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Towards Quantum Image Generation on Single
Qubit using Quantum Information Bottleneck
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Abstract—Amidst the rapidly evolving landscape of informa-
tion technology, the convergence of quantum computing and ma-
chine learning—referred to as quantum machine learning—offers
promising potential to enhance classical algorithms. However,
significant challenges remain in both hardware and software
implementation during the Noisy Intermediate-Scale Quantum
(NISQ) era, including imperfect qubits, architectural constraints,
and high noise levels. In response to these obstacles, this research
introduces a novel solution: Quantum Convolutional Variational
Autoencoders (QCVAE), designed to operate with only a single
qubit. This innovative approach efficiently utilizes a single qubit
to manage large-scale data, making it particularly well-suited for
quantum computers with limited resources. Simulation results
demonstrate the robustness of QCVAE in handling image data,
and its deployment on a real quantum computer showcases the
model’s practical viability. Additionally, the proposed approach
leverages the information bottleneck principle to optimize quan-
tum embeddings, effectively mitigating the impact of prevalent
quantum noise. By addressing these core challenges, QCVAE
presents a compelling solution for advancing quantum computing
applications within the constraints of current NISQ technology.

Impact Statement—This research introduces Quantum Convo-
lutional Variational Autoencoders (QCVAE), a novel architecture
bridging quantum computing with core challenges in artificial
intelligence. Its primary contribution to Al lies in its ability to
efficiently manage large-scale data, such as images, in resource-
constrained quantum environments, fundamentally enhances the
trade-off between model complexity and computational efficiency
in generative Al systems. By leveraging quantum principles,
QCVAE enhances classical AI capabilities, offering a novel
solution to complex generative tasks while reducing the need for
vast computational resources. The model incorporates a quantum
information bottleneck, improving robustness and accuracy in
noisy environments—a persistent issue in AI systems. This ad-
vancement directly contributes to the scalability of quantum gen-
erative AI models, enabling higher efficiency, greater adaptability,
and better performance in tasks requiring advanced feature ex-
traction and data generation. QCVAE represents a step forward
in integrating quantum computing into Al, optimizing resource
utilization without compromising the depth and complexity of Al
models, and offering new pathways for developing more robust,
generalizable, and efficient machine learning systems.

Index Terms—Quantum Machine Learning, Quantum Infor-
mation Bottleneck, Quantum Neural Networks, Qubits.
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I. INTRODUCTION

The fusion of quantum computing and machine learning of-
fers transformative efficiency gains and adversarial robustness
[1, 2], yet confronts three NISQ-era constraints: (1) hardware
limitations [3], (2) error susceptibility from incoherent and
noise [4], and (3) barren plateaus in variational circuits [5].
While QML achieves high phase classification accuracy[6],
these constraints delay quantum utility - reliable outperfor-
mance of classical methods [7] - despite hybrid encoding
advances [8, 9].

Quantum machine learning now spans semiconductor design
[10], biometrics [11, 12], and graph classification [13], achiev-
ing higher efficiency over classical counterparts [14]. However,
NISQ devices’ gate errors [4] and restricted connectivity [3]
create three barriers: qubit scarcity, error propagation, and
variational algorithm instabilities [5, 15], limiting practical
quantum supremacy [16]. Quantum convolutional networks
[17] exemplify these challenges: MNIST processing [18] de-
mands 784 qubits under naive encoding - exceeding IBM’s
127-qubit Eagle QPU and near-term 433-qubit Osprey. Even
1000-qubit prototypes [19] suffer fidelity loss from connectiv-
ity constraints, forcing most quantum generative studies onto
sub-10-qubit tasks with synthetic data.

Pérez-Salinas et al. [20] established single-qubit neural net-
works through data-reuploading, effectively emulating multi-
layer perceptrons while circumventing parameter bloat. This
approach reduces quantum resource demands and introduces
feature disentanglement through controlled state evolution on
the Bloch sphere. Easom-McCaldin et al. [21] demonstrated
that single-qubit systems could replicate CNNs’ hierarchical
feature learning by treating sequential data patches as tempo-
ral convolution windows, achieving comparable classification
accuracy with fewer parameters. The expressivity of single-
qubit architectures, validated through quantum circuit capacity
analysis [22], reveals their potential for generative adversarial
networks and variational autoencoders.

Information bottleneck theory has emerged as a fundamental
principle for optimizing representation learning across diverse
computational paradigms. Recent advances demonstrate its
effectiveness in neuromorphic computing, including surrogate
gradient learning for spike-based systems [23], nonlinear in-
formation bottleneck applications in spiking neural networks
[24], and robust event-based processing [25, 26]. These de-
velopments highlight the versatility of information-theoretic
optimization principles across both classical and bio-inspired
architectures. The extension of information bottleneck theory
to quantum computing contexts [27, 28] represents a natu-



ral evolution, where quantum information bottleneck (QIB)
principles can address the unique challenges of classical-to-
quantum data encoding and noisy quantum environments. Our
work contributes to this growing field by demonstrating the
first application of QIB to single-qubit generative modeling,
bridging information theory with resource-constrained quan-
tum computation.

Building on this landscape, we introduce quantum con-
volutional variational autoencoders (QCVAE) on a single
qubit, offering significant QML advancements. Our QCVAE
achieves a universal quantum architecture [3, 20, 29] capable
of processing large-scale data efficiently on NISQ devices. By
utilizing a single qubit for quantum convolutional layers, we
optimize feature extraction and integrate quantum transposed-
convolution for data generation in resource-constrained envi-
ronments. The innovation lies in quantum information bot-
tleneck integration to enhance stability and mitigate quan-
tum noise. Our single-qubit convolution method enables ef-
ficient encoding/decoding of large-scale data, including high-
resolution images, using only one qubit, mitigating quantum
decoherence, limited resources, and noise challenges in the
NISQ era.

