
1Scientific Data |         (2025) 12:1629  | https://doi.org/10.1038/s41597-025-05979-6

www.nature.com/scientificdata

A bimodal image dataset for seed 
classification from the visible and 
near-infrared spectrum
Maksim Kukushkin   1,2 ✉, Martin Bogdan2, Simon Goertz3, Jan-Ole Callsen3, Eric Oldenburg4, 
Matthias Enders3,6 & Thomas Schmid1,5,6

The success of deep learning in image classification has been largely underpinned by large-scale 
datasets, such as ImageNet, which have significantly advanced multi-class classification for RGB and 
grayscale images. However, datasets that capture spectral information beyond the visible spectrum 
remain scarce, despite their high potential, especially in agriculture, medicine and remote sensing. 
To address this gap in the agricultural domain, we present a thoroughly curated bimodal seed image 
dataset comprising paired RGB and hyperspectral images for 10 plant species, making it one of 
the largest bimodal seed datasets available. We describe the methodology for data collection and 
preprocessing and benchmark several deep learning models on the dataset to evaluate their multi-class 
classification performance. By contributing a high-quality dataset, our manuscript offers a valuable 
resource for studying spectral, spatial and morphological properties of seeds, thereby opening new 
avenues for research and applications.

Background & Summary
The significant advancements in state-of-the-art architectures over the past decade would not have been possible 
without the availability of large-scale datasets, which enabled the training of Convolutional Neural Networks 
(ConvNets) and Vision Transformers (ViTs). Some of the most impactful datasets include ImageNet1 for image 
classification, SA-1B2 for image segmentation, YouTube-8M3 for video classification and Kinetics-400M4 for 
action recognition. The large-scale datasets have established benchmarks crucial to advancing existing deep 
learning architectures and developing new ones.

In the context of seed classification, the diversity and quantity of available data was often insufficient. 
Previous datasets have frequently included a limited number of samples per class or low number of seed species 
in the dataset. For instance, Granitto et al. (2002)5 introduced the first seed dataset which consisted of 3,163 col-
our images of 53 seed species. In following years, Granitto et al. (2005)6 expanded the dataset to include images 
of 236 species which brought the total number of RGB seed images to 10,310. In their work, the authors trained 
a Multilayer Perceptron and a Naïve Bayes classifier. More recent study7 presented a dataset of 140 species with 
47,696 RGB images. The authors evaluated the dataset’s performance using six different ConvNets. The latest 
work8 demonstrated an RGB seed image dataset consisting of 4,496 images which consisted of 88 species with 
an average of 50 samples per species, where each image was captured with a smartphone camera. A common 
limitation across these datasets is the relatively low number of images per species, which raises concerns about 
their suitability for training large deep learning models, such as ConvNets or ViTs and typically require vast 
amounts of data1,9. Refs. 10,11 provide more comprehensive overviews on published seed classification papers and 
the seed species datasets.

Recently, multimodal datasets have started to play a crucial role in advancing computer vision by enabling 
the fusion of imaging modalities from different sensors, which led to a more robust and thorough analysis of 
imaging data. Unlike unimodal datasets, which capture only a single aspect of imaging information, multimodal 
datasets integrate additional data sources such as RGB, motion, depth, hyperspectral, or LiDAR images. Recent 
studies reported increased accuracy for multiple scenarios by using modality fusion in diverse applications, 
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including medical imaging, remote sensing and autonomous systems. For instance, in medical diagnostics, com-
bining Magnetic Resonance Imaging (MRI), Computed Tomography (CT) and Positron Emission Tomography 
(PET) scans improves disease detection and localisation by leveraging the strengths of each modality12–14. In 
autonomous driving, the fusion of RGB, LiDAR and radar data provides more reliable object detection and 
depth estimation15–18. Similarly, hyperspectral and multispectral image fusion19 has proven effective in remote 
sensing applications20, enhancing vegetation21, mineral detection22 and environmental monitoring23. The ability 
to jointly learn representations from multiple modalities not only improves performance but also increases 
model robustness and generalisation to real-world scenarios. As sensor technologies continue to evolve, multi-
modal datasets will remain fundamental in pushing the boundaries of computer vision applications.

Despite the clear advantages of multimodal datasets, their main limitation is their availability. Incorporating 
additional modalities increases costs and requires significant time for data collection, calibration and annota-
tion. Our bimodal seed image dataset (BiSID-5k)24 addresses the challenge by providing a high-quality dataset 
for seed classification. Unlike prior studies that relied on datasets with a limited number of samples, BiSID-5k24 
encompasses 10 distinct seed species and extends beyond traditional RGB images by incorporating fine-grained 
hyperspectral imaging data. With 500 samples per species, BiSID-5k24 is, to the best of our knowledge, one of the 
largest datasets for seed classification. Moreover, it is the largest bimodal seed dataset containing both RGB and 
hyperspectral data. Furthermore, we experimentally demonstrate the effectiveness of hyperspectral modality for 
seed classification, showcasing its potential for feature extraction in this context. Ultimately, our study provides 
a comprehensive evaluation of hyperspectral feature extraction methods, contributing to the broader adoption 
of multimodal datasets in seed classification.

