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ABSTRACT

Stellar bars are key structures in disc galaxies, driving angular momentum redistribution and influencing processes such as bulge growth and star
formation. Quantifying the bar fraction as a function of redshift and stellar mass is therefore important for constraining the physical processes
that drive disc formation and evolution across the history of the Universe. Leveraging the unprecedented resolution and survey area of the Euclid
Q1 data release, combined with the Zoobot deep-learning model trained on citizen science labels, we identified 7711 barred galaxies with M∗ ≳
1010 M⊙ in a magnitude-selected sample (IE < 20.5) spanning 63.1 deg2. We measured a mean bar fraction of 0.2 − 0.4, consistent with previous
studies. At fixed redshift, massive galaxies exhibit higher bar fractions, while lower-mass systems show a steeper decline with redshift, suggesting
earlier disc assembly in massive galaxies. Comparisons with cosmological simulations (e.g. TNG50, Auriga) reveal a broadly consistent bar
fraction, but highlight overpredictions for high-mass systems, pointing to potential over-efficiency in central stellar mass build-up in simulations.
A semi-empirical model (Decode) in which bar formation is regulated by the gas fraction broadly reproduces the observed bar fractions. These
findings demonstrate the transformative potential of Euclid for galaxy morphology studies and underscore the importance of refining theoretical
models to better reproduce observed trends. Future work will explore finer mass bins, environmental correlations, and additional morphological
indicators.

Key words. Galaxies: evolution - Galaxies: fundamental parameters - Galaxies: high-redshift

1. Introduction

Stellar bars, which are elongated stellar structures extending
from the central regions of disc galaxies, represent a fundamental
dynamical component of galaxies. They play a critical role in re-
distributing angular momentum within galaxies, driving secular
evolution processes such as central bulge growth, fuelling active
galactic nuclei (AGN), and triggering episodes of star formation
(e.g. Athanassoula 2003; Kormendy & Kennicutt 2004).

The formation of bars is primarily governed by disc in-
stabilities. Classical theoretical studies and simulations suggest
that bars can form naturally in dynamically cold discs over
timescales of a few gigayears, with their strength and longevity
depending on factors such as the galaxy gas content, dark mat-
ter halo, and internal stellar velocity dispersion (e.g. Debattista
& Sellwood 2000; Athanassoula 2003). However, the discovery
of barred galaxies at very early epochs following the launch of
the James Webb Space Telescope (JWST) has triggered new in-
terest in the physical mechanisms responsible for bar formation
(e.g. Méndez-Abreu et al. 2023; Costantin et al. 2023; Guo et al.
2024; Le Conte et al. 2024). The high gas fractions and turbulent
conditions of the early Universe disfavour bar formation accord-
ing to the classical view, which is supported by observational
evidence from the local Universe (Masters et al. 2012). Recent
simulations suggest that the ratio between dark matter and bary-
onic matter might play a key role in regulating bar formation
(e.g. Fujii et al. 2018; Reddish et al. 2022; López et al. 2024;
Fragkoudi et al. 2025) .

Understanding the fraction of barred galaxies as a function
of redshift and stellar mass thus provides valuable insights into
the formation and growth of stellar discs across cosmic time and

⋆ The authors of this paper wish to express their sincere gratitude to
the late Dr Peter Erwin, who passed away unexpectedly at the end of
January 2025. Peter was an expert in the properties of barred galaxies,
and his thoughtful papers on the subject will form a lasting legacy. A
member of the Euclid Collaboration, Peter helped shape the current pa-
per by communicating intensively with the first author, and we whole-
heartedly acknowledge his contributions.
⋆⋆ e-mail: mhuertas@iac.es

baryon assembly more generally (e.g. Jogee et al. 2004; Sheth
et al. 2008; Cameron et al. 2010; Masters et al. 2011; Simmons
et al. 2014; Melvin et al. 2014; Erwin 2018; Guo et al. 2024).

Identifying bars in galaxies typically requires high-
resolution imaging to discern the distinct morphology of barred
structures. Historically, visual classification has been a pow-
erful tool for bar identification (e.g. Eskridge et al. 2000;
Elmegreen et al. 2004; Masters et al. 2011; Simmons et al. 2014),
complemented by quantitative methods such as ellipse fitting
(Knapen et al. 2000; Aguerri et al. 2009), Fourier decomposi-
tion (Ohta et al. 1990), and more recently machine learning (e.g.
Domínguez Sánchez et al. 2018; Walmsley et al. 2022a). Previ-
ous studies using data from space facilities such as the Hubble
Space Telescope (HST) and JWST have significantly advanced
our understanding of barred galaxies, particularly beyond the lo-
cal Universe (e.g. Sheth et al. 2008; Melvin et al. 2014). How-
ever, these studies are often constrained by limited area cover-
age, which hinders a comprehensive statistical analysis across
diverse galaxy populations.

