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Abstract

This work conducts a review of all chronic wound segmentation deep learning studies meeting specific criteria that have been
published since research first started in this domain 8 years ago (2015-2023). Management of chronic wounds represents a
serious ongoing concern for hospitals and outpatient clinics world-wide. There is a clear need for technological interventions
using deep learning approaches that could have a potential significant impact in the automated monitoring of such wounds.
We review the existing literature and perform R-squared statistical analysis to form a fresh understanding of the field to gain
deeper insights into the issues that are presenting obstacles to research progress. Our findings show a negative correlation
between small test set size and test metrics (Dice similarity coefficient and mean intersection over union), indicating smaller
test sets are associated with higher test metrics. We also identify other major hurdles in the field, such as a lack of data
understanding, a lack of data availability, and a lack of research transparency. The focus of this body of work is to increase
understanding of the underlying issues that have pervaded in deep learning chronic wound research. A clear presentation of
findings in this work can be used by researchers as a guide to avoiding common pitfalls, and to advance research knowledge.

Keywords Chronic wounds - Segmentation - Deep learning - Pressure ulcers - Venous ulcers - Arterial ulcers - Diabetic foot

ulcers

1 Introduction

Chronic wounds are a growing burden on health care systems
globally. The incidence of chronic wounds is substantial and
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is estimated to continue on an upward trend [1]. Diabetic
foot ulcers (DFU) and arterial leg ulcers (ALU) are costly
and debilitating complications of diabetes [2], with recent
research suggesting an association between DFU episodes
and all-cause resource utilisation and mortality [3]. Pressure
ulcers (PRU) and venous leg ulcers (VLU) are the most com-
mon types of complex skin ulcers [4], with ulcer prevalence
in the diabetic population estimated to be at least 13% in
North America [5].

DFU has a global prevalence of approximately 6.3%
among people with diabetes [6], with VLU estimated to have
a prevalence of around 1.08% [7]. Global PRU prevalence
is estimated to range between 5.2 and 12.3% [8]. How-
ever, these figures are likely to be higher as cases are often
underreported, especially in lower-income countries where
epidemiology data can be scarce and reporting may be incon-
sistent [9—-12].

Occurrence of chronic wounds is often linked with comor-
bidities including vascular deficits, diabetes, chronic kidney
disease, and hypertension [13]. Diabetic peripheral neuropa-
thy is prevalent in the majority of DFU cases and is the main
cause of DFU [14]. This condition results in nerve damage
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in the foot leading to a loss of sensation [15]. Patients suffer-
ing from this condition may go through prolonged periods of
damage to their foot without realising it. Wound condition
can worsen, leading to other serious complications. More
than 50% of all DFU cases experience infection [16] and is
one of the main causes of hospitalisation for diabetic patients
[14]. Diabetic leg and foot ulcers are some of the most expen-
sive chronic wound types to treat in the USA [13]. Up to 70%
of VLU reoccur within 3 months after wound closure [17].

Patients diagnosed with DFU are up to three times more
likely to die compared to patients without the disease, and are
at risk to numerous comorbidities, including cardiovascular
disease, nephropathy, neuropathy, peripheral arterial disease,
and diabetic retinopathy. DFU and VLU often lead to signifi-
cantly impaired quality of life [17-19]. Occurrence of ulcers
is linked to increased risk of both amputation and mortality,
particularly when associated with advanced age, anaemia,
and peripheral arterial disease [17, 20, 21]. Chronic wounds
place a significant emotional and physical burden on patients
[22, 23], with depression associated with increased risks at
initial and subsequent wound occurrence [24, 25].

Chronic wound management represents a major health-
care system cost and a significant time burden for clinicians
and patients. This is particularly true for chronic wounds
that are not diagnosed at an early stage and require more
intensive treatment methods. Such situations may occur as
a result of infection, with worse-case scenarios potentially
leading to amputation [20]. These cases can result in frequent
clinic and hospital visits for expert assessment [26, 27]. Even
after chronic wounds have healed, recurrence rates are high,
with minor or major amputation of lower extremities being
common [28, 29]. The post-COVID-19 world poses further
challenges and risks in the treatment of chronic wounds, espe-
cially for diabetic patients who are at higher risk [30-32].

New technologies to address growing clinical needs are
becoming ever more prevalent in numerous medical fields
[33, 34]. To address the issues associated with chronic wound
prevalence, there has been an increase in research interest
for fully automated non-contact remote detection and mon-
itoring of chronic wounds [35-37]. Enhancing telemedicine
systems to include automated monitoring of wounds can
help to reduce risks to vulnerable patients and to ease pres-
sures on overburdened healthcare systems [38]. Furthermore,
the growing popularity of low-cost consumer mobile phones
allows for these technologies to be distributed in poorer coun-
tries and rural areas where patients may have restricted access
to healthcare settings.

Non-invasive easy-to-use devices capable of automated
detection and monitoring could help to promote patient
engagement in monitoring chronic wounds [35] which may
help to reduce clinic and hospital visits. Recent scientific
evidence shows that convolutional neural networks (CNNs)
can be equal to, and in some cases surpass experienced
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dermatologists for detection and classification in medical
domains [39-45]. Wound area changes over time have been
shown to provide robust prediction in healing status [46].
Chronic wound segmentation allows for potential assessment
of wound development and therefore healing status over time,
providing superior accuracy when compared to object local-
isation techniques, which give a more general indicator of
wound development [47].

Subjectivity in medical imaging domains is a challenging
aspect of deep learning. Ground truth labelling of wound pho-
tographs requires clinical experts to manually delineate the
wound regions before segmentation models can be trained,
validated, and tested. For such procedures, there are currently
no formal standards. Ramachandram et al. [48] found low
inter-rater agreement for tissue types in wound images in
a recent wound segmentation study. Their results showed
Krippendorff alpha values as low as 0.014 for epithelial
tissue. This issue is common in deep learning tasks through-
out medical imaging domains, including MRI image quality
assessment [49], dermoscopic skin lesion evaluation [50-52],
and ultrasound diagnosis [53]. Accurate automated delin-
eation of wound regions may also potentially be used as an
assisting tool for clinicians to aid in the monitoring of heal-
ing progress. By limiting human subjectivity, such advances
could help to reduce hospital/clinic burdens when treating
patients.

Deep learning research in chronic wound segmentation
is a relatively new domain. Early attempts to segment
wounds involved the use of traditional computer vision tech-
niques. [54] trained a cascaded two-stage classifier using two
state vector machine (SVM) classifiers. Colour and texture
descriptors are extracted from superpixels which are used for
the classifier training. Colour and wavelet features were used
as feature descriptors to distinguish wounds from healthy
tissue. The final stage refines the wound boundary using
conditional random field statistical modelling. Nonnegative
matrix factorisation was utilised by [55]. Their factorisa-
tion segmentation approach was used to extract wound bed
features from processed wound images. Local spectral his-
tograms were then generated by convolving a filter bank. For
each image pixel, local spectral histograms were calculated
to construct the feature matrix.

This paper summarises almost all of the deep learning
chronic wound segmentation papers published since 2015.
The objective of this work is to investigate the relationships
between test set sizes used in experiments and corresponding
Dice similarity coefficient (DSC) and intersection over union
(IoU) test metrics.
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2 Methodology

Inclusion criteria for published articles were as follows:

1. Studies involving deep learning architectures used to
segment DFU, PRU, or VLU wounds.

2. Written in English.

3. Clearly states the number of images used in train and
test sets.

4. Quantified DSC or IoU metrics in test results.

5. If the paper was part of an online challenge event,
such as the Diabetic Foot Ulcer Challenge 2022 (DFUC
2022) [56], then only the winning paper was selected for
review.

