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Abstract

The escalating global biodiversity crisis requires innovative and scalable solutions to monitor wildlife pop-
ulations. Recent developments in remote sensing and deep learning offer promising avenues for improving
the conservation of large mammals, including African elephants. This paper introduces a framework that
utilizes drone video streams and integrates state-of-the-art object detection (YOLOv11) and tracking
(BoT-SORT) methods, which are significantly enhanced by a custom post-track re-identification algo-
rithm, to capture temporal dynamics and track individual elephants over time. The framework facilitates
automated video analysis and elephant counting, generating key metrics such as individual elephant
movement speed, group movement patterns, and elephant cluster statistics. By automating aspects of
data processing and analyses, this approach provides valuable insights that contribute to more efficient
and data-driven decision-making in wildlife research.

Keywords: Object Detection, Object Tracking, Re-Identification, Drone Videos, Wildlife Conservation,
Computer Vision, Deep Learning, YOLO, BoT-SORT
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1 Introduction

The escalating global biodiversity crisis requires innovative and scalable solutions to monitor wildlife
populations to support conservation management (Kissling et al. 2024). The scale of the crisis is illustrated
by the 2024 Living Planet Index report that showed a 73% average decline in wildlife population size
for the set of species and populations they measured from 1970 to 2020 (WWF 2024). The IPBES 2019
further noted that major land-based habitats have declined by at least 20%, with over 40% of amphibian
species, nearly 33% of reef-forming corals, and more than a third of all marine mammals now threatened.
Additionally, a 2023 study (Finn, Grattarola, and Pincheira-Donoso 2023), which analyzed population
trend data for over 71,000 animal species across all five vertebrate groups, revealed a widespread global

erosion of biodiversity, with 48% of species experiencing population declines.

The conservation of large mammals, such as African elephants (Lozodonta africana), can be significantly
advanced by recent developments in conservation technology such as remote sensing and deep learning
as seen in works by Wich and Piel 2021, Lamba et al. 2019 and Berger-Tal and Lahoz-Monfort 2018.
Traditional wildlife monitoring is often costly, labor-intensive, and risky for researchers, particularly when
studying elusive or dangerous species in remote areas highlighted in earlier research by Hodgson et al.
2016, McEvoy, Hall, and McDonald 2016, Vermeulen et al. 2013 and Pedrazzi et al. 2025. One of these
conservation technologies, drones, offers a potentially cost-effective, and less intrusive alternative for data
acquisition than ground-based surveys, particularly if integrated with deep learning to (semi) automate
analyses (Wich and Piel 2021; Lépez and Mulero-Pdzméany 2019; Hamilton et al. 2020). Early studies
demonstrated the potential of drones for wildlife surveys. For example, Vermeulen et al. 2013 explored
the use drones to survey large mammals in Burkina Faso. They found that elephants were easily visible
in drone images, with no observed reaction from the animals when the drone flew at 100m. However,
smaller mammals were harder to detect. The study concluded that drones could be a valuable tool for

elephant enumeration, though the limited flight duration of the drones was a constraint.

Hodgson et al. 2016 further demonstrated the precision of UAVs for wildlife monitoring in various envi-
ronments, showing that UAV-derived counts of nesting birds were more precise than traditional ground
counts. This highlights the potential of UAVs to improve the accuracy and efficiency of wildlife monitor-
ing.

Research has also addressed the potential impact of drones on wildlife. McEvoy, Hall, and McDonald
2016 assessed the disturbance effects of UAVs on waterfowl, finding little to no disturbance when drones
were flown at sufficient altitudes (60m for fixed-wing, 40m for multirotor). Further research by Mulero-

Pazmény et al. 2017 and Afridi et al. 2025 also demonstrate how drones can disturb wildlife and what
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steps must be taken to prevent this from happening as these findings are crucial for developing responsible

drone-based monitoring practices.

The application of deep learning to drone imagery has been a key area of development. Kellenberger,
Marcos, and Tuia 2018 tackled the challenges of mammal detection in drone images with imbalanced
datasets, providing recommendations for scaling Convolutional Neural Networks (CNNs) to large-scale
wildlife census tasks. Barbedo et al. 2019 focused on cattle detection in drone images using deep learning,
evaluating CNN architectures and image resolution. Guirado et al. 2019 developed a CNN-based system
for automated whale detection and counting in satellite and aerial images, showcasing the potential of

deep learning for marine mammal monitoring.

Previous research by Delplanque, Foucher, Lejeune, et al. 2021 first harnessed ultra—high-resolution
(38-50 cm) panchromatic and true-color satellite imagery, pairing a U-Net segmentation network with
K-means clustering to automatically localize and count sprawling mammal herds. Building on this,
Delplanque, Foucher, Théau, et al. 2023 swapped in oblique aerial RGB photographs—acquired via fixed-
wing aircraft—and introduced HerdNet, a point-based CNN that outputs density maps to tally camels,
donkeys, sheep, and goats more accurately than manual counts, though it omits both satellite data and
elephant surveys. Subsequent research by Delplanque, Lamprey, et al. 2023 presented a semi-automated
deep-learning (SADL) pipeline that embedded the pretrained HerdNet model to slash human verifica-
tion time by over 70% (and up to 98% in some surveys), while still mandating human quality checks
to navigate shadows, occlusions, and species overlap. Concurrent field trials by Delplanque, Linchant,
et al. 2024 further revealed that variable lighting, terrain heterogeneity, and mixed-species groupings can
still hamper count precision, underscoring the imperative for richer, site-specific annotations rather than

off-the-shelf detectors like Faster R-CNN or RetinaNet.

Other recent studies have further expanded the application of drones and deep learning in wildlife mon-
itoring. Ranci¢ et al. 2023 explored CNNs for animal detection and counting from drone images, Koger
et al. 2023 presented a system for quantifying animal movement, behavior, and environmental context
using drones and computer vision, and Brickson et al. 2023 reviewed the role of Al in elephant monitoring.
Datasets specifically designed for wildlife detection in drone imagery, such as WAID (Mou et al., Mou

et al. 2023), are also contributing to the advancement of the field.

Furthermore, Mpouziotas, Karvelis, and Stylios 2024 presented methods for tracking wild birds from drone
footage, Alsaidi et al. 2024 detailed deep learning for tracking beluga whales in aerial video, and Shukla
et al. 2024 explored estimating 3D poses and shapes of animals from drone imagery. Collectively, these

studies illustrate a clear progression from labor-intensive manual approaches to advanced, automated
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monitoring systems based on high-resolution imaging and deep learning. Distinct from these static image—
based approaches, Pedrazzi et al. 2025 provides a comprehensive review highlighting the transformative
impact of drone technology on animal behaviour research, with a particular emphasis on the role of
automated data analysis. Their work underscores how rapid advancements in image-tracking technologies
and Al, including deep-learning algorithms like convolutional neural networks, are enabling automated
processes for species identification, counting, tracking, and behaviour recognition from drone-acquired
data. While they acknowledge the use of these techniques for tracking and quantifying interactions to
create activity budgets and association patterns, the broader literature, as implied by their review, has
seen a stronger emphasis on the automation of animal detection rather than the fine-grained automation

of dynamic behavioural analysis, such as movement speed within groups.

