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Abstract
The rapid integration of computer vision into Autonomous Systems (AS) has introduced 
new vulnerabilities, particularly in the form of adversarial threats capable of manipulat-
ing perception and control modules. While multiple surveys have addressed adversarial 
robustness in deep learning, few have systematically analyzed how these threats manifest 
across the full stack and life-cycle of AS. This review bridges that gap by presenting a 
structured synthesis that spans both, foundational vision-centric literature and recent AS-
specific advances, with focus on digital and physical threat vectors. We introduce a unified 
framework mapping adversarial threats across the AS stack and life-cycle, supported by 
three novel analytical matrices: the Life-cycle–Attack Matrix (linking attacks to data, train-
ing, and inference stages), the Stack–Threat Matrix (localizing vulnerabilities throughout 
the autonomy stack), and the Exposure–Impact Matrix (connecting attack exposure to 
AI design vulnerabilities and operational consequences). Drawing on these models, we 
define holistic requirements for effective AS defenses and critically appraise the current 
landscape of adversarial robustness. Finally, we propose the AS-ADS scoring framework 
to enable comparative assessment of defense methods in terms of their alignment with the 
practical needs of AS, and outline actionable directions for advancing the robustness of 
vision-based autonomous systems.

Keywords  Artificial intelligence · Autonomous systems · Security · Computer vision · 
Adversarial attacks · Adversarial defenses
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1  Introduction

Autonomous Systems (AS) are rapidly transitioning from research prototypes to mission-
critical platforms in transportation, logistics, and robotics  (Sheridan 2016; Siciliano and 
Khatib 2016). At their core, AS combine high-resolution sensors, fast communication links, 
complex control software, and deep neural networks to enable autonomous operation in 
unstructured environments (Bekey 2005; Guizzo 2011).

A defining trend in modern AS is their deep reliance on computer vision. Vision mod-
els, ranging from classic convolutional neural networks (CNNs) (He et al. 2016), real-time 
detectors such as YOLO (Wang et al. 2023a) and RT-DETR (Zhao et al. 2024a), to advanced 
transformers (Oquab et al. 2024) and vision-language models (Xu et al. 2024; Renz et al. 
2024) underpin not only perception but also sensor fusion, semantic mapping, predic-
tion, planning, and even direct actuation. The industry-wide move towards vision-centric 
and even vision-only paradigms is perhaps best exemplified by Tesla’s Autopilot and Full 
Self-Driving systems (Tesla Inc 2022), which intentionally omit LiDAR and radar in favor 
of multi-camera, deep learning pipelines for end-to-end environment understanding and 
control.

While classic non-vision attack vectors such as GPS spoofing (Horton and Ranganathan 
2018), CAN-bus injection (Kang et al. 2021), and physical attacks on radar or LiDAR sys-
tems (Cao et al. 2019; Kong et al. 2020) have been extensively studied, and industry best 
practices for their detection and mitigation are relatively mature, the shift to vision-centric 
architectures introduces a new class of system-wide vulnerabilities. Years of adversarial 
machine learning research have shown that even digital imperceptible perturbations to 
image inputs can induce misclassification and dangerous misinterpretation (Szegedy et al. 
2013; Goodfellow et al. 2014). In the physical world, attacks such as adversarial stickers on 
traffic signs (Eykholt et al. 2018) or adversarial patches (Zhang et al. 2022a) among others 
demonstrate the persistence and transferability of adversarial threats across architectures 
and conditions.

Crucially, in vision-centric AS, a single vulnerability in perception rarely remains iso-
lated. Because perception outputs directly feed into planning, prediction, and control with 
limited or no human oversight, adversarial effects can propagate, be amplified by sensor 
fusion or trajectory optimization, and ultimately result in system-level failures. This risk is 
heightened by the industry trend towards closed-loop, end-to-end architectures, where raw 
vision inputs may directly dictate vehicle or robot behavior.

Unlike static computer vision systems, AS operate in dynamic, multi-agent, and safety-
critical environments (Bojarski et al. 2016; Janai et al. 2020). Attacks can target any phase, 
from data acquisition and model training to online operation or inter-vehicle communica-
tion, and their impact can extend far beyond classification accuracy, undermining safety, 
trust, and real-world performance in ways rarely captured by static benchmarks.

This review is motivated by the urgent need to understand adversarial vulnerabilities 
and defenses for vision-centric AS, bridging insights from both foundational adversarial 
machine learning and the fast-evolving AS-specific literature. By systematically mapping 
how threats propagate across the AS stack and life-cycle, we clarify real deployment chal-
lenges, highlight the limitations of existing approaches, and provide a unified analytical 
foundation for evaluating adversarial robustness in AS. Our survey intentionally bridges 
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the gap between the mature vision-centric adversarial ML literature and the recent but fast-
growing AS-specific corpus.

1.1  Related work

Several recent surveys have addressed elements of adversarial attacks and defenses, but 
none provide a life-cycle-integrated, stack-specific analysis tailored to real-world AS. For 
example, Badjie et al. (2024) present a systematic review of adversarial attacks and coun-
termeasures in image classification models for autonomous driving, with detailed cover-
age of attack types and proactive/reactive defenses. However, their analysis is limited to 
perception modules and does not examine attack propagation through planning and control 
subsystems, nor does it offer a unified threat model for the entire AS life-cycle. Akhtar 
et al. (2021), a comprehensive review of advances in adversarial attacks and defenses for 
computer vision is provided, focusing on algorithmic and architectural aspects after 2018. 
However, their work does not account for the layered structure or operational context of AS, 
omitting issues such as temporal vulnerability, subsystem coupling, or deployment-specific 
constraints.

Deng et al. (2021) provide a detailed analysis of different attacks and defenses in the 
workflow of the autonomous driving system, covering adversarial attacks for various deep 
learning models and attacks in both physical and cyber contexts. While comprehensive in 
scope, their survey does not offer a structured framework for evaluating defense strategies 
across different stages of the AS life-cycle. Liu et al. (2021) examine adversarial attacks and 
defenses from an interpretation perspective, providing valuable insight into model vulner-
ability, but focusing less on system-level threats specific to autonomous systems.

Almutairi and Barnawi (2023) present an overview of adversarial attacks, defenses, and 
frameworks to secure DNNs in smart vehicles, organizing their analysis around security 
challenges but lacking a cohesive approach to understanding cross-layer vulnerabilities. 
Similarly, Khamaiseh et al. (2022) provide an extensive survey on adversarial attacks and 
defense mechanisms for image classification, though their focus remains primarily on algo-
rithmic approaches rather than on the operational contexts of autonomous systems.

Amirkhani et  al. (2023) review prominent attack and defense mechanisms for object 
detection in autonomous vehicles, offering discussions on their strengths and weaknesses, 
but without addressing the integrated nature of attack surfaces across the entire autonomous 
vehicle stack. Boltachev (2024) highlights key types of disruptive attacks on autonomous 
driving models, demonstrating potential threats through experimental validation but not 
providing a systematic framework for defense evaluation.

Ibrahum et al. (2024) perform a systematic review of adversarial attacks and defenses 
in autonomous vehicles, prioritizing safety and introducing a taxonomy inspired by SOTIF. 
However, their focusis on risk scenarios and lacks an analytical framework linking attack 
surfaces, layered vulnerabilities, and defense evaluation across the AS stack. Girdhar et al. 
(2023) offer a review centered on cybersecurity in autonomous vehicles, highlighting known 
attack vectors and defenses but stopping short of providing an actionable structure for map-
ping attacks or evaluating defenses in an integrated, system-aware fashion.

Xu et al. (2020) broaden the perspective to attacks and defenses in images, graphs, and 
text, but their survey remains modality-driven and does not tackle the architectural and tem-
poral challenges unique to AS. The work by Costa et al. (2024) surveys adversarial attacks 
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and defenses across various deep learning architectures, offering a high-level synthesis 
without focusing on the operational realities, threat models, or deployment constraints of 
AS. Malik et al. (2024) present a systematic review of adversarial machine learning attacks 
and defensive controls, but their analysis lacks the specificity required for autonomous sys-
tems operating in dynamic environments.

1.2  List of contributions

In contrast, our survey bridges the foundational adversarial machine learning concepts 
presented in Akhtar et al. (2021); Xu et al. (2020); Costa et al. (2024); Liu et al. (2021); 
Amirkhani et al. (2023); Malik et al. (2024); Khamaiseh et al. (2022) and the overly com-
ponent-specialized AS surveys in Badjie et al. (2024); Ibrahum et al. (2024); Girdhar et al. 
(2023); Deng et al. (2021); Almutairi and Barnawi (2023); Boltachev (2024) with a holistic, 
layered systems analysis of AS, organized around three key contributions:

1.	 Bridging gaps in existing surveys: While prior reviews often isolate general adver-
sarial ML or AS-specific applications, our work integrates foundational adversarial 
concepts, vision-based robustness literature, and AS-specific challenges into a uni-
fied analytical framework. This enables life-cycle-integrated thinking and supports the 
development of practical AS defenses.

2.	 System-level threat modeling via analytical matrices: We construct three matrices 
that connect existing adversarial literature to the specific vulnerabilities of AS:

	● The Life-cycle–attack matrix categorizes threats across the Data, Training, and 
Inference stages of the AI life-cycle, linking attack types (e.g., poisoning, back-
doors, evasion) to stage-specific weaknesses and highlighting temporal exposure 
windows, (Sect. 4.1).

	● The Exposure–impact matrix organizes threats by AI design vulnerabilities (e.g., 
data hunger, model sensitivity), attack surfaces, and downstream consequences such 
as sabotage or system misguidance, providing a framework to understand full-sys-
tem threat pathways in real-world AS deployments, (Sect. 4.2).

	● The Stack–threat matrix maps how adversarial attacks impact AS subsystems’ 
Perception, Planning, and Control layers, demonstrating how vulnerabilities propa-
gate and compound across the stack. We ground our analysis with realistic subsys-
tem scenarios, target models, and operational implications, (Sect. 4.3).

	● Additionally, we provide a comparative synthesis of both digital and physical 
adversarial attacks, characterizing representative methods in terms of attack type, 
robustness, and practical implications. This serves as a unified reference for eval-
uating attack feasibility and severity in both real-world and simulation contexts, 
(Sect. 3).

 Rather than serving as abstract taxonomies, these matrices function as actionable threat 
modeling tools to guide robustness benchmarking and inform future research.
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3.	 Critical appraisal and evaluation of defense strategies: We develop a structured 
methodology to assess how well existing adversarial defenses meet the unique needs of 
AS:

	● Drawing from the literature and the threat matrices developed in this review, we 
derive a high-level set of overall requirements that adversarial defenses must sat-
isfy to be viable in AS environments. Focusing on real-time constraints, adaptabil-
ity, interpretability, and efficiency, (Sect. 5.1).

	● We examine the current landscape of defenses targeting physical-world attacks, 
identifying the strengths and limitations of existing approaches and clarifying where 
critical gaps remain, (Sect. 5.2).

	● We consolidate and simplify prior defense taxonomies, aligning them with AS-
specific criteria to enable more meaningful evaluation across mechanism types, 
(Sect. 5.3).

	● Based on this foundation, we introduce the Autonomous systems adversarial 
defense score (AS-ADS), a novel evaluation framework that scores defense meth-
ods across four deployment-relevant axes: real-time capability, adaptability to 
novel threats, interpretability, and resource efficiency, (Sect. 5.4).

	● To demonstrate the AS-ADS framework, we evaluate a representative subsample 
of 30 defense methods; 15 from the general vision adversarial robustness literature, 
and 15 from AS-specific works, highlighting the trade-offs and readiness of each, 
(Table 9):

This review, to the best of our knowledge, is the first to systematically bridge foundational 
adversarial machine learning and AS-specific literature in a holistic, layered systems analy-
sis of Autonomous Systems.

1.3  Methodology and review protocol

This review implements a structured, reproducible literature survey based on PRISMA 
2020 principles, specifically adapted to the context of machine learning and AS. Our goal 
is to comprehensively synthesize advances in adversarial robustness for vision-based mod-
els relevant to AS, bridging both foundational vision-centric theory and recent AS-specific 
developments.

We included works ranging from foundational studies (dating back to 1988) to the most 
recent publications available as of May 2025, identified through five major databases: IEEE 
Xplore, SpringerLink, ACM Digital Library, ScienceDirect, and arXiv (tracks: cs.CV, cs.
RO, stat.ML). Search queries combined terms such as “adversarial attack,” “defense,” 
“autonomous systems,” “dataset,” “computer vision,” “robotics,” “LiDAR,” and related 
phrases. After deduplication, non-vision and unrelated tracks were filtered, followed by 
manual screening of titles and abstracts. Full-text eligibility required methodological clar-
ity, empirical evaluation, and relevance to either adversarial computer vision or AS.

Inclusion criteria were: (i) peer-reviewed venue (CORE A*/A/B or Scimago Q1–Q3 
journal) or high-impact arXiv preprint, (ii) empirical focus on adversarial robustness, and 
(iii) coverage of vision models, pipelines, or AS-specific systems. Studies outside these 
domains, lacking empirical grounding, or duplicating prior work were excluded. Flexible 
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inclusion criteria were applied to physical attack/defense and real-world system studies, 
reflecting their practical significance.

Following this protocol, we included 237 papers in the final synthesis. Each was classi-
fied in a reproducible two-level taxonomy: (1) Domain (vision-centric or AS-specific), and 
(2) Contribution Type (defense, attack, dataset, or other supportive/background). Within 
each domain, references were further split as foundational (pre-2020) or non-foundational 
(2020 onward). Contribution types were assigned using a combination of keyword analy-
sis (title/abstract), citation context (appearance in attack or defense tables/sections), and 
manual review for ambiguous cases. The domain split (vision-centric vs AS-specific) was 
established via systematic keyword matching and manual inspection for works with cross-
domain relevance. While every effort was made to ensure comprehensive and reproducible 
coverage, we acknowledge the potential for misclassification in ambiguous cases and invite 
community feedback for future updates.

The review process and screening outcomes are summarized in Table 1.
Table 2 summarizes the final distribution of included studies by domain, era, and contri-

bution type, supporting full reproducibility and transparency.

2  Background

Understanding adversarial robustness in AS requires grounding in the specific architectures, 
vision model deployments, and operational realities that distinguish AS from conventional 
computer vision systems. In practice, modern AS tightly integrate vision models not only 
for perception, but also across sensor fusion, prediction, planning, and closed-loop control, 
resulting in complex pathways for attack propagation and defense. The threat landscape 
in AS is shaped by this interconnectedness, exposing weaknesses that are rarely visible in 

Table 2  Breakdown of included papers by domain (vision-centric or AS-specific), era (foundational or re-
cent), and contribution type (defense, attack, dataset, other). Percentages reflect the share of each row total
Domain Era Defense Attack Dataset Other Row Total
Vision-centric Foundational (pre-2020) 39 (44.8%) 28 (32.2%) 3 (3.4%) 17 (19.5%) 87
Vision-centric Non-foundational (2020+) 43 (60.6%) 21 (29.6%) 3 (4.2%) 4 (5.6%) 71
AS-specific Foundational (pre-2020) 1 (6.7%) 2 (13.3%) 0 (0.0%) 12 (80.0%) 15
AS-specific Non-foundational (2020+) 32 (50.0%) 17 (26.6%) 4 (6.3%) 11 (17.2%) 64
Column totals 115 (48.5%) 68 (28.7%) 10 (4.2%) 44 (18.6%) 237
Defense: Proposes, benchmarks, or surveys robustness mechanisms.    Attack: Proposes, benchmarks, or 
surveys adversarial threats
Dataset: Introduces or is primarily a dataset/benchmark paper.    Other: Surveys, theoretical, sensor, or 
general background works

Initial records identified 1041
Duplicates removed 99
Titles and abstracts screened 942
Excluded during abstract screening 614
Full-text articles assessed 328
Excluded after full-text review 91
Studies included in the final synthesis 237

Table 1  Summary of the 
PRISMA screening resutls
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static, perception-only or digital-only evaluations. The limitations of current benchmarks 
and defense taxonomies, (most of which are tailored to standard image tasks), underscore 
the need for analysis methods and robustness criteria explicitly aligned with AS operational 
stacks and environment. This section provides the technical foundations, empirical context, 
and critical gaps necessary for our analysis.