Exclusion criteria for published articles that were not
included in our review were as follows:

1. Article was not published in a journal, conference, or
workshop.

2. Reported on wound segmentation results only from ani-
mals.

3. Focuses on only burn wounds. Due to the paucity of pub-
licly available burn wound datasets, we do not include
papers that focus only on those wound types in this
review.

The Google, Google Scholar, Research Gate, and PubMed
search engines were used to locate relevant publications.
Search phrases used were: “wound segmentation”, “dfu seg-
mentation”, “ulcer segmentation”, “pressure segmentation”,
and “venous segmentation”. Additional terms, such as “deep
learning”, “image segmentation”, “computer vision”, and
“machine learning”, in addition to Boolean operators, were
also used as search terms. Both paper title and main body
text were searched when filtering results. Figure 1 shows the
process of identifying relevant studies for inclusion in this

review.

3 Semantic segmentation

In this section, we discuss the most prominent chronic
wound segmentation papers that focused on semantic seg-
mentation. Semantic segmentation is defined as pixel-based
segmentation of wound pixels in an image. This is dis-
tinct from instance segmentation, which involves per-wound
based detection that identifies individual wound cases in an
image. The vast majority of chronic wound segmentation
papers use semantic segmentation, a likely consequence of
the wider availability of source code and architectures that
target this method. Higher computational costs are also asso-

ciated with instance segmentation which may prove to be a
limiting factor in model selection [57-59].

Wang et al. [60] trained a chronic wound segmentation
CNN consisting of five encoding layers followed by four
decoding layers with rectified linear unit (ReLU) activations,
cross-entropy for the loss function, and L2 regularisation with
a regularisation coefficient. They used 500 training images
and 150 test images sourced from the NYU Wound Database.
A modified version of GrabCut [61] was used to crop images
to 480 x 640 pixels to reduce non-wound background fea-
tures. They reported a mean intersection over union (mloU)
of 0.473, with 0.950 pixel accuracy on the test set. This work
is notable for being among the first to address chronic wound
segmentation using deep learning techniques.

Goyal et al. [62] trained a selection of FCN models to
segment DFU wounds and periwounds using a dataset of
600 DFU images with delineated masks provided by clinical
experts. Two-tier transfer learning was completed using Ima-
geNet and the Pascal VOC segmentation dataset. The DFU
dataset was split into 420 images for training, 60 images used
for validation, and a test set comprising 120 DFU images
and 105 healthy foot images. For combined segmentation
of wound and periwound regions, the best reported model
was FCN32-s with a DSC of 0.899. For segmentation of
only ulcer regions, the best model was FCN-16s with a DSC
of 0.794. For segmentation of only periwound regions, the
best model was FCN-165s, with a DSC of 0.851. This work
observed that FCN-AlexNet and FCN-32s were not able to
accurately segment irregular boundaries. Conversely, they
noted that smaller pixel strides used in FCN-16 s and FCN-8 s
resulted in improved segmentation of irregular DFU wound
contours. They also noted in test image results that wound and
periwound features would overlap due to ambiguous feature
boundaries. This work is notable for being one of the few
deep learning wound segmentation studies to include peri-
wound features (see Fig. 2).

Li et al. [63] proposed a composite model using water-
shed and thresholding in pre- and post-processing stages to
assist in the removal of non-wound features. They trained
a segmentation network comprising 13 convolutional layers
of MobileNet as the backbone, where a pair of depthwise
and pointwise layers is considered as a single layer. The last
convolutional layer is upsampled and fused with the previ-
ous convolutional layer, followed by a pooling layer to reduce
loss of local information. The fusion result is then upsampled
16 times to ensure that the output is of equal resolution to the
input. A final post-processing stage is used to perform mor-
phological operations (hole-filling and small region removal)
and additional thresholding to remove any persisting back-
ground features. For training and testing, a dataset of 950
images was used, of which 389 were collected from patients
in hospital settings and 561 images were sourced from the
internet. A total of 760 images were used for training and
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Fig.1 Study selection flow
diagram

66 papers identified
after removing
duplicates

2 excluded non-winning entrants (FUSC)

N

9 non-winning entrants (DFUC2022)

55 papers retrieved in
full text

4 excluded as ambiguous test metrics
1 model architecture not described

7 ambiguous train / test set reporting
2 not fully automated segmentation

40 studies utilising
semantic or instance
segmentation

1 animal study

36 investigated
semantic
segmentation

4 investigated
instance
segmentation

Fig.2 Tllustration of periwound
delineation and separation from
wound region, originally
reported by Goyal et al. [62]

190 used for testing. They reported an mloU of 0.8589 and
precision of 0.9470.

Elmogy et al. [64] proposed a framework to segment and
classify tissue types (slough, necrotic eschar, and granula-
tion) in PRU wounds. First, a region of interest extractor
(DeepMedic [65], a 3D CNN) uses three different colour
spaces (RGB, HSV, and YCbCr) to reduce background
details. Next, tissue segmentation is performed using the
different spatial outputs from the region of interest mod-
els. The framework was trained and tested on 100 PRU
images—36 images sourced from a healthcare services com-
pany (IGURCO GESTION S. L., Spain), and 64 images from
the Medetec [66] dataset. The dataset was splitinto 60 images
for training, 10 images for validation, and 30 images for
testing. They reported a DSC of 0.93. They also reported
results from a Bland-Altman analysis to assess the degree
of agreement between the ground truth delineation of three
observers. The results of this analysis showed that most rat-
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ings were within the range of m = £1.96, with a mean
value closer to zero indicating good agreement. The same
research group would later conduct similar experiments using
a slightly larger dataset of 193 PRU images (test set ~ 58),
and reported a reduced DSC of 0.92 [67].

Godeiro et al. [68] tested four segmentation architectures
(U-Net, Segnet, FCNS8, and FCN32) using chronic wound
images and proposed the use of a colour space reduction
(CSR) on the CIELab space that increased DSC, accuracy,
specificity, and sensitivity for all four networks. They used a
dataset of 30 wound images comprising necrosis, granulation
and slough tissue types. A total of 10 images were used for
training, 5 for validation, and 15 for testing. Due to the small
dataset size, pretrained ImageNet VGG16 weights were used
to initialise the models. A watershed algorithm was used to
assist in dividing images into wound, skin, and other regions.
Following CIELab colour space processing, the four segmen-
tation networks were used to obtain the different tissue types
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in each wound image. They reported that the U-Net model
with CSR provided the highest DSC of 0.9425. This is in
comparison with the U-Net without CSR, which resulted in
a DSC of 0.9153.

Zahia et al. [69] trained a model capable of performing
optimised segmentation of the different tissue types present
in pressure injuries (granulation, slough, and necrotic). The
model was developed using MATLAB Neural Network Tool-
box. They used a preprocessing step to remove flash light
artefacts, followed by the creation of a set of 5 x 5 pixel sub-
images used for training. They used a dataset of 22 images
comprising stage 3 and 4 pressure injuries. A total of 17
images were used for training and 5 images were used for
testing, acquired from the Igurko Hospital, Spain. An addi-
tional 4 images were purchased from The National Pressure
Ulcer Advisory Panel (NPUAP) online store for validation
purposes. All train and test images were 1020 x 1020 pix-
els. Examples of infected and necrotic tissues are present,
together with healing states evidencing granulation tissue.
In an attempt to negate the limited number of train and test
images, all images were automatically cropped to 5 x 5 x 3
pixels resulting in 270,762 RGB patches for granulation tis-
sue, 37,146 patches for necrotic tissue, and 80,636 patches
for slough. This approach ensured that there was no loss
of wound texture features when training the network. They
report an average DSC value of 0.9138, an average preci-
sion per class of 0.9731 for granulation tissue, 0.9659 for
necrotic tissue, and 0.7790 for slough tissue. One notable
limitation they observed is that deep areas within certain
pressure injuries would appear dark, which the model would
confuse with necrotic tissue, which is also generally very
dark in colour.

