
1

EASTER: Embedding Aggregation-based
Heterogeneous Models Training in Vertical

Federated Learning

Shuo Wang , Keke Gai , Senior Member, IEEE , Jing Yu , Member, IEEE ,

Liehuang Zhu , Senior Member, IEEE , Weizhi Meng , Senior Member, IEEE , Bin Xiao , Fellow, IEEE

Abstract—Vertical Federated Learning (VFL) allows collaborative machine learning without sharing local data. However, existing VFL
methods face challenges when dealing with heterogeneous local models among participants, which affects optimization convergence
and generalization of participants’ local knowledge aggregation. To address this challenge, this paper proposes a novel approach
called Embedding Aggregation-based Heterogeneous Models Training in Vertical Federated Learning (EASTER). EASTER focuses on
aggregating the local embeddings of each participant’s knowledge during forward propagation. We propose an embedding protection
method based on lightweight blinding factors, which injects the blinding factors into the local embedding of the passive party. However,
the passive party does not own the sample labels, so the local model’s gradient cannot be calculated locally. To overcome this
limitation, we propose a new method in which the active party assists the passive party in computing its local heterogeneous model
gradients. Theoretical Analysis and extensive experiments demonstrate that EASTER can simultaneously train multiple heterogeneous
models with heterogeneous optimization and outperform some recent methods in model performance. For example, compared with the
state-of-the-art method, the model accuracy of EASTER was improved by 4% under the FMNIST and LetNet networks.

Index Terms—Vertical federated learning, embedding aggregates, blinding factor, heterogeneous models
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1 INTRODUCTION

A S the amount of data generated by mobile clients and
Web-of-Things (WoT) devices grows, it powers a wide

range of machine-learning applications. Mobile clients and
WoT devices have always had to share their data with
the cloud to help with machine model training. Mobile
clients and WoT devices are wary about sharing raw data
due to privacy concerns. As a new distributed machine
learning paradigm, federated learning (FL) [1]–[3] offers
a solution for locally training ML models with data from
mobile and WoT devices. Particularly, FL implements a
multi-participant collaborative training methodology that
maintains data locally, ensuring data security. Two major
types of FL that have been paid wide attention in recent
years include Horizontal Federated Learning (HFL) [4], [5]
and Vertical Federated Learning (VFL) [6], [7]. Specifically,
HFL supports collaborative learning for those participants
with the same feature sets even though the space IDs are
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Fig. 1. Typical architectures of VFL. (a): Current SplitVFL architectures;
(b): Current aggVFL architectures; (c): The proposed VFL architecture
(EASTER).

varied; VFL addresses situations when the training takes
place on distinct feature subsets and the same sample space
[8]. The feature of the same sample space determines that
VFL is a primary option for constructing cross-organization
cooperation compared to HFL [9]. We focus on VFL in this
work.

According to prior research [10], [11], we categorize
VFL participants into active and passive parties. The active
party is the one who owns the labels and features, while
the passive party only owns the features. Current research
primarily divides VFL into SplitVFL [12], [13] and aggVFL
[14], [15] based on the trainability of the top model. The key
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difference between SplitVFL and aggVFL is that SplitVFL’s
aggregated top-level model is trainable, but aggVFL’s ag-
gregated model is not. Specifically, SplitVFL [16], [17] as
shown in Figure 1(a) splits a neural network model into
a top and a bottom network. The active party aggregates
the outputs of the bottom-level networks to acquire all par-
ties’ local knowledge. Meanwhile, the active party utilizes
the aggregated neuron results for top-model training. An
aggVFL divides a network model into several parts, with
each participant holding one part [18]. The active party
aggregates the local prediction results of each participant.
It implies that most existing VFL research depends on an
assumption that participating parties hold consistent local
models with the same optimizer [19]. As each participant
has different resources and computing power, parties can
choose varied local model architectures in most practical
cases. For example, some major businesses or companies
may have high-performance servers, GPU accelerators, or
dedicated deep-learning accelerator cards, while others may
just have basic computer resources. For example, multiple
medical institutions in the same area may have distinct
medical image data that can be used to train a disease pre-
diction model collaboratively. Hospitals in counties might
only have basic computing resources, whereas hospitals
in cities might have more advanced computing resources.
Therefore, in VFL, heterogeneity in computer resources is
common. However, the heterogeneous model architecture
of participants has been rarely addressed by prior studies
[20], [21].

