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Abstract

The permutation flowshop scheduling problem with makespan ob-
jective, or PFM for short, is a classic NP-hard scheduling problem.
At present, the most promising heuristics for the PFM are based on
variations of local search. This led us to consider five new neighbour-
hoods for the PFM. Each neighbourhood is of exponential size, but can
be explored quite quickly by solving a small mixed-integer program.
We propose a matheuristic framework that incorporates our proposed
neighbourhoods to evaluate and compare their effectiveness. Extensive
computational experiments show that integrating our best neighbour-
hood to the proposed matheuristic reduces the makespan by over 60%
on average, compared to the variant without it, on both the classical
Taillard benchmark instances and the more recent instances proposed
by Vallada, Ruiz and Framinan

Keywords: flowshop scheduling; permutation flowshop; very large-
scale neighbourhood search; matheuristics

1 Introduction

Machine scheduling problems are an important family of combinatorial opti-
misation problems, and they have received a great deal of attention from the
Operational Research and Optimisation communities. In this paper, we con-
sider the permutation flowshop scheduling problem with makespan objective,
or PFM for short.



In the PFM, m machines are arranged in a flow line, numbered from 1
to m, and n jobs must pass through each machine in the flow line one after
the other, i.e., each job must be processed on machine 1, then machine 2,
and so on. Although the job order is identical, each machine represents a
different processing stage with its own processing times. Specifically, each
machine can process only one job at a time, and the processing time of job
j on machine 7 is p;;. The aim is to determine a sequence of jobs to be
processed on machines that minimises the makespan, i.e., the time taken to
finish processing the last job on the last machine. The PFM is often denoted
as Fp,|prmu|Chueq, following the three-field notation in [14].

Johnson [I7] showed that the PFM with m = 2 can be solved in polyno-
mial time. For general m, however, the PFM is NP-hard in the strong sense
[18]. A wide range of approaches are available, including exact methods
(e.g., [12, 16} [33]), heuristics (e.g., [8, 10, 26]) and approximation algorithms
[2, 20, 28].

At present, the most promising heuristics for the PFM are based on
variations of local search (e.g., [5, 8 [10]). Local search procedures aim to
improve a solution by exploring its neighbours, but existing approaches in
the PFM literature often rely on evaluating a large number of candidate
moves, which can be time-consuming. In this study, we propose five new
neighbourhoods for the PFM and demonstrate how to formulate the neigh-
bourhood exploration as a small mized-integer program (MIP), enabling us
to identify the best possible neighbour by using a MIP solver as a black box.
(The idea of using a MIP solver to explore a neighbourhood is in line with
the ‘MIPping’ philosophy introduced by Fischetti et al. [9].)

While heuristic and metaheuristic approaches dominate the literature on
the PFM, exact methods have rarely been incorporated into neighborhood
search procedures, largely due to concerns over computational overhead. To
the best of our knowledge, the only exception is the work of Haouari and
Ladhari [15], who proposed a branch-and-bound-based local search algo-
rithm. However, their experiments were limited to Taillard instances (see
[31]) with m < 10.

As a second contribution of this study, we present a hybrid heuristic
for the PFM, which combines the ‘NEH’ heuristic [2I] with our proposed
neighbourhood search procedures. This hybrid heuristic enables us to eval-
uate the relative performance of our proposed neighborhoods. (It is also
an example of a matheuristic; see Subsection ) After explaining the hy-
brid heuristic, we give extensive computational results on the benchmark
instances of Taillard [31] and Vallada et al. [34].

The paper has a simple structure. Section [2] gives a brief overview of the
relevant literature. Section [3] describes our new neighbourhoods. Section [4]
presents our matheuristic algorithm. Section [5| contains the computational
results, and some concluding remarks are made in Section [6]

We assume throughout that the reader is familiar with the basics of



integer programming [36]. We also assume, without loss of generality, that
the processing times are non-negative integers.

2 Literature Review

Since the literature on flowshop scheduling is vast, we cover here only works
of direct relevance. Subsection 2.1l recalls a MIP formulation of the PFM.
Subsections and cover constructive heuristics and local search, and
Subsection [2.4] covers matheuristics. For more on flowshop scheduling in
general, see the book [0].

2.1 The Stafford et al. formulation

Stafford et al. [27] surveyed MIP formulations of the PFM, and proposed
a new one that proved to be quite effective. The new formulation uses the
following variables:

e 2, (j,k=1,...,n): 1if job j is assigned to the k-th position in the
sequence and 0 otherwise.

o fir i=1...,m;k=1,...,n): the time at which machine i finishes
processing the k-th job in the sequence.

The formulation is then:

min frmn 1
s.t. Yhoixjr =1 (j=1,...,n) 2
Z?:133jk:1 (k=1,...,n) 3
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zji € {0,1} (it=1,....m;k=1,...,n) 7
fik =0 (i=1,....m;k=1,...,n). 8

The constraints and are standard assignment constraints. The con-
straint (4)) states that the finishing time of the first job on the first machine
is equal to the processing time of that job. The constraints , @, and
ensure that the other finishing times take the correct values.

Stafford et al. reported that they could solve instances with up to 40
jobs and 5 machines, in reasonable computing times, with this formulation.
This accords with our own experience.



2.2 Constructive heuristics

The earliest heuristics for the PFM were ‘constructive’, in the sense that

solutions were iteratively built from scratch. For detailed reviews of these

heuristics, up to 2004 or so, see [10] 26]. It is generally agreed that, among

those heuristics, the ‘NEH’ heuristic by Nawaz et al. [21] is the winner.
NEH can be described in the following steps:

e Sorting phase: Jobs are sorted in a non-increasing order based on their
total processing time on m machines;

e Initialisation: The first job is used to initialise a ‘partial’ sequence;

e Insertion phase: The remaining jobs are then iteratively inserted into
the partial sequence, each being placed in the position that minimises
the partial makespan at that stage.

If implemented in a naive manner, NEH runs in O(n3m) time. Taillard
[30] showed that this can be reduced to O(n?m) using appropriate data
structures.

Since the publication of [21], a large number of improvements have been
proposed to the NEH heuristic, with a comprehensive efficiency comparison
between popular ones available, e.g., in [4], 25| 8]. For brevity, we do not go
into details.

2.3 Meta-heuristics based on local search

As one might expect, local search has been applied extensively to the PFM.
The following two neighbourhoods have proved particularly popular (see,
e.g., [10] 26]):

e ‘swap’ or ‘interchange’, which exchanges the positions of two jobs in
the current sequence;

e ‘shift’ or ‘insertion’, which selects a job and changes its position in the
sequence;

Note that the ‘swap’ neighbourhood is a subset of the ‘shift’ neighbour-
hood. Moreover, the argument of Taillard [30], mentioned in the previous
subsection, shows that one can find the best insertion position for any given
job in O(nm) time. For these reasons, ‘shift’ is normally preferred to ‘swap’.
Indeed, the shift neighbourhood has been incorporated into both simulated
annealing and tabu search metaheuristics for the PFM [13] 22].

