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Abstract 

  

 

Molecular electronics is a valuable tool for studying nanoscale thermoelectricity and discover

ing new organic thermoelectric materials that are both low-cost and environmentally friendly. 

This thesis describes the theoretical methods used to support this procedure, beginning with 

chapters 2 and 3, respectively. I have described the essential equations and methodologies 

that drive my work, such as the Schrodinger equation, density functional theory (DFT), and 

the SIESTA programs, which is in charge of implementing DFT and solving the underlying 

equations. In addition, I explain the single particle transport theory, which is based on the 

Hamiltonian and Green's functions, and provide some examples of how it might be applied. 

 

 Chapter 4. Therefore, I investigated the transport characteristics of a HATNA series of 

single-molecule junctions, which includes molecules that, upon reduction by hydrogen, 

change between high and low conductance states, at least in the SAMs.This dynamic 

molecular switch can supply all basic logic gates due to its time-domain and voltage-

dependent plasticity, which mimics synaptic behaviour and Pavlovian learning. 

 

Chapter 5. This chapter covers the transport features of stable organic radicals for electrical 

devices, which are caused by their half-filled orbitals approaching Fermi energy. Also, 

observe the systematic changes that occur when the hydrogen is removed from the OH 

groups to generate radicals, and how this affects electrical conductivity.  
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Chapter 1 

 

 1.1 Thermopower and Molecular Electronics 

 Molecular electronics is the study of molecular building blocks used to create electrical 

components or devices [1]. These electronic elements, such as self-assembled monolayer 

(SAM) [2] and single-molecule [3] junctions, have the potential to deliver: logic gates [4], 

sensors [5,6], memory [7], and thermoelectric energy with ultralow power requirements and a 

device footprint of less than 10nm. They are also interesting a testbeds for room-temperature 

quantum features on a molecular scale, such as quantum interference [8] and 

thermoelectricity [9, 10]. Aviram and Ratner suggested the first molecular rectifier back in 

1974 [11]. Since then a large number of molecules have been studied by changing their 

chemical structure, some of which function as fundamental electrical elementary devices, 

such as rectifiers [12], conducting wires [13-14], and negative differential resistance devices 

[15]. Molecular electronics faces crucial difficulties, such wiring molecules to electrodes 

using specific intermolecular interactions to create molecular devices. As a result, a complete 

understanding of electron transport between nearby molecules is required. 

  

 This thesis will primarily use theoretical and experimental methods to investigate 

electrode/molecule/electrode systems. These systems can be experimentally evaluated using 

two types of equipment: scanning tunnelling microscopy break junctions (STM-BJ) [16] and 

mechanically controllable break junctions (MCBJ) [17]. Such techniques have been utilised 

and improved to contact single molecules, graphene-based junctions [18], and silicone-based 

junctions [19]. On the other hand, structural problems in 2D hexagonal materials, as predicted 

several years ago [20], indicate that their application as electrodes is still in its infancy. For 

some time now, gold break junctions have been the preferred technique of contact. Because 
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of these limits, many methods of controlling electron transport have been created, including 

mechanical gating [21] and electrochemical gating [22]. 

Single-molecule electronic devices have many problems, which are summarised as follows: 

1- The molecules used in the study had a length of about 1-2 nm. Furthermore, electrodes 

separated by 1-2 nm, which are usually made of noble metals, are beyond the capabilities of 

traditional top-down lithographic processes. 

 2- The molecule's small dimensions are investigated, as direct manipulation of the molecule 

in the nanogap is usually impossible. To position the molecule between electrodes, a 

chemical contact between the molecule and the electrode is required. 

 3- Because electrodes are significantly larger than molecules, it is difficult to place only one 

molecule in each functional device. 

In addition to these three issues, there are several other key challenges, such as device 

stability, homogeneity, yield, and scalability. 

 Additionally, there has been an important improvement in our knowledge of the 

thermoelectrical characteristics of single-molecule junctions [23], partly due to the 

observation of high Seebeck coefficient S of order 161𝜇VK−1) for PEDOT: PSS organic 

films [ 24]. The sign of the S in fullerenes and nanotubes has recently been discovered to vary 

due to pressure, strain, and intermolecular interactions [25]. Many of the quantum interaction 

effects discovered and expected in single-molecule junctions are now being scaled up to self-

assembled monolayers (SAM) [26–27], ending in the development of novel thin-film 

materials with room-temperature quantum effects affecting transport characteristics. As a 

result, these achievements suggest that the area of single-molecule electronics has a bright 

future in generating novel functional materials. As examples, references [58-59] provide 

recent investigations into the Seebeck coefficient S of anthracene molecules.  
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 The Seebeck coefficient S for anthracene molecules (with 2SMe anchor groups) and 

connectivities 9,10, and 1,5 were negative with values -20 and -33.0 
𝜇𝑉

𝐾
, respectively. This 

group measured S for the same molecule, but with different anchors (ie with 2SAc anchor 

groups), with the same connectivities and obtained a positive 𝑆 + 12.5 and +16.3 
𝜇𝑉

𝐾
, 

respectively [26-27]. 

 SAM is a significant part of molecular-scale electronics. Currently, there are three major 

global designs for generating ensemble molecular junctions for large-area electrical 

measurements: First, metal leads can be formed directly using electron beam/thermal 

evaporation or electrochemical deposition. Secondly, electrically conducting 

polymers/nanomaterials can be used as electrodes and thirdly liquid metals can be used as 

electrode materials. 

 To create ensemble molecular connections utilising several cutting-edge techniques, there 

are multiple techniques available, including liquid metal contact, lift-and-float, nanopore and 

nanowell, on-wire lithography, nanoimprint lithography, crossbar or crosswire, self-aligned 

lithography, buffer interlayer-based junctions, and on-edge molecular junctions. 

 In this section, we try to show a simple method for calculating the value of electrical 

conductance that results from constructive quantum interference in molecules. When a single 

molecule is attached to metallic leads, electrons passing through the molecule from one 

electrode to the other can remain phase-coherent even at room temperature [28, 29]. As a 

result, there has been a great deal of discussion of quantum interference (QI). This QI can be 

used to determining the electrical conductance of individual molecules [30-31]. Thus, both 

experiment and theory have focused on describing the conditions for the formation of two 

distinct examples of QI, namely constructive or destructive interference. Constructive 

quantum interference (CQI) happens when the delocalized energy level of the molecule 

coincides. In contrast, destructive quantum interference (DQI) happens when it coincides 
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with the energy of a bound state on a pendant moiety [32, 33]. Because the electrode Fermi 

energy is often located in the HOMO and LUMO (H-L) gap, molecules inside a junction 

rarely show CQI resonances unless the energy levels are controlled by electrostatic, 

electrochemical, or mechanical gating. As a result, research have considered the two 

conditions CQI and DQI as they are specified or placed at the core of the H-L gap [31,34-37].  

1.2 Magic ratio theory 

One method of describing the connectivity dependence of QI is to utilise a magic ratio rule 

(MRR) based on ‘magic number’ tables. When one electrode is connected to site 𝑖 and the 

other to site 𝑖′ of the same molecule, the molecule is assigned the "magic integer" 𝑀𝑖𝑖′. Here I 

shall give a comprehensive introduction to this theory, which can help to guide the synthesis 

of new molecules.  Magic integers (MIs) can represent the complexity of interference patterns 

produced by electrons at the centre of the HOMO-LUMO gap. Magic ratio rules (MRR) can 

also be used to calculate the conductance ratio. MRR says that "the ratio of conductances of 

two molecules is equal to the squares of the ratios of their magic integers." When analysing 

the conductances of the aromatic core but using various contacts, the MI's signals are 

irrelevant. The MRR can be regarded as an exact formula for conductance ratios of tight-

binding representations of molecules; this is valid in the weak coupling limit, when the Fermi 

energy is placed between the H-L gap. In this situation, the magnitude of the H-L gap has no 

effect, and it is unaffected by contact asymmetries between the leads and the molecule. The 

MRR is particularly simple for a tight-binding, bipartite lattice of similar sites with identical 

couplings, when the 𝐸𝐹  is at the centre of the H-L gap and the number of odd sites matches 

the number of even sites. In this situation, a simple tight-binding Hamiltonian system uses -1 

for nearest neighbour couplings and zero for on-site energies. 

 In general, the mid-gap concept describes how the transmission coefficient at the gap centre 

is calculated when the energy of electrons travelling through the core molecule coincides 
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with the middle of the HOMO-LUMO gap. This indicates how important and valuable it is to 

first consider connectivity when fabricating single-molecule junctions with good electrical 

characteristics. In the case of binding molecules to electrodes, high conductivity is preferred. 

 However, a low conductance is necessary to prevent leakage currents when attached to an 

electrostatic gate. The MRR shows that connectivities with both high and low MIs can be 

generated using the same molecule. 

The analysis of the complete magic number table for a molecular core helps us to figure out 

the impact of connection on electrical conductance. As a result, the electrical conductance is 

proportional to the item in the magic number table denoted by 𝑖. The following is the most 

basic application of the magic ratio theory, based on the work Magic Ratios for 

Connectivities-Driven Electrical Conductance of Graphene-like Molecule by Y. Geng and 

others (9 authors) [38]. 

 Example 1: We want to use the magic ratio theory on a bipartite lattice (benzene ring) with 

six atoms [38]. To apply this concept, two connectivities must be selected in the same  

molecule, such as (1,4) and (1,2) in Figure 1.1. 

 

 Figure 1.1 shows a simple bipartite lattice, such as benzene, together with the size of its 

magic number. (𝟏, 𝟐) ): first connectivity; (𝟏, 𝟒) the second connectivity 
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Table 1.1: Magic numbers for the benzene ring. 

  

 

  

 

 

 

  

   

  

 

 

 

 

 

 

 

  

 

   Table 1.2: connectivity table  

   

 

Table 1.2 shows that the electrical conductance is proportional to(𝑀𝑖𝑗)
2
, where 𝑖 and 𝑗   

represent the entrance and exit points.  

 

In our example, 𝑖 and 𝑗 are (1,2) for the first connectivity and (1,3) for the second 

connectivity. As a result, the magic ratio rule (MMR) for the two connectivities (1,2) and 

(1,4) predicts that the ratio of the conductance 
𝐺1,2

𝐺1,3
 corresponding to the two connectivities 

can be calculated as: 

  

  MRR =
𝐺1,2

𝐺1,3
=

(1)2

(0)2
= ∞. In practice, this means that the MRR predicts that 𝐺1,2 ≫ 𝐺1,3. 

 1 3 5 2 4 6 

1 0 0 0 1 -1 1 

3 0 0 0 1 1 -1 

5 0 0 0 -1 1 1 

2 1 1 -1 0 0 0 

4 -1 1 1 0 0 0 

6 1 -1 1 0 0 0 

C= 

M= 

 

 1 3 5 2 4 6 

1 0 0 0 1 0 1 

3 0 0 0 1 1 0 

5 0 0 0 0 1 1 

2 1 1 0 0 0 0 

4 0 1 1 0 0 0 

6 1 0 1 0 0 0 
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 The following example compares the theory and experiment with the magic ratio theory 

described in this publication [38]. Here, an anthanthrene core has been chosen for 

investigation. As shown in Figure 1.2, the two connectivities are (𝟏, 𝟓′) and (𝟕, 𝟐′) in this 

example. 

 

  

   

  

  

 

 

 

Figure 1.2: Representation of the researched Anthanthrene core. There are two connectivities 

for 1: (1,5'-Red) and 2: (2',7'-Black). 

  

 

 

  

 

 

 

 

 

 

 

 

 

 

 1′ 2′ 3’ 4’ 5’ 6’ 7’ 8′ 9′ 10′ 11′ 

1 -9 7 -4 4 -1 1 -1 1 -1 2 -3 

2 -1 -7 4 -4 1 -1 1 -1 1 -2 3 

3 1 -3 -4 4 -1 1 -1 1 -1 2 -3 

4 -1 3 -6 -4 1 -1 1 -1 1 -2 3 

5 1 -3 6 -6 -1 1 -1 1 -1 2 -3 

7 3 -9 8 -8 7 -7 -3 3 -3 6 1 

8 -6 8 -6 6 -4 4 -4 -6 6 -2 -2 

9 6 -8 6 -6 4 -4 4 -4 -6 2 2 

10 3 1 -2 2 -3 3 -3 3 -3 -4 1 

11 -2 6 -2 2 2 -2 2 -2 2 -4 4 

M= 
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Table 1.3 shows the magic numbers for the anthanthrene core. 

 

 

From the above table, the MRR predicts the following conductance ratio corresponding to the 

two connectivities 

 

MRR =
𝐺7,2′

𝐺1,5′
=
(−9)2

(−1)2
= 𝟖𝟏, ( Theoretical value ) 

 

 

Experimentally, it was found that [38]  

𝐺7,2′

𝐺1,5′
=
10−4.8

10−6.7
= 𝟕𝟗 

Which is in remarkable agreement with the MRR prediction. 

 

 

 Magic ratio principles for the symmetric anthracene molecule. 

 

 In the following example, I discuss the magic ratio concept for an anthracene core, which 

were measured in [26-27]. The same molecule is used, with two different connectivities. 

denoted (𝟐, 𝟔)and (𝟑′, 7), as shown in Figure 1.3. 
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Figure 1.3 shows a representation of the analysed anthracene core. Two connectivities: 

(2′, 6) (black), and (3, 7′) (red). 

Three fused benzene rings make up the polycyclic aromatic hydrocarbon known as the 

anthracene core, which is seen in Figure 1.3. Two categories of connectivities within the core 

can be seen in the figure; one is indicated in red and the other in black. Although the actual 

picture is not shown here, it usually shows the locations and paths of bonds in the chemical 

system, emphasising the distinct patterns of connectedness. 

 

 

 

 

 

  

 

C= 
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 𝟏 𝟐 𝟑 𝟒 𝟓 𝟔 𝟕 

𝟏′ 1 1 0 0 0 0 0 

  2’ 0 1 1 0 0 0 0 

  3’ 0 0 1 1 0 0 0 

 4’ 0 0 0 1 1 0 0 

𝟓′ 0 0 1 0 1 1 0 

𝟔′ 0 1 0 0 0 1 1 

𝟕′ 0 0 0 0 0 0 1 

 

 Table 1.4: The connectivity table 𝐶𝑖𝑗 for the anthracene core (C10H8). 

 

The connectivity pattern of the anthracene core appears in Table 1.4, indicating which atoms 

are connected to one another. In order to help understand the molecular structure and the 

connections between the atoms in the anthracene, the table uses '1' to denote a bond and '0' 

for no link. 

 

 𝟏 𝟐 𝟑 𝟒 𝟓 𝟔 𝟕 

𝟏′ -3 2 -1 1 -1 1 -1 

  2’ -1 -2 1 -1 1 -1 1 

𝟑′ 1 -2 -1 1 -1 1 -1 

𝟒′ -1 2 -3 -1 1 -1 1 

𝟓′ 1 -2 3 -3 -1 1 -1 

𝟔′ -2 4 -2 2 -2 -2 2 

𝟕′ 3 -2 1 -1 1 -1 -3 

  

M= 
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Table 1.5: The magic number table 𝑀𝑖𝑗 for the anthracene core (C10H8).  

 

In this case, the MRR predicts the following conductance ratio 

 

MRR =
𝐺2′,6
𝐺3′,7

=
(4)2

(1)2
= 16.

 

For comparison with experiment, the table below shows experimental results for two studies 

of anthracene, with two different anchor groups  

 

 

 

 

 

 

 

Anthracene 

anchor 

Theory 

(DFT) 

𝐺

𝐺0
 

DFT 

Theory 

ratios 

Experiment 

𝐺

𝐺0
 

Experimen 

tal ratios 
Ref 

2 SMe(1, 

9) 
1.66e − 4 

15.8 
7.01e − 5 

10.19 

[26,27] 

2 SMe(1, 

5) 
1.05e − 5 6.88 e-6 

2 SAc (1,9) 1.59e − 4 

15.9 

1.28e − 4 

14.22 

2SAc (1,5) 1e − 5 9 e-6 

2 Py (1,9) 0.9e − 4 

15.7 

  

2 Py (1,5) 0.57 e-5   

  

 Table 1.6 shows the magic ratio from the earlier anthracene study. 

  

 

 



 24 

1.3 Thesis Outline 

 In this thesis, the theoretical studies introduce the electrical properties of two-terminal 

molecular junctions, with gold electrodes, which generate gold |molecule| gold structures. 

Theoretical methods include density functional theory (DFT) and tight binding models 

(TBMs).  Thus, Chapter 2 presents theoretical concepts of DFT and the implementation used 

in this work, primarily via the SIESTA code. The second tool is the quantum transporter code 

GOLLUM. In Chapter 3, I provide solutions to Green's functions for infinite and semi-

infinite 1D chains, as well as the transmission coefficient equations used as the theoretical 

basis for this code. The charge transport at the single-molecule level is also studied.  

 Recently, there has been a lot of interest in using quantum interference effects to speed up 

charge transmission. In Chapter 4, I study the hexaazatrinaphthylene (HATNA) molecules, 

which has been shown to have memristive properties. However, the mechanism involved is 

unknown and therefore to elucidate the origin of memristive switching events, I studied the 

transport properties of a series of HATNA molecules. In Chapter 5, I study the influence of 

quantum interference, which includes both constructive and destructive quantum interference, 

providing another dimension to manipulating electron transport through molecules. As 

recognised by the MRR, depending on the connection, molecules exhibiting CQI can have 

different conductance inside the same molecule. This chapter discusses two different CQIs 

based on thiophene dimers.  