The Euclid space telescope represents a transformative step
forward in this field. Euclid combines high spatial resolution
and sensitivity with an unprecedented survey area for a space-
based observatory, enabling a detailed study of galaxy morphol-
ogy on a new scale (Laureijs et al. 2011; Euclid Collabora-
tion: Scaramella et al. 2022; Euclid Collaboration: Bretonnière
et al. 2022, 2023; Euclid Collaboration: Mellier et al. 2025; Eu-
clid Collaboration: Aussel et al. 2024). The Euclid Q1 data re-
lease, which provides high-quality imaging over 63.1 deg2 (Eu-
clid Quick Release Q1 2025; Euclid Collaboration: Aussel et al.
2025), already represents a dramatic increase of the area probed
by previous space observatories such as HST and JWST. The
largest optical HST survey, the Cosmic Evolution Survey (COS-
MOS, Scoville et al. 2007), covers an area of only about 2 deg2.

In this work, we leverage the unique capabilities of Euclid
to provide a first measurement of the fraction of barred galaxies
in massive systems (stellar masses M∗ ≳ 1010M⊙) up to red-
shift z ∼ 1 using deep-learning classifications trained on visual
inspections. This work increases the number of barred galaxies
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by more than an order of magnitude compared to prior studies
based on HST and JWST data, providing a robust reference of
the abundance of bars in massive galaxies over half of cosmic
history.

The paper proceeds as follows. Section 2 describes the data
used for this work, namely the Euclid Q1 data release. Section 3
details the procedure used to select the bars. The main results
explore the evolution of the bar fraction as a function of stel-
lar mass and redshift. These results are presented in Sect. 4 and
discussed in Sect. 5, where we compare them with previous ob-
servational and simulated results.

2. Data and measurements

2.1. Euclid Q1 data release

This work uses data from the Euclid Q1 data release (Euclid Col-
laboration: Aussel et al. 2025). An extended description of the
Euclid mission and scientific objectives can be found in Euclid
Collaboration: Mellier et al. (2025). The Q1 data release com-
prises an area of 63.1 deg2 distributed in three distinct fields: Eu-
clid Deep Field North (EDF-N); Euclid Deep Field South (EDF-
S); and Euclid Deep Field Fornax (EDF-F). All fields are ob-
served with both the VIS (Euclid Collaboration: Cropper et al.
2025) and NISP (Euclid Collaboration: Jahnke et al. 2025) in-
struments. A detailed description of the Q1 data release is pre-
sented in Euclid Collaboration: Aussel et al. (2025), and specific
details about the VIS and NISP data products can be found in Eu-
clid Collaboration: McCracken et al. (2025) and Euclid Collabo-
ration: Polenta et al. (2025), respectively. For this work, we used
a number of data products accompanying the data release, acces-
sible from the Euclid Science Archive System (SAS), which we
detail below.

2.1.1. Euclid Q1 detailed morphology catalogue

The Q1 data release contains a variety of morphological mea-
surements for detected galaxies, including non-parametric mor-
phologies, parametric Sérsic fits, and deep learning-based de-
tailed visual-like morphologies. We refer the reader to Euclid
Collaboration: Romelli et al. (2025) for an extensive description
of the Euclid photometric catalogue.

For this work, we primarily used the detailed morphologi-
cal catalogue (see Euclid Collaboration: Walmsley et al. 2025
for more details). In brief, the catalogue contains Galaxy Zoo
(GZ) type classifications, following the tree structure of the GZ-
CANDELS project (Simmons et al. 2017), which uses data from
the Cosmic Assembly Near-infrared Deep Extragalactic Legacy
Survey (CANDELS). The classifications were performed using
the Zoobot deep-foundation model (Walmsley et al. 2022b).
The model was fine-tuned with volunteer classifications of Eu-
clid galaxies obtained between August and September 2024. As
detailed in Euclid Collaboration: Walmsley et al. (2025), three
different images were shown to the GZ volunteers to label the
galaxies: an RGB image where the R channel is YE, the B chan-
nel is IE, and the G channel is the mean, following a clip and
an arcsinh stretch; a greyscale image where the single channel
is the same as the IE/B channel of the RGB image, for maximis-
ing resolution; and a greyscale image where the single channel
is again from IE, but adjusted to highlight low-surface-brightness
features in the outskirts of the galaxies. A complete description
of the data product, as well as a quantitative assessment of the
accuracy, is presented in the accompanying work (Euclid Collab-

oration: Walmsley et al. 2025). In Sect. 3 we describe the proce-
dure employed to select bars in more detail.

2.1.2. Euclid Q1 physical properties

In addition to morphologies, we used photometric redshifts and
stellar masses from the data release. More details can be found
in Euclid Collaboration: Tucci et al. (2025). Briefly, a large grid
of synthetic galaxy spectral energy distribution (SED) models
was generated using the Bagpipes package (Carnall et al. 2018)
with delayed exponential star-formation histories. These models
were fit to the Q1 galaxies with the software NNPZ (Euclid Col-
laboration: Tucci et al. 2025), whereby the closest 30 models in
χ2 are used to form a posterior distribution of the galaxy phys-
ical properties. In this work, we used the marginalised medians
of the posterior as our point estimate in redshift and stellar mass.

