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Abstract. For a scattered, locally compact Hausdorff space K,
we prove that the essential norm on the Calkin algebra
B(C0(K))/K (C0(K)) is a minimal algebra norm. The proof re-
lies on establishing a quantitative factorization for the identity
operator on c0 through non-compact operators T : C0(K) →
X, where X is any Banach space that does not contain a copy
of ℓ1 or whose dual unit ball is weak∗ sequentially compact. It
follows that, for every ordinal α, the algebras B(C[0, α])) and
B(C[0, α]))/K (C[0, α])) have an unique algebra norm.

1. Introduction and Main Results

1.1. Algebra norms, minimality and maximality of norms. By
an algebra norm on a (real or complex) algebra A we mean a vector
norm on A which is submultiplicative. We say that an algebra A admits
an unique norm if any two algebra norms on A are equivalent. We also
have the weaker notion of admitting a unique complete norm, which
simply says that any two complete algebra norms on A are equivalent.

Central to uniqueness-of-norm problems are the notions of minimal-
ity and maximality of a norm. An algebra norm ∥·∥ on A is minimal
(respectively, maximal) if for any other algebra norm |||·||| on A, there
exists a constant c > 0 such that c ∥·∥ ≤ |||·||| (respectively, there exists
C > 0 such that |||·||| ≤ C ∥·∥). Observe that, if an algebra norm is
both minimal and maximal, then it is the unique norm for the algebra
A. Similarly, if a complete norm is either minimal or maximal, then
the open mapping theorem gives that it is the unique complete norm.
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2 A. ACUAVIVA

Therefore, uniqueness-of-norm problems can be reframed as prob-
lems about the minimality and maximality of norms. These two prob-
lems are, in general, quite different. We shall focus on these problems
for the Banach algebra B(X) of bounded operators on a Banach space
X, as well as its quotients. We start by examining the problem of
minimality of the norm.

Among the first results in this direction is a celebrated theorem of Ei-
delheit which states that, for any Banach space X, the operator norm
on the algebra B(X) is minimal [7] (and therefore it is the unique
complete norm). A natural next step is to ask whether similar phe-
nomena occur for quotients of B(X), most notably the Calkin algebra
B(X)/K (X), where K (X) denotes the ideal of compact operators.
In this direction, Meyer [17] showed minimality of the essential norm
for X = c0 and X = ℓp, 1 ≤ p < ∞. In his PhD dissertation, Ware
undertook a systematic study of the uniqueness-of-norm problem for
Calkin algebras, significantly extending Meyer’s work. He proved the
minimality of the essential norm for a large class of Banach spaces
X, including finite direct sums of c0 and ℓp spaces, the infinite sums(⊕

n∈N ℓ
n
p

)
c0

and
(⊕

n∈N ℓ
n
p

)
ℓq

, Tsirelson’s space T and its dual T ∗, and

the James spaces Jp for 1 < p < ∞ [27]. More recently, Johnson and
Phillips [13] have shown the minimality of the essential norm in the
Calkin algebra for X = Lp, 1 < p < ∞, while Laustsen and Arnott [3]
have shown minimality whenever X = C0(KA), where KA is a Mrówka
space. For a broader and more in-depth perspective on this problem,
we refer the reader to the recent paper by Arnott and Laustsen [3]. For
a more detailed discussion specifically in the context of Calkin algebras,
we recommend the PhD thesis of Ware [27] and the survey article by
Skillicorn [24].

Our main result for the minimality problem is summarised in the
following theorem.

Theorem 1.1. Let K be a scattered, locally compact Hausdorff space
and consider the Calkin algebra B(C0(K))/K (C0(K)). Then the es-
sential norm ∥·∥e is minimal. In particular, the Calkin algebra admits
a unique complete algebra norm.

The proof of the previous result is based on a bounding technique in-
spired by the Eidelheit-Yood method, as elegantly presented in Ware’s
thesis [27, Theorem 1.1.2], together with a result about uniform fac-
torizations of the identity on c0, Theorem 1.6, which we present later
and believe may be of independent interest.
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We now turn to the question of the maximality of norms. To high-
light the contrast with the minimality problem, observe that while
Eidelheit [7] proved that the operator norm is minimal in B(X) for
any Banach space X, an example of Read [20] gives a Banach space
such that the operator norm on B(X) is not maximal (equivalently,
there are spaces X such that B(X) admits a discontinuous algebra
homomorphism into a Banach algebra).

Observe that the maximality of the norm passes down to quotient
spaces, while minimality does not. This is because the maximality
of the norm is equivalent to proving that every homomorphism from
the algebra into a Banach algebra is continuous. This characterisation
explains why, when proving the maximality of the norm on a Calkin al-
gebra, one usually focuses on proving the same question for the algebra
of operators B(X). This gives rise to the following natural question.

Question 1.2. Is there a scattered, locally compact Hausdorff space
K such that B(C0(K)) admits a discontinuous homomorphism into a
Banach algebra?

Under the continuum hypothesis (CH), our previous question admits
a positive answer if one drops the scattered condition, see [15, Remark
40], however, the space discussed there is far from being scattered.
In upcoming work, we have managed to construct a scattered, locally
compact Hausdorff space K such that, under (CH), B(C0(K)) admits a
discontinuous homomorphism into a Banach algebra [1]. The question
remains open if the assumption on (CH) is dropped.

When dealing with this automatic continuity question for operator
algebras B(X), a famous theorem of B. E. Johnson [12] shows that it is
enough for the space X to be isomorphic to its square X⊕X (or, more
generally, to admit a continuous bisection of the identity). Neverthe-
less, this criterion alone proves insufficient for numerous spaces, even
within the realm of continuous functions on scattered compact Haus-
dorff spaces. As an illustration, Semadeni [23] showed that C([0, ω1])
fails to be isomorphic to its square, where ω1 represents the first un-
countable ordinal. Even more, Loy and Willis [16] went on to prove
that this space cannot admit a continuous bisection of the identity,
thus rendering Johnson’s result inapplicable.

That being said, Ogden [18] has proved that every homomorphism
from B(C([0, ωη])), where ωη is the first ordinal of cardinality ℵη for
an ordinal η, to a Banach algebra is continuous. We provide a brief
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account of how Ogden’s result extends to all ordinals α, yielding the
following.

Theorem 1.3. Let α be an ordinal. Then any homomorphism from
B(C([0, α])) into a Banach algebra is continuous.

The previous theorem, coupled with Theorem 1.1 and Eidelheit’s
theorem, gives a solution to the uniqueness of norm problem for the
algebra of operators and the Calkin algebra on ordinal spaces.

Corollary 1.4. Let α be an ordinal. Then the algebra of operators
B(C([0, α])) and the Calkin algebra B(C([0, α]))/K (C([0, α])) admit
an unique algebra norm.

Lastly, we turn our attention to another property of interest in the
study of algebra norms, namely Bonsall’s minimality property, see [25].
The formal definition is as follows, an algebra norm ∥·∥ on an algebra
A has Bonsall’s minimality property if ∥·∥ = |||·||| whenever |||·||| is any
other algebra norm on A satisfying |||·||| ≤ ∥·∥. We obtain the following.