Experiments on both Pennylane Simulator and IBM Quan-
tum Computer confirm that QCVAE successfully performs
image generation using one qubit, demonstrating effectiveness
for quantum generative tasks. Our model consistently outper-
forms classical baselines and existing quantum approaches in
ideal and noisy environments, highlighting strong representa-
tional capacity of single-qubit architectures. By introducing a
quantum autoencoder tailored for limited quantum resources
while optimizing generative modeling, our work contributes
significant advancement to quantum machine learning and Al-
driven data generation.

This paper is organized as follows: Section 1 is the Introduc-
tion, Section 2 introduces the model and innovative methods
proposed in this work, Section 3 is the experimental setup
and results, Section 4 is the discussion, and Section 5 is the
conclusion.

II. OUR PROPOSED QUANTUM CONVOLUTIONAL
AUTOENCODER

Our novel approach replaces the traditional Euclidean space-
based transformation matrices, commonly used in classical
deep learning, with unitary matrices tailored for quantum
computing. This adaptation significantly reduces the number
of parameters in quantum neural networks while preserving
expressive power. The workflow of our QCVAE is illustrated
in Fig. 1: First, input image data is encoded using a quantum
convolution operation based on the single-qubit method. The
latent space representation is then extracted, followed by vari-
ational sampling for QCVAE. Next, the quantum-transposed
convolution operation reconstructs the data during decoding.
Finally, the variational quantum information bottleneck and
its corresponding loss function optimize the model parameters.
We conducted experiments on image denoising and generation,
with results demonstrating that our model outperforms existing
approaches in both tasks.
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A. Encoder Based on Single-Qubit Convolution Method

Various quantum encoding methods exist, including basic,
amplitude, and angle encoding. Basic encoding initializes the
qubit’s quantum state to its binary string equivalent, similar
to classical computers. Amplitude encoding transforms data
into corresponding superposition state probability magnitudes,
while angle encoding employs quantum rotation gates for
encoding. Despite their applications, these methods have cer-
tain drawbacks such as high qubit costs and challenges in
quantum computer implementation. Hence, they may not be
the most efficient for minimizing qubit usage. In contrast,
single-qubit encoding, introduced in [20, 30], offers a strategy
to encode a classical data vector into a unique Hilbert space.
This is achieved through a series of single operations acting
on each input data dimension, applied to a single qubit. A
single qubit’s Hilbert space is 2-dimensional, but its state can
be repeatedly manipulated via parameterized quantum circuits
(PQCs). By iteratively applying trainable unitary operations
U(6), the qubit evolves through a trajectory in Hilbert space,
effectively encoding sequential or hierarchical features [31].

For an N-dimensional input, we partition the data into K
blocks. Each block is encoded into the same qubit via distinct
U(6;), simulating temporal entanglement across classical data
block. Although the two-dimensional Hilbert space of a single
quantum bit is limited, it can simulate a high-dimensional
feature space through dynamic parameterization. For example,
data with an input dimension of N is re-uploaded £ times,
which is equivalent to operating in a 2*-dimensional virtual
space [32]. This mimics multi-qubit entanglement in resource-
constrained settings. We can use this encoding method to
repeatedly reuse a single quantum bit, which can save quantum
resources and improve the overall efficiency of the model
compared to previous work. Based on the original design, we
modified it to make the single qubit method more suitable for
our convolution method. We expanded each unit to include
three quantum rotation gates to fit the 3 x 3 convolution kernel
and the unitary operation of single-qubit encoding can be
expressed as

U=e “Rz(B)Ry(v)Rz(0), (1)

where « € R is the global phase factor, Euler angles /3, v, ¢
€ R that define the extent of each rotation (R) around the Z,
Y and Z axes, respectively. Within this method of encoding,
these Euler angles are parameterized further and defined as

B=0;+z;- ¢, 2
v =0it1+ Tig1 - Dit1, 3)
0 =0i42 + Tita - Pito, €]

where 6; and ¢; are trainable weight parameters assigned to
x;, the value of the input vector = at dimension ¢. Therefore,
the extent of rotation [3, 7y, § is with respect to the weighted
value of the input. By combining three rotation gates into a
unitary operation, we obtain

U (a) — 9T (5)
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Fig. 1: Architecture and operational principles of the Quantum Convolutional Variational Autoencoder (QCVAE) for image
processing. The input image undergoes a workflow: (1) quantum encoding via parameterized unitary operations U (6),(2) encoder
and decoder process based on quantum convolution. and (3) QIB-based gradient optimization. The quantum convolutional kernel
utilizes a 3 x 3 grid (9 units), where each unit is encoded onto qubits through quantum rotation gates 12, I2. Triplets of rotation
gates form a trainable unitary operation U (6), serving as the fundamental quantum computing unit. The encoder (L1 — L)
compresses image features into a latent representation z, optimized by the Quantum Information Bottleneck (QIB) loss L
(defined in Eq.15) to maximize task-relevant information while discarding redundancies. The decoder (LlT — LZ) reconstructs
images via inverse unitary operations (quantum transposed-convolutional layers L”). Bloch sphere trajectories visualize qubit
states in Hilbert space, with colors mapping to feature distributions of distinct inputs. Compared to classical VAEs, QCVAE
enhances parameter efficiency and robustness in tasks like denoising and super-resolution by dynamically tuning U (6) to adapt
to complex image patterns. (c) is the model structure presented in the MNIST dataset.