Methods
Challenge.  In agricultural seed production, maintaining seed quality is a major challenge. This is driven not 
only by the need to meet customer expectations but also by mandatory international and national regulations. 
For instance, the International Seed Testing Association (ISTA) provides guidelines that many countries adopt 
to ensure conformity in seed testing. It is important to note that while ISTA provides international guidelines, 
individual countries may have own specific regulations25–27 that align with or differ from these standards. For 
example, the European Union (EU) enforces strict quality control standards, including the certification of seed 
lots before they can be sold28. Similar rules are valid in other countries e.g., Argentina6, Sweden29 or United States 
(US)30. Thus, seed producers are required to analyse and categorise harvested seeds to ensure compliance, a task 
that typically relies on trained human analysts. Due to the large number of weed species, which can potentially 
occur in a seed production, as well as the high variability of the seeds itself as a biological object a valid classifica-
tion is quite challenging and need well trained human experts. This challenges of a high class number as well as 
high intra-class variability is further aggravated by partial low inter-class distinctness. This later challenge arise, 
as some weeds exhibit very similar seed properties like shape, size or colours of the seeds due to the close rela-
tionship of some species or a phenomenon known as vavilivian mimicry31. As commercial seed productions can 
comprise tons of seeds, a statistically sufficient and representative sample has to be analysed by human experts 
to comply with the legal frameworks of most countries. Therefore, a huge number of samples, containing a large 
number of single seeds must be screened by experts in the short timeframe of the harvesting season before sow-
ing. For instance, in the context of oilseed rape in German seed certification, a sample of 100 g of seeds (20,000 
seeds, assuming a thousand seed weight of 5 g) must be analysed and screened for seeds of other species and 
technical impurities32.

Overall concept.  The overall concept of the dataset acquisition (see Fig. 1) was to represent seeds of 
European weed species which are frequently found in commercial oilseed rape (Brassica napus L.) seed produc-
tions. Ten of those species have been selected and single seed images has been acquired using a hyperspectral- as 
well as a RGB camera. This results in image pairs depicting the very same seed. In contrast to other studies33,34, 
which employed YOLO35-based approaches designed for detecting and classifying multiple seeds within a single 
image (e.g., entire seed lots), we chose a simpler approach—similar to that of7,36—in which each image contains 
exactly one seed. Finally, to account for the potential demand of neuronal networks for large and balanced train-
ing datasets, 500 single seeds per species where represented in the dataset. This results in a perfectly balanced 
labelled multimodal image dataset of 5,000 seeds covering 10 species and containing 10,000 images: 5,000 hyper-
spectral and 5,000 RGB images respectively.
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Fig. 1  Overview of the pipeline for BiSID-5k dataset24 acquisition and preparation.

https://doi.org/10.1038/s41597-025-05979-6


3Scientific Data |         (2025) 12:1629  | https://doi.org/10.1038/s41597-025-05979-6

www.nature.com/scientificdatawww.nature.com/scientificdata/

Data acquisition.  Custom seed tray.  To obtain image data, seeds where individually placed on a single 
30 mm  × 30 mm plate. Plates were produced using additive manufacturing, using Extrudr-Green-TEC Pro 
Filament - 1.75 mm, blue and an Raise3D Pro2 Plus 3D printer. Each plate has an 18 mm  × 18 mm square in 
the centre with raised and white marked walls. The size of the inner square is sufficient to accommodate all seed 
species under consideration, despite their significant variations in shape and size. Furthermore, an oval recess is 
placed inside the inner square, which optimises the central positioning of the seeds. In particular, this is intended 
to prevent seeds from touching the edge of the inner square. An Computer-Aided-Design (CAD) model of the 
plates can be obtained from the authors on request for scientific purposes.

Camera and lightning equipment.  Two camera setups placed in an array were employed to acquire image data.

	 1.	 RGB images were acquired using a Raspberry Pi High Quality Camera (Sensor: Sony IMX477R, 12.3 MP) 
in combination with a CS/C mount lens (0.12-1.8x) distributed by Pimoroni Ltd. (Sheffield, United King-
dom). The distance between seeds and the lower end of the lens was 16 cm. Lighting was ensured using a 
white LED SMD ring light (70 mm diameter by HexaCube). The camera was controlled by the picamera2 
package (https://github.com/raspberrypi/picamera2) using an exposure time of 5 ms and no auto white 
balance mode (AwbMode = False).