The recent evolution of object detection technology—exemplified by single-stage detectors such as YOLO
(You Ouly Look Once)—has significantly pushed the boundaries of both detection accuracy and real-time
performance (C.-Y. Wang and Liao 2024). While early versions of YOLO demonstrated powerful detection
capabilities, subsequent refinements culminating in YOLOv11 (Khanam and Hussain 2024) have markedly
improved small object detection, robustness under challenging environmental conditions, and frame-rate
processing speeds. Such enhancements are critical for dynamic, real-time scenarios, particularly when

processing high-resolution drone video feeds that directly influence effective conservation efforts.

Complementing these detection advances, breakthroughs in multi-object tracking have transformed real-
time monitoring capabilities. The BoT-SORT framework (Aharon, Orfaig, and Bobrovsky 2022) exempli-
fies this progress by overcoming challenges related to rapidly moving objects and occlusions. Leveraging
robust appearance-based re-identification along with refined motion association techniques, BoT-SORT
integrates predictive filtering with dynamic feature matching to maintain consistent tracking even amidst
erratic movements or partial obstructions. This level of robustness is vital in conservation applications,

ensuring that individual elephants can be continuously tracked through complex and ever-changing scenes.

Building upon this foundation and motivated by the recent advancements in detection and tracking, our
work specifically addresses the need for more automated approaches to analyze complex group behav-
iors, focusing on movement patterns, speeds, and group formations that are recently being studied with
drones instead of from the ground (Dai et al. 2007) and facilitate our understanding of animal movement
behaviour as well as the impact of the drone on movement itself (Schad and Fischer 2023, Koger et al.
2023, Inoue et al. 2019). Our methodology leverages drone video streams, integrating state-of-the-art
detection (YOLOv11) and tracking (BoT-SORT), which are significantly enhanced by a custom post-
track re-identification algorithm. This novel step, which is a core contribution of this work, is specifically

designed to mitigate identity switching in complex drone video scenarios. This enables the derivation of
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movement dynamics and group patterns in an automated manner. This integrated approach mitigates
challenges in real-time monitoring and behavioral analysis, providing finer temporal resolution and more

robust conservation insights.

2 Methodology

2.1 Experimental Setup
2.1.1 Dataset

The original dataset consisted of eight MP4 video files captured using a DJI Mavic 8 Pro - Hasselblad
camera - Drone (see Appendiz Table 10 for full technical details) flying over the Welgevonden Game
Reserve in South Africa. All videos were recorded on the same day and in the same general area within
the reserve under consistent atmospheric conditions. The elephants were located with the help of wildlife
guides and trackers using cars or buggies. All videos were recorded in 4K resolution (3840 x 2160) at 30
frames per second and at varying altitudes and distances from the elephant subjects. The same herd of
elephants was tracked and filmed in all eight videos. The total duration of the videos is 24 minutes and

1 second, with an average duration of 3 minutes.

To generate a robust dataset that can be used to train an object detection model, the video sequences
were decomposed into individual frames. A sampling strategy of one frame per second was implemented
to prevent overfitting and reduce annotation time. Splitting the video at its original rate of 30 frames
per second (fps) would create many nearly identical frames. This could bias the model toward redundant
features and increase the annotation workload. Therefore, we adopted a subsampling approach, selecting

one frame every 30 frames.

Frame extraction was automated using a Python script. For each video, frames were extracted and saved
if f =0 (mod 30), where f is the frame number. This process resulted in a dataset comprising 1441

representative frames.

2.1.2 Dataset Annotation

To efficiently annotate the dataset with bounding boxes, we employed semi-automated techniques using
Roboflow, a platform that provides a graphical interface to simplify manual data annotation. Roboflow
leverages pre-trained object detection models, to generate initial bounding box annotations. These auto-

matically suggested boxes can be accepted, rejected, or adjusted by the user, streamlining the annotation
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process.

The implemented workflow consisted of several steps. The first step was to use the pre-trained models
to generate initial bounding box predictions, this provided a starting point for annotation. To enhance
efficiency, Roboflow’s box prompting feature then suggested bounding boxes based on user-provided
annotations over time, enabling quick and accurate modifications through an easy to use interface. This
was followed by manual reviewing of the proposed annotations and manually adjusting them as needed
before adding the labels. Finally, the annotated dataset was used to retrain the detection model in a

feedback loop, progressively improving its accuracy as it learned from newly labeled data Roboflow 2025.

This process significantly accelerated the speed at which annotation could be made but the annotations
were not flawless. The generated bounding boxes were often too large, too small, or entirely false positives.
In some cases, elephant subjects received multiple bounding box suggestions, splitting them up into several
detections. The interface allowed for easy manual correction. Additionally, some frames were entirely
rejected due to issues such as excessive camera motion, absence of elephants, or extreme zoom-ins/outs.

After these adjustments, a total of 1337 frames were successfully annotated.

The dataset was then partitioned into training, validation and testing sets comprising of 70% 20% and
10% of the frames. The training frames where then augmented by creating versions of them that were
randomly rotated between -15° and +15°, increasing the total number of training frames to 2367. This
then increased the total amount of frames to 2705. The new ratios between training, validation and testing
sets therefore changed to 87.5% (2367 frames), 8.4% (225 frames) and 4.1% (113 frames) respectively.
The dataset was then exported from Roboflow and included separate folders for each subset, along with
corresponding annotation files in the required format for object detection model training. Each annotation

file contained the object label (in this dataset, 0) and the Zmin, Tmax; Ymin, a0d Ymax coordinates.

2.1.3 Model Selection

Traditionally, two-stage object detection models, such as Faster R-CNN (Ren et al. 2016), have demon-
strated superior accuracy when compared to single-stage detection models. However, this has changed
with the emergence of single-stage detection models such as the YOLO model series (Redmon et al. 2016;
C.-Y. Wang and Liao 2024) and the Single Shot MultiBox Detector (SSD) (Liu et al. 2016), which have
closed the performance gap. This has led to computationally efficient single-stage models being able to
be deployed where two-stage models were traditionally required. The YOLO series currently leads in
both performance and inference speed, with YOLOv11 representing the latest advancement at the time

of writing (Khanam and Hussain 2024; C.-Y. Wang and Liao 2024).
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YOLOv11 builds upon the previous iterations of the YOLO series. Most notably, it integrates an opti-
mized backbone network and improved anchor box strategies, which enhance object localization capabil-
ities. This is an essential feature for detecting elephant subjects at varying distances and under diverse
lighting conditions. Additionally, YOLOv11 leverages advanced transfer learning techniques, enabling
efficient adaptation of pre-trained models to domain-specific datasets with limited or highly variable train-
ing samples. This ensures both rapid convergence and high detection accuracy (Khanam and Hussain

2024).

