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Abstract

Bone health studies are crucial in medical practice for the
early detection and treatment of Osteopenia and Osteoporo-
sis. Clinicians usually make a diagnosis based on densito-
metry (DEXA scans) and other patient history. The appli-
cations of AI in this field are an ongoing research. Most of
the successful methods for this task include Deep Learn-
ing models that rely on vision alone (DEXA / X-ray im-
agery) geared towards high prediction accuracy, where ex-
plainability is disregarded and largely based on the post
hoc assessment of input contributions. We propose Pro-
toMedX, a multi-modal model that uses both DEXA scans
of the lumbar spine and patient records. ProtoMedX’s
prototype-based architecture is explainable by design, cru-
cial for medical applications, especially in the context of
the upcoming EU AI Act, as it allows explicit analysis
of the model’s decisions, especially the ones that are in-
correct. ProtoMedX demonstrates state-of-the-art perfor-
mance in bone health classification while also providing
explanations that can be visually understood by clinicians.
Using our dataset of 4,160 real NHS patients, the proposed
ProtoMedX achieves 87.58% accuracy in vision-only tasks
and 89.8% in its multi-modal variant, both approaches sur-
passing existing published methods.

1. Introduction

In 2022, osteoporosis affected 3.5 million people in the
United Kingdom, with osteoporotic fractures accounting for
over £4.6 billion of direct costs to the National Health Ser-
vice (NHS). This annual cost is forecasted to rise to £6 bil-
lion by 2030 as the population of the United Kingdom ages
[24]. Globally, the prevalence of osteoporosis is estimated
to be 6.3% of men over the age of 50 and 21.2% of women
over the same age range [10]. Based on the world popula-
tion, this suggests that approximately 500 million individu-

als worldwide may be affected [10].
Existing bone health classification approaches face three

fundamental limitations. First, most studies adopt binary
classification (normal vs. osteoporosis), either excluding
osteopenia patients altogether or grouping them with osteo-
porosis cases under the label “low bone density” [32]. This
simplification obscures the clinically important intermedi-
ate state of osteopenia, where patients face a significantly
higher fracture risk compared to those with osteoporosis
[30]. Possibly due to data availability issues, studies at-
tempting three-class classification (normal, osteopenia, and
osteoporosis) are much rarer. The only three-class study we
identified using spine data, [36], did not report classification
accuracy but achieved a highest AUC of 0.81, suggesting
that the added complexity poses substantial challenges.

Second, current methods predominantly rely on vision-
only models [14, 28]. This contradicts standard medical
practice for fracture risk assessment, where diagnosis in-
tegrates image findings with patient history, demographics,
and risk factors. Our results validate this intuition; by incor-
porating clinical features alongside imaging, accuracy im-
proves from 87.58% to 89.8% while providing more robust
predictions.

Third, and critically, existing deep learning approaches
lack explainability. Post hoc interpretation methods such as
GradCAM [27] and SHAP values [15] provide approximate
rationalisations post-training rather than true model reason-
ing. In medical contexts where decisions directly impact
patient care, clinicians require models that are explainable
by design and cannot rely on “black boxes” with retrofitted
interpretations to guide their treatment decisions [25]. This
importance is further emphasised in the context of the re-
cently adopted EU AI Act, which considers medical appli-
cations of AI as “high risk”, making it as significant as crit-
ical infrastructure [7, 7, 19].

To address these limitations, we present ProtoMedX
(Prototype-based Medical eXplanation), the first



prototype-learning framework for bone health assess-
ment. ProtoMedX reimagines bone health classification
through case-based reasoning, rather than learning opaque
decision boundaries. It identifies representative prototypes
for each diagnostic category and classifies new patients
based on similarities to these learned examples. This mir-
rors actual clinical reasoning, where physicians compare
patients to archetypal cases. Our key contributions are:

• First prototype-based architecture for bone health:
We introduce dual prototype spaces (visual and clinical)
unified through cross-modal attention, enabling explain-
able predictions via direct comparison to learned exem-
plars. (See Figures 2, 5).

• Multi-task learning leveraging bone density continu-
ity: We demonstrate that auxiliary T-score regression dur-
ing training forces the model to understand bone den-
sity as a continuous phenomenon, dramatically improv-
ing classification accuracy by 6.7% in MLP approaches
(Table 1) and by 2.46% in ProtoMedX (See Table 2).