Some more complicated neighbourhoods include ‘block moves’, which
relocate an entire block of consecutive jobs to another position [15], 32], and
‘general shift’, which involves removing a specific number of jobs from the



sequence and then inserting them one at a time in the best position [3] [7].
For brevity, we do not go into details.

Existing local-search metaheuristics in the PFM literature often rely on
evaluating a large number of candidate moves, which can be time-consuming.
Conversely, evaluating only a small number of moves may fail to fully exploit
the neighbourhood. In this study, we demonstrate how to use small-sized
MIP formulations to effectively and extensively explore the neighbourhood.

2.4 Matheuristics

In recent years, there has been increasing interest in heuristics that employ
mathematical programming techniques, such as branch-and-bound, dynamic
programming or integer programming. These hybrid solution methods have
come to be known as matheuristics [19).

We are aware of only one matheuristic for the PFM: the truncated
branch-and-bound algorithm of Haouari & Ladhari [15]. Matheuristics have
however been proposed for flowshop scheduling with other objectives, such
as minimising tardiness [29] or minimising the total completion time [3].
Matheuristics have also been proposed for the no-wait variant of the PFM,
the PFM with batch processing machines, and other scheduling problems
such as job shop scheduling [I]. We focus on the PFM itself, introducing
simple yet effective matheuristic approaches for the problem.

3 Five MIP-Based Neighbourhoods

In this section, we present five new neighbourhoods for the PFM. They are
described in Subsection to Each neighbourhood can be explored by
solving a restricted version of the Stafford et al. MIP —, in which the
majority of the x variables have been fixed to either zero or one.
Throughout this section, we assume that we already have an initial feasi-
ble PFM solution that we hope to improve. Such a solution can be created,
for example, by using the NEH heuristic. It is then converted into a feasible

solution for the Stafford et al. MIP. We denote this solution by (Z, f).

3.1 Neighbourhood 1: position block

Let us call a set of consecutive positions in the sequence a position block. For
example, if n = 20, then {4,5,...,8} is a position block of size 5, starting
at position 4 (i.e., positions 4 through 8 in order). A simple neighbourhood
for the PFM is obtained as follows: select a position block of a given size,
find out which jobs currently occupy the positions in that block, and then
allow those jobs to change their position while the positions of the other
jobs remain fixed. To give each job a chance of being moved, one can select
a block of fixed length at random. For instance, if the current job sequence



is (41,72, - - -, j20) and the selected block is {4, 5,6, 7,8}, then the neighbour-
hood consists of all permutations of the jobs (ja, js, J6, j7, js) within those
positions.

A disadvantage of the given neighbourhood is that the jobs in the first
few positions and the last few positions have a low probability of being able
to move. To address this, we use a more general kind of position block, in
which we use arithmetic modulo n to permit blocks to wrap around from
position n back to position 1. For example, if n = 20 and we seek a block
of size 5, then we permit a block like {18, 19,20, 1, 2}.

The details are given in Algorithm [I} The input parameter block_size
represents the cardinality of the blocks, and the random integer ¢ represents
the first position in the block. Note that the Stafford et al. MIP is regarded
as part of the input. In other words, we assume that the MIP is already
stored in the computer’s memory.

Algorithm 1: Position-block neighbourhood

input : number of machines m, number of jobs n,
integer block size (between 2 and n),
feasible solution (Z, f), Stafford et al. MIP

1 Let ¢ be a random integer between 1 and n;

2 if t + block._size — 1 < n then

3 for ke {1,...,t —1} U {t + block_size,...,n} do
a for j=1,...,ndo

5 ‘ Add the equation zj; = T, to the MIP;
6 end

7 end

s else

9 for k € {t + block_size — n,...,t — 1} do
10 for j=1,...,ndo

11 ‘ Add the equation z;; = Z; to the MIP;
12 end
13 end

14 end
15 Solve the restricted MIP by cut-and-branch;
16 Let (z*, f*) be the optimal solution to the restricted MIP;
17 Restore the MIP to its original form;
output: New MIP solution (z*, f*)

We remark that the number of = variables that are free in the restricted
MIP is n times block_size. Thus, as long as block_size is significantly
smaller than n, the restricted MIP is likely to be much easier to solve than
the original MIP. Larger values of block_size will lead to an increased
probability of finding an improved solution, but this will come at the cost
of a higher running time.



3.2 Neighbourhood 2: generalised swap

Our second neighbourhood is similar to the first, but we no longer require
positions to be consecutive. We choose an integer parameter set_size that
lies between 2 and n. We then select a set of positions, say S, of cardinality
set_size. We then allow the jobs whose positions are currently in S to
change their positions while forcing the other jobs to remain in their current
position.

For example, if n = 20 and set_size = 4, we might choose S =
{2,7,14,18}. If these positions hold jobs (j2, j7, 14, j18), the neighbourhood
includes all permutations of these jobs across the selected positions.

In order to give every job a chance of being moved, we select the set .S at
random. The details are given in Algorithm [2} We call this neighbourhood
the ‘generalised swap’ neighbourhood because it reduces to the classical swap
neighbourhood when |S| = 2.

Algorithm 2: Generalised swap neighbourhood

input : number of machines m, number of jobs n,
integer set_size (between 2 and n),
feasible solution (Z, f), Stafford et al. MIP

Solve the restricted MIP by cut-and-branch;

Let (z*, f*) be the optimal solution to the restricted MIP;
Restore the MIP to its original form;

output: New MIP solution (z*, f*)

1 Let S be a random subset of {1,...,n} of cardinality set_size.;
2 for ke {1,...,n}\ S do

3 for j=1,...,ndo

4 ‘ Add the equation x5, = Z;, to the MIP;

5 end

6 end

T

8

9

Note that, for this neighbourhood, the number of x variables that are
free in the restricted MIP is n times set_size.

3.3 Neighbourhood 3: delta-shake

In our third neighbourhood, which we call the ‘delta-shake’ neighbourhood,
we choose a positive integer parameter ¢, and then permit each job to change
its position by no more than 4.

As in the position-blocks neighbourhood, we apply arithmetic modulo n
to the jobs that are in the first few positions or in the last few positions.
For example, if n = 20 and § = 3, then the job that is currently in position
2 will be permitted to move to positions 19 and 20 as well as positions 1,
3, 4 and 5 (or it could stay in position 2). This ensures that every job has
exactly 2§ + 1 possible positions. See Algorithm [3] for details.