Pathompatai et al. [70] proposed a region-focus training
strategy for wound images in the Medetec dataset. They split
full-size images into smaller patches for training, and found
that network performance could be improved by increasing
the number of challenging image patches into the training
process. Challenging examples were determined by heatmap
analysis. They split full images (typically 600 x 400 pix-
els) into 256 x 256 pixel patches with a 128 pixel stride
(50% overlap). For the generation of additional challeng-
ing patches, they cropped from different offsets so that the
new patches contained different contextual features. To test
their method, they trained U-Net using 115 images for train-
ing, 29 images for validation, and 36 images for testing—all
counts are for full-size images prior to splitting into patches.
Expert labelling was not mentioned in the study; therefore,
the ground truth masks should be considered to be a weakly
supervised component. They compared models with and
without region-focus training, and with different numbers of
region-focus patches. Their best performing model reported
an mloU of 0.7816. They noted that although the introduction
of difficult patch examples would generally improve network

performance, the value would need to be tuned for different
scenarios. This method could be interpreted as a form of
manual attention, prior to the more widespread use of more
advanced automated attention mechanisms present in more
recent network architectures.

Lietal. [71] proposed a segmentation framework based on
human-designed feature maps and artificially assigned con-
volution kernels using a modified MobileNet. First, alocation
encoder is used to convert the 2D coordinates of the input
image into a location map, which is concatenated with the
input image. Next, after downsampling, the location map is
fused with the output of the network backbone, which is
post-processed using smooth kernels to remove small holes
and small non-wound regions in the prediction. Finally, the
feature maps are upsampled to the size of the input image,
resulting in output maps. This work observed that in order
to maintain invariance, CNNs obfuscate the location infor-
mation of input maps. This is contrary to the usual spatial
distribution of wounds and backgrounds in wound images,
which tend to be non-uniform in nature. In their experiments,
they used a dataset of 950 wound images, as used in their
previous work [63]. The training set comprised 760 wound
images, and the test set comprised 190 images. They reported
an mloU value of 0.8647, a maxIOU value of 0.8675, and a
precision value of 0.9503.

Cui et al. [72] conducted experiments which compared
DFU segmentation results from U-Net and a patch-based
CNN method, originally proposed by [73]. They used a
wound dataset of 445 images acquired from New York Uni-
versity. For training, 392 wound images were used, and 53
images were used for testing. The GrabCut tool was used
to remove background features. For the patch-based CNN
method, the original images where split into patches, result-
ing in 4500 pairs of local and global patches (31 x 31 and
201 x 201, respectively). An adaptive thresholding method
was used as a post-processing step to remove artefacts. They
found that U-Net produced sharper wound boundaries when
compared to those created by the patch-based CNN method.
The reported U-Net results were 0.845 for DSC and 0.761
for mloU.

Ohura et al. [74] trained four segmentation models (U-
Net, U-Net with VGG16 backbone pretrained on ImageNet,
SegNet, and LinkNet) using PRU images (n = 396) and
tested on images of DFU (n = 20) and VLU (n = 20) which
were collected from the Kyorin University Hospital, Japan.
The number of training images used was 356, and the num-
ber of test images used was 40. The U-Net VGG16 model
was found to provide the best results for sensitivity (0.993)
and specificity (0.993), while the U-Net with VGG16 model
provided the best AUC (0.998), DSC (0.947), and accuracy
(0.989). These experiments showed that pretraining on Ima-
geNet improved the standard U-Net with increases in AUC,
DSC, and accuracy. However, sensitivity and specificity were
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slightly lower for the U-Net VGG16 model when compared
to the base U-Net model.

Wagh et al. [75] compared results of various deep learn-
ing architectures against traditional associated hierarchical
random field (AHRF) segmentation, which reformulates the
image segmentation task as a graph optimisation problem.
The CNN architectures they experimented with were U-Net,
FCN, and DeepLabV3. They devised two experiments, each
using a different dataset. Dataset 1 comprised a total of 114
wound images (95 train, 19 val) and was acquired under con-
trolled lighting conditions. Dataset 2 comprised a total of 316
wound images (263 train, 53 val). A total of 202 of these
images were acquired via internet scraping, and 114 images
were taken from dataset 1. Dataset 3 comprised a total of 1442
wound images (1201 train, 241 val) and were sourced from
the University of Massachusetts Medical Center. All datasets
contained examples of DFU, arterial, venous, PRU, and sur-
gical wounds. The deep extreme cut algorithm [76] was used
to provide ground truth labels; therefore, these experiments
should be considered as weakly supervised. For dataset 1,
the best performing method was FCN, with a DSC of 0.7822.
The best performing method with dataset 2 was also FCN,
with a DSC of 0.8418. The best performing method with
dataset 3 was DeepLabV3, with a DSC of 0.8554. They also
conducted an additional experiment using a common valida-
tion set across all datasets. For validation DSC results, the
best performing models were FCN on dataset 1 (0.7822), and
DeepLabV3 on dataset 2 (0.8537) and dataset 3 (0.8760).

Ong et al. [77] proposed a wound segmentation model
with 18.5% fewer parameters than U-Net, with the aim of
performing inference on mobile devices. They added an
additional layer to both upsampling and downsampling path-
ways. They also added depthwise separable convolutions
(depthwise convolution followed by a 1 x 1 convolution) to
replace the standard convolutions, allowing for independent
convolution of each input channel. The depthwise separa-
ble convolutions used a stride of 2 x 2 which effectively
downsamples layers by a factor of 2 which is used instead of
the max-pooling present in the original U-Net architecture.
The upsampling pathway contains transposed convolutions
with strides of 2 x 2. A dropout layer was also added after
every depthwise separable convolution with a dropout rate of
0.2. Two parameters (“alpha” and “alpha_up”’) were added
to adjust the number of filters for the upsampling and down-
sampling pathways, respectively. For training and testing,
they used a private dataset sourced from local hospitals com-
prising 583 wound images. A total of 467 images were used
for training, and 116 images were used for testing. A nurse
provided the ground truth labels, with a second confirming
label quality. After experimenting with different alpha val-
ues, they reported an mIoU of 0.869, compared to 0.813 for
the unmodified U-Net.
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Wang et al. [78] trained a MobileNetV2 wound segmen-
tation model (pretrained on the Pascal VOC segmentation
dataset) using a new dataset of 1109 DFU images (831 used
for training, 278 used for testing). They used a localisation
preprocessing step to remove non-DFU wound features from
images prior to segmentation. Following hole-filling and
small region removal morphological post-processing algo-
rithms, they reported a mean DSC of 0.9047. However, there
are limitations to this work in that the wound images are very
small patches that were then heavily padded up to 224 x 224
pixels. This means that the actual wound pixels constituted
very small regions of the total image. Without padding, the
average width and height of the training images in this dataset
are 71 and 104 pixels, respectively, while the average width
and height of the test set images are 70 and 101 pixels, respec-
tively. At such small sizes, as small as 17 x 18 pixels, many
DFU wound features would be lost. Heavily limiting fea-
tures in such a way, and using only a small number of images
for testing (n = 278), it would be easier to obtain high test
metrics as the network has fewer features to learn.

Wang et al. [79] would later conduct the Foot Ulcer
Segmentation Challenge (FUSC) 2021 which introduced a
training set of 810 images, a validation set of 200 images,
and a test set of 200 images. The newly introduced images
contained examples with significantly less padding and with
more of the foot and background visible compared to the
previous dataset they released. The winner of this challenge,
Mahbod et al. [80], achieved an image-based DSC of 0.8880,
areduction of 1.67% from the original score reported by [78].
This may be evidence that the task became more challenging
when larger DFU wound images were introduced. This shows
that the model would need to learn more complex features
that were not present in the original experiments conducted
by Wang et al. [79] on the prior smaller dataset which had
significantly smaller wound images with significantly fewer
features.