• State-of-the-art performance with built-in explain-
ability: ProtoMedX achieves 89.8% accuracy on three-
class classification, surpassing prior art by 14-27% abso-
lute improvement (Table 4). Critically, this performance
includes inherent explanations, not post hoc rationalisa-
tions, making it more suitable for clinical deployment.

• Comprehensive evaluation on clinical data: The study
is comprised of 4,160 lumbar spine DEXA scans with
complete patient profiles, demonstrating robust perfor-
mance across demographics. The model excels at clini-
cally critical Normal vs. Abnormal detection (91.2% sen-
sitivity) while maintaining prototype-based transparency.
(See Sec. 4.1).

2. Background and Related Work

2.1. Bone Health
As we age, we naturally loose bone mass. This happens to
some patients at a faster rate than others, which can result
in osteoporosis. Osteoporosis is a bone disease that results
in an increased risk of a fragility fracture, which occurs fol-
lowing a fall from standing height or less. Osteoporosis
affects both men and women but is most prevalent in post-
menopausal women due to reduced oestrogen, with 1 in 2
women affected by the age of 80 [10]. While it is not cur-
rently possible to completely recover bone after significant
degradation, it is possible to reduce further bone loss and
the impact through lifestyle and/or pharmaceutical interven-
tions if detected sufficiently early. There are several clinical
tools available to assess fracture risk, most notably FRAX®
[11], which calculates a patient’s probability of suffering
from a hip fracture caused by osteoporosis within 10 years,
as well as provides advice as to whether a patient should
seek a bone densitometry scan produced by a DEXA ma-

chine [17]. The DEXA machine (Dual-Energy X-ray Ab-
sorptiometry) uses a low dose of X-rays to measure bone
mineral density and provides a T-score. The T-score indi-
cates the number of standard deviations away a patient is
from a young, healthy population and provides the diagnos-
tic definition of bone health, according to the World Health
Organization (WHO), using the following thresholds [23]:
normal (T-score above −1.0), osteopenia (T-score between
−1.0 and−2.5), or osteoporosis (T-score below−2.5) [23].

DEXA scans are commonly performed on hips, fore-
arms, lumbar spine, and whole-body scans. For this study,
we were granted the use of lumbar spine scans only.

2.2. Dataset Availability

Moderate-sized tabular datasets (1,000–10,000 samples) are
available, such as [14] who employed a sample of 6,672 pa-
tients from an NHANES-provided dataset [3]. For vision
tasks, publicly available datasets for use in research are of-
ten significantly smaller, normally in the hundreds, which
limits the amount of diversity for each dataset and limits
the quality of research by third-party institutions. One ex-
ample of a publicly available dataset includes 177 lumbar
DEXA scans from patients in Pakistan [16]. These public
datasets are usually limited in size due to strict data restric-
tions, often resulting in datasets remaining proprietary. To
the best of our knowledge, there are no large or moderate
sized datasets that contain both images and more than a few
patient attributes (outside of age, weight, height, and gen-
der) that are available to the public, making multi-modal
machine learning largely inaccessible. While our dataset
is not currently accessible to the public, we support ongo-
ing efforts to promote the sharing and accessibility of such
datasets within the research community, provided the neces-
sary data protection procedures are correctly implemented.
Due to the aforementioned limitations in data availability,
many studies [13, 32, 36] rely on data augmentation meth-
ods to resolve imbalanced data, which is standard for vi-
sion tasks. However, there are doubts on the transferability
to real clinical practice application of models that leverage
augmentation within the medical domain [20, 21, 31].

Our research was performed in collaboration with the
NHS, which allowed us to obtain a significantly larger
dataset than is common in this field. The dataset contains
4,160 patients’ lumbar spine DEXA scans, of which 2,224
are patients with normal bone health, 1,398 are patients with
osteopenia, and 538 are patients with osteoporosis. The data
consists of 926 males and 3,234 females. The ages of pa-
tients in the dataset range from 20 to 110, with an average
age of 74 and an interquartile range of 65 to 83. The dataset
also contains parts of the patients records, specifically, the
same 11 features that the FRAX® tool operates with.



2.3. Machine Learning for Bone Health
Machine learning approaches to bone health classification
have evolved from early neural networks [18, 22] to
modern deep learning architectures. However, fundamental
limitations persist across these methods.