Three important design improvements contribute to YOLOv11’s enhanced performance. The C3K2
Block utilizes smaller kernel sizes to optimize feature extraction, improving computational efficiency
without compromising accuracy. Building on this, the SPFF (Spatial Pyramid Pooling Fusion) Module,
an evolution of the traditional Spatial Pyramid Pooling (SPP) module, captures multi-scale features,
enhancing the model’s ability to detect objects of varying sizes—an essential capability for processing
aerial imagery. Additionally, the C2PSA (Cross Stage Partial with Spatial Attention) Block incorporates
spatial attention mechanisms, allowing the model to focus on critical regions within an image, which is

particularly beneficial for detecting partially occluded or overlapping objects. (ibid.).

These innovative changes allow YOLOv11 to maintain real-time inference speeds while achieving higher
mean Average Precision (mAP) than previous versions. Furthermore, its more streamlined processing
pipeline minimizes latency. The enhanced non-maximum suppression techniques also further refine object
detection by reducing redundant bounding boxes and improving localization precision. Due to these
improvements YOLOv11 is able to perform state of the art scalability and generalization which makes it

a well-suited model for detecting elephants in drone images (ibid.).

The demonstrated success of YOLOvS in challenging detection scenarios, particularly those involving
complex motion and low-contrast subjects (Yaseen 2024; Varghese and M. 2024; Dave et al. 2023; Fang
et al. 2024) highlights the ongoing evolution of the YOLO models. YOLOv11 builds upon the strengths
of YOLOvVS which allows for real-time detection capabilities but with higher accuracy and robustness.
These qualities are critical for the proposed framework, where timely and precise object detection serves

as the foundation for effective post-track re-identification.

2.1.4 Tracker Selection

Selecting a tracking algorithm that performs well with the complexity drone videos present is essential for
ensuring that the proposed framework is robust and reliable. Although various tracking methodologies

such as ByteTrack, DeepSORT, and BoT-SORT have been presented in recent literature, the BoT-SORT
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algorithm distinctly emerges as the most suited for drone-captured imagery. BoT-SORT capitalizes on ro-
bust association strategies that adeptly mitigate challenges inherent to aerial monitoring, including rapid
target motion, pronounced scale variations, and frequent occlusions. (Aharon, Orfaig, and Bobrovsky

2022)

BoT-SORT’s architecture introduces several key improvements over traditional tracking methods. Robust
detection association sets it apart from DeepSORT and its derivatives, which primarily rely on rudimen-
tary motion models. Instead, BoT-SORT incorporates a sophisticated association mechanism that merges
detection confidence with motion prediction, ensuring sustained object tracks even in cases of partial oc-
clusion or abrupt motion changes (Aharon, Orfaig, and Bobrovsky 2022; Wojke, Bewley, and Paulus 2017;
Zhao et al. 2024). Expanding on this, its enhanced appearance modeling refines re-identification processes
by embedding improved appearance features, a crucial enhancement for distinguishing animals in drone
videos, especially when dealing with overlapping trajectories and varying illumination conditions (Wojke,
Bewley, and Paulus 2017; Zhao et al. 2024). Furthermore, the adaptability to complex backgrounds al-
lows BoT-SORT to handle heterogeneous, cluttered drone imagery while mitigating false associations and
ensuring precise object localization, outperforming alternative methods like ByteTrack in maintaining de-
tection accuracy with consistent tracking (Zhang et al. 2022; Aharon, Orfaig, and Bobrovsky 2022; Zhao
et al. 2024). Finally, despite its intricate association strategy, its real-time performance is preserved while
maintaining computational efficiency critical for real-time applications. This balance between precision
and processing speed makes BoT-SORT well suited for animal tracking scenarios. (Aharon, Orfaig, and

Bobrovsky 2022; Zhao et al. 2024).

The combination of these architectural and algorithmic features makes it clear that BoT-SORT is the
best choice for tracking animals in drone videos. Its proficiency in persistently associating detections
across successive frames ensures that transient occlusions and rapid target movements do not result in
track fragmentation. Furthermore, the algorithm’s integrated utilization of both appearance-based and
motion-based cues offers a comprehensive and adaptable solution tailored to the multifaceted nature of

aerial surveillance imagery (Zhao et al. 2024).

2.1.5 Detection and Tracking Model Training and Fine Tuning

The YOLOv11x detection model was trained iteratively with varying hyperparameters, leading to several
configurations that were evaluated to determine the optimal settings. Table 1 outlines the final selected
hyperparameters. The largest variant, YOLOv11x, was chosen to maximize performance, as smaller

models like YOLOv11n yielded lower detection scores. Training was conducted for 150 epochs to ensure
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robust generalization across varying perspectives, lighting conditions, and object scales in drone imagery.
The input image size (imgsz) was set to 640x 640 pixels, balancing detail preservation with computational
efficiency. A high initial learning rate (Ir0) of 0.01 facilitated rapid convergence, while a final learning
rate (Irf) of 0.1 ensured refined weight adjustments in later epochs. The batch size of 8 was selected
based on GPU memory constraints, optimizing computational feasibility and gradient updates. Weight
decay was set to 0.0005 to prevent overfitting, and model checkpoints were saved every 10 epochs to allow

for rollback in case of instability.

Table 1: Final YOLOv11x Training Hyperparameters

Hyperparameter Value

model YOLOv11x
epochs 150

imgsz 640x640
Ir0 0.01

Irf 0.1

batch 8

weight_ decay 0.0005
save_ period 10 epochs

The final trained model demonstrated strong performance across multiple evaluation metrics. The pre-
processing time was 0.3 ms, inference time was 13.9 ms, and postprocessing time was 4.2 ms, ensuring
real-time detection capabilities. In terms of complexity, the model contained 464 layers, 56.8 million
parameters, and had a computational cost of 194.4 GFLOPS. These results indicate that YOLOv11x

achieves high accuracy while maintaining efficiency suitable for real-time applications.