Zahia et al. [81] proposed an end-to-end system using 2D
wound images and 3D meshes acquired using a structure
sensor with the aim of providing automated PRU mea-
surement. For their segmentation experiments, they used a
dataset of 175 images for training, and 35 images for testing.
They experimented with Mask R-CNN using ResNet-50 and
ResNet-101 backbones. They found ResNet-50 (pretrained
on MS COCO) to provide the highest performance. For seg-
mentation, they reported a DSC of 0.83, mean sensitivity
of 0.85, and a mean precision of 0.87. They attributed the
challenging nature of the segmentation task to ambiguous
boundaries in some of the PRU images. Such ambiguities
may therefore also be reflected in the ground truth labelling,
given that such boundaries are likely to be subjective when
delineated by expert human annotators.

Niri et al. [82] conducted experiments using superpixels
as a preprocessing stage in a wound segmentation work-
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flow. They used an FCN32 segmentation model as part of
a pipeline to classify wound tissue types. The model was
trained using more than 5000 wound superpixel images with
no augmentation. They used 5256 images for training, and
1530 images for testing which were divided into granula-
tion, slough, necrosis, and unknown tissue types. The private
dataset was sourced from the Hospital Nacional Dos de Mayo
(Lima, Peru) and the CHRO Hospital (Orleans, France) and
comprises DFU wound images. They also used 219 images
from the ESCALE database in their training set, including
leg ulcers, diabetic ulcers, and bed sores. The preprocessing
stage of using superpixel images means that the model is not
exposed to background details. They reported an accuracy of
0.9268, precision of 0.7807, and a DSC of 0.7574.

Chairat et al. [83] trained a U-Net with an EfficientNet-B2
encoder using the WoundsDB dataset of 188 cases acquired
from 47 patients. The dataset was split into 132 images for
the training set, 28 images for the validation set, and 28
images for the test set. Due to the high resolution of the
original dataset images (4896 x 3264 pixels), random crops
were performed, resulting in a training set of 1056 images
and a validation set of 224 images. They reported an mloU
of 0.8674, and observed that detection of smaller wounds
was generally less accurate when compared to detection of
larger wounds. It was also observed that despite the high
resolution of the WoundsDB images, most of the images had
been acquired at distance, meaning that the images comprised
mostly of skin and environment details.

Watanabe et al. [84] proposed RoleNet (role-oriented fully
convolutional networks) to segment wound area using sparse
estimation and classify the tissue type (granulation, necrotic,
and slough). This framework was developed as part of a larger
system that could be used for wound area estimation using
RGB-D point cloud data taken with an iPhone X mobile
phone. They employed depthwise separable and atrous con-
volutions in their model architecture to reduce the number
of model parameters and to increase the receptive field of
convolutions. Downsampling with varying strides was also
implemented to prevent loss of features. Their training strat-
egy involved training the segmentation and classification
networks separately, and then the models were combined and
jointly retrained. A dataset of 40 wound images was acquired
from a medical book [85], and was split into train (n = 31),
validation (n = 3), and test (n = 6) sets. They reported an
mloU of 0.790.

Niri et al. [86] trained a U-Net for segmentation of skin
and wounds in 2D images and 3D wound meshes. Following
initial segmentation of the 2D images, they devised a strategy
to select the best view from the multi-view 3D meshes, which
were then segmented and reprojected back to 2D to update
the original 2D segmentation result. For their experiments,
they created a dataset of 569 chronic wound images which
included pathologies such as DFU, burns, and PRU. A total

of 426 images were used for training, while 143 images were
used for testing. They reported a DSC of 0.9304 and an mIoU
of 0.8661. They observed that high angle and distance vari-
ations due to camera position and orientation would affect
model performance.

Scebba et al. [87] observed the many challenges inherent
in wound segmentation, such as the heterogeneity of wound
types, tissue colours, shapes, body position, background
composition / complexity, image capturing conditions, and
variable specifications of capture devices. They noted that
initiatives to standardise medical wound photography would
likely result in additional workload burdens on clinicians,
and that such standards would likely still not guarantee a
consistent resolution to generalisation issues experienced in
real-world settings. To address these issues, they proposed a
wound segmentation method, whereby a MobileNet localisa-
tion model would first localise the wound prior to segmenta-
tion using U-Net to reduce the number of extraneous features
present in the image. The localisation model predictions were
automatically adjusted to be increased in size by 50% to
allow for surrounding tissue to be present in the cropped
inputs required by the segmentation model. They used five
wound datasets in their experiments—SwissWOU—a pri-
vate dataset of DFU (n = 1096) and systemic sclerosis
digital ulcers (n = 63), DFUC 2020 [88], Medetec [66],
SIH (second healing intention dataset), and FUSC (Foot
Ulcer Segmentation Challenge) [79]. In some cases, with-
out further justification, full datasets were not used in their
experiments, e.g. only 60 images were used from the FUSC
dataset, only 53 images were used from the Medetec dataset,
and only 58 images were used from the SIH dataset. They
experimented with a range of commonly used segmentation
networks, with and without automated localisation, and with
manually localised images. When tested only on the Swiss-
WOU DFU images (10% of all patients), they found that
U-Net was the best performing network, with an MCC of
0.85 and an IoU of 0.75. When tested with the SwissWOU
systemic digital ulcers, Medetec, SIH, and FUSC images,
they found U-Net to be the best performing network, with a
mean MCC of 0.8725 and an mloU of 0.7875.

Xing et al. [89] proposed an improved U-Net model for
DFU wound segmentation. The first improvement is in the
use of a coarse positioning module (CPM) which is used to
automatically crop the target area of training images to the
smallest outer rectangle using the ground truth mask. This
method reduces background features prior to training, and
was not used on test images. The second improvement is the
use of an SVM in the output layer to improve the ability
of the model to generalise. The SVM replaces the softmax
layer in the U-Net, and was used due to its ability to take
into account training error and model complexity. SVM can
also achieve better classification results and deal with non-
linearities on small datasets. For their experiments, they used
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the FUSC dataset, from which 610 images were used train-
ing, 200 images were used for validation, and 200 images
were used for testing. Their best performing model, using
both the CPM and SVM, reported a DSC of 0.8902. Anal-
ysis of a selection of results indicated that the CPM, when
used in isolation with U-Net, was able to improve detection
of smaller regions and performed well in segmenting larger
regions. When the SVM was tested in isolation with U-Net,
its performance on smaller wounds was not as accurate as
CPM, and was significantly worse when segmenting larger
DFU wounds. The CPM and SVM methods combined with
U-Net provided the best overall performance, but on visual
inspection, the quality of smaller DFU wound regions was not
as accurate as the CPM with U-Net approach. Overall, their
proposed method outperformed U-Net, ResU-Net, LinkNet,
and Attention U-Net.

Bose et al. [90] proposed D3MSU-Net for wound seg-
mentation, based on the original U-Net architecture. They
used dense dilated convolutions to vary the field of view for
each network level. Deep multiscale supervision blocks were
implemented to provide supervision to hidden layers. This
involves calculating loss at the hidden layers in addition to
normal loss calculation that occurs at the end of the model,
followed by optimisation of the model on the aggregated
loss value. They tested their model on a series of medical
imaging datasets (x-ray, CT, and MRI), including the FUSC
and Medetec wound datasets. For the FUSC and Medetec
datasets, they reported DSC values of 0.9285 and 0.9637,
respectively.