Our investigations find that existing work has rarely
addressed heterogeneous VFL issues. Prior work has ev-
idenced that training the same model on varied datasets
will output distinct performance in accuracy [22], [23]. Sim-
ilarly, training different models on one dataset will receive
varied accuracy performance [24], [25]. This phenomenon
implies that the convergence of the model is influenced
by both model heterogeneity and training datasets, even
though current existing methods mainly focus on the scenar-
ios with heterogeneous local models rather than covering
heterogeneity and the local knowledge information from
the bottom-level networks or forward propagation results.
Incorporating additional model information during VFL
training may degrade the performance of heterogeneous
models.

One of the keys to achieving VFL with heterogeneous
local models is to reduce additional model information
during aggregation. Inspired by prototype learning, hetero-
geneous neural networks can be divided into representation
and decision layers [22], [26], [27]. The representation layer
embeds similar features into the same embedding space
(class prototype), while the decision layer generates predic-
tions from the embedded information and heterogeneous
networks. Therefore, we observe that the embedding results
obtained from the representation layer only contain the
local knowledge of parties. Prototype learning provides a
new perspective for achieving VFL with heterogeneous local
models.

To tackle the model heterogeneous challenge in VFL, this
paper proposes a method entitled Embedding Aggregation-
based Heterogeneous Models Training in Vertical Federated
Learning (EASTER). Our method aggregates all parties’ local

embeddings to obtain global embeddings that contain the
knowledge from the local training datasets of all parties.
These global embeddings are used for training heteroge-
neous local models by all participant parties. Considering
the context of VFL, typically only active parties have access
to labeled data and passive parties send intermediate for-
ward propagation results to active parties. Then, the active
party assists passive parties in computing the gradient for
updating heterogeneous local models, such that it enables
the completion of the training of the local model.

The main contributions of our work are summarized as

‚ We proposed a novel approach (e.g. EASTER) that
aggregates local embeddings from multiple hetero-
geneous parties into a comprehensive global embed-
ding. This method successfully optimizes the train-
ing of models across various architectures, achieving
higher accuracy regardless of whether the local mod-
els are homogeneous or heterogeneous. Moreover,
EASTER is capable of simultaneously optimizing
multiple heterogeneous models, resulting in several
independently optimized models that maintain their
distinct characteristics while benefiting from shared,
aggregated insights. This capability significantly en-
hances the applicability and flexibility of VFL sys-
tems across diverse computational and data environ-
ments.

‚ Our work develops a secure embedding aggregation
scheme that protects the privacy of the local embed-
ding information of participating parties. Our work
develops a secure embedding aggregation scheme
within the EASTER framework. This scheme metic-
ulously safeguards the privacy of local embedding
information from all participating entities. By ef-
fectively protecting these embeddings during the
aggregation process, our approach ensures that the
integrity and confidentiality of participant data are
maintained, thereby enhancing the overall security
of the VFL system.

‚ We conduct theoretical analysis and extensive ex-
periments on MNIST, FashionMNIST, and CIFAR-
10 datasets to evaluate the EASTER performance.
Compared with existing FL methods, EASTER has
superior learning performance under heterogeneous
local models. For example, compared with the state-
of-the-art method, the model accuracy of EASTER
was improved by 4% under the FMNIST dataset and
LetNet network.

The rest of this paper is organized in the following order.
Section 2 presents the preliminaries of our method, essen-
tial for understanding the subsequent sections. The system
design and our proposed methodology are presented in
Section 3 and Section 4, respectively. The experience evalua-
tions in Sections 5. In Section 6, we briefly review the related
literature. Finally, we summarize this work in Section 7.