	 2.	 Hyperspectral image data captured using the Resonon (USA) Pika L 100121-220 model, covering 
wavelengths ranging from 380.96 nm to 1017.9 nm in the visible and near-infrared (VNIR) region of the 
electromagnetic spectrum, with a spectral resolution of 5 nm. This camera was used in combination with 
a Tele-Xenar 2.2/70MM Compact lens by Schneider-Kreuznach (Germany) and 4x halogen light bulbs 
(Osram Decostar 51 Pro, 35 Watts, 3000 Kelvin light colour, 36∘ opening angle) for lighting. The camera 
was calibrated using teflon target. Any other natural or artificial lighting, except the ones mentioned before 
were excluded. Distance between seeds and lower end of the lens was 14.5 cm. We employed the Resonon 
SDK (https://docs.resonon.com/API/html/index.html, Version 3.4.11) using 36 Hz framerate, 1 ms inte-
gration time and 0 Db gain for hyperspectral image acquisition.

Image acquisition process.  The single seeds, placed on the custom seed tray, are transported through the cam-
era array using a constant-speed chain drive. Light barrier switches were used to separately trigger the RGB and 
hyperspectral cameras. Due to the fixed and known time-offset of both cameras, individual RGB- and hyperspec-
tral image-pairs, which depict the same seed, are paired using the image capture timestamp of the respective files. 
The complete setup is shown in Fig. 2.

Data curation & collection.  Harvesting, packaging and transporting of seeds can introduce physical anomalies, 
such as damage to the seeds or the absence of seed coats. These factors can complicate data analysis, as the lack 
of a seed coat, for instance, may alter the spectral properties of the seeds. Additionally, clumped seeds pose a 
challenge, as they may remain undetected during the semi-automatic image acquisition process and only be 
identified later. These issues can reduce the accuracy of data collection and subsequent analysis. Some of the 
aforementioned issues are depicted in Fig. 3.

To ensure a high quality data source for deep learning approaches, the dataset presented in this article was 
manually and visually inspected and subsequently filtered. Images which exhibit not exactly one seed of the 
desired species were excluded by a qualified seed analyst. Furthermore, very few seeds which differs significantly 
from the species seed phenotype were excluded too. This later case covers the aforementioned situations of 
damaged or dehulled seeds, as well as foreign seeds of plant species, which are represented in the seed stock in 
rare cases.

Preprocessing.  The preprocessing of dataset images is straightforward and uniform across modalities. For both 
RGB and hyperspectral images, we employed the pretrained Segment Anything Model (SAM)2 with a ViT-B 
backbone, to segment and isolate the seeds from the white boxes of the seed tray. As SAM allows to use RGB 
images only (and not hyperspectral images), we generated synthetic RGB images from hyperspectral cubes 
to ensure compatibility. Specifically, we utilise the 640 nm waveband for the red, 550 nm for green and 459 
nm for blue channels. After segmentation step, bounding boxes enclosing each seed were extracted for both 
modalities. Then, the images were resized to enable model training: RGB images were resized to dimensions of 
192 × 192 × 3, while the hyperspectral cubes were resized to dimensions of 128 × 128 × 300. In these notation, 
the first two numbers represent spatial dimensions (height and width), while the last number indicates the 
number of channels (3 for RGB) or spectral bands (300 for hyperspectral). Finally, the entire process and the 
resulting images are presented in Figs. 4 and 5, respectively. Additional examples illustrating the results of each 
preprocessing step are shown in Fig. 6.

Dataset limitations.  Collecting a representative dataset for each seed species is a very complex task, as seeds 
exhibit high intra-class variability due to many factors11. Below, we describe the most common ones.

Geographical and temporal variability.  Seeds of the same species can exhibit significant variability depending 
on their geographical origin. For example, seeds harvested in southern France may display different character-
istics compared to those collected in northern Germany. Moreover, this variability is not limited to geography; 
seeds collected from the same location may differ across years. These differences are primarily driven by regional 
climate conditions, such as the number of sunny days, droughts, or floods in specific years. In this study, the 
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dataset does not account for geographical or temporal variability, as all seed samples for each species were sourced 
from a single region within a particular year.

In addition, the occurrence and distribution of foreign seed classes vary from seed lot to seed lot and depend 
on geographical location and harvest year. For instance, in a given seed lot, some foreign seed species may be 
completely absent, while others may be overrepresented. The balanced, equally distributed dataset presented in 
this paper cannot reflect these real-world seed-to-seed lot differences in foreign seed distributions. Depending 
on the application, potential users of the dataset can apply oversampling37 and dataset augmentation techniques 
(e.g., MixUp variants38–40) to better mimic real-world distributions.

Growth stage variability.  Seeds from the same species can exhibit subtle variations in characteristics such as 
colour and texture, depending on the plant’s growth stage at the time of harvest. This study does not include 
metadata specifying the growth stage at which the seeds were collected, which could potentially limit the dataset’s 
representativeness.