where w = (w(8),w(v),w(d)), and, respectively: entanglement is established between them using the CNOT
gate. The quantum convolution layer processes data embedded

in the quantum circuit, treating combinations of Rx, Ry,

— 1 2 PY g ﬂ 6 . . . .

w(B) = — COos sin{ 5 ), (6) and Ry gates as unitary operations as shown in Fig 1. The
number of unitary operations on a single qubit is dictated by
the input data size (quantum convolution kernel size), with

w(y) = ( 1— 0052 < >sm < >7 (7) each operation encoding three inputs through six parameters.
For example, a 3 x 3 data size necessitates three unitary

operations on a single qubit. This single-qubit method is
scalable according to the input data size and applicable across
various applications. The quantum system can be described by
the following wave function:

w(d) = c( 1- cos2 sm < ) ( ), (8)
) The single-qubit encoding
method can be employed to encode up to three input dimen- I

sions per unitary operation. The input vector is thus cycled o)) =TT R(6; +x-6;)- Ry (6;, + - &
through in order to encode three-dimensional values until the (@) };[1 z(0i Pu) - Ry (B, biz)
entire input has been encoded. This method can be flexibly "Rz (0;, +x - 6:,)|0)

. . . . 7 23

implemented on quantum circuits that process data of different ? ?

where cos ¢ = cos (’Y—HS (o))

&)

structures and can increase the data capacity per qubit.
Quantum circuits form the core of quantum computing,
enabling the realization of diverse functions through the syn-
ergy of qubits and quantum gates. In this investigation, our
focus lies on the single-qubit approach, restricting the qubit
number to one. While theoretically scalable to multiple qubits,

For classic models, there is Universal Approximation Theo-
rem (UAT) [33] to support its approximation capabilities. Sim-
ilarly, for quantum models, UAT can be used to demonstrate
approximation capabilities. According to [34], a quantum
analogue can be constructed on the basis of UAT. Let f
and ¢ be a pair of functions, with f € R™ — [0,1] and



0 € R™ — [0,27), there is:

N - =
f (?) eie(@) _ <1 [Tv (5’ 0., %) o> <e (10)
=1

Where € > 0. Based on this quantum UAT, it can be considered
that the Single-Qubit method is able to approximate the
functions.

B. Decoder Based on Quantum Transpose Convolution

Within our QCAE, the decoding phase resembles that of
classical CAE, and the quantum-transposed convolution is
implemented through the single qubit method. The setting for
the quantum circuit here is the same as that for the encoder.
Following multiple convolution operations on the image, the
feature map’s size continues to decrease. For the autoencoder,
it becomes essential to restore the image to its original size
before further operations. While numerous methods exist for
this purpose, early approaches are predominantly designed
based on prior knowledge, often yielding suboptimal results
in various scenarios. Transposed convolution, employed as an
interpolation method in neural networks, distinguishes itself
from conventional techniques. Unlike pre-defined interpolation
methods, transposed convolution incorporates learnable pa-
rameters akin to standard convolution, enabling the acquisition
of an optimal upsampling method through network learning.

The standard convolution operation establishes a many-to-
one mapping relationship. In contrast, the transposed convo-
lution aims to achieve a reverse operation. Considering the
convolution equation ¥ = XW, we can construct a matrix
V for W in a way that convolution is equivalent to matrix
multiplication Y’ = VX', where Y’ and X' represent the
vectors of Y and X, respectively. Transposed convolution is
thus equivalent to Y/ = VT X’. If the convolution transforms
the input from dimensions (h,w) to (h’,w’), the transposed
convolution with the same parameters transforms it back from
(W, w") to (h,w). To provide a concrete example, when the
padding is p and the stride is s, the first step involves inserting
s — 1 rows or columns between existing ones. Subsequently,
the input is padded with k —p — 1 (where k is the convolution
kernel window). The kernel matrix is then flipped, and a
conventional convolution operation is performed. If the input
height (or width) is n, the kernel size is k, the padding is p, and
the stride is s, the matrix size of the transposed convolution
is given by n’ =sn+k —2p — s.

C. Quantum Information Bottleneck

In our quantum autoencoder, there exists a phase involving
the transformation of classical data into quantum data via
quantum circuits, akin to the compression of classical data.
During this procedure, we applied the quantum extension of
the information bottleneck theory, leveraging QIB to optimize
our data embedding for the most effective results. Quantum
analogs of algorithms associated with information bottlenecks
have been explored [27, 28]. In many instances, particularly
in real-world scenarios, the data at our disposal is classical
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which is grounded in Euclidean space. To encode this data into
the Hilbert space fundamental to quantum computing, specific
transformations are necessary. This process inevitably intro-
duces information loss. However, for representation learning,
not all information is equally crucial. This implies that we can
reframe the conversion of classical data into quantum data as a
mechanism for eliminating redundant information, facilitated
by the quantum information bottleneck.

While quantum information bottleneck principles have been
explored in various quantum machine learning contexts, our
implementation presents several key distinctions. Unlike previ-
ous QIB work that primarily focused on general quantum state
compression or classification tasks, our approach specifically
addresses the classical-to-quantum encoding challenge in gen-
erative models. Most significantly, we are the first to integrate
QIB with single-qubit convolutional variational autoencoders,
creating a unique synergy between resource-efficient quantum
computing and information-theoretic optimization.