Chang et al. [91] trained five segmentation models (U-
Net, DeeplabV3, PSPNet, FPN, and Mask R-CNN) with
a ResNet-101 encoder using a dataset comprising 2893
PRU images. They found the DeepLabV3 model to have
the best performance, with an Fl-score of 0.9887, IoU of
0.9782, precision of 0.9888, recall of 0.9887, and accuracy
of 0.9925. Although these results are promising, there are
notable limitations to this work. The authors indicate that
challenging examples were excluded from the dataset. These
cases included images where wounds were dressed with oint-
ment, covered with dressing, actively bleeding, obscured by
hematoma or pus, or if the image was out of focus or acquired
under poor lighting conditions. Additionally, their test set
was small, comprising only 10% of the total dataset (289
images). They also excluded images where clinicians dis-
agreed on labelling, and the exact composition of the dataset
was not reported.

Curti et al. [92] created a private wound dataset entitled
“Deepskin” and used semi-supervised techniques in gradual
training and validation stages to train a U-Net model with an
EfficientNet-B3 encoder pretrained using ImageNet weights.
Semi-supervision was used to assist labelling of unlabelled
images starting with 145 labelled images, with results being
confirmed (although not quantified in the study) by special-
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ists using a set of quality criteria. All images used to train
the model were sourced from a single centre, which the
authors note may hinder the model’s ability to generalise.
The dataset comprised 1564 images (1440 x 1080 pixels)
from 474 patients, which were collected over a 2 year period.
The training set comprised 1407 images, and the test set
comprised 157 images. Wound locations included foot, leg,
chest, arm, and head. The authors note that all images had
background details removed and that wounds would always
occupy the centre of the image. By removing challenging
examples, they achieved 0.96 in DSC, precision, and recall.
This work also noted the absence of a set of standardised
criteria for wound and periwound area definition among spe-
cialists.

Kendrick et al. [93] proposed a modified FCN32 archi-
tecture with a VGG16 backbone. Their training strategy
involved creating patches of the training images to help de-
emphasise non-wound background features. They replaced
ReLU with Leaky ReLU to assist feature learning and to
reduce the occurrence of dead neurons. Excessive downsam-
pling was avoided by removal of the final three max-pooling
layers, helping to retain feature map size in the lowest part of
the network. Figure 3 illustrates the overall network architec-
ture. Using the DFUC 2022 dataset, they achieved a DSC of
0.7447 and an mloU of 0.6467. To date, this work represents
the current state-of-the-art result on the largest publicly avail-
able chronic wound segmentation dataset—DFUC 2022. A
limitation of this work is the lack of data understanding con-
cerning the DFUC 2022 dataset. Currently, the composition
and class distribution has not yet been fully analysed, mean-
ing that the dataset may be both imbalanced and biased in
terms of train and test distribution for wound class, size,
anatomical location, and other factors.

Liao et al. [94] proposed HarDNet-DFUS, a modified ver-
sion of the HarDNet-MSEG architecture which enhances the
backbone and replaces the decoder. Using the DFUC 2022
dataset, they achieved a DSC of 0.7287, placing them first in
DFUC 2022. They enhanced the original HarDNet-MSEG
by replacing each HarDBlk module in the encoder back-
bone with a new HarDB1kV2 module, and replacing RFB
modules in the decoder with large window attention (Lawin
transformer) which utilises an MLP decoder, an MLP-mixer,
and spatial pyramid pooling (SPP) to capture multiscale fea-
tures. To further increase accuracy, they adopted an ensemble
strategy using fivefold cross-validation and test time augmen-
tation (TTA). Additional augmented images were added to
the test images when testing using the sub-models, with the
average of their outputs used as the final prediction results.

Ramachandram et al. [95] developed a segmentation net-
work capable of both wound segmentation (AutoTrace) and
tissue type segmentation (AutoTissue) for use in a commer-
cial mobile app. The AutoTrace segmentation model used
a traditional auto-encoder design with depthwise separable
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Fig. 3 Illustration of the DFU semantic segmentation network archi-
tecture proposed by Kendrick et al. [93]. Orange layers represent
convolutions with Leaky ReLU activation, red layers indicate max-
pooling, and light green layers indicate skip connections using modified
squeeze and excite. In the decoding path, green represents dropout, yel-

convolutional layers, attention gates, and strided depthwise
convolutions to downsample activations instead of using
fixed max-pooling. Additive attention gates were placed at
the end of each of the skip connections to regulate the flow
of activations from prior layers. Attention coefficients can
identify salient image regions and trim feature responses to
preserve only the relevant activations. The decoder blocks
consisted of bilinear upsampling followed by two depthwise
separable convolution layers per block, reducing memory
and computational requirements. The AutoTissue segmen-
tation model used EfficientNetBO as the encoder, with a
four-block decoder, with each block comprising a single
two-dimensional bilinear upsampling layer followed by two
depthwise convolution layers. The AutoTrace model was
trained using a private dataset of 467,000 images, and the
AutoTissue model was trained using a second private dataset
of 17,000 images. The images and clinical annotations were
collected at hospitals across North America, providing them
with a diverse range of inputs, including varied ethnic groups.
However, the exact composition of the dataset was not dis-
closed in the study. They report an mIoU of 0.8644 for wound
segmentation and 0.7192 for wound and tissue segmenta-
tion. A cohort of wound clinicians, by consensus, rated 91%
(53/58) of the tissue segmentation results to be between fair
and good for segmentation and tissue identification quality.
Reporting of qualitative assessment of deep learning results
is uncommon in wound related deep learning studies. The
reporting of such qualitative measures in this study is use-
ful; however, it is still very limited, with only 58 examples
assessed. The reporting of the qualitative measures is also
somewhat vague, i.e. a high percentage of ratings were found
to be between fair and good. An additional limitation of this
work was the small size of the test sets they used, with only
2000 image-label pairs used for testing the AutoTrace model,

low represents separable convolution with dilation and softmax layer.
This model represents the current state-of-the-art performance on the
largest publicly available chronic wound segmentation dataset (DFUC
2022)

and 383 images for the AutoTissue model. This means that
for the segmentation AutoTrace model, from a dataset total of
469,000 images (467,000 train + 2000 test), less than 0.44%
of the total images were used for testing. Such small test
sets may not be statistically significant and may not contain
sufficiently varied examples when compared to the vast size
of the corresponding training sets, meaning that evaluation
metrics may not be reliable. This aspect may be especially
pertinent in cases where the exact composition of the test set
has not been quantified.

Marijanovié et al. [96] developed three segmentation mod-
els for use with a robotic manipulator, RGB-D camera, and
3D scanner in the acquisition of wound images. They used the
FUSC DFU dataset to train and test their models. A fixed-size
overlapping sliding-window method was used to generate
input images to the network, with each model using a differ-
ent window size. Window sizes of 5, 7, and 9 were used for
Model5, Model7, and Model9, respectively. The threshold
for an input sub-image to be marked as wound was 50% for
Model5 and Model7, and 25% for Model9. The core model
architecture comprised of four fully connected hidden ReLLU
layers and one fully connected output layer with a sigmoid
activation function. A total of 810 wound images were used
for training (train = 648, val = 162) and 200 wound images
were used for testing. Predictions from all three models were
merged to form a final prediction mask using the AND log-
ical operator. Finally, they performed post-processing using
thresholding, noise removal, and region filling morphological
operations. They reported a recall value of 0.77, a precision
value of 0.72, and a DSC of 0.74.

Swerdlow et al. [97] trained a Mask R-CNN model with
a ResNet-101 backbone for segmentation and classification
of stage 1-4 PRU injuries. They used a dataset (eKare Inc.
Data pressure injury wound data repository) of 969 pressure
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injury images, with 848 images used for training, and 121
images used for testing. This work noted the lack of publicly
available datasets, referencing pressure injury images avail-
able in the Medetec dataset. However, the study did not use
these images in experiments due to degraded image quality.
They reported a DSC of 0.92 for stage 1 injuries, 0.85 for
stage 2 injuries, 0.93 for stage 3 injuries, and 0.91 for stage
4 injuries. The study protocol ensured that all images were
taken with the same camera from approximately the same
distance (40-65cm) from the wound. The authors also note
that wounds smaller than 2 x 2 cm were not included in the
dataset.