The BOT-SORT tracking model was fine-tuned for tracking elephants in drone video footage by iter-
atively adjusting its hyperparameters via the YAML configuration file. Table 2 summarizes the final
selected hyperparameters. Given the challenges posed by aerial views, a lower track_high_ thresh of 0.20
was chosen to allow associations even when detection confidence was reduced due to partial occlusions.
Additionally, a track low _thresh of 0.05 enabled a secondary matching stage for borderline detections.
To minimize false tracks, new _track_thresh was set to 0.75, ensuring that only highly confident detections
initiated new tracks. A track_buffer of 90 frames allowed tracks to persist through temporary detection
lapses, which are common in drone footage due to motion blur or occlusions. A high match__thresh of 0.85
was used to enforce strict spatial and appearance-based correspondence between detections and tracks,
reducing false associations. The fuse score parameter was enabled to integrate raw detection confidence
into the matching process, enhancing robustness. Given the significant camera motion in drone footage,
gmc_method was set to sparseOptFlow for efficient global motion compensation. To ensure spatial consis-

tency, proximity_thresh was set to 0.5, allowing detections to be associated only if they were sufficiently

10
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close. With re-identification enabled, appearance thresh was set to 0.25, enforcing strict similarity re-
quirements to accurately track visually similar elephants even after occlusions. To prevent erroneous
associations caused by scale variations, size ratio thresh was set to 0.8. Finally, an iou thresh of 0.5
was maintained to balance strictness and leniency in spatial alignment between detections and existing

tracks.

Table 2: Final BOT-SORT Hyperparameters

Hyperparameter Value
track_high thresh 0.20
track low thresh 0.05
new_track thresh 0.75
track buffer 90
match_thresh 0.85
fuse score True
gmc_ method sparseOptFlow
proximity_ thresh 0.5
appearance_thresh (with re-id) 0.25
size ratio thresh 0.8
iou_ thresh 0.5

2.1.6 Post-Track Re-Identification Algorithm

Preliminary model outputs revealed a significant ID switching issue: elephant objects that temporar-
ily "disappeared” due to occlusions—whether by moving behind other elephants, exiting the frame, or
becoming obstructed by structural elements—were later "reappearing” with new IDs. This problem
stemmed from the BoT-SORT tracking model’s inability to match objects when the disappearance per-
sisted for an extended period or when the reappearing elephant’s orientation had substantially changed
(e.g., shifting from upward to downward or from leftward to rightward). To address this limitation, a
post-track re-identification algorithm was implemented. This algorithm detects instances of ID switching
and reassigns the original IDs, thereby ensuring a more accurate count of unique elephant objects and

enhancing overall tracking performance.

The algorithm begins by identifying potential disappearances by scanning each elephant object ID across
all video frames. If an elephant object ID is absent from one or more frames, it is flagged as a poten-
tial disappearance and recorded for further analysis. Once disappearances are identified, the algorithm
searches for potential reappearances, examining frames following the last recorded occurrence of each
disappeared ID. Any new elephant object ID appearing in these frames is considered a candidate for

reassignment, forming a list of potential reappearances.

11
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Next, the algorithm constructs candidate matches by associating each disappeared elephant object ID
with one or more potential reappearing IDs. These candidate pairs undergo evaluation based on three
key conditions: edge, distance, and similarity. The edge condition ensures that if an elephant disappears
near the frame’s edge, its reappearance must also occur near the same edge, within a defined Euclidean
distance relative to its bounding box size (see figure 1). If the last known frame of the elephant is not near
an edge, this condition is disregarded. The distance condition estimates the maximum travel distance
of the disappeared elephant based on its observed speed and compares it to the normalized Euclidean
distance between the last known position and the first detected position of the candidate reappearance
(see figure 2). If the estimated travel range does not align with the actual observed movement, the
match is rejected. The similarity condition further refines the matching process by analyzing the visual
similarity between the last recorded frame of the disappeared elephant and the first frame of the candidate

reappearance, assigning a similarity score accordingly.

Following the evaluation, the algorithm selects the best match for each disappeared ID by identifying the
candidate with the highest combined distance and similarity scores. Not all disappearances yield valid
matches, meaning that the final list of confirmed re-identifications may be shorter than the initial set of
candidate pairs. Finally, the identified elephant object IDs are updated, replacing the disappeared ID
with the matched reappearing ID. This ID correction process supports chain reactions; for example, if
ID 3 is matched with ID 4, and ID 4 is later matched with ID 5, the correction propagates through the

entire sequence to maintain consistency.

Figure 1: Edge Condition for ID Matching Video 0395, The left image shows the frame before the camera
pans to the right, while the right image shows the frame after the camera pans back to the left. The
elephant with ID 3 in the left image is reassigned a new ID, 8, after the panning motion. These two IDs

correspond to the same elephant.

12



299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

Figure 2: Distance Condition for ID Matching Video 0406, The left image shows the last frame where
ID 4 is visible, and the right image shows the first frame where ID 7 appears. Both IDs belong to the
same elephant. The black dotted circle indicates the maximum range the elephant could have traveled.
The red dot marks ID 4’s last location, the purple dot marks ID 7’s first location, and the black line

represents the normalized Euclidean distance between the two.

2.1.7 Data Analysis

The CSV output generated by the Post-Track Re-Identification algorithm serves as the foundation for a
comprehensive data analysis, enabling the creation of relevant statistical summaries and visualizations for
further ecological research. This analysis aims to highlight key segments of the videos that may warrant
manual review, facilitating the identification of significant behavioral patterns and ecological events. By
automating aspects of data processing and visualization, this analysis reduces the workload of ecologists
while providing valuable insights that contribute to more efficient and data-driven decision-making in

wildlife research.

It is important to note that all spatial metrics described in this section—including movement speed,
trajectories, and travel distance—are calculated in pixel units. This was a deliberate methodological
choice. The framework is designed for broad accessibility and ease of use, allowing researchers to apply
it to any standard drone video without requiring complex camera calibration or the integration of drone
telemetry data. This approach ensures the tool remains practical for field conditions where such setups

are often infeasible, as will be expanded upon in the Discussion.
Individual Elephant Movement Speed Plot:

The Individual Elephant Movement Speed Plot analysis visualizes the movement speed of an elephant
by analyzing changes in its central position over time using the Euclidean distance between consecutive
center points recorded every 30 frames. This approach provides a measure of the elephant’s speed

fluctuations per second. Specifically, the function extracts the coordinates of the elephant’s center at

13
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30-frame intervals and computes the distance between these points. A greater distance corresponds to a

higher movement speed within that time frame.