Theorem 1.5. Let K be a scattered, locally compact Hausdorff space
and consider the Calkin algebra B(C0(K))/K (C0(K)). Then the dual
essential norm T 7→ ∥T ∗∥e has Bonsall’s minimality property.

1.2. Quantitative factorizations of the identity. Factorizations of
idempotent operators play a prominent role in the study of the algebra
B(X) of bounded operators on a Banach space X. For instance, such
factorizations are central to the classification of the closed ideals of
B(X), and they also feature prominently in the study of the unique-
ness of algebra norms. In our case, we will establish the following
quantitative result.

Theorem 1.6. Let K be a scattered, locally compact Hausdorff space
and let X be a Banach space that does not contain a copy of ℓ1 or
for which the unit ball of X∗ is weak∗ sequentially compact. Then for
any non-compact operator T : C0(K) → X and any ε > 0, there exist
operators U ∈ B(X, c0) and V ∈ B(c0, C0(K)) such that

UTV = Ic0 and ∥U∥ ∥V ∥ <
2

∥T∥e
+ ε.

We also provide a further improvement of the previous theorem,
namely, we show how the upper bound on the norms of the operators
U and V is intimately related to the essential norm of the adjoint
operator of T , obtaining a characterisation of this norm.

Theorem 1.7. Let K be a scattered, locally compact Hausdorff space
and let X be a Banach space that does not contain a copy of ℓ1 or for
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which the unit ball of X∗ is weak∗ sequentially compact. Then for any
non-compact operator T : C0(K) → X

∥T ∗∥e = sup{∥U∥−1 ∥V ∥−1 : UTV = Ic0}.

Remark 1.8. Theorem 1.6 could also be derived from Theorem 1.7 to-
gether with a duality result due to S. Axler, N. Jewell, and A. Shields
[5]. Although their result is stated only for the case where the domain
and codomain coincide, a careful reading of the proof shows that it
suffices for the dual of the domain to have the λ-metric approximation
property for their argument to go through.

Remark 1.9. If K has an accumulation point, i.e. if C0(K) ̸= c0(Γ), the
constant 2 is sharp in Theorem 1.6, since in this case there exists an
operator T ∈ B(C0(K)) such that ∥T∥e = 2 while ∥T ∗∥e = 1. Clearly,
if C0(K) = c0(Γ) we have ∥T∥e = ∥T ∗∥e.

While our motivation regarding this factorization stems from the
aforementioned paper of Arnott and Laustsen [3], the origin of the
ideas predates significantly in time. The starting point is the following
classical theorem of Pe lczyński. Observe that when K is scattered,
compactness and weak compactness coincide.

Theorem 1.10 (Pe lczyński [19]). Let K be a locally compact Hausdorff
space and X be a Banach space. Then an operator T : C0(K) → X is
non-weakly compact if and only if T fixes a copy of c0.

We include a brief proof, based on the presentation in [2, Theo-
rem 5.5.3], as the reader may observe that the arguments in our proof
of Theorem 1.6 constitute quantitative refinements of those presented
therein.

Proof. Let T : C(K) → X be non-weakly compact. By Gantmacher’s
theorem, T ∗ : X∗ → C(K)∗, where C(K)∗ = M(K) is the space of all
finite regular Borel measures on K, is also non-weakly compact; that is,
the bounded set T ∗(BX∗) ⊆ M(K) is non-relatively weakly compact.
By Grothendieck’s classical characterisation of non-weak compactness
in these spaces [9], there exist δ > 0, a disjoint sequence of open sets
(Un)∞n=1 in K, and a sequence (x∗

n)∞n=1 ⊆ BX∗ such that if νn = T ∗x∗
n

then νn(Un) > δ for all n ∈ N.
For each n we can find a compact set Fn ⊆ Un such that νn(Un\Fn) <

δ/2. By Urysohn’s lemma, there exists fn ∈ C(K), 0 ≤ fn ≤ 1 such
that fn = 0 in K\Un and fn = 1 in Fn. The map S : c0 → C(K)
defined by Sen = fn is an isometric embedding of c0 into C(K), where
(en)∞n=1 is the canonical basis of c0.
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Note that the operator TS : c0 → X satisfies

inf
n∈N

∥TSen∥ ≥ inf
n∈N

|x∗
n(TSen)| = inf

n∈N
|T ∗x∗

n(fn)| ≥ δ/2.

It follows from a result of Rosenthal (see [21], Remark 1 after Theorem
3.4), that TS is an isomorphism on a copy of c0, and thus the same
holds for T . □

One can see from the proof that the value

ε(T ) = sup
{

inf
n
∥(T ∗x∗

n)|Un∥ : (Un)∞n=1 ⊆ K, (x∗
n)∞n=1 ⊆ BX∗

}
,

where the supremum is taken over all sequences of disjoint open sets
(Un)∞n=1 ⊆ K and all sequences (x∗

n)∞n=1 ⊆ BX∗ , quantifies how well T
preserves a copy of c0. For the factorization, observe that the stability
conditions on the codomain, i.e. that X contains no copy of ℓ1 or that
the unit ball of X∗ is weak∗ sequentially compact, are there to guar-
antee that for any copy of c0 we can pass down to a sub-copy that is
complemented with good constants.

The essence of the proof of Theorem 1.6 lies in finding a lower bound
for ε(T ) in terms of the essential norm ∥T∥e. Therefore, Theorem 1.6
can be interpreted as a quantitative version of Theorem 1.10. Since the
groundwork for deriving the quantitative factorization from this was
already explored and developed by Arnott and Laustsen [3, Section 7],
we focus on showing an equivalent condition, in the form of Theorem
3.3 (see Section 3).

Remark 1.11. In light of Pe lczyński’s theorem, one might hope that
the assumption that K is scattered in Theorem 1.6 could be removed
by replacing non-compactness with non-weak compactness. However,
this is not possible, as ε(·) is not comparable in general with the weak
essential norm ∥·∥w. Details of this will appear elsewhere.

2. Organization

We now outline the structure of the paper. Sections 3 to 7 present
the proofs concerning the quantitative factorization of the identity on
c0, while Sections 8 and 9 address the minimality and maximality of
algebra norms.

In Section 3 we introduce some background material and terminol-
ogy. Following the work of Arnott and Laustsen, we provide a refor-
mulation of Theorem 1.6 in the form of Theorem 3.3, which we will use
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as our starting point for the proof. We provide a proof of Theorem 1.6
subject to the verification of Theorem 3.3.

Sections 4 to 6 work through the proof of Theorem 3.3. In section
4 we present some topological results, which allow us to introduce a
particular class of projection operators. In the last part of this section,
we will recall some properties of C0(K)∗, which will be needed moving
forward.

