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Abstract—To address the issues of limited computational capa-
bility and constrained battery life faced by users in the Internet
of Things, wireless-powered mobile edge computing (MEC) has
been proposed as a promising solution. However, the efficiency of
its key functions, namely task offloading and energy transfer, can
be significantly impaired if the direct links between the access
point (AP) and users are obstructed. Inspired by the potentials
of active simultaneous transmission and reflection reconfigurable
intelligent surface (STAR-RIS) for achieving full-space coverage
and mitigating multiplicative fading effects, this paper investi-
gates the incorporation of active STAR-RIS in wireless-powered
MEC. To meet the high data rate requirements in future smart
environments, we aim to maximize the total number of completed
task bits. To address the formulated challenging non-convex
problem, a resource allocation and active beamforming algorithm
(RAABA) is first proposed for a basic two-user non-orthogonal
multiple access (NOMA) scenario, jointly optimizing the energy
transfer time, decoding order, transmit power, CPU frequency
of users, and beamforming of STAR-RIS. We then extend
the RAABA to general multi-user scenarios (RAABAM) by
leveraging a matching-theory-based user pairing algorithm. Fur-
thermore, a low-complexity RAABAM (L-RAABAM) is proposed
by simplifying the matching process and deriving a closed-form
expression for the optimal transmit power of users. Simulation
results show that: i) by jointly optimizing multiple highly -coupled
variables, our proposed RAABAM and L-RAABAM schemes
achieve a higher total number of completed task bits; ii) theactive
STAR-RIS significantly outperforms passive/active traditional
RIS and passive STAR-RIS; iii) the deployment rules for active
STAR-RIS differ from those for passive STAR-RIS in wireless-
powered MEC, where the optimal deployment location of active
STAR-RIS depends on the number of its elements.

Index Terms—Resource allocation, beamforming design,
wireless-powered MEC, non-orthogonal multiple access (NOMA),
active simultaneous transmission and reflection reconfigurable
intelligent surface (STAR-RIS).
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I. I NTRODUCTION

The swift advancement of the Internet of Things (IoT) has
precipitated a significant rise in the proliferation of smart
devices, like smart home systems, wearable health monitors,
etc. [1]. To support the sophisticated operation and achieve
advanced functionalities, smart IoT devices are often engaged
in computation-intensive and latency-sensitive tasks such as
real-time data processing and immediate decision-making.
Nevertheless, due to the inherent limitations in power storage
and computational capacity, IoT devices are unable to effec-
tively meet the communication and computation demands of
complex tasks. To overcome these challenges, mobile edge
computing (MEC) and wireless power transfer (WPT) are
considered pivotal technologies for next-generation commu-
nication systems [2] [3]. MEC provides powerful computing
capabilities by bringing MEC servers in close proximity
to users, while WPT enables users to harvest energy from
radio frequency (RF) signals for information processing and
transmission. Recognizing the dual demands for energy and
computational capacity in emerging applications such as smart
transportation [4], smart cities [5], wearable devices andsmart
home [6], [7], the integration of MEC and WPT, known as
the wireless-powered MEC, has garnered significant interests.
Such integration promises to enhance computational perfor-
mance and extend the operational lifetime of IoT devices,
thereby effectively addressing their resource constraints [8].

As a crucial innovation for future smart environments,
wireless-powered MEC has been extensively studied in re-
cent literature. For example, in [9], the computation rate
maximization for wireless-powered MEC is investigated by
using the alternating direction method of multipliers (ADMM)
technique, where the time allocation, computing mode selec-
tion, and CPU frequency are jointly optimized. In [10], a
Dinkelbach-based algorithm is proposed to jointly optimize
communication and computation resources to maximize the
computation energy efficiency for wireless-powered MEC
under the non-orthogonal multiple access (NOMA) protocol.
Simulation results demonstrate that the proposed NOMA
scheme outperforms orthogonal multiple access (OMA). Fur-
thermore, in order to solve the non-convex resource allocation
problems with lower complexity, deep reinforcement learning
methods have been proposed for wireless-powered MEC, such
as the deep neural network (DNN)-based method [11], deep Q-
network (DQN)-based method [12], and the deep deterministic
policy gradient (DDPG)-based method [13].

Despite the advantages of wireless-powered MEC in en-
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hancing users’ computing capabilities and operational life-
times, its full potentials have not been fully exploited, primar-
ily because the communication links between the access point
(AP) and users are often imperfect. For example, in a smart
city, the direct links between wireless sensors and AP may
be blocked by high-rise buildings, urban infrastructures,or
dynamically changing environments, posing significant chal-
lenges for downlink energy transfer and uplink task offloading.
To enhance both uplink and downlink channel conditions,
the reconfigurable intelligent surface (RIS), characterized by
its capability to smartly reconfigure the wireless propagation
environment [14], [15], has recently been introduced to assist
both energy transfer and task offloading in wireless-powered
MEC systems.

To fully exploit the benefits of RIS, the beamforming of
RIS should be jointly designed with the resource allocationin
wireless-powered MEC, making the formulated optimization
problems more challenging. Therefore, in [16] and [17], the
joint resource allocation and beamforming design for RIS-
assisted wireless-powered MEC is solved using the block
coordinate descent (BCD) technique. It is found that RIS can
achieve significant performance gains by adjusting the phase
shift to improve the channel conditions. When employing
the NOMA protocol for RIS-assisted wireless-powered MEC,
the uplink beamforming design of RIS would be more dif-
ficult since the phase shift adjustment must simultaneously
accommodate multiple signals with varying angles of inci-
dence. To tackle this challenge, in [18], the successive convex
approximation (SCA) and penalty methods are utilized to
solve the non-convex optimization problem related to RIS’s
beamforming design with NOMA protocol. Although NOMA
outperforms OMA in RIS-assisted wireless-powered MEC, the
performance gain can be further improved by optimizing the
user pairing strategy. Nevertheless, the user pairing problem
under the NOMA protocol is a NP-hard problem, which is
intractable to obtain the optimal user pairing scheme in poly-
nomial complexity. Although several feasible approaches have
been proposed by existing studies, such as the relaxation-based
method [19], deep learning algorithms [20], and channel-gain-
based algorithm [21], the user pairing problem in RIS-assisted
wireless powered MEC systems is still an open problem.

It is worth noting that since RIS can only reflect the incident
signals, the users and AP have to be located at the same side of
RIS, which means RIS can only achieve half-space coverage.
To address the geographical limitation of RIS, the simultane-
ously transmitting and reflecting RIS (STAR-RIS) has been
proposed recently [22]–[26]. By manipulating both electric
and magnetic currents, the STAR-RIS can simultaneously
reflect and transmit signals, achieving full-space coverage and
providing extra degrees of freedoms (DoFs) to further improve
channel conditions. By leveraging the advantages of STAR-
RIS, a STAR-RIS-assisted wireless-powered MEC model is
proposed in [27], where the STAR-RIS is deployed to assist
task offloading and energy harvesting for all users in full-
space. Similarly, in [28], the computation rate maximization
problems are investigated for STAR-RIS-assisted wireless-
powered MEC. Simulation results illustrate that STAR-RIS
can significantly increase the computation rate for wireless-

powered MEC compared to traditional reflecting-only RIS.
Although STAR-RIS can provide additional reflected or

transmitted links for all users in wireless-power MEC systems,
the received signals of both the users and AP still suffer
from product path loss attenuation, i.e., multiplicative fading
effects, which heavily restrict the potentials of STAR-RIS
[29]. Fortunately, active STAR-RIS is a promising approach
to overcome the multiplicative fading effects. Compared to
passive STAR-RIS, active STAR-RIS goes beyond phase shift
configuration, and can amplify the incident signals to fur-
ther improve the strength of received signals [30]. With the
assistance of active STAR-RIS, the energy and computation
requirements in wireless-powered MEC can be better satisfied,
especially in the scenarios where the direct links between users
and AP are blocked. Hence, given the potential gains of active
STAR-RIS, it is imperative to integrate active STAR-RIS into
the wireless-powered MEC.