However, due to the movement of the drone capturing the footage, abrupt changes in speed may occasion-
ally occur as a result of sudden shifts in the drone’s position rather than the elephant’s movement. The
primary objective of this analysis is to offer insights into individual elephants’ movement speed patterns
by assessing their speed variations over time. Notably, sharp spikes in velocity may indicate significant
moments in the footage, potentially highlighting behaviors or external influences that require further

investigation.
Average Elephant Movement Speed Plot:

The Average Elephant Movement Speed Plot analysis does the same as the individual elephant distance
analysis but averages the changes in central positions of the elephants to create a plot that visualizes the
average movement speed of the entire group of elephants. This makes it easier to highlight moments that

trigger a shift in movement speed across the entire group of detected elephants.
Elephant Movement Trajectories Plot:

The FElephant Movement Trajectories Plot analysis visualizes the movement trajectories of the elephants
by plotting the sequence of their center (x,y) coordinates over time. This is done by constructing
a trajectory for each unique elephant by connecting the center points from the bounding boxes for
each frame. These trajectories provide a spatial representation of how each elephant moves through
the duration of the video. As these trajectories are rendered in pixel coordinates, they reflect apparent
movement within the frame and are not compensated for the drone’s own motion. This analysis visualizes
the spatial distribution of elephants by generating a Kernel Density Estimate (KDE) heatmap of their
detected positions. This provides insights into the areas where elephants are most frequently observed
throughout the video. The KDE is computed based on the (x,y) coordinates of the elephants, using
Seaborn’s kdeplot to estimate the density of their locations. The heatmaps can be affected by the motion

of the drone however in videos that contain significant drone motion.
Visual Appearance Statistics:

The Visual Appearance Statistics analysis calculates the statistics regarding how long each each elephants
is detected in the video and the total average among all elephants. This is done in exact frames and
seconds, by summing up the amount of frames that each elephant is detected in for the frame count and
dividing this by 30 to calculate the corresponding amount of seconds. These statistics offer insights into
the persistence and visibility of each elephant within the video, potentially highlighting which elephants

may be more interesting for further evaluation based on their visual presence in the video.
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Elephant Overlap Statistics:

The FElephant Overlap Statistics analysis identifies instances where the bounding boxes of different ele-
phants overlap within the same frame, potentially indicating social interactions or close proximity. For
each frame, all detected elephants are compared to determine if their bounding boxes overlap. An overlap
is identified when the bounding boxes intersect along both the z and y axes using the formula below.

(1) z{d) >xfgi)n and x(i)n<x(j)

max mi max

The overlapping pairs, along with their corresponding frame numbers, are recorded. The percentage of
frames in which each elephant is involved in an overlap is then computed, and the results are saved as a

CSV file for further analysis.
Elephant Cluster Statistics:

The Elephant Cluster Statistics analysis identifies clusters of elephants that are spatially close to one
another and tracks how these clusters persist over time. For each frame, the diagonal length of each
elephant’s bounding box is computed as a reference for spatial proximity. An average diagonal length per
frame is calculated, and a threshold is set at 1.5 times this average. Elephants whose Euclidean distance
falls below this threshold are grouped into clusters using a depth-first search algorithm. The continuity
of these clusters is then tracked across consecutive frames to determine the time periods during which
specific clustering patterns persist. The results, including the frame ranges of detected clusters, are saved
as a CSV file. This allows for automated detection of potential herds, sub herds which with further

investigation can be used to find mother calf pairs or other insightful herds and dynamics.
Elephant Travel Distance Statistics:

The Elephant Travel Distance Statistics analysis calculates the total Euclidean distance traveled by each
elephant over the duration of the video. For each detected elephant, the analysis aggregates the total
traveled distance by grouping the data by ID and summing the calculated euclidean distance values per
frame. The final summary, listing the total movement for each elephant in pixels, is then saved as a CSV
file. The total travel distance serves as an important metric for assessing elephant movement. However,
in videos with significant drone motion, the computed distances in pixels may reflect both the elephants’
movement and the movement of the camera. As mentioned, this is a trade-off to ensure the framework’s

accessibility, and it should be considered when interpreting the results.

15



377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

2.1.8 Framework Overview:

The framework consists of a pipeline that processes a single video input through multiple steps to generate
a video output, featuring bounding boxes with unique IDs overlaid on the original video, along with
detection and tracking data. This output includes various visualizations, such as speed analysis plots
for each elephant, an aggregated plot showing the average speed across all elephants, a trajectory plot
illustrating the movement paths of the elephants in one graph, and a density plot highlighting the locations
where elephants spend the most time. Additionally, the framework provides statistical data, including
the number of frames and seconds each elephant is visible, the percentage of frames in which an elephant
overlaps with others, and the total distance traveled by each elephant (in pixels). The output also includes
an analysis of group/herd dynamics, identifying which elephants remain together in groups or herds, and
the frames during which this occurs. Finally, a CSV file is generated, containing tracking data for each

frame.

This framework facilitates automated video analysis and elephant counting through its diverse outputs,
significantly accelerating the work of ecologists and enabling the extraction of new insights from drone
footage. An overview of the steps that make up the pipeline is provided below, with additional details

illustrated in Figure 3.

The first step in the pipeline involves object detection and tracking, where the trained and fine-tuned
YOLOv11x model, in combination with the BOT-SORT tracker, processes the video input using Python.
This step generates two outputs: a copy of the original video with detection and tracking results overlaid
and a CSV file containing detailed detection data for each frame. The CSV file includes a row for each
detected elephant, capturing the frame number, elephant ID, bounding box coordinates (xmin, xmax,
ymin, ymax), and confidence score. While the video file is saved for visualization purposes, only the CSV

file is used in subsequent steps.

Next, the CSV file is processed by the post-track re-identification algorithm, which updates the tracking
information to refine the association of elephants across frames. The revised CSV file produced in this step
is then passed to the next stage of the pipeline. Following this, the data undergoes detailed analysis using
Python, generating meaningful plots and statistics related to elephant movement and behavior. These
outputs, include individual elephant movements speed plots, a average elephant movement speed plot, a
combined elephant movement trajectories plot, visual appearance statistics, overlap statistics, individual
and average travel distance statistics and finally cluster/herd statistics are saved in corresponding folders

alongside the processed CSV file.

Finally, the updated CSV file is used to create a new visual overlay on the original video, integrating
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bounding boxes with corresponding IDs and detection confidence scores. This visualization is generated
using a Python script that reconstructs the detection and tracking data, ensuring a comprehensive rep-
resentation of elephant movements in the footage. The resulting video output, along with the various
analytical outputs, provides a robust tool for understanding elephant behavior and movement patterns

in drone footage.