Section 5 establishes the two main ingredients for the proof. First,
in Proposition 5.2 we prove that we can find a sequence of functionals
(x∗

j)
∞
j=1 ⊂ BX∗ which witness the action of T and that are almost

orthonormal, in the sense that their weight is supported in a family of
points (Fj)

∞
j=1 which are disjoint.

The other ingredient deals with the accumulation of weight of an
infinite collection of functionals. In particular, we establish that this
weight cannot significantly accumulate on too many families of disjoint
points. All of this is made precise in Lemma 5.4. Technical considera-
tions make us restate this result in the form of Corollary 5.5.

Section 6 contains the proof of Theorem 3.3. The key step is an
application of Corollary 5.5 and a diagonal argument to the family of
functionals and points given by Proposition 5.2, which gives us a refine-
ment of the functionals and points, with the added benefit that we can
now separate the points via disjoint neighbourhoods. This is achieved
in Lemma 6.1. The proof of the theorem then follows naturally.

Section 7 deals with the relation between the factorizations of the
identity on c0 and the essential norm of the adjoint operator. This
section contains the proof of Theorem 1.7.

Lastly, Section 8 focuses on the question of the minimality of the
Calkin algebra norm, including a proof of Theorem 1.1, which is achieved
via a simultaneous factorization of operators in the form of Lemma 8.2.
This section also includes a proof of Theorem 1.5. In Section 9, we ex-
plain how to go from Ogden’s result to Theorem 1.3.

3. Preliminaries and proof of Theorem 1.6

All normed spaces and algebras are over the scalar field K, either
the real or complex numbers, and we adhere to standard notational
conventions. For a locally compact Hausdorff space K, C0(K) denotes
the Banach space of continuous functions f : K → K which vanish at
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infinity, in the sense that {k ∈ K : |f(k)| ≤ ε} is compact for all ε > 0,
and equip it with the supremum norm.

We write BX for the closed unit ball of a normed space X and denote
by IX (or I when X is clear from the context) the identity operator on
X.

The term “operator” will refer to a bounded linear map between
normed spaces. As usual, given two normed spaces X and Y , we denote
by B(X, Y ) the collection of all operators from X to Y ; if X = Y , we
simply denote it by B(X). Similarly, we denote by K (X, Y ) the ideal
of compact operators, and for brevity we write ∥T∥e for the essential
norm of an operator T ∈ B(X, Y ), namely

∥T∥e = ∥T + K (X, Y )∥ = inf{∥T − S∥ : S ∈ K (X, Y )}.

More specialized notation will be introduced as and when needed.
In their work, Arnott and Laustsen established the following quanti-

tative factorization result for the identity on c0 [3, Theorem 3.1], which
we restate below with notation adapted to our context.

Theorem 3.1 (Arnott and Laustsen). Let T ∈ B(C0(K), X) where
K is a locally compact Hausdorff space and X is a Banach space for
which the unit ball of X∗ is weak∗ sequentially compact, and let δ > 0.

Then C0(K) contains a sequence (ηn)n∈N such that

sup
k∈K

∞∑
n=1

|ηn(k)| ≤ 1 and inf
n∈N

∥Tηn∥ > δ

if and only if there are operators U ∈ B(X, c0) and V ∈ B(c0, C0(K))
such that

UTV = Ic0 and ∥U∥ ∥V ∥ < 1/δ.

In the previous theorem, we emphasise that δ serves as the inverse
of an upper bound for ∥U∥ ∥V ∥. Consequently, an upper bound on δ
provides control over how small the upper bound for ∥U∥ ∥V ∥ can be.

In their proof, Arnott and Laustsen note that the hypotheses can be
relaxed to also include the case where X does not contain a copy of ℓ1,
provided that a result of Galego and Plichko [8, Theorem 4.3] can also
be applied in the case of complex scalars. The only obstruction in the
proof of Galego and Plichko is the verification of the following result of
Hagler and Johnson [11, Theorem 1.a] in the case of complex scalars.

Theorem 3.2 (Hagler and Johnson). Let X be a Banach space. If X∗

contains a closed subspace in which no normalized sequence converges
weak∗ to zero, then ℓ1 is isomorphic to a subspace of X.
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We thank Professor W. B. Johnson for kindly explaining how the
complex case follows from the real version of the theorem, and for
permitting us to include his argument here.

Proof. Let XR be X when considered as a real Banach space. It is
elementary that a sequence is weakly convergent (respectively, weakly
Cauchy) in X if and only if it is weakly convergent (respectively, weakly
Cauchy) in XR. Therefore, by the complex version of Rosenthal’s ℓ1
theorem (due to Dor), it is enough to show that XR contains a copy
of (real) ℓ1. The map x∗ 7→ Rex∗ is a real-linear, isometric, weak∗-to-
weak∗ homeomorphism of X∗ onto (XR)∗. Consequently, if the complex
space X satisfies the hypothesis of Theorem 3.2, then so does the real
space XR. The real version of the theorem then gives that XR contains
a copy of (real) ℓ1 and thus, as previously explained, X contains a copy
of (complex) ℓ1. □

Taking all of this into account, Theorem 1.6 will follow from the next
theorem, whose proof we shall present in Sections 4 to 6.

Theorem 3.3. Let K be a scattered, locally compact Hausdorff space,
X be a Banach space, T : C0(K) → X be an operator with ∥T∥e = 1
and δ ∈ (0, 1/2). Then there exists a sequence of disjoint functions
(ηj)

∞
j=1 ⊂ BC0(K) such that ∥Tηj∥ > δ for all j ∈ N.

4. Topological preliminaries and C0(K)

In this section, and throughout the rest of the paper, K will denote
a scattered, locally compact Hausdorff space. We observe that K is
zero-dimensional, that is, there exists a base of clopen sets. To see
this, note that K is scattered, hence totally disconnected, while from
general topology we have that a locally compact Hausdorff space is
zero-dimensional if and only if it is totally disconnected [26, Proposition
3.1.7], thus our space K is zero-dimensional. Furthermore, since K is
also locally compact, for every k ∈ K, we can find a local base formed
by clopen compact sets.

From now on, whenever we refer to a neighbourhood, we will always
do so with the implicit understanding that it is clopen and compact.
We denote by T the collection of all compact and clopen subsets of K,
which is a base for the topology of K.

Now we move to the idea of separating a finite family of points by
a family of disjoint neighbourhoods. We make this precise in the next
definitions.
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Definition 4.1. A family of sets A is called pairwise disjoint if A∩B =
∅ for any distinct A,B ∈ A.

Definition 4.2. Given a subset F ⊂ K, we say that U ⊂ T is a
neighbourhood collection around F if there exists a bijection U : F → U
such that k ∈ U(k) for each k ∈ F .

Combining the previous definitions, we will say that U is a pairwise
disjoint neighbourhood collection around F if U is a neighbourhood
collection around F and it is pairwise disjoint.

Definition 4.3. We define the support of U ⊂ T as

S(U) =
⋃
U∈U

U,

in other words, the set of those points k ∈ K which belong to some
member of U .

Since we shall mostly work with finite or countable collections of
points and neighbourhoods, the following notation will be useful.