Hyperspectral image data.  The range of light (380.96 nm to 1017.9 nm) captured and represented in our dataset is 
limited, as hyperspectral cameras are commercially available which captures spectral image data up to 2.500 nm and 
beyond. Nevertheless, those systems are financially demanding and most often do not achieve a high spatial resolution.

RGB image data.  As reported in the literature41, microscopic seed coat structures can be utilised to identify the 
respective plant species. These patterns can be recorded using, for instance, electron microscopy. Our RGB image 
data is limited in terms of spatial resolution as well as depth of field. Furthermore, only one side of each seed is 
imaged. Thus, it is evident that seeds exhibit discriminative features that are not fully accessible in our dataset due 
to limitations in the image recording techniques.

Sharp seed colour variability and preprocessing challenges.  The high variability in seed appearance presents 
significant challenges for automated preprocessing, particularly during segmentation. Sharp discontinuities in 
colour and texture—arising from physical factors such as seed breakage, incomplete hulling, or surface damage—
can cause segmentation algorithms to fail.

RGB camera

HS camera

Seed tray

Chain drive

Seed container

Funnel

Fig. 2  Semi-automatic data acquisition pipeline. The pipeline consists of a constant-speed chain drive, where 
each seed is placed in an individual seed tray. As the seed tray reaches the centre of the pipeline, hyperspectral 
and RGB cameras are triggered and capture a bimodal pair of hyperspectral and RGB images.
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Fig. 3  Examples of seed variation for the species Geranium robertianum L. (a–c): (a) seed image without any 
physical anomaly, (b) multiple seeds in a single image, (c) seed without a coat.
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Fig. 4  Example of image processing pipeline for BiSID-5k dataset24. The pipeline involves segmentation of both 
RGB and hyperspectral (HS) modalities. Initially, a white square box is detected in both modalities. The region 
containing the seed inside the white box is cropped. Subsequently, the Segment Anything Model (SAM)2 with a 
ViT-B backbone is applied to segment the image, isolating the object likely near the centre. Finally, a bounding 
box is drawn around the identified object and subsequently cropped. Notably, unlike the RGB modality, 
segmentation for the HS modality is performed on synthetic RGB images derived from the hyperspectral cubes. 
The segmentation results are extrapolated to the original hyperspectral image.
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Fig. 5  Overview of the BiSID-5k dataset. The BiSID-5k dataset24 consists of 10 plant seed species with 500 
bimodal pairs per class. Each sample contains a pair of one hyperspectral and one RGB image, respectively.
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To overcome the limited representativity of seed datasets, future datasets should include a sufficient number 
of additional seed samples that address the mentioned factors affecting seed traits, e.g., shape, color, and spectral 
signature. Each sample should be accompanied by detailed metadata documenting the presence of these factors. 
Only in this way can we more comprehensively capture both inter-class and intra-class variability and ensure 
high representativity in future seed datasets.

Fig. 6  Seed segmentation results. Displayed are (a) 6 pairs of original seed images and their corresponding 
segmentation masks extracted using SAM2, (b) 8 triplets consisting of seed segmentation masks, seed bounding 
boxes and the corresponding cropped images.
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Data Records
The dataset is publicly available at https://doi.org/10.25532/OPARA-810 under the Creative Commons 
Attribution (CC BY) license. The BiSID-5k24 consists of 500 paired samples for each of the 10 species (see 
Table 1), organised in directories named after their respective species. Each sample is stored in a dedicated 
sub-directory with a unique identifier. Within each sub-directory, there are two components: [label=(0)].

an HS_Raw.zip archive containing the unprocessed hyperspectral image (HsScan.bil) and its corresponding 
header file (HsScan.bil.hdr) and

an unprocessed RGB image (RGB_Raw.jpg) in JPEG format. The header files contain metadata about acqui-
sition conditions and wavelength allocation for the spectral bands. In addition to the bimodal pairs of seed 
images, we included 10 bimodal pairs of empty seed trays.

Technical Validation
Multimodal feature extraction.  There are multiple ways of how to extract and which features to 
extract from rgb and hyperspectral data (see Fig. 7). In our work we employ distinct feature extraction tech-
niques for the RGB and hyperspectral modalities, tailored to the specific characteristics of each data type. For 
RGB imagery, feature extraction is inherently integrated into the classification ConvNet model. The model 
learns and extracts hierarchical feature representations in a data-driven manner during training, eliminating 
the need for a separate feature extraction step. As opposed to the RGB modality, we explored three different 
approaches for feature extraction from the hyperspectral modality and its utilisation:

	 1.	 Firstly, we adopted a lightweight spectral approach commonly used in spectroscopy for feature extraction. 
From each hyperspectral cube (128 × 128 × 300), we extracted a central region of interest (ROI) of size 
5 × 5 × 300. Subsequently, we applied mean pooling along the spectral dimension, resulting in feature 
vectors of size 1 × 300 (see Fig. 8). This approach preserves spectral information while sacrificing spatial 
details. We call the new modality spectral.