2.1  Vision models & the autonomous system stack

Modern AS are fundamentally vision-driven, with deep learning models tightly integrated 
across nearly every functional layer; from perception to planning, control, and actuation. 
Unlike traditional computer vision pipelines, where outputs often remain within isolated 
modules, AS architectures are defined by close interconnection: the output of one model 
(e.g., object detection, segmentation) serves as direct input to downstream planning and 
control components, with minimal human oversight or redundancy.

The AS stack can be broadly divided into three groups: the Physical Environment, the 
Hardware Layer, and the Hardware and Software Integration layer, as shown in Fig. 1. 
The physical environment refers to the operational context, such as roadways for driverless 
vehicles or warehouse floors for robots. In the hardware layer we find sensors such as cam-
eras (Forsyth and Ponce 2011; Szeliski 2022), LiDAR (Besl 1988; Hsu 2002), radar (Knee 
2005; Hao et al. 2002), and ultrasonic sensors (Kinsler et al. 2000), which are often fused 
for greater robustness (Yeong et al. 2021) (sesor fusion). Communication hardware enables 
inter-device connectivity for federated learning (Yang et al. 2021), remote operations (Yu 
et al. 2021), or mission planning via satellite links (Prevot et al. 2016). Actuators close the 
hardware loop by translating digital commands into real-world action.

Across all layers, the adoption of general-purpose vision models, such as ResNet-50 (He 
et al. 2016), ViT (Dosovitskiy et al. 2020), SAM (Kirillov et al. 2023), and DINOv2 (Oquab 

Fig. 1  Autonomous system stack diagram
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et al. 2024), reflects the field’s inheritance of both the strengths and adversarial vulnerabili-
ties discovered in conventional computer vision. Specialized models (e.g., DriveVLM Tian 
et al. 2024, CarLLaVA Renz et al. 2024, BEVFormer Li et al. 2022) further illustrate the 
trend toward unified, stack-spanning pipelines.

More in depth, the AS Perception layer is now dominated by a broad spectrum of vision 
models. Ranging from early CNN backbones like ResNet-50 (He et al. 2016) to advanced 
architectures for detection and segmentation. Real-time detectors, such as YOLOv4 (Boch-
kovskiy et  al. 2020), YOLOv7  (Wang et  al. 2023a), RT-DETR  (Zhao et  al. 2024a), and 
EfficientDet  (Tan et  al. 2020), enable high-throughput object and obstacle identification. 
For segmentation and spatial reasoning, models like DeepLabv3+ (Chen et al. 2018a), Mask 
R-CNN (He et al. 2017), and SAM (Kirillov et al. 2023) provide fine-grained environmental 
parsing, while ViT (Dosovitskiy et al. 2020) and DINOv2 (Oquab et al. 2024) represent the 
adoption of transformer-based and foundation models. Multi-modal sensor fusion architec-
tures–DAIR-V2X (Zhao et al. 2024b), UMoE (Lou et al. 2023), COMPASS (Ma et al. 2022) 
integrate camera, LiDAR, and other modalities for richer world models. Classical two-stage 
detectors like Fast R-CNN (Girshick 2015), Faster R-CNN (Ren et al. 2015), SSD (Liu et al. 
2016a), and RetinaNet (Lin et al. 2017) also persist in specific AS deployments.

Within the Planning layer, outputs from perception are translated into actionable deci-
sions and trajectories using a new wave of context-aware models. BEVFormer  (Li et al. 
2022) performs multi-view, spatiotemporal fusion for 3D scene understanding. Vision-
language models such as DriveVLM (Tian et al. 2024), CarLLaVA (Renz et al. 2024), and 
VLM-AD (Xu et al. 2024) incorporate semantic context and agent interaction for robust 
closed-loop planning. End-to-end pipelines such as DAVE2 (Bojarski et al. 2016), Pilot-
Net (Bojarski et al. 2017), and Conditional Imitation Learning (Codevilla et al. 2018) map 
visual or multimodal input directly to navigation actions, bypassing rule-based intermediar-
ies. Legacy approaches such as ChauffeurNet (Bansal et al. 2018) and ALVINN (Pomerleau 
1988) laid the groundwork for behavior prediction and direct perception-control mapping.

At the Control layer AS increasingly embed neural controllers, building upon founda-
tions like ALVINN (Pomerleau 1988) towards deep reinforcement and imitation learning 
models (Lillicrap et al. 2015; Pan et al. 2017; Dursun et al. 2025), to execute planned actions 
in real time. These controllers handle adaptive actuation, closed-loop correction, and safe 
responses to unstructured or adversarial environments. Classic rule-based and PID control-
lers are now frequently augmented or replaced by neural networks that leverage features 
from vision and planning models for fine-grained actuation, error recovery, and robust oper-
ation under uncertainty. This integration enables rapid, flexible adjustment, but also exposes 
the system to error propagation: a perturbation at perception or planning can now directly 
alter low-level control, amplifying the risk of system-level failures.

Because the AS stack is tightly coupled and feedback-driven, whether at the sensor inter-
face, within fusion modules, or at the control output, vulnerabilities in vision models cannot 
be isolated locally. Perturbations at any point in the stack can cascade through planning 
and control, ultimately triggering unexpected or catastrophic outcomes. This architecture 
demands adversarial robustness methods that are not only perception-aware, but explicitly 
stack and life-cycle-aware as well. A central principle developed throughout this review.
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2.2  Adversarial threats in autonomous systems

The concept of adversarial examples was first introduced in Szegedy et al. (2013), who 
showed that deep learning models can be deceived by carefully crafted, human-impercep-
tible perturbations to input data. Formally, adversarial attacks seek to modify a given input 
x0 ∈ Rd to a new point x ∈ Rd, such that x is assigned a specific target class by the model, 
differing from the original prediction. The perturbation δ = x − x0 is typically constrained 
to be small in a chosen norm (e.g., ∥δ∥p < ϵ) to ensure that x remains visually indistinguish-
able from x0 to humans. Methods such as evasion attacks employ optimization techniques, 
including the box-constrained L-BFGS algorithm (Fletcher 2013), to compute minimal per-
turbations that induce misclassification. Notably, these adversarial examples are often trans-
ferable. A single perturbation generated for one model can also mislead other deep neural 
networks–raising serious concerns for the security and reliability of AI systems as originally 
demonstrated in Liu et al. (2016b); Papernot et al. (2016a).

In the context of AS, digital attacks (e.g., FGSM Goodfellow et al. 2014, PGD Madry 
et al. 2019, C&W Carlini and Wagner 2017b) remain important, operating at inference or 
training time to introduce pixel-level perturbations or backdoors (e.g., BadNets Gu et al. 
2017, MetaPoison Huang et al. 2020). These attacks, originally evaluated on canonical data-
sets like ImageNet or CIFAR, have proven highly transferable and can undermine robust-
ness at multiple stages of the AS pipeline.

However, AS face a much broader threat landscape. Physical attacks–such as adver-
sarial stickers (Eykholt et al. 2018), patches (Brown et al. 2018), or crafted objects (Kong 
et al. 2020)–exploit the perception pipeline by manipulating the environment itself, often 
defeating digital-only defenses and persisting across sensors, agents, and time.

Cross-modal and systemic attacks further challenge AS, targeting their reliance on 
multiple, distributed sensors and communication channels. Examples include GPS spoof-
ing (Horton and Ranganathan 2018), LiDAR jamming (Cao et al. 2019), CAN bus manipu-
lation (Kang et al. 2021), and attacks on federated learning (Yang et al. 2021), each capable 
of inducing both local and system-wide failures.

Cascading and life-cycle-aware threats are particularly critical. A single successful 
attack at perception can propagate via sensor fusion, scenario prediction, and control feed-
back loops, leading to mission-level safety breaches (e.g., semantic DoS Wan et al. 2022, 
adversarial planning Edelkamp 2023). These systemic vulnerabilities are largely overlooked 
in standard ML taxonomies.

Limitations of canonical taxonomies: Most classical frameworks categorize attacks by 
knowledge and timing, but largely omit the location layer, specially physical attacks and 
system-level propagation, reflecting a historical focus on static image classifiers and digital 
benchmarks. In AS, this omission is critical: physical and cross-modal threats are often the 
most dangerous, propagating through the stack and undermining safety in ways digital-only 
frameworks cannot capture. This is further pictured in appendix  A, Table 10.

These limitations motivate our evaluation of attacks by location (physical and digital) 
developed in Sect.  3, and our life-cycle and stack-aware matrices developed in Sect.  4, 
which explicitly integrate both digital and physical threats at each layer and throughout the 
operational life-cycle of AS.
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2.3  Defense mechanisms & autonomous systems

Adversarial defense research in AS has evolved rapidly, spanning mechanisms adapted from 
generic computer vision and those developed specifically for the unique constraints of AS. 
Defenses are most often categorized as proactive (e.g., adversarial training, regularization, 
input Pre-Processing, certification), reactive (e.g., detection, denoising, reconstruction), or, 
as as new category found in this review, unified approaches that integrate multiple strategies 
and account for the layered nature of AS deployments.

Proactive defenses such as adversarial training (Madry et al. 2019) remain foundational, 
retraining models on adversarial examples to improve robustness. This method, applied to 
both image and LiDAR-based perception modules (e.g., Lu and Radha (2023) for scaling 
attacks in KITTI/Waymo scenarios), demonstrates gains under known digital threats. How-
ever, these approaches incur high computational cost and generalize poorly to unseen or 
physical attacks, which often bypass digital adversarial defenses (Rozsa et al. 2016; Chen 
and Lee 2021). Additional proactive methods, including regularization (Szegedy et al. 2013; 
Ross and Doshi-Velez 2018), model distillation (Hinton et al. 2015; Papernot et al. 2016c), 
and input Pre-Processing (denoising, smoothing) (Xie et al. 2017a; Liao et al. 2018) offer 
marginal improvements, but often at the cost of clean accuracy or robustness to adaptive 
adversaries (Li et al. 2024a; Lou et al. 2023).

Model ensembles  (Tramèr et  al. 2017; Xie et  al. 2017b) have also been explored to 
increase diversity and resilience, but their increased inference latency and hardware require-
ments are problematic for real-time AS tasks, limiting on-vehicle deployment  (Lu et  al. 
2023; Zhao et al. 2024b). Certified defenses, including randomized smoothing (Cohen et al. 
2019; Zhang et al. 2022c) and formal verification (Gowal et al. 2018; Lecuyer et al. 2019), 
offer provable guarantees under certain conditions, yet typically remain restricted to limited 
model classes and do not extend easily to full-stack or dynamic AS environments.

Reactive defenses monitor and respond to attacks at runtime. Detection-based mecha-
nisms, such as those in Among Us Li et al. (2023) (cooperative AVs) or PhySense (Yu et al. 
2024) (physical perturbation detection) use input monitoring or auxiliary detectors to iden-
tify adversarial events. While valuable, such approaches can suffer from high false positive 
rates and are vulnerable to sophisticated, adaptive attacks (Soares et al. 2022; Abdu-Aguye 
et  al. 2020). Denoising and reconstruction via autoencoders or similar tools  (Meng and 
Chen 2017; Samangouei et al. 2018) can restore clean inputs, but may introduce harmful 
delay or information loss–unacceptable in safety-critical AS.

Unified and stack-aware defenses are gaining attention as the limitations of layer or 
mechanism-specific solutions become clear. For instance, UMoE Fusion (Lou et al. 2023) 
exploits multimodal sensor fusion to mitigate sensor blinding, while SpecGuard (Dash et al. 
2024) provides sensor and layer-aware detection against UAV sensor spoofing addressing 
vulnerabilities beyond the perception layer. PatchCleanser  (Xiang et  al. 2022) and Seg-
ment-and-Complete  (Liu et  al. 2022) combine certified smoothing with detection to tar-
get physical patch attacks. Temporal defenses such as ADAV (Mu 2024) and Time-Travel 
Defense (Etim and Szefer 2024) incorporate cross-frame and historical consistency, crucial 
for detecting persistent or stealthy threats in dynamic settings.

Unified defense frameworks, e.g., UniCAD (Pellicer et al. 2024), MixDefense (Du et al. 
2018), and UNMASK (Freitas et al. 2020), integrate detection, denoising, and robust classi-
fication to provide scalable, adaptive defense pipelines more suitable for realistic AS opera-
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tion. However, most existing defenses, even those tailored for AS, are evaluated primarily 
at the perception layer and fail to systematically assess downstream effects on planning, 
control, or mission-level safety.

The entire taxonomy and surveyed papers can be found in Appendix A, Table 11

2.4  Datasets and benchmarks for AS robustness

Effective evaluation of adversarial robustness in AS relies on benchmarks that capture both 
the technical complexity and real-world context in which these systems operate. The evolu-
tion of benchmarks in this space has both propelled adversarial machine learning and intro-
duced critical challenges unique to AS contexts. Early breakthroughs in adversarial attacks 
and defenses were closely tied to canonical datasets such as MNIST (Lecun et al. 1998), 
CIFAR-10/100 (Krizhevsky 2009), and ImageNet (Deng et al. 2009). These simple, acces-
sible, and widespread benchmarks enabled the rapid development of fundamental attack 
algorithms like FGSM and PGD (Goodfellow et al. 2014; Madry et al. 2019), and laid the 
foundation for robustness research, including systematic evaluations on corrupted or per-
turbed variants such as ImageNet-P (Hendrycks et al. 2021), CIFAR-C, and CIFAR-P (Hen-
drycks and Dietterich 2019).

Despite their foundational role, these datasets are now recognized as insufficient proxies 
for AS robustness due to their static, digital nature and lack of feedback, temporal depen-
dencies, or sensor diversity. Hendrycks et al. (2021) and Croce et al. (2020) demonstrate that 
robustness metrics obtained on the traditional benchmarks often overstate real-world safety. 
Models robust on CIFAR or ImageNet may fail when confronted with the complexities of 
multi-modal perception, sensor fusion, or dynamic interactions in actual AS deployments. 
This disconnect is further underscored by simulation-to-reality transfer failures, as docu-
mented in Nesti et al. (2022); Xu et al. (2022).

To address these limitations, the field has gradually shifted towards more application-
driven and AS-oriented datasets. DOTA (Xia et al. 2018) introduced complex aerial scenes 
and diverse object viewpoints, directly benefiting research in UAV and aerial surveillance. 
The Mapillary Traffic Sign Dataset (Poggi and Mattoccia 2017) captures traffic sign varia-
tion in real-world conditions, serving as a testbed for perception modules in autonomous 
driving. Such datasets improve environmental fidelity and task relevance but still fall short 
of providing holistic benchmarks for closed-loop or stack-wide robustness.

Recent advances in simulation environments–such as CARLA-GeAR (Nesti et al. 2022), 
SafeBench  (Xu et  al. 2022), and RobustE2E  (Jiang et  al. 2024)–have enabled holistic, 
closed-loop evaluation of adversarial threats across the full AS stack. These platforms sup-
port the generation of physically realizable attacks (e.g., adversarial patches, sensor spoof-
ing), multi-agent and V2X scenarios (Li et al. 2023; Zhao et al. 2024b), and robust testing 
under diverse conditions  (Lou et al. 2023; Zhang et al. 2023). Real-world datasets–such 
as Car Hacking (Kang et al. 2021) and adversarial Google Street View (Etim and Szefer 
2024)–offer authentic sensor and actuator traces, though they lack the diversity and control 
of simulated environments.

Despite this, much adversarial research remains focused on standard vision mod-
els, with attacks like C&W  (Carlini and Wagner 2017b), AutoAttack  (Croce and Hein 
2020), and patch-based methods  (Brown et  al. 2018), and defenses such as randomized 
smoothing (Cohen et al. 2019), MixDefense (Du et al. 2018), and certified patch segmen-
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tation  (Zhang et  al. 2022c), almost exclusively evaluated on datasets like ImageNet or 
RobustBench (Croce et al. 2020). This leaves a gap in addressing how adversarial effects 
propagate across perception, planning, and control in realistic AS settings.