2 PRELIMINARIES

In this section, we provide some preliminary understanding
of EASTER. To simplify reading, we present descriptions for
some notations in Table 1.
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TABLE 1
Notations Table.

Notation Explanations
θ Global model parameters
θb Bottom model parameters
θt Top model parameters
θk lkth party’s heterogeneous model parameters
Elk Local embedding value generated by party lk
rElk s Blinded local embedding value generated by party lk
E Global embedding
lk The kth participant, and the special l0 represents the

active party
N The number of sample space ID
K the number of all passive parties
C the number of all parties
θtlk

Heterogeneous model parameters obtained by lkth
party in tth epoch

flk p¨q The lkth loss function
D Data sets participating in training
Rlk Local prediction value generated by passive party lk
G The cyclic group of prime order p
SKlk The privacy key generated by the lkth passive party
PKlk The public key generated by the lkth passive party
Hp¨q The collusion-resistant secure hash function
rlk Blinding factor
θ˚
k The converged model parameters

2.1 Vertical Federated Learning
VFL is a distributed machine-learning architecture, which
implements multi-clients collaboratively training a model
with sample alignment and features union. In VFL, a sin-
gle party cannot train a complete model since labels and
features are stored in multiple parties. The goal of VFL
is to train a global model θ with multiple participants to
minimize loss values without revealing local data.

The training process of VFL is as follows.

1) Each passive party uses local data features to per-
form local model forward training to obtain in-
termediate results, and uploads the intermediate
results to the active party.

2) The active party aggregates the intermediate results
and calculates the global model loss.

3) Each passive party downloads corresponding gra-
dients from the active party to update their local
model.

The training problem of VFL can be formulated as fol-
lows.

min
θPRd

ℓpθ,Dq :fi
1

N

N
ÿ

j“1

f pθ;xj , yjq (1)

In Eq. (1), N is the total number of data samples. xj

denote the union of the data features of jth row for all
passive parties. yj is the jth labels of sample. θ P Rd denotes
the global parameters. fp¨q is the loss function.

2.2 Diffe-Hellman Key Exchange
In this paper, we make utilization of the Decisional Diffie-
Hellman (DDH) key exchange to generate blinding factors
that further protect the passive party’s local embedding
value. Let G be a cyclic group of prime order p, and g is
a generator of G. We assume the DDH problem is hard [28].
Passive parties can securely share a secret as follows: The
one passive party obtains a secret a and sets its public value

to ga P G. The other passive party obtains his secret b and
sets his public value to gb P G. The one passive party and the
other passive party exchange the public values and raise the
other party’s value to their secret, i.e., gab “ pgaqb “ pgbqa. If
DDH is hard, only the two passive parties know the shared
secret.

3 MODEL DESIGN

3.1 Design Goals
To address the heterogeneous model challenge in VFL, we
aim to design a VFL with multiple heterogeneous models.
The main design goals of EASTER are as follows:

‚ Heterogeneous Parties Collaboration. EASTER
should be able to achieve collaborative training of
participants with heterogeneous models. That is,
EASTER can aggregate heterogeneous model infor-
mation as little as possible during the training pro-
cess to achieve collaborative training of participants
with heterogeneous models.

‚ Multiple Models Training. EASTER should be able
to support training multiple heterogeneous models
simultaneously. In one training, we should be able to
obtain multiple optimized heterogeneous models. If
there are currently three participants with heteroge-
neous models participating in VFL training, then at
the end of one collaborative training, EASTER should
be able to obtain three optimized heterogeneous
models.

‚ Privacy Protection. EASTER should safeguard pas-
sive parties’ local privacy and security. Participants
cannot infer the original features from the obtained
embeddings.