	 2.	 Secondly, we followed a computationally more complex spatio-spectral approach as well. Since most spec-
tral bands are highly correlated, we opted to subsample every n-th spectral band from the hyperspectral 
cube. This reduces to some extent computational complexity while preserving large proportion of spectral 
and spatial features of the seeds. We call the new modality multispectral (MS).

	 3.	 Lastly, we utilised the full hyperspectral cubes without any modification for Single-Label Image Classi-
fication42 or Whole-Image Classification43. This approach distinguishes our work from Multi-Label or 
Pixelwise Classification, which is commonly used in remote sensing44–46.

Experimental setup and results.  Baselines.  To evaluate the performance of each feature extrac-
tion method described in the previous section, we established dedicated baselines tailored to each data  
modality.

RGB baselines.  We utilised following variants of the ResNet47 for RGB images:

•	 2D-ResNet-18 (2D-R18),
•	 2D-ResNet-34 (2D-R34) and
•	 2D-ResNet-50 (2D-R50).

Hyperspectral and multispectral baselines.  Similarly to RGB baselines, we employed 3D versions of the ResNet 
for the both hyperspectral (HS) and newly introduced multispectral (MS) modalities: [label=()].

English name Latin name Geographical origin (state, country) Year No. of samples

Black grass Alopecurus myosuroides L. Hesse, Germany 2019 500

Common knotgrass Polygonum aviculare L. Baden-Wuerttemberg, Germany 2010 500

Common hemp-nettle Galeopsis tetrahit L. Rhineland-Palatinate, Germany 2021 500

Bistort Bistorta officinalis L. Baden-Wuerttemberg, Germany 2021 500

Red campion Silene dioica L. Bavaria, Germany 2021 500

Red clover Trifolium pratense L. Baden-Wuerttemberg, Germany 2021 500

Herb robert Geranium robertianum L. Bavaria, Germany 2021 500

Common chickweed Stellaria media L. Serbia 2021 500

Meadow foxtail Alopecurus pratensis L. Hesse, Germany 2021 500

Winter Oilseed Rape Brassica napus L. Occitanie, France 2022 500

Table 1.  Species collected for BiSID-5k24. The list includes number of samples, geographical origin and year of 
harvest for each species.
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3D-ResNet-18 (3D-R18),
3D-ResNet-34 (3D-R34) and
3D-ResNet-50 (3D-R50). For HS data, we used the raw data with all 300 spectral bands, which fully utilise the 
spatio-spectral information from the hyperspectral cubes. Due to the continuous nature of hyperspectral spectra, adja-
cent wavebands exhibit high correlation, as they capture nearly identical information with only slight variations in spec-
tral response. To simulate situations, where loading entire hyperspectral cubes into GPU memory is not feasible due to 
computational challenges and this redundancy in spectral information, we applied subsampling strategies to reduce data 
complexity. Specifically, we tested two interval-based wavebands subsampling approaches for MS modality: [label=()].

Step30: Selecting every 30th spectral band, covering the visible and near-infrared (VNIR) range and
Step60: Selecting every 60th spectral band, also representing the VNIR range. Moreover, we varied spatial resolu-
tion of hyperspectral and multispectral cubes as well. In particular, we employed set of three different spatial sizes, 
namely by resizing original 128 × 128 data cubes to [label=()]

32 × 32,

64 × 64 and

96 × 96.

Spectral baselines.  Ultimately, we adopted supervised approaches for the spectral data, tailored to our experi-
mental setup and inspired by the previous study48. The following models were used:

•	 Logistic Regression (LR),
•	 Decision Tree (DT),
•	 Random Forest (RF) and
•	 Multilayer Perceptron (MLP)

Fig. 8  Average spectra for species in the dataset. The spectra were computed by extracting a central 5 × 5 region 
from each hyperspectral cube and averaging along the spatial dimensions, resulting in a 1 × 1 × 300 vector. This 
process was repeated for all 500 samples of each species and the results were averaged species-wise.

Fig. 7  Overview of feature extraction methods for (a) HS and (b) RGB modalities.
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Training settings.  Both RGB and MS baselines were trained for 50 epochs utilising AdamW49. For smaller 
2D-ResNets learning rate of 1 × 10−5 was applied, whereas for larger 3D-ResNet we used higher learning rate 
of 1 × 10−4. The uniform weight decay of 4 × 10−3 was chosen for both types of models. The beta parameters 
(β1, β2) of optimiser were set to 0.9 and 0.999 respectively. During training, we used a distributed batch size of 
64. For deep ResNets, we employ a train/validation/test split of the paired images, allocating 70% for training, 
15% for validation and 15% for testing. For the shallow machine learning (ML) models, we used the default 
hyperparameter values provided by the scikit-learn package and applied a 70/30 train-test split. We assessed the 
performance of the models using standard metrics, including [label=()].

