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ABSTRACT. We classify the complemented subspaces of Co(L x L),
where L is an “exotic” locally compact Hausdorff space recently
constructed by Candido under Ostaszewski’s &-principle.

1. INTRODUCTION

The problem of classifying all complemented subspaces of a given
Banach space is notoriously challenging. This difficulty is particularly
pronounced in the case of C(K)-spaces, i.e. spaces of continuous func-
tions on compact Hausdorff topological spaces K. To the best of our
knowledge, complemented subspaces have only been classified for a lim-
ited number of C(K)-spaces.

For classical Banach spaces, in the separable setting, the list reduces
to ¢o [11] and Co(w®) [4]. The classification of complemented subspaces
of the former can be further extended to arbitrary cardinalities co(T")
[6].

For other non-separable spaces, a classical result of Lindenstrauss [5]
establishes that every infinite-dimensional complemented subspace of
(s = C(PN) is isomorphic to ¢. More recently, Johnson, Kania and
Schechtman [7] also added the spaces of the form ¢ (') to the list of
C(K)-spaces with known complemented subspaces.

In the non-classical setting, a new line of research has produced nu-
merous exotic locally compact spaces whose complemented subspaces
can be classified. These constructions are often initially achieved under
additional set-theoretical assumptions.
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To name a few, Koszmider originally constructed, under the Contin-
uum Hypothesis or Martin’s Axiom, a scattered locally compact Haus-
dorff space K, such that the only infinite-dimensional complemented
subspaces of Cy(K) are ¢y and Cy(K) itself [8]. These additional set-
theoretical assumptions were later removed by Koszmider and Laustsen
[9].

In a similar vein, under &, Koszmider and Zieliniski [10] constructed
a scattered locally compact Hausdorff space K such that every infinite-
dimensional complemented subspace of Cy(K) is isomorphic to either
co, Co(w®), or Cy(K). Candido [3] further developed this construction
to create a space L where a straightforward classification of operators
on Cy(a x L) for any ordinal o was achievable. This work enabled him
to classify the complemented subspaces of Cy(w x L) and Cy(w® x L).
Recently, we have extended the classification of operators to a more
general setting, leading to the classification of complemented subspaces
in other spaces of the form Cy(w x K) [1].

A further modification by Candido [2] led to the construction of
another scattered, locally compact Hausdorff space L for which the
bounded operators on Co(L x L) can be explicitly described. We built
on this work to classify the complemented subspaces of Cy(L x L).
Following Candido’s notation, we let {2; and {25 be the locally compact
Hausdorff spaces defined so that Cy(€21) and Cy(€2s) are isometrically
isomorphic to the symmetric and antisymmetric functions on Co(Lx L),
respectively. Our findings are summarized in the following theorem.

Theorem 1.1 (&). Let L be the locally compact Hausdorff space built
by Candido [2]. Then any complemented subspace of Co(L x L) is
isomorphic to exactly one of the following: 0, R™, ¢q, Co(w®), Co(L)™,
Co(wx L), Co(w” x L), Co(21), Co(Q22) or Co(L x L) for some n € N.

Consequently, for j = 1,2, the complemented subspaces of Cy(2;)
are precisely: 0, R™, ¢y, Co(w*), Co(L)", Co(w x L), Cy(w” x L) and

Before we move on to the proof of our main theorem, we recall the
remarkable description of operators on Cy(L X L) as proven by Can-
dido. Specifically, each bounded operator on Cy(L x L) can be uniquely
expressed as a linear combination of six well-understood types of oper-
ators, which we introduce below.

We denote by I the identity operator on Cy(L x L), and define the
transposition operator J : Co(L x L) — Co(L x L) by

J(f)(@,y) = f(y,x).
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Recalling that Co(L x L) is isometric to the injective tensor prod-
uct Co(L)®.Cy(L), we can construct operators induced by the tensor
product. These are referred to as matrixz operators. Specifically, given
operators Ry, Re, R3, Ry : Co(L) — Cy(L) with separable range, we
define

Ry Rs
Ry Ry

Finally, we have the diagonal multiplication operators M, and Ny, for
g,h € Cy(L), defined as follows:

My(f)(z,y) = gW) f(z,2), Nu(f)(z,y) = h@)f(y.y).