Tabular-only approaches, such as those using demo-
graphic and bone turnover markers (e.g., age, sex, and
bone-specific alkaline phosphatase), can achieve up to 73%
accuracy [2]. However, these methods lack the spatial
information provided by imaging.

Vision-only methods using CNNs and Vision Trans-
formers on DEXA/X-ray images report 80-90% accu-
racy [14, 26, 28, 32]. However, these studies suffer from
(1) binary classification that ignores the clinically important
osteopenia stage [32], (2) small datasets (e.g., 117 im-
ages [32]) with heavy augmentation, (3) uncommon body
areas, such as [26] using knees, which is not commonly
used for osteoporosis diagnosis, or (4) poor three-class
performance [36].

Multi-modal fusion shows modest improvements. [28]
achieved 84.5% (vs. 83.2% vision-only) by combining den-
tal X-rays with demographics. While this study employed
binary classification, it demonstrates that the addition of
tabular features in a multi-modal setting can provide in-
creased accuracy, which is in line with our own findings.

These approaches share critical gaps: oversimplified bi-
nary classification, lack of explainability, and limited multi-
modal integration, motivating our prototype-based solution
that addresses all three.

2.4. Explainable AI for Bone Health
Clinical deployment demands models that are able to ex-
plain their reasoning, not just achieve high accuracy. Post
hoc methods such as GradCAM [27], SHAP [15], and
saliency maps [35] approximate model behaviour after
training but lack fidelity and have the capability of being
misleading, as they provide rationalisations rather than true
model reasoning [8, 9, 12, 25, 34]. This disconnect is partic-
ularly problematic in medical contexts where understanding
the decision process guides treatment.

Prototype-based Models: Prototype learning offers in-
herent explainability by comparing inputs to learned exem-
plars. ProtoPNet [4] pioneered this approach for images,
followed shortly by xDNN [1], enabling case-based reason-
ing (“this looks like that”). However, ProtoPNet suffers
from three limitations: (1) vision-only architecture makes
the framework incompatible with clinical data, (2) reliance
on localised patches that can highlight misleading regions,

and (3) post hoc similarity heatmaps rather than supervised
prototype learning [29] (see Figure 1).

1a. Good
prototype.

1b. Poor heatmap
localisation.

2a. Poor prototype.
2b. Good heatmap

localisation.

Figure 1. Inconsistent quality of prototypes and heatmap localisa-
tion generated by ProtoPNet. Despite (1a) showing a clear, high-
quality prototype, its heatmap (1b) exhibits poor localisation with
diffuse activation. Conversely, a blurry prototype (2a) produces
well-focused heatmap localisation (2b), revealing that prototype
visual quality does not correlate with localisation accuracy.

To the best of our knowledge, no prior work applies
prototype-based learning to bone health classification. Pro-
toMedX addresses this gap by extending prototype reason-
ing to multi-modal inputs (imaging + clinical data) while
learning full-image prototypes that provide clear explana-
tions. This design aligns with the way clinicians reason,
comparing patients to archetypal cases rather than analysing
isolated image regions.

3. ProtoMedX
ProtoMedX introduces prototype-based deep learning for
bone health assessment, enabling case-based reasoning and
explanations that align with clinical decision-making. It
learns class-representative prototypes in a unified feature
space, making predictions by comparing inputs to these pro-
totypes. Fig. 2 illustrates the overall architecture of the pro-
posed framework.

3.1. Feature Extraction and Encoding
Vision Branch: We employ a frozen CrossViT backbone
[5] pre-trained on ImageNet for DEXA feature extraction,
as it achieved superior standalone performance (See ta-
ble 3). CrossViT’s dual-branch design captures both fine-
grained trabecular patterns and global spinal morphology,
critical for osteoporosis assessment. The frozen backbone
outputs f img ∈ R1151, which is fed to a projection MLP



Figure 2. Overview of ProtoMedX Architecture. Multi-modal prototype learning combines patient DEXA scans and clinical records
via separate encoders, learns explainable vision and tabular prototypes, and fuses them in a joint prototype space. Classification and
explanations derive from prototype similarity and case retrieval, enhancing clinical explainability.

(1151 → 512 → 256) with BatchNorm and 0.3 dropout,
producing

hi = ϕi(f
img) ∈ R256.