 

 

 

  

 

 



 25 

1.4 Bibliography 

  

[1] Scheer, E., ‘Visions for a molecular future’, Nature Nanotechnology, vol. 2013, pp. 

385–389, Jun. 2013, doi: 10.1038/nnano.2013.101. 

[2] J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo, and G. M. Whitesides, ‘Self-

assembled monolayers of thiolates on metals as a form of nanotechnology’, Chem Rev, vol. 

105, no. 4, pp. 1103–1169, Apr. 2005, doi: 10.1021/cr0300789. 

 [3] C. M. Finch, S. Sirichantaropass, S. W. Bailey, I. M. Grace, V. M. Garcia-Suarez, C. 

J. Lambert, ataraman, ‘Conformation dependence of molecular conductance: chemistry 

versus geometry ’, J. Phys. Condens. Matt. vol. 20 022203, Dec. 2008,  doi: 10.1088/0953-

8984/20/02/022203 

[4] S. Sangtarash, C .Huang, H. Sadeghi, G. Sorohhov,J. Hauser, T. Wandlowski, and 

C.J. Lambert, ‘Searching the Hearts of Graphene-like Molecules for Simplicity, Sensitivity, 

and Logic’, J Am Chem Soc, vol. 137, no. 35, pp. 11425–11431, Sep. 2015, 

 [5] H. Sadeghi L. Algaragholy, T.Pope, S. Bailey, D. Visontai, D. Manrique, and C.J. 

Lambert, ‘Graphene Sculpturene Nanopores for DNA Nucleobase Sensing’, J. Phys. Chem. 

B, vol. 118, no. 24, pp. 6908–6914, Jun. 2014, doi: 10.1021/jp5034917. 

 [6] H. Sadeghi, S. Bailey, and C. J. Lambert, ‘Silicene-based DNA nucleobase sensing’, 

Applied Physics Letters, vol. 104, no. 10, p. 103104, Mar. 2014, doi: 10.1063/1.4868123. 

[7] T. Prodromakis, C. Toumazou, and L. Chua, ‘Two centuries of memristors’, Nature 

materials, vol. 11, pp. 478–81, May 2012, doi: 10.1038/nmat3338. 

[8] C. J. Lambert, ‘Basic concepts of quantum interference and electron transport in 

single-molecule electronics’, Chem. Soc. Rev., vol. 44, no. 4, pp. 875–888, Feb. 2015, doi: 

10.1039/C4CS00203B. 

 [9] H. Sadeghi, S. Sangtarash, and C. J. Lambert, ‘Oligoyne Molecular Junctions for 

Efficient Room Temperature Thermoelectric Power Generation’, Nano Lett., vol. 15, no. 11, 

pp. 7467–7472, Nov. 2015, doi: 10.1021/acs.nanolett.5b03033. 

 [10] H. Sadeghi, S. Sangtarash, and C. J. Lambert, ‘Enhanced Thermoelectric Efficiency 

of Porous Silicene Nanoribbons’, Sci Rep, vol. 5, no. 1, p. 9514, Mar. 2015, doi: 

10.1038/srep09514. 

 [11] A. Aviram and M. A. Ratner, ‘Molecular rectifiers’, Chemical Physics Letters, vol. 

29, no. 2, pp. 277–283, Nov. 1974, doi: 10.1016/0009-2614(74)85031-1. 

[12] A. Batra P. Darancet, Q. Cen, J.S., Meisner, J.R. Widawsky, J.B. Neaton, and L. 

Venkataraman., ‘Tuning rectification in single-molecular diodes’, Nano Lett, vol. 13, no. 12, 

pp. 6233–6237, 2013, doi: 10.1021/nl403698m. 



 26 

 [13] L. Lafferentz, F. Ample, H. Yu, S. Hecht, C. Joachim, and L. Grill, ‘Conductance of a 

Single Conjugated Polymer as a Continuous Function of Its Length’, Science, vol. 323, no. 

5918, pp. 1193–1197, Feb. 2009, doi: 10.1126/science.1168255. 

 [14]  W. B. Davis, W. A. Svec, M. A. Ratner, and M. R. Wasielewski, ‘Molecular-wire 

behaviour in p-phenylenevinylene oligomers’, Nature, vol. 396, no. 6706, pp. 60–63, Nov. 

1998, doi: 10.1038/23912. 

 [15]  J. Chen, W. Wang, M. A. Reed, A. M. Rawlett, D. W. Price, and J. M. Tour, ‘Room-

temperature negative differential resistance in nanoscale molecular junctions’, Applied 

Physics Letters, vol. 77, no. 8, pp. 1224–1226, Aug. 2000, doi: 10.1063/1.1289650. 

 [16] C. Li, I. Pobelov, T. Wandlowski, A. Bagrets, A. Arnold, and F. Evers, ‘Charge 

transport in single Au / alkanedithiol / Au junctions: coordination geometries and 

conformational degrees of freedom’, J Am Chem Soc, vol. 130, no. 1, pp. 318–326, Jan. 2008, 

doi: 10.1021/ja0762386. 

[17]  W. Hong,  D.Z.Marique, P. Moreno-Garcia, M. Gulcur, A.Mishchenko, C.J. Lambert 

and T. Wandlowski,  ‘Single molecular conductance of tolanes: experimental and theoretical 

study on the junction evolution dependent on the anchoring group’, J Am Chem Soc, vol. 134, 

no. 4, pp. 2292–2304, Feb. 2012, doi: 10.1021/ja209844r. 

 [18] H. Sadeghi, S. Sangtarash, and C. J. Lambert, ‘Enhancing the thermoelectric figure of 

merit in engineered graphene nanoribbons’, Beilstein J. Nanotechnol., vol. 6, no. 1, pp. 1176–

1182, May 2015, doi: 10.3762/bjnano.6.119. 

 [19] H. Sadeghi, S. Bailey, and C. J. Lambert, ‘Silicene-based DNA nucleobase sensing’, 

Applied Physics Letters, vol. 104, no. 10, p. 103104, Mar. 2014, doi: 10.1063/1.4868123. 

 [20] J. Warner, ‘Detailed Atomic Structure of Defects in 2D Materials: From Graphene to 

Transition Metal Dichalcogenides’, Microscopy and Microanalysis, vol. 21, pp. 573–574, 

Aug. 2015, doi: 10.1017/S1431927615003669. 

 [21]  L. Rincón-García, A. K. Ismael, C. Evangeli, I. Grace, G. Rubio-Bollinger, K. 

Porfyrakis, and C.J. Lambert, ‘Molecular design and control of fullerene-based bi-

thermoelectric materials’, Nature Mater, vol. 15, no. 3, pp. 289–293, Mar. 2016, doi: 

10.1038/nmat4487. 

[22] Y. Li, M. Baghernejad, A. G. Qusiy, D. Zsolt Manrique, G. Zhang, J. Hamill, and C. 

Lambert, ‘Three-State Single-Molecule Naphthalenediimide Switch: Integration of a Pendant 

Redox Unit for Conductance Tuning’, Angew Chem Int Ed Engl, vol. 54, no. 46, pp. 13586–

13589, Nov. 2015, doi: 10.1002/anie.201506458. 

[23] G. Yzambart, L. Rincon-Garcia, A. A. Al-Jobory, A. K. Ismael, G. Rubio-Bollinger, 

C. J. Lambert, and M. R. Bryce,   ‘Thermoelectric Properties of 2,7-Dipyridylfluorene 

Derivatives in Single-Molecule Junctions’, J Phys Chem C Nanomater Interfaces, vol. 122, 

no. 48, pp. 27198–27204, Dec. 2018, doi: 10.1021/acs.jpcc.8b08488. 

[24] N. Massonnet, A. Carella, O. Jaudouin, P. Rannou, G. Laval, C. Celle, and J. P. 

Simonato ‘Improvement of the Seebeck coefficient of PEDOT:PSS by chemical reduction 

combined with a novel method for its transfer using free-standing thin films’, J. Mater. 

Chem. C, vol. 2, no. 7, pp. 1278–1283, Jan. 2014, doi: 10.1039/C3TC31674B. 



 27 

 [25] L. Rincón-García, A. K. Ismael, C. Evangeli, I. Grace, G. Rubio-Bollinger, K. 

Porfyrakis, and C.J. Lambert, ‘Molecular design and control of fullerene-based bi-

thermoelectric materials’, Nature Mater, vol. 15, no. 3, pp. 289–293, Mar. 2016, doi: 

10.1038/nmat4487. 

 [26] X. Wang, T. L. Bennett, A. Ismael, L. A. Wilkinson, J. Hamill, A. J. White, and C.J. 

Lambert,  ‘Scale-Up of Room-Temperature Constructive Quantum Interference from Single 

Molecules to Self-Assembled Molecular-Electronic Films’, J Am Chem Soc, vol. 142, no. 19, 

pp. 8555–8560, May 2020, doi: 10.1021/jacs.9b13578. 

 [27] A. Ismael, X. Wang, T. L. Bennett, L. A.Wilkinson, B. J. Robinson, N. J. Long, and 

C. J. Lambert,   ‘Tuning the thermoelectrical properties of anthracene-based self-assembled 

monolayers’, Chem. Sci., vol. 11, no. 26, pp. 6836–6841, Jul. 2020, doi: 

10.1039/D0SC02193H. 

 [28] G. Sedghi, V. M. Garcia-Suarez, L. J. Esdaile, H. L. Anderson, C. J. Lambert, S. 

Martin and R. J. Nichols,  ‘Long-range electron tunnelling in oligo-porphyrin molecular 

wires’, Nat Nanotechnol, vol. 6, no. 8, pp. 517–523, Jul. 2011, doi: 10.1038/nnano.2011.111. 

 [29] X. Zhao, C. Huang, M. Gulcur, A. S. Batsanov, M. Baghernejad,W. Hong, and T. 

Wandlowski, ‘Oligo (aryleneethynylene)s with Terminal Pyridyl Groups: Synthesis and 

Length Dependence of the Tunneling-to-Hopping Transition of Single-Molecule 

Conductances’, Chem. Mater., vol. 25, no. 21, pp. 4340–4347, Nov. 2013, doi: 

10.1021/cm4029484. 

 [30] H. Sadeghi, J. A. Mol, C. S. Lau, G. A. D. Briggs, J. Warner, and C. J. Lambert, 

‘Conductance enlargement in picoscale electroburnt graphene nanojunctions’, Proceedings of 

the National Academy of Sciences, vol. 112, no. 9, pp. 2658–2663, Mar. 2015, doi: 

10.1073/pnas.1418632112. 

 [31] G. C. Solomon, J. P. Bergfield, C. A. Stafford, and M. A. Ratner, ‘When “small” 

terms matter: Coupled interference features in the transport properties of cross-conjugated 

molecules’, Beilstein J. Nanotechnol., vol. 2, pp. 862–871, Dec. 2011, doi: 

10.3762/bjnano.2.95. 

 [32] J. P. Bergfield, M. A. Solis, and C. A. Stafford, ‘Giant Thermoelectric Effect from 

Transmission Supernodes’, ACS Nano, vol. 4, no. 9, pp. 5314–5320, Sep. 2010, doi: 

10.1021/nn100490g. 

 [33] A. B. Ricks, G. C. Solomon, M. T. Colvin, A. M. Scott, K. Chen, M. A. Ratner, and 

M. R. Wasielewski,  ‘Controlling Electron Transfer in Donor−Bridge−Acceptor Molecules 

Using Cross-Conjugated Bridges’, J. Am. Chem. Soc., vol. 132, no. 43, pp. 15427–15434, 

Nov. 2010, doi: 10.1021/ja107420a. 

 [34] D. Z. Manrique, C. Huang, M. Baghernejad, X. Zhao, O. A. Al-Owaedi, H. Sadeghi, 

and C. J. Lambert,  ‘A quantum circuit rule for interference effects in single-molecule 

electrical junctions’, Nat Commun, vol. 6, no. 1, p. 6389, Mar. 2015, doi: 

10.1038/ncomms7389. 

[35] T. Markussen, J. Schiötz, and K. S. Thygesen, ‘Electrochemical control of quantum 

interference in anthraquinone-based molecular switches’, The Journal of Chemical Physics, 

vol. 132, no. 22, p. 224104, Jun. 2010, doi: 10.1063/1.3451265. 



 28 

 [36] H. Vazquez, R. Skouta, S. Schneebeli, M. Kamenetska, R. Breslow, L. 

Venkataraman, and M. S. Hybertsen, ‘Probing the conductance superposition law in single-

molecule circuits with parallel paths’, Nat Nanotechnol, vol. 7, no. 10, pp. 663–667, Oct. 

2012, doi: 10.1038/nnano.2012.147. 

 [37] S. V. Aradhya, J. S. Meisner, M. Krikorian, S. Ahn, R. Parameswaran, M. L. 

Steigerwald, and L. Venkataraman,  ‘Dissecting contact mechanics from quantum 

interference in single-molecule junctions of stilbene derivatives’, Nano Lett, vol. 12, no. 3, 

pp. 1643–1647, Mar. 2012, doi: 10.1021/nl2045815. 

 [38] Y. Geng, S. Sangtarash, C. Huang, H. Sadeghi, Y. Fu, W. Hong, and S. X. Liu, 

‘Magic ratios for connectivity-driven electrical conductance of graphene-like molecules’, J. 

Am. Chem. Soc., vol. 137, no. 13, pp. 4469–4476, Apr. 2015, doi: 10.1021/jacs.5b00335. 

[39] Y. Li, M. Buerkle, G. Li, A. Rostaman H. Wang, Z. Wang, D. R. Bowder, T. Miyazaki, 

L. Xiang Y. Asai, G. Zhou, and N. Tao, , ‘Gate controlling of quantum interference and direct 

observation of anti-resonances in single molecule charge transport’, Nat Mater, vol. 18, no. 4, 

pp. 357–363, Apr. 2019, doi: 10.1038/s41563-018-0280-5. 

[40] R. Hartle, M. Butzin, O. Rubio- Pons, and M. Thoss,‘Quantum Interference and 

Decoherence in Single-Molecule Junctions: How Vibrations Induce Electrical Current | Phys. 

Rev. Lett.’ Accessed:[Online]. Available: 

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.107.046802 

 

[41] X. Liu, S. Sangtarash, D. Reber, D. Zhang, H. Sadeghi, J. Shi, Z. Y. Xiao, W. Hong, 

C. J. Lambert, and S. X. Liu, ‘Gating of Quantum Interference in Molecular Junctions by 

Heteroatom Substitution’, Angew Chem Int Ed Engl, vol. 56, no. 1, pp. 173–176, Jan. 2017, 

doi: 10.1002/anie.201609051. 

 

[42] R. Miao, H. Xu, M. Skripnik, L. Cui, K. Wang, K. G. L. Pedersen, M. Leijnse, F. 

Pualy, K. Warnmark, E. Meyhofer, P. Reddy, and H. Linke, , ‘Influence of Quantum 

Interference on the Thermoelectric Properties of Molecular Junctions’, Nano Lett, vol. 18, no. 

9, pp. 5666–5672, Sep. 2018, doi: 10.1021/acs.nanolett.8b02207. 

 

[43] R. E. Sparks, V. M. Garcia-Suarez, D. Z. Manrique, C. J. Lambert, Quantum 

Interference in Single Molecule Electronic Systems’. [Online]. Available: 

https://www.researchgate.net/publication/50292233_Quantum_Interference_in_Single_Mole

cule_Electronic_Systems 

 

[44] L. Bi, K. Liang, G. Czap, H. Wang Recent progress in probing atomic and molecular 

quantum coherence with scanning tunneling microscopy’, ResearchGate, May 2025, doi: 

10.1016/j.progsurf.2022.100696. 

 

 [45] S. Gunasekaran, J. E. Greenwald, and L. Venkataraman, ‘Visualizing Quantum 

Interference in Molecular Junctions’, Nano Lett, vol. 20, no. 4, pp. 2843–2848, Apr. 2020, 

doi: 10.1021/acs.nanolett.0c00605. 



 29 

 

Chapter 2  

2.1 Density Functional Theory 

This chapter provides an overview of the mathematical principles underlying density 

functional theory (DFT). Additionally, it introduces the key concepts of the DFT code 

SIESTA, which serves as the foundation for electronic structure calculations in this thesis.  

The first step in studying electronic transport is to obtain and relax the Hamiltonian structure 

of an isolated molecule. The isolated molecule is connected to metallic electrodes for the 

purpose of computing its transport parameters. A detailed explanation of the calculation of 

transport properties is outlined in the following Chapter. 

2.2 Introduction   

DFT is mainly used by chemists and physicists to investigate the ground state of interacting 

many-particle systems such as molecules, atoms, and crystals. It is a computational quantum 

mechanical technique that transforms one of the non-interacting fermions in an effective field 

into a many-body system. Similarly, the electrical properties of many interacting particle 

systems can be described as a function of ground-state density [1, 2]. Walter Kohn received 

the Nobel Prize in Chemistry in 1998, confirming the importance of DFT. He received the 

award for his important contributions to the development of DFT techniques. DFT is an 

accurate method that has been used to numerous molecular structures. In addition, a large 

number of publications on pertinent literature have been published [1-6], providing 

comprehensive explanations of the concepts of density functional theory and its applications. 