Algorithm 3: Delta-shake neighbourhood
input : number of machines m, number of jobs n,
integer 0 (between 1 and [n/2]),
feasible solution (Z, f), Stafford et al. MIP,
current positions P[j] for each job j =1,...,n

1 forj=1,...,ndo

2 if P[j]+ ¢ > n then

3 for ke {P[j]+06—n+1,...,P[j]—-d—1} do
4 ‘ Add the equation zj; = 0 to the MIP;

5 end

6 else if P[j] — ¢ <0 then

7 for ke {P[j]+0+1,...,P[j]—d+n—1} do
8 ‘ Add the equation z;; = 0 to the MIP;

9 end

10 else

11 for ke {1,...,Pj]—-0—-1}U{P[j]+6+1,...,n} do
12 | Add the equation z;, = 0 to the MIP;

13 end

14 end

15 end
16 Solve the restricted MIP by cut-and-branch;
17 Let (z*, f*) be the optimal solution to the restricted MIP;
18 Restore the MIP to its original form;
output: New MIP solution (z*, f*)

Note that, for this neighbourhood, the number of x variables that are free
in the restricted MIP is exactly n(26+1). Note also that this neighbourhood
is deterministic, whereas the previous two neighbourhoods are randomised.

3.4 Neighbourhood 4: randomised delta-shake

A disadvantage of the delta-shake neighbourhood is that most jobs can only
change their position by a small amount. It is conceivable however that some
jobs might need to move further than others. For this reason, we consider a
randomised version of delta-shake, in which the amount by which a job may
move is itself random.

Note that we allow each job j to change its position by a maximum of
Aj, where A; is a random number between 1 and 26 — 1. This means that,
for any given job, the expected value of A; is 4. This, in turn ensures that
the expected number of x variables that are free in the restricted MIP is
n(20 +1). This is the same as the number of x variables that are free in the
delta-shake neighbourhood. See Algorithm ] for details.

For example, suppose n = 20 and § = 3. The allowed displacement
is sampled between 1 and 5 for each job in the selected positions. If the
sampled value Ag for job jg is 5, then it may move to any position from 3



Algorithm 4: Randomised delta-shake neighbourhood

input : number of machines m, number of jobs n,
positive integer ¢ (between 1 and [n/4]),

feasible solution (Z, f) for the Stafford et al. MIP,
current positions P[j] for each job j =1,...,n

1 forj=1,...,ndo

2 Let A; be a random number between 1 and 2§ — 1;

3 if P[j]+ A; > n then

4 for ke {P[jl+A; —n+1,...,P[j]—A; —1} do
5 | Add the equation z;, = 0 to the MIP;

6 end

7 else if P[j] — A; <0 then

8 for k e {Plj]+A;+1,...,P[j] - A; +n—1} do
9 ‘ Add the equation zj; = 0 to the MIP;

10 end

11 else

12 for ke {1,....,P[j]—A; -1} U{P}j]+A;+1,...,n} do
13 ‘ Add the equation zj; = 0 to the MIP;

14 end

15 end
16 end

17 Solve the restricted MIP by cut-and-branch;
18 Let (2*, f*) be the optimal solution to the restricted MIP;
19 Restore the MIP to its original form;

output: New MIP solution (z*, f*)

to 13.

3.5 Neighbourhood 5: extended shift

Our fifth and final neighbourhood is called the ‘extended shift’ neighbour-
hood. We pick an integer parameter set_size and select a random set S of
jobs of cardinality set_size. We then allow the jobs in S to be placed in
any desired position while maintaining the order of the jobs that are not in
S.

Suppose, for example, that n = 8, set_size = 2 and S = {4,6}. Suppose
also that the initial sequence is (3,1,8,5,7,4,2,6). A possible move would
be to move job 4 to the 3rd position and move job 6 to the 4th position.
The resulting sequence would be (3,1,4,6,8,5,7,2).

Note that, in this example, we had to change the position of some of
the jobs that were mot in S. In particular, we had to move jobs 8, 5 and 7
two steps later in the sequence, and move job 2 one step later. We ensure
that our restricted MIP is flexible enough to handle this possibility. See
Algorithm [5] for details.

One can check that the new neighbourhood is a generalisation, not only



Algorithm 5: Extended shift neighbourhood

input : number of machines m, number of jobs n,
integer parameter set_size (between 1 and n),
feasible MIP solution (Z, f), Stafford et al. MIP,

current positions P[j] for each job j =1,...,n
1 Let S be a random subset of {1,...,n} of cardinality set_size;
2 Set T to {P[j]: j € S};
s forje{l,...,n}\ S do
4 Set h to |{i € T|i < P[j]};
5 for ke {1,...,(Pj]—h—-1)} U{(P[j] + set_size —h+1),...,n} do
6 ‘ Add the equation z;; = 0 to the MIP;
7 end
s end
9

Solve the restricted MIP by cut-and-branch;

Let (x*, f*) be the optimal solution to the restricted MIP;
Restore the MIP to its original form;

output: New MIP solution (z*, f*)

e
= O

of the ‘shift” neighbourhood, but also of the neighbourhoods mentioned in
and Moreover, if set_size is even, then the new neighbourhood
contains the delta-shake neighbourhood with § = (set_size/2 4 1).

Note that, for this neighbourhood, the number of z variables that are
free in the restricted MIP is exactly:

n X set_size + (n — set_size) X (set_size + 1).

This is due to the fact that the jobs in S can occupy any of the n positions,
while each of the remaining jobs has set_size + 1 potential positions.

4 A Matheuristic for the PFM

In this section, we present a matheuristic for the PFM which uses the neigh-
bourhoods that were presented in the previous section. Subsection gives
an overview of the algorithm in its basic form, and Subsection describes
a variant of the algorithm. Subsection |4.3| provides some implementation
details.

4.1 Overview of the matheuristic

Algorithm [6] outlines our matheuristic. Before going into the details of the
algorithm, we make some remarks about the inputs to the algorithm.

One input is the ‘MIP-based neighbourhood type’. By this we mean
one of the five neighbourhoods mentioned in the previous section. Another
input is ‘MIP-based neighbourhood size’. By this we mean block_size for

10



position blocks, set_size for generalised swap, § for delta-shake, A for ran-
domised delta-shake, and set_size for extended shift. Finally, the parame-
ter ‘max_tries’ is used to give the randomised MIP-based neighbourhoods
more than one chance to find an improved feasible solution. (For the delta-
shake neighbourhood, which is deterministic, one should set max tries to

1.)