AS-specific research is bridging this divide by introducing attacks targeting the full sys-
tem stack–e.g., physical patching (Eykholt et al. 2018; Li et al. 2022), LiDAR spoofing (Cao 
et al. 2019), sensor-fusion breakdowns (Lou et al. 2023; Zhao et al. 2024b), and CAN-bus 
injection (Khan et al. 2022)–and by leveraging advanced benchmarks and simulation plat-
forms. Concurrently, new defenses emphasize multimodal anomaly detection  (Lou et  al. 
2023), certified segmentation (Zhang et al. 2022c), physical input filtering (Lu and Radha 
2023), and robust V2X fusion (Zhao et al. 2024b), increasingly targeting end-to-end, stack-
aware robustness (Jiang et al. 2024).

A summarized illustration can be found in Appendix A, Table 12.
While this move toward AS-specific realism has enhanced operational relevance, it also 

fragments the field. Different works use incompatible sensor suites, attack models, scenario 
generators, and evaluation protocols—as highlighted in recent benchmark studies (Xu et al. 
2022; Nesti et al. 2022). Even subtle differences in simulation parameters or the spatial/tem-
poral configuration of physical attacks can yield markedly divergent robustness evaluations, 
severely limiting reproducibility and comparability across the literature. Consequently, 
there is a growing consensus, reflected in recent works (Croce et al. 2020; Xu et al. 2022; 
Lou et al. 2023). That progress depends on unified frameworks and holistic benchmarks: 
those that can relate algorithmic advances in general adversarial robustness to deployment 
in AS, and, reciprocally, that enable AS-specific innovations to be evaluated in the context 
of broader vision robustness objectives.

This persistent fragmentation across datasets, evaluation protocols, and adversarial meth-
odology underscores the need for a unified approach–one that systematically bridges the 
gap between general computer vision research and the operational requirements of AS. To 
address this, our review introduces a threat-matrix-driven evaluation strategy (see Sect. 4). 
The unification is finally brought to fruition in in our Critical Appraisal of Defenses in the 
Context of Autonomous Systems, (see Sect. 5).

3  Adversarial attacks in AS: digital and physical locations

Adversarial attacks in Autonomous Systems can be broadly categorized on the basis of their 
location into two primary domains: digital and physical. Digital attacks occur within the 
digital pipeline, targeting input data or communications, while physical attacks exploit real-
world environments to manipulate sensory input.

3.1  Digital attacks

Digital adversarial attacks focus on manipulating input data directly in the digital domain 
to deceive machine learning (ML) models. These attacks are some of the most extensively 
studied due to their accessibility and the relative simplicity of generating adversarial per-
turbations. Common methods include the aforementioned FGSM (Goodfellow et al. 2014), 
PGD (Madry et al. 2019), DDN (Rony et al. 2019), or Carlini and Wagner (2017b) amongst 
others. Figure 2 illustrates an example of FGSM.
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These attacks differ in optimization strategies (e.g., single-step vs. iterative), misclas-
sification objectives (targeted vs. untargeted), and their perturbation budget (constrained 
by ℓp norms or pixel count). Their applications in AS include not only direct evasion of 
perception pipelines but also poisoning training datasets, injecting malicious patterns into 
communication logs, or crafting precursors to physical-world attacks through digital-to-
physical transfer.

Despite their digital nature, these attacks pose concrete threats to deployed systems, 
especially when deployed over OTA updates, V2X communication, or shared ML pipelines. 
As such, a clear comparative understanding of their effectiveness, stealth, and robustness is 
vital for evaluating the threat landscape faced by real-world autonomous platforms.

To this end, Table 3 presents a structured quantitative synthesis of the fundamental digi-
tal adversarial attacks applicable to AS-related vision models. It summarizes their success 
rates, perturbation magnitudes, transferability across models, and contextual relevance.

3.2  Physical attacks

Physical adversarial attacks are a type of attack in which an adversary attempts to deceive 
or mislead a ML approach that relies on data gathered from the environment through the use 
of physical hardware sensors such as cameras. Physical attacks do so by introducing physi-
cal perturbations to its environment or inputs. Physical adversarial attacks can take various 
forms, such as altering the lighting conditions (Xiao et al. 2018), modifying the appearance 
of objects in the environment (Oslund et  al. 2022), or manipulating the sensors that the 
autonomous system relies on to perceive the world (Cao et al. 2019). Furthermore, in many 
cases, attacks may be unnoticeable to humans when placed in the real world as they may be 
mistaken by decorations, urban art or vandalism and not seen as a bigger threat by humans, 
which hinders the possibility of manual human intervention to prevent attacks in real time. 
Physical attacks can be configured both in a white-Box or a Black-box setting with differ-
ences in performance based on the attack, and their timing would normally be considered 
Evasion, although it could be the case that they act as Poisoning attacks in the event that the 
system being compromised is in the learning stage.

Physical adversarial attacks can be generated by transferring digital adversarial attacks 
into physical objects as demonstrated in various studies (Kurakin et al. 2016; Athalye et al. 
2017; Sharif et al. 2016). Different techniques to achieve that shift exist which obtain differ-
ent levels of attack robustness. However, in the physical environment, attack robustness is 
challenged by other factors, including natural changes in environment conditions, the attack 
surface being smaller and more complex due to it being three dimensional, the background 
not being alterable, or different camera angles.

Fig. 2  Example of digital adver-
sarial attack (FGSM)
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Attack 
method

Description Common AS 
targets

Success 
rate (%)

Pertur-
bation 
size

Robustness 
(transferability)

Remarks

FGSM 
(Goodfel-
low et al. 
2014)

Fast one-step 
gradient sign 
method. Effi-
cient but weaker

CNNs in 
perception 
pipelines 
(YOLO, 
ResNet, 
MobileNet)

65–85% ℓ∞ ≤ 0.03Low 
(model-specific)

Compu-
tation-
ally fast, 
non-iterative

I-FGSM 
/ PGD 
(Kurakin 
et al. 2016; 
Madry 
et al. 2019)

Iterative FGSM; 
PGD is a uni-
versal first-order 
attack

Traffic sign 
classifiers, 
camera input 
stream

90–99% ℓ∞ ≤ 0.03Medium (higher 
with ensemble)

Standard 
benchmark 
for robust 
training

DDN 
(Rony et al. 
2019)

Minimizes 
norm directly 
via decoupled 
optimization

Percep-
tion tasks 
(ResNet, 
EfficientNet)

80–95% ℓ2 ≈ 0.5 Medium Good for 
precise 
attack with 
minimal 
distortion

C&W 
(Carlini 
and Wag-
ner 2017b)

Optimizes 
distortion with 
a Lagrangian 
framework. Very 
strong

Sensor fu-
sion, camera 
input, LiDAR 
projection 
classifiers

95–100% ℓ2 ≈ 0.1 
or lower

High Slow but 
stealthy; 
often 
bypasses 
defenses

DeepFool 
(Moosavi-
Dezfooli 
et al. 2016)

Minimal ℓ2 
perturbation to 
cross decision 
boundary

AS camera 
classi-
fiers, edge 
detectors

85–95% ℓ2 ≈ 0.01
–0.1

Medium Produces 
very im-
perceptible 
noise

UAP 
(Moosavi-
Dezfooli 
et al. 2017)

Image-agnostic 
perturbations 
that generalize 
across inputs

Scene clas-
sification 
(e.g., road 
conditions)

80–92% ℓ2 ≤ 0.3 High Transfer-
able to 
unseen data 
and models

JSMA 
(Papernot 
et al. 2016)

Perturbs salient 
pixels using 
gradient-based 
saliency maps

AS object 
detectors

70–90% Few 
pixels 
(< 1%)

Low High distor-
tion when 
success is 
enforced

Square 
Attack 
(Andri-
ushchenko 
et al. 2020)

Score-based 
black-box at-
tack with local 
square updates

On-device 
perception 
models

85–95% ℓ∞ ≤ 0.05Medium Efficient in 
query-limit-
ed settings

SimBA 
(Guo et al. 
2019b)

Black-box attack 
via randomized 
low-frequency 
noise directions

Control 
layer feature 
extractors

75–90% ℓ2 ≤ 0.5 Medium Simple and 
effective in 
low-query 
regime

One-Pixel / 
Few-Pixel 
(Su et al. 
2019; Xiao 
et al. 2018)

Changes only 
one or few 
pixels. Evasion 
with minimal 
footprint

Simple classi-
fiers (MNIST, 
GTSRB)

30–70% 1–5 
pixels

Very Low Not robust; 
poor scal-
ability to 
complex 
images

Table 3  Quantitative overview of digital adversarial attacks targeting autonomous systems
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In the context of AS, physical adversarial attacks represent a significant hazard, with the 
potential to compromise system safety and dependability. For instance, autonomous vehi-
cles could be misled into misinterpreting traffic control devices such as stop signs or traffic 
lights, precipitating a potentially perilous situation. The effectiveness of physical adversar-
ial attacks on object detection systems, pivotal in autonomous vehicles, was demonstrated 
in a study by Eykholt et al. (2018). The research indicated that a physical evasion attack 
could be orchestrated by adding minimal perturbations to stop signs, thereby distorting the 
accurate perception of autonomous vehicles.

There are diverging views within the community regarding the effectiveness of these 
physical adversarial perturbations. Some studies, such as Lu et al. (2017), suggest that while 
these adversarial alterations could lead a deep neural network to misinterpret a stop sign 
image in a physical environment within a specific range of distances and angles, they are not 
uniformly successful in duping object detectors across varied distances and viewing angles. 
However, it should be noted that these experiments were conducted in a simplified setting, 
involving printed attack signs.

More sophisticated and resilient attack methods have since emerged, capable of handling 
changes in viewpoint, some of which are further explored in this paper. Moreover, it is sug-
gested that as AS and the various deep learning methodologies underpinning their operation 
continue to evolve, the nature of attacks will similarly adapt and become more advanced. 
Therefore, contrary to some researchers who may downplay the potential harm of physical 
adversarial attacks, these threats are considered critical and warrant urgent attention in order 
to ensure system integrity and safety. A summary of the main types of physical attacks is 
displayed at the end of this section in 4.

3.2.1  Adversarial stickers and paintings

The use of adversarial stickers and paintings for deceiving object detection or image clas-
sification in AS has been a topic of study. Specifically, Eykholt et al. (2018) examined their 
effectiveness on deep learning models used in autonomous vehicles. The method involves 
placing carefully crafted stickers for target objects into the real world, which can cause 

Attack 
method

Description Common AS 
targets

Success 
rate (%)

Pertur-
bation 
size

Robustness 
(transferability)

Remarks

Backdoor 
(e.g., 
BadNets) 
(Gu et al. 
2017)

Inserts triggers 
into training 
data. Attack trig-
gered only when 
pattern appears

Entire AS 
training 
pipelines

100% 
(when 
triggered)

Trigger 
patch 
(0.5–5% 
area)

High (persistent) Remains 
dormant; 
extremely 
dangerous 
in safety-
critical AS

MetaPoi-
son (Huang 
et al. 2020)

Craft poisoned 
training data to 
manipulate deci-
sion boundaries

Offline 
AS model 
training 
(perception)

80–95% Clean-
label 
(stealth)

High Invisible to 
defenders; 
long-term 
threat

Success rate (%) reflects attack effectiveness reported across standard AS-relevant models and datasets. 
Perturbation size describes typical norm-bound constraints (e.g., ℓ∞, ℓ2) or pixel counts. Robustness 
refers to transferability across models, datasets, and tasks. Metrics are extracted or averaged from 
controlled benchmarks and attack papers, focusing on vision-based perception pipelines in AS

Table 3  (continued) 
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Attack 
type

Target 
system(s)

Description Implications Success 
rate (%)

Size Robustness Key 
studies

Adversari-
al Stickers

Traffic Sign 
Recogni-
tion, Object 
Detection

Printed 
perturba-
tions (e.g., 
on signs) 
crafted 
using 
FGSM or 
GANs to 
mislead 
perception 
models

Misclassifica-
tion of traffic 
signs; risk of 
safety-critical 
errors in AVs

Up to 
91.49%

≤5% of 
object 
area

Partial 
(angle/
distance 
sensitive)

Eykholt 
et al. 
(2018); 
Oslund 
et al. 
(2022); 
Zhu 
et al. 
(2024)

Adversari-
al Patches 
(2D)

UAV Detec-
tion, Person 
Detection

Small 2D 
patches 
embedded 
in clothing 
or scenes, 
optimized 
to evade 
detection

Enables human 
evasion from 
surveillance or 
drone systems

Up to 90% ≤1% of 
image 
area

Limited Thys 
et al. 
(2019); 
Wu 
et al. 
(2020)

Adversari-
al Patches 
(3D)

Object Detec-
tion (YOLO, 
SSD)

Physically 
printed 3D 
patches 
placed on 
real objects 
(e.g., 
vehicles)

Persistent mis-
classification 
of camouflaged 
objects

Up to 85% Object 
surface 
dependent

High 
(real-world 
tested)

Toheed 
et al. 
(2022); 
Du 
et al. 
(2022)

Adversari-
al Objects 
(2D)

Image 
Classification

Printed 
adversarial 
images 
misclassi-
fied under 
varied 
conditions

Demonstrates 
real-world 
vulnerability of 
classifiers

65–85% Full object Partial Kura-
kin 
et al. 
(2016)

Adversari-
al Objects 
(3D)

Object 
Detection, 
Multi-Sensor 
Fusion 
Systems

Crafted 
3D shapes 
optimized 
via EOT or 
end-to-end 
sensor-
aware 
learning

Compromises 
multi-sensor 
fusion in 
autonomous 
vehicles

80–90% Full object High Athalye 
et al. 
(2017); 
Cao 
et al. 
(2020)

Adver-
sarial 
Billboards

Autonomous 
Driving 
Systems

Adversar-
ial large-
scale signs 
created via 
optimiza-
tion in 3D 
simulator

Attacks AS 
from afar; 
misguides 
perception in 
motion

Approxi-
mately 
65% 
misdetec-
tion

Full 
billboard

Medium Zhou 
et al. 
(2020)

Table 4  Comprehensive summary of physical adversarial attacks applicable to autonomous systems, integrat-
ing both qualitative and quantitative evidence from the literature
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misclassification of the object detection system. The authors demonstrated that these stick-
ers could be designed to be virtually imperceptible to humans, but still deceive the object 
detection system. A visualization of the attack is shown in Fig. 3

To generate the adversarial stickers and paintings, the authors used a modified version of 
the FSM algorithm. They began by selecting a target label, such as a yield sign or a speed 
limit sign, and used the FGSM algorithm to generate a small perturbation that would cause 
the object detection system to misclassify the stop sign as the target label. The authors also 
used a generative adversarial network (GAN) to train a model that could generate images 
that looked similar to stop signs but contained the adversarial perturbations, while remain-
ing imperceptible to humans.

The study’s findings suggest that the adversarial stickers succeeded in deceiving numer-
ous cutting-edge deep learning models employed in autonomous vehicles, resulting in 
potentially perilous circumstances. Importantly, the researchers demonstrated the transfer-

Fig. 3  Example of adversarial stickers 

Attack 
type

Target 
system(s)

Description Implications Success 
rate (%)

Size Robustness Key 
studies

Adver-
sarial 
Clothing

Person 
Recognition

T-shirts 
or jackets 
with 
adversarial 
patterns 
to evade 
detection

Enables physi-
cal anonymity 
from AI-based 
surveillance

57–74% Clothing-
scale

Partial Wu 
et al. 
(2020)

Adversari-
al Rain

Object 
Detection, 
Classification

Raindrop 
overlays 
on lens or 
images to 
obstruct 
vision 
systems

Misinter-
pretation of 
surroundings 
under weather 
conditions

60–70% 
accuracy 
drop

N/A Medium Guesmi 
et al. 
(2023)

Adver-
sarial 
Lighting

Object 
Detection

Controlled 
lighting 
(e.g., glare/
shadow) 
to cause 
detection 
failures

Disrupts 
feature extrac-
tion; breaks 
perception

Up to 
93.7% 
fooling 
rate

Global High 
(controlled)

Hsiao 
et al. 
(2024)

Target system(s) refers to the machine learning subsystems being attacked (e.g., traffic sign recognizer, 
object detector). Success rate (%) indicates the reported attack success under physical-world or simulation 
conditions. Size estimates the spatial footprint of the adversarial pattern relative to the object or image 
surface. Robustness denotes the resilience of the attack to changes in viewpoint, lighting, and physical 
conditions. Metrics are synthesized from experimental results in the cited studies; where multiple results 
are reported, the maximum or typical observed value is given

Table 4  (continued) 
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ability of these adversarial stickers across disparate models and camera types. Furthermore, 
the study investigated the influence of physical factors such as lighting conditions, viewing 
angles, and distances, on the effectiveness of the adversarial stickers. The effectiveness of 
the stickers did exhibit variation depending on these factors, but crucially retained effective-
ness across a broad spectrum of scenarios.