Density functional theory (DFT) was first introduced by the Thomas-Fermi model in the 1920s, 

which outlined the basic steps for utilising wave functions to derive density functionality for 

total energy [1, 6-8]. The Almost forty years after Dirac, Hartree, Slater, and Fock's work was 
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published, additional advancements were made to the Thomas Fermi model. The Hohenberg-

Kohn theorems and Kohn-Sham techniques then effectively launched the DFT foundation [1, 

3, 4, 7–11]. The main objective of this chapter is to provide a brief introduction to density 

functional theory as well as an outline of the key mathematical equations used to solve the non-

relativistic many-particles time-independent Schrödinger equation TISE. This is because the 

function of electron density can be used to determine the parameters of a many-electron system. 

This chapter will present the DFT code 'SIESTA,' which has been extensively used as a 

theoretical tool throughout this Ph.D. research to find a technique for structural optimization. 

2.3 The Variational Principle and Schrödinger Equation. 

The time-independent, non-relativistic Schrödinger equation in equation 2.1,  

presents the non-relativistic many-particle system in a methodical way: 

H𝜓𝑖(𝑟1, 𝑟2, … , 𝑟𝑁 , 𝑅⃗⃗1, 𝑅⃗⃗2, … , 𝑅⃗⃗𝑀 = 𝐸𝑖𝜓𝑖(𝑟1, 𝑟2, … , 𝑟𝑁 , 𝑅⃗⃗1, 𝑅⃗⃗2, … , 𝑅⃗⃗𝑀                (2.1) 

 H is the Hamiltonian operator of an N-electronic system, M-nuclei is the particle 

interaction, 𝜓𝑖 is the wave-function of the system's state, and 𝐸𝑖(describes the numerical 

value energy of the state. The Hamiltonian operator (H) is defined as follows: 

= −
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In equation 2.2, i and j represent the N-electrons, n and 𝑛́ indicate a run over the M-nuclei in 

the system, 𝑚e and 𝑚𝑛 represent the electron and nucleus masses, respectively. Furthermore, 

e and 𝑍𝑛  indicate the electron and nuclear charge in the system, respectively, whereas 

𝑟𝑖⃗⃗⃗  and 𝑅⃗⃗𝑛 represent the electron and nuclei positions in the system, respectively. The 

Laplacian operator is mathematically outlined in a Cartesian coordinate 𝛻2 which is given by 

the equation below. 

𝛻𝑖
2 =

𝜕2

𝜕𝑥𝑖
2 +

𝜕2

𝜕𝑦𝑖
2 +

𝜕2

𝜕𝑧𝑖
2 

According to the image provided by Eq. (2.2), the quantity 𝑇𝑒 denotes the kinetic energy of 

electrons, whereas, denotes the kinetic energy of nuclei in the system. Furthermore, the 

following three terms define the Hamiltonian's potential part term 𝑈𝑒𝑛   indicates the 

appealing in the system, there is electrostatic interaction between nuclei and electrons. The 

repulsive parts of the potential are electron- electron (𝑈𝑒𝑒)      and nuclear-nuclear (𝑈𝑛𝑛) [1, 3, 

6, 9, 13]. 

The Born-Oppenheimer approximation, Since the nucleus of an atom contains 99.9% of its 

mass and because the nuclei in the system can be thought of as fixed in comparison to the 

electrons, which is also known as the clamped nuclei approximation, can be used in the 

analysis. 

This means that the nucleus of a hydrogen atom weighs around 1800 times more than the 

electron. If the nuclei of the treated atoms are held stable in the given situation, the resulting 

kinetic energy sums to zero, indicating that they no longer contribute to the whole wave-

function. As a result of the prior assumption, the Hamiltonian expression of the electron 

system lowers the Hamiltonian to a distinct figure, similarly, the electronic Hamiltonian  

H𝑒𝑙𝑒can be represented in a fixed nuclear representation as [1, 3, 6, 13-15]: 
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Where 𝑈𝑛𝑛  is an obtained constant for the system. 

The Schrödinger equation for 'clamped-nuclei' is represented in the above system as:     

H𝑒𝑙𝑒 = −
ℏ2

2𝑚𝑒
∑ ∇𝑖

2𝑁
𝑖=1

⏞        
𝑇𝑒

−
1

4𝜋𝜀𝑜
∑ ∑

1

|𝑟⃗𝑖−𝑅⃗⃗𝑛|
𝑍𝑛𝑒

2𝑀
𝑛=1

𝑁
𝑖=1

⏞                
𝑈𝑒𝑛

+

1

4𝜋𝜀𝑜

1

2
∑ ∑

𝑒2

|𝑟⃗𝑖−𝑟⃗⃗𝑗|

𝑁
𝑖≠𝑗

𝑁
𝑖=1

⏞              
𝑈𝑒𝑒

 +
1

4𝜋𝜀𝑜

1

2
∑ ∑

𝑍𝑛𝑍𝑛′𝑒
2

|𝑅⃗⃗𝑛−𝑅⃗⃗𝑛′|

𝑀
𝑛≠𝑛′

𝑀
𝑖=1

⏞                
𝑈𝑛𝑛

              

    (2.3) 

|𝜓(𝑟1, 𝑟2, … , 𝑟𝑁)|
2𝑑𝑟1 𝑑𝑟2…𝑑𝑟𝑁                                                  (2.6)        

 Because the electrons are indistinguishable, the above expression 

represents the probability that electrons 1, 2,…, N are found in the 

volume elements 𝑑𝑟1 𝑑𝑟2… . . 𝑑𝑟𝑁 and this probability is unchangeable if 

the coordinates of any two electrons (i and j) are swapped [12]:  

|𝜓(𝑟1, 𝑟2, … 𝑟𝑖 , 𝑟𝑗 , … , 𝑟𝑁)|
2
= |𝜓(𝑟1, 𝑟2, … 𝑟𝑗 , 𝑟𝑖 , … , 𝑟𝑁)|

2
                       

(2.7)     

Because electrons are fermions with half-spins, the value of 𝜓  must be 

anti-symmetric with regard to the interchange of spatial and spin 

coordinates in any pair of electrons. 

𝜓(𝑟1, 𝑟2, … 𝑟𝑖 , 𝑟𝑗 , … , 𝑟𝑁) = −𝜓(𝑟1, 𝑟2, … 𝑟𝑖 , 𝑟𝑗 , … , 𝑟𝑁)                           (2.8) 

The integral of equation 2.6 over the complete range of all variables 

gives one as a logical conclusion of the wave-function's probability 

interpretation format. 

 

 

𝐸𝑡𝑜𝑡𝑎𝑙 = 𝐸𝑒𝑙𝑒 +𝑈𝑛𝑛         

  While a system's wave-function is not an observable quantity, its 

modulus squared can be represented as: 

 

 

     (2.5) 
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The variational concept stated in equation 2.10 indicates that the energy computes as the 

expectation value of the Hamiltonian operator from any  𝜓𝑇𝑟𝑖 (that is an upper bound on the 

genuine ground-state energy  𝜓𝐺𝑆. Assume that 𝜓𝑇𝑟𝑖 is normalized according to equation 2.9 

while 𝜓𝑇𝑟𝑖 then it equals the ground state ( 𝜓𝑇𝑟𝑖 = 𝜓𝐺𝑆 ). This shows that entity  𝐸𝑇𝑟𝑖 is 

equivalent to the exact ground state energy 𝐸𝐺𝑆 , additionally, we can reconfigure equation 2.10 

for the ground state as: 

         〈𝐸𝐺𝑆〉 = ∫𝜓𝐺𝑆 H 𝜓𝐺𝑆 
∗ 𝑑𝑟                                                  (2.11)   

This means that the chance of finding the N-electron at any point in 

space must be exactly one.  

∫…∫|𝜓(𝑟1, 𝑟2, … , 𝑟𝑁)|
2
𝑑𝑟1 𝑑𝑟2…𝑑𝑟𝑁 = 1                           (2.9) 

A normalised wave-function is one that fits the conditions of equation 

(2.9). 

Because the Schrödinger wave-equation does not have an exact solution, 

many theories have been made to achieve this goal, beginning with 

Hartree, Hartree-Fock, and many others. A large number of these 

theories were founded on a significant theoretical theory known as the 

variational principle of the wave-function, which guides analysts on how 

to find answers by employing suitable trial wave-functions 𝜓𝑇𝑟𝑖 [1, 2, 5, 

6, 12]. The previous principle is useful in studying the ground state, 

however it is not very useful in studying excited states. When a system is 

in the state  𝜓𝑇𝑟𝑖, the expected value of energy is given by the 

expression: 

          〈𝐸𝑇𝑟𝑖〉 =
∫𝜓𝑇𝑟𝑖H 𝜓𝑇𝑟𝑖 

∗ 𝑑𝑟⃗

∫𝜓𝑇𝑟𝑖 𝜓𝑇𝑟𝑖
∗  𝑑𝑟⃗

                                                             (2.10) 
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We can figure out from normalized 𝜓𝑇𝑟𝑖   that 𝐸𝑇𝑟𝑖 > 𝐸𝐺𝑆 or 𝐸𝑇𝑟𝑖 = 𝐸𝐺𝑆. As a result, the best 

choice for  𝐸𝑇𝑟𝑖is the one in which  𝐸𝑇𝑟𝑖 is lowered [3, 4, 6]. 

2.4 The Hohenberg-Kohn Theorems. 

DFT is fundamentally based on Hohenberg-Kohn theorems; in 1964, Hohenberg and Kohn 

verified the use of the electron density 𝑛( 𝑟 ) to calculate the ground state energy. These 

theorems can be explained by two potent assertions. 

The first theory: holds that the density of any interacting many particle systems in external 

potential 𝑉𝑒𝑥𝑡( 𝑟 ) is uniquely defined. Furthermore, this can be computed because it shows 

that the density 𝑛( 𝑟 ) is used instead of the potential as a basic function uniquely giving a 

description of the system, and be stated as the ground state density 𝑛𝐺𝑆( 𝑟 ) that is expressly 

relied on to establish the potential up to an arbitrary constant [6, 10, 17, 19].  

This theorem is supported by two distinct external potentials:  𝑉𝑒𝑥𝑡( 𝑟 ) (1) and 𝑉𝑒𝑥𝑡( 𝑟 )(2). 

The difference between the two is more than a constant, but they provide the same ground 

state density 𝑛𝐺𝑆( 𝑟 ). It is clear that the earlier two potentials correspond to different 

Hamiltonians, 𝐻𝑒𝑥𝑡[( 𝑟)] (1) and 𝐻𝑒𝑥𝑡[( 𝑟)] (2), and they give rise to distinct wave-functions 

𝛹𝑒𝑥𝑡[( 𝑟)] (1) and 𝛹𝑒𝑥𝑡[( 𝑟)] (2) . 

 Because the ground state of the systems is the same and we follow the variational principle, 

there is no wave-function that gives less energy than of 𝛹𝑒𝑥𝑡[( 𝑟)] (1) for 𝐻𝑒𝑥𝑡[( 𝑟)] (1). 

This is written as: 

⟨𝐸(1)⟩ = ∫ Ψ(1)𝐻(1)Ψ(1)
∗ 𝑑𝑟

→
< ∫Ψ(2)𝐻(2)Ψ(2)

∗ 𝑑𝑟
→

                        (2.12) 

As a result, for non-degenerate ground states with similar ground state densities for the two 

Hamiltonians, equation 2.12 is given as: 
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∫ Ψ(2)𝐻(1)Ψ(2)
∗ 𝑑𝑟

→
  

(𝐸(2))

=∫Ψ(2)𝐻(2)Ψ(2)
∗ 𝑑𝑟

→

+∫ {[𝑉ext (𝑟
→
)]
(1)
− [𝑉ext (𝑟

→
)]
(2)
} 𝑛𝐺𝑆 (𝑟

→
)𝑑𝑟

→

                      (2.13) 

By modifying the labels in equation 2.13, we get: 

∫ Ψ(1)𝐻(2)Ψ(1)
∗ 𝑑𝑟

→
 

 

(𝐸(1))

=∫Ψ(1)𝐻(1)Ψ(1)
∗ 𝑑𝑟

→

+∫ {[𝑉ext(𝑟
→
)](2) − [𝑉𝑒𝑥𝑡(𝑟

→
)](1)}𝑛𝐺𝑆(𝑟

→
)𝑑𝑟
→

                       (2.14) 

    

 

 The results of adding equations 2.13 and 2.14 are as follows: 

                                          ⟨𝐸(1)⟩ + ⟨𝐸(2)⟩ < ⟨𝐸(2)⟩ + ⟨𝐸(1)⟩                                   (2.15)       

The equation (2.15) has a logical contradiction. As a result, the theorem has been confirmed 

by reduction ad absurdum. The second theorem provides a variational ansatz for getting the 

value for 𝑛( 𝑟 ), which is used in searching for 𝑛( 𝑟 ) that minimizes energy. This also means 

that we may specify a general functional expression for the given energy E[𝑛( 𝑟 )], by 

expressing it in terms of the density 𝑛( 𝑟 ).  The system's ground state energy (V (𝑟)) is the 

global minimum value of this functional, and the density n(𝑟) represents the density of the 

system. This minimizes the function and also represents the actual ground state density 

 𝑛𝐺𝑆( 𝑟 ). Concerning the second proof, the first theorem informs us that the total energy of 

the system is expressed as a function of the density n ( 𝑟 ) and is provided by:              
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𝐸total [𝑛(𝑟)] =

𝑇int [𝑛(𝑟)] + 𝑈ee [𝑛(𝑟)]⏟      
= zero, for 

 non-interacting 

 system 

⏞              
𝐹𝐻−𝐾[𝑛(𝑟⃗)]

+ ∫  𝑉ext (𝑟)𝑛(𝑟)𝑑𝑟                    (2.16) 

The first two terms of equation (2.16) (𝐹𝐻−𝐾[𝑛(𝑟)])are kinetic energy (𝑇𝑖𝑛𝑡)and electron-

electron interaction energy  (𝑈𝑒𝑒)which are evaluated as the same for the entire system. As a 

result, 𝐹𝐻−𝐾[𝑛(𝑟)] is a universal function that has been uniquely defined as the Holy Grail of 

density functional theory [12]. Assuming the system is in the ground state, the energy can be 

represented particularly by the ground state density 𝑛𝐺𝑆(𝑟⃗) as:  

⟨𝐸𝐺𝑆⟩ = ⟨𝐸[𝑛𝐺𝑆(𝑟)]⟩ = ∫  Ψ𝐺𝑆𝐻𝐺𝑆Ψ𝐺𝑆
∗ 𝑑𝑟                           (2.17) 

According to variational principle, the ground state energy that corresponds directly to the 

ground state density is the minimal energy, and any alternative density will essentially 

produce a greater energy: 

⟨𝐸𝐺𝑆⟩ = ⟨𝐸[𝑛𝐺𝑆(𝑟)]⟩

 = ∫  Ψ𝐺𝑆𝐻𝐺𝑆Ψ𝐺𝑆
∗ 𝑑𝑟 < ∫  Ψ𝐻Ψ∗𝑑𝑟

 = ⟨𝐸[𝑛(𝑟)]⟩ = ⟨𝐸⟩

                  

After evaluating the functional 𝐹𝐻−𝐾[𝑛(𝑟)]we may determine the total energy to be 

minimized with regard to variations in the density function, as indicated in equation 2.16. It 

results in the exact ground state properties of the system that we are pursuing, for most 

practical computations, direct minimization does not provide a vivid guide to the ground state 

energy as supplied by the Kohn-Sham approach. 