2.2. Sample selection and completeness

The Euclid Q1 deep-learning morphological classification (Eu-
clid Collaboration: Romelli et al. 2025; Euclid Collaboration:
Walmsley et al. 2025) is provided only for galaxies with IE <
20.5, or with a segmentation area larger than 1200 pixels. Al-
though Euclid data allow us to measure accurate morphologies
for fainter and smaller galaxies (Euclid Collaboration: Breton-
nière et al. 2022), these conservative cuts have been selected to
ensure very robust morphologies for this first data release (Eu-
clid Collaboration: Aussel et al. 2024). Therefore, for the re-
mainder of this work, we only use galaxies brighter than IE =
20.5. This stringent selection severely impacts the completeness
of the sample, which must be carefully addressed before deriv-
ing any scientific conclusion. Figure 1 shows the photometric-
redshift – stellar-mass plane. We computed a 90% stellar mass
completeness using the method from Pozzetti et al. (2010). We
find that the stellar mass above which the sample is 90% com-
plete rapidly increases with redshift, reaching around 1011M⊙ at
z > 0.6. This is a direct consequence of the very bright magni-
tude cut applied. To maintain sufficient statistics while limiting
the impact of incompleteness, we included galaxies with stel-
lar masses larger than 1010M⊙ in the analysis. However, since
this stellar mass threshold is significantly below the complete-
ness limit, especially at high redshift, we adopted narrow stellar
mass bins for analysing evolutionary trends and discuss the im-
pact of this choice on the results of this work.

3. Bar classification

3.1. Zoobot classifications

The main result of this work is a derivation of the evolution of the
bar fraction up to z ∼ 1. Barred galaxies were selected using the
Zoobot classifications included in the Euclid MER morpholog-
ical catalogue (see Euclid Collaboration: Walmsley et al. 2025
for more details). Zoobot is a probabilistic deep-learning model
trained to reproduce the GZ classification tree. For that purpose,
images are pre-processed following the GZ standard. This in-
cludes scaling to limit the impact of the large dynamic range,
as well as resizing so that all galaxies present a similar apparent
size in the image. The model hence estimates, for each galaxy,
the fraction of volunteers who would have selected a given mor-
phological feature, had this galaxy been classified by GZ. Full
details of the pre-processing, the model used, and the specific
training strategy followed for Euclid data can be found in Euclid
Collaboration: Walmsley et al. (2025).
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Fig. 1. Photo-z versus stellar mass diagram showing the completeness
limits for the Euclid Q1-GZ data set. The 90% and 50% stellar-mass
completeness limits are derived following Pozzetti et al. (2010) and are
indicated by the solid and dotted black lines, respectively.

Given the tree-like structure of the Zoobot classification, we
apply the following criteria to select bars:

pfeature > 0.5; pedge-on < 0.5; pbar > 0.5,

where pfeature, pedge-on, and pbar are the outputs of the Zoobot
classification, measuring the fraction of votes for a galaxy to be
classified as featured, edge-on, and hosting a bar, respectively.
The first cut selects galaxies with resolved features as opposed to
smooth galaxies for which the question on bars is not asked. The
second cut removes edge-on discs for which identifying stellar
bars is difficult. Given that this is a pure random projection effect,
it should not induce any bias. Finally, the last cut selects galaxies
that likely host a bar. The exact threshold used can be changed,
resulting in different values of purity and completeness (Euclid
Collaboration: Walmsley et al. 2025). The edge-on probability
from Zoobot only removes the very inclined discs. In order to
avoid any other potential bias due to inclination effects, we ad-
ditionally remove all galaxies with an axis ratio lower than 0.5,
measured from the parametric Sérsic fits.

Figure 2 shows some random examples of barred galax-
ies selected using the criteria above. The vast majority shows
a clear stellar bar, confirming the soundness of the classifica-
tion. For a more detailed quantification, we refer the reader to
the accompanying work Euclid Collaboration: Walmsley et al.
(2025). The figure also suggests that the classification is mostly
sensitive to strong bars. The impact of bar strength on the in-
ferred bar fraction has triggered extensive debate over the past
decades. It is well established that works based on GZ in the
local Universe (Masters et al. 2011) tend to report a systemati-
cally smaller bar fraction (around 30%) than many morphologi-
cal classifications on local samples with visual inspections done
by professional astronomers (e.g. Eskridge et al. 2000), which
report fractions larger than 60%. A first-order explanation for
this discrepancy, put forward by Masters et al. (2011), is that the
30% value found by GZ works mostly refers to strong bars and
that weakly barred galaxies account for the difference with lo-
cal studies. Sheth et al. (2008) also showed that the fractions of

barred galaxies at low redshift vary from about 60% to 30% if
weak bars are excluded from the sample. This, however, is not a
fully settled story, since the concept of a strong bar is not very
well defined in the literature. In addition, Géron et al. (2021)
showed that GZ classifications can be used to find weak bars
with proper selection. Another possibility is that GZ might trace
prominent rather that strong bars (Erwin 2018) and hence fails to
detect bars in low-mass, blue, and gas-rich galaxies; however, the
appendix of Kruk et al. (2018) provides more evidence linking
GZ bars with strong bars only. Finally, the wavelength of obser-
vation has a significant impact on the sensitivity to identify bars.
Emission from young stars, stronger in blue filters, and absorp-
tion by dust, tend to outshine or hide the presence of a stellar bar.
This is why near-infrared observations are generally more suit-
able for exploring the abundance of bars (Eskridge et al. 2000;
Knapen et al. 2000). Although the images used in this work are a
composite of the IE and YE bands (Sect. 2.1.1), the higher spatial
resolution of VIS likely dominates the classification. We further
discuss the impact of these limitations when discussing the re-
sults in Sect. 5.