In classical contexts, the information bottleneck (IB) princi-
ple serves the purpose of identifying the optimal compressed
representation Z of the input X, retaining all pertinent in-
formation essential for modeling the target Y. The degree
of compression is measured through the classical mutual
information I(X : Z), with I(Y : Z) quantifying the residual
information between Y and Z. Achieving superior outcomes
necessitates a substantial value for I(Y : Z), while effective
compression requires minimizing /(X : Z). For general « and
subsystems A and B, the a-Rényi mutual information [35] is
defined as:

a _— —
la(4:B) = T—Floe, Tr ((/TTA (P2l ?),

1D

For o« — 1, one recovers the quantum mutual information
L(A:B)=1I(A: B).

There is some connection between the information bot-
tleneck and Kullback-Leibler (KL) divergence here. We can
regard KL divergence as an information bottleneck theory as
an example of Loss function. Looking back at VAE, we want
to maximize the probability value of generating true data and
minimize the KL divergence of the true and estimated posterior
distributions. KL divergence can be thought of as I(Y : Z)
in the information bottleneck. The formulas for the variational
autoencoder and KL divergence are shown in the supplemen-
tary. The information bottleneck principle strikes a balance
between accuracy and compression through the minimization
of the Lagrangian L;p = I(X : Z) — SI(Y : Z), where
serves as a parameter enabling exploration of various regimes,
allowing a preference for either accuracy or compression.
For 8 = 0, minimizing L;p prioritizes optimal compression
with no concern for output results. Conversely, as § — oo,
minimizing L;p aims for optimal results without compression.
In our case, we apply the IB principle to the distinct problem
of determining the optimal embedding.

Our focus lies in the scenario where X and Z represent the
classical input and representation spaces, and since our work
is unsupervised learning, @) signifies the expression of output
data for the quantum circuit in the decoder. Based on the
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above-mentioned classical information bottleneck theory, we
give the quantum information bottleneck theory. Subsequently,
we define the quantum IB Lagrangian as follows:

LQ[B ZI(X:Z)—BI(QZZ),

where I(A : B) = I,-1(A : B) is the quantum mutual
information. Here, I(X : Z) and I(Q : Z) are quantum mutual
information. Both I(X : Z) and I(Q : Z) can be formulated
using Holevo’s accessible information [36]. Our QIB imple-
mentation offers specific advantages for generative modeling:
(1) it reframes inevitable information loss during classical-to-
quantum encoding as selective preservation of task-relevant
features, (2) it optimizes latent representations specifically for
image reconstruction and generation tasks, and (3) it pro-
vides enhanced robustness against quantum noise by focusing
learning on information-preserving features rather than noise-
sensitive redundancies. Effective generalization occurs when
I(X : Z) is minimized, whereas achieving low error is feasible
when I(Q : Z) is maximized. Assuming I, (X : Z) delineates
a spectrum of generalization bounds corresponding to various
loss functions, minimizing the generalization error aligns with
minimizing I(X : Z). The optimal embedding for a given
£ value is then derived as the minimum of p(x)L;p. The
explicit form of the quantum IB Lagrangian is obtained from
the definition:

12)

LQ]B :(175)5

> P(z)p(az)]
~ " P@)S [p(2)] + B P(q)S [pd]

q

13)

+ 3 N [p(@)] + 1,

where S [p(x)] is the von Neumann entropy of quantum state

p, the )\, are Lagrange multipliers to force correct normal-
ization, and 7 contains all the terms that are independent
of the embedding. The optimal embedding corresponds to a
minimum of L;p, which satisfies OL;p/0p(z) = 0. When
p(z) = p(q), p = 1, otherwise p = 0. By explicit computation,
we find that the above condition defines a recursive equation
for the optimal embedding:

sz(z) = (1= PAlog B, Plal=)log pa () (14)
where p =3 P(q)p(q) and A, is directly related to A, and is
needed to enforce normalization. Alternatively, by restricting
to pure state embeddings p(x) = |¥(z)) ((x)], we get

XZ |h(z)) = e(1=ANoep+F3, Plal2)logra | (1)) (15)

For S = 0, we get a constant embedding, while for large f3,
the optimal embedding for a given z is iteratively obtained
from one of the eigenvectors of }_ P(q|2)logp, with the
largest eigenvalue, or a mixture of them. Since the state in
single-qubit circuit in Eq.(9) is pure, S (p (z)) = 0 in Eq.(12).
In order to train the embedding, we approximate the average

over the distribution P (g, =), with empirical averages over the
elements of the training set 7. According to Eq.(12), we have:

Lo =(-B)s(P)+5Y 245 (R)  (16)
q

where constant terms have been neglected, and by explicit
computation, the purities are

T2 Fp(x), ()’
t — T2

a7

p_Tat 237 F(p(x),p(q)

q 2
Tq

(18)

where the ordering x < ¢ refers to the index of the inputs in
the training set.

III. EXPERIMENTS

We opt for the MNIST dataset [18], the MNIST-Fashion
dataset [37] the CIFAR-100 dataset [38], and the CelebA
dataset [39] as our experimental datasets. MNIST comprises
60,000 training and 10,000 testing examples of handwritten
digits (0-9). Fashion-MNIST contains 60,000 training and
10,000 testing examples of 28 x 28 grayscale clothing images
across 10 categories. CIFAR-100 features 100 classes with 600
color images (32 x 32) each: 500 for training, 100 for testing,
with fine and coarse labels. CelebA contains 202,599 celebrity
face images representing 10,177 identities.