3.2.2  Adversarial patches

Adversarial patches refer to intricately crafted patches that can be introduced into an image 
to misguide object detection systems and cause them to misclassify objects in the scene. 
Such attacks have been previously used to prevent cameras from detecting humans, as evi-
denced by the development of T-shirts that are printed with adversarial patches (Wu et al. 
2020) or by having people wear the patches themselves (Thys et al. 2019). In addition to 
this, adversarial patches have also been utilized to evade face recognition systems (Komkov 
and Petiushko 2021) or to prevent AS from detecting objects in the scene (Du et al. 2022).

Work by Zhang et al. (2022a) explores the vulnerability of multi-scale object detection 
models utilized in UAVs to adversarial patch attacks. The authors, similarly to the way 
adversarial stickers are generated, employed a modified version of the fast gradient sign 
method (FGSM) algorithm to generate adversarial patches. They initially trained a deep 
learning model to create patches that could be incorporated into an image to induce misclas-
sification by the object detection system. The patches were designed to be small and incon-
spicuous to humans but yet potent in deceiving the object detection system.

The research found that adversarial patches were efficient in deceiving several cutting-
edge object detection models employed in UAVs. The authors showed that even when the 
patches covered less than one percent of the image area, they could still deceive the object 
detection system. Furthermore, the patches were transferable across different object detec-
tion models, making them a potential threat to UAVs that rely on deep learning models for 
object detection.

The research also scrutinized the impact of the size and location of the adversarial 
patches on the attack’s effectiveness. The authors found that larger patches and patches 
placed in more critical areas of the image were more effective in deceiving the object detec-
tion system.

It is worth noting that a potential limitation of the study at hand is that the patch experi-
ment results only demonstrate the path being 2D and placed on top of the image. However, 
in real-world scenarios, attackers are more likely to use these patches to camouflage objects, 
such as military vehicles like tanks or fighter jets with an adversarial patch. Therefore, the 
use of a 3D adversarial patch may be more realistic in such situations.

To address this limitation, Toheed et al. (2022) proposes a method for conducting physi-
cal adversarial attacks on object detection systems using 3D adversarial objects. The authors 
argue that current adversarial attacks on object detectors mainly rely on 2D adversarial per-
turbations, which have limited ability to cause misclassification of objects in the real world.

The authors introduce a 3D adversarial object that is designed to be imperceptible to 
humans but can cause misclassification of objects by the object detector. The 3D object 
is created using computer-aided design (CAD) software and 3D printing technology. The 
proposed attack is tested on the YOLOv2 object detection system and the COCO dataset, 
demonstrating its effectiveness in causing misclassification of objects in the real world.
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3.2.3  Adversarial objects

Adversarial objects are crafted in a way that they cause the ML model to misclassify, misin-
terpret, or fail to recognize them, even though they might appear normal to the human eye. 
They follow a similar approach to adversarial stickers or patches. However, they differ in 
that a complete 2D or 3D object is built.

Kurakin et al. (2016) was one of the first to investigate 2D physical adversarial objects, 
this paper investigates the effectiveness of adversarial examples in real-world settings. The 
authors focus on the transferability of adversarial examples between digital and physical 
domains, as well as their robustness to various transformations, such as changes in camera 
angle and lighting conditions. The authors extend their investigation to the physical world, 
questioning whether adversarial examples generated in the digital domain can still be effec-
tive when captured by a camera and processed by a ML model.

To study this question, the authors generate adversarial examples using FGSM and print 
them out, simulating a physical-world scenario. They then capture images of these printed 
adversarial examples using a smartphone camera and feed the captured images to a deep 
learning model to evaluate the model’s performance.

The experiments show that adversarial examples generated in the digital domain can still 
be effective in the physical world, causing the ML model to misclassify the printed images. 
The authors also demonstrate that the adversarial examples are robust to various transforma-
tions, such as changes in camera angle, lighting conditions, and resizing of the images. This 
finding suggests that adversarial examples pose a significant challenge to the deployment 
of deep learning models in real-world applications, as they can cause the models to make 
incorrect decisions even under different physical conditions.

More curated and targeted to Autonomous System papers in the 2D object landscape 
include (Kong et  al. 2020; Zhou et  al. 2020). Zhou et  al. (2020) presents a systematic 
approach for generating adversarial billboards designed to compromise object detection 
models in autonomous driving systems. The authors propose a bi-level optimization frame-
work that considers both the attack’s success probability and the perturbation’s perceptual 
similarity. They leverage a 3D simulator to account for physical-world factors such as light-
ing, camera perspective, and occlusion. While this approach provides valuable insights into 
the robustness of object detection models under various physical-world scenarios, the use 
of a 3D simulator may not fully capture the complexity of real-world conditions, potentially 
limiting the generalizability of the results. Kong et al. (2020) employs a Generative Adver-
sarial Network (GAN) to create adversarial examples resilient to real-world environmental 
factors. The method comprises a generator network responsible for producing adversarial 
perturbations and a discriminator network tasked with discerning between real and adver-
sarial examples. To enhance the transferability of the generated adversarial examples, the 
authors incorporate domain adaptation techniques and apply geometric and photometric 
transformations during training. While Kong et  al. (2020) demonstrates the potential for 
crafting physical-world-resilient adversarial examples, the adversarial training process can 
be computationally expensive and sensitive to hyperparameters, which may limit its practi-
cal applicability.

Athalye et al. (2017) was one of the first works to introduce 3D adversarial objects. The 
paper presents a novel approach to generating adversarial examples that are robust to various 
transformations and are effective in both the digital and physical domains. The authors pro-
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pose a method called Expectation over Transformation (EOT), which aims to create adver-
sarial examples that maintain their adversarial properties under different transformations.

Traditional adversarial example generation methods often focus on fooling a ML model 
in the digital domain, without considering the effects of real-world transformations, such as 
rotations, translations, and changes in lighting. As a result, these adversarial examples may 
lose their effectiveness when applied to physical objects or real-world scenarios. To address 
this issue, the authors introduce the EOT algorithm, which incorporates an expectation over 
a chosen set of transformations during the adversarial example generation process. By opti-
mizing the adversarial perturbation under this expectation, the algorithm ensures that the 
generated adversarial examples are robust to the specified set of transformations.

The authors evaluated the performance of the EOT algorithm on various state-of-the-art 
deep learning models, such as Inception v3 and ResNet, using different datasets like Ima-
geNet and CIFAR-10. They also compare the EOT algorithm with other existing methods, 
such as FGSM and PGD. The results demonstrate that the EOT algorithm is able to generate 
adversarial examples that are robust to a wide range of transformations, outperforming other 
methods in both digital and physical domains. The authors further showcased the effective-
ness of the EOT algorithm through real-world demonstrations, such as 3D printed objects 
and images displayed on a screen.

Cao et al. (2020) specifically targets the vulnerabilities of autonomous driving systems 
to 3D adversarial objects. This paper specifically targets Multi-Sensor Fusion (MSF)-based 
perception systems used in autonomous vehicles. The authors propose a real-time, end-
to-end optimization algorithm that takes into account the physical constraints and sensor 
characteristics of the MSF-based perception system to generate 3D adversarial objects. By 
considering the limitations of the sensors and the physical constraints of the objects, the 
proposed method generates adversarial objects that can deceive the MSF-based perception 
system in real-world scenarios. The paper evaluates its method using simulation and real-
world experiments, focusing on the effectiveness of the 3D adversarial objects in deceiving 
MSF-based perception systems in autonomous vehicles.

Table 4 summarizes the main types of physical adversarial attacks, their implications, 
and key examples along with simple quantitative indicators such as Success Rate or Robust-
ness to further contextualize their relevance in vision models and therefore to AS.

4  Threat modelling in autonomous systems

This section presents a comprehensive framework for threat modeling in AS, with a particu-
lar focus on vision-based models. We introduce a taxonomy that systematically analyzes the 
exposure of each stage in the AS life-cycle to adversarial attacks (both digital and physical). 
By mapping specific attack vectors to corresponding life-cycle components and system lay-
ers, this framework provides a structured basis for identifying vulnerabilities and informs 
the development of effective, targeted defense strategies for real-world AS deployments.

4.1  Life-cycle attack matrix

We introduce the AS AI Life-Cycle Attack Matrix (see Fig. 4), a framework that systemati-
cally categorizes adversarial threats targeting AS across the Data, Training, and Inference 
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stages of the AI life-cycle. By mapping attack types to each stage, the matrix provides a com-
prehensive structure for identifying vulnerabilities, understanding how adversaries exploit 
phase-specific weaknesses, and informing the design of more effective defense strategies.

Figure 4 organizes adversarial threats into three main stages of the AI life-cycle: Data, 
Training, and Inference. Each stage is associated with characteristic attack types that lever-
age distinct vulnerabilities in AS pipelines.

At the Data stage, adversaries may engage in:

	● Data poisoning attacks: Introducing malicious data into the training dataset to corrupt 
the learning process, leading to erroneous model behavior. For instance, altering traffic 
sign images to mislead recognition systems in autonomous vehicles (Morgulis et  al. 
2019).

	● Training-data extraction attacks: Extracting sensitive information from the training 
data, potentially compromising privacy and security. This can involve reconstructing 
proprietary datasets used in AS development (Malik et al. 2024).

During the Training stage, potential attacks include:

	● Model poisoning attacks: Manipulating the training process to embed vulnerabilities 

Fig. 4  AS AI life-cycle attack matrix
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within the model, which can be exploited during deployment. This includes tampering 
with the training data or the learning algorithm itself (Almutairi and Barnawi 2023).

	● Backdoor attacks: Inserting hidden triggers into the model that cause it to behave mali-
ciously when specific conditions are met. For example, embedding triggers that activate 
under certain visual patterns encountered by AS (Pourkeshavarz et al. 2024).

	● Attacks in federated learning (FL): Federated learning offers a decentralized ap-
proach to training machine learning models across multiple devices, making it particu-
larly relevant for AS applications such as autonomous vehicles. In FL, each client–such 
as an autonomous vehicle–trains a local model using its own data. Only the model 
updates are shared with a central server, where they are aggregated to create a global 
model. This approach not only preserves data privacy but also reduces computational 
and communication costs by distributing the training process across multiple devices 
(Jallepalli et al. 2021).

	 However, FL’s decentralized nature introduces unique security challenges. Malicious 
actors can exploit the collaborative training process to compromise the global model. 
For instance, a rogue client might poison its local training data or tamper with model 
updates, leading to degraded performance or targeted misbehavior. Moreover, FL’s 
privacy-preserving mechanisms, such as secure aggregation and differential privacy, 
can make detecting such attacks more difficult, further complicating the task of ensur-
ing robust security. Recent studies, including (Li et al. 2024c; Queyrut et al. 2023; Shi 
et al. 2022), provide a comprehensive overview of FL architectures, their adversarial 
challenges, and potential defense strategies within AS. A simple visualization of attack 
vectors in a FL architecture is shown in Fig. 5.

At the Inference stage, AS are susceptible to:

	● Model extraction attacks: Adversaries query the deployed model to reconstruct its 
parameters or architecture, facilitating intellectual property theft or enabling further at-
tacks (Malik et al. 2024).

	● Evasion attacks: Crafting inputs that are intentionally designed to be misclassified 
by the model, thereby bypassing security measures. Physical-world examples include 
adversarial patches or stickers that cause misclassification in object detection systems 
(Girdhar et al. 2023).

	● Prompt attacks: Exploiting prompt-based systems by injecting malicious prompts that 

Fig. 5  Example of prototype-based FL 
architecture and attack surface
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alter the model’s behavior or outputs, potentially leading to unintended actions in AS 
(Shan et al. 2024).

	● Adversarial deployment attacks: Introducing adversarial elements into the environ-
ment, such as deceptive road markings or manipulated traffic signs, to mislead the AS 
perception and decision-making processes (Boltachev 2024).

This taxonomy underscores the multifaceted nature of adversarial threats across the AI 
life-cycle in Autonomous Systems. By systematically categorizing these attacks, we aim to 
enhance the understanding and development of robust defense mechanisms tailored to each 
stage of the AI deployment pipeline.

4.2  Exposure–impact matrix

The AS Adversarial Exposure-Impact Matrix, illustrated in Fig. 6, offers a detailed taxon-
omy of adversarial attack vectors that specifically exploit vulnerabilities in AS. The matrix 
organizes these vulnerabilities according to fundamental AI challenges, such as the need for 
large datasets, sensitivity to model updates, similarities across models, and input fragility, 
linking each to concrete attack surfaces, including data pipelines, model APIs, and environ-
mental inputs.

These vulnerabilities enable a wide spectrum of attacks, ranging from data poisoning and 
backdoors during training to model extraction and evasion at inference. The matrix clari-
fies both where and how AS can be compromised and traces the downstream consequences 
from data collection and model preparation through deployment to operational harms such 
as misguidance, sabotage, or intellectual property (IP) theft.

AI inherent vulnerabilities and attack surfaces: AS inherit several critical vulner-
abilities from the underlying AI models and datasets on which they rely, exposing multiple 
attack surfaces:

Fig. 6  AS exposure-impact matrix
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	● Data hunger: The requirement for large and diverse datasets makes AS vulnerable to 
data poisoning attacks, where adversarial modifications–such as altered traffic sign im-
ages–are injected into the training data (Eykholt et al. 2018).

	● Model update sensitivity: The adoption of federated learning and access to model up-
date pipelines introduce the risk of model poisoning attacks, allowing adversaries to 
manipulate updates and embed backdoors (Cheng et al. 2021).

	● Input sensitivity: The inherent fragility of AI models to subtle input changes makes 
them susceptible to adversarial examples, including both digital perturbations and 
physical attacks (such as stickers or patches on objects) (Brown et al. 2018).

	● Similarity across models: The resemblance between different models allows for trans-
fer attacks, where adversarial examples crafted for one model can successfully mislead 
another (Tramèr et al. 2017).

Real-world impacts: The AS Adversarial Exposure Matrix reveals how the convergence 
of AI vulnerabilities, attack surfaces, and adversarial tactics results in tangible real-world 
consequences. By mapping these threats from data collection through training, inference, 
and deployment, the matrix highlights clear pathways through which Autonomous Systems 
can be undermined:

	● Data hunger → Data poisoning: The demand for extensive, diverse datasets exposes 
AS to data poisoning, where physical or digital manipulation of training data causes 
misguidance and deception at the perception layer.

	● Model update sensitivity → Model poisoning and backdoor attacks: Continuous 
model refinement in AS creates opportunities for adversaries to introduce model poison-
ing or embed backdoors via tainted updates. This results in manipulation and sabotage, 
eroding model integrity and reliability.

	● Reverse engineering prone → Model extraction: When attackers gain access to mod-
el outputs through open APIs or similar interfaces, they can perform model extraction, 
leading to IP theft and exposure of proprietary algorithms. This undermines competitive 
advantage and may facilitate further adversarial actions.

	● Input sensitivity → Evasion attacks and training-data extraction: Systems that rely 
on accurate sensor interpretation or user input are vulnerable to evasion attacks and ad-
versarial queries. Such elusion and environmental manipulation can cause crashes, ca-
sualties, and information leakage, as the AS fails to interpret its environment correctly.

	● Similarity across models → Transfer attacks: Exploiting similarities among models, 
adversaries can launch transfer attacks that scale across multiple AS platforms, result-
ing in widespread exploitation and a further erosion of public trust in these technologies.

By mapping each vulnerability and attack type to its downstream impact, the matrix under-
scores that even subtle technical manipulations can cascade into severe, real-world conse-
quences. Understanding these relationships is crucial for designing robust defense strategies 
that ensure the reliability, safety, and integrity of Autonomous Systems.

Table 5 consolidates recent research that exemplifies the real-world impacts identified in 
the AS Adversarial Exposure Matrix. These studies provide concrete evidence of adversarial 
attacks, their methodologies, and their consequences for AS, emphasizing the need for com-
prehensive defense mechanisms.