2.5 Kohn-Sham Method and Self-Consistent Field SFC. 

Kohn and Sham's efforts showed that the Hohenberg-Kohn theory can be applied to both 

interacting and non-interacting systems. Density function theory (DFT) is sceptical of 

providing a broadening on the interacting many particles problems. The main advantage of 
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the non-interactive system over the interacting system is that the ground-state energy of a 

non-interacting system may be found with ease. The concept was developed in 1965 by Kohn 

and Sham. They discovered that an effective Hamiltonian (𝐻𝑒𝑓𝑓) of the non-interacting 

system can be substituted for the original Hamiltonian of the system in an effective external 

potential 𝑉𝑒𝑓𝑓(𝑟), They also noted that the system produces the same ground state density as 

the original system. The Kohn Sham technique's output is regarded as ansatz, and there is no 

clear way for carrying out the computations. However, it is notably simpler to solve than the 

non-interacting problem. The Kohn-Sham technique is based on the Hohenberg-Kohn 

universal density [6,9,10,20]: 

𝐹𝐻−𝐾[𝑛(𝑟)] = 𝑇𝑖𝑛𝑡[𝑛(𝑟)] + 𝑈𝑒𝑒[𝑛(𝑟)]                    (2.18) 

  The Hohenberg-Kohn functional for non-interacting electrons in a system can be reduced to 

calculate only the kinetic energy. Furthermore, the energy function of the Kohn-Sham ansatz 

𝐹𝐾−𝑆[𝑛(𝑟)] is presented with the following mathematical computation, which differs from the 

computation evaluated in equation 2.16: 

𝐹𝐾−𝑆[𝑛(𝑟)] = 𝑇𝑛𝑜𝑛[𝑛(𝑟)] + 𝐸Hart [𝑛(𝑟)] +

 ∫  𝑉ext (𝑟)𝑛(𝑟)𝑑𝑟 + 𝐸𝑥𝑐[𝑛(𝑟)].
                          (2.19) 

In the non-interacting system, 𝑇non represents its kinetic energy, which is different from 𝑇int  for 

the interaction system as found in equation 2.16. On the other hand, 𝐸Hart represents the 

classical electrostatic energy, also known as the classical self-interaction energy of the electron 

gas, and is associated with the density 𝑛(𝑟) in the system.  The exchange-correlation energy 

functional in the system is denoted by the term 𝐸𝑥𝑐  and is provided by:  

𝐸𝑥𝑐[𝑛(𝑟)] = 𝐹𝐻−𝐾[𝑛(𝑟) −
1

2
∫  

𝑛(𝑟⃗1)𝑛(𝑟⃗2)

|𝑟⃗1−𝑟⃗2|
𝑑𝑟1𝑑𝑟2

⏞            
𝐸Hart [𝑛(𝑟⃗)]

−                               (2.20)  

𝑇non [𝑛(𝑟)]  
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The first three terms in equation 2.19 can be easily transformed into a functional form. On the 

other hand, this is provided generally without a specific functional form for the 𝐸𝑥𝑐 . Over the 

past few years, many attempts have been made to thoroughly investigate the possibility of 

improving the computation of 𝐸𝑥𝑐 . Currently, the functional properties of a wide variety of 

solid-state systems and molecules may be studied and predicted. In addition, the functional 

derivatives of the last three variables in equation 2.19 are used to create the effective single 

particle potential 𝑉𝑒𝑓𝑓(𝑟) 

  

𝑉𝑒𝑓𝑓(𝑟) = 𝑉𝑒𝑥𝑡(𝑟) +
∂𝐸𝐻𝑎𝑟𝑡[𝑛(𝑟⃗)]

∂𝑛(𝑟⃗)
+
∂𝐸𝑥𝑐[𝑛(𝑟⃗)]

∂𝑛(𝑟⃗)
                       (2.21)  

In addition, we can use this potential to obtain the single particle's Hamiltonian logically: 

𝐻𝐾−𝑆 = 𝑇𝑛𝑜𝑛 + 𝑉𝑒𝑓𝑓                                                            (2.22) 

 For this Hamiltonian, the Schrödinger equation may be obtained by: 

[𝑇𝑛𝑜𝑛 + 𝑉𝑒𝑓𝑓]Ψ𝐾−𝑆 = 𝐸Ψ𝐾−𝑆                                                   (2.23) 

The expression defined by equation 2.23 is known as the Kohn-Sham equation. The ground 

state density 𝑛𝐺𝑆
𝐾−𝑆(𝑟) corresponds to the ground state wave-function Ψ𝐺𝑆

𝐾−𝑆whose evaluation 

minimises the Kohn-Sham functional subject to the orthonormalization requirements 

⟨Ψ𝑖 ∣ Ψ𝑗⟩ = 𝛿𝑖𝑗, as established by a self-consistent calculation. Density functional theory 

(DFT) makes extensive use of a self-consistent field approach; for example, it is assumed that 

𝐸Hart " and 𝐸𝑥𝑐  can be precisely calculated. The primary challenge currently is that 𝑉𝑒𝑓𝑓  

cannot be estimated until the most suitable ground state density is identified; the actual 

density cannot be determined from the Kohn-Sham wave-functions until equation 2.23 is 
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solved to obtain the actual value of 𝑉𝑒𝑓𝑓  for a given system. As a result, the circular problem 

can be efficiently determined by carrying out a self-consistent cycle, as seen in Figure 2.1. 

 

 Figure 2.1: a schematic illustration of the self-consistent DFT cycle. 

According to figure 2.1, the first stage in the study is to create the pseudo-potential, which 

reflects the electrostatic interaction between valence electrons, nuclei, and core electrons in a 

system. The next stage is to create the necessary basis set to be plugged in, choosing a kinetic 

energy cutoff; this phase is specifically meant to expand density functional values. 

   
 

  

 Calculate the total 

energy and force, and 

then exit 
 

Density mixing 

generate  

𝒏new (𝒓⃗⃗) 

  

Calculate the electron density 

  

Solve Kohn-Sham equation by 

diagonazation of the Hamiltonian 

  

Calculate the effective potential 

𝑽𝒆𝒇𝒇(𝒓⃗⃗) 

Construct initial density 𝒏initial (𝒓⃗⃗) 

  

Choose basis set cutoff energy 

Construct Pseudo-potential 

For each element 

Is the solution self-consistent? 
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Obviously, if the density of the system is known, the energy functional may be fully 

computed. An initial estimate is defined as a trial electronic density 𝑛initial (𝑟). As a result, the 

initial guess can be used to determine the following amount: 

𝐺 = 𝐸Hart [𝑛
initial (𝑟)] + 𝐸𝑥𝑐[𝑛

initial (𝑟)]                                 (2.24) 

  The effective potential 𝑉𝑒𝑓𝑓  and the parameters 
∂𝑮

𝛛𝒏 initial (𝒓⃗⃗)
are determined. The effective 

𝑉𝑒𝑓𝑓  potential is used to solve Kohn-Sham equation 2.23, which gives an outline for a 

solution to the electron Hamiltonian. The Hamiltonian is obtained, and then diagonalized to 

get the eigenfunctions and the new electron density, 𝑛new (𝑟). The term 𝑛new (𝑟) is closer to 

true ground state and has been validated. If the new updated electron density 𝑛new (𝑟⃗) is 

discovered to agree numerically with the starting density 𝑛initial (𝑟) used to construct the 

Hamiltonian at the start of the SCF cycle, where one ends at the conclusion of the loop, then 

this will satisfy the condition of self-consistency. After that, we stop the operations and 

compute all of the required converged quantities, such as the electronic band structure, 

density of states, and total energy. On the other hand, if the new density 𝑛new (𝑟⃗) differs from 

the original density 𝑛initial (𝑟), a new input density must be created, starting a new SCF cycle. 

It then follows once more that in order to compute the density and confirm its self-

consistency, a new density-dependent Hamiltonian must be constructed [3, 17, 23]. By using 

the Kohn-Sham technique, it is clear that a complex system with several bodies may be 

accurately mapped onto a set of basic non-interacting equations, provided that the exchange 

correlation functional is known. It should be noted that the exchange-correlation functional is 

not specifically defined, that require the use of approximate values. 
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2.6. The Exchange-Correlation Potential. 

The DFT is a fairly reliable and proven method for analysis, although it still requires an 

estimate for the kinetic energy functional and the exchange-correlation functional in terms of 

density for the system being studied. A significant amount of effort has been directed into 

finding reliable expressions for these kinds of functionals. The most commonly utilised 

exchange-correlation functional approximations are the more complex Generalised Gradient 

Approximation (GGA), which incorporates the derivative of the density, and the Local 

Density Approximation (LDA), which is primarily dependent on the density. This GGA is 

semi-local because it includes environmental information. 

2.7. Local Density Approximation (LDA). 

According to Kohn-Sham theory, the functional 𝐸𝑥𝑐  parameter could be determined in a 

homogeneous electron gas to approximate the many body particle problem in a less 

complicated system [11]. 

  Kohn-Sham's research shown that the functional 𝐸𝑥𝑐  at point 𝑟 may be represented as acting 

in a uniform density by slowly but systematically changing the system's density. In addition, 

the 𝐸𝑥𝑐  functional is given by a uniform electron gas 𝐸𝑥𝑐
homo [𝑛(𝑟)] with a density 𝑛(𝑟).  

In general, systems that have been dominated by electron-electron interactions cannot be 

accurately described by the local density approximation (LDA). However, LDA implies that 

the density is constant in the local region around any particular location. The example below 

shows the expression for 𝐸𝑥𝑐
𝐿𝐷𝐴[𝑛(𝑟)] ,which represents the local density approximation 

(LDA). 

𝐸𝑥𝑐
𝐿𝐷𝐴[𝑛(𝑟)] = ∫  𝐸𝑥𝑐

homo [𝑛(𝑟)]𝑛(𝑟)𝑑𝑟                (2.25) 
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The exchange-correlation energy 𝐸𝑥𝑐
homo [𝑛(𝑟)] can be divided into two parts: This is the result 

of adding together the exchange energy 𝐸𝑥
homo [𝑛(𝑟)] and the correlation energies 

𝐸𝑐
homo [𝑛(𝑟)]; this can be found individually. The exchange-correlation energy 𝐸𝑥𝑐

homo [𝑛(𝑟)] 

can be calculated in the following manner: 

𝐸𝑥𝑐
homo [𝑛(𝑟)] = 𝐸𝑥

homo [𝑛(𝑟)] + 𝐸𝑐
homo [𝑛(𝑟)]                (2.26) 

The exchange term can be obtained analytically and can be found in different academic 

books:[6,12].          

             𝐸𝑥
homo [𝑛(𝑟)] = −

3

4
(
3𝑛(𝑟⃗)

𝜋
)
1/3

                             (2.27) 

The correlation energy for the system, represented as (𝐸𝑐
homo [𝑛(𝑟)]) cannot be calculated 

analytically. However, it can be accurately determined using numerical methods. The most 

common and accurate method was conducted by Ceperly and Alder (CA) utilising quantum 

Monte-Carlo simulations. Multiple interpretations of the Monte Carlo data exist. One notable 

example is the calculation performed by Perdew and Punger (PZ), who fitted the numerical 

data into an analytical formula and produced [25,26]. 

𝐸𝑐
homo [𝑛(𝑟)] =

{
−0.048 + 0.031ln (𝑟𝑜) − 0.0116𝑟𝑜 + 0.002ln (𝑟𝑜)  if 𝑟𝑜 < 1

−
0.1423

(1+1.9529√𝑟𝑜+0.3334𝑟𝑜
 if 𝑟𝑜 > 1

             (2.28) 

   The equation above is calculated for values of r0 > 1 and values of r0 < 1. Where the 𝑟𝑜 

represents the average radius of the electrons in a homogeneous electron gas. r0 defined as 

(
3

4𝜋𝑛
)
1/3

. While it is a well-known and powerful functional, the local density approximation 

(LDA) is simple to use and accurate for materials like graphite and carbon nanotubes where 

the electron density won't change rapidly. A significant error is predicted for atoms with d 
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and f orbitals. The band gap in semiconductors and insulators is often not accurate with a 

considerable error within the range of 0.5 to 2eV or 10-30%. This is only one example of 

the many problems with the above functional to a reasonable amount. For the reasons 

mentioned above, it is highly appropriate to use better functional [25, 27, 28]. 

2.8. Generalized Gradient Approximation (GGA). 

Although the systems are in reality non-homogeneous, the local density function (LDA) 

treats all systems as units of homogenous systems. To constructively take this into account, 

one can go beyond the LDA and expand it by including the density derivative into the 

exchange correlation functional. The gradient and higher spatial derivatives of the total 

charge density are the most practical ways of achieving this. 

 I.e. (|∇𝑛(𝑟)|, |∇2𝑛(𝑟)|, … ) 

Higher spatial derivatives are used to evaluate the total charge density in the approximation 

layout. 

The functional mentioned above is referred to as the generalized gradient approximation 

(GGA). Since there is a clear formulation for the exchange part of the functional in this case, 

numerical analytic methods must be employed to determine it along with the correlation 

contributions. In the generalized gradient approximation (GGA), there are many 

parameterizations available for the exchange-correlation energies, exactly as there are for the 

local density function (LDA) [29–32]. 

In this section, we will look at the proposed functional suggested by (PBE) Perdew, Burke, 

and Ernzerhof [29]. The parameterization provided has two different expressions, the 

exchange 𝐸𝑥
𝐺𝐺𝐴[𝑛(𝑟)] is the first expression and presented by: 

𝐸𝑥
𝐺𝐺𝐴[𝑛(𝑟)]𝐸𝑥

𝐺𝐺𝐴[𝑛(𝑟)] = ∫  𝑛(𝑟)𝐸𝑥
ℎ𝑜𝑚𝑜[𝑛(𝑟)]𝐹𝑥(𝑠)𝑑𝑟          (2.29) 
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 Additionally, 

𝐹𝑥(𝑠) = 1 + 𝜅 −
𝜅

(1+𝜇𝑠2)/𝜅
          

where the enhancement factor can be calculated by 𝐹𝑥(𝑠), 𝜅 = 0.804, 𝜇 = 0.21951, 𝑠 = 

|∇𝑛(𝑟)/2𝑘𝑠𝑛(𝑟)| indicates the gradient in density that is dimensionless, 𝑘𝑠 = √
4𝑘𝑇−𝐹

𝜋𝑎𝑜
, and 

𝑘𝑇−𝐹 =
(12/𝜋)1/3

√𝑟𝑆
, where 𝑟𝑆 is the local Seitz radius and is the Thomas-Fermi screening 

wavenumber. 

The correlation energy 𝐸𝑥
𝐺𝐺𝐴[𝑛(𝑟)] is the following expression.  

The correlation energy 𝐸𝑥
𝐺𝐺𝐴[𝑛(𝑟)] can be written as follows: 

𝐸𝑐
𝐺𝐺𝐴[𝑛(𝑟)] = ∫  (𝐸𝑐

homo [𝑛(𝑟)] + 𝜒[𝑛(𝑟)])𝑑𝑟            (2.30) 

𝜒[𝑛(𝑟)] =
𝑒2

𝑎𝑜
𝛾ln (1 +

𝛽

𝛾
𝑡2

1+𝐴𝑡2

1+𝐴𝑡2+𝐴2𝑡4
) ,

𝐴 =
𝛽

𝛾
[𝑒
(
𝐸𝐶

homo [𝑛(𝑟⃗⃗⃗)]

𝛾
)−1
]

−1
    

Where: 𝛾 = (1 − ln (2)/𝜋2, 𝑡 = |∇𝑛(𝑟)/2𝑘𝑇−𝐹𝑛(𝑟)| is an additional dimensionless density 

gradient, 

𝛽 = 0.066725, and 𝑎0 =
ℏ

𝑚𝑒2
.      

LDA and GGA are the two most desirable and often utilised methods for estimating 

exchange-correlation energies in the DFT. Similarly, there are various more functionals that 

predominate in LDA and GGA. In the illustration, it is technically accurate that there is no 

strong theory supporting the validity of these functionals. It is computed by testing the 

functional for various materials across a wide range of systems and then comparing the 

findings to provable empirical data for similar situations. 
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2.9. SIESTA. 

All calculations in this thesis were carried out using the DFT implementation in the SIESTA 

code. The computations are utilised to obtain a relaxed geometry for the researched structures 

as well as to investigate their electrical characteristics. The SIESTA acronym, which refers to 

"Spanish Initiative for Electronic Simulations with Thousands of Analogues," is commonly 

used. The SIESTA concept is a self-consistent density functional theory (DFT) approach that 

relies on a Linear Combination of Atomic Orbital Basis set (LCAOB) and norm-conserving 

pseudo-potentials to produce consistent results for the computations [33–40]. Using SIESTA, 

there are essentially two ways to carry out density function theory (DFT) simulations. The first 

involves solving the Kohn-Sham equations using the conventional self-consistent field 

diagonalization method, while the second involves directly minimising a modified energy 

functional [36]. This section is meant to describe some of the SIESTA's components and how 

they are implemented in the provided code. 
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Chapter 3  

3.1 Single Particle Transport Theory  

 Once the density functional theory notion for the electronic structure of an isolated molecule 

has been explained, the next step is to connect the isolated molecule to semi-infinite leads and 

then calculate the probability of transmission through the system from one electrode to the 

other. The explanation can be expanded by employing the Green's function scattering 

equation. In this discussion, I will explore the techniques that use scattering theory and 

Green's function methods. These methods explain the electrical and thermoelectric 

characteristics of nanoscale systems located between two metallic electrodes. 

3.2 Introduction  

Single-particle transport theory is the main numerical technique used to explore various 

molecular geometrics. It involves a thorough examination of electronic characteristics [1]. 

The primary objective of molecular electronics is to understand the electronic structure of 

molecular junctions. The molecule is linked between electrodes, and the movement of charge 

occurs across the molecule in a phase-coherent manner. The interaction between the lead and 

molecule is fairly weak compared to the binding strengths within an electrode and between 

molecules. A primary challenge in molecular electronics is the method of attaching the 

molecule to metallic or other electrodes in order to investigate its electrical characteristics. A 

scattering process occurs due to the transfer of movement between the electrode and the 

molecule, as well as between the molecule and the electrode. The scattering mechanism that 

arises from the electrode and the molecular bridge can be accurately explained by employing 

a complete formalism based on Green's function. In this chapter, this discussion will focus on 

the derivation of the Landauer formula, followed by an explanation of the process for a 

retarded Green's function that is applicable to a one-dimensional tight-binding chain. The 
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Green's function is directly related to the transmission coefficient by breaking the periodicity 

of the lattice at a single link, which creates the scattering area. 

 3.3 The Landauer Formula  

To explain transport phenomena, the Landauer formula, [1-4], is utilised. This formula is 

valid for ballistic mesoscopic systems in which the energy of an electron is preserved and is 

relevant for phase coherent systems, where a single wave function sufficiently describes the 

flow of electrons. This leads to a formula that relates the conductance of the system to the S-

matrix of a scattering region connected to two semi-infinite leads. This chapter will cover the 

method used to compute such transmission properties. 

                                                                                                     

 

 

 

 

  

 Figure 3.1: A contact-linked mesoscopic scatterer, where 𝜇𝐿and 𝜇𝑅represent the chemical 

potential in the left and right lead, respectively.  

where 𝒓 is the amplitude of the reflected wave due to an incoming left wave, and 𝒕 is the 

amplitude of the transmitted wave. When the temperature is zero (𝑇 = 0 𝐾) and there is no 

scattering region, the current 𝛿𝐼 due to left travelling electrons in an energy interval 𝛿𝐸 =𝛿𝐼= 

𝑒 𝜐𝑔𝛿𝑛, where 𝛿𝑛 = 
∂n

∂E
 𝛿𝐸 is the number of left-moving electrons per unit length in the 

energy interval 𝛿𝐸, whereas 𝑣𝑔 represents their group velocity. If reservoirs emit both left 
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and right-moving electrons, the net current is transported by electrons in the energy range 𝛿𝐸 

= 𝜇L − 𝜇R. 