Algorithm 6: Matheuristic for the PFM

input : number of machines m, number of jobs n, processing times p;;,
MIP-based neighbourhood type, MIP-based neighbourhood size,
positive integer parameter max_tries

Run the NEH heuristic to get initial PFM solution;

Set up the Stafford et al. MIP;

Set improved to true;

while improved is true do

Set improved to false;

Apply the shift procedure;

if the solution has been improved then

‘ Set improved to true;

end

if improved is false then

Set counter to 1;

while counter < max_tries and improved is false do

for j=1,...,ndo

‘ Let P[j] be the current position of job j;

end

Modify the MIP according to the given neighbourhood;

Solve the modified MIP by cut-and-branch;

if the solution has not been improved then

‘ Increment counter;
else
Update (:E, f);
Set improved to true;
end

© 0 N o ook W N -
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24 end
25 end

26 end
output: PFM solution (:E, f) and upper bound fy,.,

Now we discuss the algorithm itself. First, the NEH heuristic is called to
generate an initial feasible solution. After that, a local search procedure is
applied based on the shift neighbourhood. When that procedure is unable
to improve the solution further, a more complex local search procedure is
applied, based on one of our five MIP-based neighbourhoods. If the chosen
MIP-based neighbourhood manages to find an improved solution, we revert
to using the shift neighbourhood again. Otherwise, the process terminates.

11



The reason that we run NEH and shift first is that they generally produce
a reasonably good PFM solution quickly [22, [30]. This tends to reduce the
total number of MIPs that are solved, which in turn reduces the overall
computing time. The desire to reduce the number of MIPs is also why we
call shift whenever the MIP-based procedure finds an improved solution.

4.2 A variant of the matheuristic

In our preliminary computational experiments, we experimented with sev-
eral variants of Algorithm [6] but none of them gave significantly better
results. For brevity, we do not describe all variants, but there is one that
was reasonably promising, which can be found in Algorithm [7] We call this
variant ‘dynamic’, since it adjusts the size of the given MIP-based neigh-
bourhood in a dynamic manner.

Algorithm 7: Dynamic local search procedure

input : current PFM solution (9‘:, f), MIP-based neighbourhood type,
positive integer parameters min_size, max_size
1 Run NEH and set up the MIP as in Algorithm @
Set improved to true;
while improved is true do

2

3

4 Set improved to false;

5 Apply the shift procedure;

6 if the solution has been improved then

7 ‘ Set improved to true;

8 end

9 if improved is false then

10 Set 6 to min_size;

11 while 0 < max_size and improved is false do
12 for j=1,...,ndo

13 | Let P[j] be the current position of job j;
14 end

15 Modify the MIP so that the given MIP-based neighbourhood

has size 0;

16 Solve the modified MIP by cut-and-branch;
17 if the solution has not been improved then
18 ‘ Set 0 to 0 + 1;

19 else

20 Set improved to true;

21 Update (:f:,f);

22 end

23 end

24 end
25 end

output: PFM solution (:E, ﬁ and upper bound fy.,

12



In Algorithm 7] the input parameters min_size and max_size determine
the minimum and maximum sizes of the MIP-based neighbourhood, and the
variable # determines the size of that neighbourhood in each major iteration.
As before, the ‘size’ of the neighbourhood means block_size for position
blocks, set_size for generalised swap, and so on.

4.3 Implementation details

To solve the restricted MIPs, we use the ‘Mixed Integer Optimizer’ of IBM
ILOG CPLEX v. 22.1.1. As far as we can tell, the solver uses ‘cut-and-
branch’ by default (i.e., cutting planes are generated at the root node of
the branch-and-bound tree). In our preliminary experiments, we found that
the restricted MIPs could usually be solved very quickly, but they were
sometimes rather challenging for the larger PFM instances. To alleviate
this problem, we use several ‘implementation tricks’:

e Whenever we feed a reduced MIP to the MIP solver, we provide the
current incumbent solution to the solver as well. This gives the solver
a strong initial upper bound, which typically leads to a smaller branch-
and-bound tree. It also gives the solver a good initial primal solution,
which it may be able to improve using its own internal heuristics.

e Solvers such as CPLEX and Gurobi have a parameter which enables
one to control the trade-off between finding good primal solutions and
proving optimality. The parameter is set to HIDDENFEAS, which
directs the MIP optimiser to prioritise the identification of high-quality
feasible solutions that are typically challenging to find.

e Such solvers also enable one to abort the cut-and-branch run after
a certain number of improved primal solutions has been found. We
set this number to 2. (Note that, if we set it to 1 instead, we would
be following a ‘first-improvement’ strategy, which stops searching the
neighbourhood as soon as an improved solution is encountered.)

e We impose a run-time limit of 900 seconds for solving each reduced
MIP.

We found that, with these improvements, we were able to reduce the MIP
solution times so much that we could set the parameter max_tries as large
as 10, while still keeping the total computing times reasonable.

5 Computational Results

In this section, we present the results of some computational experiments
that we conducted using the benchmark PFM instances of Taillard [31] and
Vallada et al. [34]. The instance data, along with our detailed results, will

13



be made available at the Lancaster University Data Repository, under the
heading ‘Permutation Flowshop Problem MIP Local Searchﬂ The imple-
mentation code is also available in the GitHub repositoryf]

The MIP-based local search was implemented in Python 3.10 and run
on a heterogeneous clustexﬂ on nodes with 16 processing cores and 64 GB of
RAM. The MIP neighbourhoods were solved using the IBM ILOG CPLEX
22.1.1 solver and the Decision Optimization CPLEX Modeling (DOCplex)
library for Python. We set the parallel feature in the MIP optimiser to use
up to 16 threads when running on the nodes.

Now, recall that four of our five neighbourhoods involve randomness.
This means that the final PFM solution obtained can vary from one run of
the matheuristic to another. So, for each of the randomised neighbourhoods
and each test instance, we run our matheuristic ten times, with different
random seed numbers each time. We then record the best makespan and
the time spent to obtain this makespan over the ten solutions found for each
instance.

Interestingly, we found that the obtained solution could vary from one
run to another even when we used the delta-shake neighbourhood, which is
deterministic. As far as we can tell, this variation was caused by the fact that
our MIP solver was running several parallel threads in asynchronous mode,
meaning that slight variations in speed could lead to different improved
solutions being found when the reduced MIPs were being solved. To address
this, we perform ten runs even for the delta-shake neighbourhood.

5.1 Parameter settings

For a fair comparison between our five MIP-based neighbourhoods, we en-
sure that the reduced MIP sizes are as similar as possible. So, once we have
chosen a specific value of § for the delta-shake neighbourhood or its ran-
domised version, we set the parameters block_size and set_size to 20 + 1
in the position-block and generalised swap neighbourhoods, respectively.

