchy-Riemann equation (see [4] for example).
220bserve that this is the unconstrained index. Moreover, in the case that u is a closed curve,

it reduces to the index formula given in Equation (2.4.3).
23See Remark 3.2.2.
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inequality:#*

ind(u) < 2(cf(u) —1). (3.4.2)

Lemma 3.4.2. Let F = (FO,... F™N)) be a holomorphic building. Then the
relative first Chern numbers of every level except the top one vanish. In particular,
the relative first Chern number of the top level equals the first Chern number of the

homology class [F]:

G(FY) = er([F)). (3.4.3)

Proof. The chosen trivialisation 7 extends to a global trivialisation of 7X@ and
TX“ for the symplectisation levels X® = R x 7752 and bottom level X'© = T*52,

Indeed, for the symplectisation levels we have the global splitting

T(RxTyS%) = (Z,R)&¢,

where Z and R are the Liouville and Reeb vector fields respectively. For X © =

T*S? the extension is facilitated by the global splitting of T'(7*S5?) into vertical and
horizontal Lagrangian planes [23, Lemma 7]|. Therefore, we have ¢](u) = 0 for any
punctured curve mapping into X® or X'”. Combining this with the fact? that,

for a holomorphic building F' = (F©, ..., FV)) we have

Y GEY) = a([F)),

1=0

we obtain the result. O

Remark 3.4.3. Compare the above discussion with Section 6.3 of [15], where Evans
gives a proof using complex geometry and the compactification of T%S? to the

projective quadric surface.

We now turn to recording a genericity result. This will be achieved by perturbing

the almost complex structure JJ(FO) on the top level X J(FO) =~ X\ L in a suitable open set.

24We caution the reader that this inequality is only valid with respect to the fixed trivialisation

T.

25This is a consequence of gluing the levels F(Y) back together to obtain the cycle [F]in X.
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This set must be chosen carefully though, as an arbitrary perturbation would either
destroy the ¢; < 0 curves in the divisor D’ C X, or the cylindrical nature of JJ(FO) in
the neck region (—oo,€) x Ty'L. Let V be the open set XJ(FO)\ ((—o0,€] x TYLU D).
We are then free to perturb Jiﬂ) in the set V to make it generic. This means that
any Jio)—holomorphic curve v mapping an injective point into V' is Fredholm regular,

and thus ind(u) > 0.

Lemma 3.4.4. Let JJ(FO) be as above and u : X — XJ(FO) be a somewhere injective
Jio)—holomorphic curve that is either closed and not contained in D' or has at least
(0
+

one (negative) puncture. Then u intersects V C X ) and is thus Fredholm reqular.

Proof. First we deal with the closed case. Since the cylindrical part (—oo,€) x T} L
of Xio) is an exact symplectic manifold, it contains no non-constant closed J-
holomorphic curves. Therefore, u must pass through V.

For the punctured case, a similar argument works. Suppose that the result is
false. Then the image of u is contained entirely in (—oo, €) x T L, which is an exact,
cylindrical symplectic manifold with positive and negative boundary. However, u
has no positive punctures, which contradicts the maximum principle. Therefore, u

must intersect V. OJ

Corollary 3.4.5. Let u be a closed or punctured J-holomorphic curve in XJ(FO) that

is not contained in the divisor D'. Then,
ci(u) > 1. (3.4.4)

Proof. 1f u is not simple, then by Theorems 2.35 and 6.34 of [51], we may pass to its

underlying simple curve u. Lemma 3.4.4 ensures that @ is Fredholm regular, and so
ind(a) > 0.

The inequality (3.4.2) then implies that ¢] (@) > 1, so the result follows by linearity

of ¢] with respect to covers. O

77



Chapter 3.  Constructing a foliation adapted to a Lagrangian sphere

3.4.2 Analysis of buildings: limits of ¢c; = 1 curves

In this section we consider sequences of closed curves in a homology class E € Hy(X)
satisfying E? = —1 (which is equivalent to ¢;(E) = 1 for embedded genus zero
curves, by the adjunction formula). Recall that in homology, L = & — &; for some
1 <17 # 5 < d. Since the indices ¢ and 7 won’t play a role in what follows, we do
away with them and define?®

EY =€, GFr=F—-¢&",

and (3.4.5)
E =6, G =F-¢&.

The main result of this section, proved in Propositions 3.4.10 and 3.4.16, is:

Proposition 3.4.6. Let E € Hy(X) satisfy ci(F) = 1 and suppose we have a
sequence e, € Moo(X, E; Ji,) of embedded J-holomorphic curves converging to a
limit building F under neck stretching about L. Then F = (FLO),FSO)) has no

symplectisation levels, and moreover rY

is non-empty if, and only if, £ - L =
E-(E- —E&T) # 0, in which case FO consists of a union of planes of the same
parity in the moduli spaces My in T*S?. The parity of the planes coincides with
the sign of the intersection E - L.

Furthermore, in the case E € {E%,G*}, the buildings Fex arising from limits
of curves in the classes £ have identical top levels. The analogous result holds for

G*. We write these relationships as
0 0 0 0
(Fer) = (Fe-){ and (Fg) ¥ = (Fg-)?.
On the other hand, the four planes (Fex)'”, (Fgs)"" in T*S? are pairwise distinct.

Remark 3.4.7. 1. In the case F¥ = ) in the above result, this means that FJ(FO)

is actually a closed holomorphic curve in XELO).

26This notation is chosen so that £* - L = 1. Although, note that G - L = F1, which might
seem confusing, however the author believes that the other definition of G* = F — £F required to

achieve G* - L = +1 is worse.
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3.4. Analysis of holomorphic limit buildings

2. In a later section, we will show that the two pairs of planes (Fe+)® U (Fge)©
are the nodal fibres of a Lefschetz fibration on 7%S? such that L = 0Og: is a

matching cycle.

Lemma 3.4.8. Suppose that F = (F©, ... FWN)) is the limiting building of a
sequence of curves in the moduli spaces Moo(X, E; Ji), where E € Hy(X;Z)
satisfies ¢1(F) = 1. Then FJ(FO) has connected domain, i.e., it consists of exactly

one component, and each of its punctures is simple.

Proof. If FJ(FO) had more than one component then at least one would satisfy ¢] < 0,

since

>, AN =dFEY) =a(F) =aE) =1,

components f
offﬁP)

by Lemma 3.4.2. However, this is impossible by Corollary 3.4.5. Therefore, Fj(LO)
consists of exactly one component which satisfies CI(FJ(FO)) = 1. Since FJ(FO) is

Fredholm regular by Lemma 3.4.4, we must have ind(FS))) = 0 by (3.4.2). This

implies that k_ — Zf;l cov(y; ) = 0, which implies that the punctures of FJ(FO) are
simple. O

Hence, by Lemma 3.4.1, F' = (FJ(FO), FEO)) is a holomorphic building with only a

top and bottom level. Therefore, by Theorem 3.2.5 and Proposition 3.2.6 we have
iv(FO F iy (FO FOY = i(F, F) = B = —1. (3.4.6)

The adjunction formula implies that iU(FJ(FO), Fio)) > cN(FJ(rO)), and so we obtain the

inequality
iv(FO FOy < 1 — cn(F). (3.4.7)
Lemma 3.4.9. The normal Chern number cN(FJ(FO)) = —1, and thus
iv(F, F) < 0. (3.4.8)

Proof. By definition,

en(u) = (uTW) — x(£) £ Y of(r. F9).

zel*
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Chapter 3.  Constructing a foliation adapted to a Lagrangian sphere

We have the formulas [52, §3.2]

205 (7 +€) = puig(y +€) £p(y +e),

poz(y F6) =2cov(y) £1,

where p(y +€) := ol (y+€) —a” (v +€) is called the parity. From these we obtain
aZ(y F6) = cov(y).
Therefore, for a curve with only simple asymptotics,
en(u) =cf(WTW) — (2 —ky — k) ke =] (WTW) +2(ky — 1). (3.4.9)

In particular, for u = FJ(FO) we have k; = 0 and c{(FiO)) = 1, resulting in CN(FJ(FO)) =

—1. The inequality (3.4.8) then follows from (3.4.7). O

Proposition 3.4.10. Let F = (FJ(FO),FSO)) be the limit bwilding of a sequence of
curves in the moduli spaces Mo o(X, E; Jy), where E € Hy(X;Z) satisfies ¢i(E) = 1
and E - L = 1. Then FJ(FO) is a sphere with exactly || punctures and

t Py planes, ift >0, or
FO consists of exactly

|t|  P_ planes, if 1 <0.
Corollary 3.4.11. Suppose that the sequence in the above proposition is given by
the unique curves in Moo(X, En; Ji). Then FO s empty and FS)) 18 a smooth

closed curve in XJ(FO).

Remark 3.4.12. We paraphrase this result by saying that the E,, curve disjoins from

L under neck stretching.

Corollary 3.4.13. Suppose that E is one of the classes in Equation (3.4.5). Then
FO consists of ezactly one plane in the moduli spaces M of planes in T*S? defined

in Section 5.5. The sign of the plane e

) is the same as that of E- L.

Remark 3.4.14. Tt is important (albeit obvious) to note that the planes in T*S?
arising as limits of curves in the classes £* and G* have opposite parity. That is,

one is in M and the other in M _.
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3.4. Analysis of holomorphic limit buildings

Proof of Proposition 3.4.10. The genus g of F' is 0, and so each component of rY
is a genus 0 punctured curve. Moreover, as FJ(FO) has only 1 component, the topology
of F¥ must be a union of discs — anything else would increase g. Due to the
classification of simple J-holomorphic planes of T*S? (Proposition 3.3.2), we deduce
that £ is a union of Py planes. We write this as®’ F9 = myP. +m_P_ =
|_|m+ Py U], P-, for some integers my > 0. The results of Lemma 3.3.1 and
additivity of the Siefring intersection over disjoint unions [50, Proposition 4.3(3)]
then imply that
iv(F, F) = 2m,m_ > 0.

Combining this with Lemma 3.4.9 yields that iU(FSO), Fﬁo)) = 0, and thus at least

one of my is zero. The equation
my—-m_=F%. L=E.-L=,
then completes the proof. O]

Remark 3.4.15. Observe that, through repeated applications of the SFT compact-
ness theorem, we can produce a single neck-stretching sequence J, — J, such that,
for every E € {E,,E7,E7,G1,G 7}, the curves in the moduli spaces Mg o(E; Ji)
converge to J*-holomorphic buildings as £ — oo. Indeed, fix a particular class F
and sequences Ji, — Joo and u, € Mo o(F; Ji). The compactness theorem produces
a subsequence k such that u; converges. We can then apply SFT compactness to a
sequence v, € Moo(E'; Ji) for some E’ # E to obtain another subsequence, and so
on and so forth.

This idea can be generalised to include sequences of curves in classes other than
the exceptional ones used above, provided that the sequences of curves are somehow

fixed. For example, we could make a point constraint. When dealing with the classes

2TNote that the LI notation only means that the domain of FO g a disjoint union of Riemann
surfaces, its image need not be a disjoint union of planes. Moreover, the use of the plus sign in the
equation ro = my Py +m_ P_ is meant to reflect the fact that the unconstrained intersection

product is additive over unions.
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Chapter 3.  Constructing a foliation adapted to a Lagrangian sphere

E above there was no need to do this since the moduli spaces M o(E;J) are just
single points.

We shall use this principle repeatedly in the sequel, although we will not always
make reference to it to save cluttering the narrative. Suffice to say that if we need to
compare two J*-holomorphic buildings arising from sequences in the classes o, 5 €
H3(X), then this will be implicitly done with respect to a single neck-stretching

sequence for which both the corresponding sequences of curves converge.

We now turn to deriving relations between the limits of curves with homology

classes in {€7,€7,G1,G7}.

Proposition 3.4.16. The holomorphic limit buildings Fe+ = ((Fg+)$), (Fg+)(_0)),
Feo = ((Fe)P, (Fe)), Fgr = (Fg+), (Fg+)?), and Fg- = (Fg-)L, (Fg-)"?)
satisfy

(Fe)P = (Fe)Y and  (Fgr)Y = (Fg)Y.