3.2. Detection biases

In addition to the Zoobot classification accuracy, which mim-
ics the visual classification, it is important to quantify intrin-
sic biases due to S/N and resolution differences. This is cru-
cial for analysing redshift trends because classification biases
could falsely mimic such trends. Galaxies at high redshift ap-
pear smaller, and bar sizes are expected to evolve with redshift.
These factors could make it harder to detect bars, leading to an
apparent decrease in the bar fraction.

To quantify these effects, we first examined the apparent and
physical size distributions of galaxies in our sample as a function
of redshift (Fig. 3). Interestingly, the bright magnitude cut keeps
the apparent effective radius (re) of the sample relatively con-
stant with redshift (re ∼1–2 arcsec). As long as the relationship
between bar length and effective radius (Erwin 2019) remains
stable, bar detection is unlikely to be significantly affected by de-
clining resolution at higher redshifts. Our selection implies that
the galaxies we analyse are, on average, intrinsically larger and
more massive (Fig. 1) at higher redshifts, and hence host larger
bars that compensate for the degradation of resolution. Figure 3
shows that the ratio re/θ (where θ is the full width at half maxi-
mum of the point spread function) in physical units remains es-
sentially constant over the redshift range explored.

Even though the size distributions are similar at different red-
shifts and galaxies are bright, there might be differences in the
ability to detect bars between small and large galaxies and/or be-
tween faint and bright galaxies in our sample, which can cause
additional biases. We attempted to quantify the impact of S/N
and spatial resolution, as presented in Fig. 4. The figure shows
the bar fraction (see Sect. 4 for a formal definition) as a function
of IE magnitude, observed effective radii, and surface brightness
(µE) in a narrow redshift bin (z < 0.2). Surface brightness was
computed by dividing half of the total flux by the area within one
effective radius. Since we were exploring a narrow bin of stellar
mass (log10(M∗/M⊙) > 10) and redshift, we assumed that, for
an unbiased classification, the bar fraction should not depend on
apparent size or magnitude, as we were considering at a sub-
set of galaxies with similar physical properties. Figure 4 indeed
shows almost no dependence of the bar fraction on IE, re, or µE ,
suggesting that the bar classification is unbiased for the conser-
vative sample explored in this work. We therefore did not apply
any correction to the measured bar fraction in the forthcoming
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Fig. 2. Random example colour cutouts of barred galaxies selected using the Euclid Q1 morphology classification. Most galaxies show a clear
bar structure. The cutouts have been rescaled based on the effective radii of the galaxies so that they appear with a similar size to the volunteers
(see Euclid Collaboration: Walmsley et al. 2025 for more details).

analysis. However, this comes at the expense of completeness,
as the sample is complete only for massive galaxies at z > 0.5.

4. Results: Evolution of the bar fraction at z < 1
The bar fraction measures the frequency of barred galaxies (Nbar)
in a given population of galaxies (Ngal):

fbar =
Nbar

Ngal
.

The numerator Nbar is computed using the selection criteria de-
fined in Sect. 3. Given the tree-like structure of the Zoobot clas-
sifications, we define Ngal as the number of featured galaxies,
excluding edge-on galaxies:

Ngal =
∣∣∣{pfeature > 0.5} ∩ {pedge-on < 0.5}

∣∣∣ .

The first selection identifies featured galaxies that, according
to the GZ classifications, are objects with clearly defined inter-
nal structure as opposed to smooth galaxies. This separation is
similar, but not identical, to the more traditional late-type versus
early-type classification. As noted in previous work (Simmons
et al. 2017; Domínguez Sánchez et al. 2022), some featureless
discs can be classified as smooth. This distinction is important
when comparing the results on the bar fraction with previously
published work in Sect. 5.1.

Figure 5 shows the bar fraction as a function of redshift in
bins of stellar mass. Table 1 lists the number of featured and
barred galaxies, as well as the bar fraction in each redshift and
stellar mass bin. Since the completeness of our sample strongly
depends on stellar mass, we show the bar fraction for four dif-
ferent stellar-mass bins and indicate the region of the parameter
space where incompleteness begins to have a stronger impact,
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Fig. 3. Distribution of apparent (top row) and physical sizes (bottom row) in different redshift bins, as labelled. The vertical dashed lines indicate
the mean values of each distribution, whose numerical value is also indicated in each panel. The bright magnitude cut applied implies a roughly
constant apparent size with redshift.

based on the results of Fig. 1. We emphasise that Fig. 5 does not
report a true evolution of the bar fraction along the progenitors,
which should take into account mass growth. Rather, it shows
variations of the bar fraction at fixed stellar mass. The precise
impact of incompleteness on the measured bar fraction is dif-
ficult to quantify, as it depends on several unknowns, including
the dependence of the bar fraction on effective radius and magni-
tude at fixed stellar mass and redshift. In addition, as previously
mentioned, the exact normalisation of the bar fraction depends
on a number of assumptions, such as the exact threshold used to
select barred galaxies or the denominator used. These systematic
effects are particularly important because they dominate the er-
ror budget, given the small statistical errors of Euclid data. The
shaded region in Fig. 5 illustrates the impact of changing the
Zoobot probability threshold to select barred galaxies from 0.4
to 0.6, which can alter the bar fraction by 20%, while preserving
the main trends.