Definition 4.4. Let A be any set, we denote [A]<ω = {B ⊂ A : |B| <
ω} and [A]≤ω = {B ⊂ A : |B| ≤ ω}, in other words, the collections of
finite and countable subsets of A, respectively.

Our next result is automatic given that the space K is Hausdorff.

Lemma 4.5. Let F ∈ [K]<ω, then there exists a pairwise disjoint
neighbourhood collection around F .

Having introduced the necessary topological notions, we are ready
to discuss an important class of operators on C0(K).

Definition 4.6. Let F ∈ [K]<ω and let U ∈ [T ]<ω be a pairwise
disjoint neighbourhood collection around F . We define

Proj(U , F ) =
∑
k∈F

δk ⊗ 1U(k),

where δk : C0(K) → K is the evaluation functional at k, 1U denotes the
indicator function of U and δk ⊗ 1U(k) denotes the rank-one operator
defined via f 7→ f(k)1U(k).

Note that 1U ∈ C0(K) because it vanishes at infinity since U is
compact and it is continuous since U is clopen. Hence Proj(U , F )
defines an operator C0(K) → C0(K) with the following properties,
whose verification is straightforward.

Lemma 4.7. (a) Proj(U , F ) is a finite-rank projection.
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(b) ∥Proj(U , F )∥ = 1, except in the trivial case where F = ∅. Hence
∥I − Proj(U , F )∥ ≤ 2.

(c) For any k ∈ F , the adjoint projection satisfies Proj(U , F )∗δk =
δk.

Finally, we shall need some properties of C0(K)∗. We start by re-
calling a well-known variant of Rudin’s famous theorem [22]. For com-
pleteness, we include a brief proof.

Theorem 4.8. Let K be a scattered, locally compact Hausdorff space.
Then C0(K)∗ ∼= ℓ1(K).

Proof. Let αK be the one-point compactification of K, adding the
point at ∞. Since αK is also scattered, Rudin’s theorem implies that
C(αK)∗ ∼= ℓ1(αK).

Let ι : C0(K) → C(αK) be the natural inclusion, so that ι∗ :
C(αK)∗ → C0(K)∗ is an exact quotient map, meaning that it maps the
closed unit ball onto the closed unit ball. Note that ker ι∗ = span δ∞,
where δ∞ is the evaluation functional at the point ∞. Thus, the First
Isomorphism Theorem gives

C0(K)∗ ∼= C(αK)∗/ ker ι∗ ∼= ℓ1(αK)/ span δ∞ ∼= ℓ1(K). □

Definition 4.9. Let µ ∈ C0(K)∗, we call the subset

supp(µ) = {k ∈ K : µ({k}) ̸= 0}
the support of µ.

Observe that given µ ∈ C0(K)∗, we have supp(µ) ∈ [K]≤ω and

µ =
∑

k∈supp (µ)

µ({k})δk.

Definition 4.10. For C ⊂ K, we define the restriction operator RC :
C0(K)∗ → C0(K)∗, acting on µ ∈ C0(K)∗ by

RCµ =
∑
k∈C

µ({k})δk.

It is easy to check that RC is a projection operator with ∥RC∥ = 1
(except in the trivial case C = ∅). If one thinks of the space C0(K)∗ ∼=
ℓ1(K) as spanned by the transfinite Schauder basis (δk)k∈K , then the
restriction operator RC is the standard basis projection. Therefore, we
have the following properties.

Lemma 4.11. Let {C1, C2, . . . , CN} be pairwise disjoint subsets of K

and set C =
⊔N

n=1Cn. Then:
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(a) RC =
∑N

n=1 RCn, in particular,
∥∥∥∑N

n=1RCn

∥∥∥ = ∥RC∥ = 1.

(b) For any µ ∈ C0(K)∗, we have
∥∥∥∑N

n=1RCnµ
∥∥∥ =

∑N
n=1 ∥RCnµ∥.

5. Preliminary results

In this section, we introduce two ingredients that are key in the proof
of Theorem 3.3. From now on, X will always denote a Banach space
and T : C0(K) → X an operator with ∥T∥e = 1. Furthermore, for the
rest of this section, we fix an arbitrary δ ∈ (0, 1/2) and θ > 0 small
enough so that it satisfies 2(δ + 2θ) < 1.

Before we move on to the first result, some notation is in order.

Definition 5.1. Let η ∈ C0(K), we define the zero set of η by

Z(η) = {k ∈ K : η(k) = 0} = η−1({0}),

and similarly

Zc (η) = K\Z(η) = {k ∈ K : η(k) ̸= 0}.
Further, we say that η vanishes at a set F ⊂ K if F ⊂ Z(η).

Loosely speaking, our next result claims that we can find a sequence
of functionals (x∗

j)
∞
j=1 ⊂ BX∗ which can be decomposed in a way that

makes them almost orthonormal and that witness the action of T .
These functionals will be the key ingredient in the proof of Theorem

3.3.

Proposition 5.2. There exist (x∗
j)

∞
j=1 ⊂ BX∗ and finite sets Fj ⊂

supp
(
T ∗x∗

j

)
satisfying the following properties:

(a) Fi ∩ Fj = ∅ when i ̸= j, or in other words, the family (Fj)
∞
j=1 is

pairwise disjoint.
(b)

∥∥RFj
T ∗x∗

j

∥∥ > δ + 2θ for all j ∈ N.

Proof. Since ∥T ∗∥ = ∥T∥ ≥ ∥T∥e = 1, there exists x∗
1 ∈ BX∗ such that

∥T ∗x∗
1∥ > δ + 2θ. Choosing enough terms of the ℓ1 representation of

T ∗x∗
1 gives us the desired finite set F1 ⊂ supp (T ∗x∗

1).
Assume we have built (x∗

j)
J
j=1 ⊂ BX∗ and finite sets Fj ⊂ supp

(
T ∗x∗

j

)
,

such that (Fj)
J
j=1 is pairwise disjoint and (b) holds for j = 1, . . . , J , we

aim to build the next one.
Let AJ =

⋃J
j=1 Fj ∈ [K]<ω, and let UJ be a pairwise disjoint collec-

tion of neighbourhoods around AJ , which exists by Lemma 4.5. Note
that ∥T (I − Proj(UJ , AJ))∥ ≥ ∥T∥e = 1 by Lemma 4.7 (a). Thus there
exists ζJ+1 ∈ BC0(K) such that ∥T (I − Proj(UJ , AJ))ζJ+1∥ > 2(δ + 2θ).
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Define ηJ+1 = 1
2
(I − Proj(UJ , AJ))ζJ+1 so that ∥TηJ+1∥ > δ + 2θ.

By the Hahn-Banach theorem, there exists x∗
J+1 ∈ BX∗ such that

x∗
J+1TηJ+1 > δ + 2θ.
Since ηJ+1 ∈ BC0(K) by Lemma 4.7 (b), it follows that∥∥RZc(ηJ+1)T

∗x∗
J+1

∥∥ ≥ |⟨RZc(ηJ+1)T
∗x∗

J+1, ηJ+1⟩| = |⟨T ∗x∗
J+1, ηJ+1⟩|

> δ + 2θ.