Proof. Corollary 3.4.13 and Proposition 3.2.6 imply that
0= =iy((Fe-)Y, (Fee) ) +iv (Fe-) 2, (Fee) ) = i ((Fe- )L, (Fe) )41
Therefore, by positivity of intersections and the fact that

F((Fer) ) = f((Fes)) = 1,

we must have that (Fg—)f) is a reparametrisation of (Fg+)$), that is, (Fg_)gf) =

(Fer)©. Similarly, (Fg-)© = (Fg). O
Recall the so-called Morse-Bott contribution to the intersection number [52, §4]:

hs(v+ 67 +€¢) =0001,7) - Uy +e679 +¢€).

A simple calculation shows that this integer is non-negative and that it satisfies

iv(u,v) =ic(u,v) + Z iyig (V2 F 0, %0 F ).

(z,w)€DE x (V) *
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3.4. Analysis of holomorphic limit buildings

Lemma 3.4.17. Let v and ' denote the asymptotic orbits of (Fg+)(f) and (Fg+)£?)

respectively. Then ~' = ~, that is, they are geometrically distinct orbits.

Proof. Plugging (u,v) = ((Fg+)$), (Fg+>(+0)) into the above formula yields

iv(Feo) Y, (Fgo)O) = io((Fer) Y, (Fg)'Y) + i (v + 6,9 + 6).

Recall that each fibration 7; has two distinguished J-holomorphic sections, one of
class S, and the other 8" = H — Fy — ijl &;, and that £ intersects S" and not S,

and vice versa for G*. It is then trivial that (Fg+)$) and (Fg+)$) are geometrically

distinct, and so positivity of intersections gives z'c((Fng)(f), (Fg+)(+0)) > 0 and thus

iv(Fe) ), (Fgr) ) > iy + 6.9/ +0).
Observe that [£7] - [G1] = 1, and, since (Fe+)'”) and (Fg+)"“ are planes of opposite
parity in T%S2, ip((Fe+)?, (Fg+)™) = 1. The additivity of the unconstrained
intersection product then implies that
iv((Fe+)¥, (Fgr)?) =0,
Combining this with the above inequality, we obtain iy;5(y+9,7'+9) = 0. Therefore,

the result follows from the next lemma. O]

Lemma 3.4.18. For a Morse-Bott degenerate asymptote y satisfying dimker A, = 2,

we have
i (VF F 0,7/ F ) = min{l, k} > 0.
Proof. This is a simple consequence of the definitions and the properties of

asymptotic operators satisfying dim ker A = 2. Indeed,
(7" F 0,9 F ) = QLY A) - QL F a4 F )
= min{FlaZ (+*), Fkal (7))} — min{Flal (v* F ), Fkal(v' F0)}.

Moreover, by the properties of the extremal winding numbers o7, we have (c.f. the

proof of Lemma 3.2.8 and Remark 3.2.9)
al (%) = kwindy (0) £1 and ol (vF +6) = kwindy (0).
Thus the result follows. O
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Chapter 3.  Constructing a foliation adapted to a Lagrangian sphere

Since 4" # ~, and there is a unique M. plane asymptotic to each orbit, we
obtain the following:
Corollary 3.4.19. The planes {(Fe+)”, (Fg)”, (Fe)?, (Fg-)"} are pairwise
geometrically distinct. Specifically, the planes with common parity (Fg+)(,0), (Fgf)(,o) €

M. and (Fg)9, (Fe-)© € M_ are distinet.

3.4.3 Controlling the asymptotic orbits

The aim of this section is to show that the almost complex structure on X that
undergoes neck stretching can be chosen so that the top level of the limiting building
of the sequence of Gt curves, (Fg+)$), has asymptotic Reeb orbit 4" equal to the
image of the asymptote v of (Fg+>$) under fibre-wise multiplication by —1. This
is the property that will power our argument that the JEO)—holomorphic cylinders in
T*S? (obtained via neck stretching in Section 3.4.4) that intersect the zero section
do so along circles.

As mentioned in Section 3.1.1, fibre-wise multiplication by —1 in 7*S? corre-
sponds to complex conjugation under the SO(3)-equivariant isomorphism T*5?% =
(22 + 22 + 22 = 1). We say these asymptotes are conjugate and write this as
v =7. We first make an explicit construction to force the top level curves (Fg+>$)
and (Fg+)$) to have conjugate asymptotics. Recall the almost-Kahler structure
(T*S?, Wean, J7+52), where Jp«g2 is any of the compatible, cylindrical almost complex
structures constructed in Section 3.1.1, and that the natural SO(3) action by
rotations is by exact almost-Kéhler isometries. Note in particular that Section 3.1.1
allows us to produce a compatible almost complex structure that is cylindrical
outside of an arbitrarily small neighbourhood of the zero section. We’ll use this
property to alter JJ(FO) in the neck region of XJ(FO).

Denote by M the unit cotangent bundle 77.S?. Since both conjugation and the
Hamiltonian SO(3) action preserve the length function |p| on T*S?, they restrict

to R-equivariant maps on the symplectisation R x M. Moreover, the SO(3) action

is by exact symplectomorphisms, so it descends to give an action on the quotient
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3.4. Analysis of holomorphic limit buildings

M/S? of the unit cotangent bundle by the Reeb flow. Recall that M/S' = 52 and,
under this identification, the action of SO(3) is the usual one by rotations.

)

. . . 0) . . .
We introduce some notation for convenience: as XJ(r is a manifold with the

cylindrical end (—o0, €) x M, it makes sense to define the subsets, for all 7y < ¢,

X§r0 = (—OO,’I”()] X M, and,

Xopy = XJ(FO)\(—OO,T()) X M.

Since (Fg+)$) and (Fg+)$) are asymptotic to the distinct Reeb orbits v, € M/S?,
there exists a number r; < 0 and an open neighbourhood (which is a lift via the
composition X<,, = M — M/S" of a neighbourhood of v € M/S') U C X, of
the half cylinder

Ce+ = im(Fg+)$) N X<

such that im(Fg+)$) is disjoint from U. We are now ready to state and prove the

main result of this section.

J(FO) and

Lemma 3.4.20. There exists a compatible almost complex structure J on X

a number ro < 11 that satisfy the following:

1. J agrees with JJ(FO) on the complement of [ro, 71| x M, i.e. on X5, UX<,,, and

on the neighbourhood U of Cg+. In particular, J is cylindrical on X<, .

2. there emists a J-holomorphic plane asymptotic to & in the same relative

homology class as (Fg+)(f).

Proof. The half-cylinder Cg+ is asymptotic to vy, whilst Cg+ := im(Fg+)£9 'n X<y 18
asymptotic to 4" # ~. The asymptotic convergence of Ce+ and Cg+ implies that their
projections to the manifold of Reeb orbits M /S* yield disjoint closed neighbourhoods
N, and N, of v,7" € M/S*. Choose a path v, € M/S* disjoint from N, such that
Yo = 7 and v; = 7 and pick a corresponding 1-parameter subgroup R; € SO(3) such
that Ri(v") = 4. Note that the asymptotic convergence of Cg+ and Cg+ ensures
that r; < 0 can be chosen large enough to ensure that R,(NN,/) is disjoint from N,
for all ¢ € [0, 1].
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Now choose 5 < 1 and a diffeomorphism v : [re, ;] — [0, 1] such that ¢/ = —1
near the ends. Consider the diffeomorphism

r, Ry (), if r € [ro,r1],
R: X<, — X<, : R(r,z) = (7 Ry ( 79, 71]

(r, Ry(x)), ifr<ro,

and define the symplectic half-cylinder Cg, := R(Cg+). Note that Cg, is disjoint
from the neighbourhood U of Cg+. We glue Cg, to im(Fg+)Sf) N X>,, to obtain a
symplectic plane Pg+ asymptotic to 4. Linear interpolation from R to the identity
map yields a (relative) homology between im(Fg+)f) and Pg+.

Since Cj; is disjoint from U, we may choose a compatible almost complex
structure J on [ry, 7] X M that makes Cg holomorphic, and agrees with Jio) on U.
Moreover, it can be chosen to agree with JJ(FO) on {r1} x MU{ry} x M since Ry = id
and Ry is holomorphic with respect to JJ(FO). Extending J by JJ(FO) on the complement

of [re,r1] X M completes the construction. O

Since (XJ(FO), w™) is symplectomorphic to (X'\ L, w), we can push forward our new
almost complex structure J to X\L and perform neck stretching to this new .J.
What this amounts to is stretching the neck around the contact-type hypersurface
T, S? C X. To make this completely precise, we need to extend .J over L. However,
this is easily achieved by altering the bump function used in the construction of
Jr+g2 in Section 3.1.1. The result is a new compatible almost complex structure
on X that is adapted to the hypersurface TV, S?, is equal to our original almost
complex structure on the set X, , and, under stretching the neck, converges to the
almost complex structure of Lemma 3.4.20 on X J(ro). To avoid cluttering the notation,

we shall continue to refer to the new split almost complex structure obtained on

X = (XO . XN)as J*, as we will no longer make reference to the old one.

Remark 3.4.21. Note that the new stretched almost complex structure obtained on
X0 =1L may be different to the original one, since we have increased the portion
of the neck R x T} S? 2 T* L\ L on which J9 is cylindrical. This amounts to pushing

forward the old J by the Liouville flow for some negative time.
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Ultimately, though, this is of no importance, since the results of Section 3.3 are

valid for whatever cylindrical almost complex structure we choose on T*S52.

Since we’ve changed our neck stretching sequence .Ji, morally we need to
redo the limit analysis of the previous section. Indeed, recall the open set V =
Xio)\ (((—o0,€¢] x TYL) U D') from Section 3.4.1 in which we perturbed to ensure
genericity. The almost complex structure Jio) constructed here satisfies a form of
symmetry, which perturbing would destroy. Therefore, a priori, Jio)—holomorphic
curves don’t satisfy the Fredholm regularity result of Lemma 3.4.4.

Note that we can perturb JJ(FO) on the complement of the images of (Fg+)(+0)

and FPg+ in V. Moreover, since a punctured Jio)—holomorphic curve in XJ(FO) either

passes through this complement, or has identical image to one of (Fg-!—)SE)) or FPg+,

we can apply Lemma 3.4.4 to every punctured curve in XJ(FO) except <F5+>(+0)

and
FPg+. Thus, if we can show that (Fg+)$) and Pg+ are Fredholm regular, then we can
apply Lemma 3.4.4 exactly as in Section 3.4.2.

As a result, a convergent sequence of curves e € Mgo(ET; Ji) converges to

(Fg+)(+0) in the top level, and similarly, for curves in Mg (G*; Ji), we obtain that

they converge to the constructed plane FPg+.

Lemma 3.4.22. The Jio)—holomorphz'c planes (Fg+)$) and Pg+ are Fredholm

reqular.

Proof. The case of (Fng)SS) is trivial since JJ(FO) was unchanged in a neighbourhood
of this curve. For Pg+ we apply automatic transversality [52, Theorem 1]. Since

FPg+ is embedded, the automatic transversality condition is:
ind(Pg+) > CN(Pg+).

We compute that ind(FPg+) = 0, which follows from Equation (3.4.1), Lemma 3.4.2,

and that Pg+ has a single simply covered asymptote. On the other hand,
CN(P g+) =—-1
follows as in Lemma 3.4.9. n
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Proposition 3.4.23. Let J, be a neck stretching sequence converging to J*, and
exr € Moo(ET; Jx) a corresponding sequence converging to a J*-holomorphic building
F = (FO, . .. FN)). Then the top level FJ(FO) consists only of the plane (Fg+)$)
obtained in Proposition 5.4.10, there are no symplectisation levels, and the bottom
level consists of exactly one plane in M .

Similarly, a convergent sequence g, € Moo(GT: Ji) converges to a building G =
(GO ..., GM) whose top level Gf) consists only on the plane Pg+ constructed in
Lemma 3./.20. As above, the bottom level then consists of exactly one plane in M_.

In particular, FJ(FO) and GS?) have conjugate asymptotes.