Obtaining a fair comparison with the extended shift neighbourhood is a
bit more tricky. With a bit of work, it can be shown that one would need
to set the parameter set_size to around (n — 1/2) — /(n — 1/2)% — 24n.
Fortunately, this expression tends to d when n approaches co. So we just set
the parameter to 4, for simplicity. We have performed some tests to define
the size of 0 in Section

"http://www.research.lancs.ac.uk/portal/en/datasets/search.html
Zhttps://github.com/scaceresg/pfm-mip-based-local-search
3https://lancaster-hec.readthedocs.io/en/latest/index.html
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5.2 Size parameter tests

To identify appropriate parameter values for our neighbourhoods, we tested
various settings on a subset of the Taillard instances [3I]. The Taillard
instances have n € {20, 50, 100,200,500} and m € {5,10,20}. There are
ten instances for each combination of n and m with n € {20,50,100} and
m € {5,10,20}. There are also ten instances for each of the following
combinations of n and m: (200, 10), (200, 20) and (500, 10). This makes 120
instances in total. The optimal values for the instances with m € {5,10}
can be found in [31I]. At the time of writing, the best-known lower and
upper bounds for the other instances were available on Taillard’s personal
website [

For this preliminary test, we used all small-scale instances with m = 5,
one medium-scale instance with (m,n) = (10, 50), and three large instances
with (m,n) € {(20,100), (20,200), (20,500)}. We tested the two following
approaches:

e The ‘static’ approach, where the size parameter remains constant
throughout the algorithm. We tested the parameter values in the
set {10,12, [n/10 + m/10]}.

e The ‘dynamic’ approach, where the size parameter is dynamically ad-
justed throughout the search, as described in Algorithm [7] We tested
(min_size,max_size) from the set {(5,10), (6,12)}.

For each neighbourhood and each parameter test setting, we present the
average results across several instances (denoted by ‘#’) selected for each
combination of m and n. Table [I] shows the average percentage gaps be-
tween our upper bounds and the best-known ones, while Table [2[reports the
average computing times in seconds.

The results show that our matheuristic, using the position block, gen-
eralised swap and randomised delta neighbourhoods, achieved significantly
better performance in terms of average percentage gaps when using static
approaches with § € {10,12}, compared to the static approach with § =
[n/104+m/10] and the dynamic approaches. However, this outperformance
comes with slower running times. A closer look at the output suggests that
this is due to an increased chance of finding improved solutions, which leads
to a higher number of executed ‘while’ loops in our matheuristic.

The dynamic approaches perform significantly better than the static ap-
proaches when applied to delta-shake, in terms of solution quality. However,
among all neighbourhoods, delta-shake produces the worst solution quality,
especially for larger instances. With static approaches, delta-shake rarely
finds improved solutions, leading to very short computing times. In con-
trast, the dynamic approaches result in significantly longer running times.

“http://mistic.heig-vd.ch/taillard/(accessed 10/02/25)
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This is because the dynamic approaches do not immediately terminate when
delta-shake fails to find an improvement, as static approaches do. Instead,
they continue attempting up to (max_size - min_size) times, increasing the
size parameter by 1 after each failed attempt and only exiting after all these
attempts fail to improve the solution.

For the extended shift neighbourhood, the static and dynamic approaches
perform similarly. However, the dynamic approach with § € [5,10] yields
slightly better solutions than the static one while also requiring less com-
puting time.

Based on these observations, static approaches are preferable because
they can find better solutions with the two most effective neighbourhoods
in this preliminary test: position block and generalised swap.

Among the static approaches, the setting § = [n/10 4+ m/10] is clearly
less effective compared to other values of §. For the two largest instances,
increasing ¢ from 10 to 22 or 52 does not lead to better solutions. This sug-
gests that the search space is too narrow when 0 is set to only around 10%
of the number of jobs. Both 6 = 10 and 6 = 12 perform similarly in terms
of solution quality, but we prefer 4 = 10 because it results in shorter com-
puting times for the position block and generalised swap neighbourhoods.
Therefore, for the rest of the experiments, we used the static approach with
d = 10.

5.3 Taillard instances

As mentioned in the previous subsection, we used the static approach with
6 = 10 for all neighbourhoods. However, for instances with n = 20, we
set § = 9 because in the position block, generalised swap, and delta-shake
neighbourhoods, each job has exactly 20 + 1 possible positions to move.

Similar to the preliminary tests, we present the results in two tables:
Table [3| shows the average percentage gaps of upper bounds, while Table
presents the average computing times in seconds. Both tables follow the
same structure as Table[I] and [2] with the exception that the size parameter
J is fixed to 10 and the results from a simple ‘NEH and shift’ approach (our
matheuristic without implementing any neighbourhoods) are also presented.
These results serve as the baseline for measuring the improvement potential
of each MIP-based neighbourhood, with the average improvements shown
in the last row.

It is clear that our MIP-based neighbourhoods generally improve the
initial solutions obtained with the simple NEH and shift approaches. For
small-scale instances (m = 5), delta-shake and randomised delta help to
close the optimum gap from the NEH and shift approach. The other neigh-
bourhoods also effectively reduce the initial optimum gap by more than 50%
for all instances. For medium-scale instances (m = 10), the extended shift
neighbourhood performs exceptionally well, reducing the average initial op-
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Table 1: Average percentage gaps for the size parameter tests

Position  Generalised Delta- Randomised Extended

0 m n # Block Swap shake Delta Shift

5 20 10 0.00 0.00 0.00 0.00 0.00

5 50 10 0.01 0.01 0.00 0.00 0.00

5 100 10 0.00 0.11 0.00 0.00 0.03

Static 10 10 50 1 1.50 1.10 4.50 1.50 1.10
20 100 1 3.80 4.70 6.90 6.90 5.60

20 200 1 2.60 3.10 4.00 4.00 4.00

20 500 1 1.70 1.70 1.70 1.70 1.50

average: 1.37 1.53 2.44 2.01 1.75

5 20 10 0.00 0.00 0.00 0.00 0.00

5 50 10 0.00 0.01 0.00 0.00 0.00

5 100 10 0.00 0.10 0.00 0.00 0.01

Static 12 10 50 1 1.10 1.10 4.50 1.10 1.10
20 100 1 4.30 4.80 6.90 6.90 5.90

20 200 1 2.50 2.90 4.00 4.00 4.00

20 500 1 1.70 1.70 1.70 1.70 1.70

average: 1.37 1.52 2.44 1.96 1.82

3 5 20 10 1.51 1.46 0.73 0.28 0.37

6 5 50 10 0.05 0.21 0.03 0.00 0.01

11 5 100 10 0.01 0.08 0.00 0.00 0.05

Static 6 10 50 1 1.80 4.50 4.50 1.10 1.10
12 20 100 1 4.00 4.80 6.90 6.90 5.80

22 20 200 1 3.00 3.50 4.00 4.00 4.00

52 20 500 1 1.70 1.70 1.70 1.70 1.70

average: 1.72 2.32 2.55 2.00 1.86

5 20 10 0.00 0.00 0.00 0.00 0.00

5 50 10 0.02 0.09 0.00 0.00 0.01

5 100 10 0.10 0.19 0.00 0.00 0.04

Dynamic [5,10] 10 50 1 2.10 1.90 2.80 1.70 1.10
20 100 1 4.50 5.30 6.90 6.90 5.70