For more details and a deeper discussion of these operators, we refer
to the aforementioned work of Candido, where the following character-
ization of operators on Cy(L x L) can also be found.

):Rl®]+JO(R2®1)+JO(I®R3)+I®R4.

Theorem 1.2 (Candido [2]). Assuming Ostaszewski’s &-principle, there
exists a non-metrizable scattered locally compact Hausdorff space L of
height w such that, for every operator T : Co(L x L) — Co(L x L),
there exist unique scalars p,q € R, unique functions g,h € Cy(L),
unique separable range operators Ry, Re, R3, Ry : Co(L) — Cy(L), and
a unique separable range operator S : Co(L x L) — Co(L x L) such that

_ Ry Ry
T =pl+qJ+ My;+ N+ <R2 R4> +S.
We give a brief layout of the rest of the paper. In Section [2 we
introduce the basic notation and technical results required for the proof

of Theorem [I.I} The proof is then presented in Section

2. NOTATION AND TECHNICAL RESULTS

We start by introducing some technical notation and recalling some
properties of the space constructed by Candido. We adhere to standard
notational conventions and adopt the terminology of Candido [2] and
[3] whenever appropriate. For two Banach spaces X and Y we write
X ~Y tomean X and Y are isomorphic, while we use X =Y to say

that they are isometrically isomorphic.

From now on L will always denote the scattered locally compact
space built by Candido [2] under Ostaszewski’s d-principle. We adhere
to the convention of identifying each ordinal p < w; with p = {a < p}
when appropriate. By Candido’s construction, there exists a finite-to-
one continuous surjection ¢ : L — wy; for each p < w; we denote by
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L,=¢plp+1ll={zeL:p)ep+1},sothat {L,: p<w}isa
clopen cover of L.

For each clopen subset V' of a scattered, locally compact Hausdorff
space K we isometrically identify Cy(V') with the subspace of functions
that vanish outside V. Observe that if V' C K is a clopen subset, we
have a decomposition

Co(K) = Co(K\V) @ Co(V).

As an important case of this phenomenon, for each ordinal p < wy,
we isometrically identify Co((L\L,)?) and Co(L?\(L\L,)?) with com-
plemented subspaces of Cyo(L x L). Given the pivotal role of these
subspaces in characterizing complemented subspaces, we refer to them
as Z7 = Co((L\L,)?) and Z5 = Co(L*\(L\L,)?), so that Co(L x L) =
Z{ @ Z8§. Further, we denote by 77,75 : Co(L x L) — Co(L x L) the
projections onto Z} and Z¥4 respectively.

For convenience, given an operator 7' in the form of Theorem [I.2]
we will denote Ty = pI 4+ ¢J and To = My + Ny + R + S, where
R = §1 %)) so that T'= T} + T,. The idea is that for an operator

2 Ity
T, the behaviour of T; can be extracted from its action on Z7, while if
we choose p < wy big enough, then the behaviour of T; on Z7 is almost
trivial and it is controlled inside of Z5. We formalize this in the next
result, which was essentially present in Candido’s work.

Proposition 2.1. Given T : Co(L x L) — Co(L x L) as in Theorem
there exists p < wy such that

(a) R[Z{] = {0} and R[Cy(L x L)) C Z&.

(b) S[Z¢] = {0} and S[Cy(L x L)] C Z5.

(¢) M,[Co(LxL)] C Co(Lx L,) C Z§ and Ny[Co(Lx L)] C Co(L,x
L)c Z.

In particular, it follows that To[Co(L x L)] C Z5.

Proof. @ is Proposition 5.6 in [2], while @ can be found in the proof
of Theorem 1.1 in [2]. follows from the form of M, and N}, coupled
with the fact that, since g, h € Cy(L), there exists p < w; such that
suppg € L, and supph C L,. 0

When classifying the complemented subspaces of Co(L x L), it is
helpful to distinguish between subspaces that are, in a sense, small.
For convenience, we introduce the following definition.
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Definition 2.2. A closed subspace Y C Cy(L x L) is called small if it
is isomorphic to one of the following spaces:

0, R" ¢, Cow”), Co(L)", ColwxL), or Cyw”x L).
We denote by X; the collection of all small subspaces of Cy(L x L).