Proof. Since JJ(FO) is unchanged in a neighbourhood of (Fg+)$)

, there is nothing to
check for the claimed convergence e, — F. We prove that GSE) = FPg+. Note that
Pg+ can be completed into a J*-holomorphic building G’ by adding in the unique M _
plane in 7*S? with asymptotic orbit 4. Then, both G and G’ are J*-holomorphic
buildings of the same homology class: [G] = G = [G’]. Thus, they must intersect
somewhere, since (G7)? = —1. If GSP) is geometrically distinct from (G’ )(f) = Pg+,
then positivity of intersections would force there to be a negative intersection in

the bottom level, contradicting Corollary 3.3.3. Hence, GS?) = Pg+ and the result
follows. O

We have constructed two J*-holomorphic buildings F' and G in the homology
classes £ and GT, whose asymptotic orbits are conjugate. To free up the notation,
we shall continue to denote these buildings by Fe+ and Fg+ respectively. Similarly

we obtain the J*-holomorphic buildings Fe- and Fg-, which satisfy

(Fe- )Y = (Feo)? and (Fg- )Y = (Fg+)Y,
by Proposition 3.4.16, and thus they have the same pair of conjugate asymptotes
{r.7}.

Corollary 3.4.24. The unique point of intersection of the planes (ng)(_o) e My

and (ng)(o) € M. lies on the zero section.
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Proof. Conjugation sends M planes to M_ and vice versa. Therefore, since there
is a unique M plane asymptotic to each simple Reeb orbit and the asymptotics of

(ng)(_o) and (ng)(o) are conjugate, we have that

(Fex)? = (Fg)?.

Moreover, the zero section is the fixed locus of conjugation, so, since each plane

intersects the zero section, the claim follows. O

Remark 3.4.25. This result partially justifies the claim made in Remark 3.4.7 that
the bottom levels of the buildings Fe+ U Fg+ form the nodal fibres of a Lefschetz

fibration on 7L such that L is a matching cycle.

3.4.4 Analysis of buildings: limits of ¢; = 2 curves

In this section we prove (Proposition 3.4.30) that limits of curves in the class of a
fibre H — S € Hy(X) have bottom level (if non-empty) either a smooth cylinder, or
one of the pairs of nodal planes (ng)(,o) + (ng)(,o). First, we need a basic result on

unconstrained intersections of trivial cylinders in symplectisations.?®

Lemma 3.4.26. Let v be a simply covered Morse-Bott degenerate Reeb orbit living
in a positive dimensional orbifold N of unparametrised orbits of a contact manifold
M. Then the unconstrained self intersection of the corresponding trivial cylinder

uwaSl—HRXM 18 zero:
iv(Uy, uy) = 0.

Proof. Since dim(N) > 0, we can homotope wu, to us; for some 4 # ~ in the same
family N. Since iy is homotopy invariant, we obtain the result, as u, and us are

disjoint and asymptotic to distinct orbits. O]

28Compare with the non-degenerate case where

—1, if vis odd
Uy * Uy =

0, if 7 is even.
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Remark 3.4.27. In our situation, all simple Reeb orbits live in the same manifold

N = S2? of unparametrised orbits, and so the above result combined with

Proposition 3.2.6(2) yields, for any integers &, > 0 and simple orbits v and +/,
iU(U,Yk, ’U,(y)l) = 0.

From this and positivity of intersections (Theorem 3.2.10), we deduce that any curve

in a symplectisation level intersects a trivial cylinder non-negatively.

Let F = (F©, ... FN)) denote a J*-holomorphic building arising as the limit
of a sequence of fibre curves. If the bottom level FO s non-empty, the following
lemma shows that its top-level FS)) has to be the disjoint union of the limits that

arose in Proposition 3.4.23.

Lemma 3.4.28. Let ' = (FO ... FMN)Y be the limit of a sequence of curves in
the class [F] = H — S € Ho(X) of a fibre. Suppose that FO £ 0. Then FJ(FO)
is the disjoint union of the planes (Fg+)$) and (Fng)SE)), where Fe+ and Fg+ are
the holomorphic buildings that arose in section 3.4.3. That is, FJ(FO) = (Fg+)(+0) +
(Fg+)$) = (Fg+)5(_)) L (Fg+)$) is the disjoint union of two planes with conjugate
asymptotics {~y,7}.

) intersects

Proof. Since r # (), we can use Proposition 3.3.2 to analyse how s
the planes in M. Note that F O cannot possibly be composed exclusively of (covers
of) planes in only one of the families M, or M_, as otherwise the intersection of
F9 with L would be non-zero, contradicting [F]- L = 0. Thus, F ©) intersects both

(Fg+>(_0) € M, and (Fg-&-)@) € M_ positively. That is

iv(FO, (Fer)) >0  and  ip(F9, (Fg) @) > 0.

Now let f = (F(f), F(,O)) denote either of the buildings Fe+ or Fg+. A priori,
the building F' may have non-trivial symplectisation levels, so to make sense of the
intersection number of the buildings i(F, F) we may need to extend F by trivial

symplectisation levels.? With this understood, Theorem 3.2.5, Proposition 3.2.6,

29G8ee Appendix C.5 of [56] for a full discussion of why this operation is well defined.
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3.4. Analysis of holomorphic limit buildings

iv(FO r9Y > 0 and [F] - [F] = 0 imply that

N
in(FO FO)+ 3 ig(FO F@) <.
i=1
Furthermore, Remark 3.4.27 implies that, for each 1 < i < N, ig(F® @) >0,
and thus iU(FJ(FO), F S?)) < 0. Therefore, by positivity of intersections, at least one
component of FJ(FO) covers [ S?).
Summarising, we have proved that some components of FJ(FO) cover both (Fg+)(+0)

and (Fg+)(+0), and so there exist positive integers m,n > 0 such that
FJ(FO) = m(Fg+)$) + n(Fg+)$) + (other terms).

However, this already exhausts the total w™-area. Indeed, by Corollary 2.11 of [9],

we have that
w(lF) = [ (FOyw
E+

ZmA«&09mﬁ+nA«&uﬂmﬁ

= mw([E]) + nw([F] — [€1])

= nw([F]) + (m — n)w([E])

= mw([F]) + (n — m)(w([F]) = w([E7])).

Recall that Lemma 2.2.1 states that w([F]) > w([€T]) = [, and so, in either of the

cases n > m, or m > n, we obtain
w([F]) = mw([E]) +nw([F] - [£7]) > w([F]),

and thus n = m = 1. Moreover, this implies that there can be no other terms in
the expression for F\”. That is, F\” = (Fer)? + (Fg+)'”, and so the result is

proved. O

Lemma 3.4.29. Let F = (FO, ... FN)) be the limit of a sequence of curves in
the class of a fibre [F] = H — S € Ho(X) such that FO £ 0. Then N =0, that is,
F = (FJ(FO), FEO)) consists only of a top and bottom level.
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Chapter 3.  Constructing a foliation adapted to a Lagrangian sphere

Proof. Lemma 3.4.28 shows that FJ(FO) = (Fg+)$) + (Fg+)$) and so any non-trivial
component f of F") (the level adjacent to the top level FJ(FO) ) must have exactly two
positive punctures. Indeed, if it only had one, then the argument of Lemma 3.4.1
would imply that it is a trivial cylinder, and thus F®) would be a union of trivial
cylinders, which is ruled out by the stability condition. Therefore, f has exactly two
positive punctures: v and 7 of (Fng)S?) and (Fg+)$).

Since FJ(FO) = (Fg-o—)SE)) + (Fg+)f), we have that iU(FJ(FO),(Fﬁ)SE)) = —1, and
so, to balance the equation i(F,EY) = [F] - [€T] = 0, there must be a positive
intersection between F' and Fg+ in a different level. The previous paragraph implies
that this positive intersection is eaten up by the non-trivial level F(™)| which then
forces F'” to take on an illegal form. Indeed, extend Fge+ by trivial intermediate
levels, then, as (Fg+)™) and f are geometrically distinct, their intersection number
is bounded below by the Morse-Bott contributions from their asymptotic orbits,

which are computed in Lemma 3.4.18:

iv(f, (Fer)™) > ifig(y.7) = 1.

Combining this with Remark 3.4.27, which says that any further intersections

appearing in intermediate levels are non-negative, we obtain that

0=i(F,&%) > ig(FO, (Fer) D) +iv(f, (Fer)™) + i (FO, (Fer)?)
> ig(FO, (Fee) ) + 1+ iy (F9, (Fer))

=iy (FO, (Fer)"),

and therefore iU(FEO), (Fng)(_O)) = 0. Since F” # (), Lemma 3.3.1 implies that F”
must consist of covers of J-holomorphic planes of the same parity as (Fg+)(_0), which
contradicts [F] - L = 0. Hence, there are no non-trivial symplectisation levels, and

so the result is proved. O

The following is the main result of the analysis of ¢; = 2 buildings.
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3.5.  Constructing the foliation

Proposition 3.4.30. Let F' be a limiting building of a sequence of curves in the
class [F] = H — S € Hy(X) of a fibre such that F®' # 0. Then F = (F", F)
where FJ(FO) = (Fg+)$) + (Fng)SE)) and F© is either

1. one of the pairs of nodal curves (Fe+)® + (Fg+)(£)) or (Fe- ) + (Fgf)(,o), with

Fev, Fg+, Fe—, Fg- as in section 3.4.5; or,
2. a smooth cylinder with the same asymptotes {~v,7} as (Fg+)(f) + (Fg+)(f).

Proof. The previous results show that F'is a building with only a top and bottom
level, and that FJ(FO) = (Fg+)$) + (Fg+)$)). This tells us that the positive asymptotics
of F'” are exactly v and 7 of (Fg+)$) and (Fg+)$). Thus, F'” is a connected genus
0 holomorphic curve with exactly two positive punctures. Therefore, either it is a
smooth cylinder, or it has nodes forming a chain of closed spheres connecting two
planes. However, there are no closed holomorphic spheres in T™*L since this is an
exact symplectic manifold, and so there can be at most one node.

Observe that a nodal pair P, + P, of J-holomorphic planes satisfying (P, +
Py) - L = 0 and having asymptotic orbits {7,7} must be exactly one of the pairs
(Fng)(_O) + (Fng)(_O) or (Fgf)(_o) + (Fg—)(_o). Therefore, either we are in case (1),

or 7 passes through a point in 7%L not contained in the images of the curves

(Fg+>(_0)7 (Fg+)(_0), (Fg—)(_o), or (Fgf)(_o% and is thus a smooth cylinder. O

3.5 Constructing the foliation

In this section we use the limit analysis of section 3.4 to construct a Jp«g2-
holomorphic foliation of T*S? by cylinders. The process also picks out a particular
neck stretching sequence of almost complex structures J; such that all the curves of
interest converge. First, suppose that we have a neck stretching sequence Ji, and
a countable collection of sequences (f*) of Jg-holomorphic curves with uniformly
bounded energy. One then applies a diagonal argument, a countable generalisation

of that discussed in Remark 3.4.15, using the SFT compactness theorem to extract a
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Chapter 3.  Constructing a foliation adapted to a Lagrangian sphere

subsequence Jj such that, for all m, the sequences (f}"*) converge to J*-holomorphic
buildings as k — oo.

We apply this process to the following sequences. Recall the —1-classes {&; |
1 < j < d} defined in Lemma 2.2.1, where classes of the form & — &; support
the Lagrangian spheres in By, ,. The critical points of the Lefschetz fibrations
7y, © Xy, — C correspond exactly to the unique intersection points of &; - (F' — &;).
This allows us to partition the set of critical points into so-called relevant and
irrelevant sets determined by whether the intersection &; - L is non-zero or not.
That is, the relevant critical points correspond to the classes {£1,E7} as defined
in (3.4.5), and the irrelevant ones correspond to the remaining &; classes. Recall
also the class E,, which represents (the underlying simple curve of) a component of
the exotic curve u’, (see Corollary 2.4.16). Even though curves in this class do not
correspond to Lefschetz critical points, we shall also call them irrelevant. With this

in mind, for each 1 < j < d, take the unique sequences of Ji-holomorphic —1-curves

6?; € M0,0(gj; Jk),
gi € Moo(F —&j; k),
e € Moo(En; Ji),

along with a countable number of sequences of fibre curves
fit € Moo(F; Jy)

determined by point constraints for some fixed dense set {z™ € Y_} in the Weinstein
neighbourhood Y_ of L. We extract a subsequence J; for which all these sequences
converge to the J*-holomorphic buildings F.

Note that Proposition 3.4.10 implies that, for sufficiently large k, the images
of the irrelevant curves stay bounded away from L. Moreover, a further diagonal
argument ensures that the convergence of all curves is monotonic, which will be
useful in Section 4.1.