Tabular Branch: We encode the clinical features as a vec-
tor xtab ∈ R11 (Age, sex, weight, height, previous frac-
ture, parent fracture hip, currently smoking, glucocorti-
coids, rheumatoid arthritis, secondary osteoporosis, and al-
cohol intake of 3 or more units/day) via

ht = ϕt(x
tab), ϕt : R11→R64,

where ϕt is a two-layer MLP with residual connections and
dropout.

3.2. Cross-Modal Fusion
The encoded image and tabular embeddings are first com-
bined by a cross-modal attention block, producing a joint
representation:

hfused = CrossAtt
(
hi,ht

)
∈ R256.

During prototype matching, we apply an adaptive, input-
dependent weighting of modality-specific similarity scores:

α = σ
(
g([hi;ht])

)
, sim(z) = αSimg(z)+(1−α)Stab(z),

where g is a linear layer and Simg, Stab are cosine similari-
ties in the image and tabular prototype subspaces, respec-
tively. This gating strategy improved top-1 accuracy by
1.08% compared with uniform weighting. The fused vector
hfused is subsequently fed to the prototype layer for classi-
fication.

3.3. Prototype Learning
ProtoMedX learns K = 6 prototypes per class, where each
prototype represents a typical patient case. This value was
determined through empirical validation: K < 6 failed to

capture intra-class diversity (e.g., early vs. advanced os-
teoporosis), while K > 6 introduced redundant prototypes
without improving classification. We employ a dual pro-
totype architecture, maintaining separate spaces for visual
(pimg

c,k ∈ R128) and tabular (ptab
c,k ∈ R64) features while

performing classification in the fused space. This enables
modality-specific interpretation. Ablation shows that re-
moving dual prototypes reduces accuracy by 4.33%.

Following contrastive learning principles [6], we opti-
mise prototypes through a composite loss:

Lproto = Lclass + λsepLsep + λctrLcenter (1)

where Lclass ensures prototypes alone can classify via
softmax over cosine similarities, Lsep maintains inter-class
margins using a triplet-like loss [37], and Lcenter compacts
intra-class distributions [33]. This creates well-separated
clusters (Fig. 3) with osteoporosis prototypes clustering at
low T-scores (-3.48 average).

To maintain explainability, prototypes are periodically
projected onto the nearest training examples, ensuring that
each represents an actual patient case rather than abstract
features.

3.4. Multi-Task Learning
Traditional approaches inadequately exploit the fact that the
bone density has a continuous nature and have notable lim-
itations. Tabular methods heavily rely on external BMD
values, achieving only 59% accuracy without them ( Ta-
ble3(b)). Two-stage vision frameworks that first predict
BMD to make the diagnosis suffer from classification er-
rors due to sharp clinical thresholds at T=-1 and T=-2.5
(See Table 3(c)). Direct classification ignores continuous
bone-density variations, plateauing at about 76% accuracy,
although not far from the standard cross-entropy approaches
(See Table 3(a)).

We address these issues using multi-task learning, jointly
optimising for classification and T-score regression. This



encourages the model to learn continuous bone-density rep-
resentations, smooth decision boundaries, and regularise
training. Formally:

LProtoMedX = Lcls + λ1Lreg + λ2Lproto (2)

where Lcls handles classification, Lreg predicts T-scores,
and Lproto is the prototype learning loss. Including regres-
sion (λ1 = 0.3) significantly improves accuracy, removing
it results in a 2.46% accuracy drop. Thus, explicitly mod-
elling bone density continuity substantially enhances clini-
cal predictions which, in the end, are in a form of 3-class
classification (Normal/ Osteopenia/Osteoporosis). The λ
multipliers were determined after grid search.

3.5. Clinical Explanations

ProtoMedX provides clinically interpretable, multi-level
explanations for each diagnosis. (See Sec.5.4 and Fig. 5).
Classification Confidence: Model confidence is derived
from the weighted k-NN voting among prototypes:

C =
∑

i∈Nc
e−di/τ∑k

j=1 e
−dj/τ

, (3)

where Nc ⊆ {1, . . . , k} are the k nearest prototypes of the
predicted class c, di is the Cosine distance to prototype i,
and τ controls the sharpness of the weighting.