MP4 File
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Input Video
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Tracking CSV
Trained and Fine- ) Video
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Detection Model SORT Tracking Tracking Overlay
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Figure 3: Framework Pipeline Schematic Visualization

2.2 Evaluation

We evaluated the elephant object detection performance using precision, recall, mAP50, mAP50-95 and
F1 Score, on the train, test and validation set frames Powers 2020. The elephant tracking was evaluated
using the AssA metric, a standard measure in multi-object detection and tracking tasks that quantifies
association consistency and, consequently, the effectiveness of the tracking component (Gao and L. Wang
2024; Yu et al. 2023; Luiten et al. 2020; Bernardin and Stiefelhagen 2008; Ristani et al. 2016). The post-
track re-identification algorithm was also evaluated by comparing AssA and amount of unique elephant
IDs per video with the results before and after the implementation of the post-track re-identification
algorithm. To do this for each video file a ground truth tracking file was created by hand by using the

annotated bounding boxes data and adding unique IDs to each unique elephant.

mAP50
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25 where:

26 e (' is the total number of object classes.
azr . APé%) (Average Precision for class ¢ at an IoU threshold of 50%) is defined as:

1
(3 A = [ Q) ar
e - péc)(r) denotes the precision as a function of recall r for class ¢ when using an Intersection

429 over Union (IoU) threshold of 50%.

o (Ultralytics 2025; Khanam and Hussain 2024)

4
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431 mAP50-95
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1
(4) mAP50_95 = 0 ; APy,

42 where:
433 e tx,=0.5+0.05x (k—1) for k=1,2,...,10 represents the set of IoU thresholds from 50% to 95%.
434 o AP, (Average Precision at IoU threshold t) is defined as:

(5) APy, :/0 Dey (1) dr

435 — pt, (1) denotes the precision as a function of recall r for a given IoU threshold #.

s (Ultralytics 2025; Khanam and Hussain 2024)

a7 AssA
Correctly Associated Pairs
AssA =
(6) 5 Total Number of Associations
18 Where:
439 o Correctly Associated Pairs (CAP) are pairs of detections that are correctly identified as the same
a0 object across consecutive frames.
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o Total Number of Associations (TNA) is the total number of associations that the tracking algorithm

makes, including both correct and incorrect associations.

(Luiten et al. 2020)

F1
TP
7 F1 =
™ TP + 3 (FP + FN)
where:

e TP Correctly assigned objects.
e FP Incorrectly assigned objects.

e FN Missed objects.

(Ristani et al. 2016)

2.3 Ethics Statement

Drone flights and data collection were conducted with approval from the Welgevonden Game Reserve
management. All procedures fell under the general permission to fly drones for animal observation at
Liverpool John Moores University (LJMU) and were performed in accordance with its institutional animal

care and ethics policies.

3 Results

3.1 Detection Results

The fine-tuned YOLOv11x detection model demonstrated strong performance in detecting elephants
from drone imagery. As shown in Table 3, on the validation set the model achieved a precision of
0.967, indicating high accuracy in identifying elephants with minimal false positives. The recall of 0.965
suggests that the model successfully detects nearly all actual instances, ensuring reliable detection. This
is further supported by the F1 score of 0.966, reflecting a balanced trade-off between precision and recall.
Additionally, the model attained a mAP50 of 0.982, confirming its ability to localize elephants effectively
under moderate overlap conditions. The mAP50-95 score of 0.827 further demonstrates the model’s

robustness under stricter localization criteria.
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Table 3: Detection Evaluation Metrics

Set Precision Recall mAP50 mAP50-95 F1

Validation  0.967 0.965 0.982 0.827 0.966
Training 0.973 0.987 0.989 0.882 0.980
Test 0.960 0.971 0.988 0.839 0.966
Average  0.967 0.974  0.986 0.849 0.971

3.2 Tracking Results

Table 4 shows the tracking results for our fine-tuned BoT-SORT tracker, the tracker achieved an average
AssA score of 0.806 across all evaluated video sequences. This score reflects a strong capacity for identity
preservation, suggesting that BoT-SORT is well-suited for maintaining coherent object trajectories under

relatively stable visual conditions.

Despite this promising overall performance, notable variation in tracking quality is observed between
different videos. The lowest AssA scores are found in sequences containing frequent and abrupt scene
transitions—particularly zoom-ins and zoom-outs—which significantly alter both the spatial and visual
characteristics of the scene. This can be seen in videos 0393, 0394, 0404 and 0392. These disruptions
hinder the tracker’s ability to maintain consistent object associations, a known limitation of conventional
tracking models that lack mechanisms for robust adaptation to rapid changes in perspective or scale.
Additionally, videos in which elephant subjects temporarily disappear—due to occlusion by vegetation
or moving outside the frame—and reappear after extended gaps also exhibit decreased performance. In
such cases, the tracker often fails to reassociate the reappearing elephant with its original ID, instead
assigning a new ID and thereby inflating the apparent number of individuals. This leads to an average

difference between the ground truth amount of elephants detected and model output of 10.575.

These results highlight three key findings. First, BoT-SORT demonstrates a strong baseline capability
for tracking elephants in aerial drone footage, provided that the video remains relatively continuous and
free from abrupt scene changes. Second, the tracking performance is highly sensitive to sudden camera
movements, particularly zoom operations, which should be minimized in future data collection efforts to
preserve tracking integrity. Third, extended occlusions—such as those caused by dense foliage or long
absences from the frame—pose a significant challenge to identity continuity, underscoring the need for
additional post-processing steps, such as re-identification algorithms, to recover lost associations and

improve the overall reliability of elephant counting in ecological monitoring applications.

The integration of the custom post-track re-identification algorithm substantially enhances the perfor-
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Table 4: Tracking Results Without Post Track Re-Identification Algorithm

Video Name Amount of Frames Amount of IDs GT Amount of IDs AssA

0391 6868 12 6 0.819
0392 3967 11 5 0.761
0393 6864 24 11 0.633
0394 6872 47 23 0.683
0395 1853 9 7 0.909
0404 6825 37 15 0.745
0405 6870 20 9 0.898
0406 2849 6 5 0.999
Average 5371 20.700 10.125 0.806

mance of the BoT-SORT tracker, addressing several of its key limitations in standalone operation. As
presented in Table 5, the average Association Accuracy (AssA) score increases to 0.912 following the ap-
plication of the re-identification step—a 10.6% improvement compared to the pre-processing results. This
increase in AssA reflects a more consistent preservation of object identities across frames, reinforcing the
algorithm’s value in correcting erroneous ID switches. Notably, videos 0393 and 0404 exhibit significant
improvements in tracking accuracy, with large reductions in the number of unique IDs detected. These
values now more closely align with the ground truth, indicating a reduced incidence of ID fragmentation

and a corresponding increase in tracking reliability.

Despite this overall improvement, the limitations imposed by abrupt scene transitions—particularly zoom-
ins and zoom-outs—remain evident. Such transitions drastically alter the spatial and visual features
leveraged by the tracker, introducing inconsistencies that even the re-identification algorithm struggles
to resolve. Nevertheless, in videos that do not suffer from such disturbances, the benefits of the re-
identification algorithm are striking. For instance, videos 0395 and 0406 achieve near-perfect or perfect
tracking, with AssA scores of 1.000 and 0.999, respectively. These sequences feature smooth camera mo-
tion and limited occlusion, demonstrating that the algorithm performs exceptionally well under favorable
recording conditions, even when elephants temporarily disappear behind foliage or move briefly out of

frame due to gradual panning.

