Predicting the Speed of Epidemics Spreading in Networks

Moore, Sam and Rogers, Tim (2020) Predicting the Speed of Epidemics Spreading in Networks. Physical review letters, 124 (6): 068301. ISSN 1079-7114

Full text not available from this repository.

Abstract

Global transport and communication networks enable information, ideas, and infectious diseases to now spread at speeds far beyond what has historically been possible. To effectively monitor, design, or intervene in such epidemic-like processes, there is a need to predict the speed of a particular contagion in a particular network, and to distinguish between nodes that are more likely to become infected sooner or later during an outbreak. Here, we study these quantities using a message-passing approach to derive simple and effective predictions that are validated against epidemic simulations on a variety of real-world networks with good agreement. In addition to individualized predictions for different nodes, we find an overall sudden transition from low density to almost full network saturation as the contagion progresses in time. Our theory is developed and explained in the setting of simple contagions on treelike networks, but we are also able to show how the method extends remarkably well to complex contagions and highly clustered networks.

Item Type:
Journal Article
Journal or Publication Title:
Physical review letters
Uncontrolled Keywords:
/dk/atira/pure/subjectarea/asjc/3100
Subjects:
?? physics and astronomy(all) ??
ID Code:
233014
Deposited By:
Deposited On:
14 Oct 2025 09:40
Refereed?:
Yes
Published?:
Published
Last Modified:
14 Oct 2025 09:40