To upgrade the dense set {(F m)(_o)} of Jp-gz-holomorphic curves in T*S? to a
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3.5.  Constructing the foliation

foliation we apply a bubbling argument, which is inspired by [29, §6].?° The idea is
choose x € T*S? and to take a subsequence of (z™) converging to x and analyse the
corresponding limits of the curves (F m)(_o) under SF'T compactness. However, this
time the SF'T compactness theorem is that relating to manifolds with cylindrical
ends [5, Theorem 10.2]. To that end, denote the moduli space®! of J@—holomorphic
cylinders with fixed positive asymptotes {,7} by M. We first compute the self-

intersection of a cylinder in My

Lemma 3.5.1. The Jp«g2-holomorphic cylinders in My have zero constrained self-
intersection. In other words, for a building in the class [F] = H — S arising from

Proposition 5.4.30 we have
iwFO FN=2  and  io(FO,FY) =0.
Proof. Since FJ(FO) = (Fg+)$) + (Fg+)$) and
i ((Fer) ), (Fe)?) = =1 = ip(Fgr) L, (Fg) ),
we have that

0= [F]?
= i (Fe) Y, (Feo)D) + iv(Fgn) Y, (Fg)) + i (F2, FO)
= ig(FY, F9) —2,

and so, iU(FEO), FEO)) = 2. Then, since
iv(FO, PO) = io (PO, FY) + i5n(1,7) + 5 (5,7) = ico(FY, ) 42,

we obtain the result. O

30The argument of [29, §6] is much more complicated than what is required for our situation.
31More precisely, this is the moduli space of genus 0 curves with exactly two positive asymptotes

that represent the homology class

(0,1,1) € Ho(T*S% v U7) = Ho(T*S?) @ Hi(yU7) = (0s2,7,7) = 27,
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Chapter 3.  Constructing a foliation adapted to a Lagrangian sphere

Applying the SF'T compactness theorem to sequences of curves in M.y yields
holomorphic buildings of height k_|1]|k,, as in Section 8 of [5]. Since T*S? is a
manifold with no negative cylindrical ends, we have that k- = 0, so the resultant
buildings have a main level F© : 30 — T%S8% and k. upper levels F®) : ) —
R x T;S2.

Lemma 3.5.2. A holomorphic building with non-empty main level in the SFT
compactification of My has no non-triwial upper levels, and so, is given by a curve

in T*S%. Moreover, this curve must be exactly one of those in Proposition 3./.50.

Proof. Denote the building by F = (F© ... F®*+)) Its upper-most level F+)
Nk+) 5 R x T¥S? is a J*+)-holomorphic curve in a symplectisation with positive
asymptotes given by {v,7}. If F*+) is not the union of trivial cylinders Uy U us,

then it must intersect them positively:

i (F%) uy Uug) > ifip(7,7) + i (3, 7) = 2.

Let P} € M denote the unique Jp-g2-holomorphic plane asymptotic to v. Since F
is the limit of cylinders in M.y, we have that (extending PJ + P;Y by trivial upper
levels)

2=i(F,Pl+ P]) > ig(FO, Pl + P]) +ip(F*) u, Uus),

which implies that
iv(FO, P+ P]) <o.

In light of Corollary 3.3.3 and Proposition 3.3.2, this yields
i (P, P1) =0 =iy (F®, P]),

which is only possible if F(©) is simultaneously a cover of all four planes P}, PJ.
However, since these planes are distinct, this is impossible.

We have shown that F has no non-trivial upper levels, and so F© is a
curve in T*S? with exactly two asymptotes {7,5}. Therefore, we can apply
Proposition 3.4.30 to complete the proof. O]
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3.5.  Constructing the foliation

We write ﬂcyl to denote the subset of the SFT compactification of M.y
consisting of buildings with non-empty main level. This is a topological surface
homeomorphic to the complex plane C. Moreover, just as in Section 2.5, Mcyl can
be equipped with a smooth structure (indeed the unique one) that makes the natural

map

Tpege : T*S? — Mcyl : x — the curve passing through z

into a Lefschetz fibration with exactly two critical points corresponding to the

intersection points of the two pairs of planes P] + P;.

The next goal is to prove that L is fibred by circles in the foliation My, and

thus the image of L under mp+g2 is a smooth path.

Proposition 3.5.3. Letu : (C*,j) — T*S? be a smooth, properly embedded™ Jp-g2-
holomorphic cylinder with conjugate asymptotic Reeb orbits {v,7}, as in scenario
(2) of Proposition 3.4.30, that intersects the zero section L C T*L. Then this

intersection is along a circle contained in L.

Proof. The construction of the almost complex structure Jp«g2 ensures that it is

anti-invariant under the action of conjugation on 7% L. That is,
JT*32 — _JT*SQ'

Composing with conjugation gives a (—j, Jpg2)-holomorphic cylinder u. We aim to
show that ic(u,u) = 0. To this end, since M, = C, we can choose a homotopy
from u to one of the nodal cylinders P} 4+ PY, where P] = (Fe)? and P7 = (Fe:)”
are the M planes asymptotic to 7 and 7 respectively. Then, as conjugation sends

this pair of planes to itself, we can use the homotopy invariance, additivity, and

32A11 of the curves in My are properly embedded. Properness follows from their asymptotic

behaviour, and embeddedness follows from the adjunction formula [52, §4.1].
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Chapter 3.  Constructing a foliation adapted to a Lagrangian sphere

symmetry of i¢ to compute:

ic(u,u) =ic(P] + PY,P] + P7)
=ic(P] + P),P] 4+ P7)
= ic(P}, P]) + 2ic(P], P7) +ic(PY, P7)

——1+2-1=0.

However, since the zero section L is the fixed locus of conjugation, there is
necessarily an intersection between u and u. In view of the above, we deduce that u
and % have the same image — they are geometrically indistinct. This implies that
conjugation restricts to a j-anti-holomorphic involution of (C*,j) with non-empty
fixed locus. Moreover, it’s compact since u is proper. The fixed locus of such an
involution is diffeomorphic to a circle, as is proved in the next lemma. As u is an

embedding, this completes the proof. O

The following result is surely well known, and we include the proof only for

completeness.

Lemma 3.5.4. The fized locus of an anti-holomorphic involution v of (C*,j) is

either empty, or non-empty and diffeomorphic to S, or two copies of R.

Proof. The action of the diffeomorphism group of C* is transitive on complex
structures, so we can assume that j =i is the standard complex structure. Identify
(C*,i) with (CP"\{0,00},4), so that we have an anti-holomorphic involution ¢ of
CP' that preserves the set {0,00}. Then z — «(2) is holomorphic, and preserves
{0, 00}, so it must be of the form

az, if ¢(0) =0,

u(z) =

afz, if 1(o0) = oo,

for some o € C*. In the first case ¢(z) = az, if there is a fixed point z € C*, then

we have that o = zy/%p, and
fix(t|cx) = {rzo | r € R\{0}} = RUR.
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On the other hand, if ¢(z) = «/Z has a non-zero fixed point z € C*, then
a =27 = |z
must be a positive real number, and

fix(tlex) = (|2]* = a) 2 S*.

The next result is the pay-off for the work of this section.

Corollary 3.5.5. The zero section L C T*S? is a matching cycle of the Lefschetz

fibration mpsg2.

Proof. Since L is fibred by circles, it lives submersively over its projection by 7r«g2,
which is a smooth embedded path p : [-1,1] — Mcyl joining the two critical
values of mr«g2. Denote the symplectic parallel transport of this fibration by ¢;.
By Lemma 1.17 of [18] L is the trace under ¢, of its intersection with the fibre over
p(0), that is,

L= ] & (Lnmple(p0).

te[—1,1]
Since the critical points of mp«g2 lie on L, we conclude that it is indeed a matching

cycle. O]
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Chapter 4

Isotopy to a matching cycle

In this chapter we use the neck stretching analysis of Chapter 3 to show that a
matching cycle X, of of 7, converges to the matching cycle of mp«g2. In turn, this
yields a Lagrangian isotopy from L to 3, for sufficiently large k.

Before discussing convergence of matching cycles, we need to understand how to
construct a sequence of matching paths for 7; that converges (in some sense) to
the matching path of Corollary 3.5.5. This is the subject of Section 4.1. Once this
is done, Section 4.2 shows that the convergence of the matching cycles essentially
follows from smooth dependence of ODEs on their defining vector field and initial
condition. Finally, Section 4.3 completes the proof that every Lagrangian sphere
L C B;p, C X is Lagrangian isotopic to a matching cycle of a fixed Lefschetz

fibration 7ryef.

4.1 Convergence of matching paths

Let € T*S? and recall from Section 3.5 that there is a unique sequence of curves
f& € Moo(X, F; J;,) that converge to a Jr-g2-holomorphic building passing through
x. In this chapter, we’ll primarily be interested in the convergence to the bottom
levels in the Weinstein neighbourhood Y_ of L.

Before we can talk about convergence of matching cycles of the fibrations 7, :
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X,

. — Moo(Xj,, F;Jy) to the zero section matching cycle of mp.g2 : T*S? —

ﬂcyl, we need to make sense of what it means for matching paths in the bases
Moo(X,, F; Ji) to converge to the matching path of Corollary 3.5.5. The global
charts of MQ,O(XJk,F : Ji) constructed in Section 2.5 are not fit for this purpose,
since the neck stretching analysis of Section 3.1 shows that, as k — oo, the subset
My (Jy) C Moo(Xy,, F; Ji) of curves that pass through Y shrinks to a point. We
construct a new chart of /VQO(X 7., F5 Ji) with image contained in WL(Jk) using
one of the Jp«g2-holomorphic M, planes in T*S?. Choose a simple Reeb orbit 7
that is neither v nor 4. Fix the unique plane P]° € M asymptotic to v, along

with a parametrisation u : C — T*S5? of it.

Lemma 4.1.1. The plane P]° intersects each curve in Mcyl exactly once, trans-

versely. In particular, for each C € Hcyl,
iv(P,C) =ic(P’,C)=1.
Therefore, the composition wr+g2 ou : C — Mcyl 15 a global chart.

Proof. The intersection claim follows easily from homotopy invariance of ¢ and the

fact that vy # 7,7 (see Section 3.3)
ic(Pl,C) =ic(P Pl + P7) =ig(P}°, P7) = 1.

By positivity of intersections, there is exactly one positive, transverse intersection
as claimed. The fact that this provides a global chart follows by definition of the

smooth structure on Mcyl. O

Remark 4.1.2. Since PSL(2,C) acts transitively on the configuration space of 3
points on CP', we can reparametrise u to ensure that the two critical values of

m«g2 correspond to the points £1.

Recall that the neck stretching setup gives, for each k, an almost complex
embedding v, : (T%,,S?, Jpes2) = (X, Ji) with image the Weinstein neighbourhood
Y. = TZ/ L of L. This allows us to embed larger and larger portions of the plane
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Chapter 4. Isotopy to a matching cycle

P} as the neck gets longer. The idea is that, eventually, the curves in My (Jy) get
close enough to their limiting bottom level curves in ﬂcyl so that the transverse

intersection property of the previous lemma holds for them too.

Lemma 4.1.3. There exists an integer K > 0 such that for all k > K every curve
in My (Jy) intersects P} exactly once transversely. Therefore, the parametrisation
u of P)° facilitates a chart of the moduli spaces Moo(Xy,, F; Jy.) for all k > K.
Moreover, K can be chosen large enough so that there are only the two relevant
critical values of the maps m;, contained in the image of this chart. That is, the two

that correspond to the nodal curves P] + P;Y.

Proof. Fix x € Y_, then there is a unique sequence f{ € M (J;) of fibre curves that
pass through x. We first prove that the result holds for this sequence. That is, that
there exists K, > 0 such that, for all k > K, f¥ transversely intersects P]° exactly
once. Recall from Section 3.5 that the sequence J, was chosen to ensure that each
of the sequences f{ converges' to a J-holomorphic building F* : ¥* — X* where
the bottom level (F x)@ is the element of M., passing through x. The nature of
the convergence f; — F' implies that, for any € > 0, there exists K, . such that

(up to reparametrisation) f is e-close to (F x)(o) in the C! _ topology.