However, to the best of our knowledge, several key prob-
lems remain unsolved in this field. Firstly, unlike passive
STAR-RIS, active STAR-RIS amplifies not only the incident
signals but also the noise. Thus, the beamforming design of
active STAR-RIS must carefully manage the trade-off between
amplified noise power and received signal power. Additionally,
although the resource allocation problems have been well
investigated in wireless-powered MEC, such as in [9]–[13],
the proposed algorithms in related works cannot be directly
applied to active STAR-RIS-assisted wireless-powered MEC,
since the beamforming of active STAR-RIS is highly coupled
with AP’s energy transfer time and users’ transmit power. How
to achieve joint resource allocation and beamforming design to
fully exploit the advantages of active STAR-RIS in wireless-
powered MEC requires further investigation. Secondly, since
the noise power amplified by active STAR-RIS also attenuates
with distance, the deployment rules for passive STAR-RIS may
not hold for active STAR-RIS. Thus, in order to alleviate the
impact of amplified noise on users’ task offloading, the deploy-
ment location of the active STAR-RIS in wireless-powered
MEC should be carefully designed. Thirdly, when applying
NOMA in wireless-powered MEC with passive STAR-RIS,
user pairing algorithm can be designed solely based on users’
channel gains since the noise of passive STAR-RIS can be
ignored [27], [31]. However, the noise amplified by active
STAR-RIS cannot be overlooked, and the amplified noise
power varies on each side of active STAR-RIS, which poses
additional challenges for user pairing of NOMA.

Motivated by the above observations and different from
related works, in this paper, we investigate the joint resource
allocation and beamforming design for active STAR-RIS-
assisted wireless-powered MEC systems under NOMA pro-
tocol, aiming to maximize the total number of completed task
bits. The main contributions of this paper are summarized as
follows.

1) A novel active STAR-RIS-assisted wireless-powered
MEC model is proposed, where the AP first transfers energy
to users, and then users can offload task bits to the AP for
computing by utilizing the harvested energy. The active STAR-
RIS which can reflect/transmit and amplify signals, is deployed
to mitigate the multiplicative fading effect and enhance the
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channel gains between AP and users. Under the NOMA
protocol, optimization problems are formulated to maximize
the total number of completed task bits for both two-user and
multi-user scenarios.

2) For the two-user scenario, to solve the formulated chal-
lenging non-convex problem, we propose a resource alloca-
tion and active beamforming algorithm (RAABA) to jointly
optimize the energy transfer time, decoding order, transmit
power, CPU frequency of users, and the beamforming of
active STAR-RIS. The energy transfer time and CPU fre-
quency are updated using closed-form expressions, while the
users’ transmit power optimization and active STAR-RIS’s
beamforming design are based on the Lagrangian dual method
and quadratic transform, respectively. The proposed RAABA
is then extended to general multi-user scenarios (RAABAM)
by leveraging a matching-theory-based user pairing algorithm.
Finally, by further modifying the matching process and de-
riving the closed-form expression for users’ transmit power,
a low-complexity RAABAM (L-RAABAM) is proposed for
multi-user scenarios.

3) Simulation results show that: i) our proposed RAABAM
and L-RAABAM perform close to the exhaustive search
method and much better than the random pairing and channel-
gain-based algorithms; ii) the active STAR-RIS achieves a
higher total number of completed task bits than the pas-
sive/active traditional RIS and passive STAR-RIS; iii) inter-
estingly, the best location to deploy active STAR-RIS depends
on the number of elements. When the active STAR-RIS has a
larger number of elements, the total number of completed task
bits increases as the STAR-RIS is deployed closer to users.

The structure of the paper is as follows. Section II presents
the system model for active STAR-RIS-assisted wireless-
powered MEC. In Section III, we detail the proposed algo-
rithms designed for both two-user and multi-user scenarios.
Section IV provides numerical results to validate our proposed
algorithms, and Section V concludes the paper.

II. SYSTEM MODEL

As shown in Fig. 1, we consider a wireless-powered MEC
system assisted by an active STAR-RIS withM elements.
The AP is equipped with an MEC server and an RF energy
transmitter to provide computing services and energy supplies
for users. The users are indexed byi ∈ I = {1, 2, ..., I}.
During the given mission periodT , with the help of active
STAR-RIS, the AP first transmits power to all users, and then
the users utilize the harvested energy to offload task bits tothe
AP. The energy transfer time is given byτ . During the period
of energy transfer, the beamforming matrix of STAR-RIS is
denoted asuD,e

RIS = diag
(

ϕ
D,e
RIS

)

∈ C
M×M , wheree = {r, t},

and ϕ
D,e
RIS =

[

√

βD,e
1 ejθ

D,e
1 ,

√

βD,e
2 ejθ

D,e
2 , ...,

√

βD,e
M ejθ

D,e
M

]

[22], [32]. Based on the location of STAR-RIS, if the user is
located at the reflection space, we havee = r. Otherwise,
e = t. θD,e

m and βD,e
m are the phase shift and amplitude

for the m-th element of STAR-RIS, withθD,e
m ∈ [0, 2π)

and βD,e
m ∈ [0, βmax], ∀m ∈ M = {1, 2, ...,M}. Since the

active STAR-RIS can achieve the signal amplification, we have
βmax > 1.
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Fig. 1. The active STAR-RIS-assisted wireless-powered MECsystem.

When the AP transmits the energy-carrying signalzAP to
users, the direct links among the AP and users are assumed to
be blocked by obstacles, which is a typical scenario where the
deployment of STAR-RIS is essential [33]. In this scenario,
the full-space coverage provided by STAR-RIS can also be
fully exploited. The Rician fading channel model are adopted
for all channels involved in this paper, and it is assumed
that the AP can obtain the perfect channel state information
through advanced channel estimation technologies. The down-
link channels from AP to the STAR-RIS and that from STAR-
RIS to useri are given by [34]

hD
AP,RIS =

√

̟D
AP

1+̟D
AP

h
D,LoS
AP,RIS +

√

1
1+̟D

AP

h
D,NLoS
AP,RIS ,

hD
RIS,i =

√

̟D
RIS

1+̟D
RIS

h
D,LoS
RIS,i +

√

1
1+̟D

RIS

h
D,NLoS
RIS,i ,

(1)

where̟D
AP and̟D

RIS represent the corresponding Rician fac-
tors.hD,LoS

AP,RIS andhD,LoS
RIS,i are line-of-sight (LoS) components.

h
D,NLoS
AP,RIS andh

D,NLoS
RIS,i indicate the non-LoS (NLoS) compo-

nents. Thus, the energy-carrying signal reflected/transmitted
and amplified by the STAR-RIS can be expressed aszDRIS =
u
D,e
RISh

D
AP,RISzAP + nRIS, wherenRIS is the thermal noise at

the STAR-RIS. Then, the signal received by useri can be
expressed asyDi = hD

RIS,izRIS + ni, whereni is the additive
white Gaussian noise (AWGN) at useri.

Hence, the received RF power at useri can be expressed as

Pinput,i=PAP

∣

∣

∣ h
D
RIS,iu

D,e
RISh

D
AP,RIS

∣

∣

∣

2

+n2
RIS
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D,e
RIS

∥

∥

∥

2

, (2)

wherePAP is the transmit power of AP.
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In this paper, we adopt a non-linear energy harvesting model
to characterize the energy conversion behavior at users. Com-
pared to traditional linear energy harvesting model where the
harvested power is assumed to be proportional to the received
RF power, the non-linear energy harvesting model takes the
circuit saturation effects into consideration, which can prevent
the overestimation of the harvested energy [35]. Based on the
non-linear energy harvesting model, the harvested power of
useri can be given by

Pout,i=
υ

(1−χ) (1+exp (−ψ (Pinput,i−φ)))
−

υχ

(1−χ)
, (3)

where χ = 1/(1 + exp (ψφ)). υ indicates the maximum
harvested power at users when the circuit is saturated.ψ and
φ are constants related to the detailed circuit specifications.
The total energy harvested by usersi in the mission period
can be given byτPout,i.

In the rest of mission period, the users will simultaneously
perform task offloading and local computing by utilizing the
harvested energy. Specifically, denote the CPU frequency of
user i for local computing asfi. Then, the amount of task
bits that useri can complete during the mission period can be
given by

Llocal
i =

fi (T − τ)

Ci
, (4)

whereCi is the CPU cycles required for computing 1-bit of
task-input data. The energy consumption of useri for local
computing can be expressed as

Elocal
i = κ (T − τ ) f3

i , (5)

whereκ is the effective capacitance coefficient.
During the period of uplink task offloading, the beam-

forming matrix of STAR-RIS is given byuU,e
RIS =

diag
(

ϕ
U,e
RIS

)

∈ CM×M , where e = {r, t}, and ϕ
U,e
RIS =

[

√

βU,e
1 ejθ

U,e
1 ,

√

βU,e
2 ejθ

U,e
2 , ...,

√

βU,e
M ejθ

U,e

M

]

. θU,e
m andβU,e

m

are the phase shift and amplitude for them-th element
of STAR-RIS, with θU,e

m ∈ [0, 2π) and βU,e
m ∈ [0, βmax],

∀m ∈ M = {1, 2, ...,M}. The uplink channels adopt the
same model as the downlink channels. Thereby, the up-
link channels from useri to the STAR-RIS and that from
STAR-RIS to the AP are given byhU

i,RIS ∈ CM×1 and
hU
RIS,AP ∈ C1×M , respectively. Denote the transmitted signal

from useri to the AP aszi. The signal reflected/transmitted
and amplified by the STAR-RIS can be expressed aszURIS =

u
U,e
RIS

(

∑I
i=1 h

U
i,RISzi + nRIS

)

. Then the signal received by

the AP isyUAP = hU
RIS,APz

U
RIS+nAP, wherenAP is the noise

at the AP.
The power-domain NOMA is applied to leverage its high

spectrum efficiency during task offloading, and a two-user
NOMA group configuration is employed as outlined in [36].
The total bandwidth is divided intoK sub-channels, with
2K = I. If channel k is allocated to useri, δi,k = 1.
Otherwise,δi,k = 0. Thus, we have

∑I
i=1 δi,k = Ik, and

∑K
k=1 Ik = I. After receiving all users’ signals, the AP

will decode the superimposed signals based on decoding
order χ (i, k). If χ (i, k) > χ

(

ĩ, k
)

, we haveπχ(i,̃i,k) = 1.