Accuracy,
Precision,
Recall
and F1-Score (see Eqs. (1) – (4)). We averaged the results over three independent runs.

Accuracy TP TN
TP TN FP FN (1)

= +
+ + +

=
+

Precision TP
TP FP (2)

Recall TP
TP FN (3)

=
+

=
+ +

‐F Score TP
TP FP FN

1 2
2 (4)

where:

•	 TP is True Positives,
•	 TN is True Negatives,
•	 FP is False Positive,
•	 FN is False Negatives;

All experiments were conducted on a workstation equipped with an AMD Ryzen Threadripper 3970X 
32-Core Processor, 64 GB of RAM and 2× Nvidia RTX A6000, each with 48 GB of memory. Models for RGB, 
MS and HS modalities have been created using Keras 350 with TensorFlow51 as backend, whereas spectral 
approaches used scikit-learn52.

Results.  As shown in Table 2, ResNet models trained on the MS modality achieve the highest performance. The 
smallest model, 3D-R18, trained on 10 spectral bands (Step30), reaches the highest overall accuracy of 99.60%, 
slightly surpassing the larger 3D-R34 (99.55%) and 3D-R50 (99.20%). A similar trend is observed across all met-
rics: 3D-R18 achieves the highest Precision (99.62%), Recall (99.61%) and F1-score (99.60%), followed closely 
by 3D-R34 and 3D-R50.

ResNets trained on the HS modality perform  ~ 1% worse across all metrics compared to those trained on 
MS data. This indicates that increasing the number of spectral bands does not necessarily improve performance. 
Nevertheless, ResNets trained on HS cubes still outperform models trained on the RGB images by an average 
margin of 0.3–2.3%, depending on model size.

A consistent pattern emerges across all ResNets: smaller architectures tend to achieve better performance. 
This could be attributed to the relatively small dataset size or suboptimal hyperparameter values (e.g., number of 
training epochs, learning rate, or weight decay). Larger models generally require higher computational budgets 
or higher learning rate schedules to reach optimal results. Notably, the impact of model size is particularly pro-
nounced for the RGB modality, where the performance gap between the best-performing 2D-R18 (98.62%) and 
the worst-performing 2D-R50 (96.22%) is the most significant.

In contrast, traditional ML approaches trained on spectral data perform substantially worse. Among them, 
MLP achieves the highest accuracy (95.29%), while DT exhibits the weakest performance, reaching only  ~ 89% 
across all metrics. LR slightly outperforms DT with an accuracy of 90.67%.

Ablation study: investigating the impact of spectral subsampling and spatial resolution.  The Table 3 presents 
scenarios in which the spatial and spectral dimensions of the data cube — either independently or in combi-
nation—are manipulated to assess their impact on model performance. The results indicate that training on 
entire hyperspectral cubes with 300 spectral bands yields the best performance only when the spatial resolution 
is relatively low. In such cases, ResNets trained on the MS modality cannot fully exploit spatial features, which 
makes spectral resolution the dominant factor. For example, ResNets trained on HS data with a spatial resolution 
of 32 × 32 outperform those trained on MS cubes by approximately 0.7–1.0% across all metrics. A similar trend 
is observed for multispectral ResNets: models trained on 10 spectral bands outperform those trained on only 5 
bands. However, as the spatial resolution increases, ResNets trained on MS cubes start to surpass those trained on 
HS data, indicating a shift in the balance between spectral and spatial information.
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Conversely, using too few spectral bands also leads to a performance decline, suggesting the existence of an 
optimal trade-off—a “sweet spot”—between spectral and spatial resolution, where the model achieves peak per-
formance. Our experiments confirm that this pattern holds independently of model size. Specifically, ResNets 

Model Modality Sample shape
Learning 
rate

Batch 
size Accuracy Precision Recall F1-Score

Params 
(M)

LR Spectral 1 × 300 — — 90.67 ± 0.48 90.87 ± 0.42 90.67 ± 0.48 90.60 ± 0.48 —

DT Spectral 1 × 300 — — 89.13 ± 0.38 89.20 ± 0.44 89.13 ± 0.38 89.12 ± 0.38 —

RF Spectral 1 × 300 — — 94.62 ± 0.64 94.67 ± 0.60 94.62 ± 0.64 94.59 ± 0.63 —

MLP Spectral 1 × 300 1 × 10−3 — 95.29 ± 0.55 95.42 ± 0.48 95.29 ± 0.55 95.30 ± 0.54 —