- loc

Now, (F JL’)(O) and P]° intersect exactly once, but since they are non-compact, we
need to be slightly careful before claiming that all nearby curves satisfy the same
property. Fortunately, they are non-compact in a very controlled way, due to the
asymptotic convergence to the Reeb orbits. The convergence fi — F* guarantees,”
for all sufficiently large k, that the curves f7 are bounded away from the cylindrical
end of P]°. Therefore, the only intersections between fI and PJ° can occur in a

compact set. Thus, by standard differential topology, any such map transversely

'Note that some of the sequences f¥ necessarily contain nodal curves, since there are two nodal
curves in ﬂcyl. We have not defined exactly what it means for such a sequence (consisting of
potentially non-smooth Ji-holomorphic curves) to converge to a holomorphic building. However,

since we are only interested in the convergence away from the nodes, we will not go into the details.
2See Definition 2.7(d) of [J].
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intersects P° in exactly the same number of points as (F I)(_()) — that is, exactly
once. Therefore, we deduce that there exists €, > 0, and K, = K, ., > 0, such that,
for all k > K, f{ is e,~close to (F I)(_O) and bounded away from the cylindrical end
of P}°, from which it follows that f¥ intersects P]° exactly once, transversely.

We turn to showing that the result continues to hold as stated. This is a
consequence of the local description of the moduli spaces M (.J;) and compactness
of the Weinstein neighbourhood Y_. First, we show that if the transverse intersection
property holds for a curve fi € My (Jk,), then it holds for all nearby curves
f € M (Jk,). This is achieved by finding a tubular neighbourhood N, of f# such

that the intersection P° NN, is connected and C'-close to a fibre of N,. The claim

then follows from standard differential topology.

If the curve ff is nodal, then the tubular neighbourhood N, is constructed via
the gluing map. The nodal points of curves in M (.J;) converge to the nodal points
of the curves in Mcyl, and since P° intersects the curves in Mcyl away from the
nodes, we can increase K, so that either fz is no longer nodal, or the node is
bounded away from P]°. Note that, away from nodal points the gluing map is a
diffeomorphism, and this is where the unique transverse intersection f§ NP occurs.
By varying the gluing parameter, we obtain arbitrarily small tubular neighbourhoods
N, of fi .

On the other hand, if f% is smooth we use the local description of the moduli
space of smooth curves M o(X, F'; Ji,) to express nearby curves as sections of the
(trivial) normal bundle v f% . Thus, we obtain the tubular neighbourhood N,. In
both the smooth and the nodal cases, f is bounded away from the cylindrical part
of P°, so we can choose the tubular neighbourhood N, small enough so that the
intersection N, N PJ° is connected. In both the smooth and the nodal cases, this
implies that the intersection property continues to hold for all sufficiently nearby
curves f € My(Jk,). In particular, there exists a number &, > 0 such that, for all

f € My(Jxk,) satistying® d(f, f. ) < 6., [ intersects P]° exactly once transversely.

3This metric refers to any that induces the manifold topology on M (Jg, ).
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In summary, so far we have proved that, for all x € Y_, there exists K, > 0 and
6, > 0 such that, for all y € Y_, and f}, € My (Jx,) satisfying d(fy, fE.) < 0q,
we have that f]yQ intersects P} exactly once, transversely. Furthermore, since the
convergence fY — F¥ is C'-monotonic, we can upgrade the statement to hold for
all k > K,. Specifically, for all k > K, and y € Y_ such that d(fy , [k, ) < 0., we
have that f; intersects PJ° as desired. We now harness compactness to turn this
into a global statement.

For a given x € Y_, the curves near fg form a local foliation around x.
Therefore, we have that

U= |J imfny-

JEML(JK,)
d(f,f%,) <0

is a neighbourhood of x. Thus, we obtain a cover of Y_. Since it’s compact, we can

pass to a finite subcover Uy, ..., U, and define
K :=max{K,,,...,K; } < .

Then, as any point z € Y_ is necessarily contained in some U,,, we have that
d( fﬁwi, I’”(%) < 0y, which implies that f{ intersects P]° exactly once, transversely,
for all k > K > K,.. As any curve f € My(J;) is equal to f¥ for some x € Y_, this
completes the proof.

The claim about the critical values follows from the discussion on choosing the

sequence Ji in Section 3.5. O

As a result, for sufficiently large k£, we can choose a sequence of matching paths
i [—1,1] = Moo(Xy,, F; Ji) joining the two relevant critical points, such that, in
the coordinates of the charts given by Lemma 4.1.3, pp converges to the matching
path p : [-1,1] — C of the Lefschetz fibration mp.g2 associated to L. Our next
goal is to show that we can choose k large enough so that the matching cycle of 7,

associated to p; is Lagrangian isotopic to L.
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4.2 Convergence of the parallel transport

4.2.1 The parallel transport of mp.g2 : T*S? — ﬂcyl

The problem of symplectic parallel transport involves lifting a vector field defined
over a compact path in the base to a horizontal vector field in the total space and
integrating it. This amounts to solving an ODE over a compact family of fibres of
the Lefschetz fibration m7+g2. However, since these fibres are non-compact, we need
to justify why solutions to this ODE exist for all time.

More precisely, fix an embedded path v : [0,1] — Mcyl whose image avoids the
critical values of mp+g2. Taking symplectic orthogonal complements of the tangent
spaces to the regular fibres of 7p.g2 yields a field of horizontal planes H C TT*S?,
such that the restriction dmpwg2|g : H — Tﬂcyl is an isomorphism. Therefore,
there exists a unique horizontal lift X of the vector field X = %p. This defines an

ODE on the space .}, (im 7).

Lemma 4.2.1. The symplectic parallel transport of the Lefschetz fibration mp«g2 :
T*S? — My is well-defined.

Proof. The curves in the moduli space Mcyl are finite energy Jp-g2-holomorphic
curves and so, by the results of Hofer, Wysocki, and Zehnder [27, Theorem 1.3],
Bourgeois [1, §3.3], and Mora-Donato [10, Proposition 1.2], they satisfy exponential
convergence to their asymptotic Reeb cylinders. The fixed path v : [0,1] — Mcyl
yields a compact family [0,1] = k C Mcyl of such curves, and so, there exists a
compact Liouville subdomain of T*S5? outside of which, all the curves in & satisfy
the exponential convergence estimates.

Fix the standard Riemannian metric on 7*S? coming from the embedding
775" = {(p,q) e R’ xR’ [ |¢| = 1, (p,q) = 0},

and consider the Hamiltonian H : T%5? — R : H(p,q) = 3|p|>. The wean-
orthogonal complement of the tangent space of a Reeb cylinder is a contact plane,

which is contained in ker dH. Therefore, the exponential convergence of the curves
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implies that the horizontal spaces converge exponentially to the contact planes. In

particular, the horizontal lift X satisfies
Ly H| < Ce™®,

where C' > 0 and d > 0 are constants, and s € [sg, 00) is the Liouville coordinate
on T*S%. An integral curve a of X escapes to infinity if, and only if, |H (a)| = co.
Therefore, the above estimate shows that this is impossible, as we are integrating

over the compact set [0, 1]. O

4.2.2 The parallel transport of 7; : X; — C

Recall from Lemma 4.1.3 that, for large enough k, we can identify the bases of the

Lefschetz fibrations 7, |y and mp«g2]y with a bounded disc D C C.

Lemma 4.2.2. Lety; : [0,1] — D be a sequence of embedded paths converging C' to
v :10,1] = D. Suppose that each path avoids the critical locus of the corresponding
Lefschetz fibration, then the parallel transport ¢., of my |y over v is C%-close to

that of mp«g2|y_ over 7.

Proof. Since we are dealing with compact families of curves, so one can show that
the fibres of 7, |y living over 7, converge uniformly to those of mp«g2|y  over . It
follows that the ODE defining the parallel transport ¢, of mp«g2 can be arbitrarily
well approximated by that defining ¢,, by increasing k. Therefore, by smooth
dependence of ODEs on the initial condition and the vector field that defines it (see
[12, Appendix B] for example) we obtain the result. O

Lemma 4.2.3. Let v : [—1,1] — D be a sequence of matching paths converging to
the matching path ~ : [—1,1] — D corresponding to the zero section matching cycle
of mp=s2. Then, for sufficiently large k, the matching cycle Xy, of 7y, |y associated

to vy, is C°-close to the zero section L.

Proof. Since the critical points of 7, |y converge to those of mp«g2|y , smooth

dependence of ODEs implies that we have C° convergence of the vanishing thimbles
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associated to the paths v, := x|_1,0) and v := Yljp1] in a small neighbourhood
of the critical points. Therefore, we can apply Lemma 4.2.2 to the restrictions
Y |[—1+5,0} and y,j li0,1—¢ for some small € > 0 to deduce that the vanishing thimbles
of 75, over the paths v can be made C-close to those of 7. g2 over 4+ by increasing
k.

Choose k large enough so that the vanishing thimbles are very close to those
of mr«g2 and in particular, are contained in the Weinstein neighbourhood Y_. To
form the matching cycle a deformation of the symplectic structure on Y_ is made
to account for the fact that the vanishing cycles over ~;(0) may not agree (see [17,
Lemma 15.3]). A Moser-type argument ([17, Lemma 7.1]) is then used to map
the resulting sphere back to the original symplectic structure. Since the vanishing
thimbles themselves are C°-close, the deformation (and resulting Moser isotopy) can
be made so that the matching sphere ¥, remains C%-close to L. This completes the

proof. O

4.3 Constructing the isotopy

Theorem 4.3.1. There exists k sufficiently large such that L is Lagrangian isotopic

to a matching cycle of my, .

Proof. Lemma 4.2.3 shows that the relevant matching cycle ¥; is a Lagrangian
sphere contained in a neighbourhood of L that is symplectomorphic to
(TzeRk S? e Brw,,) for some positive number R, > 0. Therefore, we can apply
Hind’s theorem [24, Theorem 18] on uniqueness of Lagrangian spheres in 7*5? to
obtain a Lagrangian isotopy from > to L. If necessary, by re-scaling by the Liouville
flow, we can ensure that the isotopy is supported in 77 g, S2. Finally, since this
neighbourhood of L symplectically embeds into X, we obtain the isotopy in X as
desired. O

In summary, we have found a Lefschetz fibration 7;, : X; — C and a Lagrangian

isotopy supported in a small neighbourhood of L taking L to a matching cycle .
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F
S S’

Figure 4.1: The neighbourhood N of the fibre component of D’ in which we fix
the almost complex structures to be equal to the usual product complex structure

coming from S? x S2.

The next task is to “undo the neck stretch” and find another Lagrangian isotopy
taking > to a matching cycle of some fixed Lefschetz fibration with respect to which
we will do the remaining computations.

We use the fact that the space J(D’) of compatible almost complex structures for
which each component of the divisor D' C X is J-holomorphic is connected. In fact,
we restrict ourselves even further to the subset of J(D’) of almost complex structures
that are fized in a neighbourhood of the F-component of D’. In more detail, consider
a neighbourhood N of this component of the form shown in Figure 4.1. Remark A.1.4
ensures that we can choose! Jiof € J (D’) so that it agrees with the product almost
complex structure coming from S% x S% in N. Let U := X\N and denote the
subset of J(D') of almost complex structures that agree with Jyf in N = X\U by
J (U, Jret). That is,

T, Jret) ={J € TD") | J|x\v = J|n = Jret|N = Jret| x\0 }-

This space is connected, which follows from Sévennec’s argument (see [2, Proposi-
tion 1.1.6] for example). Observe that, for a suitable choice of neighbourhood N,
all the stretched almost complex structures Ji, are contained in J (U, Jyef).

The idea is to use connectedness of J (U, Jwf) to choose a path J; of almost
complex structures from Jy = Jy to J; = J.r. Applying the results of Section 2.4
yields a path of Lefschetz fibrations m; = 7, : X;, = C from my = 7, to m; = 7s,.

This path of fibrations induces a path in the configuration space C'(C, d) of d points

in C corresponding to the positions of the critical values of m; (see Remark 2.5.6(1)).