Otherwise,πχ(i,̃i,k) = 0. Then, the offloading data rate of
useri at channelk can be expressed as

Loff
i,k = (T − τ )B log






1 +

δi,kpi

∣

∣

∣hU
RIS,APu

U,e
RISh

U
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∣
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∣

2

ξi,k






,

(6)

ξi,k =
∑I

ĩ=1,̃i6=i πχ(i,̃i,k)δĩ,kpĩ

∣

∣

∣hU
RIS,APu

U,e
RISh

U
ĩ,RIS

∣

∣

∣

2

+n2
RIS

∥

∥

∥hU
RIS,APu

U,e
RIS

∥

∥

∥

2

+ n2
AP,

(7)

where B is the bandwidth of each sub-channel.pi is the
transmit power of useri. Thereby, the overall offloading data
rata of useri can be given byLoff

i =
∑K

k=1 L
off
i,k.

III. R ESOURCE ALLOCATION AND ACTIVE BEAMFORMING

ALGORITHM DESIGN

In this paper, we aim to maximize the total number of
completed task bits for the active STAR-RIS-assisted wireless-
powered MEC systems. The total number of completed task
bits comprises both the number of offloaded task bits and the
number of task bits completed by local computing. Compared
to other metrics such as spectral efficiency, the total number of
completed task bits can provide a more accurate reflection of
the system’s computational capability. To achieve the goalof
maximizing the total number of completed task bits, the energy
transfer time, decoding order, transmit power, CPU frequencies
of users, and beamforming of the active STAR-RIS must be
jointly optimized.

In the following, we will first focus on the two-user scenario
and propose a resource allocation and active beamforming
algorithm, which will serve as a foundation for the multiple-
user scenarios. To extend the proposed algorithm to multiple-
user scenarios, we design a user pairing algorithm for NOMA
based on matching theory. Finally, several modifications is
implemented to further reduce the complexity of the proposed
algorithm for multi-user scenarios.

A. Problem formulation and algorithm design for the two-user
scenario

1) Problem formulation:Assume that there are only two
users (i.e., userj and userq) in the active STAR-RIS-assisted
wireless-powered MEC system, and these two users share
the same sub-channelk via NOMA. Subject to the energy
consumption constraints, the completed task bits maximization
problem for the two-user scenario can be formulated as (P1),
as shown at the top of the next page.

In (P1), z = {p, f ,u, τ,π}. p
∆
= {pi}i∈I , f

∆
= {fi}i∈I

, u
∆
=
{

u
D,e
RIS,u

U,e
RIS

}

, and π
∆
=
{

πχ(i,̃i,k)

}

i∈I,k∈K
. ERIS

is the maximum energy budget of STAR-RIS.Pmax and
Fmax are users’ maximum transmit power and maximum CPU
frequency, respectively. Constraint C1 indicates that theenergy
consumption of users must be less than their harvested energy.
Constraint C2 represents that the energy consumption of active
STAR-RIS for signal amplification cannot exceed its maxi-
mum energy budget. C3 and C4 represent the phase shift and
amplitude constraints of the active STAR-RIS, respectively. C5
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(P1)max
z
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∥
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+ n2
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
+
fi (T − τ)

Ci
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



(8a)

s.t. C1 : (T − τ ) pi + κ (T − τ ) f3
i ≤ τPout,i, ∀i ∈ {j, q} , (8b)

C2 : τ
∑

e={r,t}

(

PAP
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RISh
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pi

∥

∥

∥u
U,e
RISh

U
i,RIS

∥

∥

∥

2

+
∑

e={r,t}
n2
RIS

∥

∥

∥u
U,e
RIS

∥

∥

∥

2
)

≤ ERIS, (8c)

C3 : θU/D,e
m ∈ [0, 2π] , ∀m ∈ M, (8d)

C4 : βU/D,e
m ∈ [0, βmax] , ∀m ∈ M, (8e)

C5 : 0 ≤ τ ≤ T, (8f)

C6 : 0 ≤ pi ≤ Pmax, ∀i ∈ {j, q} , (8g)

C7 : 0 ≤ fi ≤ Fmax, ∀i ∈ {j, q} . (8h)

means the energy transfer time should be less than the duration
of mission period. C6 and C7 constrain the maximum transmit
power and CPU frequency of users.

2) Algorithm design:Problem (P1) is a non-convex opti-
mization problem with highly coupled variables, which is very
challenging to solve. Fortunately, in the two-user scenario,
there are only two possible decoding orders for the AP. Specif-

ically, if pj
∣

∣

∣hU
RIS,APu

U,e
RISh

U
j,RIS

∣

∣

∣

2

≥ pq

∣

∣

∣hU
RIS,APu

U,e
RISh

U
q,RIS

∣

∣

∣

2

,
we have πχ(j,q,k) = 1 and πχ(q,j,k) = 0. Otherwise,
πχ(j,q,k) = 0 andπχ(q,j,k) = 1. Therefore, we can separately
solve (P1) under these two possible decoding orders.

In order to tackle problem (P1) with pre-given decoding
order, we propose an iterative algorithm based on BCD
technique [37]. The energy transfer time, transmit power, and
beamforming of the active STAR-RIS are updated iteratively
until convergence. Unlike the majority of studies employing
the BCD algorithm, where optimization variables are obtained
after solving a convex optimization problem, we endeavor to
derive closed-form solutions for some variables, thereby avoid-
ing the computationally intensive task of repeatedly solving
convex optimization problems during each iteration. Next,we
will elucidate the detailed processes of solving (P1).

Assuming πχ(j,q,k) = 1, πχ(q,j,k) = 0, and with given
{p, f ,u}, we first derive the closed-form solution for the en-
ergy transmission time, i.e.,τ∗. The derivative of the objective
function with respect toτ can be given by

∇τL = −B log






1 +

pi

∣

∣

∣hU
RIS,APu

U,e
RISh

U
i,RIS

∣

∣

∣

2

ξi,k






−
fi
Ci
, (9)

whereL = Loff
i +Llocal

i . It is clear that the objective function
of (P1) is a monotonically decreasing function ofτ because
∇τL ≤ 0 always holds. Therefore, once the range ofτ can
be determined, we can obtainτ∗.

In (P1), constraints C1, C2, and C5 are related toτ . From

C1, we can obtain

Tpi + κTf3
i

pi + κf3
i + Pout,i

≤ τ. (10)

As for C2, we first define

α=

∑

e={r,t}

(

PAP

∥

∥

∥u
D,e
RISh

D
AP,RIS

∥

∥

∥

2

+n2
RIS

∥

∥

∥u
D,e
RIS

∥

∥

∥

2
)

∑I
i=1

∑

e={r,t} pi

∥

∥

∥u
U,e
RISh

U
i,RIS

∥

∥

∥

2

+
∑

e={r,t} n
2
RIS

∥

∥

∥u
U,e
RIS

∥

∥

∥

2 .

(11)
α represents the ratio of the amplification power of the
active STAR-RIS for uplink and downlink signals. Ifα ≥ 1,
the amplification power of the STAR-RIS for AP’s energy-
carrying signal is greater than that for users’ task offloading
signals. In this case, from C2, we can obtain an upper bound of
τ , which is shown in (12). Hence, the optimal energy transfer
time is determined by the lower bound derived from C1, i.e.,

Tpi+κTf3
i

pi+κf3
i +Pout,i

. If α < 1, the optimal energy transfer time
should be the smaller value among the lower bounds given
by C1 and C2. Therefore, the optimal energy transfer timeτ∗

can be obtained as (13).
With τ∗ and given{p,u}, before deriving the closed-form

solution for CPU frequencies of users, we have the following
Theorem.

Theorem 1. When the optimal solution to problem (P1)
is obtained, one of constraints C1 and C7 must hold with
equality.