We established various tasks including image denoising and
variational image generation models. Alongside classic models
DAE, VAE and CAE, we compared classical methods with
QIB to validate quantum algorithm advantages. Three quantum
models were selected for comparison: Quantum Autoencoder
(QAE) [40], Quantum Generative Adversarial Network
(QGAN) [41], and Quantum Circuit AutoEncoder (varQCAE)
[42]. Experiments utilized Fréchet Inception Distance (FID)
[43], Structural Similarity Index Measure (SSIM) [44], PSNR
[45] and Learned Perceptual Image Patch Similarity (LPIPS)
[46] as benchmarks. Due to current quantum resource
limitations, we cannot use annealing algorithms to optimize
(. Therefore, we extracted small datasets from each dataset,
testing with initial value O and step value 0.5, obtaining
[ values empirically using FID as the primary indicator
(specific results in supplementary). Model parameters:
learning rate 0.01, epochs 50, batch size 32, train/test split
8:2. Model sizes were adjusted according to data dimensions.
For MNIST/Fashion datasets: one quantum convolution layer
with 3 x 3 kernel, 4 output channels, 2 strides, 16 latent
dimensions, and 18 single-qubit weights. QIB’s 5 = 1.5.
For CIFAR-100: structure (3,32,32)—(8,16,16)—(16,8,8),
64 latent dimensions, S = 2.0. For CelebA: structure
(3,128,128)—(8,64,64)—(16,32,32)—(32,16,16)—(64,8,8),
128 latent dimensions, 3 = 2.5. Detailed structural figures in
supplementary.

Our method follows a structured process: First, normal-
ize datasets. Image data undergoes single-qubit convolution
embedding, encoding input into latent space. Depending on
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TABLE I: Denoising performance in ideal and depolarizing noisy quantum environments. Bold: best, underlined: second best.

Ideal Environment

Noisy Environment

Category ~ Method FID SSIM PSNR LPIPS | FID SSIM PSNR LPIPS
MNIST
Classical DAE 25.2+1.8 0.85£0.02 19.6+£0.5 0.15+0.01 - - - -
DCAE 23.5+0.7 0.89+0.01 20.30.4  0.12+0.01 - - - -
QAE 25.1£1.8  0.85+0.02 19.7+0.5 0.14+0.01 25.1£1.9  0.83x0.03 18.2+0.5 0.15+0.01
Quantum varQCAE 25.5+1.4  0.87+0.01 19.5+04  0.13+0.01 25.6x1.7 0.86+0.02 18.5+0.4  0.14+0.01
Our model 23.7£0.9  0.87+£0.02 20.2+0.4  0.10+0.01 23.9+1.0 0.85+0.02 19.1+0.3  0.12+0.01
Our model-QIB  23.1+0.8  0.90+0.01  20.4+0.3  0.09+0.01 | 23.6+1.0 0.88+0.02 19.4+0.3 0.11+0.01
Fashion-MNIST
Classical DAE 61.4+2.1 0.66+0.02 18.1£0.4  0.20+0.02 - - - -
> DCAE 60.1+1.2  0.70£0.01  18.8+0.3  0.18+0.01 - - - -
QAE 61.1+1.9 0.68+0.02 18.3x0.4  0.19+0.01 61.8+1.0 0.65+0.04 17.3x0.4  0.20+0.02
Quantum varQCAE 61.8£1.8  0.69+0.01 18.2+0.3  0.19+0.01 61.4+£0.8 0.67£0.02 17.1£0.3  0.19+0.01
Our model 60.6£1.0 0.69+0.02  19.0+0.3  0.17+0.01 61.2+1.2  0.69+0.02 17.8+0.3 0.18+0.01
Our model-QIB  59.9+0.8 0.71+0.01 19.7+0.2  0.15£0.01 | 60.6+0.9 0.70+0.02 18.1+0.3  0.17+0.01

TABLE II: Image generation performance in ideal and depolarizing noisy quantum environments. Bold: best, underlined: second

best.

Ideal Environment

Noisy Environment

Category ~ Method FID SSIM PSNR LPIPS | FID SSIM PSNR LPIPS
MNIST
Classical  VAE 23.840.6  0.90£0.01 20.620.4  0.12+0.01 y § § §
S8 CVAE 24.7+0.9  0.92£0.01 20.2+0.5  0.13+0.01 y . . y
QGAN 26413  0.9320.01 19.9+0.6 0.14+0.01 | 26.621.9 0.90+0.03 18.6+0.6  0.15+0.02
Quantum  Our model 23.140.5  0.93+0.01 21203 0.11x0.01 | 233207 0.9120.03 20.3+04  0.12:0.01
Our model-QIB  22.8+0.6 0.93x0.01 21.6x0.3  0.10£0.01 | 22.9:0.7 0.91+0.02 20.7£0.3  0.11x0.01
Fashion-MNIST
Classical  VAE 58.7+1.2  0.7020.01  19.2+¢0.3  0.18+0.01 . . . .
assieal  CcyAE 60.8+1.4  0.72+40.01  18.940.4  0.19+0.02 . . - -
QGAN 64.6£1.3  0.67+0.02 184405 0214002 | 67.7+1.8 0.64+0.04 17.840.5  0.22+0.03
Quantum  Our model 60.4£1.0  0.73:0.01 19.9+0.3 0.1740.01 | 60.5t1.6 0.710.02 18.940.4  0.18+0.02
Our model-QIB  59.8+0.6  0.73:0.01 20.2+0.3 0.16£0.01 | 60.2+1.1 0.71+0.02 19.3x0.3  0.17x0.01

quantum convolution kernel size, appropriate unitary opera-
tions are applied to qubits. During measurement, expected
values of target states |0) and |1) are obtained. In decoder
phase, quantum transposed convolution operations reconstruct
or generate data. Training involves assessing QIB impact and
updating quantum rotation gate parameters. After iterations,
optimal parameters are derived and evaluated using test data.