4In fact, in Section 5.3 we shall explicitly construct a specific Jyef.
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We note two features of this path. Firstly, recall that the point at infinity in the
bases MOQ(X 7,, F; J;) = C corresponds to the exotic stable curve u’t. Therefore,
the points must remain in a bounded subset by the fact that Lefschetz critical fibres
never intersect u’t. Secondly, since the almost complex structures J; are fixed on
N and N is foliated by smooth J;-holomorphic F-curves the points also remain
bounded away from 0 € C. As a result, this path in C(C,d) is really a path in
C(A,d) where A = [0,1] x S is a compact annulus. Now, choose an isotopy of
matching paths v : [-1,1] — A for m; such that 79 = ~, is the matching path
for ¥ from Lemma 4.2.3. Forming the corresponding matching cycles L; yields a

Lagrangian isotopy from Ly = ¥ to the matching cycle of m.¢ over v;. This isotopy

Jt

[e.9]

is disjoint from open neighbourhoods of u’! and the F-component of the divisor
D’ C X. However, a priori it may pass through the sections S and S’. This is a
problem since we want the Lagrangian isotopy to be supported in a subset of X that
is symplectomorphic to a subset of B, ,. The point of the next result is to avoid
this behaviour by explicitly altering the Lefschetz fibrations 7.

The curves in Mo o(X, F;J) form singular foliations .%; on X. The singular
leaves are exactly the singular Lefschetz fibres of m;, and one exotic leaf given by

u’t. In small tubular neighbourhoods of the J;-holomorphic sections S and S’, these

foliations are smooth with leaves given by symplectic 2-discs. We denote these by

Y.

Lemma 4.3.2. There exists an isotopy Ys, of foliations such that Yy, = 9, and
D+ are foliations by symplectic 2-discs intersecting the sections S and S’ positively
and symplectically orthogonally. The isotopy can be chosen so that it is invariant
in s outside of an arbitrarily small neighbourhood of each section. As a result, we
obtain singular foliations Fs, of X such that, excluding a single exotic leaf, Fs,

forms a symplectic Lefschetz fibration® on X.

Proof. Put S; = S and S, = S’. Note that near a section S;, the fibrations

5That is, Lefschetz fibrations whose fibres are only symplectic submanifolds, and not necessarily

J-holomorphic.
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m; are foliations Z; of symplectic 2-discs whose leaves intersect S; transversely
and positively. Therefore, we can use a variation of an argument of Gompf [21,
Lemma 2.3] to construct an isotopy of foliations %, such that: (1) the point of
intersection of a leaf and S; is invariant in s; and (2) outside of a small neighbourhood
of S;, the leaves are also invariant in s. Furthermore, the leaves of %, ; intersect S;
symplectically orthogonally. Consequently, we can glue the symplectic discs in Z;,
to the leaves of .Z; to obtain new foliations .#; ;. By construction, these are constant
in s in a complement of small neighbourhoods of the sections S;, which implies that
(except for the one exotic fibre corresponding to the ut curve) their leaves form

Lefschetz fibrations, since the existence of a Lefschetz chart at a critical point is a

local condition. This completes the proof. ]

Let X; denote X with the exotic leaf of .#;; excised. Write m,; : X; — C
for the corresponding Lefschetz fibration. Define the reference Lefschetz fibration
by Tt := i1, and observe that it does not depend on the Lagrangian sphere
L. In addition to the tubular neighbourhood N defined earlier, choose a tubular
neighbourhood foliated by leaves of .%7 ; of the exotic leaf, then define XcUcX
to be the excision of this as well as the sections S and S’. The restriction 7| ¢ is

a Lefschetz fibration over the compact annulus.

Corollary 4.3.3. There exists a Lagrangian isotopy from L to a matching cycle of
Tref that is supported in X.

Proof. Theorem 4.3.1 shows that it suffices to find such an isotopy from the matching
cycle X to one of me. Observe that Xy is still a matching cycle for the deformed
fibration o since none of the structure changes near ¥; throughout the isotopy
Fs1. Therefore, we can construct the Lagrangian isotopy using the matching paths
v defined earlier, except this time we form the matching cycles with respect to the
maps 7. 1o see that this has support as claimed, note that the orthogonality
condition ensures that the parallel transport maps of 7, preserve the sections .S;.

Therefore, they preserve their complements too. Since ¥ lives in this complement,
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the claim follows from this and the discussion preceding Lemma 4.3.2. m
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Chapter 5

Mapping class groups of surfaces

and symplectomorphisms

In this chapter we harness the theory of mapping class groups of surfaces to improve
Corollary 4.3.3 to the main result Theorem 1.2.2. Corollary 4.3.3 tells us that any
Lagrangian sphere L C Bg,, is Lagrangian isotopic to a matching cycle of the
Lefschetz fibration .. To convert this into an isotopy statement phrased in terms
of Dehn twists, we need to understand their relation to (isotopy classes of ) matching
paths. This will be facilitated by the fact that the natural action of the mapping
class group of the d-punctured annulus A*¢ := [0, 1] x ST\{d points} is transitive on
matching paths, and so, it will suffice to understand particularly simple matching

paths.

5.1 The mapping class group of the punctured

annulus

The mapping class group of a surface is a classical object with plenty of rich theory.
Farb and Margalit’s book [20] — in particular, Sections 1-4 — contains everything

we will use here. We recall the main definition.
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5.1.  The mapping class group of the punctured annulus

Figure 5.1: The punctured annulus and the matching paths ;.

Definition 5.1.1. Let S be an oriented surface (possibly with boundary and
punctures). The mapping class group of S, Mod(S), is defined to be the group
of connected components of the group of orientation preserving diffeomorphisms' of

S that fix the boundary point wise. That is,
Mod(S) := mo(Diff ¥ (S, 99)).

Recall from Section 4.3, the restriction of the Lefschetz fibration 7. to X has
base a d-punctured annulus A. Therefore, we seek to understand the mapping class

group Mod(A). In Appendix A.2 we compute a presentation of Mod(A):

Example 5.1.2 (Appendix A.2). The mapping class group of the punctured annulus
is isomorphic to the direct product of the annular braid group with a copy of Z. This
is finitely generated, and each generator is one of three types: the Dehn twist T
about the central boundary, the so-called central twist 7, and half-twists o; around

the straight line paths ~; joining the adjacent i and (¢ + 1)th punctures. Explicitly,

In fact, as Section 1.4.2 of [20] explains, we are free to consider homeomorphisms or

diffeomorphisms interchangeably.
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T T g;

Figure 5.2:  Local characterisations of each generator of Mod(A). In each case,

dotted lines map to dashed.

the presentation is:

(701)2 = (017)27

To; = oyT Vi > 1,
Mod(A) = <7’, Olyeney On1 > x (T).

0;0i4+103 = 0441030441,

0,0 = 005 V|Z —j| >1
The behaviour of each generator is characterised by the diagrams in Figure 5.2.

Since any Lagrangian sphere L C Bg,, is Lagrangian isotopic to a matching
cycle X, fibred over the matching path «, the following basic fact will be crucial in
proving Theorem 1.2.2.

Fact. The mapping class group Mod(A) acts transitively on the set of isotopy classes
of matching paths P.

Remark 5.1.3. In fact, this is true if A is replaced by any punctured oriented surface,
as can be proved by a cut-and-paste argument appealing to the classification of

surfaces, as the author learned from the MathOverflow answer [35].

Therefore, for some mapping class p € Mod(A), p(v) is isotopic to the so-
called standard matching path v, (see Figure 5.1). It follows that the matching
cycle X, is Lagrangian isotopic to X,.,). So to prove Theorem 1.2.2, we seek to

a correspondence between symplectomorphisms of By, , and mapping classes in

Mod(A).
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That the half-twists o; correspond to generalised Dehn twists about the
Lagrangian spheres ¥, is well known (and proved in [17, 16h]). The Dehn twist
T € Mod(A) acts trivially on any class [y] € P since no matching path has an end
point lying on the central boundary component. So, our task is to understand to
what symplectomorphism the central twist 7 corresponds. More precisely, is there

a symplectomorphism ¢ of By, , such that ¢(X,,) is Lagrangian isotopic to X;(y,)?

5.2 Some symplectomorphisms of B, ,

The aim of this section is to prove the following result.

Proposition 5.2.1. There exists a compactly-supported symplectomorphism 1, , of
By pq arising from the symplectic monodromy of the é(l,pq — 1) singularity. The
central twist T € Mod(A) corresponds to 7,4, that is, 7, 4(X,,) is Lagrangian isotopic

to Yir(y,). Moreover, no iterate X ), for k # 0, is Lagrangian isotopic to %, .

*(m

As a corollary of this, we find that 7,, has infinite order in the symplectic
mapping class group mo(Symp.(Bap,q))-

We adapt Seidel’s approach [15, §4.c| to the symplectic monodromy to suit our
situation. We work in C® with coordinates z = (21, 29,23). Let 1 be a cut-off
function? satisfying

1, ift<

W=

() =<
0, ift>

wino

and define

My = {(21,22,23) € C* | |2| <1, 212 = 22 + (|2)?)w}

Note that, for some € > 0 sufficiently small, the manifolds M,, with 0 < |w| < € are
smooth symplectic manifolds diffeomorphic to the Milnor fibre (2125 = z57) N (|z] <

1) of the Ag,_; singularity (see Lemmata 4.9 and 4.10 of [45]). The M, are invariant

2The purpose of which is to ensure that the symplectic parallel transport maps used in the

definition of monodromy are well defined.
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under the %(1, —1,q) action on C?, and so (being a subgroup of the unitary group
U(3)) we can take the quotient to obtain symplectic manifolds M,, diffeomorphic to
Bipg.

The Milnor fibration associated to the singular point 0 € M, is defined to be

restriction of the projection C3 x St — S

T M= U M, x {w} — S,
|w|=e
Pulling back the standard symplectic form wes to M yields a closed 2-form €2 whose
restriction to each fibre is symplectic. Therefore, we can define the symplectic

parallel transport of this fibration. Write w = Q|

Definition 5.2.2. Winding once (anticlockwise) around the base S! yields the
symplectic monodromy map f € Aut(M, OM,,w).

Lemma 5.2.3. In the case d = 1, the monodromy, which we now denote by 7, ,,
of By, induces the central twist 7 € Mod(A) in the mapping class group of the
punctured annulus A. More precisely, let v and v = 71(v) be the dotted and
dashed (respectively) vanishing paths in Figure 5.2(t). Form the associated vanishing

thimbles D, and D.,. Then 7,4(D.) is Lagrangian isotopic to D = Dy ().

Proof. Consider the map w : M — C : w(z,w) = z}. We have the following

diagram of maps:
M —"— St

gﬂ

Restricting w to each fibre M, of 7 yields a Lefschetz fibration w,, := w|M,, (except
on the exotic fibre w,'(0)). The core idea of this proof is thinking about how the
unique Lefschetz critical value z,, € C* of w, winds around the origin as we go
around the base St of 7.

For t € [0,1] choose a smooth family =, of vanishing paths such that 79 = 7,
M =79 =7("), %(l) = zy, and ¥ restricted to an interval of the form [0, ] for
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b < 1 agrees with 79|05 Let X be the horizontal lift (with respect to 7 and Q) of
the vector field X (t) = 2mie?™ and consider its flow p;. Note that y, maps M, to
M z2rity, and piq|p. = 7,4 by definition. Form the vanishing thimbles D,, C M 2rit,,

and consider the Lagrangian isotopy

Lt = :u—t(D’\/t)a

which is contained in (M., w). Moreover, Ly = D,, and L; = p_1(D,,) =
T_I(DT(

p.q

~0)). Therefore, it follows that 7, ,(D,) ~ D.,, as desired. O

Remark 5.2.4. Consider the circle action o; with weights (1,dpg — 1,¢) on C3:
Ut(Z1, 2s, 23) — (627rit21’ 627Ti(dpq—1)t22’ 627riqtz3).

In the quotient C3/ %(1, —1,¢) this descends to a circle action that factors through
o¢/p- The restriction of oy, to OM,, gives the boundary M, the structure of a
Seifert fibration. Consider the Hamiltonian H € C*°(M,,, R):

H(z) = n(|a* + (dpg — 1)|z2|* + gl zs]).

Its time —1 flow ¢%, is a representative of the boundary Dehn twist on M,, (induced
by the Seifert structure on dM,,). Since the Milnor fibration = : M — S is
equivariant with respect to the circle actions (oy/,, €2™4") on M and €™ on S,
one can apply an argument of Seidel [15, Lemma 4.16] (with o/, in place of o; and

f = dq) to show that
[02,] = [f]

in the symplectic mapping class group of (M., w).