Proof. See Appendix A.

According to Theorem 1, the optimal CPU frequency of
users for local computing can be derived as

fi
∗ = min

{

Fmax,
3

√

τPout,i − (T − τ) pi
κ (T − τ )

}

. (14)

Then, with τ∗, fi
∗, and given{u}, problem (P1) can be
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τ ≤

ERIS − T

(

I
∑

i=1

∑

e={r,t} pi

∥

∥

∥u
U,e
RISh

U
i,RIS

∥

∥

∥

2

+
∑

e={r,t} n
2
RIS

∥

∥

∥u
U,e
RIS

∥

∥

∥

2
)

∑

e={r,t}

(

PAP

∥

∥

∥u
D,e
RISh

D
AP,RIS

∥

∥

∥

2

+ n2
RIS

∥

∥

∥u
D,e
RIS

∥

∥

∥

2
)

−

(

I
∑

i=1

∑

e={r,t} pi

∥

∥

∥u
U,e
RISh

U
i,RIS

∥

∥

∥

2

+
∑

e={r,t} n
2
RIS

∥

∥

∥u
U,e
RIS

∥

∥

∥

2
) (12)

τ∗ =























min
i

Tpi+κTf3
i

pi+κf3
i +Pout,i

, α ≥ 1

min
i











Tpi+κTf3
i

pi+κf3
i +Pout,i

,
ERIS−T

(

I
∑

i=1

∑

e={r,t} pi‖uU,e

RISh
U
i,RIS‖

2
+
∑

e={r,t} n2
RIS‖u

U,e

RIS‖
2
)

∑

e={r,t}

(

PAP‖uD,e

RISh
D
AP,RIS‖

2
+n2

RIS‖u
D,e

RIS‖
2
)

−

(

I
∑

i=1

∑

e={r,t}

pi‖uU,e

RISh
U
i,RIS‖

2
+
∑

e={r,t}

n2
RIS‖u

U,e

RIS‖
2

)











, α < 1

(13)

(P3) max
γ,y,p

∑

i={j,q}

(

ω log (1 + γi)− ωγi + 2yi

√

(1 + γi)ωpi

∣

∣

∣hU
RIS,APu

U,e
RISh

U
i,RIS

∣

∣

∣

2
)

− y2j

(

pj

∣

∣

∣h
U
RIS,APu

U,e
RISh

U
j,RIS

∣

∣

∣

2

+ ξq

)

− y2q

(

pq

∣

∣

∣h
U
RIS,APu

U,e
RISh

U
q,RIS

∣

∣

∣

2

+ n2
RIS

∥

∥

∥h
U
RIS,APu

U,e
RIS

∥

∥

∥

2

+ n2
AP

)

(16a)

s.t. C1,C2,C6, (15c). (16b)

p∗j = min

{

pj,max,
τPout,j−κ(T−τ)f3

j

(T−τ) ,
y2
j (1+γj)ω|hU

RIS,APu
U,e
RISh

U
j,RIS|

2

(

y2
j |hU

RIS,APu
U,e
RISh

U
j,RIS|

2
−η
∑

e={r,t} ‖u
U,e
RISh

U
j,RIS‖

2
)2

}

p∗q = min

{

pq,max,
τPout,q−κ(T−τ)f3

q

(T−τ) ,
y2
q(1+γq)ω|hU

RIS,APu
U,e
RISh

U
q,RIS|

2

(

y2
q|hU

RIS,APu
U,e
RISh

U
q,RIS|

2
−η
∑

e={r,t} ‖u
U,e
RISh

U
q,RIS‖

2
)2 ,

pj|hU
RIS,APu

U,e
RISh

U
j,RIS|

2

|hU
RIS,APu

U,e

RISh
U
q,RIS|

2

} (17)

reformulated as

(P2)max
pj ,pq

(T − τ)B log






1 +

pj

∣

∣

∣hU
RIS,APu

U,e
RISh

U
j,RIS

∣

∣

∣

2

ξq







+ (T − τ )B log






1 +

pq

∣

∣

∣hU
RIS,APu

U,e
RISh

U
q,RIS

∣

∣

∣

2

n2
RIS

∥

∥

∥hU
RIS,APu

U,e
RIS

∥

∥

∥

2

+ n2
AP







(15a)

s.t.C1,C2,C6, (15b)

pj

∣

∣

∣h
U
RIS,APu

U,e
RISh

U
j,RIS

∣

∣

∣

2

≥ pq

∣

∣

∣h
U
RIS,APu

U,e
RISh

U
q,RIS

∣

∣

∣

2

,

(15c)

whereξq=pq
∣

∣

∣hU
RIS,APu

U,e
RISh

U
q,RIS

∣

∣

∣

2

+n2
RIS

∥

∥

∥hU
RIS,APu

U,e
RIS

∥

∥

∥

2

+

n2
AP. Problem (P2) is also non-convex. To tackle this problem,

we first apply the quadratic transform to reformulate (P2) as
a convex problem and then utilize Lagrangian dual method to
obtain the closed-form expression for users’ transmit power.

By introducing auxiliary variablesγ = {γj , γq}, y =
{yj, yq}, and definingω = (T − τ )B, problem (P2) can be
transformed into (P3), given at the top of this page.

Theorem 2. Problem (P2) is equivalent to (P3), i.e., the
solution to (P2) is also the solution to (P3), and the optimal
objective value of (P2) is equal to that of (P3).

Proof. See Appendix B.

Theorem 3. For Problem (P3) with fixedγ andy, the closed-
form expression of transmit power can be given by (17), where
η is the Lagrangian dual variable for constraint C2.

Proof. See Appendix C.

Based on Theorem 2 and Theorem 3, an iterative algorithm
can be proposed to obtain the optimal transmit power of users
through closed-form updates. The Lagrangian dual variableη
is updated by sub-gradient method [38], i.e.,

η = [η + σ (Ψ− ERIS)]
+
, (18)

where[x]+ = max {x, 0}, andσ is the step-size.Ψ is the left-
hand-side of C2. The proposed transmit power optimization
algorithm for the two-user scenario can be summarized as
Algorithm 1 .

Finally, in order to optimize the beamforming of STAR-RIS,
with the obtained optimalτ∗, fi

∗, andpi∗, problem (P1) can
be reformulated as (P4) by adopting a similar transformation
to (P3), whereγRIS andyRIS are auxiliary variables.

For (P4) with fixedγRIS and yRIS, it is still non-convex
due to constraints C1 and (15c). We first exploit the first-
order Taylor expansion to the right-of-hand of C1 at thel-th
iteration, i.e.,

τPout,i ≥ τPout,i|
u

D,e
RIS=(u

D,e
RIS)

(l)

+τ∇
u

D,e

RIS=(u
D,e

RIS)
(l)Pout,i

(

u
D,e
RIS−

(

u
D,e
RIS

)(l)
)

.
(20)

For ease of representation, the right-hand side of the above



IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. XX, XX 2025 7

(P4) max
u

U,e

RIS,u
D,e

RIS,γ
RIS,yRIS

Ω =
∑

i∈{q,j}

(

log
(

1 + γRIS
i

)

− γRIS
i

)

+
∑

i∈{q,j}
2yRIS

i

√

(

1 + γRIS
i

)

piRe
(

hU
RIS,APu

U,e
RISh

U
i,RIS

)

−
(

yRIS
j

)2
(

pj

∣

∣

∣h
U
RIS,APu

U,e
RISh

U
j,RIS

∣

∣

∣

2

+ pq

∣

∣

∣h
U
RIS,APu

U,e
RISh

U
q,RIS

∣

∣

∣

2

+ n2
RIS

∥

∥

∥h
U
RIS,APu

U,e
RIS

∥

∥

∥

2

+ n2
AP

)

−
(

yRIS
q

)2
(

pq

∣

∣

∣
hU
RIS,APu

U,e
RISh

U
q,RIS

∣

∣

∣

2

+ n2
RIS

∥

∥

∥
hU
RIS,APu

U,e
RIS

∥

∥

∥

2

+ n2
AP

)

(19a)

s.t. C1− C4, (15c) . (19b)

Algorithm 1 Users’ transmit power optimization algorithm for
two-user scenario.