Finally, we recall some additional properties already proved by Can-

dido.

Proposition 2.3 (Candido).  (a) Foranyp < wy, Co(L\L,) ~ Cy(L),
Z ~ Co(L x L) and Z§ € X,.
(b) If Y € X, and Z is a complemented subspace of Y, then Z € X.
(c) If Y € X then Co(w® x L) ~ Cy(w” x L) ® Y. In particular,
Co(L X L) ~ Co(L X L) Y.
(d) For any p < wi, there exists p < A\ < wy such that Co(L \\L,) ~
C’o(w‘“).

Proof. [(a)] Co(L\L,) ~ Co(L) follows from [3, Proposition 5.5], Zf ~
Co(L x L) by the previous part and the injective tensor product iden-
tification while Z5 € X, by [2, Proposition 6.3]. [(b)| Follows from [3]
Remark 5.8], while is elementary. Finally, @ follows reasoning as
in the proof of [3, Proposition 5.4]. O

We would like to explore now how Z{ and Z§ transform under T3.
To this end, the following definition will be useful.

Definition 2.4. Given a subset V' C L x L, we say that V' is symmetric
if (x,y) € V implies (y,z) € V.

Remark 2.5. If V. C L x L is a symmetric clopen set, then T1[Cy (V)] C

Co(V). In particular, for any p < wy we have T1[Z)] C Z7 and T1[Z5] C
Z5.

If VC L x L is a symmetric clopen set, we denote by C§(V) the
subspace of symmetric functions on V', that is C§(V') = $(I+J)[Co(V)].
Similarly, we denote by C§*(V') the subspace of antisymmetric functions
on V, in other words C§*(V) = (I — J)[Co(V)]. Recall from the
introduction that, according to this definition, we have C§(L x L) =
Co(§21) and C§*(L x L) = Cp(£22). Naturally, given any symmetric
clopen set V' C L x L we can decompose Cy(V') = C§(V) @ C§* (V).

Moreover, M, and N}, vanish on the antisymmetric functions, so that
if we decompose f € Co(V) as f = f*+ f*, where f* € C§(V) and
f* e C§*(V), we have

M,(f) = My(f*) and Nu(f) = Nu(f*)-

Using this, we can give the first technical ingredient of the proof.
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Lemma 2.6. For every operator T : Co(L x L) — Co(L x L) there
exists p < wy such that T[Z5] C Z5. In particular, if T is a projection
then T[Z5] is a complemented subspace of Co(L x L) and T[Z5] € Xj.

Proof. From Propositionwe can find p < w; such that Ty[Z5] C Z8,
while Remark [2.5| guarantees T1[Z4] C Z%, and thus T'[Z5] C Z5.
Suppose now that T is a projection. Since T[Z5] C Z&, it is easily
checked that T'7§ is also a projection and T[Z5] = Tw5[Co(L x L)], so
that T[Z5] is a complemented subspace. Since T'[Z5] can also be seen
as a complemented subspace of Z4, Proposition @ and @ gives
T[Zf) € X, O

Furthermore, since T, always maps into Z%, in the case that T is
a projection, one can easily deduce the form of T;. Namely, T} will
either be a trivial projection or the projection onto the symmetric or
the antisymmetric functions.

Lemma 2.7. Let T : Co(L x L) — Co(L x L) be a projection. Then
either Ty =0, Ty =35I —J), Ty =35I+ J) or Ty = 1.

Proof. This is an easy consequence of Proposition 2.I] and Remark [2.5]
Indeed, these results together with T being a projection give that Tj
is a projection if we regard it as an operator from 77 into itself. Since
Ty = pl + qJ and J? = I, an elementary argument yields the desired
possible values for p and q. O

The following notation will help us handle the subspaces of symmet-
ric and antisymmetric functions effectively.