On average, the difference between the number of detected unique elephant IDs and the ground truth
decreases to 3.3375 following the implementation of the re-identification step, a improvement compared to
the pre-processing difference of 10.757. These results prove the impact of the post track re-identification

algorithm on tracking consistency and accuracy in the videos.
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Table 5: Tracking Results With Post Track Re-Identification Algorithm

Video Name Amount of Frames Amount of IDs GT Amount of IDs AssA

0391 6868 10 6 0.875
0392 3967 9 5 0.762
0393 6864 13 11 0.958
0394 6872 31 23 0.772
0395 1853 7 7 1.000
0404 6825 21 15 0.971
0405 6870 11 9 0.959
0406 2849 6 5 0.999
Average 5371 13.500 10.125 0.912

3.3 Analysis Results

All analyses in this section were produced automatically by our framework’s analysis module applied to
Video 0395, a continuous 61.8-second (1,854-frame) aerial recording of seven individually identified ele-
phants (IDs 1,2,4,5,6,8,10). We report metrics on appearance duration, spatial overlap, cumulative travel
distance, temporal clustering of group composition, instantaneous speed profiles, and spatial trajectories,

along with summary statistics and parameter details to ensure full reproducibility.

In Table 6, we report each elephant’s visibility expressed both in absolute frame count and in seconds.
Elephants 1,2,5, and 6 are detected in every frame (1,854 frames; 100%; 61.8 4+ 0.0s), demonstrating
uninterrupted coverage. Elephant 4 exhibits only minor drop-outs, appearing in 1,850 frames (99.8%;
61.7 + 0.1s). By contrast, elephant 8 is visible for 1,779 frames (96.0%; 59.3 + 1.5s) and elephant 10
for 1,618 frames (87.3%; 53.9 &+ 3.0s). Across all individuals, the mean visibility is 1,809 frames (97.6%;
60.3 £+ 2.1s), with a standard deviation of 93 frames (5.0s), indicating consistently high track retention

throughout the recording.
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Table 6: Visual Appearance Statistics Video 0395

Elephant ID Frame Count Seconds

1.0 1854 61.80
2.0 1854 61.80
4.0 1850 61.67
5.0 1854 61.80
6.0 1854 61.80
8.0 1779 59.30
10.0 1618 53.93
Average 1809.00 60.30

Table 7 quantifies spatial overlap by calculating the proportion of each elephant’s visible frames in which
its bounding box intersects that of at least one other herd member. Elephant 10 displays the highest
overlap rate at 84.6%, followed by elephants 4 and 6 at 65.9% and 52.6%, respectively. Elephant 8
registers no overlap (0%), confirming its peripheral positioning. The group mean overlap rate is 42.2%

with a standard deviation of 28.5%, reflecting heterogeneous inter-individual spacing patterns.

Table 7: Elephant Overlap Statistics

ID Overlap Percentage
10 84.574%

4 65.912%

6 52.643%

) 52.211%

2 35.922%

1 3.937%

8 0.000%

Average 42.186%

In Table 8, cumulative travel distances are computed by summing the Euclidean displacement between
successive frames for each individual, reported in pixel units. Elephant 10 traverses the greatest path

length of 8,002.8px, while elephant 8 covers the shortest distance of 6,260.1px. The mean travel distance
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across all elephants is 7,408.3px (SD=527.3px), suggesting modest variability in movement magnitude

that may derive from both behavioral differences and camera parallax.

Table 8: Elephant Travel Distance Statistics

ID Distance
1 7710.265px
2 7983.044px
4 6798.674px
5 7475.164px
6
8

7628.081px

6260.099px
10 8002.789px
Average 7408.302px

Table 9 details the results of a frame-wise clustering analysis performed to detect stable herd compositions.
Six elephants (excluding ID 8) form a core cluster during most intervals: frames 0-375, 797-1190, 1191
1496, 1497-1618, and 1619-1853. A transient reconfiguration occurs in frames 376-796, during which
elephant 1 briefly joins elephant 8 in a secondary grouping. Interval durations vary between 122 and 421

frames, illustrating both prolonged cohesion and short-term fission events.

Table 9: Elephant Cluster Statistics

Clusters Frame Ranges

[1,2,4,5,6,10] [8] [0-375] [1662-1663] [1676-1697][1702-1712] [1716-1718]
1] [2,4,5,6,10] [8] [376-796] [818-1260] [1262-1264] [1270-1273] [1619-1666]
[1] [2,4,5,6,10] [797-817]

1] [2] [4,5,6] [8] [1261-1261] [1265-1269] [1274-1440]

1) (2] [5) [4.6] [§]  [1441-1490]

1) [2] [10] [5] [4,6] [8]  [1491-1496]

1] [2,4,6,10] [5] [8] [1497-1618)

[1,2,4,5,6] [8] [1667-1675] [1698-1701]

[1,2,5,6,10] [4] [8] [1713-1715] [1719-1799]

[1,2,5,6,10] [4] [1800-1853]
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Instantaneous speed for each elephant is calculated by dividing frame-to-frame displacement by the
inter-frame interval (0.033s). As shown in the top of Figure 4, the herd’s mean speed trace fluctuates
around a baseline of 20px/s, with two pronounced peaks reaching approximately 45px/s at 15s and 45s.
the bottom of Figure 4 presents individual speed trajectories, which exhibit high temporal correlation with
the group mean (mean cross-correlation r=0.92), and indicate that elephants 2 and 10 lead acceleration

events by 0.2-0.4s.
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Figure 4: Average Elephant Movement Speed Plot and Individual Movement Speed Plot
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Figure 5 overlays the two-dimensional spatial trajectories of all elephants in image coordinates. The
predominant path follows a linear corridor from the lower-left to the upper-right portion of the frame,
with lateral dispersion of £150px around the central axis. elephant 8’s trajectory deviates by more than

200px laterally, corroborating its peripheral role as evidenced by the overlap and distance metrics.
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Figure 5: Elephant Movement Trajectories Plot

4 Discussion

Our end-to-end pipeline for aerial elephant monitoring integrates three key components—YOLOv11x for
detection, BoT-SORT for tracking, and a bespoke post-track re-identification module—to deliver both
high accuracy and robust identity continuity. In the detection stage, YOLOv1lx attains precision >
0.96, recall > 0.965, and mAP50 > 0.982 across all splits, corroborating recent advances in single-stage
detectors for wildlife monitoring (Khanam and Hussain 2024; C.-Y. Wang and Liao 2024). Compared
to earlier findings that single-stage models can struggle with small or occluded targets (Kellenberger,
Marcos, and Tuia 2018), our results suggest that YOLOv11x’s enhanced attention mechanisms and neck

design substantially mitigate these shortcomings.