20 200 1 3.00 3.50 4.00 4.00 3.70

20 500 1 1.70 1.70 1.70 1.70 1.60

average: 1.63 1.81 2.20 2.04 1.74

5 20 10 0.00 0.00 0.00 0.00 0.00

5 50 10 0.00 0.02 0.00 0.00 0.00

5 100 10 0.01 0.16 0.00 0.00 0.02

Dynamic [6,12] 10 50 1 1.30 1.50 2.80 2.80 1.30
20 100 1 5.10 5.40 6.90 6.90 5.30

20 200 1 3.30 2.90 4.00 4.00 3.90

20 500 1 1.70 1.70 1.70 1.70 1.60

average: 1.63 1.67 2.20 2.20 1.73

timum gap from 2.26% to 0.3% on average. Following closely are the position
block and randomised delta neighbourhoods, which on average reduce this
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Table 2: Average times in seconds for the size parameter tests

Position  Generalised Delta- Randomised Extended

0 m n # Block Swap shake Delta Shift

5 20 10 9.14 8.55 1.82 6.38 4.52

5 50 10 3.60 4.21 3.15 15.61 8.22

5 100 10 8.50 5.81 15.73 58.24 21.60

Static 10 10 50 1 246.13 1550.89 901.01 27322.35  16693.80
20 100 1 7528.29 15459.91 908.11 9009.77  12376.09

20 200 1 1342.50 2127.67 923.93 9030.70 9031.18

20 500 1 546.66 2377.04 1323.43 9496.80  13318.70

average: 1383.55 3076.30 582.45 7848.55 7350.59

5 20 10 8.48 8.62 1.69 6.24 4.61

5 50 10 4.92 5.76 5.75 18.48 8.61

5 100 10 8.42 7.60 18.20 110.74 35.33

Static 12 10 50 1 486.81 3237.54 901.22 16725.41 7204.12
20 100 1 6760.31 18653.28 909.85 9011.78  17696.60

20 200 1 3650.75 5633.67 928.07 9035.45 9035.76

20 500 1 638.26 6657.49 1402.04 9575.81 9564.39

average: 1651.14 4886.28 595.26 6354.84 6221.34

3 5 20 10 0.34 0.46 0.58 1.95 1.34

6 5 50 10 2.03 1.85 3.75 13.45 7.69

11 5 100 10 7.94 5.41 15.21 69.97 18.02

Static 6 10 50 1 14.66 2.66 901.19 8802.32 1905.16
12 20 100 1 4476.27 18992.88 909.48 9011.49 9770.88

22 20 200 1 4691.35 6140.14 928.05 9036.35 9036.10

52 20 500 1 669.43 9444.65 1316.81 9489.91 9489.03

average: 1408.86 4941.15 582.15 5203.63 4318.32

5 20 10 2.28 2.25 4.47 3.26 2.06

5 50 10 2.49 2.17 11.95 9.93 5.04

5 100 10 4.31 3.73 40.22 30.78 13.01

Dynamic [5,10] 10 50 1 54.54 148.95  8178.51 8664.52 4758.25
20 100 1 130.46 1108.81 5409.41 5409.39 8869.94

20 200 1 108.06 1780.24  5428.32 5428.18 8776.51

20 500 1 592.03 876.47  5953.07 5949.94 7087.62

average: 127.74 560.37 3575.14 3642.28 4216.06

5 20 10 2.50 2.36 4.69 3.18 2.29

5 50 10 2.84 4.17 14.88 13.05 7.29

5 100 10 7.07 5.01 61.36 45.06 16.28

Dynamic [6,12] 10 50 1 196.71 1036.79  17043.65 14659.82  20288.90
20 100 1 545.54 3876.76  6310.71 6310.78  14145.35

20 200 1 75.52 3805.69  6333.02 6334.01 7780.33

20 500 1 627.39 1621.97  6853.96 6850.22  12525.72

average: 208.22 1478.96  5231.75 4888.02 7823.74

gap to 0.39% and 0.43%, respectively. Unsurprisingly, delta-shake is the
least effective neighbourhood in improving the initial solution, due to its
deterministic nature. For large-scale instances, the position block performs
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Table 3: Average percentage gaps of upper bounds for Taillard instances

NEH + Position Generalised Delta- Randomised Extended

m n Shift Block Swap shake Delta Shift
20 2.00 0.00 0.00 0.00 0.00 0.00

5 50 0.56 0.01 0.01 0.00 0.00 0.00
100 0.29 0.00 0.11 0.00 0.00 0.03
avg: 0.95 0.00 0.04 0.00 0.00 0.01
20 2.76 0.00 0.00 0.09 0.00 0.00

10 50 3.76 0.65 1.04 2.07 0.79 0.50
100 1.59 0.45 0.84 1.03 0.43 0.25
200 0.91 0.46 0.59 0.77 0.51 0.46
avg: 2.26 0.39 0.62 0.99 0.43 0.30
20 2.48 0.13 0.15 0.55 0.12 0.03

50 6.25 2.66 4.05 5.93 5.16 5.14

20 100 4.96 2.92 3.85 4.96 4.84 4.52
200 3.65 2.73 3.02 3.65 3.59 3.43
500 1.66 1.43 1.39 1.66 1.66 1.65
avg: 3.80 1.97 2.49 3.35 3.07 2.95
avg: 2.34 0.79 1.05 1.45 1.17 1.09
% improvement: 66.2 55.0 38.0 49.9 53.4

the best among the neighbourhoods, reducing the average initial optimum
gap by nearly half. Generalised swap follows closely behind, surprisingly
outperforming extended shift in terms of solution improvement on average.
This could be due to the fact that the size parameter in extended shift is
set to d, which is rounded down from its decimal value for a fair compari-
son, as described in Subsection Delta-shake remains the least effective
neighbourhood, failing to improve initial solutions from the NEH and shift
approach for instances with at least 100 jobs. This is because the size of
0 = 10 is too small relative to the number of jobs, limiting the search space
and preventing the identification of improved solutions.