Experiments used PennyLane [47] with default “de-
fault.qubit” simulator and PyTorch [48]. The quantum com-
puter was IBM’s ibm_manila node [49] featuring 5 qubits,
Quantum Volume 32, 2800 circuit operations/second capabil-
ity, and Falcon r5.11L processor with linear layout. Single-
qubit gate (SX, X, RZ) average error: 3.093e-4. Two-qubit
gate (CNOT) average error: 8.256e-3. Average readout error:
2.594e-2. Coherence times: average T1 155.49pus, T2 =
88.69us.

A. Experiments in the Simulated Quantum Environment

Ideal simulated environment. Tables I to IV present results
for each model in an ideal quantum environment, with classic
AE and VAE serving as baselines. Our QCVAE significantly

outperforms other quantum autoencoders. Previous quantum
autoencoders encountered challenges such as convergence
difficulties and local optima during training, attributed to
substantial increases in quantum gates and qubits. Previous
quantum models had not handled data as large as images
in their experiments. While encoding was feasible for small
datasets, efficiency declined for relatively large-sized data
like images. The experimental results clearly demonstrate
QIB’s optimization of data embedding. Compared to the non-
optimized model, QIB results improved, particularly enhanc-
ing generated image stability.

For denoising tasks, our model exhibits notable advantages
over classic Autoencoder (AE), as shown in the tables in the
denoising part. Being a quantum model, quantum circuits in-
herently possess unique noise-handling mechanisms. Training
challenges observed in previous quantum autoencoders persist.
However, unlike image generation, the denoising task shows
less substantial FID differences. We attribute this to quantum
mechanisms’ advantages in mitigating noise. While QIB aids
model optimization, its impact is less pronounced than in
generation tasks, possibly because denoising relies less on
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TABLE III: Denoising performance on CIFAR-100 and CelebA datasets (Ideal and Noisy). Bold: best, underlined: second best.

Ideal Environment

Noisy Environment

Category ~ Method FID SSIM PSNR LPIPS | FID SSIM PSNR LPIPS
CIFAR-100
Classical DAE 167.7£11.6  0.42+0.06  17.9+0.3  0.25+0.03 - - - -
. DCAE 163.749.7  0.45+0.03  18.3x0.3  0.23+0.02 - - - -
QAE 166.4+11.1  0.43+0.03  18.1+0.3  0.24+0.02 | 165.2+11.8 0.39+0.05 17.1+0.3  0.25+0.03
Quantum varQCAE 166.3+10.4  0.45+0.02  18.4+0.3 0.22+#0.02 | 164.5+114 0.41x0.04 17.3x0.3  0.24+0.02
vantu Our model 163.449.4  0.45+0.02 18.3x0.5  0.20+0.02 164.1£9.5  0.42+0.04 17.5+¢0.3  0.23+0.02
Our model-QIB 161.6+£8.6  0.46+0.02 18.8+0.4  0.18+0.01 162.748.5  0.43+0.03  17.8+0.3  0.21+0.01
CELEBA
Classical DAE 87.5+4.0 0.62+0.02  18.7x0.4  0.22+0.02 - - - -
o DCAE 86.1+4.0 0.68+0.02  19.4+0.3  0.20+0.02 - - - -
QAE 87.7£3.6 0.65+0.03  18.8+0.3  0.21%0.02 87.7+4.3 0.62+0.05 17.840.3  0.22+0.02
Quantum varQCAE 86.7+£3.3 0.68+0.02  19.0+0.3  0.20+0.02 87.5+4.0 0.65+0.02  18.0+£0.3  0.21+0.02
Our model 84.4+3.3 0.68+0.03  19.5+0.3  0.19+0.01 84.6+3.6 0.66+0.04  18.5+0.3  0.20+0.01
Our model-QIB 83.7+2.8 0.70£0.02  19.7+0.3  0.17£0.01 84.243.3 0.68+0.02  18.7+0.3  0.19+0.01

TABLE IV: Image generation performance on CIFAR-100 and CelebA datasets (Ideal and Noisy). Bold: best, underlined:

second best.

Ideal Environment

Noisy Environment

Category  Method FID SSIM PSNR LPIPS | FID SSIM PSNR LPIPS
CIFAR-100
Classical  VAE 155.7411.6  0.45£0.02 18.7+0.3  0.24+0.02 § § § §
58 CVAE 16132104  0.50+0.03 18.4+0.4  0.25+0.03 . . . -
QGAN 167.7+12.2  0.41+0.04 18.1£0.5 027+0.03 | 1732134 037£0.06 17.7+0.5 0.28+0.04
Quantum  Our model 154.129.3  0.52£0.03  19.5+0.3  0.22+0.02 | 155.548.6 0484005 184204  0.230.03
Our model-QIB  153.5:8.4  0.54£0.02 19.8+0.3 020001 | 154.4+7.4  0.50£0.04 18.7+03  0.21+0.02
CELEBA
Classical  VAE 857438  0.65£0.01 20.5+04  0.200.01 : § y §
assieal VAR 86.624.0  0.72+0.05 202+0.5 0.21+0.02 . . . -
QGAN 90.1433  0.65+0.02 19.820.6 0.23+0.02 | 943%5.1  0.63:0.06 18.6£0.6 0.25+0.03
Quantum  Our model 84.8433 0724001 20.8+0.3 0.19+0.01 | 85.7+3.3  0.7020.04 19.4+0.4  0.20+0.02
Our model-QIB  84.842.9  0.74£0.02 21.1x0.3 0.18:0.01 | 84.9+29  0.72+0.03 19.7#0.3  0.19:0.01

latent space compared to generation.