High confidence (e.g. > 90%) indicates strong consen-
sus; low confidence (e.g. < 60%) highlights borderline or
uncertain cases. An advantage of the proposed ProtoMedX
is the ability to analyse the decisions.
Prototype-based Reasoning: Each decision is supported
by the most similar k (k = 3) prototypes, displaying source
patient ID, clinical features, influence weight, and prototype
representativeness.
Feature-Level Analysis: For each clinical feature j, we
compute relative deviation from class norms (for class c):

δj =
|xtab

j − µc,j |
max(µc,j , 1)

(4)

Features with δj > 0.5 signal clinically atypical values.
Voting Visualisation: Bar plots show vote distributions,
helping identify borderline versus confident classifications.
Misclassification Analysis: ProtoMedX provides confi-
dence, which is an indication of a possible misclassifica-
tion as described earlier. Furthermore, for the errors, in
real-world settings, confidence scores and the explanations
should aid the analysis. For our study, we visualized both
predicted and true class prototypes, supporting error analy-
sis. Most mistakes occur near diagnostic boundaries (e.g.,
Normal→Osteopenia). (See Fig. 5 for an example).

3.6. Prototype-Based Classification
During inference, ProtoMedX performs explainable classi-
fication through k-nearest neighbour search:

Algorithm 1 ProtoMedX Inference and Explanation Gen-
eration

1: Input: Patient (ximg,xtab), Learned prototypes P
2: // Feature extraction and fusion
3: z, α← EncodeFuse(ximg,xtab)
4: // k-NN classification
5: Compute distances: dc,k = ∥z − pc,k∥2 for all proto-

types
6: Select k=3 nearest prototypes: N = {(ci, ki, di)}3i=1

7: Calculate weights: wi = exp(−di/τ), normalize to
sum to 1

8: Vote: vc =
∑

i:ci=c wi for each class c
9: Predict: ŷ = argmaxc vc

10: // Generate clinical explanation
11: Confidence: C = vŷ (winning vote weight)
12: Retrieve prototype metadata: patient IDs, T-scores,

clinical features
13: Compute feature deviations: δj = |xtab

j −
µŷ,j |/max(µŷ,j , 1)

14: Flag atypical features where δj > 0.5
15: Return: Class ŷ, confidence C, similar patients N ,
16: modality weight α, feature analysis {δj}

This approach achieves 89.8% accuracy with k-NN clas-
sification, comparable to the less explainable approach
of neural network classification layers instead of K-NN
(89.6%).

4. Experiments
4.1. Dataset and Preprocessing
We utilise a clinical dataset of 4,160 lumbar spine DEXA
scans with corresponding patient records. Each scan in-
cludes DEXA produced T-scores and clinical features (age,
sex, height, weight, previous fractures, parent fractured hip,
current smoker, glucocorticoids, rheumatoid arthritis, sec-
ondary osteoporosis, and alcohol intake).

Images undergo standardised preprocessing: adaptive
histogram equalisation for contrast enhancement and Gaus-
sian filtering (σ = 1.0) for noise reduction. All images are
resized to 240×240 for CrossViT feature extraction. The
dataset exhibits class imbalance typical of clinical popula-
tions: Normal (45%), Osteopenia (38%), and Osteoporosis
(17%).

4.2. Training Configuration
We use 80% of the data for training (with an internal 10%
validation split) and 20% as a held-out test set for evalua-



tion. Differential learning rates are set for each component:
5×10−5 for frozen image features, 5×10−4 for tabular lay-
ers trained from scratch, and 1 × 10−3 for prototype adap-
tation.

Training uses the AdamW optimiser with weight decay
10−4, cosine annealing schedule, and early stopping (pa-
tience=15). Prototypes are initialised via k-means cluster-
ing on training features and periodically projected to the
nearest training examples to maintain explainability.

4.3. Evaluation Protocol
We evaluate using: (1) overall accuracy, (2) per-class preci-
sion/recall/F1, and (3) clinical agreement (predicted vs. true
diagnostic category from T-scores). For ablations, we sys-
tematically remove components and measure performance
degradation.

4.4. Baseline Comparisons
We compare our method against SOTA tabular approaches,
vision-only models, other prototype models (see Table 3),
and recent SOTA bone health classification methods (see
Table 4). For a fair comparison, we evaluated baselines
and comparison in our aforementioned dataset and training
splits, keeping the exact architecture, pre-processing and
other architecture contributions claimed by each of the sur-
veyed methods.