Liu et al. [98] trained a U-Net segmentation model with
a ResNet-101 backbone for use with automatic wound area
measurement using a LIDAR camera. They used 528 images
of PRU to train and test their model. They reported a mean
DSC value of 0.8488, mloU of 0.7773, mean precision of
0.8756, mean recall of 0.8639, and mean accuracy of 0.9807.
However, this work notes that only the highest quality pho-
tographs were used, indicating that there may have been a
lack of challenging examples. They initially collected 1038
PRU photographs, collected from the National Taiwan Uni-
versity Hospital. They then excluded images which were
blurred, overexposed, underexposed, obscured, or contained
other numerous non-wound objects or features. The total
number of PRU photographs used in their experiments was
528, of which 327 were used for training and internal val-
idation, and 201 used for external validation. All images
were resized to 512 x 512 pixels prior to training. This
study observed that in order for the model to become more
robust, more challenging images would need to be used to
train the model with, ideally exhibiting more complex non-
wound background details. They also observed that PRU
photographs could not always reveal drainage sinus and deep
dead space especially when they were taken by nonprofes-
sional first-line caregivers. These regions may show as black
or very dark regions in the image.

Lan et al. [99] proposed FusionSegNet which performed
segmentation as a means of improving binary classification
of chronic wounds. They used the FUSC dataset for train-
ing and testing their segmentation model. Using pretraining
on the AZH wound dataset they evaluated results of three
segmentation networks using the FUSC validation set. All
images were resized to 512 x 512 pixels for all experiments.
They found that U-Net provided the highest metrics out of
the three segmentation models they trained (Residual U-Net,
MobileNetV2, and U-Net) and reported a precision value of
0.9009, a recall value of 0.9026, and a DSC value of 0.9010.

Ootaetal. [100] proposed WSNET, a segmentation frame-
work capable of (a) wound-domain adaptive pretraining on
a large unlabelled wound dataset, and (b) a global-local
architecture that utilises full image and its patches to learn
fine-grained details from heterogeneous wounds. They used
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a new dataset of 2686 wounds (WOUNDSEG dataset), com-
prising examples of DFU, pressure trauma, venous, surgical,
arterial, cellulitis, and others. Three classification back-
bones were first pretrained (DenseNetl21, DenseNet169,
and MobileNet) using images of DFU (n = 19, 773), PRU
(n = 47,541), surgical wounds (n = 12,238), trauma
wounds (n = 13, 667), and venous ulcers (n = 32, 492). The
classifiers were then frozen, and the decoder weights were
fine-tuned over the wound segmentation dataset for four seg-
mentation models. When tested on the WOUNDSEG dataset,
they reported a DSC of 0.847. They also reported results
of 0.956 DSC for the Medetec dataset (using U-Net with a
DenseNet169 backbone), and 0.927 DSC for the AZH dataset
(using LinkNet with a DenseNet121 backbone). This work
highlights the importance of large-scale same-domain pre-
training. Although these results are impressive, they are not
reproducible as the vast majority of the dataset is private, and
the pretrained weights have also not been shared publicly.

4 Instance segmentation

In this section, we discuss all the chronic wound segmenta-
tion papers that specifically reported on the use of instance
segmentation methods. Instance segmentation focuses on
identification of individual wounds per image, as opposed to
semantic segmentation, which involves detection of wound
pixels in an image. Our investigation found only four stud-
ies which specifically indicated that the experiments utilised
instance segmentation. Instance segmentation is generally
regarded as a more challenging task compared to semantic
segmentation, as it requires localisation of wounds in addition
to segmentation of wound regions. We note that there may
be ambiguity as to what constitutes instance segmentation in
the literature due to the models used in studies and the meth-
ods of evaluating those models. For example, Mask R-CNN
is considered an instance segmentation network; however,
studies that use this model architecture may not evaluate the
results on an instance basis.

Wijesinghe et al. [105] developed a mobile app capable
of severity stage classification of diabetic retinopathy and
DFU wound segmentation. For the DFU segmentation task,
they trained and tested a Mask R-CNN model using 400 DFU
images sourced from a diabetic clinic in Sri Lanka. Using ten
images for evaluation, they reported a mean average precision
(mAP) of 0.87 at an IoU threshold of 0.5.

Gamage et al. [106] trained a Mask R-CNN network with
a ResNet-101 backbone (pretrained with the MS COCO
dataset) on neuropathic ulcers for instance segmentation.
They used a dataset of 400 images, with 360 images used
for training and 40 images used for testing. Their training
strategy involved three stages: (1) during the first 30 epochs,
only the head layers (the region proposal network, classifier
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and mask heads) of the network are trained; (2) in the next
50 epochs, the upper 4+ layers are trained; and (3) in last 20
epochs all layers in the network are trained. They achieved
0.5084 mAP (forIoU=0.5t00.95), 0.8632 average precision
(AP) (for IoU = 0.5), and 0.6157 AP (for 0.75 IoU).

Privalov et al. [101] trained a Mask R-CNN network for
DFU instance segmentation. They pretrained their model
using the MS COCO dataset. They used a dataset of 295
wound images for training, and 35 images used for testing.
They reported a DSC of 0.7910. They also performed inter-
and intra-rater analyses using one-way analysis of variance
(ANOVA) to analyse the variance between and within group
means. This revealed no statistically significant differences
for all raters for the network in the first round (F = 1.424
and p > 0.228) and the second round (F = 0.9969 and
p > 0.411) for segmentation. The repeated measure analyses
revealed no statistically significant differences in the quality
of segmentation for the four medical experts (F = 6.05 and
p > 0.09). However, they observed some intra-rater vari-
ability.

Evidence of the effect of reducing the size of the train and
test sets on deep learning wound segmentation models was
highlighted by Caoetal. [107]. They reported a series of base-
line results using 4000 DFU images trained on a selection of
segmentation networks. They then trained using their own
instance segmentation model (a variant of Mask R-CNN)
with a reduced dataset of 1426 images and observed a signif-
icant increase in mAP (0.6940 to 0.8570). However, it was
not clear if the increases in performance metrics were due to
the new model they created or a result of simply reducing the
number of images used in their experiments. The study indi-
cated that only DFU wound images with clear ulcer edges
and non-blurry cases were used in the experiments with the
proposed model, suggesting that challenging examples were
excluded.

5 Meta-analysis

A total of 40 chronic wound deep learning segmentation
papers were reviewed in this review, with a total of 43 exper-
iments from the papers summarised in Table 1. Figure 4
summarises the number of publications in chronic wound
deep learning research covered by this review and meta-
analysis.

The total number of experiments that reported DSC val-
ues is 34, and the mean DSC value for all experiments is
0.8733. In terms of test sets, all experiments reporting DSC
values can be divided into two distinct groups: (1) experi-
ments that use between 5-289 test images; (2) experiments
that use between 1530-2686 test images. A total of 38 exper-
iments used test sets ranging from 5-289 images, and a total
of five experiments used test sets ranging from 1530-2686

images. The mean DSC for experiments in the 5-289 test
images range is 0.8872. The mean DSC for experiments in
the 1530-2686 test images range is 0.7695. These mean DSC
values indicate a strong correlation between test set size and
reported DSC, with a difference of 0.1177 between those
experiments that use < 300 test images and those that use
> 1500 test images. Figure 5 shows the relationship between
test set sizes and DSC values. The trend line demonstrates a
negative correlation, i.e. smaller test sets resulted in higher
DSC, and larger test sets resulted in lower DSC values.