1 3

  373   Page 24 of 59



Securing (vision-based) autonomous systems: taxonomy, challenges, and…

4.3  Stack–threat matrix

Because AS operate in uncontrolled, open environments, they are especially vulnerable to 
attacks that target the physical world. Physical adversarial attacks are particularly critical, 
as they directly compromise the perception capabilities of sensors and cameras, thereby 
undermining all subsequent layers. Nonetheless, vulnerabilities are not limited to physical 
inputs. Table 6 provides our matrix mapping relevant examples with their scenarios and 
implications per stack layer. Some more in depth conceptual examples are presented bellow 
to further understand the relevance per layer:

At the the Perception Layer, attacks can manipulate the sensory input of an AS, causing 
the system to perceive incorrect or misleading information. Adversarial attacks in computer 
vision can cause an AS to misclassify objects in the environment, leading to incorrect or 
unsafe actions (Ai et al. 2021; Wang et al. 2021).

Tampering with the perception layer often involves that further layers (planning and con-
trol) will also be compromised as data flows from one layer to the other, an incorrect view 

Study Attack type Real-world 
impact

Dynamic Adversarial Attacks 
on Autonomous Driving Sys-
tems Chahe et al. (2023)

Physical adver-
sarial patches on 
moving objects

Misclassifica-
tion of traffic 
signs, leading 
to misguidance 
and deception

Adversary ML Resilience in 
Autonomous Driving Through 
Human-Centered Perception 
Mechanisms Shah (2023)

Physical attacks 
on road signs 
(e.g., tape, 
graffiti)

Misclassifica-
tion, causing 
safety hazards

Embodied Adversarial Attack: 
A Dynamic Robust Physical 
Attack in Autonomous Driv-
ing Wang et al. (2023b)

Laser-based 
dynamic physical 
attacks

Misinterpreta-
tion of the 
environment, 
resulting in po-
tential crashes

Beyond Boundaries: A 
Comprehensive Survey of 
Transferable Attacks on AI 
Systems Wang et al. (2023c)

Transfer attacks 
leveraging model 
similarities

Scaled exploita-
tion across 
multiple autono-
mous systems

Towards Robust and Secure 
Embodied AI: A Survey on 
Vulnerabilities and At-
tacks Xing et al. (2025)

Adversarial 
manipulation of 
AI-controlled 
robots

Safety-critical 
failures, includ-
ing crashes and 
casualties

Discovering Adversarial 
Driving Maneuvers Against 
Autonomous Vehicles Song 
et al. (2023)

Adversarial driv-
ing maneuvers

System misguid-
ance, crashes, 
and operational 
compromise

Efficient Adversarial Attack 
Strategy Against 3D Object 
Detection in Autonomous 
Driving Chen et al. (2024b)

3D object detec-
tion manipulation

Misclassifica-
tion of objects, 
leading to po-
tential crashes

Adversarial Backdoor At-
tack on Trajectory Predic-
tion Pourkeshavarz et al. 
(2024)

Clean-label data 
poisoning

Causes system-
atic errors in 
path prediction, 
increasing colli-
sion risks

Table 5  Representative set of 
attacks and their real-world im-
pacts in Autonomous Systems
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Attack 
description

Scenario Target Implications References

Perception layer
Adversarial 
Patch

Patch embedded on 
road sign or object

Object detector/classifier Misclassifica-
tion, system 
malfunction, 
hazardous 
incidents

Brown et al. 
(2018)

Adversarial 
Sticker

Adversarial sticker 
on object/surface

Object detection/segmentation Scene misper-
ception, incor-
rect decisions

Chen et al. 
(2019)

Adversarial 
Apparel

Person wearing 
adversarial clothes or 
accessories

Human/object classification Pedestrian 
missed, security 
breach

Xu et al. 
(2020; Sharif 
et al. (2019)

Adversarial 
Object

Placing adversarially-
engineered 2D/3D 
object in environment

Object recognition False identifica-
tion, safety risks

Kong et al. 
(2020)

Lighting 
Attack

Manipulate scene 
lighting/shadows

Vision-based perception Misclassifica-
tion, detection 
failure

Hsiao et al. 
(2024)

Adversarial 
Rain

Raindrop patterns on 
lens/image

Vision-based perception Degraded 
perception, 
environmental 
misinterpretation

Guesmi et al. 
(2023)

Adversarial 
Clothing

Clothing designed to 
fool detector

Person detection/recognition Security risk, 
evasion of 
detection

Hu et al. 
(2023a)

Remote 
Perception 
Attack

Malicious pattern 
injection via compro-
mised comms

Camera-based detection False nega-
tives for critical 
objects

Man et al. 
(2023)

LiDAR 
Spoofing

Fake laser signals to 
LiDAR sensor

LiDAR perception False obstacle 
detection, colli-
sion risk

Cao et al. 
(2019)

Planning layer
Traffic Sign 
Attack

Subverted or altered 
traffic sign

Traffic sign recognition Misnavigation, 
rule violation, 
accident risk

Eykholt et al. 
(2018)

GPS 
Spoofing

Falsified GPS signals Navigation system Route deviation, 
loss of control, 
accidents

Horton and 
Ranganathan 
(2018)

UAV Track-
ing Attack

Compromised 
tracking data or 
communication

UAV route/target tracker Loss of target, 
mission failure

Fu et al. 
(2022)

Adversarial 
Billboard

Adversarial billboard/
sign in environment

Object detection/classification Scene confu-
sion, misbehav-
ior, planning 
error

Zhou et al. 
(2020)

Adversarial 
Planning

Crafted planner 
input/feedback

Planning algorithm Unsafe/inef-
ficient routing, 
increased risk

Edelkamp 
(2023)

Trajectory 
Attack

Adversarial input to 
prediction model

Trajectory prediction Wrong agent 
movement fore-
cast, collision

Cao et al. 
(2022)

Table 6  Stack-threat matrix
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of the environment can lead to, for instance an incorrect route being planned and wrong 
commands sent to the actuators in the control layer. The scenarios for attacks that target the 
perception layer involve the exploitation of the area in which camera sensors actuate, in 
this case the physical environment, thus the threat to be considered are physical adversarial 
attacks. These include adversarial patches, objects and stickers which have been outlined 
previously and summarized in Sect. 3.2.

Attacks in to the perception layer and to other layers can be distinguished based on 
the attacker objectives, this means that although every successful physical attack involves 
alterations to the perception of the environment produced at the perception layer, not every 
physical attack shall be considered a perception layer attack.

Perception layer attacks aim to remove or add elements to the system’s perception of the 
world, altering its fundamental behavior. If the example of driverless cars is considered, 
attacks involving adversarial traffic signs (Morgulis et al. 2019) might be more appropri-
ately classified as planning layer attacks rather than perception layer attacks. This is because 
even if a stop sign is misclassified as a 45 mph speed limit sign, the car will still be able to 
navigate the road and recognize that a traffic sign is present. However, its planned route or 
correct trajectory will be altered due to an unintended decision made at the planning layer. 
In contrast, an attack involving a pedestrian wearing an adversarial T-shirt (Xu et al. 2020) 
should be considered a perception layer attack, as it renders an element invisible, preventing 
the car from accounting for all elements on the road. Therefore, attackers’ aiming purely at 
the perception layer will normally leverage physical attacks targeting object detectors.

Attack 
description

Scenario Target Implications References

Semantic 
DoS Attack

Benign object 
induces overly con-
servative behavior

Behavioral planning module Unnecessary 
stops or detours, 
degraded 
performance

Wan et al. 
(2022)

Control layer
UAV OD 
Spoofing

Spoofed images for 
UAV detection

UAV object detection/control Erroneous con-
trol action, un-
safe maneuvers

Tian et al. 
(2022)

Semantic 
Exploit

Malicious image 
for segmentation/
detection

Control subsystem Poor control 
decisions, po-
tential accidents

Xie et al. 
(2017b)

Trojaning 
Attack

Injecting backdoor 
during model training

Control algorithm Unauthorized 
actuation, hijack 
risk

Cheng et al. 
(2021)

Model 
Extraction

Query-based model 
stealing

Control algorithm/model IP theft, enables 
further attack 
planning

Li et al. 
(2021)

Flying 
Patch

Drone delivers adver-
sarial patch into field 
of view

Vision-based control Remote error 
injection, loss of 
control

Hanfeld 
et al. (2023)

GhostImage 
Attack

Remote projection of 
adversarial pattern

Camera-based control Misclassifica-
tion, control 
errors

Man et al. 
(2020)

CAN 
Injection

Malicious CAN bus 
message injection

Vehicle control systems Unauthorized 
control, theft

Khan et al. 
(2022)

Table 6  (continued) 
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At the Planning Layer adversarial attacks can be crafted leveraging vulnerabilities 
in Deep learning classifiers including physical attack such as adversarial traffic signs as 
demonstarted by Morgulis et  al. (2019). The security implications can include incorrect 
routes, traffic violations, or accidents. In Fu et  al. (2022), an adaptive adversarial attack 
on real-time Unmanned Aerial Vehicle (UAV) tracking systems is introduced. The authors 
devise the Ad2Attack method, a mechanism that produces adversarial examples aimed at 
deceiving deep learning-powered UAV tracking systems. A successful compromise of the 
tracking system’s performance can lead to the UAV losing track of its intended target. This 
loss of tracking can, in turn, result in inaccurate or suboptimal route planning, thus posing 
significant operational challenges.

Other significant vulnerabilities can be found in planning systems which involve gather-
ing information from external sources to make planning decisions, such as GPS spoofing, 
an example of such attack can be found in Horton and Ranganathan (2018), attacks such as 
this can manipulate the drone’s perceived location and potentially take control of its move-
ments. Although this example is not in the image domain, it is believed that systems may use 
other information in the planning layer such as saved streetview images downloaded from 
an external server to aid navigation. Thus, attacks similar to GPS spoofing, where malicious 
images are injected into the planning layer leveraging wireless technology vulnerabilities, 
may exist in the future.

For the Control Layer, Tian et al. (2022) presents an architecture for an unmanned aerial 
vehicle (UAV) is described, in which the drone’s camera acts as a sensor and sends real time 
images to the controller for processing and display through a Wi-Fi network. The controller, 
which is based on Dronet, processes the image to gain situational awareness of the environ-
ment and generates control instructions. These instructions are transmitted to the actuator 
through the Wi-Fi network to control the drone. Given the vulnerabilities in Wi-Fi networks, 
there may exist an active attacker who controls the Wi-Fi link and generates imperceptible 
perturbations (adversarial examples) to images sent by the camera to remain undetected. 
This attack may result on the drone receiving wrong velocity commands which could make 
it intentionally crash to an object or even a human, or at least alter its normal course. A 
illustration of this attack is shown in Fig. 7.

Xie et al. (2017b) explores adversarial attacks on deep learning-based semantic segmen-
tation and object detection systems, both of which play a critical role in the control layer of 
autonomous vehicles. Through the generation of adversarial examples, these systems can 
be manipulated, leading to erroneous control decisions with potentially hazardous outcomes 
such as accidents or system malfunctions.

The researchers present a method for creating adversarial examples that effectively 
deceive both semantic segmentation and object detection algorithms. The technical back-
bone of this paper involves the resolution of an optimization problem, the goal of which 
is to create adversarial perturbations that maximize the target model’s loss function while 

Fig. 7  Digital attack through spoofing malicious images into the control system
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remaining visually undetectable to human observers. To achieve this, the authors utilize 
a variant of the PGD algorithm called Dense Adversary Generation (DAG). The DAG 
method implements an iterative optimization process to identify the optimal adversarial 
perturbations.

Overall, the Stack–Threat Matrix reveals that vulnerabilities span every layer of the AS 
architecture. Successful attacks at one layer often propagate and amplify through the stack, 
highlighting the need for defense strategies that address the full system and not just isolated 
components.

5  Critical appraisal of defenses in the context of autonomous systems

In this section, we critically examine state-of-the-art adversarial defense mechanisms for 
AS. We begin by outlining the unique operational and security requirements that robust AS 
defense systems must satisfy (Sect. 5.1). Next, we focus on the challenges posed by physi-
cal adversarial attacks and review recent approaches for defending against them (Sect. 5.2). 
Drawing on the analyses above, we refine our taxonomy of defense mechanisms and narrow 
our evaluation to those methods most relevant and effective for AS, discussed in Sect. 5.3 
and summarized by Table 7. Finally, in Sect. 5.4, we systematically assess a set of thirty 
representative defense mechanisms, introducing our novel AS-ADS scoring framework to 
quantify their alignment with the practical needs of AS.

5.1  Defining requirements for AS defense systems

Building on our analysis of AS vulnerabilities and the characteristics of the AS stack and 
vision model life-cycle, we identify the specific defense needs that must be addressed to 
ensure robust and trustworthy AS deployments. We then evaluate how current state-of-the-
art defense mechanisms align with these needs and discuss the remaining key challenges.

To contextualize these requirements, consider a representative mission scenario: let d 
denote an autonomous unmanned aerial vehicle (UAV) tasked with navigating and con-
ducting reconnaissance in diverse, potentially hostile environments. The UAV’s objectives 
include detecting both known and unknown armed vehicles, including those deliberately 
camouflaged using adversarial techniques.

Suppose further that d ∈ D, where D is a fleet of UAVs operating in different areas and 
leveraging federated learning (FL) to collaboratively update their models. While this dis-
tributed approach increases mission resilience, it also introduces additional attack surfaces, 
particularly via the communication and update mechanisms of FL.

Throughout its mission, UAV d may face a variety of adversarial threats. For example, 
adversarial patches, as described in Zhang et al. (2022a), may be used by adversaries to 
camouflage vehicles and evade detection targeting the perception layer. Adversarial training 
might be deployed to defend against known patch types, but novel attack variants can still 
bypass these defenses. Visually distracting adversarial billboards (Zhou et al. 2020) might 
divert the UAV from its intended path, while attacks on FL communication channels can 
inject poisoned data into the learning process.

Mechanisms to address these risks include adversarial training and detection-based 
approaches to filter potentially malicious images. However, a recurring limitation is their 
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Mechanism Real-time Adaptability Interpretability Efficiency References
Adversarial 
Training

High Low Low Low Goodfellow et al. 
(2014); Madry et al. 
(2019); Tramèr and 
Boneh (2019); Wong 
et al. (2020); Tramèr 
et al. (2017); Rozsa 
et al. (2016); Chen 
and Lee (2021); 
Shen et al. (2021); 
Xie et al. (2019); 
Wang et al. (2024a)

Input 
Pre-Processing

High Low Mod High Xie et al. (2017a); 
Liao et al. (2018); Li 
et al. (2024a); Shu 
et al. (2021); Reyes-
Amezcua et al. 
(2024); Naseer et al. 
(2018); Hu et al. 
(2023b); Zhang 
et al. (2024); Shibly 
et al. (2023); Nie 
et al. (2022); Zhang 
et al. (2022b); Wang 
et al. (2024b)

Model 
Ensembles

Mod Mod Low Low Xie et al. (2017b); 
Engstrom et al. 
(2019); Liao et al. 
(2018); Xu et al. 
(2017); Bhagoji 
et al. (2017); Bui 
et al. (2021); Tramèr 
et al. (2017); Deng 
and Mu (2023); 
Mani et al. (2019); 
Lu et al. (2023), 
(2023); Chen et al. 
(2024a); Huang 
et al. (2021); Lou 
et al. (2023); Zhao 
et al. (2024b)

Table 7  Simplified taxonomy of defenses relevant to AS & overall alignment with AS requirements
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lack of adaptability to novel attacks and inability to learn from previously unseen patterns 
without extensive retraining.

This scenario exemplifies the broader landscape of AS security and highlights the need 
for defense mechanisms that can evolve in response to new threats, while also operating 
securely within collaborative, distributed learning frameworks. Additionally, for opera-
tional trustworthiness, defense mechanisms should provide interpretable outputs that enable 
human experts to visualize, categorize, and respond to detected attacks.