5. Results
5.1. Quantitative Performance
ProtoMedX demonstrates strong clinical alignment: 83.9%
diagnostic agreement, and 91.2% sensitivity for Normal vs.
Abnormal detection and SOTA performance with 89.2% ac-
curacy on three-class bone health classification.

Detailed metrics show balanced performance: 89.3%
precision, 89.2% recall, and 89.1% F1-score. Per-class
analysis reveals excellent Normal detection (92.1% pre-
cision, 95.0% recall), balanced Osteopenia performance
(88.7% precision, 78.6% recall), and high Osteoporosis sen-
sitivity (79.4% precision, 92.6% recall). Crucial for identi-
fying severe cases requiring immediate intervention.

Note that MLP-MultiTask jointly estimates T-scores and
bone health classification, whereas MLP-SingleTask esti-
mates T-scores only, which are then mapped to the classi-
fication boundaries. The multi-task approach consistently
improves performance across modalities.

5.2. Ablation Study
Component-wise ablation reveals each architectural contri-
bution:

Prototype learning and cross-modal attention provide the
largest gains (4.33% and 4.09%), validating our architec-
tural choices. Multi-task learning adds 2.46%, confirming

Table 1. Bone Health Classification Performance comparison
across methods and modalities (%)

Model Modality Acc. Prec. Rec. F1

ProtoMedX Multi 89.8 89.3 89.2 89.1
MLP-MultiTask Multi 87.8 84.7 85.4 85.0
MLP-SingleTask Multi 82.7 82.1 75.0 77.6
CrossViT Multi 76.2 75.2 64.0 68.2
MLP Multi 72.3 65.3 66.0 65.6

MLP-MultiTask Vision 87.8 85.1 85.4 85.2
ProtoMedX-V Vision 87.5 83.6 85.3 84.2
MLP-SingleTask Vision 82.3 82.1 73.3 76.1
CrossViT Vision 74.7 69.5 67.7 68.5
XGBoost Vision 73.2 65.7 66.0 65.8
MLP Vision 73.2 65.8 66.1 65.9

Table 2. Ablation study of ProtoMedX components

Configuration Accuracy (%) ∆

Full ProtoMedX 89.8 -
w/o gate mechanism 88.72 -1.08
w/o multi-task 87.34 -2.46
w/o cross-attention 85.71 -4.09
w/o prototypes 85.47 -4.33

Baseline (no components) 84.99 -4.81

that continuous T-score supervision, alongside categorical
classification, enhances overall performance.

Table 3. Empirical‰ demonstration of key architectural choices

(a) Vision Backbone Comparison

Backbone Acc (%)

ResNet/VGG 67/73
DenseNet/ViT 71/74
CrossViT [5] 76

(b) Tabular Methods: BMD Dependency

Method w/ BMD w/o BMD

XGBoost/GB 85 53/54
Decision Tree 83 59
Logistic Reg. 79 55

(c) BMD Regression vs Classification

Model MSE Acc (%)

ViT 0.02 68.7
DenseNet 0.03 46.9
CrossViT 0.05 71.4



Validation of other architectural choices: Table 3(a)
validates CrossViT selection for vision backbone. Ta-
ble 3(b) reveals tabular methods’ critical dependency on
BMD values, without them, accuracy drops from 85% to
between 53 and 59%. This justifies our vision-centric ap-
proach, as clinical BMD measurements may be unavail-
able in settings where, for instance, X-Ray imagery is
used instead of the more costly DEXA machines. Ta-
ble 3(c) demonstrates that low BMD regression MSE does
not guarantee high classification accuracy. Despite ViT
achieving lowest MSE (0.02), CrossViT’s higher MSE
(0.05) yields superior classification (71.4% vs 68.7%), be-
cause small BMD errors near diagnostic thresholds (T =
−1, T = −2.5) cause misclassifications. With regression-
then-prediction tasks always showing inferior classification
performance. This motivates our multitask approach that
jointly optimizes both objectives.

5.3. Prototype Explainability

Figure 3. T-SNE analysis of Fused Prototype feature space with
18 learned prototypes showing clear class separation.

T-SNE visualization (Figure 3) reveals well-separated
prototype clusters with clear decision boundaries (Figure 4).
Normal prototypes (green) cluster tightly at positive T-
scores, while Osteoporosis prototypes (red) show broader
distribution reflecting disease heterogeneity. The k-NN de-
cision regions demonstrate how prototypes create explain-
able classification boundaries in the learned feature space
(Figure 4).