Figure 2 shows QCVAE-generated image samples during
training under ideal conditions on the MNIST dataset. The
model generates high-quality images overall. For different
classes, generation quality varies, such as for digits 2 and
7. Since these inputs have more diverse shapes than other
classes, generating better images is relatively difficult, but
QCVAE still demonstrates good generalization ability. Figure
3(a) contains samples for MNIST-Fashion, CIFAR-100 and
CelebA datasets, including original, reconstructed and gen-
erated images. Overall, our model maintains relatively high
image reconstruction and generation quality. Due to CIFAR
dataset quality issues, the visual effect is worse than other
datasets, but FID comparisons show better performance than
other models.

Ideal simulated environment. Table I displays the FID results
for the QCAE model within an ideal simulated quantum
environment. This segment of the experiment took place in
an ideal quantum simulation environment without any noise
and based on Ideal quantum circuit.

Figure 2 shows QCVAE-generated image samples during

training under ideal conditions on the MNIST dataset. The
model generates high-quality images overall. For different
classes, generation quality varies, such as for digits 2 and
7. Since these inputs have more diverse shapes than other
classes, generating better images is relatively difficult, but
QCVAE still demonstrates good generalization ability. Figure
3(a) contains samples for MNIST-Fashion, CIFAR-100 and
CelebA datasets, including original, reconstructed and gen-
erated images. Overall, our model maintains relatively high
image reconstruction and generation quality. Due to CIFAR
dataset quality issues, the visual effect is worse than other
datasets, but FID comparisons show better performance than
other models.

Noisy simulated environment. To assess QCAE robustness
against noise on NISQ devices, we conducted training and test-
ing in simulated noisy environments. Noise was characterized
by depolarization error, introducing random Pauli operations
(X, Y, Z) to qubits, quantified as

p) = (1— ) U) |0) (0] U(x)' + exn—

e (9
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Fig. 2: Samples during training on the MNIST dataset. From top to bottom, the reconstructed image and generated image
change with epoch as the training progresses. The left side of each set of images is the original image in the data set, which
is also the image input to the model. In the middle is the reconstructed image based on the input image. On the right is a

generated image based on random sampling.

Fashion
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Fig. 3: Sample results and real quantum computer validation. (a) Generated samples across different datasets showing
reconstruction and generation quality. For each tuple, from left to right are the original image, the reconstructed image and the
generated image based on random z-space. Compared with the Fashion dataset and the CelebA dataset, the CIFAR-100 images
are relatively inadequate in terms of the overall data quality (type, size, color, etc.), so the visual effect of the generated image is
blurry. This can also be reflected in the FID results. (b) Feature representation on IBM quantum computer showing compressed
representation of images. (¢) MNIST images generated on actual quantum hardware demonstrating practical viability of the

proposed QCVAE model.
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B(p) = (1 =) p-+<Trlpl

where ¢ is the depolarizing error parameter, n is the number
of qubits, and I is the Pauli matrix. The depolarization error
parameter was set to 0.1.

Our QCAE’s FID results showcase robust error tolerance,
attributed to its distinctive single-qubit implementation in
tables in the noisy part. Particularly for denoising tasks with
Gaussian noise applied directly to data, quantum simulator
noise during training has minimal impact on results. Despite
inherent NISQ-era functional limitations where unavoidable
noise often causes notable performance degradation on real
quantum computers, this experiment proves the QCAE model
consistently maintains strong performance even with noise
present.

(20)

B. Real Quantum Device Test Experiment

We assessed our single-qubit QCVAE model efficacy using
the MNIST dataset on an actual IBM quantum computer.
Model deployment in a real quantum environment occurred
on an IBM online quantum computer through IBM Quantum
Lab. However, the limited quantum volume of IBM NISQ
systems imposed restrictions on available quantum gates.
To overcome this limitation, we leveraged our single-qubit
method, which combines parameters and encoding, reducing
necessary quantum gates.

Figure 3(b,c) illustrates MNIST image features processed
by the QCVAE model on a quantum computer, demonstrating
the model’s ability to generate high-quality images on quantum
computers.

QGAN’s [41] performance is not as strong as expected, de-
spite incorporating an additional discriminator compared to au-
toencoders. While structurally similar to our model, QGAN’s
generator uses multiple quantum circuits to compensate for
limited quantum resources and VQC training challenges. How-
ever, QGAN’s quantum generator outputs image data row by
row, limiting spatial correlation capture effectiveness. Due
to VQC training constraints, original QGAN reduces image
resolution to 8x8 before training. To match our experimental
data size, we increased VQC instances based on 8 qubits,
significantly increasing required quantum resources—an issue
our single-qubit method avoids entirely. Moreover, QGAN’s
row-wise processing extracts local features less effectively
than convolutional operations. Unlike QGAN, which relies
on classical KL divergence-based loss functions, our ap-
proach leverages QIB to optimize latent space representations,
preserving relevant information while reducing redundancy.
Additionally, since QGAN’s discriminator remains a classical
neural network, it doesn’t fully utilize quantum resources,
lacking a dedicated VQC for adversarial learning. These
problems are more significant on CIFAR-100 and CelebA
datasets. A detailed comparison of QPU resources used in our
model versus QGAN is presented in Table V.