For instance, the detection approach proposed by Soares et al. (2022) employs a simi-
larity-based deep neural network (Sim-DNN) to detect imperceptible adversarial attacks by 
comparing new data samples to learned prototypes. This prototype-based method is inter-
pretable and does not require adversarial training, but still lacks robust response capabilities 

Mechanism Real-time Adaptability Interpretability Efficiency References
Detection 
Mechanisms

High Mod High Mod Guo et al. (2019a); 
Angelov and Soares 
(2021); Goodfellow 
et al. (2014); Carlini 
and Wagner (2017a); 
Grosse et al. (2017); 
Feinman et al. 
(2017); Xu et al. 
(2017); Gupta et al. 
(2020); Sabokrou 
et al. (2024); Soares 
et al. (2022); Gong 
et al. (2023); Abdu-
Aguye et al. (2020); 
Hussain and Hong 
(2023); Li et al. 
(2024b), (2023); 
Yu et al. (2024); 
Liu et al. (2022), 
(2022); Chen and 
Chu (2023); Lu and 
Radha (2023)

Certified 
Defenses

Mod Low High Mod Gowal et al. (2018); 
Tjeng et al. (2017); 
Muravev and 
Petiushko (2022); 
Lecuyer et al. 
(2019); Xiang et al. 
(2022); Yang et al. 
(2023); Zhang et al. 
(2022c)

Unified Defense High High High Mod Pellicer et al. 
(2024); Du et al. 
(2018); Freitas et al. 
(2020); Cao et al. 
(2024); Dash et al. 
(2024); Tarchoun 
et al. (2023); Jing 
et al. (2024); Han 
et al. (2024); Yu 
et al. (2024)

Table 7  (continued) 
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(e.g., automated flagging or recovery), and may sometimes misclassify novel legitimate 
samples as adversarial. Advancing research toward more adaptive, interpretable, and action-
able frameworks thus remains an open challenge.

Developing robust AS defenses often requires a combination of mechanisms such as 
adversarial training, detection, and unified frameworks. From this analysis, we derive four 
critical requirements for AS defense mechanisms:

	● Real-time detection and response: Defenses must promptly identify and mitigate ad-
versarial inputs to prevent compromise of safety-critical decisions.

	● Adaptability to novel attacks: Mechanisms should respond effectively to new and 
evolving adversarial strategies without requiring complete retraining.

	● Interpretability and transparency: Outputs should be explainable and accessible to 
human operators, enabling informed oversight and intervention.

	● Resource efficiency: Methods must be computationally and energetically efficient for 
practical deployment on resource-constrained AS platforms.

These criteria serve as the foundation for our evaluation of state-of-the-art defense mecha-
nisms in the remainder of this section and throughout the paper.

5.2  Defenses against physical adversarial attacks

Physical adversarial attacks represent a uniquely severe threat to AS due to their real-world 
feasibility, persistence, and capacity to compromise safety-critical operations throughout 
the perception–planning–control pipeline. Unlike digital perturbations, these attacks often 
manifest as tangible modifications in the environment, such as adversarial patches on road 
signs, manipulated sensor readings, or spoofed trajectories, and are intentionally crafted to 
survive environmental changes. However, robust and generalizable defenses against physi-
cal attacks remain limited, fragmented, and often unvalidated beyond narrowly defined sce-
narios, largely due to the lack of standardized, physically grounded evaluation benchmarks.

To enhance adversarial robustness in the physical domain, recent research has focused 
on three broad categories of defense: proactive, reactive, and unified frameworks. Yet, few 
existing methods are designed to accommodate the full spectrum of real-world variability 
encountered by AS.

Within Proactive strategies, Adversarial training with physically realizable attacks 
(e.g., LiDAR perturbations or real-world patch examples) has shown promise in controlled 
settings  (Kurakin et  al. 2016; Lu and Radha 2023), but generalization to unseen condi-
tions such as new weather, sensor occlusion, or novel object types is often poor. Input Pre-
Processing methods, including semantic-aware masking and inpainting (Jing et al. 2024), 
as well as multi-step diffusion-based purification  (Nie et  al. 2022), offer complementary 
robustness, but their efficacy varies significantly across sensor modalities and attack types. 
Other proactive defenses include spatial attention hardening to guard against localized road 
sign attacks (Shibly et al. 2023) and multi-sensor aerial fusion to strengthen detection pipe-
lines  (Chen and Chu 2023). Despite their value, such approaches are often brittle when 
facing adaptive or context-aware adversaries, and typically introduce trade-offs between 
robustness and perceptual fidelity. Similarly, trajectory prediction models trained under 
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uncertainty provide resilience at the planning level, but remain underexplored for targeted 
physical threats (Zhang et al. 2022b).

Reactive detection-based defenses focus on flagging anomalies during system 
operation. Techniques in this category include entropy-based localization of patch 
regions (Tarchoun et al. 2023), kinematic consistency checks for identifying violations of 
physical constraints (Yu et al. 2024), and hybrid pipelines that combine detection and input 
recovery  (Liu et al. 2022). While these approaches offer interpretability and low-latency 
adaptation, they often struggle against subtle or context-aware attacks that closely mimic 
plausible environmental features.

Unified and hybrid frameworks integrate multiple defense mechanisms across the 
AS stack. For example, control-aware frameworks such as SpecGuard (Dash et al. 2024) 
maintain mission compliance even under partial perception failure, while sensor fusion 
approaches like VisionGuard  (Han et  al. 2024) validate consistency between sensory 
modalities. Adaptive neural modeling strategies, such as RCDN (Wang et al. 2024b), aim 
to dynamically harden internal representations against adversarial perturbations. However, 
these promising approaches often face scalability limitations and have not yet been compre-
hensively evaluated across the diverse operational environments typical of real-world AS 
deployments.

Certified defenses represent a recent advancement, targeting physical attacks with for-
mal robustness guarantees. PatchCleanser (Xiang et al. 2022) provides certified robustness 
via double masking, while works such as Yang et al. (2023) and Zhang et al. (2022c) extend 
certification to control systems and semantic segmentation. These approaches are grounded 
in strong theoretical guarantees, but frequently present challenges regarding runtime feasi-
bility and limited coverage of the full spectrum of physical attack surfaces.

Despite these advances, several key challenges remain. Most defenses are evaluated 
under narrow physical conditions, lacking robustness to environmental variation or domain 
shift. High-performing methods–particularly those involving certification or fusion–often 
introduce significant computational overhead, raising concerns for real-time AS deploy-
ment. Moreover, defenses rarely propagate protection beyond perception to downstream 
modules such as planning or control, leaving the broader autonomy stack exposed. Existing 
detection methods frequently fail to generalize across attack types or modalities, underscor-
ing the need for attack-agnostic, adaptive detection pipelines. Some of these are beginning 
to emerge in adversarial attack research (Li et al. 2024b) and deepfake detection (Pellicer 
et al. 2024a), and could potentially be translated to the physical domain due to their proto-
type-based characteristics, though this remains to be explored.

Given these limitations, certified defenses and targeted detection mechanisms cur-
rently stand out as the most promising approaches against physical adversarial attacks in 
AS. Recent contributions, (some of which are evaluated in detail in Sect. 5.4) demonstrate 
notable progress, but comprehensive integration and rigorous validation across the full AS 
pipeline remain critical open challenges for future work.

5.3  Defense taxonomy simplification

To address the real-time, adaptive, interpretable, and resource-conscious requirements of 
AS, we categorize SOTA defenses according to their core methodology, rather than along 
legacy proactive/reactive lines. We exclude Model Regularization, Model Distillation, and 
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Provable defenses from our main analysis. Regularization and distillation are either now 
subsumed within other defense categories or lack standalone relevance in recent AS-specific 
literature. Provable (i.e., formal verification) defenses are excluded due to their high com-
putational cost and inflexibility for real-world AS deployment. Similarly, denoising and 
reconstruction are no longer considered standalone mechanisms, as they are now integrated 
into Pre-Processing or unified frameworks in recent works. Accordingly, we focus on five 
categories: Adversarial Training, Input Data Pre-Processing, Model Ensembles, Detection 
Mechanisms, and Unified Defense Frameworks. Each is evaluated across four criteria: real-
time response, adaptability to novel attacks, interpretability, and resource efficiency. Table 7 
summarizes their alignment with AS needs and shows the relevant literature selected within 
our paper.

5.3.1  Adversarial training

Adversarial training remains a foundational technique, where adversarial examples are 
incorporated into the model’s training process (Madry et al. 2019). In AS contexts, adver-
sarial training in autoencoder filters has led to improvements in adversarial robustness for 
both white-box and black-box attacks. Such methods show improved resistance to certain 
perturbations, but face key limitations:

	● Real-time response: High. Inference performance is real-time, but the training process 
is computationally intensive.

	● Adaptability: Low. Generalization to unseen attacks is limited.
	● Interpretability: Low. The mechanisms by which robustness is achieved are often 

opaque.
	● Efficiency: Low. High cost in both training and memory.

5.3.2  Input data pre-processing

Pre-Processing techniques such as resizing, cropping, and denoising mitigate adversarial 
perturbations before they reach the model. Studies such as Xie et al. (2017b) demonstrate 
their effectiveness, and recent advances include noise suppression, reconstruction, and 
purification layers. DiffPure (Nie et al. 2022) leverages diffusion models for adaptive puri-
fication, while UMoE (Lou et al. 2023) employs uncertainty-aware fusion to counter sensor-
blinding attacks. Pre-Processing is widely adopted for real-time viability:

	● Real-time response: High. Lightweight implementations can operate on edge devices.
	● Adaptability: Low. These methods are often bypassed by adaptive or physical attacks.
	● Interpretability: Moderate. Effects are visible in the processed input, but causality for 

prediction changes may be indirect.
	● Efficiency: High. Minimal runtime cost.

Notably, this category is evolving: standard techniques (e.g., resizing, cropping, denois-
ing) (Xie et al. 2017b) are now being combined with advanced approaches such as diffusion 
models (Nie et al. 2022). Pre-Processing is increasingly integrated into more complex pipe-
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lines, leading to Unified Models such as Han et al. (2024), which combine sensory fusion, 
filtering, time-series (ARIMA, LSTM), and anomaly detection layers.

5.3.3  Model ensembles

Model ensembles leverage diversity by combining multiple models, making it more difficult 
for adversaries to simultaneously deceive all models (Bui et al. 2021). Key characteristics 
are:

	● Real-Time Response: Moderate. Inference latency increases with the number of mod-
els.

	● Adaptability: Moderate. Greater diversity can improve resistance to transfer attacks.
	● Interpretability: Low. Internal logic is often obscured by the ensemble fusion process.
	● Efficiency: Low. Requires substantial hardware for parallel model execution.

Although ensembles are effective, few recent AS-specific implementations exist due to 
resource constraints. For example, the MADE framework  (Zhao et  al. 2024b) employs 
ensemble-like anomaly scoring over multi-vehicle inputs to detect collaborative attacks in 
V2X scenarios. However, this method is not a traditional ensemble but rather a soft classifi-
cation, reflecting a broader trend: literature is shifting from full ensembles to more flexible 
unified implementations.

5.3.4  Detection mechanisms

AS increasingly rely on detection mechanisms for their interpretability, real-time per-
formance, and applicability throughout the AS stack and life-cycle. Alongside Unified 
Frameworks, detection is now one of the fastest growing fields in adversarial defense, with 
Detection and Unified papers constituting over 50% of recent (2023 onward) publications.

Examples include Among Us Li et  al. (2023), which detects 3D adversarial inputs in 
V2X-Sim via consensus-breaking heuristics; Segment-and-Complete  (Liu et  al. 2022), 
which identifies adversarial patches through segmentation masks; and PhySense (Yu et al. 
2024), which generalizes detection to real-world perturbations. Prototype-based, highly 
interpretable systems such as Angelov and Soares (2021) further demonstrate this catego-
ry’s strengths:

	● Real-time response: High. Detection is typically performed pre-inference.
	● Adaptability: Moderate. Detection patterns can generalize to some unseen attacks.
	● Interpretability: High. Outputs are often visual or score-based, supporting operator 

trust.
	● Efficiency: Moderate. Auxiliary models or priors may increase computational demands.

5.3.5  Certified defenses

Certified defenses offer provable robustness guarantees under specific perturbation budgets. 
In AS-relevant domains:
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	● PatchCleanser (Xiang et al. 2022) certifies robustness against small visible patches (up 
to 2% area) using random masking and smoothing, evaluated on CIFAR and ImageNet.

	● Demasked Smoothing (Zhang et al. 2022c) certifies patch-level segmentation robust-
ness via randomized ablation masking, showing strong resistance on ADE20K under 
shadow and patch attacks.

	● Certified Robust Control  (Yang et  al. 2023) formulates controller robustness for AS 
via Lyapunov-based certified adaptation, effective against bounded input perturbations.

Strengths and trade-offs are:

	● Real-time response: Moderate. Certification layers may introduce runtime sampling.
	● Adaptability: Low. Guarantees hold only for bounded attacks and require redefinition 

for new scenarios.
	● Interpretability: High. Theoretical guarantees are transparent and explainable.
	● Efficiency: Moderate–Low. Additional overhead from sampling, smoothing, or invari-

ant computations.

5.3.6  Unified defense frameworks

Unified frameworks, as defined in this review, represent a new taxonomy. They integrate 
heterogeneous defense techniques (e.g., detection + recovery) using shared feature pipelines 
or modular layers, whereas ensembles aggregate predictions from independently trained 
full models. For example, Pellicer et al. (2024b) present a lightweight framework combin-
ing prototype-based detection and classification for attacks and unseen classes, along with 
attack recovery via denoising methods, achieving over 90% accuracy on CIFAR-10.

Other notable unified defenses include Du et al. (2018), which detects abnormal samples 
for any pre-trained softmax classifier, and UNMASK (Freitas et al. 2020), which both identi-
fies adversarial attacks and mitigates their effects through robust reclassification. UNMASK 
can detect up to 96.75% of attacks and restore correct classification in up to 93% of cases.

More AS-specific frameworks, such as SpecGuard (Dash et al. 2024), integrate detection, 
filtering, and signal processing to detect UAV sensor spoofing with a 92% recovery success 
rate and only 15% performance overhead. Time-Travel (Etim and Szefer 2024) compares 
live input with historical image matches to detect false patches, achieving 100% effective-
ness against recent adversarial examples in traffic sign classification.

Overall, unified methods best align with AS priorities and full life-cycle needs:

	● Real-time response: High. Historical matching and statistical filtering are efficient on-
device.

	● Adaptability: High. Frameworks leverage both priors and learned models.
	● Interpretability: High. Alerts are easily visualized and validated by operators.
	● Efficiency: Moderate. Moderate computational and storage requirements.

5.4  Autonomous systems adversarial defense score (AS-ADS) framework

To systematically assess the suitability of defense methods for AS, we build on the updated 
taxonomy provided in Table 7.

1 3

  373   Page 36 of 59



Securing (vision-based) autonomous systems: taxonomy, challenges, and…

We introduce the Autonomous Systems Adversarial Defense Score (AS-ADS), a scor-
ing framework designed to quantify each method’s alignment with operational AS con-
straints. AS-ADS evaluates across our 4 dimensions (Real-Time Detection and Response, 
Adaptability to Novel Attacks, Interpretability and Transparency and Resource 
Efficiency):

Each criterion is rated on a 0 to 1 scale in 0.25 increments. The final AS-ADS score is 
calculated as the average of these four values, scaled to a 1–5 range and rounded to the 
nearest half:

	
AS-ADS(P ) =

(
R + A + I + E

4

)
× 5� (1)

where R, A, I, E ∈ [0, 1] represent the real-time, adaptability, interpretability, and effi-
ciency scores, respectively.

R, A, I, E are obtained for each paper after marking using rubrics in Table 8.
This scoring framework facilitates standardized, comparative evaluation of SOTA 

defense methods in AS settings. By grounding the scores in real-world operational needs 
and deployment constraints, AS-ADS enables both a fine-grained critique of existing meth-
ods and an actionable guide for future design.

For the evaluation, we selected a representative subset of 30 defenses from the litera-
ture discussed in this paper, focusing on Pre-Processing, Detection, Certified, and Unified 
defenses, as identified in Sect. 5.3. Our evaluation subset includes: (a) foundational works 
that paved the way for newer defense mechanisms in each category, alongside relevant 
recent approaches–(Hu et  al. 2023b; Shu et  al. 2021; Gupta et  al. 2020; Sabokrou et  al. 
2024; Reyes-Amezcua et al. 2024; Abdu-Aguye et al. 2020; Hussain and Hong 2023; Soares 
et al. 2022; Li et al. 2024b; Grosse et al. 2017; Pellicer et al. 2024b; Du et al. 2018; Freitas 
et al. 2020; Yin et al. 2025; Cao et al. 2024)–and (b) work from 2022 onward tailored spe-
cifically to the AS domain–(Dash et al. 2024; Tarchoun et al. 2023; Jing et al. 2024; Han 
et al. 2024; Yu et al. 2024; Xiang et al. 2022; Yang et al. 2023; Zhang et al. 2022c; Liu et al. 
2022; Chen and Chu 2023; Lu and Radha 2023; Shibly et al. 2023; Nie et al. 2022; Zhang 
et al. 2022b; Wang et al. 2024b).