2D-R18 RGB 192 × 192 × 3 1 × 10−5 64 98.62 ± 0.22 98.60 ± 0.23 98.67 ± 0.21 98.62 ± 0.23 11.192

2D-R34 RGB 192 × 192 × 3 1 × 10−5 64 97.59 ± 0.10 97.59 ± 0.11 97.68 ± 0.11 97.59 ± 0.11 21.307

2D-R50 RGB 192 × 192 × 3 1 × 10−5 64 96.22 ± 0.49 96.2 ± 0.50 96.28 ± 0.51 96.19 ± 0.50 38.505

3D-R18 MS 96 × 96 × 10 × 1 1 × 10−4 64 99.60 ± 0.11 99.62 ± 0.11 99.61 ± 0.10 99.60 ± 0.11 33.175

3D-R34 MS 96 × 96 × 10 × 1 1 × 10−4 64 99.55 ± 0.17 99.58 ± 0.16 99.57 ± 0.15 99.57 ± 0.16 63.492

3D-R50 MS 96 × 96 × 10 × 1 1 × 10−4 64 99.20 ± 0.11 99.23 ± 0.12 99.19 ± 0.11 99.21 ± 0.11 115.047

3D-R18 HS 96 × 96 × 300 × 1 1 × 10−4 64 98.89 ± 0.28 98.94 ± 0.27 98.93 ± 0.27 98.92 ± 0.28 33.175

3D-R34 HS 96 × 96 × 300 × 1 1 × 10−4 64 98.76 ± 0.28 98.81 ± 0.26 98.79 ± 0.25 98.78 ± 0.27 63.492

3D-R50 HS 96 × 96 × 300 × 1 1 × 10−4 64 98.53 ± 0.29 98.59 ± 0.30 98.57 ± 0.29 98.57 ± 0.29 115.047

Table 2.  Results for the evaluated models, averaged over three independent runs.