IV. DISCUSSION

In the previous section, we introduced our experimen-
tal findings and conducted a comprehensive analysis. Our

TABLE V: Comparison of models running on quantum com-
puters

QGAN  Our model
Frequency(GHz) 5.552 4.963
Single-qubit gate AVG. error | 4e-4 3.093e-4
Two-qubit gate AVG. error 1.5e-2 8.256e-3
Average readout error 6.55e-2  2.594e-2

methodology utilizes a single-qubit approach to build quantum
convolutional layers, efficiently encoding features of image
data while maximizing the use of a single qubit. This strat-
egy shows potential for resource conservation, particularly
in the NISQ era with its constraints on quantum computing
resources. Considering the objectives of our research and
the experimental context, our model can provide researchers
with an efficient and resource-friendly research tool, enabling
quantum computing to advance towards quantum utility.

The quantum information bottleneck becomes apparent
in the optimization of our quantum model during training.
Leveraging information bottlenecks in the transformation of
classical data into quantum space allows us to turn information
loss, initially considered a disadvantage, into an advantage for
extracting useful information. Our experimental results further
demonstrate that quantum information bottlenecks contribute
to the stability of model training.

In the NISQ era, implementing quantum algorithms on
noisy devices faces limitations due to inherent device noise.
Nevertheless, our proposed model, employing the single-qubit
method, exhibits robustness to noise in both simulated and
actual quantum computing environments. While the quantum
error correction algorithm is often employed to address errors
caused by device noise, it requires additional resources. In
contrast, the intrinsic robustness of our algorithm provides a
means to conserve valuable resources in the NISQ era.

Efficiently utilizing the single-qubit method enables us
to minimize the total qubit count, addressing the training
difficulties associated with the “barren plateau” phenomenon
in variational quantum circuits. Despite existing efforts [35,
50, 51] to mitigate the “barren plateau”, a comprehensive
solution remains elusive. In the current realm of quantum
machine learning utilizing variational quantum algorithms, the
persistence of the “barren plateau” may endure. Nevertheless,
our approach offers a practical means to navigate around this
challenge.

We assessed the efficacy of our quantum circuit on an
IBM quantum computer and observed its sustained capability.
Notably, our circuit boasts fewer qubits and quantum vol-
umes compared to conventional quantum circuits, suggesting
a promising path for the integration of quantum machine
learning in the future. At present, our model demonstrates
the capability to address practical image-generation tasks on
quantum computers.

This study employed a single-qubit model, utilizing only
one qubit and forgoing potential advantages associated with
multiple qubits. This deliberate choice renders the single-qubit
method less susceptible to quantum decoherence, leveraging
the inherent coherence of quantum systems. While future in-



vestigations could explore the potential benefits of employing
multiple qubits, such as increased processing speed, these
advantages may become achievable in the future. Notably,
[22] showcased the general approximation power of the single-
qubit method, while [52] utilized Fourier series to establish its
approximation ability for any univariate function, albeit with
uncertainty regarding its expressivity for multivariate func-
tions. Our work takes a pragmatic approach, demonstrating the
effectiveness of single-qubit-based quantum neural networks in
handling complex data. We hope this practical case contributes
to alleviating concerns in this domain.

While our single-qubit approach demonstrates clear advan-
tages in resource efficiency, scaling to extremely large datasets
presents both opportunities and challenges. Our experimental
progression from MNIST to CelebA validates the theoret-
ical scalability framework, showing consistent performance
across scales. However, several scaling considerations merit
discussion: (1) Computational Complexity: while quantum
resource usage remains constant, classical preprocessing and
longer quantum sequences may increase training time for
ultra-high-resolution tasks, (2) Hardware Limitations: current
NISQ device coherence times constrain maximum sequence
lengths, potentially limiting scaling to extremely complex
tasks, and (3)Feature Representation: very high-dimensional
feature spaces may require hybrid classical-quantum architec-
tures for optimal performance. In order to explore and study
these issues, the following approaches are worth trying in the
future: Combining classical convolutional preprocessing with
quantum feature extraction for ultra-high-resolution images,
future quantum hardware supporting multiple independent
single-qubit processors for parallel feature extraction, break-
ing complex tasks into manageable sub-problems processed
sequentially, and adapting quantum circuit depth to specific
device capabilities. These approaches maintain the resource
efficiency advantages while enabling scaling to more complex
tasks.

V. CONCLUSION

In this work, we propose a quantum convolutional varia-
tional autoencoder model based on the single-qubit method
and design a quantum information bottleneck optimization
method for its implementation. Additionally, we demonstrate
the application of varQCAE in various toy scenarios, such
as quantum circuit denoising and image generation. Finally,
we performed numerical evaluations and implemented the
QCVAE application using Pennylane simulation platform and
IBM Quantum Computer. This advancement opens pathways
for practical applications, where quantum-enhanced genera-
tive models could enable efficient image reconstruction and
augmentation under computational constraints. There is much
potential for further progress, which includes the use of
QCVAE for data generation and feature extraction. On the
other hand, investigating practical applications in this work is
also crucial. Our results in real quantum cumputer showing
a potential application of quantum computing towards real-
world applications.
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