In particular, there exists a finite set of points FJ+1 ⊂ supp
(
T ∗x∗

J+1

)
∩

Zc (ηJ+1) such that
∥∥RFJ+1

T ∗x∗
J+1

∥∥ > δ + 2θ. Finally, by Lemma 4.7
(c) we have Zc (ηJ+1) ∩ AJ = ∅, so FJ+1 is disjoint with F1, . . . , FJ .
This finishes the recursive construction. □

Remark 5.3. For later reference, we observe that the condition δ < 1/2
stems from the fact that, to define ηJ+1, we need to consider (I −
Proj(UJ , AJ))ζJ+1 whose norm may be greater than one, but it is at
most two by Lemma 4.7 (b).

Now, for each n ∈ N, we aim to separate the points Fn from the
points in

⋃
j ̸=n Fj by a collection of neighbourhoods. Once we do that,

we are set, since we can take the sum of the indicator functions of those
neighbourhoods. However, some technical care is required.

Roughly speaking, the idea is that, if we cannot (almost) separate the
points in Fn from those in

⋃
j ̸=n Fj, it is because a significant amount

of weight is accumulating around the points in Fn. However, since the
total weight is finite, this can only happen for a finite number of sets
Fn’s, thus, removing those if necessary, we can (almost) separate the
remaining sets.

Lemma 5.4. Let (x∗
j)

∞
j=1 ⊂ BX∗ and let (Fj)

∞
j=1 ⊂ [K]<ω be pairwise

disjoint. Then, for any ε > 0, there exist n ∈ N and a pairwise disjoint
neighbourhood collection Un around Fn with the property that for all
J ∈ N, there exists j > J with

∥∥RS(Un)T
∗x∗

j

∥∥ < ε.

Proof. We proceed by contradiction and assume that the claim is false
for some ε > 0 and choose N > ∥T∥ /ε.

Let F =
⊔N

n=1 Fn. By Lemma 4.5 there exists a pairwise disjoint
neighbourhood collection U around F , which naturally yields a pairwise
disjoint neighbourhood collection Un around Fn for each n = 1, . . . , N ,
with the property U =

⋃N
n=1 Un.

Since the claim is false, for each n = 1, . . . , N , there exists Jn such
that

∥∥RS(Un)T
∗x∗

j

∥∥ ≥ ε for all j ≥ Jn.
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Let J = max{J1, . . . , JN}, so that for x∗
J we have

∥T∥ ≥ ∥T ∗x∗
J∥ ≥

∥∥∥∥∥
N∑

n=1

RS(Un)T
∗x∗

J

∥∥∥∥∥ =
N∑

n=1

∥∥RS(Un)T
∗x∗

J

∥∥ ≥ Nε,

by using Lemma 4.11. This contradicts our choice of N , thus proving
the proposition. □

Corollary 5.5. Let (x∗
j)

∞
j=1 ⊂ BX∗ and let (Fj)

∞
j=1 ⊂ [K]<ω be pairwise

disjoint. Then for any ε > 0, there exist n ∈ N, a pairwise disjoint
neighbourhood collection Un around Fn and a subsequence (x∗

kj
)∞j=1 of

(x∗
j)

∞
j=1 such that ∥RS(Un)T

∗x∗
kj
∥ < ε for all j ∈ N.

6. Proof of Theorem 3.3

Informally, we aim to find a sequence (Aj)
∞
j=1 of finite subsets of K

which can be separated by pairwise disjoint neighbourhoods collections
(Vj)

∞
j=1, such that they witness the action of T ∗y∗j for some functionals

y∗j , in a way that will be made precise in Lemma 6.1.
Using this, we can build the functions (ηj)

∞
j=1 to be supported in the

neighbourhoods belonging to Vj in a natural way. The fact that Aj

witnesses the action of T ∗y∗j will guarantee that ∥Tηj∥ > δ.
We now proceed to the construction of the family of points and

neighbourhoods, by using a diagonal argument on the family given by
Proposition 5.2.

Lemma 6.1. There exist (y∗j )∞j=1 ⊂ BX∗, finite sets Aj ⊂ supp
(
T ∗y∗j

)
,

and pairwise disjoint neighbourhood collections Vj around Aj satisfying:

(a) The family
⋃∞

j=1 Vj is pairwise disjoint; that is U ∩ V = ∅ for

any distinct U, V ∈
⋃∞

j=1 Vj.

(b)
∥∥RAj

T ∗y∗j
∥∥ > δ + θ for each j ∈ N.

Proof. By recursion, for each J ∈ N0, we shall construct a sequence of
functionals (x∗

i,J)∞i=1, with associated finite sets Fi,J ⊂ supp
(
T ∗x∗

i,J

)
, a

functional y∗J ∈ BX∗ , a finite set AJ ⊂ supp (T ∗y∗J) and a neighbour-
hood collection VJ around AJ , satisfying:

(i)
∥∥RFi,J

T ∗x∗
i,J

∥∥ > δ + 2θ −
∑J

n=1 θ/2n for every i ∈ N and the
family (Fi,J)∞i=1 is pairwise disjoint.

(ii) ∥RAJ
T ∗y∗J∥ > δ + θ provided that J ≥ 1 (thus, the condition

becomes trivial in the base case J = 0).

(iii) The family
⋃J

j=0 Vj is pairwise disjoint and Fi,J∩
(⋃J

j=0 Vj

)
= ∅

for all i ∈ N.
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By Proposition 5.2, there exists a sequence of functionals (x∗
i,0)

∞
i=1, with

associated finite sets Fi,0 ⊂ supp
(
T ∗x∗

i,0

)
satisfying (i). Taking y∗0 = 0,

A0 = ∅, and V0 = ∅ makes (ii) and (iii) trivially hold.
Suppose we have carried out the construction for j = 0, 1, . . . , J ,

and we will show that we can continue it to J + 1. By Corollary
5.5 applied to (x∗

i,J)∞i=1 and (Fi,J)∞i=1, there exist n = nJ+1 ∈ N, a
pairwise disjoint neighbourhood collection Un around Fn,J as well as a
subsequence (x∗

ki,J
)∞i=1 of (x∗

i,J)∞i=1 such that ∥RS(Un)T
∗x∗

ki,J
∥ < θ/2J+1

for all i ∈ N.
By shrinking the neighbourhoods in Un, we can assume that Un ∪(⋃J
j=0 Vj

)
is pairwise disjoint; note that this does not affect the con-

dition that ∥RS(Un)T
∗x∗

ki,J
∥ < θ/2J+1 for all i ∈ N.

Define y∗J+1 = x∗
n,J , AJ+1 = Fn,J , VJ+1 = Un, as well as sequences

x∗
i,J+1 = x∗

ki,J
and Fi,J+1 = Fki,J\S(Un) for i ∈ N.