This schematic shows a conceptual structure of an experimental or measuring system with 

contacts, leads, and magnetic areas, which is intended to help in the analysis of magnetic and 

electrical interactions within the device. 

For 𝜇R and 𝜇L are not equal because the current flows from left to right or up, or the 

opposite. So the potential shouldn't be equal. 

In the above structure, a wave will be transmitted to the right with probability 𝑇 = |𝑡|2 and 

reflected with probability 𝑅 = |𝑟|2,when an incident wave 𝑖in collides with the scatterer from 

the left. The incident electrons must either be reflected or transmitted, resulting in the 

conservation of probability, which for single-channel leads is expressed as T+R=1. 

To understand the formula's essential concepts, imagine a mesoscopic scatterer coupled to 

two contacts that serve as electron reservoirs and are formed by two ideal ballistic leads, as 

illustrated in Figure 3.1. The reservoirs [3] contain all inelastic relaxation processes. These 

reservoirs have variable chemical potentials, allowing electrons to move from the left to the 

right. In the case of a single open channel, the electric current generated by the chemical 

potential difference at zero temperature: 

𝛿I = e𝑣𝑔 (
∂n

∂E
) (𝜇L − 𝜇R) (3.1) 

 where, e is the electronic charge, 𝑣𝑔 is the group velocity, and ∂𝑛/ ∂𝐸 is the density of states 

(DOS). When the system is defined as one-dimensional, we can write: 

∂n

∂E
=
∂n

∂k

∂k

∂E
=
∂n

∂k

1

𝑣ℏ
(3.2) 

∂n

∂k
=
1

𝜋
,
∂n

∂k
=
1

𝑣ℏ
(3.3) 
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  Equation 3.3 is one-dimensional since it defines the group velocity as 𝑣 =
1

ℏ

∂k

∂E
, the equation 

can be expressed as follows, where a spin factor of two is added. 

𝛿𝐼 =
2𝑒

ℎ
(𝜇𝐿 − 𝜇𝑅) =

2𝑒2

ℎ
𝛿𝑉 (3.4) 

 The voltage in this case, δV, represents the potential chemical difference. From equation 3.4, 

it is obvious that in the absence of a scattering region, the conductance of a single open 

channel is equal to 
2𝑒2

ℎ
, which is about 77μS and the corresponding resistance is  

ℎ

𝑒2
 , is 

approximately 12.9kΩ. When the system includes a scattering area, a part of the current is 

reflected with a probability 𝑅 = |𝑟|2, while another part is transmitted with a probability 𝑇 =

|𝑡|2. The current that will move to the scatterer on the right side of the lead is:   

   

𝛿I =
2𝑒2

ℎ
𝑇𝛿𝑉 →

𝛿𝐼

𝛿𝑉
=
2𝑒2

ℎ
𝑇 (3.5) 

 Equation 3.5 is the Landauer formula for conductance, 𝐺 = (
2𝑒2

ℎ
)𝑇(𝐸𝐹),  in which the 

transmission coefficient is evaluated at the Fermi energy 𝐸𝐹[5]. Then, in 1985, Buttiker 

extended the Landauer formula to include more than one open channel. In this case, the 

transmission coefficient can be substituted by the total of all transmission amplitudes 

representing electrons that travel from the left to the right contact. Equation 3.5 of the 

Landauer formula for several open channels becomes: 

𝛿I

𝛿𝑉
= 𝐺 =

2𝑒2

ℎ
∑  

𝑖,𝑗

  |𝑡𝑖,𝑗|
2
=
2𝑒2

ℎ
Trace (𝑡𝑡†) (3.6) 

 Here, G is the electrical conductance and 𝑡𝑖,𝑗 is the amplitude of transmission representing 

scattering from the 𝑗th  channel of the left lead to the 𝑖th channel of the right lead. By 
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combining the transmission and reflection amplitudes, the scattering S matrix involving the 

electron from the left lead and the right lead can be represented as follows: 

      

𝑆 = (𝑟 t′

𝑡 r′
) (3.7) 

 where, r and t describe electrons arriving from the left, whereas r′and t′ indicate electrons 

coming from the right. In equation 3.8 𝑟, 𝑡, r′ and t′ are considered as complex matrices that 

satisfy 𝑆𝑆+ = 𝐼 for many open channels due to conservation.   

3.4 Thermoelectric Coefficients  

The Seebeck, Peltier, and Thompson effects established connections between heat, current, 

temperature, and voltage around the turn of the nineteenth century [1]. The Seebeck effect is 

the creation of electrical current due to a temperature difference, whereas the Thompson and 

Peltier effects describe the cooling or heating of a current-carrying conductor [6]. A more 

general mechanism involves a temperature difference (ΔT) and a theoretical voltage drop 

(ΔV) in the system, resulting in the flow of heat currents and charge. The generalised 

Landauer-Büttiker equations for heat (Q), charge (I), and currents within the linear basis and 

temperature regimes will be used to derive expressions for the thermoelectric coefficients of a 

device with two terminals. The system consists of a scattering zone that connects to two 

leads, which in turn connect to a pair of electron reservoirs. These reservoirs are generated 

using the chemical potential 𝜇𝐿 and 𝜇𝑅 , temperature  𝑇𝐿 and 𝑇𝑅, and the Fermi distribution 

function [6]: 

   

𝑓𝑖(𝐸) = (1 + 𝑒
𝐸−𝜇𝑖
𝑘𝐵𝑇𝑖)

−1

(3.8) 
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 Assuming that the reservoirs and leads are connected so that scattering does not occur at 

their interface, it may be stated that the central scattering area is the source of all scattering 

effects. The right moving charge current of a single k-state issuing from the left reservoir can 

be defined in terms of the number of electrons per unit length 𝑛, the Fermi distribution 𝑓𝐿, the 

group velocity 𝑣𝑔, and the scattering zone's transmission coefficient T(E).   

     

𝐼𝑘
+ = 𝑛𝑒𝑣𝑔(𝐸(𝑘))𝑇(𝐸(𝑘))𝑓𝐿(𝐸(𝑘)) (3.9) 

 Thus, the total charge current can be calculated from the right moving states by summing all 

positive k states and then converting the result into the integral form, where 𝑛 = 1/𝐿 for the 

electron density and 𝑣𝑔 =
1

ℏ

∂𝐸(𝑘)

∂𝑘
.  

   

𝐼𝑘
+ =∑ 

𝑘

 𝑒
1

𝐿

1

ℏ

∂𝐸(𝑘)

∂𝑘
𝑇(𝐸(𝑘))𝑓𝐿(𝐸(𝑘)) = ∫  

+∞

−∞

 
2𝑒

ℎ
𝑇(𝐸)𝑓𝐿(𝐸)𝑑𝐸 (3.10) 

 Similarly, we get the following for left moving states: 

𝐼𝑘
− = ∫  

+∞

−∞
 
2𝑒

ℎ
𝑇(𝐸)𝑓𝑅(𝐸)𝑑𝐸 (3.11)  

Thus, the total current can be expressed as follows: 

𝐼 = 𝐼+ − 𝐼− =
2𝑒

ℎ
∫  
+∞

−∞

 𝑇(𝐸)(𝑓𝐿(𝐸) − 𝑓𝑅(𝐸))𝑑𝐸 (3.12) 

 The above equation is Landauer-Bttiker formula at finite temperatures. 

A comparable derivation for the identical system's heat current (alternatively, energy current) 

can be provided by beginning with the relation 𝑄 = 𝐸𝑛𝑣𝑔 rather than = 𝑛𝑒𝑣𝑔. The final result 

is similar to the previous results, but it includes two more energy terms: 
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𝒬 = 𝒬+ − 𝒬− =
2

ℎ
∫  
+∞

−∞

𝑇(𝐸)((𝐸 − 𝜇𝐿)𝑓𝐿(𝐸) − (𝐸 − 𝜇𝑅)𝑓𝑅(𝐸))𝑑𝐸 

 Where, 

  

𝑓𝐿(𝐸) =

[
 
 
 
 

1 + 𝑒

𝐸−𝜇−
Δ𝜇
2

𝑘𝐵(𝑇+
Δ𝑇
2 )

]
 
 
 
 
−1

, 𝑓𝐿(𝐸) =

[
 
 
 
 

1 + 𝑒

𝐸−𝜇−
Δ𝜇
2

𝑘𝐵(𝑇+
Δ𝑇
2 )

]
 
 
 
 
−1

,

𝜇𝐿 = 𝜇 +
Δ𝜇

2
,  𝜇𝑅 = 𝜇 −

Δ𝜇

2

 

  

 Buttiker, Imry, Landauer, and others [7-10] establish a relationship between the electric 

current (I) and heat current (Q) in a system, and the voltage difference (ΔV) and temperature 

difference (ΔT) in the linear response regime. The thermoelectric coefficients G, L, M, and K 

are related to both electric currents, temperature, and potential differences [1 and 11-12]. 

(
𝐼
𝑄̇
) = (

𝐺 𝐿
𝑀 𝐾

) (
Δ𝑉
Δ𝑇
) (3.13) 

 The Onsager relation describes the relationship between the thermoelectric coefficients L 

and M in the absence of a magnetic field:  

𝑀 = −𝐿𝑇 (3.14) 

 In equation 3.14, 𝑇 represents temperature. The following relations can be expressed by 

rearranging these equations and using the measurable thermoelectric coefficients, electrical 

resistance 𝑅 = 1/𝐺, thermopower 𝑆 = −Δ𝑉/Δ𝑇, Peltier coefficient, and thermal constant 𝑘: 
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(
Δ𝑉
𝑄̇
) = (

1

𝐺
−
𝐿

𝐺
𝑀

𝐺
𝐾 −

𝐿𝑀

𝐺

)(
1
Δ𝑇
) = (

𝑅 𝑆
Π −𝐾

) (
1
Δ𝑇
) (3.15) 

The thermopower S can be defined in terms of the voltage Δ𝑉 caused by a temperature 

differential Δ𝑇 in the absence of an electrical current.   

𝑆 = −(
Δ𝑉
Δ𝑇
)
𝐼=0

=
𝐿

𝐺′
(3.16)  

 In the absence of a temperature differential, the Peltier coefficient Π refers to the heat 

transported purely by the charge current. 

  

Π = (
𝑄̇

𝐼
)
Δ𝒯=0

=
𝑀

𝐺
= −𝑆𝑇 (3.17) 

 Finally, in the absence of an electric current, thermal conductance k is defined as the heat 

current due to temperature drop:   

   

𝑘 = −( 𝑄̇
Δ𝑇
)
𝐼=0

= −(1 +
𝑆2𝐺𝑇

𝑘
) (3.18) 

  Therefore, assessing the values of S or Π offers valuable information about the system's 

capacity to function as a heat-driven current generator or a current-driven cooling device. 

 In addition, the thermoelectric figure of merit, 𝑍𝑇[13,14], can be defined based on these 

measurable thermoelectric coefficients:   

𝑍𝑇 =
𝑆2𝐺𝑇

𝑘
(3.19) 
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 In classical electronics, the 𝑍𝑇  is determined by computing the highest induced temperature 

difference created by an applied electric current in the presence of Joule heating. Consider a 

current-carrying conductor that is located between two heat baths 𝑇𝐿and 𝑇𝑅, as well as 

electrical potentials 𝑉𝐿and  𝑉𝑅.  

The thermoelectric figure of merit is obtained by calculating the conductor's greatest induced 

temperature differential caused by an electrical current. We can obtain the following from 

equation (3.13) by defining (𝑄̇) as the gain in heat from bath L to bath R:  

𝑄̇ = Π𝐼 − 𝑘Δ𝑇 (3.20) 

 The left bath cools while the right bath heats as a result of this heat transfer, increasing Δ𝑇. 

 The sum of Joule heating can be computed with the proportional formula 𝑄̇𝐽 = 𝑅𝐼
2, which 

takes into account both the electrical resistance and the square of current. This Joule heating 

influences the temperature differential created by heat transfer, therefore in the steady state 

case:  

  

Π𝐼 − 𝑘Δ𝑇 =
𝑅𝐼2

2
(3.21) 

 where 𝑅/2 represents the total of the internal and external resistances that are parallel. 

The difference in temperature becomes:  

  

Δ𝑇 =
1

𝑘
(Π𝐼 −

𝑅𝐼2

2
) (3.22) 

 The temperature difference-current relationship is represented by equation 3.15. 

 The derivative of equation 3.16 can determine the maximum temperature (ΔT): 
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∂Δ𝑇

∂𝐼
=
Π − 𝐼𝑅

𝑘
= 0 (3.23) 

 To determine the greatest Δ𝑇, we place 𝐼 = Π/𝑅 and substitute equation 3.17 into the 

equation 3.23.    

   

 (Δ𝑇)max =
Π2

2𝑘𝑅
=
𝑆2𝒯2𝐺

2𝑘
(3.24)

(Δ𝑇)max
𝑇

=
𝑆2𝐺𝑇

2𝑘
=
1

2
𝑍𝑇 (3.25)

 

 This shows that 𝑍𝑇 is a dimensionless number which describes the 'efficiency' of a molecular 

device.  

   

3.5 Theory of electron transport  

 

To study electron transport, it is necessary to understand the transmission probability, which 

is related to the conductance 𝐺 at the Fermi energy 𝐸 using the Landauer formula [15,16]. 

   

𝐺 = 𝐺0𝑇(𝐸𝐹) (3.26) 

 The electric conductance is shown by equation 3.26. 𝐺 is described as a function of the 

Fermi energy and quantum conductance as 𝐺0 =
2𝑒2

ℎ
, where e is the electron charge and ℎ is 

the Planck's constant.  𝑇(𝐸)is also known as the transmission coefficient as a function of 

energy, and it can be defined as the probability that an electron with energy 𝐸 will transfer 
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from one electrode to the other.  This refers to the scattering formalism shown in the graphic 

below. 

  

 

   

Figure 3.2 shows a representation of the transport mechanism. It shows the combination of 

mathematical structures. This mechanism has two categories of probability, R and T. 

This schematic shows wave scattering in a system that consists of a core scattering zone 

connected to two leads—left and right. The incoming waves (t′ on the left and outgoing 

waves on the right) approach the scattering zone, where they interact and are partly reflected 

and transmitted. The outgoing waves (r′ on the left and transmitted on the right) leave from 

the scattering zone, carrying information about the encounter. 

The fundamental idea shown here is the scattering matrix Sm, which connects the incoming 

and outgoing waves mathematically. In particular, it describes the way the scattering zone 

reflects and transmits waves, with parameters and possibly denoting things like transmission 

and reflection coefficients. This setting is crucial in quantum physics and wave mechanics, 
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and it is used to study how particles or waves behave when they encounter localised 

disturbances or barriers. It has applications in electronic transmission, optics, and other wave-

based systems. 

  

|𝑡|2 + |𝑟|2 = 1 𝑇 + 𝑅 = 1 

 3.6 Scattering Theory 

 3.6.1 A one dimensional (1-D) linear crystalline lattice 

To illustrate the calculation of the scattering matrix for a simple one-dimensional structure, I 

now provide a simple and straightforward overview of the method that used prior to 

presenting a generalized methodology [1]. A basic tight-binding model in periodic systems is 

proposed to provide a qualitative perspective on electronic system calculations. Each atom 

has a single atomic orbital of energy 𝜖0 and a inearest neighbour coupling or hopping element 

−𝛾, as shown in Figure 3.3. 

 

 

   

 Figure 3.3: A tight-binding model of a (1-D) periodic lattice with energy sites and hopping 

elements is used to label our atoms. 

This figure represents a range extending from negative infinity to positive infinity, with 

specific points at Z-1, Z, and Z+1 on a number line or axis. This suggests an emphasis on 
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discrete states or places within a system, which are most often related to transitions, 

differences, or interactions between neighbouring states at these points. 

 The notation and arrangement imply an examination of how qualities or quantities change or 

relate between these discrete points, which is frequent in models involving summations, 

probabilities, or physical states in domains such as quantum physics, statistical mechanics, 

and signal processing. 

 −γ represents a negative boundary or limit, while ε is a small quantity used to analyse minor 

changes or mistakes in the system. 

  

  

The Hamiltonian H describes the system as follows: 

  

  

𝐻 =

(

 
 
 
 
 
 

−∞ . . . . . . . .
. . . . . . . . .
. . 𝜀0 −𝛾 0 0 0 . .
. . −𝛾 𝜀0 −𝛾 0 0 . .
. . 0 −𝛾 𝜀0 −𝛾 0 . .
. . 0 0 −𝛾 𝜀0 −𝛾 . .
. . 0 0 0 −𝛾 𝜀0 . .
. . . . . 0 −𝛾 . .
. . . . . . . . +∞)

 
 
 
 
 
 

 

Then, the Schrodinger equation is utilised to obtain Z row of the Hamiltonian. 

  

𝜀0𝜓𝑧 − 𝛾𝜓𝑍+1 − 𝛾𝜓𝑍−1 = 𝐸𝜓𝑍 (3.27) 

  

𝜓𝑧 = 𝑒
𝑖𝑘𝑍 (3.28) 
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 where 𝜓𝑧 represents the wave function of this system on site 𝑧, which satisfies the 

Schrodinger equation 3.27. 