Despite these known limitations, Fig. 5 reveals some inter-
esting trends. We observe a moderate decrease in the bar frac-
tion with increasing redshift in all stellar-mass bins, with a more
pronounced decline at lower masses. In the low stellar mass bin
(10 < log10(M∗/M⊙) < 10.3), the fraction falls from around
35% for z ∼ 0 to 20% at z ∼ 0.3. For the most massive galaxies
(log10(M∗/M⊙) > 11), the fraction remains almost constant over
the same redshift range and only starts to noticeably decrease
around z ∼ 0.7. Additionally, we observe a slight dependence of
the bar fraction on the stellar mass at all redshifts. Massive galax-
ies present a slightly higher bar fraction than low-mass galaxies
at similar redshifts.

5. Discussion

We now discuss the results presented in this paper in light of
previous observational work and predictions from cosmological
simulations.

5.1. Comparison with previous observational results

Several previous publications have examined the evolution of
the bar fraction over a similar redshift and stellar-mass range,

primarily using HST and JWST data (Elmegreen et al. 2004; Jo-
gee et al. 2004; Sheth et al. 2008; Cameron et al. 2010; Sim-
mons et al. 2014; Melvin et al. 2014; Guo et al. 2024). Per-
forming a robust, like-for-like comparison with published re-
sults remains challenging, given the variety of detection meth-
ods and sample selections. Some of these works are based on vi-
sual inspections by experts (e.g. Sheth et al. 2008), ellipse fitting
(e.g. Cameron et al. 2010; Jogee et al. 2004), and GZ classifi-
cations (e.g. Melvin et al. 2014; Simmons et al. 2014).We note
that, although Sheth et al. (2008) used two independent meth-
ods, we only report here the results from visual classifications,
which should be more directly comparable with our measure-
ments. However, a first-order comparison can still be informative
to illustrate the scatter in the bar fractions resulting from differ-
ent methodologies and to place the new Q1 data in a broader
context. Figure 6 compares the Q1 measurements from this work
with a compilation of other results, and Table 2 lists the number
of galaxies in each redshift bin. For simplicity in the comparison,
we include all galaxies more massive than 1010 M⊙. This choice
reflects that some works rely on luminosity-selected samples,
each subject to different biases, making a fully homogenised
stellar-mass selection unfeasible. However, all data shown in
Fig. 6 broadly target the massive or bright end of the galaxy pop-
ulation, approximately beyond the knee of the luminosity func-
tion. We emphasise that, for the Euclid data, selecting all galax-
ies more massive than 1010 M⊙ may cause severe incomplete-
ness (see discussion in Sect. 3.2), so evolutionary trends need
to be analysed in bins of stellar mass, following the approach in
Sect. 4.

The unprecedented sample size from Euclid significantly re-
duces statistical errors compared to HST or JWST studies. This
showcases one of Euclid’s key strengths, combining high spatial
resolution with a wide field of view. Indeed, the total number of
barred galaxies in the Q1 survey (7711) already surpasses, by
more than an order of magnitude, that in any previously pub-
lished study beyond the local Universe. As a result, the error
budget of the Euclid measurements is likely to be dominated by
systematics, such as classification errors and incompleteness, as
previously discussed.

Article number, page 6 of 14



Euclid Collaboration: M. Huertas-Company et al.: Euclid Q1 Bars

Fig. 4. Detection bias of bars. Top panel: The solid red and black lines
show the bar fraction as a function of apparent effective radius (top x-
axis) and apparent IE magnitude (bottom x-axis), respectively, for galax-
ies at z < 0.2. Error bars indicate the 68% confidence interval under a
beta-binomial posterior. Bottom panel: Bar fraction as a function of sur-
face brightness. The lack of trend suggests that the detection of bars is
not affected by S/N and spatial resolution variations in the selected sam-
ple.

Apart from the results of Sheth et al. (2008), all measure-
ments consistently yield bar fractions of 0.1−0.3 within the ex-
plored redshift range, despite the varied methods and selection
criteria, including recent JWST findings (Guo et al. 2025), using
a similar stellar mass selection (> 1010M⊙). This consistency re-
inforces the reliability of the Euclid classifications used here and
suggests that the bar fraction in massive galaxies out to z ∼ 1 is

Table 1. Number of barred and featured galaxies in different redshift
and stellar mass bins.

zmin–zmax Nfeatured Nbar fbar

10 < log10(M∗/M⊙) < 10.3

0.00–0.10 102 37 0.363
0.10–0.20 974 249 0.256
0.20–0.30 1435 339 0.236
0.30–0.40 1063 220 0.207
0.40–0.50 2664 500 0.188
0.50–0.60 802 201 0.251
0.60–0.70 69 27 0.391
0.70–0.80 63 18 0.286
0.80–0.90 58 13 0.224
0.90–1.00 22 7 0.318

10.3 < log10(M∗/M⊙) < 10.6

0.00–0.10 28 8 0.286
0.10–0.20 509 180 0.354
0.20–0.30 1214 316 0.260
0.30–0.40 1267 386 0.305
0.40–0.50 3369 598 0.178
0.50–0.60 1729 354 0.205
0.60–0.70 140 30 0.214
0.70–0.80 83 16 0.193
0.80–0.90 71 23 0.324
0.90–1.00 53 11 0.208