5.4. Clinical Explanations

Figure 5 presents ProtoMedX’s explanation interface,
which traces each prediction to the k=3 most similar pro-
totypes with their clinical characteristics and similarity
weights.

Figure 4. T-SNE analysis of k-NN decision boundaries (k = 3)
in Fused Prototype feature space demonstrating how prototypes
define diagnostic regions.

Panel (1) shows a correct osteoporosis classification with
91.4% confidence. All three prototypes belong to the os-
teoporosis class (w = 0.523, 0.281, 0.110), demonstrating
strong consensus. The feature analysis identifies key risk
factors: previous fracture (δ = 0.80), glucocorticoid use
(δ = 0.95), and secondary osteoporosis (δ = 0.88), provid-
ing clear clinical justification.

Panel (2) demonstrates the model’s transparency in er-
ror analysis. ProtoMedX incorrectly predicts osteopenia in-
stead of osteoporosis, but the low confidence (47.0%) im-
mediately flags uncertainty. The ambiguous voting distri-
bution and mixed-class prototypes reveal the patient lies at
a diagnostic boundary. Feature deviations (δ = 0.66–0.72)
are moderate, indicating weaker discriminative signals.

This framework enables clinicians to assess prediction
reliability. Correct predictions average 85.3% confidence
versus 48.9% for misclassifications. Most errors occur at
diagnostic boundaries where patients exhibit characteristics
of multiple classes, precisely where transparent decision
support is most valuable.

5.5. Comparison to Competitors
ProtoMedX significantly outperforms existing approaches
(Table 4), achieving 14 to 27% absolute improvement. No-
tably, our vision-only variant surpasses all prior methods
while providing inherent explainability.

6. Conclusion
We presented ProtoMedX, the first prototype-based frame-
work for explainable bone health classification. By rethink-
ing machine learning approaches to bone health classifi-
cation through case-based reasoning, ProtoMedX achieves
89.8% accuracy, surpassing prior methods by 14 to 27%,



Figure 5. ProtoMedX Clinical Explanations. (1) Correct classification and (2) misclassification examples. Each panel includes: (a)
prototype similarity with annotated clinical metadata, (b) model confidence and class voting distribution, and (c) clinical feature deviation
analysis.

Table 4. Comparative analysis of Bone Health Classification ap-
proaches.

Institution Model Modality Acc (%)

Ours ProtoMedX Multi 89.8
Ours ProtoMedX-V Vision 87.58
Okayama [28] EfficientNet-b7 Vision 75.7
Ours ProtoPNet-MT Vision 72.4
Ours xDNN (CrossViT backbone) Vision 71.0
Stanford [14] ResNet-50 Vision 69.2
Toosi [26] ViT Vision 68.3
Anna [32] VGG16 Vision 66.4
Ours ProtoPNet Vision 64.1
Anna [32] Inception v3 Vision 62.9

while offering inherent explainability through prototypes
and decision boundaries that clinicians can interpret and cri-
tique to support their medical judgment.

Three innovations drive this performance: (1) Prototype-
based reasoning which adds 4.33%, while enabling trans-
parent explanations (2) Cross-modal attention which en-
sures balanced fusion, contributing 4.09%, and (3) Multi-
task learning leveraging bone density continuity which im-
proves accuracy by 2.46% over single-task classification.

Unlike post hoc interpretation methods, ProtoMedX is
explainable-by-design through direct comparison to learned
prototypes. Each prediction traces to similar prototypes
with complete clinical profiles, enabling clinicians to un-
derstand the reasoning behind each classification. The dual

prototype architecture separately models visual (trabecu-
lar thinning and porous bone) and clinical features (demo-
graphics, risk factors) before fusing them for diagnosis.

Analysing the limitations of the proposed architecture,
we notice that the marginal improvement from multi-modal
fusion (87.58% to 89.8%) suggests unexploited comple-
mentary information. Additionally, full-image prototypes
lack the granular localisation needed for precise clini-
cal guidance. Future work would, therefore, explore
explainable-by-design attention-guided prototype localisa-
tion and longitudinal modelling for monitoring disease pro-
gression.

ProtoMedX demonstrates that it is possible to achieve
improved explainability without sacrificing performance.
By aligning with clinical reasoning we advance toward de-
ployable xAI that enhances, rather than replaces, clinical
judgment.
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