Definition 2.8. For U C L x L we define the symmetric complement
of U by U*® = {(y,x) : (z,y) € U}. The set U is called extremally
antisymmetric if (z,y) € U implies (y,x) ¢ U.

Remark 2.9. Forany U C L x L, V = UUU?®° is symmetric. Moreover,
if U is extremally antisymmetric then U NU* = () and V = U LU U**
satisfies VNA(L?) = 0, where A(L?) = {(x,z) : © € L} is the diagonal
of L2.

This provides a straightforward representation of the spaces of sym-
metric and antisymmetric functions on symmetric sets derived from
extremally antisymmetric sets U.

Lemma 2.10. Let U be an extremally antisymmetric clopen set. Then
Co(U) = Cy(ULU*) = Cy*(U U U™).

Proof. The operators (I + J) : Co(U) — C§(U LU U*¢) and (I — J) :
Co(U) — C§*(U U U*¢) provide the desired isometric isomorphisms,
where the range and domain have been restricted as appropriate. [
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We are ready to state the last technical ingredient needed for the
proof of Theorem
Lemma 2.11.  (a) For any p < wy, we have
Co(L x L) ~ C5((L\Ly)*) and Cg*(L x L) ~ C§*((L\L,)?).

(b) We have
Co(L x L)~ Cj(L x L)® Cy(w” x L)
and
CS*(L x L) ~ C§*(L x L) ® Cy(w® x L).

Proof. We proceed with the proof in the symmetric case, with the anti-
symmetric case being analogous. We start proving . By Proposition
@ we can choose A < wy such that Cy(Ly\L,) ~ Cp(w*). Decom-

pose
Co(L x L) = CE((L\(L\L,)*) © CRU L U™) & C3(V) © Gy ((L\L)®),
where
U = (L\Ly) % (I\Laj)
and
V= [(Lasa\Lp) > (LANL,)] U [(EA\Ly) x (Lati\Ly)],
see Figure 1) for an intuitive representation.

u (L\L»)?
Lyt
Ly
V USC
L,u
LA\(L\L,)?
L 8P
L, Ly Ly

FIGURE 1. Partition of L x L in disjoint clopen sets.
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Applying Lemma[2.10] together with our choice of A and Proposition
gives
Co(UUU™) = Co(U) = Co(La\L,)®:Co(L\L+1)
~ Co(w*)®.Co(L) = Cy(w” x L).
On the other hand, Cj((L?\(L\L,)?) is a complemented subspace of

Co((LA\(L\L,)?) = Z5, so that by Proposition and |(b)[ we have
C5((L*\(L\L,)?*) € X,. Since C§(U LU U*¢) ~ Co(w*” x L), Proposition

@ gives
Co((LA\(L\L,)*) @ Co(U L U™) ~ G5 (U L U™),
and thus
Co(L x L) ~ CoU L U*) @ C5(V) ® C3((L\L»)*) = C5((L\L,)?),

as desired.

To prove @, we built upon the reasoning before. Observe that
C§(V) is a complemented subspace of Cy(V'), which in turn is a com-
plemented subspace of Co(L?\(L\Ly)?) = Z3, so that by Proposition

2.3|[(a)] and [(b)] we get C5(V) € X;. Therefore
Couuu*) e Ci(V) ~ C5(U L U™).
It follows that
CS(L x L) ~ CS(U L U*) @ C5((L\Ly)?) ~ Co(w* x L) @ C3(L x L),
where we have applied part [(a)] to C5((L\Ly)?). O

Part @ of the previous lemma together with Proposition @
gives the following.

Corollary 2.12. Let Y € X,. Then
Cy(LxL)~Cy(LxL)®Y and Cy°(L x L) ~C§*(L x L) Y.

3. PROOF OF THEOREM [L.1].

We are now ready for the proof of our main result.

Proof of Theorem[1.1l Each of the spaces is clearly isomorphic to a
complemented subspace of Co(L x L) and they are pairwise non-iso-
morphic. Indeed, the case Cy(w x L) ¢ Cy(w®” x L) follows from [3]
Corollary 1.2] while the rest of the non-trivial cases follow from the
discussion in [2, Section 6]. Thus, we only need to show that any
complemented subspace is isomorphic to one of the claimed ones.