1. Initialize the vectorsp, y, γ, and set the iterative
numberl = 0;

2. while
∣

∣G
(

p(l+1),γ(l+1),y(l+1)
)

−G
(

p(l),γ(l),y(l)
)∣

∣ ≥ ε do
3. Updatey(l) based on (34);
4. Updateγ(l) based on (33);
5. repeat
6. Initialize the dual variableη(t) and sett = 0;
7. Updatep(t) based on (17);
8. Updateη(t) based on (18);
9. t = t+ 1;
10. Until the objective function of (P3) converges
11. Setp(l) = p(t);
12. l = l + 1;
13. end while

inequality is denoted asΞ
(

u
D,e
RIS

)

. Then, by replacing the

right-hand side of C1 withΞ
(

u
D,e
RIS

)

, C1 can be transformed
into a linear constraint. The same technique is adopted for
(15c). Thus, we have

pj

∣

∣

∣hU
RIS,APu

U,e
RISh

U
j,RIS

∣

∣

∣

2

≥pj

∣

∣

∣

∣

hU
RIS,AP

(

u
U,e
RIS

)(l)

hU
j,RIS

∣

∣

∣

∣

2

+2pj

(

(

u
U,e
RIS

)(l)
)H

Π

(

u
U,e
RIS −

(

u
U,e
RIS

)(l)
)

,

(21)
where Π =

(

hU
RIS,AP

)H
hU
j,RIS

(

hU
j,RIS

)H
hU
RIS,AP, and the

right-hand side of (21) is denoted asP
(

u
U,e
RIS

)

. After the
above operations, (P4) can be reformulated as

(P5) max
u

U,e

RIS,u
D,e

RIS

Ω (22a)

s.t. C2− C4, (22b)

(T − τ ) pi + κ (T − τ ) f3
i ≤ Ξ

(

u
D,e
RIS

)

, (22c)

P
(

u
U,e
RIS

)

≥ pq

∣

∣

∣
hU
RIS,APu

U,e
RISh

U
q,RIS

∣

∣

∣

2

. (22d)

Problem (P5) is a standard quadratic constraint quadratic
programming (QCQP) problem which can be effectively
solved by standard convex optimization algorithm. After it-
eratively updatinguU,e

RIS andu
D,e
RIS by solving (P5) until con-

vergence, we can obtain the optimal solution to (P4) with fixed
γRIS andyRIS.

According to Theorem 2, the closed-form solutions ofγRIS

andyRIS can be given by

yRIS∗

j =
ω(1+γRIS

j )pj|hU
RIS,APu

U,e
RISh

U
j,RIS|

2

pj|hU
RIS,APu

U,e

RISh
U
j,RIS|

2
+ξq

yRIS∗

q =
ω(1+γRIS

q )pq|hU
RIS,APu

U,e
RISh

U
q,RIS|

2

pq|hU
RIS,APu

U,e

RISh
U
q,RIS|

2
+n2

RIS‖hU
RIS,APu

U,e

RIS‖
2
+n2

AP

(23)

γRIS∗

j =
pj |hU

RIS,APu
U,e
RISh

U
j,RIS|

2

pq|hU
RIS,APu

U,e

RISh
U
q,RIS|

2
+n2

RIS|hU
RIS,APu

U,e

RIS|
2
+n2

AP

γRIS∗

q =
pq|hU

RIS,APu
U,e
RISh

U
q,RIS|

2

n2
RIS|hU

RIS,APu
U,e

RIS|
2
+n2

AP

(24)
Then, similar to Algorithm 1, we iteratively updateyRIS,

γRIS anduU/D,e
RIS until convergence. The active beamforming

design for two-user scenario is summarized asAlgorithm
2. With the optimal active beamforming matrixuU/D,e

RIS , the
amplitude and phase shift for each element of active STAR-
RIS can be expressed as

β
U/D,e
m =

∥

∥

∥

∥

[

u
U/D,e
RIS

]

m,m

∥

∥

∥

∥

2

, θ
U/D,e
m =arg

(

[

u
U/D,e
RIS

]

m,m

)

,

(25)
where[·]m,m represents the(m,m)-th element of matrix.

Define the objective function of (P1) asF(p1)(n), wheren
represents the index of possible decoding order, i.e.,

n =

{

1, if πχ(j,q,k) = 1 and πχ(q,j,k) = 0;
2, if πχ(j,q,k) = 0 and πχ(q,j,k) = 1.

(26)

Based on the above solutions toτ∗, fi
∗, pi∗ anduU/D,e

RIS

∗
,

the proposed algorithm for solving problem (P1) is summa-
rized in Algorithm 3 .

3) Discussion:It can be noted that (P1) is first decomposed
into two problems according to the possible decoding orders.
For each problem, an iterative algorithm is proposed to obtain
the optimal solutions for energy transfer time, CPU frequency,
transmit power, and active beamforming. Therefore, the com-
putational complexity of the proposed Algorithm 3 mainly
depends on the number of iterations in the inner loop and
the complexity of Algorithms 1 and 2. Algorithm 1 has linear
computational complexity since it only executes closed-form
updates. Thus, the computational complexity of Algorithm
1 can be given byO1 (L1L2), where L1 and L2 are the
iteration numbers of Algorithm 1 for the outer loop and inner
loop, respectively. For Algorithm 2, besides the closed-form
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Algorithm 2 Active beamforming design for two-user sce-
nario.

1. Initialize the vectorsuU,e
RIS,u

D,e
RIS,γ

RIS,yRIS, and set
the iterative numberl = 0;

2. while

∣

∣

∣

∣

Ω
(

u
U,e
RIS,u

D,e
RIS, γ

RIS,yRIS
)(l+1)

−Ω
(

u
U,e
RIS,u

D,e
RIS,γ

RIS,yRIS
)(l)
∣

∣

∣

∣

≥ ε do

3. Update
(

yRIS
)(l)

based on (23);

4. Update
(

γRIS
)(l)

based on (24);
5. repeat
6. Initialize the iterative indext = 0;
7. CalculateΞ

(

u
D,e
RIS

)

and P
(

u
U,e
RIS

)

based on
(20) and (21), respectively;

8. Solve the QCQP problem (P5) to obtain
(

u
U,e
RIS

)(t)

,
(

u
D,e
RIS

)(t)

;
9. Update the iterative indext;
10. Until the objective function of (P5) converges;

11. Set
(

u
U/D,e
RIS

)(l)

=
(

u
U/D,e
RIS

)(t)

;
12. l = l + 1;
13. end while

Algorithm 3 Resource allocation and active beamforming
algorithm (RAABA) for two-user scenario.

1. Set the index number for decoding order asn = 1;
2. while n ≤ 2 do
3. Initialize p, f ,u

D/U
RIS , τ , and setl = 0;

4. repeat
5. Calculateα based on (11);
6. Updateτ (l) based on (13);
7. Updatef (l) based on (14);
8. Updatep(l) based on Algorithm 1;
9. Updateu(l) based on Algorithm 2;
10. Update the iterative indexl = l + 1;
11. until the objective function of (P1) converges;
12. n = n+ 1;
13. end while
14.Output π∗ = argmaxF(p1)(n) and the correspond-

ing p, f ,u
U/D
RIS , τ .

updating, it involves a sequence of QCQP problems which can
be solved using semi-definite programming (SDP). Hence, the
computational complexity of Algorithm 2 can be expressed as
O2

(

L3L4(4M)3.5
)

, whereL3 andL4 are iteration numbers
for the outer loop and inner loop of Algorithm 2 [24]. With
O1 andO2, and denoting the iteration number for inner loop
of Algorithm 3 asL5, the overall computational complexity
of Algorithm 3 can be given byO (2L5 (O1 +O2)), which is
in polynomial complexity.

Algorithm 3 executes the inner loop twice. For each iteration

of the inner loop, we have

F
(

τ (l), f (l),p(l),u(l)
)
(1)

≤ F
(

τ (l+1), f (l),p(l),u(l)
)

(2)

≤F (τ (l+1), f (l+1),p(l),u(l))
(3)

≤F (τ (l+1), f (l+1),p(l+1),u(l))
(4)

≤ F
(

τ (l+1), f (l+1),p(l+1),u(l+1)
)

.
(27)

The inequalities (1)-(3) hold becauseτ (l+1), f (l+1), and
p(l+1) are optimal solutions to (P1) when all other variables
are fixed. The inequality (4) follows from the fact that Algo-
rithm 2 outputsu(l+1) and guarantees the objective function
non-decreasing. Thus, the objective function of problem (P1)
with a given decoding order gradually increases after each
iteration. In addition, since the total number of completedtask
bits is upper-bounded, the objective function must converge
after a limited number of iterations.

B. Problem formulation and algorithm design for multi-user
scenarios

For practical active STAR-RIS-assisted wireless-powered
MEC systems, it is inevitable to support more than two users.
Therefore, building upon the solution for the two-user sce-
nario, we now formulate the completed task bits maximization
problem for multi-user scenarios.