Then conditions (i), (ii) and (iii) are satisfied for J +1, which proves
that we can carry on the recursive construction and thus the result
follows. □

As already mentioned, by using the sequence (Aj)
∞
j=1 and the neigh-

bourhood collections (Vj)
∞
j=1 from the previous lemma, it is easy to

build a sequence of disjoint functions (ηj)
∞
j=1, each of them supported

in Vj in a natural way. For technical reasons, we may need to further
shrink the neighbourhoods in Vj to be able to control the image of the
function ηj under T .

The reader may wish to compare the following proof with that of
Theorem 1.10, and observe that the additional assumption that K is
scattered makes it possible not only to explicitly construct the family
(ηj)

∞
j=1, but also to obtain a lower bound for the norms of their images

in terms of the essential norm of the operator.

Proof of Theorem 3.3. Let (y∗j )∞j=1, (Aj)
∞
j=1 and (Vj)

∞
j=1 be as in Lemma

6.1. For each j ∈ N, partition the set supp
(
T ∗y∗j

)
= Aj ⊔ Hj ⊔ Gj,

in such a way that Hj ∈ [K]<ω and
∥∥RGj

T ∗y∗j
∥∥ < θ. Further, by

shrinking the open neighbourhoods in the family Vj if necessary, we
may assume that S(Vj) ∩Hj = ∅. Note that this does not change the
pairwise disjointness of the family

⋃∞
j=1 Vj.

For each k ∈ Aj, let λk be an unimodular scalar such that the equa-
tion λkT

∗y∗j ({k}) = |T ∗y∗j ({k})| holds and define ηj =
∑

k∈Aj
λk1Vj(k),

where Vj : Aj → Vj is the bijection given in Definition 4.2.
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The pairwise disjointness of Vj guarantees that ∥ηj∥ ≤ 1, while the
pairwise disjointness of

⋃∞
j=1 Vj guarantees that the functions (ηj)

∞
j=1

are disjoint.
Further, we have

⟨y∗j , T ηj⟩ =
∑
k∈Aj

λk⟨T ∗y∗j ,1Vj(k)⟩ =
∑
k∈Aj

∑
h∈supp(T ∗y∗j )

λkT
∗y∗j ({h})1Vj(k)(h).

We can split the sum into three terms, by using the partition supp
(
T ∗y∗j

)
=

Aj ⊔Hj ⊔Gj. For the first term, note that∑
k∈Aj

∑
h∈Aj

λkT
∗y∗j ({h})1Vj(k)(h) =

∑
k∈Aj

|T ∗y∗j ({k})| =
∥∥RAj

T ∗y∗j
∥∥ > δ + θ.

The second term is zero since 1Vj(k)(h) = 0 when h ∈ Hj and k ∈ Aj

because S(Vj) ∩Hj = ∅. Finally, for the third term, we have∣∣∣∣∣∣
∑
k∈Aj

∑
h∈Gj

λkT
∗y∗j ({h})1Vj(k)(h)

∣∣∣∣∣∣ ≤ ∥∥RGj
T ∗y∗j

∥∥ < θ,

where we used that for each h ∈ Gj there is at most one k ∈ Aj such
that h ∈ Vj(k), by the pairwise disjointness of Vj. Overall, we get that

∥Tηj∥ ≥ |⟨y∗j , T ηj⟩| > (δ + θ) − θ = δ,

which completes the proof. □

7. Factorizations and the essential norm of the adjoint

It turns out that the natural way of measuring how well the identity
on c0 factors through an operator T has to do with the essential norm
of the adjoint T ∗, rather than with the essential norm of T itself. As
discussed in Remark 5.3, the condition δ < 1/2 stems from Proposition
5.2.

Therefore, it suffices to establish an analogue of this proposition
where δ can be taken in the interval (0, ∥T ∗∥e). Once we have done so,
the rest of the proof for the factorization carries over.

Proposition 7.1. Let δ ∈ (0, ∥T ∗∥e) and fix θ such that δ+2θ < ∥T ∗∥e.
Then there exist (x∗

j)
∞
j=1 ⊂ BX∗ and finite sets Fj ⊂ supp

(
T ∗x∗

j

)
satis-

fying conditions (a) and (b) of Proposition 5.2.

Proof. We carry out the construction by recursion as in the proof
of Proposition 5.2. As before, we can find x∗

1 ∈ BX∗ and a finite
F1 ⊂ supp (T ∗x∗

1) such that ∥T ∗x∗
1∥ > δ + 2θ. Since ∥(I −RF1)T

∗∥ ≥
∥T ∗∥e > δ+2θ, we can find x∗

2 ∈ BX∗ such that ∥(I −RF1)T
∗x∗

2∥ > δ+
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2θ, so that there exists a finite F2 ⊂ supp (T ∗x∗
2) such that F2 ∩F1 = ∅

and ∥RF2T
∗x∗

2∥ > δ + 2θ. Continuing in this way finishes the construc-
tion. □

Remark 7.2. The essence of the argument is the following: while in
C0(K) the possible presence of accumulation points only allows for the
bound ∥I − Proj(U , F )∥ ≤ 2, in the dual case C0(K)∗ ∼= ℓ1(K) we have
a natural way to project. Namely, in the dual formulation, the role of
Proj(U , F ) is played by RF and thus we can guarantee ∥I −RF∥ = 1
by Lemma 4.11.

We can now invoke Proposition 7.1 in place of Proposition 5.2 when
proving Lemma 6.1. This allows us to establish Lemma 6.1 under the
condition δ + θ < ∥T ∗∥e, instead of the previous requirement δ + θ <
∥T∥e /2. Consequently, the proof of Theorem 3.3 carries through for
any δ < ∥T ∗∥e, which, when combined with Theorem 3.1, yields the
following.

Corollary 7.3. Let K be a scattered, locally compact Hausdorff space
and let X be a Banach space that does not contain a copy of ℓ1 or
for which the unit ball of X∗ is weak∗ sequentially compact. Then for
any non-compact operator T : C0(K) → X and any ε > 0, there exist
operators U ∈ B(X, c0) and V ∈ B(c0, C0(K)) such that

UTV = Ic0 and ∥U∥ ∥V ∥ <
1

∥T ∗∥e
+ ε.

Now we can prove Theorem 1.7.

Proof of Theorem 1.7. Our previous corollary shows that for any ε > 0,
there exist U ∈ B(X, c0) and V ∈ B(c0, C0(K)) such that UTV =
Ic0 and ∥U∥ ∥V ∥ < 1/∥T ∗∥e + ε, in other words, ∥U∥−1 ∥V ∥−1 >
∥T ∗∥e /(ε ∥T ∗∥e + 1). Since this is true for any ε > 0, we get

∥T ∗∥e ≤ sup{∥U∥−1 ∥V ∥−1 : UTV = Ic0},
and we are left to show the reverse inequality.