The total number of experiments that reported mloU val-
ues is 16, and the mean IoU value for all experiments was
0.7976. In terms of test sets, the experiments that reported
mloU values can be divided into two distinct groups: (1)
experiments that use between 6—289 test images; (2) experi-
ments that use between 2000-2686 test images. A total of 13
experiments used test sets ranging from 6-289 images, and
a total of 3 experiments used test sets ranging from 2000—
2686 images. The mloU for experiments in the 6-289 test
images range is 0.8106. The mlIoU for experiments in the
2000-2686 test images range is 0.7414. As with the pre-
vious DSC analysis, these mIoU values indicate a negative
correlation between test set size and reported mloU, with
a difference of 0.0692 between those experiments that use
< 300 test images and those that use >= 2000 test images.
Figure 6 shows the relationship between test set sizes and
mloU values. The trend line demonstrates that higher mloU
values correlate with smaller test sets, and that lower mloU
values correlate with larger test sets. Although this trend is
less prominent when compared to the DSC results (see Fig.
5), there is still a clear correlation.

Of the 43 experiments summarised in Table 1, 18 experi-
ments reported a DSC value of > 0.9, all of which used test
sets that comprised < 300 images. The highest DSC value
among all experiments that used >= 1500 test set images
is 0.8470. Only one experiment reported an mloU value of
> (.9, which used a test of < 300 images, while there were
no experiments which reported an mlIoU > 0.9 when > 300
test set images were used.

The mean test set size for all experiments is 344. The
mean test set size of the experiments that comprise < 300
images is 120. The mean test set size of the experiments
that comprise > 1500 images is 2044. The total number
of experiments that use < 300 test images is 38. The total
number of experiments that use > 1500 test images is 5. The
total number of experiments that reported DSC values is 34.
The total number of experiments that reported mloU values
is 16. The total number of experiments that reported both
DSC and mloU is 7.

These findings show that, on average, experiments that
use smaller test sets (< 300 images) reported significantly
higher DSC and mloU values compared to experiments that
use > 1500 test set images. We observe that the R? values
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Fig.4 Graph showing the
number of deep learning chronic
wound segmentation
publications between 2015 and
2023. Note that the 2023 figure
only includes papers published
up to March 2023

Fig.5 Scatter chart showing the
negative correlation between test
set sizes used in the literature
and corresponding DSC values

Fig.6 Scatter chart showing the
negative correlation between test
set sizes used in the literature

and corresponding mloU values
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for both graphs (Figs. 5 and 6) might be considered relatively
low (R* = 0.2163 for DSC, R? = 0.0551 for mloU) in some
fields of study. However, R? values are domain dependent,
and in the absence of similar studies in this field, we report
these measures as baselines which can be compared against
in future works. A possible limitation of this analysis is that
the number of experiments that reported the use of test sets
with < 300 images (n = 38) significantly outnumbers those
experiments that reported the use of larger test sets (n = 5).
Additionally, the total number of experiments present in the
analysis may not yet be sufficient to form a comprehensive
assessment. However, given that few experiments in the lit-
erature provide composition details of test sets (discussed
further in Sect. 5.3), we suggest that the trends shown in
Figs. 5 and 6 are at least partly indicative of issues prevalent
in results reported in the literature.

For all experiments reported in Table 1, the smallest train-
ing set used is ten images, and the largest training set size
is 467,000 images. The smallest validation set used is three
images, and the largest validation set size is 200 images. The
smallest test set used is five images, and the largest test set
size is 2686 images. The mean total dataset size (train, valida-
tion, and test) for all experiments in Table 1 is 8712 images.
Table 2 shows a summary of the total number of datasets
used in the experiments reviewed in the literature.

The mean width and height of all images used in the exper-
iments detailed in Table 1 is 585 and 506 pixels, respectively.
The mean total number of pixels used in the experiments
reported in Table 1 is 296,010 pixels per image.

A summary of the deep learning model architectures used
in the experiments detailed in Table 1 is shown in Fig. 7.
These figures clearly show that U-Net (20 experiments) is the
most commonly used model architecture in chronic wound
segmentation deep learning research, followed by FCN (5
experiments) and LinkNet (4 experiments).

5.1 Test sets

One of the main observations in the field of deep learning for
wound segmentation is that most studies use very small test
sets (< 300 images) and that test metrics, such as DSC and
mloU, often correspond to test set size (see Figs. 5 and 6).
Studies that report results from smaller test sets, on average,
show significantly higher test metrics, while studies that use
larger test sets, on average, show significantly lower test met-
rics. The use of very small test sets in the majority of chronic
wound deep learning studies means that those segmentation
models may not be sufficiently challenged during testing.
Such models are therefore unlikely to generalise well in real-
world settings. Comparison of evaluation and test metrics
across existing studies should therefore be regarded tenta-
tively, especially in cases where small test sets have been
used.

5.2 Qualitative assessment

Deep learning chronic wound segmentation methods have
shown to provide high levels of accuracy in laboratory set-
tings [108]. However, very few studies focus on expert
qualitative assessment. This is understandable, given that
obtaining access to clinical experts can be difficult. How-
ever, given that the aim of these studies is to work towards
the development of systems that will be used in real-world
settings, expert qualitative assessment should be regarded as
a key factor in results analysis. Research groups who do not
have access to clinical experts should consider collaboration
with those groups who do in order to advance the field, and
to promote the idea of human-in-the-loop in the development
of chronic wound segmentation models.

A recent study reported very poor inter-rater agreement
in determining the presence and regions of various tissue
types, with results as low as 0.014 (Krippendorff alpha value)
for epithelial tissue [48]. For the largest publicly available
chronic wound dataset (DFUC 2022), we analysed the inter-
reliability of the expert coders on ~ 20% of the data. For the
delineation between experts, the mean DSC is 0.6982 (sd =
0.2545), with an mIoU of 0.5877 (sd = 0.2670), a recall of
0.9112 (sd = 0.1907), a precision of 0.6383 (sd = 0.2846),
and an accuracy of 0.9869 (sd = 0.0291). The sd values
from these results indicate significant variation in terms of
mean DSC, mloU, recall, and precision. Variability in expert
labelling used for ground truth masks may mean that using
only ground truth masks during testing could be insufficient
when assessing the true accuracy of wound segmentation
model prediction results. An example from the DFUC 2022
dataset showing expert rater delineation variability is shown
in Fig. 8.

5.3 Data characterisation

Another notable observed limitation of current deep learning
research in chronic wound segmentation is the lack of infor-
mation regarding how well balanced datasets are when used
in experiments. Data characterisation can be a vital compo-
nent in deep learning research experiments [109]. Details of
the exact composition of chronic wound datasets when used
in deep learning segmentation experiments is often poorly
understood and rarely reported. Examples of balancing may
include any combination of the following:

Balance by wound class / tissue composition.

Balance by wound size / severity.

Balance by patient clinical data (e.g. ethnicity, age, etc.).
Balance by image quality (e.g. lighting or image sharp-
ness).