Regarding computing times, one can see that the delta-shake neighbour-
hood runs the fastest. This result can be explained by our static parameter
setting and its deterministic nature, where the max_tries parameter is set
to 1. This means that our matheuristic terminates if it fails to find an im-
proved solution, without making further attempts as other neighbourhoods
do. Among the non-deterministic neighbourhoods, position block achieved
the best solution gaps in the shortest time on average, followed by gen-
eralised swap. These two neighbourhoods were slower than the others for
instances with n = 20, but were much faster when n > 50. A closer look
at the results shows that position block and generalised swap make signif-
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icant improvements early on, which requires more time to solve each MIP,
but quickly reach a point where no further improvements can be found. In
contrast, randomised delta and extended shift steadily improve the solution
with each iteration, requiring more ‘while’ loops to continue improving the
solution.

Table 4: Average times in seconds for Taillard instances

NEH +  Position Generalised Delta- Randomised Extended

m n Shift Block Swap shake Delta Shift
20 0.03 9.14 8.55 1.82 6.38 4.52

5 50 0.17 3.60 4.21 3.15 15.61 8.22
100 0.60 8.50 5.81 15.73 58.24 21.60
avg: 0.27 7.08 6.19 6.90 26.74 11.45

20 0.07 3215.48 3167.01 915.32 1223.46 318.51

10 50 0.57 340.62 1043.68 1423.69 12921.55  10459.62
100 1.77 121.86 89.75 1221.83 15121.96 8626.43

200 6.51 105.70 57.77 1079.13 11957.56 8724.78
avg: 2.23 945.91 1089.56  1159.99 10306.13 7032.34

20 0.13  12799.67 13030.00 1278.46 14724.33  10836.84

50 1.19 21028.28 17816.40 1056.82 14339.75 15492.69

20 100 580  4206.91 10191.70  910.81 11963.93  15546.65
200 21.29 1331.64 4401.81 941.52 10402.73 10684.28

500 158.53 773.86 4001.48 1192.13 9371.75  10017.34
avg: 37.39  8028.07 0888.28 1075.95 12160.50  12515.56
avg: 13.30  2993.69 3661.34  747.61 7497.79 6519.78

5.4 Vallada et al. instances

Vallada et al. [34] gave some evidence that the Taillard instances are rela-
tively easy for their size. They created some instances that were designed
to be hard for the exact techniques that existed at the time. Their ‘smaller’
instances have n € {10, 20, 30,40, 50,60} and m € {5,10,15,20}, whereas
their ‘larger’ instances have n € {100,200, 300,400, 500, 600, 700,800} and
m € {20,40,60}. There are ten instances for each combination of n and
m, making 480 instances in total. Vallada et al. [34] also computed upper
bounds for these instances.

Similarly to the Taillard instances, we set § = 9 for the Vallada et al.
instances when n = 20. We also excluded the very small instances with n =
10. This left a total of 440 instances for our experiment, with 200 from the
smaller set and 240 from the larger set. Given the large number of instances,
we chose to use only one neighbourhood. Since position block was the most
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effective one in the Taillard instances, we selected it for this experiment. As
before, we recorded the best upper bounds and corresponding computational
times over 10 runs with different seed values for each instance.

5.4.1 Smaller Vallada et al. results

Tables 5] and [6] show the average percentage gaps of upper bounds and the
average computing times (in seconds) for the smaller instances. For each
combination of n and m, we present results for the solution obtained using
the NEH and shift method (‘NS’) and the solution from our matheuristic
with the position block neighbourhood (‘PB’), with the percentage improve-
ment provided in the final row.

Table 5: Average % gaps for the smaller Vallada et al. instances

m="5 m =10 m =15 m = 20
n NS PB NS PB NS PB NS PB
20 1.01  0.00 3.02  0.02 3.25  0.06 2.53  0.08
30 0.92 0.00 3.88 0.05 4.60 0.28 3.61 0.56
40 0.26  0.00 3.66 0.22 4.60 0.51 3.76  0.96
50 0.26  0.00 2.91 0.59 441 0.74 415 1.04
60 0.26  0.00 3.12  0.56 4.38 0.87 484 1.24

avg: 0.54  0.00 3.32  0.29 4.25 0.49 3.78 0.78

%impr: 100.0 91.3 88.4 79.5

The position block neighbourhood still remains highly effective in im-
proving the initial solutions from the NEH and shift approach for these
instances. It closes the gap completely for the instances with m = 5, and
reduces the average gap by at least 74% across all combinations of m and n.
As expected, as the instance size increases, our neighbourhood tends to be-
come less effective, due to our static approach for setting the size parameter
in the neighbourhood, and it requires longer running times.

5.4.2 Larger Vallada et al. results

Finally, we present the results for the larger Vallada et al. instances. Tables
and [§] are similar to Tables [5] and [6] respectively.

We encountered some memory problems when solving the MIPs for in-
stances with m > 40. As a result, we decided to increase the capacity of the
nodes to 40 processing cores and 192GB of RAM for these instances.

We see that ‘position block’ is still capable of improving the solutions
found with ‘NEH and shift’. However, the improvement is modest, averaging
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Table 6: Average times in seconds for the smaller Vallada et al. instances

m=5 m =10 m =15 m = 20

n NS PB NS PB NS PB NS PB
20 0.03 21.57 0.08 5702.50 0.10 13050.63 0.15 12586.65
30 0.07 7.22 0.19 5465.54 0.28 16104.80 0.36 17796.82
40 0.14 2.90 0.26 1595.71 0.55 13386.73 0.83 20659.96
50 0.14 2.90 0.63 297.33 1.19 20024.39 1.34  22299.92
60 0.14 2.90 0.86 316.30 1.26  5438.10 2.03 25312.51

avg: 0.11  7.50 0.40 2675.48 0.67 13600.93 0.94 19731.17

Table 7: Average percentage gaps for the larger Vallada et al. instances

m = 20 m = 40 m = 60
n NS PB NS PB NS PB

100 430 1.74 3.96 2.56 4.07 3.01
200 3.45 2.68 3.64 234 3.18 2.67

300 231 1.70 3.19  2.38 3.07 2.33
400 1.67 141 2,78 2.15 2.76  2.38
500 1.49 1.27 247 2.30 257 2.15
600 1.18 1.04 231 2.06 237 207
700 0.97 0.85 207 1.94 2.19 2.09

800 0.79 0.65 1.95 1.84 231 2.07

avg: 2.02 1.42 2.80 2.20 2.82 235
Y%impr: 29.8 21.5 16.7

around 16 — 30%. As in the case of the smaller Vallada et al. instances, the
neighbourhood becomes less effective as the instance size increases. This
may be due to the static setting of the ‘size’ parameter, which results in a
rather limited search space. Interestingly, the average percentage gap tends
to decrease as n increases. We do not have a clear explanation for this.