3.2 Problem Statement
Under the EASTER setting, we consider K passive parties
and one active party. We define C as the number of all
parties, and C “ K ` 1. This paper focuses on the training
process of VFL so we assume that both the active party
and K passive parties have the same sample space ID.
We give the training set txi, yiu

N
i“1, where N denotes the

number of sample space ID, xi denotes all features of ith
sample and yi denote the lable of ithe sample. For a VFL
system, each xi is vertically distributed C shares and stored
in each party, i.e., xi “ ttxiua, txiul1 , txiul2 , ...., txiulK u.
In VFL, the active party owns the privacy dataset Da “
␣

ttxiuauNi“1, Y “ tyiu
N
i“1

(

, and each passive party owns
private data Dlk “ ttxiulkuNi“1, where lk denote kth passive
party. For convenience, we use l0 to stand for active party a.

In VFL, the goal is to collaboratively train models θ
among the active party and all passive parties, who have
the same data ID and differential features. In addition, to
protect data privacy, parties keep their data locally dur-
ing training. For VFL, only the active party has the label
space, and passive parties only have some features space
txiuplkq

N

i“1
, not have label space. Labels and features are

stored in different parties in VFL. A single party cannot
train a complete model. This paper assumes that each party
can individually choose a locally trained model θ. The goal
of EASTER is to train multi-models (θa, θl1 , ..., θlK ) jointly
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Fig. 2. An overview of the EASTER training in the heterogeneous models setting. Each participant is the owner of the heterogeneous local model
and incomplete features. The active party also has labels, partial features, and heterogeneous local models. K passive parties and one active party
are the suppositions made by EASTER. The dashed box is merely being used as an example. The solid box depicts the entity or module.

with all parties without revealing local samples, which aims
to minimize the loss of all training samples. The problem of
EASTER can be formulated as

min
θa,...,θlK PRd

ℓpθa, ..., θlK ;Dq :fi
1

N

N
ÿ

i“1

f pθa, ..., θlK ;xi, yiq

(2)
In Eq. (2), N is the total number of samples, xi “

ŤK
k“0txiulk denote ith sample features, yi is the label of

ith sample labels. θa P Rd denotes the model parameters
owned by the active party and θlk P Rd denotes the model
parameters owned by lkth passive party . fp¨q is the loss
function.

To meet the real application requirements, this paper
considers that the active party and the passive parties have
independent local models, namely pθa, ..., θlK q. Each local
model can be expressed as Eq. (2), that is, it has C loss
functions pfap¨q, ..., flK p¨qq.

We focus on solving the issue of the active and passive
parties working together to train the C heterogeneous local
model safely. That is, the active party and all passive parties
collaborate to minimize all loss functions pfap¨q, ..., flK p¨qq.

3.3 Threat Model

In EASTER, all participants aim to collaboratively train
optimal multiple models without compromising the privacy
of their local data. In VFL, participants collaborate to train
an optimal model without compromising local data privacy.
We assume all participants of VFL are honest but curious.
The passive party is capable of accurately performing local
pre-training and embedding calculations. However, there
is a possibility that they may attempt to infer the label
information of the active party from the training process.
On the other hand, while the active party can correctly
execute the global model training process, it may attempt to
infer the private information of the passive party from their
embeddings. Additionally, external attackers and malicious
message tampering are also ignored in our method. A secure
communication channel exists between the active party and
the passive party, ensuring that external attackers cannot
access or detect the communication model information.

4 PROPOSED METHODOLOGY

4.1 Overview

To solve the low accuracy problem caused by the passive
party’s local heterogeneous model, we proposed a new
method EASTER. An overview of the proposed EASTER
is shown in Fig. 2. Our scheme comprises C participants,
consisting of one active party a and K passive parties.
Each participant owns private datasets and heterogeneous
models locally. The main goal of EASTER is to aggregate the
private datasets from all parties and utilize them collabora-
tively to train C heterogeneous models.