10.6 < log10(M∗/M⊙) < 11

0.00–0.10 13 4 0.308
0.10–0.20 175 62 0.354
0.20–0.30 753 234 0.311
0.30–0.40 1033 349 0.338
0.40–0.50 3083 784 0.254
0.50–0.60 3696 893 0.242
0.60–0.70 608 127 0.209
0.70–0.80 236 36 0.153
0.80–0.90 104 23 0.221
0.90–1.00 52 11 0.212

log10(M∗/M⊙) > 11

0.00–0.10 2 0 N/A
0.10–0.20 18 6 0.333
0.20–0.30 157 54 0.344
0.30–0.40 236 75 0.318
0.40–0.50 1013 343 0.339
0.50–0.60 2649 801 0.302
0.60–0.70 954 262 0.275
0.70–0.80 413 76 0.184
0.80–0.90 105 27 0.257
0.90–1.00 64 11 0.172

Notes. The shaded rows indicate the areas of the parameter space most
affected by incompleteness.

well constrained to about 30%, providing a robust test for galaxy
formation models. We stress that, although there is only one data
point from JWST observations within the redshift range explored
in this work, it is consistent, within the uncertainties, with the
Euclid measurements presented here. This is particularly impor-
tant because, as described in Sect. 3, the abundance of bars is
known to decrease at shorter wavelengths owing to outshining
from young stellar populations and the effect of dust (Knapen
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Fig. 5. Evolution of the bar fraction as a function of redshift. Each panel shows a different stellar mass bin, as labelled. The coloured shaded regions
indicate the effect of changing the threshold for selecting barred galaxies between 0.4 and 0.6. The shaded grey regions indicate the redshift ranges
affected by incompleteness. Error bars indicate the 68% confidence interval under a beta-binomial posterior. The bar fraction shows a dependence
on stellar mass, both in the normalisation and evolutionary trends.

et al. 2000; Erwin 2018; Menéndez-Delmestre et al. 2024). With
the VIS filter being particularly wide (Euclid Collaboration: Mc-
Cracken et al. 2025), these effects might be enhanced. The fact
that the JWST NIR-based measurements provide similar values,
however, suggests that wavelength variations within the redshift
range explored do not severely affect our results. Although not
explicitly shown in Fig. 6, previous studies (Cameron et al. 2010;
Melvin et al. 2014) and our own findings agree that more mas-
sive galaxies have systematically higher bar fractions (although
see Méndez-Abreu et al. 2012). We expand on this mass depen-
dence in Sect. 5.2.

Nonetheless, the evolutionary trends reported by different
authors show significant variation. This likely reflects disparate
sample selections and completeness limits, underlining the cau-
tion required when interpreting evolution in the bar fraction.
For instance, Jogee et al. (2004) studied bars to z ≈ 1 in the
Galaxy Evolution from Morphologies and SEDs (GEMS) sur-
vey (Caldwell et al. 2008) and found a nearly constant bar frac-
tion of 30% ± 6%, based on various absolute-luminosity cuts,
suggesting that dynamically cold discs were already established
by z ≈ 1. Similarly, Cameron et al. (2010) reported a flat trend.
However, as shown in Fig. 5, the bar-fraction evolution can
appear artificially flattened if the sample is luminosity-limited,
since brighter, more massive galaxies at higher redshifts intrin-
sically exhibit a larger bar fraction. This effect is also visible
in our Q1 results (Fig. 6). Several studies reported a more pro-
nounced decrease in bar fraction with increasing redshift (e.g.
Sheth et al. 2008; Simmons et al. 2014; Melvin et al. 2014).
Simmons et al. (2014) employed a redshift-dependent luminos-
ity cut that may counteract the mass dependence, while Melvin
et al. (2014) used a stellar-mass selection similar to ours, but with
deeper COSMOS data, potentially explaining their stronger evo-
lution at higher redshifts. Notably, Sheth et al. (2008) reported
both a higher bar fraction and a steeper redshift dependence,
likely due to a combination of selection effects and a classifi-
cation scheme that includes both strong and weak bars. When
only strong bars are considered, their measurements align more
closely with ours, implying that our GZ-based classifications pri-
marily capture strong bars.

5.2. Comparison with cosmological simulations

Comparison of observed bar properties with simulations helps
identify key processes driving disc assembly over time, which
is the focus of this subsection. Guided by the discussion in
Sect. 5.1, we restrict our comparison to the two main robust find-

Fig. 6. Bar fraction as a function of redshift. The large black circles
show the measurement from Q1 presented in this work. The shaded
grey region indicates the effect of changing the threshold for selecting
barred galaxies between 0.4 and 0.6. Different colours and symbols in-
dicate previously published results from different space-based surveys,
as labelled. The Euclid measurements are generally consistent with pre-
vious works, but with significantly smaller statistical error bars.

ings of this work: (1) the average bar fraction over z = 0−1,
and (2) its stellar mass dependence. We consider several recent,
state-of-the-art cosmological models: the hydrodynamic simula-
tions TNG50,
textttAuriga, and the semi-empirical model Decode (Discrete
statistical sEmi-empiriCal mODEl; (Fu et al. 2025). It is im-
portant to note that comparing observations and simulations is
not free from biases. In particular, as discussed above, observa-
tional data are subject to various selection effects that are not
present in simulations. A fully robust, like-for-like comparison
would require forward modelling of the simulation outputs into
the observational plane, which is beyond the scope of this work
(e.g. Zanisi et al. 2021). For example, the bar fraction in obser-
vations is computed over a sample of featured galaxies (Sect. 3),
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Table 2. As in Table 1, but for all galaxies with stellar mass greater than
1010 M⊙.