We derived final scores by combining each paper’s reported findings and expert knowl-
edge of the architectures, using the established rubric. For reproducibility indivual scores 

Criterion 0 pts 0.25 pts 0.5 pts 1.0 pts
Real-time 
response

Batch 
infer-
ence 
only

High latency Optimized 
inference 
only

Real-
time at 
edge-level

Adaptability to 
novel attacks

Static 
model

Minor 
generalization

Modular, 
partially 
adaptable

Robust 
to unseen 
attacks

Interpretability Black-
box

Minimal logs Score-
based or 
visual

Prototype/
semantic 
explanation

Resource 
efficiency

High 
overhead

GPU-depen-
dent

Deploy-
able with 
tuning

Light-
weight 
for AS 
hardware

Table 8  AS-ADS scoring rubric 
by criterion
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per paper can be found in Appendix B, the overall scores per paper have been presented in 
Table 9

It is important to note that the selection of scored papers reflects expert judgment and is 
not intended to exhaustively cover all available methods, but rather to provide a representa-
tive overview of current options and their effectiveness. This gives readers and researchers 
practical guidance for deploying or developing defense systems across the attack surfaces 
identified in this report.

A score of 5 does not imply perfection, but rather the closest alignment with the require-
ments defined herein. The diversity of threats, datasets, and evaluation protocols across the 
literature makes it challenging to determine a universally optimal method. Nonetheless, we 
believe this evaluation brings the field closer to that goal. To improve accuracy and utility in 
future work, we recommend detailed reporting of runtime overhead, FPS degradation, GPU 
memory usage, interpretability, and accuracy for each defense using standardized datasets 
and attacks, although this is beyond the scope of this review.

6  Conclusion and future directions

This review provides a holistic, system-level analysis of adversarial threats and defenses for 
AS, integrating insights from both foundational vision-centric research and recent AS-spe-
cific advances. By bridging these two strands of the literature, we offer a unified framework 
that captures the cascading impact of digital and physical adversarial vulnerabilities across 
the autonomy stack. Our taxonomy, scenario-driven matrices, and comparative synthesis 
enable both researchers and practitioners to assess current gaps and prioritize future work in 
making vision-driven AS secure and resilient.

A cornerstone of our approach is the development and use of actionable analytical matri-
ces, including the Life-cycle–Attack, Stack–Threat, and Exposure–Impact matrices. 
These matrices concretely map how adversarial vulnerabilities propagate throughout the AI 
life-cycle and across layered AS architectures. For example, our Life-cycle–Attack Matrix 
reveals both the temporal exposure of AS to poisoning, backdoor, and evasion attacks, 
and the unique risk windows at each stage of system operation. The Stack–Threat Matrix 
grounds these vulnerabilities in real-world scenarios, demonstrating how a compromised 
perception module (such as a camera subjected to adversarial patches or sensor spoofing) 
can trigger failures in planning that propagate to mission-critical control. By further link-
ing these technical threats to operational consequences in the Exposure–Impact Matrix, our 
review enables researchers and practitioners to move beyond abstract taxonomies toward 
practical, system-level threat modeling and benchmarking.

Our comparative synthesis of adversarial attacks, spanning both digital and physical 
domains, highlights a crucial reality: vulnerabilities in AS are rarely confined to a single 
module. Instead, our analysis of real attack case studies and scenario-based evaluations 
demonstrates that adversarial examples often trigger failures that cascade across subsys-
tems, resulting in safety or mission-critical consequences far beyond mere performance 
degradation on academic benchmarks. This insight exposes the inadequacy of traditional, 
static, perception-only evaluation metrics and establishes the need for operationally mean-
ingful, stack-wide robustness assessment.
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Method description Score References AS
Detection mechanisms
Detects adversarial inputs using evolved image processing sequences 
via genetic algorithms

2 Gupta et al. 
(2020)

–

Detects adversaries via SSL-based consistency checks in feature and 
label space

4.5 Sabokrou et al. 
(2024)

–

Combines LSTM temporal consistency checks with majority voting for 
time-series attack detection

2 Abdu-Aguye et al. 
(2020)

–

Reveals adversarial artifacts through autoencoder reconstruction error 
analysis

2.5 Hussain and Hong 
(2023)

–

Detects outliers through learned similarity metrics in contrastive feature 
space

2.5 Soares et al. 
(2022)

–

Learns attack-agnostic features via self-supervised contrastive prototype 
alignment

3 Li et al. (2024b) –

Identifies anomalies through statistical hypothesis testing in feature 
space

1 Grosse et al. 
(2017)

–

Detects patches through entropy analysis and visual localization 4 Tarchoun et al. 
(2023)

✓

Identifies physics violations through kinematic consistency checks 4.5 Yu et al. (2024) ✓
Detects/recovers patches via joint detection-completion pipeline 4 Liu et al. (2022) ✓
Pre-processing defenses
Embeds frequency-aware watermarks in RAW files using multi-spectral 
fusion

4 Hu et al. (2023b) –

Optimizes augmentation parameters via gradient-based adversarial 
search

1 Shu et al. (2021) –

Enhances robustness through transfer of adversarial patterns across 
vision tasks

1 Reyes-Amezcua 
et al. (2024)

–

Neutralizes patches through semantic context-aware masking/inpainting 5.0 Jing et al. (2024) ✓
Scales LiDAR robustness via density-aware point cloud processing 4.5 Lu and Radha 

(2023)
✓

Hardens aerial detection through multi-sensor fusion 2.5 Chen and Chu 
(2023)

✓

Protects road sign recognition through spatial attention hardening 2.5 Shibly et al. 
(2023)

✓

Purifies inputs through multi-step diffusion denoising 2 Nie et al. (2022) ✓
Improves trajectory prediction via uncertainty-aware training 2.5 Zhang et al. 

(2022b)
✓

Unified defenses
Integrates detection-denoiser architecture with noise-adaptive 
thresholds

3.5 Pellicer et al. 
(2024b)

–

Detects OOD samples through temperature-scaled confidence 
calibration

2.5 Du et al. (2018) –

Verifies predictions through robust part-based feature alignment 4 Freitas et al. 
(2020)

–

Links adversarial and backdoor attack patterns for joint cross-attack 
detection

3 Yin et al. (2025) –

Detects face spoofing through dual-space (spatial/frequency) recon-
struction analysis

4 Cao et al. (2024) –

Ensures mission-compliant recovery through specification-aware 
control

4.5 Dash et al. (2024) ✓

Guarantees cross-sensor consistency through multi-modal fusion checks 4.5 Han et al. (2024) ✓

Table 9  AS-ADS evaluation of adversarial defenses. “AS” marks those developed for Autonomous Systems
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In critically appraising defense strategies, we show that the conventional taxonomy, divid-
ing defenses into proactive and reactive categories, does not sufficiently capture the practical 
demands of AS. By shifting the focus to underlying mechanisms, and by introducing unified, 
context-aware defenses as a distinct class, we reveal that most state-of-the-art methods, even 
when successful in vision research, fail to meet the simultaneous requirements of real-time per-
formance, adaptability to new threat vectors, interpretability, and resource efficiency essential for 
deployment in AS. The AS-ADS scoring framework introduced in this review directly evalu-
ates these axes, and our comprehensive analysis across more than thirty contemporary defenses 
finds that only a minority approach a balanced, deployment-ready profile. In particular, robust 
and interpretable defenses against physical and multi-modal threats are still lacking, and few 
methods have demonstrated stack-wide or life-cycle-spanning effectiveness in realistic scenarios.

Despite these advances, significant challenges and research gaps remain. Most avail-
able benchmarks remain narrowly focused on perception or digital attacks, with little provi-
sion for evaluating cascading effects, cross-modal dependencies, or mission-level outcomes. 
Few studies rigorously validate either attacks or defenses under closed-loop, multi-agent, 
or sim-to-real conditions that reflect the operational reality of modern AS. While the threat 
matrices presented in this review provide a critical foundation for system-level risk assess-
ment, their full potential will only be realized when supported by open, community-driven 
benchmarking platforms and evaluation protocols that span the entire stack.

Looking ahead, meaningful progress in adversarial robustness for AS will depend on 
several intertwined advances. The field must prioritize the creation of stack-integrated data-
sets and simulation environments capable of capturing cascading failures, temporal persis-
tence, and the interplay of digital and physical threats. Defense research should increasingly 
focus on mechanisms that are interpretable, for some cases also certifiable, and that are 
validated in resource-constrained, real-time settings. There is a particular need to design and 
rigorously test unified, adaptive defense frameworks that can operate coherently across per-
ception, planning, and control layers, and that can dynamically respond to evolving threat 
landscapes in real deployments. The integration of human-in-the-loop monitoring and deci-
sion-making, as well as robust protocols for sim-to-real transfer, will be critical for bridging 
the gap between academic innovation and practical deployment.

In summary, by clarifying the layered structure of AS vulnerabilities, mapping concrete 
threat pathways, and critically evaluating the mechanisms and readiness of current defenses, 
this review sets a new agenda for adversarial research in Autonomous Systems. We hope 
that the analytical frameworks, results, and open challenges identified here will help guide 
the community toward robust, certifiable, and operationally viable solutions for the next 
generation of trustworthy autonomous technologies.

Method description Score References AS
Enables robust perception via dynamic neural feature modeling 4.5 Wang et al. 

(2024b)
✓

Certified defenses
Provides certified patch robustness through double-masking with formal 
guarantees

4.5 Xiang et al. 
(2022)

✓

Certifies control stability under perturbations via Lyapunov analysis 4 Yang et al. (2023) ✓
Ensures segmentation robustness via masked smoothing certification 4 Zhang et al. 

(2022c)
✓

Table 9  (continued) 
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Appendix A: Background tables

See Table 10.

Appendix B: AS-ADS method evaluations

This includes the scores and small reasoning behind each scored for the defense methods 
evaluated in SECTION:

	● DRAW: Defending camera-shooted RAW against image manipulation (Hu et  al. 
2023b)Real-Time: 0.5 (Lightweight network optimized for camera integration)

	● Adaptability: 0.5 (Cross-ISP pipeline protection)
	● Interpretability: 1.0 (Pixel-level manipulation maps)

Attacker 
knowledge

Attack timing Attack 
location

Examples

White-Box Evasion Digital L-BFGS Fletcher (2013); 
FGSM Goodfellow et al. 
(2014); I-FGSM Kurakin 
et al. (2016); PGD 
Madry et al. (2019); 
DeepFool Moosavi-
Dezfooli et al. (2016); 
C&W Carlini and 
Wagner (2017b); JSMA 
Papernot et al. (2016b); 
UAP Moosavi-Dezfooli 
et al. (2017); DDN Rony 
et al. (2019); Elastic Net 
Chen et al. (2018b)

White-Box Poisoning Digital Data Injection Biggio 
et al. (2012); Label 
Flipping Koenig et al. 
(2015); Backdoor Gu 
et al. (2017); MetaPoison 
Huang et al. (2020)

Black-Box Evasion Digital Boundary Brendel et al. 
(2017); ZOO Chen et al. 
(2017); SimBA Guo 
et al. (2019b); One Pixel 
Su et al. (2019); Square 
Attack Andriushchenko 
et al. (2020); HSJA Chen 
et al. (2020)

Black-Box Poisoning Digital BadNets Gu et al. 
(2019); Clean-label 
Backdoor Zhao et al. 
(2019); GAN-based 
Poisoning noz-González 
et al. (2019)

Table 10  Foundational taxonom-
ic classification of image-domain 
adversarial attacks

Attack location is included to 
show the digital-focused in 
literature. However in many 
cases, surveys do not include 
this dimension

 

1 3

Page 41 of 59    373 



A. Lopez Pellicer et al.

	● Efficiency: 1.0 (0.95% params vs U-Net)Method: Embeds frequency-aware water-
marks in RAW files using multi-spectral fusion, preserving detection capability through 
arbitrary ISP processing chains. AS-ADS Score: 3.75

	● Adversarial differentiable augmentation (Shu et  al. 2021)Real-Time: 0.25 (Offline 
augmentation optimization)

	● Adaptability: 0.5 (Partial corruption resistance)
	● Interpretability: 0.0 (No diagnostic features)
	● Efficiency: 0.25 (2.3 GPU hours/search)Method: Automates augmentation parameter 

selection via gradient-based adversarial search for robust training. AS-ADS Score: 1.25

	● Evolutionary IPTS detection (Gupta et al. 2020)Real-Time: 0.25 (Multi-stage processing)
	● Adaptability: 0.5 (Attack-specific sequences)
	● Interpretability: 0.5 (Difference maps)
	● Efficiency: 0.25 (Genetic algorithm overhead)Method: Evolves optimal image processing 

pipelines using genetic algorithms to reveal adversarial artifacts. AS-ADS Score: 1.875

	● BEYOND: Detecting adversarial examples via SSL neighborhood relations (Sabok-
rou et al. 2024)Real-Time: 1.0 (Optimized for edge deployment with 50 neighbors pro-
cessed at 23 ms/image)

	● Adaptability: 1.0 (Attack-agnostic design validated against 12+ attack types)
	● Interpretability: 0.5 (Score-based consistency metrics with visualization support)
	● Efficiency: 1.0 (Lightweight SSL backbone with 0.9M parameters)AS-ADS Score: 4.375

	● Delta data augmentation (Reyes-Amezcua et al. 2024)Real-Time: 0.25 (Transfer learn-
ing focus)

	● Adaptability: 0.5 (Cross-dataset transfer)
	● Interpretability: 0.0 (Opaque perturbation transfer)
	● Efficiency: 0.25 (GPU-intensive)Method: Transfers adversarial patterns from high-

level vision tasks to enhance low-level task robustness. AS-ADS Score: 1.25

	● Temporal consistency defense (Abdu-Aguye et al. 2020)Real-Time: 0.5 (143 ms LSTM 
inference)

	● Adaptability: 0.25 (Fixed thresholds)
	● Interpretability: 0.25 (Entropy logs)
	● Efficiency: 0.5 (Embedded compatibility)Method: Combines frame-wise consistency 

checks with temporal majority voting for video attack detection. AS-ADS Score: 1.875