The EASTER includes two entities: the active and passive
parties. In the training phase, an active party is mainly
responsible for local heterogeneous model training, local
embedding aggregation, and loss value calculation. Specifi-
cally, the active party collaborates with the passive party to
train local heterogeneous models. The active party needs to
aggregate the local embedding values of all passive parties
and obtain the global embedding value to train heteroge-
neous models. The passive party is mainly responsible for
initializing blinding factors and training local heterogeneous
models. Specifically, the passive party generates a pair of
public and private keys and sends the public key to the
active party. The passive party generates a blinding factor
based on its private key and the public keys of other passive
parties to protect the local embedding value. In addition, the
passive party completes the training of local heterogeneous
models with the assistance of the active party.

In addition, the EASTER consists of three main modules.

‚ Local Training. All participants’ collaborative train-
ing of multiple local heterogeneous models occurs
in this module. In detail, each participating party
utilizes local features and models to generate lo-
cal embedding values. Furthermore, each participant
employs the global embeddings alongside their local
models to derive local predictive outcomes Finally,
each participant updates their local model in reverse
according to the loss values and the optimization
function.

‚ Embedding Aggregation. This module combines all
participants’ local embeddings to generate the global
embedding.

Page 4 of 13Transactions on Mobile Computing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



5

Fig. 3. The local training process of EASTER.“Local E” denotes the local
embedding of the party. “Local BE” denotes the blinding local embedding
of the passive party.

‚ Model Loss Calculation. In this module, the active
party aims to utilize local labels to support the pas-
sive party in calculating the heterogeneous model’s
loss value.

4.2 Local Model Training

To address the issue of a limited exchange of model informa-
tion among participants, we adopted a strategy inspired by
prior studies [22], [29]. When performing local training, the
local heterogeneous network is partitioned into two distinct
parts: the embedding network (e.g., embedding layer) and
the prediction network (e.g., decision layers). The embed-
ding layer embeds some features owned by participants in
the same embedding space. The embedding layer of the lkth
participant is hpθlkq. We denote Elk “ hpθlk , Dlkq as the
embedding of Dlk for lkth participant. The decision layers
are the result of predicting sample x based on the supervised
learning task. We represent the prediction result by using
Rlk “ ppθlk , xq.

Local model training consists of local embedding gener-
ation, local model prediction, and model update, as shown
in Fig.3. Local embedding generation refers to the method
by which participants acquire the local embedding result E
from the input layer to the embedding layer using the local
heterogeneous network. To project the local embedding re-
sult, we inject the blinding factors into the local embedding
of the passive party. Local model prediction refers to the
process where each participant uses the global embedding
values as inputs to the decision layer to obtain sample
prediction values. Model update is the process of optimizing
model parameters from the output layer to the input layer
using an optimization algorithm. For example, when the
lkth participant gets the stochastic gradient descent (SGD)
[30] algorithms during backpropagation, the local heteroge-
neous model will be updated based on the following:

θt`1
lk

Ð θtlk ´ ηlk∇θt
lk
Llk (3)

where θt`1
lk

stands for the model of lkth participant in epoch
t. ηlk denotes learning rate and ∇θt

lk
Llk denotes the gra-

dient. Below we introduce the process of local embedding
blinding in detail.

Local Embedding Blinding. In this paper, the global
embedding aggregation is implemented in the active party,
it implies that we only need to protect the local feature of
the passive party. We prevent the direct leakage of local
features from computing the local embedding tElkuKk“1 at
each participant locally. To safeguard the original features
further, we add a blinding factor (rlk ) [31] to the local

embedding (tElkuKk“1) of the passive party to strengthen
the security of aggregation. Each passive party initializes
a public-private key pair and then generates the blinding
factor.

‚ Key Generation. Let G be a cyclic group of prime
order p, with discrete logarithmic relation unknown
generator g. Each lk generates a private key SKlk “

slk P Zp and a public key PKlk “ gslk P G, where
k P r1,Ks. Each passive party sends its public key to
the active party.