5. Balance by feature similarity.

e
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Table 2 Summary of datasets

used in the experiments in the Dataset Experiments
reviewed literature Private 24
Medetec 11
DFUC 2022 10
FUSC 8
Internet scraped images 4
NYU Wound Database 3
AZH 3
WoundsDB 2
“multidisciplinary approach to chronic wounds” dataset 2

Fig.7 Graph summarising the 25
different model architectures
used in the experiments in the

reviewed literature 5
20 +

o+
U-Net ConvNet

MobileNet 3D DeepMedic  Deeplab

Mask R-CNN RoleNet LinkNet HarDNet-DFUS VENet

(b) ()

Fig.8 Illustration showing delineation variability between two clinical experts—a shows the original wound image; b shows the delineation from
expert A; ¢ shows the delineation from expert B. Example taken from the DFUC 2022 dataset. Note that images are cropped for illustrative purposes

Studies that do not attempt to address at least a few of
these possible imbalances may produce unreliable results.
For example, a test set that includes only higher quality
images means that the results may be biased as only easy
to segment examples are used for inference. Another perti-
nent example is when test sets contain images that have high
visual similarity with other images in either the train or test set
[110]. Removal of duplicate images present within and across
train and test sets is also an important factor [111]. Imbal-
ances such as these are unlikely to allow for sufficient testing

@ Springer

of the ability of a trained model to generalise, and resulting
test metrics are likely to show over-estimates of a model’s
true ability. In studies where small test sets are used, these
factors may be magnified considerably. These findings corre-
late with recent studies in other deep learning domains which
note a sparsity of transparency and dataset characterisation
[112, 113]. Thorough data understanding and transparency
should be seen as a critical component of all deep learning
research in order to obtain reliable results, which in turn will
help to establish clinical confidence in model predictions.
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5.4 Experiment design

Studies that use pretrained models with large general datasets
such as Pascal VOC or ImageNet, often do not report on the
effect of the pretraining, i.e. comparing models trained with
and without pretraining. This is common among most wound
segmentation papers, whereby the effect of an experiment
component is usually not tested in isolation. Another exam-
ple of this phenomenon is in the use of augmentation methods
during training phases [114]. Reporting of results from stud-
ies which conduct experiments on individual augmentation
methods in wound segmentation for different datasets would
be highly useful for future research. Similar data have been
published in other medical imaging domains [115], which
should act as a motivator to make progress in the field of
deep learning in chronic wound research.

5.5 Challenging cases

Several studies investigated in this review (n = 6: [87, 91,
97, 98, 103, 107]) noted that challenging examples had been
removed prior to training and testing models. Such cases
may include photographs with poor or inconsistent lighting,
blurry features, small wounds, or wounds that are present on
curvatures of the anatomy. In those studies that reported the
removal of challenging examples, experiments had essen-
tially been setup with ideal conditions in order to obtain the
best results. We posit that reliable real-world wound segmen-
tation systems should be designed to be highly robust and be
able to handle such challenging cases, and that this aspect
may be one of the key facets in moving the field forward,
especially in terms of home monitoring of wounds where
capture conditions are less likely to be controlled.

5.6 Reproducibility

Our findings show that not all published research works in
wound segmentation are easily reproducible. Reproducibility
and transparency in terms of source code sharing are vital in
this domain to allow for other researchers to fully benefit from
the findings of others, and to help build on existing methods.
Model architectures may be reproducible, without publicly
available source code, by use of model details recorded in
publications. However, this highly depends on the quality of
the details within each paper, and incurs a significant time
commitment as model architectures have to be reconstructed
from scratch. Of the 40 papers we reviewed, ten papers indi-
cated that they had modified model architectures, of which
two papers [90, 94] provided online repository links to their
source code.

5.7 Chronic wound dataset availability

Sharing of chronic wound datasets has improved in recent
years [116-118]; however, compared to other medical
domains, the total number of publicly available datasets is
still very small. One of the main reasons for this is the dif-
ficulty in accessing clinical experts who are able to provide
sufficient ground truth labelling [119]. Additionally, General
Data Protection Regulation (GDPR) compliance may also
present barriers to data sharing. Scenarios that may prevent
GDPR compliance include the presence of patient Personally
Identifiable Information (PII) within dataset images and asso-
ciated clinical data. Model explainability also falls under the
remit of GDPR which poses additional ethical issues [120].
Debiasing of deep learning datasets may also fall under spe-
cial categories of data when processing patient images for
use in training deep learning segmentation models [121].
The lack of publicly available ethnically diverse datasets also
poses a problem for chronic wounds segmentation research,
especially those comprising darker skin tones [122]. Of those
studies that claim to have used ethnically diverse wound
datasets, the exact composition of those datasets was not
reported, so it is unknown how well those models were able
to generalise across different ethnic groups.

Due to the significant range of features found across dif-
ferent chronic wounds at different stages of development,
availability of highly heterogeneous wound datasets should
be seen as critical to the progress on scientific investigation
in the field. Of the 43 experiments summarised in Table 1, 24
papers used private datasets. This includes datasets that were
claimed to be publicly available but were either not found
online or had been unsuccessfully requested. These findings
indicate that the vast majority of deep learning studies in
chronic wounds have not shared their datasets. The sparsity
of public datasets and the abundance of private datasets repre-
sents a serious challenge for research in this domain and may
be a significant limiting factor in research progress. A sum-
mary of publicly available chronic wound datasets is shown
in Table 3.

6 Recommendations

This review highlights some of the major challenges present
in current deep learning research in chronic wound segmenta-
tion. Based on our findings in the review and meta-analysis,
we propose a number of recommendations for researchers
working in this domain:

1. Future research works should focus on significantly
increasing test set sizes to provide a more meaningful
assessment of chronic wound segmentation that better
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Table 3 Summary of publicly

available chronic wound Publication Year Dataset Resolution Train Test Total

datasets Thomas et al. [66] 2014 Medetec Various - - 608
Yang et al. [123] 2016 YWHD 5184 x 3456 - - 201
Alzubaidi et al. [124] 2020 Alzubaidi Various - - 1036
Wang et al. [78] 2020 AZH* 224 x 224 831 278 1109
Krecichwost et al. [125] 2021 WoundsDB* 4896 x 3264 - - 188
Wang et al. [79] 2021 Medetec* Various 152 8 160
Wang et al. [79] 2021 FUSC* 512 x 512 1010 200 1210
Kendrick et al. [93] 2022 DFUC 2022%* 640 x 480 2000 2000 4000

YWHD—Yang Wound Healing Dataset; AZH—Advancing the Zenith of Healthcare; FUSC—Foot ulcer
segmentation challenge; DFUC—diabetic foot ulcer challenge; *—dataset includes ground truth masks

reflects the large variety of wound features found in real-
world settings. Taking into account the current publicly
available chronic wound datasets, we recommend a train
and test split of 50:50.

2 Researchers should share their source code with the
research community so that others may more easily build
on research progress. Exact details of environment setup
should also be included as training environments can be
highly dependent on specific library versions.

3. Researchers should attempt to integrate multiple pub-
licly available chronic wound datasets into their experi-
ments. This will help to gauge a better understanding of
the ability of a given model, especially in cases where
datasets from multiple sources are used as test sets.

4. Researchers should seek to collaborate in cases where
access to clinical expertise is limited. This will help to
increase the currently limited reporting of qualitative
measures.

5. Rather than exclude challenging cases from experi-
ments, researchers should include such examples and
devise methods that are able to better accommodate
these types of images in order to make models more
robust.

6. Researchers should seek to better understand the nature
of the data they are working with. This will help to
improve the scope of understanding in the field and may
reveal aspects that have not previously been appreciated
or considered.

From the above suggestions, we note that simply increas-
ing test set size may still not be sufficient when determining
a model’s true ability to generalise if the composition of the
test set is not fully understood. However, in the absence of a
means of fully understanding the composition of the test set,
increasing the test set size may help to negate some of the
issues associated with the use of small test sets especially if
test sets from multiple sources are used.

In the long term, the most accurate overall assessment
of the ability of a model to generalise would come from a

@ Springer

combined analysis of dataset understanding, test metrics, and
qualitative feedback obtained from clinical experts in wound
care.

7 Conclusions

In this review and meta-analysis of chronic wound segmen-
tation methods in deep learning, for the first time, we identify
some of the major issues that present significant obstacles in
this research domain. The most notable of these issues is the
use of very small test sets in the vast majority of studies com-
bined with a lack of data understanding. Models evaluated
on such test sets are unlikely to perform well on out of distri-
bution examples meaning that they will likely not generalise
well on the wide range of chronic wound features found in
real-world settings. This work represents the most substan-
tial review of deep learning in chronic wound segmentation to
date, and provides researchers with key insights into possible
areas of research progress.
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