1) Problem formulation: When there are multiple users
in active STAR-RIS-assisted wireless-powered MEC systems,
constraints C2-C5 in problem (P1) remain effective, while
constrains C1, C6, and C7 need to be modified to apply to
all users inI. Besides, the channel allocation indicatorδi,k is
required to be taken into consideration. Thus, the completed
task bits maximization problem for multi-user scenarios can
be formulated as

(P6)max
zm

I
∑

i=1

(

Loff
i + Llocal

i

)

(28a)

s.t. C2,C3,C4,C5, (28b)

(T − τ) pi + κ (T − τ) f3
i ≤ τPout,i, ∀i ∈ I, (28c)

0 ≤ pi ≤ Pmax, ∀i ∈ I, (28d)

0 ≤ fi ≤ Fmax, ∀i ∈ I, (28e)
I
∑

i=1

δi,k = 2, ∀k ∈ K, (28f)

K
∑

k=1

δi,k = 1, ∀i ∈ I, (28g)

δi,k ∈ {0, 1} , ∀i ∈ I, k ∈ K, (28h)

wherezm = {p, f ,u, τ,π, δ}. δ
∆
= {δi,k}i∈I,k∈K. Constraint

(28f) represents each channel can be allocated to at most two
users. (28g) indicates that each user can only occupy one
channel.

2) Algorithm design:Compared to the two-user scenario, it
is more challenging to obtain the resource allocation and active
beamforming solutions for problem (P6). This is because, in
addition to the joint optimization of energy transfer time,
transmit power, CPU frequency, and beamforming of active
STAR-RIS, we must also determine which users should be
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paired to share the same channel when offloading task bits
to the AP. However, the user pairing problem for NOMA is
NP-hard [39]. To solve problem (P6), we first propose a user
pairing algorithm based on matching theory, and then extend
Algorithm 3 to solve (P6) with the optimized user pairing
strategy. Before introducing the user pairing algorithm, we
need to define the matching function, swap matching, and the
swap-blocking pair.

Definition 1: In the proposed matching model,E is defined
as a matching function satisfying: (1)|E (i)|= 1, ∀i ∈ I; (2)
|E (k)| = 2, ∀k ∈ K; (3) E (i) = k if and only if i ∈ E (k).
Conditions (1) and (2) correspond to constraints (28f) and
(28g) in (P6). Condition (3) indicates that if useri is matched
with channelk, channelk is also matched with useri.

Definition 2: A swap matching is defined as [40]–[42]

Ej
i = {E\ {(i,E (i)) , (j,E (j))}} ∪ {(i,E (j)) , (j,E (i))} ,

(29)
which means useri and userj switch their offloading channels,
while the other users maintain their current channels.

Definition 3:For a matching model with matching function
E, (i, j) is a swap-blocking pair if and only if

∀n ∈ {i, j,E (i) ,E (j)} , Un

(

Ej
i

)

≥ Un (E) ,

∃n ∈ {i, j,E (i) ,E (j)} , Un

(

Ej
i

)

> Un (E) ,
(30)

whereUn

(

Ej
i

)

andUn (E) are utility functions ofn under

matching functionEj
i and E, respectively. For usern, the

utility is its offloading data rate under corresponding matching
function, i.e,Un

(

Ej
i

)

= Loff
n,Ej

i (n)
, andUn (E) = Loff

n,E(n). For
channeln, the utility refers to the sum of offloading data rates
for all users that are allocated to channeln. Thus, we have
Un

(

Ej
i

)

=
∑

Ej
i (n)

Loff
Ej

i (n),n
, andUn (E) =

∑

E(n) L
off
E(n),n.

With the above definitions, the proposed matching-theory-
based user pairing algorithm is summarized asAlgorithm 4 .
Algorithm 4 begins with Initialization (Steps 1-15), and then
executes the Swapping Process (Steps 16-21) until there is no
swap-blocking pair.

i) Initialization: Denote the sets of users allocated to
channelk, proposed to channelk, and rejected by
channelk asNA

k , NP
k , andNR

k , respectively. The set
of channels rejected by useri is expressed asCR

i . The
set of unmatched users is given bySun. The preference
list can be generated by calculating utilities, where the
inter-user interference is ignored since each channel has
not been allocated to any users. The transmit power
of users is initialized aspi,max. The phase shift and
amplitude for them-th element of STAR-RIS are set as
θU,e
m = 0 andβU,e

m = βmax. At the end of initialization,
all users are allocated to a specific channel.

ii) Swapping Process: To further improve utilities, users
will execute swap operations, where the swap among a
swap-blocking pair ensures an increase in utilities. Dur-
ing this process, the utility is calculated by considering
the inter-user interference. Additionally, to prevent flip-
flopping in the Swapping Process, we assume that each
useri can swap with another userj at most twice. The

Algorithm 4 Matching-theory based user pairing algorithm.

1. Initialize the preference lists of all users and channels
based on their utilities. SetSun = I, NP

k = ∅, NR
k =

∅, NA
k = ∅, andCR

i = ∅ .
2. repeat
3. for i in Sun do
4. User i proposes to the best channel that has

never rejected it before, i.e.,k ∈ K\CR
i and

updateNP
k ;

5. end for
6. for k in K do
7. if the number of users inNP

k ∪NA
k ≤ 2 then

8. Accept users inNP
k , andNA

k = NA
k ∪NA

k ;
9. Remove the matched users fromSun;
10. else
11. Channelk keeps the most preferred 2 users;
12. UpdateNA

k , NR
k , Sun, andCR

i ;
13. end if
14. end for
15. until Sun = ∅
16. repeat
17. For useri ∈ NA

k , search for another userj ∈ NA
k̃

;
18. if (i, j) is a swap-blocking pairthen
18. Update the current matching state toEj

i ;
19. else
20. Keep the current matching state;
21. until No swap-blocking pair is found.

Swapping Process will end when there are no swap-
blocking pairs.

With Algorithm 4, we can obtain the optimized matching
functionE, which can be easily mapped intoδi,k. Since each
user pair contains two users, we can extend Algorithm 3 to
solve (P6) with givenδi,k. Specifically, for the energy transfer
time τ , it can still be calculated according to (13), but the
difference lies ini ∈ I. Theorem 1 still holds for the multi-
user scenarios. Thus, the optimal CPU frequency of users can
be derived by (14). The transmit power of users in each pair
can be obtained via Algorithm 1 under a specific decoding
order. Finally, by expanding the user set to multiple users,
Algorithm 2 can output the active beamforming strategy for
problem (P6). Therefore, the proposed resource allocationand
active beamforming algorithm for multi-user scenarios, named
RAABAM, can be summarized asAlgorithm 5 .

3) Discussion:From Algorithm 5, it can be noted that the
user pairing strategy is not updated during the iteration. This
is because if the user pairing strategy changes, the structure
of problem (P6) will also change, making it impossible to
ensure the convergence of the proposed iterative algorithm.
Additionally, despite there are2I/2 potential decoding orders
in the entire system, it is still much smaller thanI! in
traditional NOMA systems without a user pairing strategy
whenI > 2.

The following provides a theoretical analysis of the com-
putational complexity, convergence and optimality of the
proposed RAABAM algorithm. Since the iteration part of
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Algorithm 5 Resource allocation and active beamforming
algorithm for multi-user scenarios (RAABAM).

1. Obtain user pairing strategy via Algorithm 4;
2. Set the index number for decoding order asn = 1;
3. while n ≤ 2I/2 do
4. Initialize p, f ,u

D/U
RIS , τ , and setl = 1;

5. repeat
6. Updateτ (l) based on (13);
7. for each user pairdo
8. Updatef (l) based on (14);
9. Updatep(l) based on Algorithm 1;
10. end for
11. Update u(l) based on Algorithm 2;
12. Update the iterative indexl = l + 1;
13. until the objective function of (P6) converges;
14. n = n+ 1;
15. end while
16.Output π∗ = argmaxF(p6)(n) and the correspond-

ing {p, f ,u, τ, δ}.

RAABAM algorithm is extended from Algorithm 3, its com-
putational complexity and convergence are the same as we
discussed in Section III-A 3). For Algorithm 4, given that the
numbers of users and channels are limited and the utilities
are upper bounded, the number of swap-blocking pairs is
limited. Therefore, Algorithm 4 will converge when no more
swap operations occur. The computational complexity for
initialization of Algorithm 4 mainly depends on the number of
user proposals. In the worst case, each user makes a proposal
to all channels, and thus the computational complexity for
initialization can be expressed asO (IK). The computational
complexity for swapping process is given byO

(

I2
)

. Thus, the
overall computational complexity of user pairing in RAABAM
can be expressed asO

(

I2 +KI
)

. When adopting the ex-
haustive search algorithm to solve user pairing problem, the
computational complexity can be expressed asO

(

I!/2K
)

,
which grows super-exponentially with the number of users. As
the number of users increases, the computational complexity
of exhaustive search algorithm becomes intolerable and thus
impractical for large-scale systems.