 By substituting a plane wave in equation 3.28 into equation 3.27, we obtain the dispersion 

relation stated in equation 3.30. We assume that 𝛾 = 𝛾∗. 

  

𝐸 = 𝜀0 − 2𝛾cos (k) (3.29) 

 In this context, the wave number is represented by the quantum number (k), while the wave 

function is related to the retarded Greens function, which is denoted 𝑔(𝑧, 𝑧′) and satisfies the 

following equation: 

  

(𝐸 − 𝐻)𝑔(𝑧, 𝑧′) = 𝛿(𝑧,𝑧′)

−𝛾𝑔(𝑧 − 1, 𝑧′) + (𝐸 − 𝜀0)𝑔(𝑧, 𝑧
′) − 𝛾𝑔(𝑧 + 1, 𝑧′) = 𝛿𝑧,𝑧′

} (3.30) 

where 𝛿𝑧,𝑧′ = 1, if 𝑧 = 𝑧′, and 𝛿𝑧,𝑧′ = 0, if 𝑧 ≠ 𝑧′. 

The Green's function g(z, z′) of a system is defined to be the amplitude at the position 𝑧 

created by an an incoming wave at point 𝑧′. This excitation would generate two waves that 

pass across the locations of excitation. Figure 3.3 displays the values of their amplitudes B 

and D. 



 65 

  

Figure 3.4. A representation of the retarded Green's function of an infinite lattice in one 

dimension. By exciting the point at z = z′, the outgoing wave propagates in both the left and 

right directions. The amplitudes of these waves are B and D, respectively. 

The outgoing waves with amplitudes B and D are shown in Figure 3.4 as they move away 

from the excitation point. Thus, the two waves can be expressed as follows: 

    

𝑔(𝑧, 𝑧′) = {
𝐷𝑒𝑖𝑘𝑧 , 𝑧 ≥ 𝑧′

𝐵𝑒−𝑖𝑘𝑧, 𝑧 ≤ 𝑧′
(3.31) 

The fact that the equation 3.31 match the equation 3.30 at all positions, except at point 𝑧 = 𝑧′ 

are not met, where the Green's function must be continuous. 

   

[𝑔(𝑧, 𝑧′)]Left = [𝑔(𝑧, 𝑧
′)]Right (3.32) 

  

𝐵𝑒−𝑖𝑘𝑧
′
= 𝐷𝑒𝑖𝑘𝑧

′
(3.33) 

𝐵 = 𝑒2𝑖𝑘𝑧
′

(3.34) 

𝒛 = 𝒛′ 

Z 

Moving to the right Moving to the left 

D B 
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 Now, we get the following: 

  

𝑔(𝑧, 𝑧′) (3.35)

 = {𝐷𝑒
𝑖𝑘𝑧 = 𝐷𝑒𝑖𝑘𝑧

′
𝑒𝑖𝑘(𝑧−𝑧

′) 𝑧 ≥ 𝑧′

𝐷𝑒2𝑖𝑘𝑧
′
𝐷𝑒2𝑖𝑘𝑧

′
= 𝐷𝑒𝑖𝑘𝑧

′
𝑒𝑖𝑘(𝑧

′−𝑧) = 𝐷𝑒𝑖𝑘𝑧
′
𝑒𝑖𝑘(𝑧

′−𝑧) 𝑧 ≥ 𝑧′
(3.35)

 

 It is obvious that the exponent of the complex number is consistently positive, so the simpler 

expression can be defined as: 

  

𝑔(𝑧, 𝑧′) = 𝐷𝑒𝑖𝑘𝑧
′
𝑒𝑖𝑘|𝑧

′−𝑧| (3.36) 

 Furthermore, this equation must satisfy the Green's function, (𝐸 − 𝐻)𝑔(𝑧 − 𝑧′) = 𝛿(𝑧,𝑧′) :  

𝛿𝑧,𝑧′ = 𝐸𝑔(𝑧, 𝑧
′) − 𝜀0𝑔(𝑧 − 𝑧

′) + 𝛾𝑔(𝑧 + 1, 𝑧′) + 𝛾𝑔(𝑧 − 1, 𝑧′) (3.37) 

 Therefore, the solution at z=z' is obtained as follows: 

  

1 = (𝐸 − 𝜀0)𝑔(𝑧, 𝑧) + 𝛾𝑔(𝑧 + 1, 𝑧
′) + 𝛾𝑔(𝑧 − 1, 𝑧′) (3.38)

= 𝐷𝑒𝑖𝑘𝑧
′
[(𝐸 − 𝜀0)]𝑒

𝑖𝑘|𝑧−𝑧| + 𝛾𝑒𝑖𝑘|𝑧+1𝑧| + 𝛾𝑒𝑖𝑘|𝑧−1𝑧| (3.38)
 

 When we solve it for 𝐷𝑒𝑖𝑘𝑧
′
, we obtain: 

   

1

𝐷𝑒𝑖𝑘𝑧
′ = (𝐸 − 𝜀0) + 𝛾𝑒

𝑖𝑘 + 𝛾𝑒𝑖𝑘

= (𝐸 − 𝜀0) + 𝛾𝑒
𝑖𝑘 + 𝛾𝑒𝑖𝑘 + 𝛾𝑒−𝑖𝑘 + 𝛾𝑒−𝑖𝑘

= 𝛾𝑒𝑖𝑘 − 𝛾𝑒−𝑖𝑘

 

 Using the group velocity ℎ𝑣𝑔 = 2𝛾 sin(𝑘) , we may express the Green's function for a one-

dimensional chain as: 
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𝑔𝑅(𝑧, 𝑧′) =
1

𝑖ℎ𝑣𝑔
𝑒𝑖𝑘|𝑧−𝑧

′| (3.40) 

 Several solutions to this problem have been presented in the literature [4, 17, 19]. We used 

the retarded Green's function 𝑔𝑅(𝑧, 𝑧′) to solve the problem in the equation above. However, 

the advanced Green's function 𝑔𝐴(𝑧, 𝑧′) provides an alternative answer. 

   

𝑔𝐴(𝑧, 𝑧′) =
−1

𝑖ℏ𝑣𝑔
𝑒−𝑖𝑘|𝑧−𝑧

′| =
𝑖

ℏ𝑣𝑔
𝑒−𝑖𝑘|𝑧−𝑧

′| (3.41) 

 We can state that the retarded Green function represents the outgoing waves from an 

excitation point (z = z ′), while the advanced Greens' function represents the two entering 

waves that disappear at the excitation point. Thus, the retarded Green's function will be 

employed for simplicity. We then remove the R from the formula, which becomes 𝑔(𝑧, 𝑧′) =

𝑔𝑅(𝑧, 𝑧′), [1]. 

 

3.6.2 Semi-infinite one-dimensional lattice 
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 Figure 3.5 shows a tight-binding model for a semi-infinite one-dimensional lattice. This 

system consists of energy site 𝜀0 and hopping elements (-γ). Sites labelled z0, z0-1, z0-2,z0-3, 

In this figure shows the function's behaviour or transformation over multiple z regimes, 

particularly at large magnitudes (±∞), showing asymptotic tendencies and probable 

singularities or unique points. Z0  may represent a particular point of interest (a pole, zero, or 

region where the function's behaviour is examined). 

Shifts or translations along the complex plane or real line (z0, z0-1, z0-2,z0, z0-3…) 

demonstrate the function's behaviour at nearby places. 

Gamma (γ) is a fixed value or parameter in mathematical models that has a specific purpose. 

Epsilon (ε) is a small positive value that measures how close a function is to a specific limit 

or value. 

 

 First, we want to satisfy the boundary condition. This will be achieved by introducing an 

additional plane wave component with a new amplitude [1]: 

  

𝑔(𝑧, 𝑧′) =
1

𝑖ℎ𝑣𝑔
𝑒𝑖𝑘|𝑧−𝑧

′| + 𝐴𝑒−𝑖𝑘|𝑧−𝑧
′| (3.42) 

 By applying the condition 𝑔(z, z0) = 0, z ≤ z
′, wehere  

𝑔(𝑧, 𝑧0) =
1

𝑖ℎ𝑣𝑔
𝑒𝑖𝑘(𝑧0−z) + 𝐴𝑒−𝑖𝑘(𝑧0−z) 

yields 

𝐴 =
−1

𝑖ℎ𝑣𝑔
𝑒2𝑖𝑘(𝑧0−z) (3.43) 
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Putting this back into Green's function allows us to find: 

  

𝑔(𝑧, 𝑧′) =
1

𝑖ℎ𝑣𝑔
𝑒𝑖𝑘(𝑧

′−𝑧) −
1

𝑖ℎ𝑣𝑔
𝑒2𝑖𝑘(𝑧−𝑧0)𝑒−𝑖𝑘(𝑧

′−z)
 

 Next, we consider the second condition, which states that any point beyond (𝑧0 − 1) is not 

influenced by a source in the chain. Therefore, if z ≥ z′and z = z0, it is predicted that 

𝑔(𝑧0, z) = 0. Based on this condition, we get: 

  

𝑔(𝑧0, 𝑧) =
1

𝑖ℎ𝑣𝑔
𝑒𝑖𝑘(𝑧0−𝑧

′) − 𝐴𝑒−𝑖𝑘(𝑧0−𝑧
′) (3.44)

𝐴 = −
1

𝑖ℎ𝑣𝑔
𝑒2𝑖𝑘(𝑧0−𝑧

′) (3.45)

 

  When we substitute this back into Green's function, we get: 

  

                               𝑔(𝑧, 𝑧
′) =

1

𝑖ℎ𝑣𝑔
𝑒𝑖𝑘(𝑧−𝑧

′) −
1

𝑖ℎ𝑣𝑔
𝑒2𝑖𝑘(𝑧0−𝑧

′)𝑒−𝑖𝑘(𝑧−𝑧
′)

  (3.46)                         

 The following is written to summarize these two equations: 

  

   

𝑔(𝑧, 𝑧′) =

{
 
 

 
 
1

𝑖ℎ𝑣𝑔
[𝑒𝑖𝑘(𝑧−𝑧

′) − 𝑒𝑖𝑘(2𝑧0−𝑧−𝑧
′)], 𝑧 ≥ 𝑧′

1

𝑖ℎ𝑣𝑔
[𝑒𝑖𝑘(𝑧

′−𝑧) − 𝑒𝑖𝑘(2𝑧0−𝑧−𝑧
′)], 𝑧 ≤ 𝑧′

(3.47) 

 Additionally, it is possible to express the previous equation as:  
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𝑔(𝑧, 𝑧′) =
1

𝑖ℎ𝑣𝑔
[𝑒𝑖𝑘|𝑧−𝑧

′| − 𝑒𝑖𝑘(2𝑧0−𝑧−𝑧
′)] = 𝑔𝑧,𝑧′

∞ +Ψ
𝑧,𝑧′
𝑧0 (3.48) 

 

3.6.3 Scattering in one dimension (1-D) 

  In this section, we will provide a simple example, the surface Green's function is computed 

at the point 𝑧 = 𝑧0 − 1. Therefore, the surface Green's function can be stated as follows [1]: 

   

𝑔(𝑧0 − 1, 𝑧0 − 1) (3.49)

 =
1

𝑖ℎ𝑣𝑔
[𝑒𝑖𝑘|𝑧0−1,𝑧0−1| − 𝑒𝑖𝑘(2𝑧0−𝑧0+1−𝑧0+1)] (3.49)

 

 Now, we simplified this form to obtain: 

  

𝑔(𝑧0 − 1, 𝑧0 − 1) =
1

𝑖ℎ𝑣𝑔
− 2𝑖sin (𝑘)𝑒𝑖𝑘 (3.50)

𝑔(𝑧0 − 1, 𝑧0 − 1) =
2𝑖sin (𝑘)

2𝑖𝛾sin (𝑘)
𝑒𝑖𝑘 = −

𝑒𝑖𝑘

𝛾
(3.51)

 

 

3.6.4 One-dimensional (1-D) Scattering Using Green's Functions 

 

 

   

Figure 3.6: shows a tight binding model of two semi-infinite leads with site energy 𝜀0  and 

couplings −𝛾connected through a hopping element -α. 
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The scattering region is restricted between −γ and +γ, while the regions outside stretch to 

infinity. In the core region between −γ and +γ, the scattering interaction takes place, whilst 

the propagation zones unaffected by scattering are represented by the area between −∞ and 

−γ and between +γ and +∞. 

 Scattering Region: The area where particles or waves are scattered. 

 

 The left region (−∞ to −γ) represents the domain where particles or waves originate  

 

or transit before reaching the scattering centre. 

The scattering zone, located between −γ and +γ, is where scattering interactions occur. 

  

 The right region ranges from +γ to +∞, and represents the area where particles or waves 

emerge after scattering. 

  

 

 In this case, we have two semi-infinite one-dimensional leads, both equal with 𝜀0 on-site 

potential and −𝛾 hopping elements. When the leads are decoupled (𝛼 = 0), the total Green 

function is obtained, which is defined as [1]; 

  

𝑔 =

(

 
 

𝑒𝑖𝑘

𝛾
0

0 −
𝑒𝑖𝑘

𝛾 )

 
 

(3.52) 

 Given that we possess two semi-infinite leads that are not connected, we may express 

Green's function as 𝑔 = (𝐸 − ℎ1)
−1 where ℎ1is the Hamiltonian of these two leads. Thus, we 

have generated an infinite matrix for finding this Hamiltonian ℎ1, as follows: 
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ℎ1 =

(

 
 

. . 0 0 0
⋅ 𝜀0 −𝛾 0 0
0 −𝛾 𝜀0 −𝛾 0
0 0 −𝛾 𝜀0 −𝛾
0 0 0 0 . )

 
 

(3.53) 

 By linking the two leads with a hopping element, the Hamiltonian for the complete system is 

𝐻 = ℎ1 + ℎ0, where ℎ0 denotes the coupling parameters. 

  

ℎ0 = (
0 𝛼
𝛼 0

) (3.54) 

 We now apply Dyson's equation to generate the Green's function for the coupled system: 

  

𝐺 = (𝐸 − 𝐻)−1 = (𝐸 − ℎ1 − ℎ0)
−1 (3.55) 

  

𝐺 = (𝑔−1 − ℎ0)
−1 (3.56) 

 The solution would be the following: 

𝐺 =

(

 
 
 

(

 
 
−
𝑒𝑖𝑘

𝛾
0

0 −
𝑒𝑖𝑘

𝛾 )

 
 

−1

− (
0 𝛼
𝛼 0

)

)

 
 
 

−1

                                   (3.57) 

𝐺 =
1

𝛾2𝑒−2𝑖𝑘 − 𝛼
(
−𝛾𝑒−𝑖𝑘 𝛼

𝛼∗ −𝛾𝑒−𝑖𝑘
)                                 (3.58) 

We will now compute the Greens' function as defined in equation (3.58) and use it in the 

Fisher Lee relation to get the transmission amplitude (t*) and reflection amplitude (𝑟⋆).  

The scattering amplitudes of the scattering problem are determined by the Fisher Lee relation, 

which is related to the Green's function of the same issue. 
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 The components of Green's function can be determined from equation (3.58), which allows 

for the definition of transmission and reflection coefficients. When two waves with 

amplitudes B and D are sent outward from the source (the excitation point), one wave is 

directed away from the scatter while the other is directed towards the scatter. Thus, two 

waves are represented by Green's function: one is a reflected wave or left wave 

(𝐷𝑒−ik|z−z
′| + 𝐵𝑟𝑒ik|z−z

′|) and the other is a transmitted wave or right wave (𝐵𝑟𝑒ik|z−z
′|). In 

this example, 𝑡 ⃗⃗⃗represents the transmitted right wave and 𝑟 ⃗⃗⃗represents the reflected left wave, 

with arrows pointing in the amplitude directions. 

 

1 + 𝑟 = −𝑖ℎ𝑣𝑔
𝛾𝑒−𝑖𝑘

𝛾2𝑒−2𝑖𝑘 − 𝛼2
                                                 (3.59) 

    

 𝑡 = 𝑖ℎ𝑣𝑔
𝛼𝑒𝑖𝑘

𝛾2𝑒−2𝑖𝑘−𝛼2
                                                                (3.60) 

 

 

 

Now, we compute the transmission and reflection probability as follows: 

𝑇 = |t|2 and 𝑅 = |r|2 

    Finally, the conductance of the system can be computed using the Landauer formula 𝐺 =

𝐺0𝑇(𝐸𝐹). 
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Chapter 4  

Exploring Quantum Interference in Hexaazatrinaphthylene (HATNA) Molecules 

 

4.1 Motivation  

To achieve molecular-scale electrical processes beyond the von Neumann bottleneck, new 

forms of multi-functional switches are required that imitate self-learning or neuromorphic 

computing by dynamically switching between different operations based on their history. 

 This chapter is motivated by the experimental work of ref. [1], in which hexaazatrinaphthylene 

(HATNA) molecules were reported to show memristive behaviors. However, the mechanism 

behind is unclear and no theory of transport through such molecules has been presented in the 

literature. Furthermore, the experiments of [1] were performed on self-assembled monolayers 

(SAMs) and it is not clear if their observed behaviour can be replicated in a single-molecule 

junction. I therefore investigated the transport properties of a HATNA series of single-

molecule junctions, which at least in the SAMs [1] includes molecules that switch between 

high and low conductance states upon reduction by hydrogen. Because of its time-domain 

and voltage-dependent plasticity, this dynamic molecular switch mimics synaptic behavior 

and Pavlovian learning and can supply all of the basic logic gates. This multifunctional 

switch could form a basis for molecular-scale hardware that can be used in solid-state 

devices, opening the way for dynamic complicated electrical actions contained within a 

single ultra-compact component. 