We can view the B, , monodromy explicitly inside Bg,, 4 as follows. Consider the

singular manifold

d
N ={(21,22,23) € C* | 212 = Z§H(z§ —a;)},

=2
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and its quotient N = N/i(l, —1,q). This is a partial smoothing of the 55 (1 dpg—1)
singularity. The unique singular point 0 € N is of type }7(1, pq — 1). Slmilarly to

above, we form the manifolds

d
Ny i={(21,22,23) € C* | |2| < 1, 2129 = (25 — ¥(|2[*)e*™a H U(|2)as)}
=2
where 0 < a; < ... < a4 are sufficiently small real numbers, along with their

quotients N, = ]\7,5/% (1, —1,q). The family NV, is a smoothing of the singular manifold
N with a unique #(1, pq— 1) singularity. Therefore the monodromy of N, is the B, ,
monodromy. Observe that, Ny = B, ,. As in the proof of Lemma 5.2.3, projecting
to 2% yields a Lefschetz fibration (up to the p-covered fibre over 0) w; : N; — C,
and the same proof shows that the monodromy of NN, induces the central twist
7 € Mod(A). Since we primarily work with Ny, we abuse notation and continue to
write w : Ny — C for wq : Ng — C.

Recall the matching path 7, shown in Figure 5.1.

Lemma 5.2.5. The B, , symplectic monodromy 7, , acts non-trivially on wo(Bap,q)-

Moreover, it acts with order p on the matching cycle ¥, .

Proof. The quotient map ¢ : Ny — N is the (degree p) universal cover of Ny = B, ,.
Consider the Lefschetz fibration fibration @ : Ny — C : @ (21, 29, 23) = 23 and the

canonical p-to-1 branched cover ¢: C — C: ¢(x) = xP. Observe that the diagram
Ny —5= Ny
l@ lw (5.2.1)
C ——=C
commutes and realises the Lefschetz fibration & : Ny — C as the pullback under ¢
of w : Ny — C. Combined with the fact that ¢ respects the symplectic structures,
this implies that ¢ commutes with the parallel transport of @ and w. In particular,
given a matching path ~ of w and a lift 4 via ¢ to a matching path for <, the
matching cycle X5 C N, will be a lift of Y, C Ny with respect to ¢.
Since ¢ is the universal cover, it induces isomorphisms on homotopy groups

mi(No) = m;(Np) for all 4 > 1. Moreover, as N is simply connected, the Hurewicz
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Figure 5.3: The dashed path 7 is a lift of the matching path 7(7;). The dotted
path 7, is a lift of the path 77(7;). The example drawn here is d = 2 and p = 3.

theorem implies that mo(Ny) = Hy(Ny; Z) = Z%~1. Therefore, the calculation of
(Tp.g)«[201] = [Zr(y)] € m2(No) reduces to computing the homology class of ¥,
where 7 lifts 7(v1).

To this end, we fix a basis of Hy(Ny;Z) to be the collection of matching cycles
corresponding to the following matching paths: the p — 1 arcs, p; : [0,1] — C :
i (s) = ¢/a 2™ U+s)/P for 0 < j < p—1; and the (d — 1)p paths j; : [0,1] — C, for
0<j<pandl <k <d, where gy is the straight path between the points ¢/a
and /a1, and p;p = €*™9/Ppg . The illustration in Figure 5.4 should dispel any
confusion.

We have that 35 is isotopic to the Dehn twist 75, (3,,,) of ¥,,, about ¥, so

we can use the Picard-Lefschetz formula to calculate the homology class:

[TEMO (Eﬂo,l)] = [ZM0,1] + ([Z,uo] : [Ello,l])[zﬂo] = [Z,U(),l] + [Zuo]'

This proves that (7,,). acts non-trivially on Hy(No; Z) = 75(Bayp.)-
To show that (77 ).[%,,] = [X,,] it suffices to check that [¥5] = [¥,,,], where
Ap 1s the lift of 7P(y;) drawn in Figure 5.3. Denote by p the matching path obtained

by successively half-twisting po along p; for i > 0 (see Figure 5.4(b) for an example
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Figure 5.4: (a) The matching paths corresponding to the chosen basis of Hy(Ny; Z).
(b) An As-configuration of matching paths: jig; (dashed), p = oy, (1o) (dotted),
and ji21 (dashed); along with the matching path 4, = 0,(1,1) (dash dot). The case
drawn here has d = 2, and p = 3.

with d = 2, and p = 3):
Ho=Opup o0pp 3" Oy (,uo)

Then, 4, is isotopic to o7 (uo,1), which implies that the matching cycle ¥y, is

Lagrangian isotopic to the Dehn twisted sphere 7'523” (X440, ), which is smoothly isotopic

to X This implies that [¥5,] = [¥,,,], which completes the proof. O

10,1 °

The previous lemma shows that 72 (X,,) =~ ¥.»(,,) is homotopic to %,,. However,

they are not Lagrangian isotopic as we now show.

Proposition 5.2.6. The matching cycle 70 (X,,) =~ () s not Lagrangian

isotopic to X.,.

Proof. Suppose that the result is false. Then, denoting L = X, and L' = X.»(4,),

there exists a Hamiltonian isotopy ¢! € Ham(Ny,w) satisfying
o (L) =L
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Then H lifts to the Hamiltonian H := H o ¢ : Ny — R, whose flow ¢fl covers that
of H:

~ H H
cogbt :Cbt-

Therefore, by choosing the lift L := 3, , of L we must have that L/ := ¢7 (L) is a

fo,1
lift of L/. Moreover, by the diagram in Equation (5.2.1), @ (L) is (the image of) a
lift of the matching path 7P(v;). For topological reasons, this lift is exactly 7, as
shown in Figure 5.3.

Picking up where we left off in the proof of Lemma 5.2.5, we deduce that L'
is Lagrangian isotopic to T%H(Zum)- As noted, this is smoothly isotopic to L =
Yo, but a famous result of Seidel [44] shows that it is not Lagrangian isotopic.
Indeed, an As-configuration of Lagrangian spheres one can use to apply this result
is given by the collection of matching cycles corresponding to the matching paths
[o,1, = Opy oOpy_s - Opuy(fo), and p,_11. Applying Seidel’s theorem shows that
3 so L' cannot be

the Lagrangian Floer cohomology HF (ZN'/ , 2y, 1,) is non-zero,

p—1,1
Hamiltonian isotoped to L since HF(L, Yu,1,) = 0. This yields a contradiction,
and hence our initial assumption that L = X, and L' = X.»(,,) were Lagrangian

isotopic is false. |

Corollary 5.2.7. The B, , monodromy has infinite order in the symplectic mapping

class group of Bgp 4.

Proof. A basic extension of the above proof shows that L := Y k) is not
Lagrangian isotopic to Ly = X,, for all £ # 0. Since L; =~ Tzlf"Z(Lo) this proves
the result. O

Remark 5.2.8. This is not a surprising result; it parallels the story of weighted
homogeneous hypersurface singularities. What would be interesting is investigating
whether it is truly a symplectic phenomenon or not. That is, is the monodromy of

infinite order in the smooth mapping class group?

3Note how in Figure 5.4 the matching path ou(to,1) intersects pp—1,1, whereas puo,1 doesn’t.
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Note that in the case (d, p,q) = (n+1,1,1) — which is the A,, du Val singularity
— this is truly a symplectic phenomenon by Brieskorn’s simultaneous resolution [6].
On the other hand, recent work of Konno, Lin, Mukherjee, and Munoz-Echéniz [32]
shows that the monodromy diffeomorphism of the Milnor fibration for every weighted
homogeneous hypersurface singularity excluding the ADE singularities has infinite

order in the smooth mapping class group. Their theorem does not apply to the

Bap,, case since b*(Bgyp,) = 0 and m(Bg,,) # 1.

5.3 Proof of the main theorem

Consider the subgroup G of the symplectic mapping class group mo(Symp,.(Bayp.q))
generated by the d — 1 Dehn twists about the standard spheres L; = ¥, and the
#(1, pq—1) symplectic monodromy 7, ,. We now state the main theorem in its most

precise form:

Theorem 5.3.1. For every Lagrangian sphere L C Bg, , there exists ¢ € G such

that L is Lagrangian isotopic to ¢(Ly).

We’ll do this by combining the main result of Chapter 4 with a proof that the
Lefschetz fibration @w : Ny — C in the previous section compactifies in a suitable
sense to m.r. We show that we can choose the reference almost complex structure
Jret o0 X = X4, 4 so that the fibres of the map 7 : X — C are compactifications
of those of w : Ny — C.* The upshot of this is that all the results proved in

Section 5.2 transfer immediately to .

Lemma 5.3.2. There exists a symplectic embedding ¢ : No — X = X4p4 and an
almost complex structure Jof € J(D') on X such that the fibres of w : Ny — C

compactify to Jyeg-holomorphic fibres of the map 7;_ : X — C.

Proof. The existence of this embedding will follow from showing that Ny has an

almost toric structure with base diagram isomorphic to that shown in Figure 1.1.

4Recall that 7.ef is the deformation of 7;_, under the Gompf argument of Lemma 4.3.2.
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(a): N() (b> NO

Figure 5.5: A fundamental domain derived from the Hamiltonian system H : Ny —
R2. Here r is the unique integer 0 < r < p such that r¢ =1 mod p. Cuts made are

shown in dash dot.

Indeed, the compactification X was constructed using only the almost toric base
diagram. After this, we then investigate how the almost complex structure J on N,
inherited from its embedding in C3, and the fibres of @ behave with respect to the
Hamiltonian H : Ny — R used in the symplectic cut construction.

As in Lemma 7.2 of [17], the Hamiltonian system H = (|z3]% 5(|1]* — |22/?))
on Ny has a fundamental domain whose image under action coordinates is that
shown in Figure 5.5(a). In particular, the y-coordinate is the Hamiltonian H(z) =
(Jz1]% — |22]?) which generates the circle action ¢ - (21, 22, 23) = (€21, e 29, 23).

After applying a SLs(Z) transformation to make the toric boundary vertical and
rotating the branch cut 180° clockwise, one obtains exactly the fundamental domain
of Figure 1.1. Under this correspondence, the vertical cuts made in Figure 2.8(b)
(which correspond to the J-holomorphic sections of the Lefschetz fibrations m; :
X — C) translate to horizontal cuts in the above fundamental domain. This means
that the symplectic cut construction is done with respect to the Hamiltonian H.

Recall that a fibre w=!(w) is given by the equation

d
1z = [ = (e

which is preserved by the Hamiltonian flow ¢. Therefore, the intersection of a
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fibre with a regular level H~*(r) is given by an orbit of ¢/. This implies that, after

taking the symplectic cuts, the fibres of @ become symplectic spheres in X.

As for the almost complex structure, note that in the region where the cut is
made, Ny is a complex submanifold of (C3/%(1, —1,¢). Indeed, NoN (3 <[22 < 1) =
My n (% < |2|?> € 1) and My is holomorphic. Therefore, as the circle action ¢f is
a subgroup of the U(3) action, this implies that J is invariant under ¢ and thus
descends to give an almost complex structure J on the cut manifold Ny shown in
Figure 5.5(b). To produce an almost complex structure on X we need to make a
cut corresponding to the horizontal cut shown in Figure 2.8(a). However, a priori,
the symplectic sphere introduced by this cut may not be J-holomorphic. Therefore,
we define J,¢ as follows. Fix a closed subset of Ny containing all of the focus-focus
critical points of the form indicated by the vertical dashed line in Figure 5.5(b),
and define J,ot to be J here. Then, in a neighbourhood of the vertical cut passing
through the branch cut define J. to be that coming from the standard product
complex structure in S% x S? (compare Section 4.3 and Figure 4.1). Finally, on the
remaining region pick J, arbitrarily so that it makes the horizontal toric boundary

Jret-holomorphic (which is possible by Lemma A.1.3).”