We next analyze the optimality of proposed RAABAM algo-
rithm. The RAABAM algorithm starts by executing Algorithm
4 to obtain the user pairing strategy. The matching-theory-
based Algorithm 4 ensures that the obtained user pairing
strategy is a stable matching, i.e., no swap-blocking pair
exists in the system. Although Algorithm 4 cannot obtain the
globally optimal solution, it improves the utility througha
finite number of swaps. With obtained user pairing strategy,
the RAABAM algorithm performs an exhaustive search over
all possible decoding orders in the outer loop to achieve the
globally optimal decoding order. For each decoding order, the
inner loop of RAABAM algorithm adopts an alternating opti-
mization approach to iteratively update the resource allocation
and beamforming. The inner loop of RAABAM algorithm
is a typical BCD algorithm, and it can achieve the local
optimal solution with a fast convergence speed. Therefore,

based on above analysis, our proposed RAABAM algorithm
can achieve the suboptimal solution to the completed task bits
maximization problem for multi-user scenarios.

4) Lower-complexity algorithm design:When solving
problem (P1) with two users, we find that if one user is located
at the reflection space and the other one is located at the
transmission space, the noise amplified by active STAR-RIS
has different impacts on these two users, which complicates
the optimization of users’ transmit power. In addition, dueto
the coupling relationships of the two users’ transmit power
in constraint C2 and the objective function, we adopt the
quadratic transform and design Algorithm 1 to tackle the
transmit power optimization iteratively. However, we notice
that if these two users are located at the same side of STAR-
RIS, they experience identical noise amplified by the active
STAR-RIS. Thus, we have the following Theorem 4.

Theorem 4. When two users (i.e., usersi and j) occupying
the same channel are located at the same side of STAR-RIS,
and the energy budget of STAR-RIS is sufficient, the optimal
transmit power of these two users in problem (P2) can be
given by

p∗j = min
{

pj,max,
τPout,j−κ(T−τ)f3

j

(T−τ)

}

p∗q=min

{

pq,max,
τPout,q−κ(T−τ)f

3
q

(T−τ) ,
pj|hU

RIS,APu
U,e
RISh

U
j,RIS|

2

|hU
RIS,APu

U,e

RISh
U
q,RIS|

2

}

.

(31)

Proof. See Appendix D.

The above findings, along with Theorem 4, provide valu-
able insights into reducing the complexity of the pro-
posed RAABAM (Algorithm 5). The low-complexity re-
source allocation and active beamforming algorithm, named
L-RAABAM, is summarized asAlgorithm 6 .

In L-RAABAM algorithm, when initializing p, f ,u and
τ , we can set the amplitude and phase shift of each el-
ement in active STAR-RIS’s beamforming matrixu(0) as
(

β
U/D,e
m

)(0)

= 0.5 and
(

θ
U/D,e
m

)(0)

= 0, respectively. The

the energy transfer time is initialized asτ (0) = T
2 . The initial

transmit power and CPU frequency of useri can be set as

pi
(0) =

τ (0)Pout,i

2(T−τ (0))
and fi

(0) = 3

√

τ (0)Pout,i

2κ(T−τ (0))
, respectively. It

can be found that the initial point ofp, f ,u andτ can satisfy
all constraints of problem (P6). Then, by iteratively updating
p, f ,u andτ until convergence, we can obtain the suboptimal
solution to problem (P6) under the given user pairing strategy
and decoding order.

The diagrams of RAABAM and L-RAABAM are illustrated
in Fig. 2. From Fig. 2, it can be seen that different from
RAABAM, the L-RAABAM algorithm in Fig. 2 (b) executes
Algorithm 4 separately for both reflection and transmission
spaces, which ensures that any specific user can be paired
with another one located at the same side of the STAR-
RIS. Since the number of users and channels in reflection
and transmission spaces is half of the full space, the com-
putational complexity of user pairing in L-RAABAM can
be given byO

((

I2 +KI
)

/2
)

. It can be found that the
computational complexity of user pairing can be significantly
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Fig. 2. (a) The diagram of Algorithm 5; (b) The diagram of Algorithm 6.

reduced by executing Algorithm 4 separately in the reflection
and transmission spaces. Meanwhile, during the iteration of
L-RAABAM, the transmit power of users can be directly
updated by a closed-form expression rather than by executing
Algorithm 1, which also effectively reduces the complexityof
transmit power optimization.

IV. SIMULATION RESULTS

In this section, we present simulation results to evaluate the
performance of the proposed algorithms for the active STAR-
RIS-assisted wireless-powered MEC. The considered simula-
tion setup is shown in Fig. 3, where a Cartesian coordinate
system is established withO as the origin. The AP is located
at (0, 3, 0). The users are distributed in a circular area with
a radius of 2 meters centered at(10, 0, 0). The STAR-RIS
is deployed on thex − z plane, where both they and z
coordinates of the STAR-RIS are 0. The bandwidth for each
subchannel is 1 MHz, and the mission period is 1 second.
We compare our proposed RAABAM and L-RAABAM with
three other schemes: 1) Exhaustive search, which explores
every possible user pair to find the optimal solution and serves
as the upper bound for our proposed algorithms; 2) Random
pairing, which randomly pairs all users; and 3) Channel-gain-
based algorithm [21], which successively pairs the user with
the highest channel gain with the user with the lowest channel

Algorithm 6 Low-complexity RAABAM (L-RAABAM).

1. Execute Algorithm 4 separately for the reflection and
transmission spaces;

2. Set the index number for decoding order asn = 1;
3. while n ≤ 2I/2 do
4. Initialize p, f ,u

D/U
RIS , τ , and setl = 1;

5. repeat
6. Updateτ (l) based on (13);
7. for user pairs in two spacesdo
8. Updatef (l) based on (14);
9. Updatep(l) based on (31);
10. end for
11. Update u(l) based on Algorithm 2;
12. Update the iterative indexl = l + 1;
13. until the objective function of (P6) converges;
14. n = n+ 1;
15. end while
16.Output π∗ = argmaxF(p6)(n) and the correspond-

ing {p, f ,u, τ, δ}.
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Fig. 3. The simulation setup.

gain. Other simulation parameters are listed in Table I for
clarity.

Fig. 4 illustrates the convergence behavior of the proposed
algorithms for both two-user and multi-user scenarios. It is
assumed that there are 8 users when running the proposed
RAABAM and L-RAABAM (i.e., Algorithms 5 and 6). It
can be seen that for all three algorithms, the total number
of completed task bits monotonically increases and stabilizes
after approximately 5-6 iterations, which verifies our proposed
algorithms converge fast.

Fig. 5 shows the average runtime of user pairing versus the
number of users. When the number of users increases, the
runtime of the channel-gain-based algorithm remains nearly
constant, since the channel-gain-based algorithm only requires
sorting users according to their channel gains. In contrast,
the runtime of the RAABAM and L-RAABAM algorithms
increase with the number of users. This is because both the
number of user proposals in Initialization and the number
of swap operations in Swapping Process increase with the
increase of the number of users. By modifying the user



IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. XX, XX 2025 12

TABLE I
SIMULATION PARAMETERS [43], [44]

Parameters Default Values
Bandwidth,B 1 MHz

Noise power,n2

AP, n2

RIS -80 dBm
Rician factor,̟D

AP, ̟D

RIS 3 dB
Maximum CPU frequency,Fmax 1 GHz

Effective capacitance coefficient,κ 10
−28

The tolerant threshold,ε 10
−4

Maximum amplitude coefficient,βmax 5
Energy budget of STAR-RIS,ERIS 50 dBm

Energy harvesting parameters,υ, ψ, φ 0.0233, 132.8, 0.0118

1 2 3 4 5 6 7
Number of iterations
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Fig. 4. The convergence behavior of proposed algorithms.

pairing strategy, the proposed L-RAABAM algorithm achieves
a substantial reduction in runtime, thereby enabling more
efficient user pairing.

Fig. 6 shows the total number of completed task bits
versus the transmit power of the AP. It can be observed
that as the AP’s transmit power increases, the total number
of completed task bits also increases. This is because with
larger AP’s transmit power, users can harvest more energy
for local computing and task offloading. By optimizing the
user pairing strategy based on matching theory, our proposed
RAABAM and L-RAABAM achieve a greater total number
of completed task bits than random pairing and channel-
gain-based algorithms. For example, when the transmit power
of the AP is 60 dBm, compared to the random pairing
and channel-gain-based algorithms, the proposed RAABAM
improve the total number of completed task bits by 7.76%
and 4.39%, respectively. As expected, RAABAM performs
better than L-RAABAM since matching users across the full
space is more likely to find a better solution than matching
them within reflection or transmission space separately. Thus,
RAABAM can manage the inter-user interference of NOMA
more effectively and achieve higher offloading data rate.