 

4.2 Introduction 

  Motivated by brain energy efficiency and the growing demand for miniaturized electronics, 

there is a push to create devices that mimic the dynamic character of neurons and synapses in 

order to create trainable, adaptive computing networks or new hardware for deep learning for 

many kinds of applications such as pattern recognition, classification, or non-von Neumann 

neuromorphic computation [2-5]. Neuromorphic computing simulates synaptic plasticity in 
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electronic devices. Such processes are currently carried out utilizing advanced, energy-

inefficient silicon-based circuits with enormous footprints, or mesoscale permissive devices 

based on ferroelectric [6] or phase change materials [7], filaments, or dopant migration [1, 3, 

8]. In this context, molecular switches are interesting because to their intrinsic small size; but 

molecular switches are currently static, which means they switch between fixed on and off 

states (e.g., magnetic, redox, or conformational states) [9-11]. We present a dynamic 

molecular switch at a tunnel junction that remembers its history, with the switching 

probability and on/off state values changing on a continuous basis. This dynamic switch 

successfully simulates synaptic behavior and Pavlovian learning, as well as all two-terminal 

logic gates required for deep learning by using the junctions' time-domain plasticity. These 

functions are given inside a single molecular layer (2.4 nm thick), which is smaller than a 

neuron synapse (∼ 1 − 10𝜇m ) by at least three orders of magnitude and thinner even than the 

synaptic gap (20-40 nm) by an order of magnitude. This dynamic nature represents a new 

kind of molecular switches that operate far outside of equilibrium, opening the way for 

molecular-scale neuromorphic computing. 

 One of the goals of neuromorphic electronics is to create computing systems in which 

training occurs at the hardware level. There is currently no molecular hardware available for 

this purpose. Unlike chemical switches previously investigated, biological switches, such as 

synapses, are dynamic and operate far outside of thermodynamic equilibrium [12,13], 

allowing them to be trained. Synapses transmit information in the form of an action potential 

from a presynaptic neuron to a postsynaptic neuron through the synaptic gap, which is 

regulated by a combination of excitatory and inhibitory neuronal inputs. Synapses can be 

strengthened or weakened based on their activity by combining different processes with 

different time constants, such as fast depolarization and slow diffusion of Ca2+ and 

neurotransmitters [15]. This results in synaptic plasticity, enabling pulse pair facilitation and 
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depression with spike rate and timing dependent plasticity. To simulate synapses at the 

molecular level, we combined quick electron transfer (similar to action potentials and 

depolarization processes) with slow proton coupling limited by diffusion (similar to the role 

of Ca2+ or neurotransmitters). 

 

4.3. Studied Molecules 

As discussed in [1], the HS-C10-HATNA molecules are made up of a 5,6,11,12,17,18-

hexaazatrinaphthylene (HATNA) terminal that passes through six successive proton-coupled 

electron transfer (PCET) stages to generate a dynamic covalent N–H bond. Within a SAM, 

molecules can exist in a range of oxidation and protonation states, showed as Hn-HATNA, 

where n ranges from 0 to 6. 

 

 

Figure 4.1. Molecules studied in this chapter, with zero Hs, two Hs, four Hs and six 

Hs attached to the nitrogen atoms (shown in blue). 
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4.4. Transmission coefficient 𝑻(𝑬) 

As noted in chapter 3, the transmission coefficient T(E) is an important measure for 

determining the electron transport properties of molecular junctions generated by HS-C10- 

HATNA molecules on gold substrates. T(E) represents the probability that an electron with 

energy E will pass through the molecular junction. The energy-dependent behavior of T(E) 

gives information on the junction's conductance characteristics at various bias voltages, 

including negative differential resistance (NDR) and hysteresis. The transmission coefficient 

𝑇(𝐸)) in dynamic molecular switches based on HS-C10-HATNA is impacted by factors such 

as the molecule structure, oxidation state, protonation state, and the presence of certain 

electronic states within the molecular energy levels. Changes in 𝑇(𝐸) can be connected with 

the switching behavior of molecular junctions, where transitions between multiple states 

(e.g., 0H, 2H-1, 2H-2, 4H-1, 4H-2, 6H) lead to differences in the electron transport 

characteristics. We can learn more about the mechanisms driving the conductance switching 

and hysteresis seen in the molecular junctions by examining the energy-dependent 

transmission coefficient 𝑇(𝐸) in conjunction with other parameters like the density of states 

and molecular orbitals. This understanding is critical for creating and optimizing molecule-

scale devices with specific electronic functions, as well as for future applications in 

nanoelectronics and molecular computing.  

4.5. Frontier orbitals 

The frontier orbitals of isolated HS-C10-HATNA molecules in different protonation states 

are critical in influencing their electronic characteristics and reactivity. These frontier 

orbitals, which include the highest occupied molecular orbital (HOMO) and the lowest 

unoccupied molecular orbital (LUMO), control the molecule's ability to take or donate 

electrons, engage in charge transfer reactions, and interact with other molecules or surfaces. 

Understanding the distribution and energy levels of these frontier orbitals is critical for 
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predicting the molecule's behavior in many settings and applications, including molecular 

electronics, catalysis, and sensing. Computational approaches such as density functional 

theory (DFT) can be used to investigate the frontier orbitals of HS-C10-HATNA molecules, 

providing information about their electronic structure and reactivity. 

 

 4.6. DFT calculations. 

Note that when adding two hydrogens to the nitrogens, they can either be added to a branch 

connected to an anchor group, as in the molecule denoted 2H-1 in Figure 4.3, or to a branch 

which is not connected to a pendant group, as in the molecule denoted 2H-2 in figure 4.6. 

Therefore in what follows, I shall examine the properties of six molecules, denoted 0H, 2H-1, 

2H-2, 4H-1, 4H-2, and 6H. Clearly the junctions formed from 0H, 2H-2, 4H-2, and 6H are 

symmetric, whereas junctions formed from 2H-1, and 4H-1 are asymmetric. According to 

Breit-Wigner formula, for a symmetric molecular junction we will expect the transmission 

coefficient on resonance to equal 1, whereas for an asymmetric molecular junction, we expect 

the transmission coefficient on resonance to be less than one. In what follows, we shall see 

that this behaviour indeed is found within DFT calculations. 

 

 

 

 

 

 

 

 



 82 

Figure 4.2 Schematic of energy level change after reducing by adding two H, four H and six 

H. 

First, I compared the transport property of 0H and 2H to investigate the influence of 

reduction by two hydrogen atoms in two positions.  

 

 

Figure 4.3. (a) the geometries of 0H and 2H-1 within a junction. (b) Transmission curves of 

0H and 2H-1. 

These show how distinct elements of the molecule or system are linked or interact with one 

another across different energies. They depict the system's electrical structure as well as the 

pathways that electrons can take inside it. Essentially, they help in our understanding of 

bonding, potential electronic states, and how the molecule's structure effects its conductive 

qualities. These represent the probability or efficiency of electrons moving through the 

system at certain energies. They are critical for knowing how well a molecule or device 

conducts electrons, showing high transmission (efficient conduction) and low transmission 

(barriers or resistance). These curves are critical for assessing electronic transport qualities 

and prospective performance in electronic applications. In the transmission curve that 
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introducing these two hydrogens and I'm pointing at the hydrogens gives the red curve that 

decreases the transmission coefficient of the Fermi energy. Introducing the two hydrogens 

definitely decreases the electrical conductance in a couple of orders of magnitude, which is a 

clear memristive effect.  And then I'll also notice that the transmission resonances of the blue 

curve go to one, whereas the transmission resonance of the red curve does not go to one.  

 

  

 

Figure 4.4. Wavefunctions of 0H without and with anchors. 

 

The molecular orbitals are investigated, with a particular emphasis on the highest occupied 

molecular orbital (HOMO), the lowest unoccupied molecular orbital (LUMO), and related 

orbitals. different wavefunctions represent the probability distributions of electrons in various 

orbitals, which are critical for understanding the molecules' electrical characteristics, 

reactivity, and optical behaviour. The energies of these orbitals; the wavefunctions 

themselves are not shown or described in detail. In general, wavefunctions can be represented 

as spatial distributions that show the most probable locations for electrons. These 
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wavefunctions' symmetry and form have an impact on how molecules interact and take part 

in chemical reactions. Results indicate that the type of anchoring group has a substantial 

impact on the electrical structure of the molecule, as well as its potential uses in domains 

such as photovoltaics and catalysis. 

  

 

 

  

 

Figure 4.5: wavefunctions of 2H-1 with anchors 

 

The transmission function in Figure 4.3 shows that making a transition from 0H to 2H-1 by 

adding the hydrogen reduces the conductance. Also, comparing the HOMO-LUMO gaps in 

figures 4.4 and 4.5 shows that HOMO -LUMO gap shrunk upon adding the hydrogen. Note 

that 0H is symmetric, since it is unchanged if rotated by 180° about the vertical axis.  That 

means that the HOMO and LUMO resonances of the transmission curve should equal to 1 

unless there's a degeneracy.  However, 2H-1 is not symmetric and therefore as mentioned 

earlier, one expects that the transmission resonance will not equal 1 for the red curve. 

Consequently, as shown in Figure 4.3, even though the HOMO-LUMO gap of 2H-1 is 
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smaller than that of 0H, which normally increases the conductance, the conductance of 2H-1 

goes down compared to that of 0H. As shown in Figure 4.4 and 4.5, this is also partly due to 

the decreased magnitude of the LUMO and LUMO+1 on the two anchors after reduction. 

  

  

  

 

Figure 4.6. (a) the geometries of 0H and 2H-2 within junction. (b) Transmission curves of 0H 

and 2H-2. 
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Figure 4.7. Wavefunctions of 2H-2 with and without anchors. 

 

The molecule of 2H-2 with anchors is symmetric, so as shown in Figure 4.6, the transmission 

coefficient of the red curve on resonance is equal to one. Again we find that the HOMO- 

LUMO gap is reduced by introducing hydrogens. This may be expected, because typically, if 

we increase the size of a system, then the gap between the energy levels is decreased. In other 

words, if the orbitals are more delocalized then I will expect that decrease in the gap between 

energy levels. 

According to the orbital product rule since the HOMO and the LUMO products have the 

same sign, DQI is predicted. This is evident in the red curve of Figure 4.6, but not the blue 

curve. For the latter, the LUMO is almost degenerate with the LUMO+1 and therefore the 

product rule cannot be applied. 

I compare the transport properties of 0H and 4H to investigate the influence of reduction by 

four hydrogen atoms in two positions. 
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Figure 4.8. (a) the geometries of 0H and 4H-1 within junction. (b) Transmission curves of 0H 

and 4H-1. 

  

  

  

Figure 4.9. Wavefunctions of 4H-1 with anchors. 

 

From Figure 4.8, the red curve in the transmission coefficient on resonance is not equal to 1 

because 4H-1 is not a symmetric molecule. In contrast, 0H, is symmetric as mentioned above 

and therefore its transmission function is equal to 1 on resonance. 
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Upon adding two hydrogens to OH, the LUMO becomes the HOMO, because two electrons 

have been added. Similarly for 4H-1, since 4 electrons have been added to the molecular 

orbitals, the LUMO +1 of OH becomes the HOMO of 4H-1. 

Since the HOMO and LUMO products on the left side of Figure 4.9, have the same sign, DQI 

is predicted. For the right side of this Figure which is with the anchor group, the HOMO and 

LUMO also have the same signs and DQI is predicted, as is evident in the red curve of Figure 

4.8. 

I shall now examine the properties of 4H-2, which is shown in Figure 4.10 below. 

 

 

Figure 4.10. (a) the geometries of 0H and 4H-2 within junction. (b) Transmission curves of 

0H and 4H-2. 
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Figure 4.11. Wavefunctions of 4H-2, without and with anchors. 

 

  

Since both 0H and 4H-2 are symmetric molecules, the red and blue curves in Figure 4.10 

reveal that, as expected, the transmission coefficients of both molecules on resonance are 

equal to 1. Again since 4 electrons are added to the molecular orbitals, so I would expect the 

LUMO +1 of 0H to become the HOMO of 4H-2. 

From Figure 4.11, HOMO and LUMO products have different signs, so the orbital product 

rule predicts CQI.  

Finally, I compared the transport properties of 0H and 6H to investigate the influence of 

reduction by six hydrogen atoms in two positions. 
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Figure 4.12. (a) the geometries of 0H and 6H within junction. (b) Transmission curves of 0H 

and 6H. 

  

  

Figure 4.13. wavefunctions of 6H with anchors. 

  

In Figure 4.12, since both molecules are symmetric, both curves possess transmission coefficients 

reaching 1 on resonance. Furthermore, the orbital products of the HOMO and LUMO have the 

opposite signs and therefore CQI is predicted. Since 6 electrons have been added, the LUMO 
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+2 of 0H becomes the HOMO of 6H, the LUMO+1 of 0H becomes the HOMO -1 of 6H, and the 

LUMO of 0H becomes HOMO -2 of 6H.  

    

 

          Table 4.1. HOMO LUMO gaps for the molecules mentioned before. 
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4.7. Conclusions 

 

 Ref [1] presented a dynamic molecular switch measuring only 2.4 nm that easily simulate 

synaptic plasticity, Pavlovian learning, and can be set to perform all logic gates. It was 

claimed that the dynamic creation of N-H bonds driven by PC-ET drives the switching 

probability between high and low conduction states. It was suggested that the high 

conductance state for 2H-1 or 2H-2 was promoted by the presence of a mid-gap state in the 

middle of the HOMO-LUMO gap of the 0H molecule. Such a state is clearly present in the 

red curves of Figures 4.6 and 4.3, as indicated by the presence of additional transmission 

resonances near 𝐸 − 𝐸𝐹 = −1𝑒𝑉, which are not present in the blue curves. In their 

description, it is suggested that this state mediates electron hopping through the HATNA 

core. However, in the single molecule junctions modelled here, symmetry plays a role, which 

causes the conductance of 2H-1 to be lower than that of 0H, while the conductance of 2H-2 is 

found to be comparable to that of 0H. In other words, the conductance jump seen in the 

SAMs of [1] upon adding two hydrogens is not predicted to occur in a single molecule 

junction. In the SAM-based experiments of [1], the conductance is decreased upon adding 4 

or 6 hydrogens and this same behaviour is found in Figures 4.10 and 4.12, where the red 

curve at the Fermi energy is much lower than the blue curve. This suggests that the strategy 

of adding or removing hydrogen atoms can lead to large on-off ratios in single-molecule 

junctions, although up to 6 hydrogens may be needed to achieve attractive on-off ratios. For 

the future, it would be of interest to see if these predictions for the contrasting behaviour of 

single molecule junctions can be observed experimentally. 
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Chapter 5 

Single-Molecule Conductance Enhancement in Stable Diradical Molecules  

 

5.1. Introduction 

In this chapter, I further pursue the strategy of using the attachment or detachment of 

hydrogen atoms to switch the electrical conductance of single molecule. However, in contrast 

with the molecules of chapter 4, I consider molecules which form diradicals when hydrogen 

atoms are removed. Stable organic radicals are gaining attention, because of their special 

electrical features, especially their half-filled orbitals that are near the Fermi energy. These 

features make them attractive options for electronic device applications, because organic 

radicals can increase electrical conductivity. The thiophene fused dimer core, which has a 

skeleton with many substituent sites that can be tuned for optical, electrical, and spin 

properties, provides a perfect platform to make stable radicals. The following study aims to 

examine the charge transport features of a series of such thiophene dimer derivatives, with a 

special emphasis on stable radicals. The potential of radicals in single-molecule electronics 

and other functional devices is being realized, and this research is seen as a major step in that 

direction. Quantum interference provides an additional dimension to manipulate electron 

transport through molecules, including constructive quantum interference (CQI) and 

destructive quantum interference (DQI). As highlighted by magic number theory, depending 

on connectivity, CQI can lead to difference conductances within one molecule. In this 

chapter, two difference CQIs are discussed based on the thiophene dimers shown in Figures 

5.1 and 5.2, denoted CQI-H and CQI-L, corresponding to displays of CQI with higher 

conductance and lower conductance respectively. In what follows, the effect of diradicals on 

the conductance of CQI-H and CQI-L is studied using DFT combined with GOLLUM. 
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5.2. Studied molecules  

The following molecules will be investigated. As indicated in the figures, these form series of 

related molecules, which may exhibit either CQI-L and CQI-H and which may be either 

neutral molecules or neutral radicals. The latter are created by removing two hydrogen atoms 

from the two OH groups shown below. 

 

Figure 5.1: Studied diradical molecules and their corresponding neutral molecules. (CQI-H-

radical -CQI-H-singlet-CQI-H-triplet). 

 When the above molecules are placed between gold electrodes to form a single-molecule 

junction, they attach to the electrodes via the thio-methyl groups (coloured blue as a guide to 

the eye). In what follows, their transport properties will be compared with those of the 

molecules below, which have  

alternative connectivities to electrodes. 
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The CQI-H radical is a very unstable chemical that has an unpaired electron. There are two 

states in which it can exist: 

Singlet molecules: There is no net spin in the molecule and all of the electrons are coupled. 

Triplet molecules : The molecule has a net spin of one due to the parallel spins of two 

unpaired electrons. 