The final claim that the fibres of @ compactify to fibres of 7 _ is equivalent

ref
to saying that the compactified spheres live in the homology class F' = H — S (in
the basis computed in Lemma 2.2.1). Let A € Hy(X) be the homology class of the
compactified fibres. The claim follows from the fact that A- E; =0, A-&; = 0,

A-F=0,and A-S=1. O]

Corollary 5.3.3. The symplectic embedding v : Ny — X induces a commutative

50f course, one also needs to handle resolving the singularities introduced by the horizontal
cuts, as in Lemma 2.1.3. However, this can be done so that the resulting resolution loci are Je¢-
holomorphic without affecting the property that the fibres of @ : Ny — C away from the exotic

fibre over 0 compactify to J..s-holomorphic spheres in X.
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square
NO — 5 X
lw lﬂ—‘]ref :
C——C

Furthermore, this induces a bijection of sets of isotopy classes of matching paths of

w and 7y, ;.

Proof. The existence of the commutative square is essentially just a rephrasing of
Lemma 5.3.2. Notice that the restriction 7, |x\im, consists only of regular fibres
by the choice of closed set on which J.s agrees with the almost complex structure
J coming from symplectic cutting Ny. This induces the claimed bijection of isotopy
classes of matching paths, which, said another way, means that every matching cycle

of ;. is Lagrangian isotopic to a matching cycle of w. O]

Proof of Theorem 5.3.1. The symplectic completion of Ny is symplectomorphic to
Biyg. Therefore, by applying the negative Liouville flow, we can assume that
L C Ny and thus, after compactifying, L. C X. Therefore, by Corollary 4.3.3, L is
Lagrangian isotopic to a matching cycle of 7 in X. The results of Section 5.2
and Corollary 5.3.3 imply that this matching cycle is Lagrangian isotopic to a
composition of Dehn twists and the B,, symplectic monodromy applied to the
matching cycle Ly = X,,. Finally, since the isotopy is supported in X, we can find
a contact-type hypersurface M in X\D’ such that the isotopy is contained in the
interior Xy C X\ D' of M and so that the completion of X, is symplectomorphic

to Bgpq. See Figure 5.6 for an example. Thereby we view the isotopy as taking

place in By 4.
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Figure 5.6: The dashed curve represents the image of the contact-type hypersurface
M C X\D' chosen to ensure that the completion of the interior is symplectomorphic
to Bgp,q. We can ensure that the Lagrangian isotopy is contained in the interior of
this hypersurface by altering the curve so that it doesn’t touch any of the boundary

edges except the leftmost one.
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Appendix A

Constructions used in the text

A.1 Almost complex structures on symplectic

divisors

We construct the almost complex structures necessary for the arguments of
Section 2.4. Let (M,w) be a closed symplectic 4-manifold and S C M a symplectic
divisor. In particular, throughout the whole of this section, we will assume the

following:
e the components 5; of S are closed, embedded symplectic submanifolds;
e intersecting components S; and S; do so symplectically orthogonally;' and,

e there are no triple intersections, ¢.e. for distinct components S;, S;, Sy, we have

We will construct a compatible almost complex structure on M that realises each
component of S as a J-holomorphic submanifold. The idea is to first construct J

at the points of intersection, then extend in neighbourhoods of each component,

IThis condition is not strictly necessary, but it makes the proofs simpler and it is satisfied in

the situation we handle in this paper.
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and finally to the whole of M. All the arguments presented here are variations on
standard material, see for example [38, Chapters 2-3| and [3, Part I1I].

First consider the simplest situation where S = S; U S5 is composed of
two symplectic surfaces that intersect symplectically orthogonally exactly once.
Note that, by the symplectic neighbourhood theorem [38, Theorem 3.4.10], a
neighbourhood of S; in M is isomorphic to a neighbourhood of the zero section in the
symplectic normal bundle S of S;. Thus, we may choose a symplectic trivialisation
of vS} in a neighbourhood of the unique intersection point {z} = S; N Sy. In other

words, we have an embedding ¢ : U — M of a neighbourhood U of 0 € (R* wy),

0 I
where wy = is the standard symplectic form, such that ¢(R? x {0}) C S;.

-1 0
Furthermore, the symplectic orthogonality condition between S; and Sy ensures

that d¢(0)({0} x R?) = T,.Sy. The next step is to adjust the map ¢ to a symplectic
embedding that maps the symplectic planes R? x {0} and {0} x R? into S; and
S, respectively, thus symplectically identifying the intersection S; N Sy with the
standard intersection of coordinate planes in R*. This is achieved by the following

result.

Lemma A.1.1. Let W C (R* wy) = (C" wy) be an embedded symplectic
submanifold of the standard symplectic vector space that intersects the coordinate
plane C* x {0} ezactly once symplectically orthogonally at 0 € C". Then there exists

a symplectomorphism of a neighbourhood of 0 € C™ that maps the planes C* x {0}
and {0} x C"™* onto C* x {0} and W respectively.

Proof. Choose a symplectic embedding i : B*" % c C"* — C of a ball
parametrising W and satisfying i(0) = 0. In the following, we will denote the planes
C*x {0} and {0} x C** by C,, and C,, respectively. The symplectic neighbourhood
theorem allows us to view a neighbourhood of the image of 7 as :*vW. Note that the
normal fibre 1yW over 0 is exactly C,,. Moreover, the symplectic form w, defines
a connection H C Tv*vW on *vW by taking the wy complement of the vertical

distribution. This implies that the symplectic form wq splits over *vW into vertical

128



A.1. Almost complex structures on symplectic divisors

and horizontal components: wy = w' & w”. Let (X;,Y;) be the standard symplectic
basis of T,C,, = C,, = (ToWW)* and extend this to a symplectic frame of i*vW via
parallel transport. Using complex coordinates z; = (1 + iy, . .., T + iyx), define a

map ¢ : B Cc C"=C,, x C,, — i*vW by

©(21, 22) (ZIJ i(22) +1;Y(22), Zz) :

Note that ¢ is a bundle isomorphism C* x B2"=%) = j*yW. Moreover, since V.X; =
0 and VY, = 0, ¢ pulls back the connection H on ¢*vW to the canonical one
TB>"=k) c TCka@TB*"* on C*F x B2"»*_ Consequently, ¢ respects the splitting

of i*vW induced by H, satisfies p*w’ = wer, and ¢*w” = wpam-r), which yields
©rwy = " (W B W) = wer B wien-k = wp.
Hence, ¢ is the required symplectomorphism. O

Corollary A.1.2. Let x be an intersection point of a symplectic divisor S C (M,w),
then there exists an integrable compatible almost complex structure on a neighbour-

hood of x that preserves each of the pieces of the divisor that intersect at x.

Proof. The assumptions on the divisor S ensure that intersections between compo-
nents are isolated and satisfy the assumptions of the local result of Lemma A.1.1.
Therefore, we can push forward the standard complex structure i on C? via a
chart given by Lemma A.1.1. Since 7 preserves the coordinate planes, the result

follows. O]

We are now a position to choose a compatible almost complex structure J in
a neighbourhood of all the intersection points of the divisor S C (M,w). Then
next step is to extend this to each of the components S; C S so that each 5; is

J-holomorphic.

Lemma A.1.3. Let W C (M,w) be an embedded symplectic submanifold.* Then,

by the symplectic neighbourhood theorem, W has a neighbourhood symplectomorphic

2Here, W and M may be of any dimensions.
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to its symplectic normal bundle (VW,w). Let H C TvW be the canonical symplectic
connection induced by w, and suppose that we are given a compatible almost complex
structure that splits J = Jyg & Jy according to the connection H, and is defined over
an open neighbourhood U C vW of an open set of W. Then, for any open subset
U Cc U C U, there exists a compatible almost complex structure J' € J(TvW,w)
that agrees with J on U’ and preserves the splitting TvW = H & V. In particular,
W is a J'-holomorphic submanifold.

Proof. The non-degeneracy of the symplectic form w splits the bundle TvW into

horizontal and vertical components (H,wy) and (V,wy ), that is,
(TvW,w) = (H,wn) & (V,wy).

The hypothesis on J says that it decomposes into two compatible almost complex
structures Jy € J(H|y,wy) and Jy € J(V]y,wy). Therefore, to extend J to
all of vW, it suffices to extend both Jy and Jy,. This follows from the non-
emptiness and contractibility of the space of compatible almost complex structures
on any symplectic vector bundle, see [38, Proposition 2.6.4] for example. The non-
emptiness and contractibility of J(H,wy) and J(V,wy), ensure that we can find
global sections Jy € J(H,wy) and J{, € J(V,wy) that agree with Jy and Jy over
U'. Finally, since J' := Jj; @ J{, preserves the horizontal bundle H, and, for any
point x € W, H, 0y = T,W, we have that W is a J'-holomorphic submanifold. This
completes the proof. O

Remark A.1.4. Suppose that the normal bundle (¢vW,w) above is trivial, i.e. iso-
morphic to (W x R?*™ wy @ wrem). Then the horizontal distribution is simply
W x{z} € W xR?™. Therefore, the extended almost complex structure J’ preserves
those subspaces, making the canonical sections s, : W — W x R*™ : s, (w) = (w, z)
J’-holomorphic.

Returning to the situation of Section 2.4, since a neighbourhood of the F-
component of the divisor D is symplectomorphic to a neighbourhood of a horizontal

sphere in S? x 82, we can choose .J near the points of intersection with the sections
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to be that coming from the corresponding intersections of horizontal and vertical
spheres in S? x S2. Hence, the above implies that we can choose J near the F-
component of the divisor D so that nearby curves in M o(F;J) all intersect the

sections w-orthogonally.

Corollary A.1.5. Given a symplectic divisor S in a symplectic 4-manifold (M,w),
there exists a compatible almost complex structure J € J(M,w) that realises each

component S; of S as a J-holomorphic curve.

Proof. Corollary A.1.2 and Lemma A.1.3 yield a compatible almost complex
structure J’ defined in a neighbourhood of S such that each component S; is J'-
holomorphic. Indeed, the set U’ in the statement of Lemma A.1.3 can be chosen
to be a shrunken neighbourhood of that given by Corollary A.1.2. Therefore,
all that remains to do is extend J' to all of M, which again follows from [3,

Proposition 2.6.4]. O

A.2 The mapping class group of the punctured
annulus

The following argument is based on Adrien Brochier's MathOverflow answer [7].
Let S be a topological surface, and let C'(S,n) denote the configuration space of
n points on S. Denote the 2-disc by D and recall that the braid group Br, on n
strands is defined to be the fundamental group of C'(D,n). Similarly, denoting the
compact annulus by A, the annular braid group on n strands Br,(A) is defined to

be m (C(A,n)).

Lemma A.2.1. The annular braid group has the following presentation:

(101)? = (017)%,

To; = o0;7 Vi > 1, >

Brp,(A) = <7’, Oly.y Ont (A.2.1)

0;0i4+10; = 0441030441,

0;0; = 050 V]z —j| >1
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Proof. Recall the Artin presentation of Br,:

BTn+1 = <O'0, oy | (A22)

0i0i+104 = 0i+100+1;
oi0j =00, Vi —j| > 1 >
By “filling in” the central hole of A with a punctured disc, we construct an
injective homomorphism ¢ : Br,(A) — Br,,; sending each annular braid to
the corresponding planar one which fixes the Oth strand.® Consider the map
¢ @ Brpy1r — Y41 = Sym{0,...,n} sending each braid to its permutation of the
punctures. The image of i is ¢~1(Stab(0)), which has generators (62,01, ...,0,_1).
2

Setting 7 = 0§, we obtain the claimed generating set for Br,(A). The relation

(101)? = (017)? follows from the braid relation o009 = 010007. O

Denote the mapping class group of a surface S as Mod(S), interpreted as in [20,
§2]. As with Mod(D*"), where D*" is the n-punctured disc D*™ = D\{n points},
Mod(A*™) is closely related to its braid group Br,(A).

Proposition A.2.2. Let T, denote the isotopy class of the Dehn twist about a simple

closed curve o near the central boundary of A*™. Then

Mod(A*") = Br,(A) x (T,) = Br,(A) x Z. (A.2.3)
Proof. The result follows from the Birman exact sequence [20, Theorem 9.1]:
1 — m(C(A,n)) = Br,(A) — Mod(A*") — Mod(4) — 1. (A.2.4)

We may apply this theorem since the identity component of Homeot(A,dA) is
contractible [13, Theorem 1(D)], and so in particular, 7;(Homeo"(A,dA)) = 1.

Since Mod(A) = (T,) = Z is free, this sequence splits and we obtain the result. [

3The strand associated with the central puncture in D.
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