zmin–zmax Nfeatured Nbar fbar

(log10(M∗/M⊙) > 10)

0.00–0.10 145 49 0.338
0.10–0.20 1676 497 0.297
0.20–0.30 3559 943 0.265
0.30–0.40 3599 1030 0.286
0.40–0.50 10 129 2225 0.220
0.50–0.60 8876 2249 0.253
0.60–0.70 1771 446 0.252
0.70–0.80 795 146 0.184
0.80–0.90 338 86 0.254
0.90–1.00 191 40 0.209

0.00–1.00 27 480 7711 0.280

Notes. The last row shows the total amount of barred and featured
galaxies in the sample analysed in this work. We emphasize that the
bar fraction is severely affected by incompleteness – see text for details.

while in simulations, bars are quantified in disc galaxies selected
based on their dynamics. Although the featured label serves as
a proxy for disc galaxies, it does not imply a perfect correspon-
dence; this can accentuate certain discrepancies.

The TNG50 simulation is part of the IllustrisTNG project,
a suite of cosmological simulations aimed at exploring galaxy
formation and evolution (Pillepich et al. 2018). These simula-
tions employ the AREPO moving-mesh code (Springel 2010),
which accounts for gravitational interactions and incorporates
sub-grid models to capture baryonic processes, building upon
earlier work from the Illustris project (Genel et al. 2014; Vo-
gelsberger et al. 2014). The TNG50 simulation has the smallest
volume (50 comoving Mpc) of the suite but offers higher reso-
lution (8.5 × 104 M⊙), making it suitable for probing the inter-
nal structure of galaxies. For the comparison presented here, we
use the results of Rosas-Guevara et al. (2022) and López et al.
(2024), who analysed the bar fraction and discussed bar forma-
tion in the TNG50 simulation. The sample in Rosas-Guevara
et al. (2022) comprises a complete sample of galaxies more mas-
sive than 1010M⊙ with a disc-to-total ratio (D/T ) greater than
0.5.

The Auriga simulation is another set of cosmological mag-
netohydrodynamical zoom-in simulations of individual halos
spanning M200 ∈ [0.5, 2.0]×1012M⊙ at z = 0 (Grand et al. 2017).
They also use the AREPO code, but with a slightly different
galaxy formation model (see Vogelsberger et al. 2013; Marinacci
et al. 2014; Grand et al. 2017 for details), which includes cool-
ing, background UV fields for reionisation, sub-grid prescrip-
tions for star formation, stellar evolution and feedback, magnetic
fields, and black hole seeding, accretion, and feedback. The stel-
lar and gas mass resolution is 5 × 104 M⊙. We compare with
Fragkoudi et al. (2025), who studied the properties of barred
galaxies in the Auriga simulation. We stress that since these
simulations are zoom-in, the measurements reported correspond
to a representative instead of a complete sample of galaxies. All
galaxies have stellar masses larger than 1010M⊙ at z = 0 and are,
for the vast majority, disc-dominated (D/T > 0.5). More details
can be found in Grand et al. (2017).

The Decode model is a semi-empirical model that builds
galaxies on top of dark matter haloes via a data-driven star for-
mation rate-halo accretion rate (SFR-HAR) relation. This rela-

tion between the galaxy SFR and dark matter HAR is computed
via abundance matching, under the assumption that there is a
monotonic connection between the two quantities, using theoret-
ically predicted HARs and observationally measured SFR dis-
tributions from a combination of a variety of data sets in the
UV and IR bands at different redshifts. Galaxy stellar masses are
then derived by integrating SFRs and merger contributions along
the assembly histories of the host dark matter haloes. Quenched
galaxies in this rendition of Decodeare included via the popu-
lar halo quenching model due to the shock heating in massive
haloes above Mh ≳ 1012 M⊙ (e.g. Dekel & Birnboim 2006),
which suffices to produce the majority of early-type quenched
galaxies. Galaxy bars are formed assuming that galaxies with a
gas fraction (Mgas/(M∗ + Mgas) >= 0.3) below a certain thresh-
old value, as suggested by simulations, can more easily form a
bar (e.g. Athanassoula et al. 2013; Łokas 2020). The gas con-
tent in Decode is assigned via empirical relations as a function
of stellar mass, SFR, and redshift (e.g. Stewart et al. 2009).

Figure 7 shows the evolution of the bar fraction for the com-
plete Q1 sample with M∗ > 1010 M⊙ alongside the Auriga,
TNG50, and Decode predictions, applying the same stellar-mass
selection to the simulations. Hence, these bar fractions do not
trace the true progenitor evolution. Interestingly, the three mod-
els predict a global bar fraction consistent with the observational
values of approximately 0.2−0.4. The redshift trends differ, but
as stressed above, strong conclusions cannot be drawn without
matching selection effects in the simulations and observations.
Nevertheless, all models appear to produce a lower fraction at
low redshift; this is discussed further below. For TNG50, we also
show the bar fraction when all bars are included, even very small
ones that may be difficult to detect in the observations. In this
case, the bar fraction becomes significantly larger than obser-
vational estimates, emphasising the complexity of simulation–
observation comparisons and the importance of carefully mod-
elling selection biases.