The BoT-SORT tracker alone yields an Association Accuracy (AssA) of 0.806, consistent with its per-
formance in pedestrian domains (Aharon, Orfaig, and Bobrovsky 2022; Ristani et al. 2016). However,

abrupt drone maneuvers and prolonged occlusions still induce fragmentation and identity switches, mir-
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roring challenges reported in aerial bird tracking (Mpouziotas, Karvelis, and Stylios 2024). Our post-track
re-identification algorithm, which reunites fragmented tracks via spatial continuity and appearance simi-
larity heuristics, raises mean AssA to 0.912 and cuts ID-count errors by 68%. This lightweight approach
parallels deep-metric methods (Wojke, Bewley, and Paulus 2017) but avoids the heavy data and compute

demands of end-to-end embedding training.

Beyond technical metrics, the framework has operational benefits for ecologists. Traditional manual
annotation of herd videos is time-consuming and error-prone, often requiring frame-by-frame labelling
(Delplanque, Foucher, Théau, et al. 2023). By automating detection, tracking, and re-identification, our
system dramatically reduces human labour, enabling broader surveys and more frequent sampling of
elephant populations. For example, time savings on a single one-hour flight can translate into multiple
additional flights per field season, allowing researchers to detect emergent behaviors such as sudden range

shifts or drought-induced dispersals with minimal delay.

Moreover, standardized deployment of our pipeline across different reserves can facilitate multi-site meta-
analyses. As noted by Kellenberger, Marcos, and Tuia 2018, variability in model performance on imbal-
anced datasets hinders comparisons; our demonstration of YOLOv11x’s robustness suggests that a unified
detection—tracking framework could serve as a common baseline for inter-regional studies of movement

ecology and social structure.

Our automated extraction of behavioral metrics opens new avenues in social and spatial ecology. Pairwise
overlap and clustering analyses reveal fission—fusion dynamics and subgroup formation that might elude
manual observation, while trajectory heatmaps identify preferred travel corridors akin to the habitat-use
insights obtained from avian studies (Mpouziotas, Karvelis, and Stylios 2024). Metrics such as distances
between individuals, individual tracks, and travel speed of individuals and the herd are all useful to
understand animal movement behaviour which is an important field of study (Boinski and Garber 2000)
and for which ground observations have been used (Dai et al. 2007) in addition to VHF or satellite
tracking for elephants (Tchamba, Bauer, and IONGH 1995). Recently drones have started to be used
to derive such metrics either manual or by using automated analyses (Inoue et al. 2019, Koger et al.
2023 , Schad and Fischer 2023). Measuring animals’ speed can also be used to determine the influence a
drone might have on animals as it gets closer, and thus it would be useful as a way to measure animal
disturbance by the drone through the images the drone itself obtains. Integrating heatmaps with habitat
features—such as water sources or vegetation indices—could further elucidate resource-driven movement

patterns, informing targeted conservation interventions.

Despite these strengths, several limitations remain. First, without drone pose or GPS/IMU data, our
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movement estimates are in pixel units and can overestimate true displacement when the camera itself
moves (Zhao et al. 2024). While established techniques for motion compensation exist, they were delib-
erately excluded to maintain the framework’s accessibility and ease of use. Typically, this is achieved
through visual-based methods, like optical flow, which track how static background elements move be-
tween frames to model the camera’s motion, or through sensor-based methods that use the drone’s own

telemetry (GPS and IMU data) for a direct measurement of its movement.

However, integrating these techniques would introduce the significant technical barriers we sought to
avoid. Mandating camera calibration for visual methods or the integration and validation of telemetry
data would limit the framework’s versatility, as it requires complex setups like Ground Control Points
(GCPs) and detailed terrain maps. Such requirements make the process less practical for researchers in
the field and would prevent the framework from being a generalizable, 'plug-and-play’ tool. Furthermore,
the telemetry from many consumer-grade drones lacks the accuracy needed for reliable real-world speed
calculations, and relying on it could create a false sense of accuracy. Our current approach is therefore a

deliberate trade-off, ensuring the framework remains a practical tool for a broader user base.

Second, extreme viewpoint shifts or extended occlusions can still fragment tracks; future incorporation
of transformer-based memory modules may enhance long-term appearance retention (Gao and L. Wang
2024). Third, our current focus on localization and tracking leaves fine-grained behavior recognition—such
as foraging, social interactions, or stress indicators—as a topic for further study, potentially leveraging

3D pose estimation from oblique drone imagery (Shukla et al. 2024).

Looking forward, integrating non-consumer-grade drone-mounted inertial/GPS sensors will yield georef-
erenced tracks for absolute movement metrics and home-range estimation (Zhao et al. 2024). To further
enhance identity continuity, future iterations of our re-identification module could draw on adaptive ap-
pearance-model management strategies such as those proposed by Cho and Kim 2023. By dynamically
updating per-target appearance galleries and incorporating confidence-weighted template selection, such
an approach would better handle gradual appearance changes and mitigate drift during long occlusions.
Embedding these concepts into our lightweight post-track re-id stage could reduce residual ID fragmenta-
tion without imposing significant computational overhead. In the longer term, extending the framework
to fine-grained behavior recognition and 3D pose estimation from oblique imagery will enable automated

classification of foraging, social interactions, and stress behaviors (Shukla et al. 2024).

By harnessing advances in detection, tracking, and lightweight re-identification, this pipeline turns drone
footage into actionable intelligence—empowering wildlife stewards to count, monitor, and protect elephant

populations at a reduced manual labor cost.
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Table 10: Key Technical Specifications of the DJI Mavic 3 Pro

Characteristic Specification

Hasselblad Camera

Sensor 4/3 CMOS, 20 MP

Lens FOV 84°

Equivalent Focal Length 24 mm

Aperture /2.8 to £/11 (adjustable)
ISO Range (Video) 100-12800
Shutter Speed 8 s —1/8000 s

Video & Imaging

Max Video Resolution 5.1K: 5120x2700@50fps
DCI 4K: 4096 x2160@Q120fps
4K: 3840x2160Q120fps

Video Formats MP4/MOV (MPEG-4 AVC/H.264, HEVC/H.265)
Apple ProRes 422 HQ, 422, 422 LT (Cine Model)

Color Profiles Normal, HLG, 10-bit D-Log M

Max Video Bitrate H.264/H.265: 200 Mbps

Digital Zoom Hasselblad Camera: 1-3x

Medium Tele Camera: 3-7x
Tele Camera: 7-28 x

Gimbal
Stabilization 3-axis mechanical (tilt, roll, pan)
Mechanical Range Tilt: —135° to 100°
Roll: —45° to 45°
Pan: —27° to 27°
Controllable Range Tilt: —90° to 35°

Max Control Speed (Tilt) 100°/s
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