Suppose now that U ∈ B(X, c0) and V ∈ B(c0, C0(K)) satisfy
UTV = Ic0 . Then for any S ∈ K (X∗, C0(K)∗), we get

∥V ∗∥ ∥T ∗ − S∥ ∥U∗∥ ≥ ∥V ∗(T ∗ − S)U∗∥ =
∥∥I∗c0 − V ∗SU∗∥∥ ≥

∥∥I∗c0∥∥e = 1,

so it follows that ∥T ∗ − S∥ ≥ ∥U∥−1 ∥V ∥−1. Taking the infimum over
all compact operators gives ∥T ∗∥e ≥ ∥U∥−1 ∥V ∥−1, which proves the
upper bound in the supremum. □
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8. Minimality of the essential norm

This section is dedicated to the proof of Theorems 1.1 and 1.5, which
will follow as a consequence of our factorization results in the form of
Theorems 1.6 and 1.7, respectively. We start with the following known
result.

Lemma 8.1. Let K be a scattered, locally compact Hausdorff space.
Then, there exist A ∈ B(c0, C0(K)) and B ∈ B(C0(K), c0) such that

BA = Ic0 and ∥A∥ = ∥B∥ = 1.

Proof. Recall that the unit ball of C0(K)∗ is weak∗ sequentially com-
pact (see [3, Theorem 6.2]), while C0(K) always contains an isometric
copy of c0. The result now follows from [6, Theorem 6]. □

We will also need the following technical lemma.

Lemma 8.2. There exists a sequence of non-compact operators (Pn)∞n=1 ⊂
B(C0(K)) such that, for every sequence of operators (Tn)∞n=1 ⊂ B(C0(K))
with ∥Tn∥e > 22n+1 for every n ∈ N, there exist U, V ∈ B(C0(K)) such
that

PnUTnV Pn = Pn for all n ∈ N.

Proof. We note that c0 ∼= (
⊕∞

n=1 c0)c0 and let

πn :

(
∞⊕
n=1

c0

)
c0

→ c0 and ιn : c0 →

(
∞⊕
n=1

c0

)
c0

be the projection onto the nth term of the sum and the inclusion into
the nth term, so that πn ◦ ιn = Ic0 and ∥πn∥ = ∥ιn∥ = 1.

From Lemma 8.1 it follows in particular that c0 is complemented in
C0(K). Thus, there exists a projection

π ∈ B
(
C0(K), (

⊕∞
n=1 c0)c0

)
of C0(K) onto (

⊕∞
n=1 c0)c0 and an inclu-

sion ι ∈ B
(

(
⊕∞

n=1 c0)c0 , C0(K)
)

of (
⊕∞

n=1 c0)c0 into C0(K), so that

the composition π ◦ ι gives the identity map on (
⊕∞

n=1 c0)c0 .

Let Pn = ι ◦ ιn ◦ πn ◦ π ∈ B(C0(K)) for each n ∈ N. Since C0(K)
has weak∗ sequentially compact dual unit ball, we can apply Theorem
1.6 to each Tn. Thus, for each n ∈ N there exist Un ∈ B(C0(K), c0)
and Vn ∈ B(c0, C0(K)) such that

UnTnVn = Ic0 and ∥Un∥ ∥Vn∥ < 1/22n,

and by re-scaling we may assume both ∥Un∥ < 1/2n and ∥Vn∥ < 1/2n.
Note that Vnπnπ ∈ B(C0(K)) and ∥Vnπnπ∥ ≤ ∥π∥ ∥Vn∥ < ∥π∥ /2n,

so that we can define the operator V =
∑∞

n=1 Vnπnπ.
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Similarly, ιιnUn ∈ B(C0(K)) and ∥ιιnUn∥ ≤ ∥ι∥ ∥Un∥ < ∥ι∥ /2n, so
again we can define the operator U =

∑∞
n=1 ιιnUn.

From the definition, it is straightforward to check that we have πm ◦
ιn = δn,mIc0 and thus elementary computations show PnU = ιιnUn and
V Pn = Vnπnπ, which gives

PnUTnVnPn = ιιnUnTnVnπnπ = ιιnπnπ = Pn.

c0 c0

(
⊕∞

n=1 c0)c0 (
⊕∞

n=1 c0)c0
c0

C0(K) C0(K)

C0(K)C0(K)

Tn

Vn Un

πn ιn

ιπ

πn ιn

Pn

Ic0

□

In the next proofs, given a norm |||·||| on B(C0(K))/K (C0(K)), we
refer indiscriminately to |||T ||| of any T ∈ B(C0(K)). This is to be
understood as the seminorm this norm induces on B(C0(K)) or, alter-
natively, as the norm of the equivalence class represented by T . Using
this convention and equipped with the previous lemma, we can prove
the minimality of the Calkin algebra norm.

Proof of Theorem 1.1. Choose (Pn)∞n=1 as in the proof of Lemma 8.2.
We proceed by contradiction and assume there exists a norm |||·||| on
the Calkin algebra such that for any ε > 0, we can find R ∈ B(C0(K))
such that ∥R∥e = 1 and |||R||| < ε.

Thus, for each n ∈ N, there exists an operator Rn ∈ B(C0(K)) with
∥Rn∥e = 1 and

|||Rn||| <
1

n(22n+1 + 1)|||Pn|||
,

where we emphasize that |||Pn||| ̸= 0 since Pn ̸∈ K (C0(K)). Define
Tn = (22n+1 + 1)Rn, so that ∥Tn∥e > 22n+1.
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By Lemma 8.2 applied to the family (Tn)∞n=1, there exists U, V ∈
B(C0(K)) such that

PnUTnV Pn = Pn for all n ∈ N,

and thus

|||Pn||| = |||PnUTnV Pn||| ≤ |||Pn|||2|||U ||||||V ||||||Tn|||.

It follows that

0 <
1

|||U ||||||V |||
≤ |||Pn||||||Tn||| = (22n+1 + 1)|||Pn||||||Rn||| <

1

n
,

and making n → ∞ yields a contradiction, finishing the proof. □

Remark 8.3. The previous argument works in a more general setting.
Namely, let X, Y be Banach spaces. For T ∈ B(X) define

νY (T ) = sup{∥U∥−1 ∥V ∥−1 : UTV = IY }

if IY factors through T and νY (T ) = 0 otherwise. Further, let JY =
{T ∈ B(X) : νY (T ) = 0}, in other words, the set of operators that do
not factor IY . Observe that the set JY is always closed.

Suppose that JY is closed under addition (and thus, a closed ideal
of B(X)) and that Y admits a Schauder decomposition (Yn)∞n=0 with
sup{dBM(Yn, Y ) : n ≥ 1} < ∞, where dBM denotes the Banach-Mazur
distance. Then νY minorizes any algebra norm on B(X)/JY . In par-
ticular, if νY defines an algebra norm, it is minimal.

Further, note that the conditions on Y are satisfied, for example, by
the classical sequence spaces ℓp, 1 ≤ p ≤ ∞.