	● Autoencoder reconstruction (Hussain and Hong 2023)Real-Time: 0.5 (47 ms inference)
	● Adaptability: 0.5 (73% unseen attacks)
	● Interpretability: 0.5 (Reconstruction errors)
	● Efficiency: 0.5 (580MB model)Method: Detects adversaries through reconstruction er-

ror analysis using compact autoencoders. AS-ADS Score: 2.5

	● Similarity metric analysis (Soares et al. 2022)Real-Time: 0.5 (89 ms Jetson TX2)
	● Adaptability: 0.5 (12 attack types)
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	● Interpretability: 1 (Confidence scores and prototypes)
	● Efficiency: 0.5 (15W consumption)Method: Identifies outliers through learned similar-

ity metrics in feature space. AS-ADS Score: 3.125

	● Contrastive prototype learning (Li et al. 2024b)Real-Time: 0.5 (33 ms inference)
	● Adaptability: 1.0 (94.7% cross-attack)
	● Interpretability: 1.0 (Prototype matching)
	● Efficiency: 0.5 (2.1GB VRAM)Method: Learns attack-agnostic features through self-

supervised contrastive prototype alignment. AS-ADS Score: 3.75

	● Statistical anomaly detection (Grosse et al. 2017)Real-Time: 0.25 (Batch processing)
	● Adaptability: 0.25 (Static models)
	● Interpretability: 0.25 (Basic scores)
	● Efficiency: 0.25 (CPU-intensive)Method: Detects outliers through likelihood ratio test-

ing in feature statistics. AS-ADS Score: 1.25

	● UNICAD framework (Pellicer et al. 2024b)Real-Time: 0.5 (24 FPS pipeline)
	● Adaptability: 0.75 (Wide range of untrained in digital attacks and +85% Unseen class 

identification)
	● Interpretability: 1 (Prototype based)
	● Efficiency: 0.5 (8GB VRAM)Method: Unified approach for attack detection, noise re-

duction, and novel class identification. AS-ADS Score: 3.437

	● Confidence-calibrated OOD (Du et al. 2018)Real-Time: 0.5 (45 ms detection)
	● Adaptability: 0.5 (82% cross-domain)
	● Interpretability: 0.5 (Thresholding)
	● Efficiency: 0.5 (16W edge)Method: Detects out-of-distribution samples through tem-

perature-scaled confidence calibration. AS-ADS Score: 2.5

	● Robust feature verification (Freitas et al. 2020)Real-Time: 0.5 (28 ms alignment)
	● Adaptability: 1.0 (97.3% detection)
	● Interpretability: 1.0 (Semantic maps)
	● Efficiency: 0.5 (4.3GB model)Method: Verifies predictions through robust part-based 

feature alignment. AS-ADS Score: 3.75

	● Cross-attack bridge defense (Yin et al. 2025)Real-Time: 0.5 (33 ms analysis)
	● Adaptability: 1.0 (89% cross-backdoor)
	● Interpretability: 0.5 (Similarity scores)
	● Efficiency: 0.5 (12% overhead)Method: Links adversarial and backdoor attack patterns 

for joint defense. AS-ADS Score: 3.125

	● Dual-space face defense (Cao et al. 2024)Real-Time: 0.5 (41 ms processing)
	● Adaptability: 1.0 (95.6% spoof detection)
	● Interpretability: 1.0 (Error maps)
	● Efficiency: 0.5 (6.7GB VRAM)Method: Reconstructs face images in spatial/frequency 

domains for unified spoof detection. AS-ADS Score: 3.75
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	● SpecGuard recovery (Dash et al. 2024)Real-Time: 1.0 (15 ms ARM recovery)
	● Adaptability: 1.0 (92% multi-sensor)
	● Interpretability: 0.5 (Compliance scores)
	● Efficiency: 1.0 (15% overhead)Method: Recovers attacked inputs through safety spec-

ification-aware filtering. AS-ADS Score: 4.375

	● Entropy-based patch defense (Tarchoun et al. 2023)Real-Time: 0.5 (54 ms analysis)
	● Adaptability: 1.0 (90% patches)
	● Interpretability: 1.0 (Entropy maps)
	● Efficiency: 0.5 (2.77% loss)Method: Detects adversarial patches through localized en-

tropy analysis. AS-ADS Score: 3.75

	● Context-aware patching (Jing et al. 2024)Real-Time: 1.0 (11 ms edge)
	● Adaptability: 1.0 (96.4% mAP)
	● Interpretability: 1.0 (Semantic highlighting)
	● Efficiency: 1.0 (0.9W power)Method: Neutralizes patches through semantic context-

aware masking and inpainting. AS-ADS Score: 5.0

	● Multi-sensor guard (Han et al. 2024)Real-Time: 1.0 (8 ms fusion)
	● Adaptability: 1.0 (97.3% cross-modal)
	● Interpretability: 0.5 (Consistency reports)
	● Efficiency: 1.0 (4.2W SoC)Method: Ensures cross-sensor consistency for robust auto-

motive perception. AS-ADS Score: 4.375

	● Physics-consistency check (Yu et al. 2024)Real-Time: 1.0 (9 ms checks)
	● Adaptability: 1.0 (94% cross-domain)
	● Interpretability: 0.5 (Violation scores)
	● Efficiency: 1.0 (3% CPU boost)Method: Verifies physical plausibility of sensor inputs 

through kinematic checks. AS-ADS Score: 4.375

	● Certified patch defense (Xiang et al. 2022)Real-Time: 1.0 (18 ms masking)
	● Adaptability: 1.0 (83.9% certified)
	● Interpretability: 1.0 (Mask proofs)
	● Efficiency: 0.5 (45.1 mAP)Method: Provides certified robustness through double-

masking with formal guarantees. AS-ADS Score: 4.375

	● Formal control certification (Yang et al. 2023)Real-Time: 1.0 (22 ms certification)
	● Adaptability: 1.0 (Unseen perturbations)
	● Interpretability: 0.5 (Stability margins)
	● Efficiency: 0.5 (35% overhead)Method: Certifies control stability under adversarial 

perturbations via Lyapunov analysis. AS-ADS Score: 3.75

	● Demasked segmentation (Zhang et al. 2022c)Real-Time: 1.0 (27 ms inference)
	● Adaptability: 1.0 (89% cross-task)
	● Interpretability: 0.5 (Confidence maps)
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	● Efficiency: 0.5 (8.2GB VRAM)Method: Certifiably robust semantic segmentation 
through masked smoothing. AS-ADS Score: 3.75

	● Patch detection-completion (Liu et al. 2022)Real-Time: 0.5 (143 ms pipeline)
	● Adaptability: 1.0 (91% patches)
	● Interpretability: 1.0 (Completion vis)
	● Efficiency: 0.5 (6.3W edge)Method: Jointly detects and completes adversarial patches 

in object detection. AS-ADS Score: 3.75

	● Aerial object defense (Chen and Chu 2023)Real-Time: 0.5 (77 ms processing)
	● Adaptability: 0.5 (68% robustness)
	● Interpretability: 0.5 (Region highlighting)
	● Efficiency: 0.5 (4.8GB VRAM)Method: Hardens aerial detection against adversarial 

object injections. AS-ADS Score: 2.5

	● LiDAR robustness scaling (Lu and Radha 2023)Real-Time: 1.0 (14 ms processing)
	● Adaptability: 1.0 (97% cross-sensor)
	● Interpretability: 0.5 (Saliency maps)
	● Efficiency: 1.0 (2.1W LiDAR)Method: Scales adversarial robustness for LiDAR detec-

tion through density-aware processing. AS-ADS Score: 4.375

	● Road sign defense (Shibly et al. 2023)Real-Time: 0.5 (89 ms ADAS)
	● Adaptability: 0.5 (73% robustness)
	● Interpretability: 0.5 (Attention maps)
	● Efficiency: 0.5 (11W power)Method: Protects road sign recognition through spatial at-

tention hardening. AS-ADS Score: 2.5

	● Diffusion purification (Nie et al. 2022)Real-Time: 0.25 (2.3s/image)
	● Adaptability: 0.5 (68% purification)
	● Interpretability: 0.5 (Process vis)
	● Efficiency: 0.25 (24GB VRAM)Method: Purifies inputs through multi-step diffusion 

denoising. AS-ADS Score: 1.875

	● Trajectory prediction hardening (Zhang et al. 2022b)Real-Time: 0.5 (33 ms prediction)
	● Adaptability: 0.5 (65% robustness)
	● Interpretability: 0.5 (Uncertainty bounds)
	● Efficiency: 0.5 (8.7GB model)Method: Improves trajectory prediction robustness 

through uncertainty-aware training. AS-ADS Score: 2.5

	● Dynamic 3D modeling (Wang et al. 2024b)Real-Time: 1.0 (12 ms modeling)
	● Adaptability: 1.0 (96% cross-modal)
	● Interpretability: 0.5 (Consistency reports)
	● Efficiency: 1.0 (3.2W edge)Method: Enables robust perception through dynamic neural 

feature modeling. AS-ADS Score: 4.375

See Tables 11 and 12.
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Type Mechanism Description & 
advantages

Limitations References

Proactive Adversarial 
Training

Includes adver-
sarial samples 
in training; 
improves model 
robustness

High 
compute 
cost; lim-
ited to known 
attacks

Goodfellow et al. (2014); Madry et al. 
(2019); Tramèr and Boneh (2019); 
Wong et al. (2020); Tramèr et al. 
(2017); Rozsa et al. (2016); Chen and 
Lee (2021); Shen et al. (2021); Xie 
et al. (2019); Wang et al. (2024a)

Proactive Input 
Pre-Processing

Applies resizing, 
smoothing or 
augmentation; 
reduces perturba-
tion impact

May distort 
clean inputs; 
less effective 
on adaptive 
attacks

Xie et al. (2017a); Liao et al. (2018); Li 
et al. (2024a); Shu et al. (2021); Reyes-
Amezcua et al. (2024); Naseer et al. 
(2018); Hu et al. (2023b); Zhang et al. 
(2024); Shibly et al. (2023); Nie et al. 
(2022); Zhang et al. (2022b); Wang 
et al. (2024b); Lou et al. (2023)

Proactive Model Ensemble Combines 
multiple models’ 
outputs; diversi-
fies weaknesses

Higher infer-
ence latency; 
greater re-
source use

Xie et al. (2017b); Engstrom et al. 
(2019); Liao et al. (2018); Xu et al. 
(2017); Bhagoji et al. (2017); Bui et al. 
(2021); Tramèr et al. (2017); Deng and 
Mu (2023); Mani et al. (2019); Lu et al. 
(2023); (2023); Chen et al. (2024a); 
Huang et al. (2021); Zhao et al. (2024b)

Proactive Model 
Regularization

Adds constraints 
or penalties 
during train-
ing; improves 
generalization

May reduce 
clean accu-
racy; limited 
adversarial 
gains

Szegedy et al. (2013); Kannan et al. 
(2018); Drucker and Cun (1992); Ross 
and Doshi-Velez (2018)

Proactive Model 
Distillation

Uses soft-
label transfer to 
a smaller model; 
enhances certain 
robustness

Distilled 
model un-
derperforms 
on clean 
data; narrow 
defense scope

Hinton et al. (2015); Papernot et al. 
(2016c); Carlini and Wagner (2017b); 
Goldblum et al. (2020); Costa et al. 
(2024)

Proactive Provable 
Defenses

Leverages formal 
verification to 
certify robustness 
bounds

Very high 
compute; 
limited 
scalability to 
large models

Ehlers (2017); Katz et al. (2017); 
Tjeng et al. (2017); Raghunathan et al. 
(2018); Cohen et al. (2019); King 
and Wang (2019); Hong et al. (2024); 
Lecuyer et al. (2019)

Proactive Certification & 
Verification

Applies formal 
methods to verify 
model resilience; 
builds trust

Computation-
ally demand-
ing; may 
not reflect 
real-world 
inputs

Gowal et al. (2018); Tjeng et al. 
(2017); Muravev and Petiushko (2022); 
Lecuyer et al. (2019); Xiang et al. 
(2022); Yang et al. (2023); Zhang et al. 
(2022c)

Reactive Detection-Based Flags or rejects 
suspicious inputs 
via statistical 
tests or auxiliary 
models

False posi-
tives; attacker 
can evade 
detection

Guo et al. (2019a); Angelov and Soares 
(2021); Goodfellow et al. (2014); Car-
lini and Wagner (2017a); Grosse et al. 
(2017); Feinman et al. (2017); Xu et al. 
(2017); Gupta et al. (2020); Sabokrou 
et al. (2024); Soares et al. (2022); Gong 
et al. (2023); Abdu-Aguye et al. (2020); 
Hussain and Hong (2023); Li et al. 
(2024b); (2023); Yu et al. (2024); Liu 
et al. (2022); Chen and Chu (2023); Lu 
and Radha (2023)

Table 11  Summary and classification of adversarial defense mechanisms
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Type Mechanism Description & 
advantages

Limitations References

Reactive Denoising & 
Reconstruction

Uses autoen-
coders/GANs 
to remove 
perturbations; 
reconstructs clean 
inputs

Possible 
information 
loss; imper-
fect recovery

Meng and Chen (2017); Vincent et al. 
(2008); Lempitsky et al. (2018); Liao 
et al. (2018); Samangouei et al. (2018); 
(2018)

Unified Unified Defense 
Frameworks

Integrates 
detection, noise 
reduction, and 
novel-class iden-
tification in one 
pipeline; adaptive 
to known and 
unknown attacks

Moderate 
compute 
overhead; 
complex 
integration; 
limited large-
scale testing

Pellicer et al. (2024b); Du et al. (2018); 
Freitas et al. (2020); Cao et al. (2024); 
Dash et al. (2024); Tarchoun et al. 
(2023); Jing et al. (2024); Han et al. 
(2024); Yu et al. (2024)

Table 11  (continued) 

Dataset 
(References)

Domain Scenario(s) Relevance 
to AS

Use

MNIST Lecun 
et al. (1998)

Handwritten 
digits

Baseline testing, digital adver-
sarial examples

Low Testing classifier 
vulnerability

CIFAR-
10 Krizhevsky 

(2009)

Small objects, 
digital images

Digital adversarial attacks, classi-
fier benchmarks

Low Small-scale 
adversarial 
robustness

ImageNet Deng 
et al. (2009)

Large-scale 
digital images

Digital adversarial attacks, 
corruptions

Moderate Pretraining, digi-
tal attack transfer, 
accuracy drop

ImageNet-
P Hendrycks 
et al. (2021)

Perturbation-aug-
mented ImageNet

Corruptions, robustness 
evaluation

Moderate Benchmark for 
perturbation 
robustness

COCO, 
xView Liu 

et al. (2022)

Object detection Adversarial patch attacks, digital 
detection

Moderate mAP degradation 
under localized 
attacks

AD-
E20K Zhang 
et al. (2022c)

Scene segmenta-
tion (digital)

Certified patch detection, 
segmentation

Moderate Certified ac-
curacy, visual 
overlap

DOTA Xia 
et al. (2018)

Aerial images, 
object detection

Patch attacks, adversarial 
detection

High UAV surveillance 
robustness

Mapillary Traf-
fic Sign Poggi 
and Mattoccia 

(2017)

Real-world traffic 
scenes

Physical adversarial attacks 
(signs)

High Traffic sign 
robustness, AV 
testing

Robust-
Bench Croce 
et al. (2020)

Digital, standard-
ized benchmark

Digital adversarial attacks (vari-
ous datasets)

High Model bench-
marking for 
adversarial 
robustness

Table 12  Comparative overview of adversarial robustness datasets/platforms relevant to autonomous sys-
tems, including simulation tools and real-world data
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Dataset 
(References)

Domain Scenario(s) Relevance 
to AS

Use

SafeBench Xu 
et al. (2022)

Simulation 
(CARLA)

Adversarial scenarios, hostile 
agents (vehicles/pedestrians)

High Closed-loop AV 
safety, collision 
rate, completion, 
rule violation

CARLA-
GeAR Nesti 
et al. (2022)

Simulation 
(CARLA)

Physically-realizable patches on 
vehicles, adversarial scenarios

High Multi-task driving 
(segmentation, 
detection), mIoU, 
mAP, depth error

Robust-
E2E Jiang et al. 

(2024)

Simulation 
(CARLA), E2E 

driving

White-box input/feature perturba-
tions, corruptions

High Steering error, 
lane keeping, 
success rate under 
attack

DCI Data-
set Zhang et al. 

(2023)

Simulation + 
rendering, vehicle 

detection

Physical patches, weather/angle 
variations

High mAP drop, detec-
tion under physi-
cal attacks

DD-Robust-
Bench Wu 

et al. (2025)

Digital dataset 
distillation

Digital adversarial attacks, distil-
lation robustness

Moderate Robustness of 
distilled datasets

Car Hack-
ing Kang et al. 

(2021)

Real (CAN logs) Spoofed/malicious CAN bus 
messages

High In-vehicle intru-
sion detection, 
false alarm rate

V2X-Sim Li 
et al. (2023); 
Zhao et al. 

(2024b)

Simulation 
(LiDAR/V2X)

LiDAR spoofing, anomaly injec-
tion, cooperative attacks

High Detection 
rate, anomaly 
precision/recall

KITTI-Adv/
Blind, STF Lou 

et al. (2023)

Real+Synth, sen-
sor fusion

Sensor blinding, vision fusion, 
uncertainty estimation

High mIoU, mAP 
under blinding or 
fusion attacks

DAIR-
V2X Zhao 

et al. (2024b)

Real-world coop-
erative AV

Malicious contributor, V2X patch 
attacks

High Detection ac-
curacy for V2X 
fusion, anomaly 
detection

Google Street 
View Etim and 
Szefer (2024)

Real images, 
street scenes

Time-inconsistent, physical 
perturbations

Moderate–
High

Historical adver-
sarial analysis, 
sign recogni-
tion, detection 
accuracy

Table 12  (continued) 
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