Fig. 7 shows the total number of completed task bits versus
the number of STAR-RIS’s elements. With the assistance
of STAR-RIS, users and the AP can coherently combine
the energy-carrying signals and task offloading signals re-
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Fig. 5. The average runtime of user pairing versus the numberof users

58 58.5 59 59.5 60 60.5 61 61.5 62
Transmit power of AP, P

AP
 (dBm)

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

T
ot

al
 n

um
be

r 
of

 c
om

pl
et

ed
 ta

sk
 b

its

107

Exhaustive search
L-RAABAM
RAABAM
Random pairing
Channel-gain-based algorithm

Fig. 6. The total number of completed task bits versusPAP.

flected/transmitted by all STAR-RIS’s elements respectively.
Thus, when the number of STAR-RIS’s elements increases,
higher channel gains can be achieved for both uplink task of-
floading and downlink energy transfer. The improved downlink
channel gains can provide users with more energy for task
offloading and local computing, while the enhanced uplink
channel gains improve the offloading data rate. As a result, it
can be observed from Fig. 7 that the total number of completed
task bits within the mission period increases with the growth
of the number of elements. Additionally, we note that the
proposed RAABAM and L-RAABAM perform close to the
exhaustive search but with much lower complexity, which
verifies the effectiveness of the proposed algorithms.

Fig. 8 demonstrates the total number of completed task
bits versus the maximum transmit power of users (i.e.,Pmax).
WhenPmax is below 10 dBm, users can offload task bits to the
AP at the maximum transmit power. Thus, the total number of
completed task bits increases asPmax grows. However, when
Pmax further increases, the total number of completed task
bits ceases to increase since the harvested energy of users
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Fig. 7. The total number of completed task bits versusM .

0 2 4 6 8 10 12
The maximum transmit power of users, P

max
 (dBm)

1.16

1.18

1.2

1.22

1.24

1.26

1.28

1.3

1.32

1.34

1.36

T
ot

al
 n

um
be

r 
of

 c
om

pl
et

ed
 ta

sk
 b

its

107

Exhaustive search
L-RAABAM
RAABAM
Random pairing
Channel-gain-based algorithm

Fig. 8. The total number of completed task bits versusPmax.

in the mission period is limited and users’ practical transmit
power for task offloading cannot reach the bound of maximum
transmit power constraint.

Fig. 9 illustrates the impact of different RISs on the total
number of completed task bits. Since active STAR-RIS or
active traditional RIS incurs additional energy consumption
when amplifying incident signals, we adjust the power of
the AP in the schemes with passive STAR-RIS and passive
traditional RIS asPAP + ERIS/τ for a fair comparison. On
one hand, it can be found that compared to traditional RIS,
the schemes with STAR-RIS can achieve better performance
due to the extra DoFs provided by STAR-RIS. On the other
hand, since the multiplicative fading effects can be overcome
by active STAR-RIS/RIS, the active schemes perform greatly
better than the passive schemes.

Fig. 10 demonstrates the impacts of the STAR-RIS’s de-
ployment location on the total number of completed task bits.
From Fig. 10, we can observe that with a small number of
STAR-RIS’s elements (M = 2), the total number of completed
task bits first decreases and then increases as the distance from
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Fig. 9. The impacts of different RISs.
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Fig. 10. The impacts of STAR-RIS’s deployment location.

the STAR-RIS to the originO increases, for both passive and
active STAR-RIS. This is because the offloading data rate is
dominated by the cascaded channel gains between users and

the AP, i.e.,
∣

∣

∣hU
RIS,APu

U,e
RISh

U
i,RIS

∣

∣

∣

2

, which first decreases and
then increases as the distance from STAR-RIS toO increases.
Interestingly, whenM = 10, passive and active STAR-
RIS show different trends as the distance from the STAR-
RIS to O increases. This is because the active STAR-RIS
simultaneously amplifies the incident signals and noise, i.e.,

n2
RIS

∥

∥

∥hU
RIS,APu

U,e
RIS

∥

∥

∥

2

. The amplified noise power decreases as
the distance between STAR-RIS and AP increases, resulting
in an increased offloading data rate as the distance from the
STAR-RIS toO increases. When the number of STAR-RIS’s
elements further increases (M = 20), the unamplified noise
of the passive STAR-RIS cannot be ignored. In this case, the
total number of completed task bits increases as the distance
from the STAR-RIS toO for both passive and active STAR-
RIS increases. These results provide valuable guidance forthe
deployment of active/passive STAR-RIS in wireless-powered
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MEC systems. For instance, to maximize the total number of
completed task bits, if the number of STAR-RIS elements is
small, it should be deployed near the AP or users. Conversely,
it should be deployed close to users.

V. CONCLUSIONS

In this paper, we have investigated the active STAR-RIS-
assisted wireless-powered MEC systems under the NOMA
protocol. The active STAR-RIS was deployed to enhance
the efficiency of both energy transfer and task offloading by
reflecting/transmitting and amplifying signals. Beginning with
a two-user scenario, we proposed RAABA to maximize the
total number of completed task bits by optimizing the energy
transfer time, decoding order, transmit power, CPU frequency
of users, and beamforming of the active STAR-RIS. Then,
by leveraging a matching-theory-based user pairing algorithm,
we extended RAABA to general multi-user scenarios. Further-
more, we reduced the computational complexity of RAABAM
by modifying the matching process and deriving the closed-
form expression for users’ transmit power, and proposed L-
RAABAM. Simulation results demonstrated the effectiveness
of RAABAM and L-RAABAM and provided insights for the
optimal deployment locations of active STAR-RIS in wireless-
powered MEC systems.

APPENDIX A
PROOF OF THEOREM 1

Proof: The derivative of the objective function with respect
to fi can be derived asT−τ

Ci
≥ 0. Hence, the objective

function of (P1) is a monotonic increasing function offi.
Assume that the optimal solution to problem (P1) isz∗. If
(T − τ ) pi

∗ + κ (T − τ ) (f∗
i )

3
< τPout,i and f∗

i < Fmax,
we can increasef∗

i to further increase the objective function.
Hence, the assumed optimal solution is not optimal. Thus,
Theorem 1 is proved. �

APPENDIX B
PROOF OF THEOREM 2

Proof: The objective function of (P2) can be first trans-
formed into

F (p,γ)=
∑

i={j,q}
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(32)
It can be found thatF (p,γ) is a concave and differentiable

function overγi whenpi is fixed. Thus,γi can be optimally
determined by setting the derivative ofF (p,γ) with respect
to γi as zero. By doing so, we can obtain

γ∗j =
pj|hU

RIS,APu
U,e
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U
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(33)
Then, by substitutingγ∗j and γ∗q into (32), we can obtain
F (p, γ∗) which is the same with the objective function

of (P2). Therefore, the equivalence between (32) and (P2)
is established. Next, with fixedγ, we apply the quadratic
transform to the two ratio terms in (32), and (32) can be
rewritten as the objective function of (P3) (referred to as
G (p,γ,y)). G (p,γ,y) is also concave with respect toyi.
Similar to γ, by setting∇yG to 0, we can obtain
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(34)
By substituting (34) into (P3),G (p,γ,y) can recover as the
form of (32), which means the equivalence between (32) and
(P3). Therefore, (P2) is equivalent to (P3). The conclusionin
Theorem 2 is proved. �

APPENDIX C
PROOF OF THEOREM 3

Proof: Whenγ andy are given, problem (P3) is a convex
optimization problem, since the objective function is concave
with respect topi and all constraints are linear. Therefore, we
can adopt the Lagrangian dual method to derive its closed-
form solution. The Lagrangian function of problem (P3) can
be expressed as

L (Λ) =
∑

i={j,q}
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whereΛ = {pj , pq, η}. T =
∑

i={j,q} (ω log (1 + γi)− ωγi).
Then, by setting the derivation ofL (Λ) with respect topi, i ∈
{j, q} as 0, we can obtain
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(36)
Finally, taking the constraints C1, C6, and (15c) into account,
the optimal transmit power of useri and userj can be given
by (17). The conclusion in Theorem 3 is proved. �

APPENDIX D
PROOF OF THEOREM 4

Proof: In problem (P2), if userj and userq are located at
the same side of STAR-RIS, the derivatives of the objective
function with respect topj and pq can be given byDj =

|hU
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respectively. It is obvious that bothDj and Dq are non-
negative. Thus, the objective function of (P2) is monotonically
increasing with respect topj and pq. For constraint C2,
since ERIS is large enough, C2 always holds even when
pj and pq reach their maximum values within the feasible
region. Therefore, considering C1, C6, and (15c), the optimal
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solutions forpj and pq are given by (31). This proves the
conclusion in Theorem 4. �
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