Remark 8.4. These factorisation-type norms arise naturally in alge-
bras of the form B(X)/I for some ideal I and play a central role
in the study of their norm properties. For example, in a forthcom-
ing paper, Johnson and Phillips [13] introduce the notion of uniform
incompressibility (see also [3, Definition 2.8] for a definition), and em-
ploy factorization-type norms to show this property holds in multiple
Banach algebra of the form B(X)/I . Our results show that the essen-
tial norm is uniformly incompressible for the Calkin algebra of C0(K)
spaces, K a scattered, locally compact Hausdorff space.

Lastly, we provide a proof for Theorem 1.5.

Proof of Theorem 1.5. Let |||·||| be any norm on B(C0(K))/K (C0(K))
satisfying |||S||| ≤ ∥S∗∥e for all S ∈ B(C0(K)), we will show that then
|||S||| = ∥S∗∥e for all S ∈ B(C0(K)). For this, it is enough to show
that |||S||| ≥ ∥S∗∥e for all S ∈ B(C0(K)).
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So fix any non-compact operator T ∈ B(C0(K)) and assume without
loss of generality that ∥T ∗∥e = 1, we need to show that |||T ||| ≥ 1.

Choose A ∈ B(c0, C0(K)) and B ∈ B(C0(K), c0) according to
Lemma 8.1 and fix any ε > 0. By Theorem 1.7 we can find V ∈
B(c0, C0(K)) and U ∈ B(C0(K), c0) such that ∥U∥ ∥V ∥ < 1 + ε and
UTV = Ic0 , which gives

AUTV B = AB.

Note that since Ic0 = BA then (AB)2 = AB ̸= 0, and thus

1 ≤ |||AB||| = |||AUTV B||| ≤ |||AU ||||||T ||||||V B||| ≤ ∥(AU)∗∥e ∥(V B)∗∥e |||T |||,
where the last inequality follows since |||S||| ≤ ∥S∗∥e for all S ∈ B(C0(K)).
Since

∥(AU)∗∥e ∥(V B)∗∥e ≤ ∥(AU)∗∥ ∥(V B)∗∥ ≤ ∥A∥ ∥U∥ ∥V ∥ ∥B∥ ≤ (1 + ε),

we get
1 ≤ ∥(AU)∗∥e ∥(V B)∗∥e |||T ||| ≤ (1 + ε)|||T |||.

As this is true for any ε > 0, it follows that 1 ≤ |||T |||, which proves the
result. □

9. Automatic continuity of homomorphism from
B(C([0, α]))

We show how a simple argument allows us to extend Ogden’s re-
sult on automatic continuity to all ordinals. We first establish some
auxiliary results.

For a Banach algebra B, we denote by Mn(B) the Banach algebra
of (n × n)-matrices whose entries are elements of B. We write T =
[Ti,j]

n
i,j=1 ∈ Mn(B) for the matrix having Ti,j ∈ B for its (i, j)-entry.

Denote by πi,j : Mn(B) → B, [Tr,s]
n
r,s=1 7→ Ti,j (the map sending a

matrix to its (i, j)-entry) and ιi,j : B → Mn(B) the map sending an
element T ∈ B to the matrix with all entries zero except T in the (i, j)-
entry. We assume Mn(B) is equipped with any norm ∥·∥ satisfying

max{∥Ti,j∥ : 1 ≤ i, j ≤ n} ≤ ∥T∥ ≤
n∑

i,j=1

∥Ti,j∥ ,

so that both ιi,j and πi,j are continuous.

Proposition 9.1. Let B be a unital Banach algebra. Then every ho-
momorphism from B to a Banach algebra is continuous if and only if
every homomorphism from Mn(B) to a Banach algebra is continuous
for every n ≥ 1.
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Proof. The reverse direction is immediate, so we only need to show that
if every homomorphism from B to a Banach algebra is continuous, the
same holds for Mn(B), n ≥ 2.

Let A be a Banach algebra and θ : Mn(B) → A be a homomorphism.
Since

∑n
i,j=1 ιi,j ◦ πi,j = IdMn(B), it follows that

θ =
n∑

i,j=1

(θ ◦ ιi,j) ◦ πi,j,

and since πi,j is continuous, to prove continuity of θ, it is enough to
show continuity of θi,j = θ ◦ ιi,j : B → A for each pair 1 ≤ i, j ≤ n.

Note that θi,j is linear. Furthermore, for 1 ≤ i ≤ n, ιi,i is an algebra
homomorphism; therefore θi,i is an algebra homomorphism and thus
continuous by hypothesis.

We focus now on the off-diagonal terms. Let i ̸= j be fixed. For any
S, U ∈ B we have

θi,j(SU) = θ(ιi,j(SU)) = θ(ιi,i(S)ιi,j(U))

= θ(ιi,i(S))θ(ιi,j(U)) = θi,i(S)θi,j(U).

For any null-sequence (Sk)k∈N, it follows that

θi,j(Sk) = θi,i(Sk)θi,j(IdB) → 0

as k → ∞, where we used that θi,i is continuous. This proves the
continuity of θi,j and finishes the proof. □

We remark in passing that the assumption that the Banach algebra
B is unital can be substantially weakened. In particular, it is enough
that null sequences in B factor.

Expressing the operators on Xn = X ⊕X ⊕ · · · ⊕X in matrix form,
we have B(Xn) = Mn(B(X)) and thus we get the following.

Corollary 9.2. Let X be a Banach space. Then the operator norm
is maximal in B(X) if and only if the operator norm is maximal in
B(Xn) for every n ≥ 1.

We also recall the classification theorem for spaces of continuous
functions on ordinals, originally proven by [10, 14]; the specific formu-
lation we give is taken from [4].

Theorem 9.3 (Classification theorem of ordinal spaces). Let α < β
be two ordinals of the same cardinality, and let ξ be the first ordinal of
this cardinality. Write α = ξη1 + ρ1 and β = ξη2 + ρ2 (ρ1 < ξ, ρ2 < ξ).
Then there are two cases:
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(a) If the cardinality of α is an uncountable regular cardinal and
η1 ≤ ξ, then C([0, α]) is isomorphic to C([0, β]) iff η1 and η2
have the same cardinality.

(b) Otherwise, C([0, α]) is isomorphic to C([0, β]) iff β < αω (where
ω is the first infinite ordinal).

Proof of Theorem 1.3. We start with the observation that C([0, α2]) is
naturally isomorphic to C([0, α])⊕C([0, α]). It follows from Johnson’s
automatic continuity result [12] that whenever C([0, α2]) ∼ C([0, α]),
then all homomorphisms from B(C([0, α])) into a Banach algebra are
continuous. By the Classification Theorem 9.3, the only cases when this
does not hold (up to isomorphism of the space of continuous functions)
is when α is finite or α = ξn where ξ is the first ordinal with the
same cardinality as α, the cardinality of α is an uncountable regular
cardinal and n ∈ N. The finite case is obvious, while in the latter
case C([0, α]) ∼ C([0, ξ])n and Ogden’s theorem [18] gives that every
homomorphism from B(C([0, ξ])) to a Banach algebra is continuous.
The result now follows from Corollary 9.2. □
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