Model Modality
Spatial 
resolution

Spectral 
subsampling

Batch 
size Accuracy Precision Recall F1-Score

3D-ResNet-18

MS 32 × 32 Step60 64 97.07 ± 0.29 97.16 ± 0.28 97.12 ± 0.30 97.13 ± 0.29

MS 32 × 32 Step30 64 97.56 ± 0.12 97.63 ± 0.14 97.57 ± 0.13 97.59 ± 0.14

HS 32 × 32 — 64 98.27 ± 0.22 98.34 ± 0.23 98.27 ± 0.22 98.29 ± 0.23

MS 64 × 64 Step60 64 98.22 ± 0.07 98.29 ± 0.08 98.23 ± 0.06 98.24 ± 0.07

MS 64 × 64 Step30 64 99.02 ± 0.27 99.08 ± 0.27 99.02 ± 0.28 99.04 ± 0.27

HS 64 × 64 — 64 97.60 ± 0.11 97.69 ± 0.11 97.61 ± 0.12 97.63 ± 0.11

MS 96 × 96 Step60 64 99.11 ± 0.13 99.17 ± 0.13 99.09 ± 0.12 99.12 ± 0.12

MS 96 × 96 Step30 64 99.60  ± 0.11 99.62  ± 0.11 99.61  ± 0.10 99.60  ± 0.11

HS 96 × 96 — 64 98.89 ± 0.28 98.94 ± 0.27 98.93 ± 0.27 98.92 ± 0.28

3D-ResNet-34

MS 32 × 32 Step60 64 97.20 ± 0.65 97.27 ± 0.65 97.23 ± 0.64 97.24 ± 0.65

MS 32 × 32 Step30 64 97.91 ± 0.45 98.02 ± 0.44 97.92 ± 0.43 97.94 ± 0.45

HS 32 × 32 — 64 98.04 ± 0.33 98.10 ± 0.33 98.05 ± 0.33 98.06 ± 0.33

MS 64 × 64 Step60 64 98.36 ± 0.28 98.45 ± 0.27 98.36 ± 0.25 98.39 ± 0.26

MS 64 × 64 Step30 64 98.53 ± 0.29 98.60 ± 0.29 98.55 ± 0.29 98.56 ± 0.29

HS 64 × 64 — 64 98.31 ± 0.50 98.40 ± 0.49 98.33 ± 0.53 98.34 ± 0.50

MS 96 × 96 Step60 64 98.76 ± 0.38 98.81 ± 0.36 98.73 ± 0.39 98.77 ± 0.38

MS 96 × 96 Step30 64 99.55 ± 0.17 99.58 ± 0.16 99.57 ± 0.15 99.57 ± 0.16

HS 96 × 96 — 64 98.76 ± 0.28 98.81 ± 0.26 98.79 ± 0.25 98.78 ± 0.27

3D-ResNet-50

MS 32 × 32 Step60 64 96.84 ± 0.35 96.95 ± 0.37 96.88 ± 0.31 96.89 ± 0.34

MS 32 × 32 Step30 64 97.73 ± 0.11 97.81 ± 0.07 97.73 ± 0.13 97.76 ± 0.10

HS 32 × 32 — 64 97.78 ± 0.45 97.86 ± 0.45 97.78 ± 0.46 97.80 ± 0.46

MS 64 × 64 Step60 64 98.44 ± 0.12 98.50 ± 0.10 98.46 ± 0.15 98.47 ± 0.12

MS 64 × 64 Step30 64 98.71 ± 0.44 98.75 ± 0.46 98.72  ± 0.42 98.72 ± 0.44

HS 64 × 64 — 64 98.00 ± 0.29 98.06 ± 0.28 98.01 ± 0.29 98.02 ± 0.28

MS 96 × 96 Step60 64 99.20 ± 0.11 99.23 ± 0.12 99.19 ± 0.11 99.21 ± 0.11

MS 96 × 96 Step30 64 99.56 ± 0.23 99.57 ± 0.22 99.56 ± 0.22 99.56 ± 0.22

HS 96 × 96 — 64 98.53 ± 0.29 98.59 ± 0.30 98.57 ± 0.29 98.57 ± 0.29

Table 3.  Results of the 3D-ResNet models across different spatial and spectral resolutions for multispectral 
(MS) and hyperspectral (HS) modalities. For MS, Step60 refers to selecting every 60th spectral band (5 spectral 
bands from the 300-band hyperspectral cube), while Step30 refers to selecting every 30th spectral band (10 
spectral bands). Note that for the HS modality, no spectral subsampling was applied and all 300 spectral bands 
were used. The results for the highest scores across all metrics are shown in bold. All results were averaged over 
three independent runs.
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trained using the Step30 subsampling strategy with a spatial resolution of either 64 × 64 or 96 × 96 achieve the 
best results, yielding: [label=()]

0.2–1.4% improvement over models trained on entire hyperspectral cubes and
0.2–0.8% improvement compared to those trained with the Step60 subsampling strategy. However, it remains 

unclear whether Step30 represents the absolute optimal subsampling strategy or if increasing the number of spec-
tral bands (>10) could further enhance performance.

In contrast to spectral subsampling, the effect of spatial resolution is more straightforward. Regardless of the sub-
sampling strategy, increasing the spatial resolution of multispectral or hyperspectral images consistently improves 
the classification performance of the ResNet models.

Usage Notes
The BiSID-5k dataset24 represents the largest open-access whole-image bimodal dataset for seed classification. 
Its scale and diversity make it a valuable resource for the AI community to develop advanced classification 
systems (i.a. for seed production or for meeting certification requirements set by regulatory agencies). Except 
the data itself, we benchmark the dataset against the state-of-the-art (SOTA) model under different scenarios, 
demonstrating the flexibility and versatility of the data use. We are confident that datasets like BiSID-5k24 will 
advance computer vision methodologies for hyperspectral imaging, facilitating the development of novel archi-
tectures and advancing the field. The dataset will be valuable for researchers studying spectral and morphologi-
cal properties of seeds, as well as regulatory authorities seeking to improve quality assessment procedures.

Future multimodal applications.  The dataset includes four types of modalities—hyperspectral, mul-
tispectral, spectroscopic and RGB, which are either directly present or easily derivable. The integration of these 
modalities in multimodal scenarios has gathered increasing interest in recent years. While this work does 
not compare existing multimodal baselines, it provides a comprehensive review of the relevant literature. For 
instance, it could be feasible to apply similar approach53, where the authors extracted morphological, textural and 
spectral features from hyperspectral cubes and fuse these features together for classification of rice varieties. The 
more recent study42 investigated the performance of a pretrained self-supervised bimodal masked autoencoder 
(BiMAE) for seed classification. The study involved pretraining BiMAE on RGB and hyperspectral data on 19 
different seed species, followed by finetuning on multispectral and RGB data, which showcases its adaptability 
across multiple modalities.

Data availability
The dataset is publicly available at https://doi.org/10.25532/OPARA-810 under the Creative Commons 
Attribution (CC BY) license.

Code availability
We provide all the necessary scripts for the entire pipeline, from preprocessing to model training and evaluation. 
This includes a script for segmenting individual seeds from the seed tray using SAM and a script for converting 
the bimodal dataset into the TFRecord format (see https://www.tensorflow.org/tutorials/load_data/tfrecord), 
which is particularly beneficial for large datasets like ours. This format improves I/O throughput during 
training and integrates seamlessly with TensorFlow pipelines, enabling faster and more efficient data loading 
and augmentation. Additionally, we share scripts for training and evaluating all evaluated models. The code is 
developed using Python 3.10 and is accessible at https://github.com/max-kuk/bisid-5k-tools. The repository 
includes a requirements.txt file specifying all necessary packages along with their versions. Additional 
information about the dataset is available at https://max-kuk.github.io/bisid-5k.
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