Another key result from this work is the stellar mass depen-
dence of the bar fraction. Figure 8 repeats the comparison with
simulations, now split into two stellar mass bins. While TNG50
uses log10(M∗/M⊙) = 10.5 and Auriga adopts 10.7, we find
that overall trends remain similar regardless of the exact divi-
sion. All models predict a clear mass dependence in bar frac-
tion, with more massive galaxies hosting more bars. The effect
is more pronounced in the hydrodynamic simulations, where ap-
proximately 70% of massive galaxies are barred, compared to
only 40% in the observations. The global trend with redshift of
the Decode bar fraction is more consistent with the observations.
The semi-empirical model still slightly predicts a larger bar frac-
tion in massive galaxies compared to observations, but it is com-
patible within the uncertainties. The difference in normalisation
depends on the choice of the input gas-to-stellar mass relation,
whose measured value could be affected by systematics.

Early idealised simulations suggested that high gas fractions
can inhibit bar formation (e.g. Athanassoula & Sellwood 1986;
Athanassoula 2003; Villa-Vargas et al. 2010). This is in good
agreement with the predictions of Decode. More recent cosmo-
logical simulations such as TNG50 and Auriga, indicate that the
ratio of baryonic to dark matter is also a primary factor in regu-
lating bar formation. López et al. (2024) observed that unbarred
galaxies consistently have lower central baryonic-to-dark mat-
ter ratios than barred galaxies. Similarly, Fragkoudi et al. (2025)
found no significant difference in gas fractions between barred
and unbarred galaxies at a fixed stellar mass. Interestingly, the
latter study also noted that baryon-dominated galaxies without
bars often have richer merger histories. Reddish et al. (2022), us-
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Fig. 7. Comparison of the observed bar fraction in our Euclid sample
(large empty circles) with cosmological simulations. The cyan squares
and pink triangles show the results from the TNG50 simulation when
all bars and only long bars are included, respectively. The orange dia-
mond shows the Auriga simulation. The shaded grey region indicates
the effect of varying the probability threshold for bar selection between
0.4 and 0.6. The mean bar fraction is globally well reproduced by the
simulations.

ing the NEWHORIZON simulation, found that excessive dark mat-
ter or large bulges could inhibit bar formation. Therefore, the
higher bar fractions in high-mass galaxies predicted by simula-
tions compared to observations may reflect overly efficient cen-
tral star formation, which boosts the baryonic-to-dark-matter ra-
tio and thus favours bar formation. The effect of the baryonic-to-
dark-matter ratio can be tested in a semi-empirical approach such
as Decode, which will be tested in future work. Alternatively,
simulated galaxies may experience fewer mergers, resulting in
lower ex situ fractions. However, recent work on local Universe
ex situ stellar mass fractions (Angeloudi et al. 2024) suggests
that the integrated merger rate is relatively well reproduced by
state-of-the-art simulations.

6. Summary and conclusions

We investigated the abundance of stellar bars in massive disc
galaxies (M∗ ≳ 1010 M⊙) up to z ≈ 1, using data from the Q1
release over an area of 63.1 deg2. By applying a deep-learning
model trained on citizen science visual labels, we identified
barred galaxies in a magnitude-selected sample (IE < 20.5). Our
main findings can be summarised as follows.

– We identified 7711 barred galaxies between z = 0 and z = 1,
exceeding by an order of magnitude the samples from pre-
vious work over a similar redshift range. This highlights Eu-
clid’s unique capability to resolve internal galaxy structures
across a wide sky area.

– The mean bar fraction of 0.2–0.4 agrees well with estimates
from HST-based surveys, indicating that Euclid can robustly
reproduce morphological measures over large samples. In

the era of very large surveys such as Euclid, proper quan-
tification of systematic effects, such as classification errors,
becomes extremely important.

– At a fixed redshift, massive systems exhibit a higher bar frac-
tion than lower-mass galaxies, and the decrease in bar frac-
tion with redshift is more pronounced for lower-mass sys-
tems. This suggests an earlier formation and assembly of
discs.

– While cosmological simulations match the overall bar frac-
tion, they overpredict it for the most massive galaxies. This
discrepancy suggests that the models may overestimate the
efficiency of central stellar mass growth. A semi-empirical
model in which bar formation depends solely on the gas frac-
tion better matches the observed bar fraction.

Overall, these results illustrate the effectiveness of Euclid’s
combination of spatial resolution and wide-area coverage in
probing the internal structure of disc galaxies. Future work in-
cludes incorporating finer mass bins, additional morphologi-
cal indicators, more detailed comparisons with simulations, and
correlation with environmental indicators that have not been
addressed in this first study. The Euclid data will enable a
unique quantification of large-scale structure (Euclid Collabo-
ration: Laigle et al. 2025), allowing for a precise dissection of
the role of environment in shaping galaxy structure.
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Fig. 8. |As in Fig. 7, but dividing galaxies in stellar mass bins. The left panel shows galaxies with stellar masses between 1010 and 1010.5 M⊙. The
right panel shows galaxies more massive than 1010.5 M⊙. Simulations tend to overpredict the bar fraction at the high mass end.
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