Let X be a complemented subspace of Cy(L x L) and T be a projec-
tion onto X. Choose p < w; as in Proposition 2.1l From Lemma [2.7]
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T1 must take one of four forms, so we divide the proof accordingly.

First, assume that 77 = 0 so that 7" =T, = My + N, + R+ S. Let
feCy(LxL). Since Tf =T*f=T(Tf)and Tf € Z{ by Proposition
2.1] it readily follows that

X =T[Co(L x L)| =T[Z8],
thus Lemma [2.6| gives X € X.

Assume now that 77 = (I — J) and let b € Cy(L x L) be an
arbitrary function. Decompose it as h = f + g where f = n{h € Z¢
and g = whh € Zf. Further, write T'f = f1 + fo where f; = 7n{Tf € ZV
and fo =T f € Z5.

Observe that since 77 is the projection onto the antisymmetric part,
then

Tf=Tif+Taf = f* +Taf,
so that f; = 7T f = #{f* € C&((L\L,)?). Therefore, M,f; =
Nnfi = 0, while Proposition @ and @ guarantee that Rf; =
Sfi = 0. Consequently T5f; = 0 and thus T'f; = T1f1 = f1, which
gives
Tf=Tf=ThH+Tf=f+Tf.
It follows that

Th=Tf+Tg=fi+T(f2+9),
so that
X =T[Co(L x L)] € Cg*((L\L,)*) + TZ4).
The reverse inclusion is easily checked since T" acts as the identity on
Cy*((L\L,)?), therefore X = C§*((L\L,)*)+T[Z4]. Since C§*((L\L,)?) C
Z¢ and T[Z85] C Z5, we have
Co*((L\L,)*) N T[Z5] = {0}.
Moreover, C§*((L\L,)?) is a closed subspace, being the image of the
projection 3(I — J)rf, and T[Z§] is a closed subspace by Lemma .
Thus it follows that

X =Gy ((L\L,y)*) & T(Z5].
By Lemma we have
C5*((L\L,)*) ~ Cg*(L x L),

while T'[Z]] € X, by another application of Lemma[2.6] Corollary
then gives

X ~ Co(L x L) ®T[Z8] ~ Co(L x L) = Co(Q).
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Consider now the case T7 = I, we have that
X =TI[Co(L x L) =T|[Z7]+ T[Z5].

Since Ty = I and 7 Ton{ = 0, it follows that (T'x7)* = Tz}, so that
T[Zf) = Trf[Co(L x L)) is a closed subspace. By Lemma [2.6] T'[Z%] is
also a closed subspace. Observe that

T(20) N T(28] = {0}.

Indeed, if f € T[ZY], then f = Tx!f, while if f € T[Z5] then 7f f = 0,
so that any f € T[Z{] N T[Z8] satisfies f = Tw{ f = 0. It follows that

X =T[Z0) & T|Z5).

We claim that T[Z}] ~ Z7. Indeed, one can explicitly define an iso-
morphism between Z{ and T[Z}] by

A Z0 > TZ0, f—Tf

and
B:T[Z}] = Z7, f — 7l f.
A quick calculation shows AB = ]T[ZP and BA = 1 z¢, and thus
T[Z{) ~ Z{. Proposition [2.3[(a)] and coupled with Lemma [2.6]
gives
X ~ Z0 @ T[Z8] ~ Co(L x L)

Lastly, assume that T} = %([+ J). In this case, Tom{Ty7] = Tor] and
Ty = 0, so that we still have (T'w{)? = Tw{. Therefore, arguing as
in the previous case, X = T[Z{]|®T [Z§’ |. As before, it is easily checked
that in this case T[Zf] ~ C§((L\L,)?). Combining Lemmas [2.6) and
2.11| with Corollary - gives X ~ C§(L x L), finishing the proof. [

Remark 3.1. Note that it is necessary to consider different cases. When
Ty=1orT, = %(I + J), the operator T'r{ acts as a projection, thus
the proof in these two cases is essentially the same. However, this is no
longer true when 77y = 0 or T} = %(I —J), requiring a slightly different
argument.
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