These conditions have an impact on the radical's actions and responses. Triplet states, 

particularly in processes involving light, can result in distinct reactions, although singlet 

states often have lower energies. 

 

Figure 5.2: Studied diradical molecules and their corresponding neutral molecules. (CQI-L-

radical-CQI-L1-radical-CQI-L-singlet-CQI-L-triplet). 

 For both sets of molecules, they could adopt singlet or triplet spins configurations. The 

potential spin occupancies for the diradicals are shown below. 

These compounds contain hydroxyl and sulphur groups in various electronic states: 

 They include radical forms, which are typically very reactive and have unpaired electrons. 
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 The singlet state has paired electrons, which increases the molecule's stability. 

 The triplet state contains unpaired electrons, which makes the molecule more reactive. 

 In general, the figure shows different forms of comparable sulfur-containing compounds in a 

range of energy states. 

  

 

 

 

Figure 5.3: Schematic shows two spin states for diradical molecules. 

According to this graphic, an atom or molecular system's energy levels and state transitions 

are represented. 

 The notations "down" and "up" are likely to correspond to electron spin orientations (spin-

down and spin-up), whereas "singlet" and "triplet" indicate specific spin states determined by 

electron pairing. 
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 This graphic shows the energy hierarchy and potential transitions between singlet and triplet 

states, emphasising the ways in which electrons might change between these states according 

on energy considerations and spin orientations. 

  

5.3. Results and discussion 

Case 1: CQI-H 

As shown in Figure 5.9, the HOMO and LUMO products of CQI-neutral have t different 

signs and therefore CQI is predicted. This is further confirmed by the transmission function 

indicated by the blue curve in Figure 5.4b, where no dip appears inside the HOMO-LUMO 

gap as. In terms of its diradical counterpart, the two unpaired electrons sitting on the two 

oxygen atoms can have the same spin or different spins, namely, they can be singlets or 

triplets as shown in Figure 5.3.  These two cases are therefore considered in this chapter. The 

transmission coefficient of the singlet case is also plotted in Figure 5.4b, with spin up and 

spin down channels almost identical due to the symmetric character of this molecule. The two 

peaks near the Fermi level correspond to the SOMO (singly occupied molecular orbital) and 

the SUMO (singly unoccupied molecular orbital) respectively. The room temperature 

conductance is plotted in Figure 5.5, which shows an increased conductance compared with 

its neutral counterpart near the Fermi energy.   I further carried on the calculation with a 

triplet spin state and plot the transmission curves in Figure 5.6. The two unpaired electrons on 

oxygens occupy the two energy levels indicated by the two red peak below Fermi energy. 

Figure 5.7 shows that a bigger conductance enhancement is observed, due to the presence of 

more resonances near the Fermi energy. The spin densities of the singlet and triplet diradicals 

within junctions are displayed in Figure 5.8, where the spin up and spin down are indicated 

by red and blue respectively. 
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Figure 5.4: (a) the geometries of CQI-H-radical and CQI-H-singlet within junction. (b)their 

transmission curves. 

The Figure shows how different energy levels in the system are related and how easily 

electrons can travel through at various energies. The transmission curves indicate the areas 

where electrons can move easily, while the connection curves show the relationships between 

states. They work together to help understand the electronic behaviour of the system. 
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 Figure5.5: CQI-H-radical and CQI-H-singlet room temperature conductance for stable 

radical where the purple one is the average of spin up and spin down transmission. 

This figure compares the logarithmic conductance (log G/Go) of various molecule structures, 

particularly through molecular mechanics and E-DFT (Density Functional Theory extended) 

computations. This graphic shows the simplicity of the electrical conductivity of several 

substances. It demonstrates that the energy state and structure of the molecule determine its 

conductance, with radicals and singlet states showing different conductance values. 
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Figure 5.6: (a) the geometries of CQI-H-radical and CQI-H-triplet within junction. (b) their 

transmission curves.  

This graphic shows how the different spin and radical configurations occupy distinct places 

across the energy spectrum, as well as the relative energies of these states. 

 It helps in understanding the stability, electronic transitions, and excited-state characteristics 

of CQI-H. 
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Figure 5.7: CQI-H-radical and CQI-H-triplet room temperature conductance for stable radical which 

the purple one is the average of spin-up and spin-down transmission. 

This chart compares the electrical conductance (log G/Go) of various molecular states or 

configurations. The horizontal axis indicates energy in electron volts (eV), while the vertical 

axis shows the logarithm of the conductance ratio (log G/Go). 

The CQI-H-radical has a significantly lower conductance value (about -3.7) than the CQI-H-

triplet (around -1.5). Negative values indicate that the conductance is lower relative to the 

reference conductance (Go), with considerable changes depending on whether the molecule is 

in a radical or triplet state.  
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Figure 5.8: (a) the spin density for CQI-H-singlet within a junction. (b) the spin density for 

CQI-H-triplet within a junction. 

 

 
 

Figure 5.9: Frontier molecular orbitals of CQI-H-radical studied molecule with its 

eigenvalues obtained from DFT, where red represents positive and blue indicates negative 

regions of the wave functions.  

Figure 5.9 shows that the orbital products of the HOMO and LUMO of CQI-H-radical have 

opposite signs and so the CQI is predicted.  
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The spatial distribution of electrons is defined by wavefunctions that correspond to HOMO, 

LUMO, and other orbitals. These distributions affect the molecule's interactions with light, 

other compounds, and electric fields. Indicating the energy of the highest occupied electrons 

is the HOMO level at -4.097 eV. The energy at which electrons can be excited is indicated by 

the LUMO at -1.629 eV. The HOMO-LUMO gap of 2.468 eV represents the energy required 

for electronic excitation. 

  

  

 

 

 

Figure 5.10: Frontier molecular orbitals of CQI-H-singlet studied molecule with its 

eigenvalues. 

  

Figure 5.10 shows the frontier molecular orbitals of the CQI-H-singlet diradical molecule, along with 

its eigenvalues. In this case, the amplitude of the spin up and spin down LUMOs are negligibly small 

on at least one end of the molecule, and therefore, the product rule cannot be applied. 
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Figure 5.11: Frontier molecular orbitals of the CQI-H-triplet studied molecule with its eigenvalues 

 

Figure 5.11 shows the frontier molecular orbitals of the CQI-H-triplet diradical, along with its 

eigenvalues. In this case, the orbital products of the HOMOs and LUMOs of both the up and down 

spins have opposite signs and therefore the product rule predicts CQI for the spin-up and down 

transmission functions.  

 

 

 

 

 



 110 

Case 2: CQI-L 

In this section, the molecules with alternative connectivities shown in Figure 5.2 are studied. For CQI-

L, as shown in Figure 5.18, the HOMO and LUMO products have different signs and therefore the 

product rule predicts CQI. The transmission functions for this molecule and for the non-radical CQI-

L1-radical are plotted as the blue and brown curves in Figure 5.12(b). Clearly CQI-L1-radical is 

predicted to have a significantly higher conductance than CQI-H-radical. In the case of the diradical 

counterpart, the two unpaired electrons sitting on the two oxygen atoms can have the same spin or 

different spins, namely, they can be singlets or triplets as shown in Figure 5.3. The transmission 

coefficient of the singlet case is plotted in Figure 5.14b, with spin up and spin down channels almost 

identical due to the symmetric character of this molecule. The room temperature conductance is 

plotted in Figure 5.15, which shows an increased conductance compared with its radical counterpart 

near the Fermi energy. I carried out the calculation for a triplet spin state and plotted the transmission 

curves in Figure 5.16(b). The two unpaired electrons on oxygens occupy the two energy levels 

indicated by the two red peaks around Fermi energy. A bigger conductance enhancement is observed 

due to more resonances near Fermi energy. 
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Figure 5.12:(a) the geometries of CQI-L-radical and CQI-L1-radical within junction. (b) their 

transmission curves.  

 

This Figure shows a comparison of the electronic energy levels and characteristics of two 

radicals, CQI-L and CQI-L1. The energy values are displayed in electron volts (eV) to 

demonstrate the changes in electronic states. The data contains particular energy points for 

each radical, demonstrating how their electronic structures change, which might affect their 

chemical reactivity and stability. The figure probably highlights the impact of various 

computational techniques, such E-EDFT, in determining these energy levels, offering 

information about the electrical properties of these radical species. 

  

 

   
Figure 5.13: CQI-L-radical (blue curve) and CQI-L1-radical (red curve) room temperature 

conductance for stable radical.   
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This Figure shows how the conductance (ability to conduct electricity) of various radical 

molecules changes according to their energy level. As energy increases, conductance 

decreases, implying that particular molecules conduct better at specific energies. It utilises a 

particular calculating approach known as E-EDFT to compare various radicals and how their 

electronic structures affect their capacity to conduct electricity. 

  

  

 

Figure 5.14:(a) the geometries of CQI-L-radical and CQI-L-singlet within junction. (b) their 

transmission curves.  

Increased conductance occurs when molecular states become energetically suitable for 

electron tunnelling, such as when energy levels approach the Fermi level. 

Conductance decreases occur as these states move away or energy gaps expand, restricting 

electron movement. 
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Figure 5.15: CQI-L-radical (blue curve) and CQI-L-singlet (purple curve) room temperature 

conductance.  

This Figure compares the conductance (measured as log G/Go) for two different states: the 

radical state and the singlet state. The graph shows how conductance increases with energy 

(in eV). It indicates that conductance changes depending on the state, with significant 

differences between the radical and singlet states over the energy range. 
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Figure 5.16:(a) the geometries of CQI-L-radical and CQI-L-triplet within junction. (b) their 

transmission curves.  

CQI-L-radical: A radical state that often has an unpaired electron, making it reactive and 

important in electron transfer activities. CQI-L-triplet-up and CQI-L-triplet-down are triplet 

states with two unpaired electrons and parallel spins ("up" and "down" states). 

The transition between different states (such as from CQI-L-radical to triplet states) and their 

corresponding energies affect the conductance in the figure. When building molecular 

electronic components, the system's conductance—whether high or low—is determined by its 

arrangement and energy alignment. 
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 Figure 5.17: CQI-L-radical and CQI-L-triplet room temperature conductance for the stable 

diradical. 

The purple curve of the diradical is an average of spin-up and spin-down conductance. 

The electrical conductance, represented by the log of G divided by G₀ (log G/Go), is 

compared for different states or configurations in this Figure. The conductance value of the 

CQI-L-radical is about -6, and the conductance value of the CQI-L-triplet is about -2.9. This 

shows that the conductivity in the radical state is much lower than that in the triplet state. The 

difference indicates that the radical reduces conductance, most likely due to shifts in spin or 

electrical structure between the radical and triplet forms. 
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Figure 5.18: Frontier molecular orbitals of CQI-L-radical studied molecule with its eigenvalues.  

 

The orbital ends of HOMO and LUMO have the opposite signs as shown in Figure 5.18, so 

CQI is predicted.  

HOMO The wavefunction represents the highest energy molecular orbital containing 

electrons at ground state. Its wavefunction has a certain symmetry and distribution of electron 

density, which determines how the molecule contributes electrons during chemical reactions. 

The LUMO wavefunction represents the lowest energy, unoccupied molecular orbital. Its 

wavefunction tells where the molecule is most likely to take electrons, which influences its 

ability to perform specific reactions or excitations. 
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Figure 5.19: Frontier molecular orbitals of CQI-L1- radical studied molecule with its 

eigenvalues.  

 

The two ends of the above HOMOs and LUMOs have different signs and therefore the 

product rule predicts CQI. 

The HOMO and LUMO wavefunctions represent the spatial distribution of electrons in those 

orbitals, providing information about the molecule's electrical behaviour, reactivity, and 

optical features. 

The HOMO wavefunction indicates the location of electrons with the maximum energy.  

The LUMO wavefunction indicates where electrons would travel if they were stimulated. 
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Figure 5.20: Frontier molecular orbitals of CQI-L-singlet studied molecule with its eigenvalues. 

 

 In both spin-up and down of the orbital ends the HOMOs and LUMOs have the opposite 

signs as shown in Figure 5.20, so the CQI is again predicted.  

This Figure describes the electrical structure, focusing on the spin-dependent energy levels. 

Spin splitting affects the distribution of electrons across energy levels, which affects material 

properties such as magnetism and conductivity. 

The 0.653 eV gap between the spin-up and spin-down states suggests strong spin 

polarisation, which can influence electrical features such as magnetic moments and spintronic 

behaviour. 
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Figure 5.21: Frontier molecular orbitals of CQI-L-triplet studied molecule with its eigenvalues. 

 

 The orbital products of both spin-up and spin-down HOMOs and LUMOs have opposite 

signs as shown in Figure 5.21, so the CQI is predicted.  

The figure shows the energy levels that correspond to the system's spin-up and spin-down 

states. It provides the energies of several molecular orbitals, particularly the HOMO (highest 

occupied molecular orbital) and LUMO (lowest unoccupied molecule orbital). 

 For spin-up, the LUMO is at -4.083 eV, and orbitals such as HOMO-1 and HOMO have 

energies of about -4.854 eV and -4.506 eV, respectively. 

For spin-down, the energies of the corresponding orbitals, HOMO-3 and HOMO-2, are 

around -5.039 eV and -4.860 eV, respectively. The HL gap (~0.423 eV) between spin-up and 

spin-down states indicates spin polarisation in the system. This gap indicates that the two spin 

states are energetically separated, which influences the material's electrical and magnetic 

properties. 
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5.5 Conclusion 

In conclusion, the study shows that the creation of stable organic diradicals can lead to a large 

conductance enhancement in single-molecule junctions. As shown in Figures, 5.13, 5.15 and 5.17 a 

conductance increase of between 2 and 3 orders of magnitude can be expected upon removal of two 

hydrogen atoms. These results indicate that the ability to attach and detach hydrogen atoms leads to 

new strategy for high performance single-molecule switches with attractive on-off ratios. This gives 

new options for the development of advanced electrical devices, particularly in spintronics and 

molecular electronics, where distinctive features of radicals can be used for new applications. The 

stability of these radicals under ambient situations contributes to their potential for practical 

application in future electrical systems. 
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Chapter 6 
 

Conclusion and Future Work  

6.1 Conclusion  

This thesis has focused on the following chapters:   

Chapter 1 provides a general overview of molecular electronics, thermoelectricity, and the 

thesis outline. Chapter 2 provides general ideas of DFT code SIESTA, which is employed to 

all the electronic structure computations in this thesis. In the stimulation study, I extracted 

and relaxed the Hamiltonian of an isolated molecule before connecting it to metallic 

electrodes to calculate transport properties. Chapter 3 covers single-particle transport theory, 

which includes the Landau formula, thermoelectric coefficients, and scattering theory. 

Chapter 4 This research describes a dynamic molecular switch capable of simulating synaptic 

behavior and completing complicated computational tasks, paving the path for future 

advances in neuromorphic computing and adaptive electronics.  

Chapter 5 in this study indicates that stable organic radicals improve single-molecule 

conductivity. The results show that the unique properties of diradicals can be exploited to 

create new electrical switches with attractive on-off conductance ratio of between 2 and 3 

orders of magnitude. These radicals are stable under ambient conditions, making them 

suitable for future electrical systems. 
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6.2 Future Work  

The research in chapter 4 suggests several recommendations for future work, one of which is 

to investigate the possibility of incorporating these dynamic molecular switches into more 

sophisticated circuits and systems to explore their potential in neuromorphic computing 

further. Additionally, I can focus on improving the performance and stability of these 

switches, along with examining their scalability for actual applications in electronic devices. 

Future studies could include the creation of new substances or configurations to improve the 

efficiency and efficacy of molecular switches in replicating synaptic behaviour. 

Chapter 5: The suggested future work in this chapter includes additional research on the 

stability and performance of stable organic radicals in diverse environments, especially under 

ambient circumstances. Develop stable radicals that can keep their properties outside of 

controlled laboratory environments. The possibility of investigating various molecular 

configurations and substituents to maximise charge transport characteristics and improve the 

performance of single-molecule electrical devices, including spintronics and thermoelectric 

applications. For both the HATNA molecule in chapter 4 and the diradicals in chapter 5, the 

on-off conductance ratio is sensitive to the position of the Fermi energy and therefore it 

would be of interest to vary 𝐸𝐹 , either by change the anchor groups, (to eg thiol) or by 

varying the electrode materials. In the literature, a wide range of electrode materials have 

been explored, including graphene [12], silicene [13] and platinum [14]. For the purpose of 

increasing on/off conductance ratios, it may also be of interest to consider using one 

superconducting and one normal-metal electrode, so that charge transport is mediated by 

Andreev reflection [15-17]. This may be particularly fruitful, because recent studies have 

shown that CQ and DQI features persist and on-off ratios are enhanced by the presence of a 

superconducting electrode [18,19]. Finally, as well as studying the role of hydrogenation on 

Seebeck coefficients, it would be of interest to determine if such changes modify the thermal 
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conductance of diradical and easily reduced molecules such as HATNA. Recently, single-

molecule thermal conductances have been computed by adapting techniques used to model 

phonon transport in disordered wires [20] and shown to be in excellent agreement with 

experimental thermal conductance measurements [21]. Investigating the effects of external 

stimuli such as light or magnetic fields on the molecules, creating molecules with various 

conductance states to improve data storage, evaluating the molecules' long-term stability, and 

researching the effects of environment and temperature on performance. Additionally, 

studying spin and thermoelectric properties, enhancing production techniques for scalability, 

and investigating integration with materials like graphene can all contribute to the 

advancement of useful applications. 
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