Table|8|shows that our matheuristic runs faster as n increases. A possible
explanation for this is that, as n increases, the smaller value of d relative
to n causes the matheuristic to execute fewer ‘while’ loops. This happens
because it fails to find improved solutions after just a few iterations, leading
to shorter computating times. However, this phenomenon does not seem
to apply as m increases, perhaps because the search space becomes more
dependent on the value of § relative to n.
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Table 8: Average times in seconds for the larger Vallada et al. instances

n NS PB NS PB NS PB
100 6.47  9708.38 16.08 18907.87 13.96 15535.09
200 27.45 875.04 52.98 12714.07 105.42  14475.86
300 51.00 902.48 148.12 5566.40 221.94  14425.30
400 118.02  764.01 286.23 3915.10 447.02 4146.64
500 146.84  676.80 483.62 1959.01 581.57  4514.92
600 247.02  928.31 721.23 2297.74 984.73 3580.87

700 329.05 1097.59 1220.63  1900.77 1481.86  2912.58
800 457.48 1848.90 1264.02  2056.46 1717.92  3639.65

avg: 172.91 2100.19 524.11  6164.68 694.30  7903.86

5.5 Statistical tests

To determine if incorporating the position block neighbourhood into our
matheuristic leads to a statistically significant improvement, and to compare
its performance against other neighbourhoods on the Taillard and Vallada
et al. instances, we apply the non-parametric Wilcoxon signed-rank tests for
paired data. We conduct a one-sided test at a significance level of 0.05. The
test is performed using Python’s SciPy wilcoxon function. We remark that
10 independent replications of each comparison were run using the same set
of problem instances.
The hypotheses for the test are as follows:

o Null hypothesis Hy: the distribution of differences between pairs is
symmetric about zero.

e Alternative hypothesis H,: position block neighbourhood leads to an
improvement over other neighbourhoods or improves the performance
of the ‘NEH+shift’ (NS).

Table [9] shows the results of the Wilcoxon signed-rank test on all 120
Taillard instances. The comparison are made in terms of both the percentage
optimality gap and the running time metrics. For each pair and each metric,
we report the Wilcoxon statistic (W), the corresponding one-sided p-value
and an effect size Cliff’s 4.

For the %Gap metric, all p-values are well below the significance thresh-
old of 0.05, and all effect sizes are negative, indicating strong statistical ev-
idence that the position block neighbourhood significantly outperforms all
other considered neighbourhoods. Notably, the comparison with the ‘NEH
+ shift” returns a W value of 0.0 and an effect size of Cliff’'s § = —0.57,
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Table 9: Results from the Wilcoxon signed-rank test for Taillard instances

%Gap Time
Rules W p-value Cliff’s § w p-value  Cliff’s §
Matheuristic vs. NS 0.0 1.40e-20 -0.57 7260.0  1.00e+00 0.85
PB vs. Generalised Swap  267.5 4.85e-10 -0.10 3036.0  5.99e-02 -0.06
PB vs. Delta-shake 1.5 5.99e-14 -0.17 4287.0  9.57e-01 -0.02
PB vs. Randomised Delta 232.5 2.00e-08 -0.04 1383.0  2.00e-09 -0.37
PB vs. Extended Shift 547.0 2.34e-05 -0.02 1520.0  1.64e-08 -0.30

suggesting consistent and substantial improvements when incorporating the
position block neighbourhood into the matheuristic across all instances.

For the Time metric, adding the position block neighbourhood to the
‘NEH + shift” method consistently increases computational time, as shown
by a large effect size (Cliff’s § = 0.85) and our previous computational
results. However, the Wilcoxon signed-rank test yields very high p-values of
1, indicating that this increase is not statistically significant. This is likely
because the position block neighbourhood slows down the algorithm in a
consistent way each time, resulting in little variation in the data. Since
the Wilcoxon signed-rank test relies on variability to detect significance, the
lack of variation prevents it from identifying the increase as statistically
significant.

On the other hand, the position block is significantly faster than the
randomised delta and extended shift neighbourhoods, with p-values well
below 0.05 and negative effect sizes. However, when compared to other
neighbourhoods, the differences in computational time are not statistically
significant at the 0.05 level.

Table [10] presents the Wilcoxon signed-rank test results for all 200 small
and 240 large Vallada et al. instances. Due to their volume and complexity,
only the position block neighbourhood is applied, as described in Section 5.4
This test evaluates whether it leads to a statistically significant improvement
in our matheuristic.

Table 10: Results from the Wilcoxon signed-rank test for Vallada et al.
instances

%Gaps Time
Rules Size W p-value Cliff’s ¢ W p-value Cliff’s o
Matheuristic vs. NS small 0.0 9.32e-32 -0.76 20100.0  1.00e4-00 0.98
large 0.0 2.15e-34 -0.35 28840.0  1.00e+-00 0.86

The results are consistent with those observed for the Taillard instances.
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The position block neighbourhood yields statistically significant improve-
ments in solution quality, as shown by p-values approaching zero and nega-
tive effect sizes ( Cliff’s 6 = —0.76 for small instances and Cliff’s § = —0.35
for large instances). However, this improvement comes at the cost of in-
creased running time, although this increase is not statistically significant
according to the Wilcoxon signed-rank test.

6 Concluding Remarks

The permutation flowshop problem with the makespan objective is a classic
problem in machine scheduling. We have developed five neighbourhoods for
the problem and shown how to explore them by solving small-size MIPs. Ad-
ditionally, we proposed a matheuristic using our proposed neighbourhoods.
The computational results indicate that our matheuristic, though concep-
tually simple, performs quite well in improving initial solutions obtained by
‘NEH and shift’. It achieves improvements of up to 66.2% on average for
the well-known Taillard instances, and up to 100% and 29.8% on average
for the small and large instances of Vallada et al., respectively. Among the
neighbourhoods, the ‘position block’ neighbourhood stands out, particularly
for large instances.

We believe that our matheuristic can be easily adapted to other variants
of the PFM, including different objectives, such as total tardiness or total
flow time, or various constraints like no-wait and no-idle conditions (see,
e.g., [24, 11} 26], 35]). An interesting question for future research is whether
one could improve the running time of our approach by calling some faster
neighbourhood search routines (such as those in [7, 23] [5]) before calling our
MIP-based routines.
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