‚ Blinding Factor Generation. After the key initial-
ization, each passive party lk downloads other pas-
sive parties’ public key from the active party and
computes the shared key CKk,j “ HppPKlj qSKlk q,
where k, j P r1,Ks, j ‰ k and Hp¨q is a collusion-
resistant secure hash function capable of converting
strings of any length into elements in Zp. The mathe-
matical expression of the connection between shared
keys is given in Eq. (4).

CKk,j “ HppPKlj q
SKlk q “ Hppgslj qslk q

“ Hppgslk q
slj q “ HppPKlkq

SKlj q “ CKj,k

(4)

Each passive party lk computes the blinding factor to
generate rlk (see Eq. (5)).

rlk “
ÿ

jPr1,ks,j‰k

p´1qkąjHpCKk,jq (5)

Where p´1qkąj “ ´1 if k ą j. Particularly, the sum
of all blinding factors (

ř

kPr1,Ks rlk ) is 0.

The local embedding value with privacy protection can
be obtained by adding the above-mentioned blinding factor
to the passive party’s local embedding as follows.

trElk suKk“1 “ tElk ` rlkuKk“1 (6)

The lkth passive party sends the blinded embedding
rElk s to the active party.

4.3 Secure Embedding Aggregation
Given the heterogeneous model in participants, the optimal
model parameters required by each participant are different.
Existing aggregation-based VFL cannot provide enough ef-
fective information for each participant. Fortunately, with
the same label features, the same embedding space can be
obtained through the embedding layer of the heterogeneous
network. We effectively exchange the local features owned
by aggregating the local embedding of each participant. The
active party obtains the blinding local embedding, refer to
trElk suKk“1 “ tElk ` rlkuKk“1 A global embedding E is
generated after the average aggregating method (see Eq.
(7)).

E “
1

C
pEa `

K
ÿ

k“1

rElk sq “
1

C
pEa `

K
ÿ

k“1

Elk `

K
ÿ

k“1

rlkq. (7)

In Eq. (7), C denotes the total number of parties; K denotes
the total number of passive parties. We know from blinding
factor generation that

řK
k“1 rlk “ 0, so we can obtain the

global embedding.
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Algorithm 1 EASTER Training
Require: Datasets Dlk , parties k “ 0, 1, ...,K , Epoch T
Ensure: Excellent θl0 , θl1 , ..., θlK

1: for t “ 1, ..., T do
2: for each party lk in parallel do
3: rEks Ð hpθlk , Dlkq ` rlk
4: end for
5: Perform the global embedding E update by Eq. (7)
6: The active party sent E to passive parties
7: for each party lk in parallel do
8: Perform local prediction Rlk = ppθlk , Eq

9: Sent prediction Rlk to active party
10: end for
11: Llk = LF (Rlk , Y ) // Calculate the loss of each party
12: The active party sent Llk to lkth passive party
13: for each party lk in parallel do
14: θt`1

lk
Ð θtlk ´ ηlk∇lkLlk // Party update local

heterogeneous model
15: end for
16: end for

4.4 Model Loss Calculation

In EASTER, the passive party lacks labels locally, making it
unable to calculate the loss value independently. Only the
active party possesses the labels and has a heterogeneous
model loss value calculation module to aid the passive party
in computing the loss value. The active party determines the
optimal loss function LF following the supervised learning
task’s requirements. When the active party selects the cross-
entropy loss function, for instance, the loss function of the
lkth participant’s heterogeneous model is calculated by Eq.
(8).

LF pRlk , Y q “ ´ 1
N

ři“N
i“1 ppYiq log2 ppRlkqiq ` p1 ´ Yiq log2 p1 ´ pRlkqiqq

(8)
In Eq. (8), Rlk represents the predicted probability; Y repre-
sents the actual label value; N represents the total number
of the training sample.

4.5 Multiple Heterogeneous models Training

Algorithm 1 presents the pseudo-codes of EASTER for
implementing multiple heterogeneous models training pro-
cess. The party refers to the general terms of active party and
passive parties. l0 represents the active party. Participants
only have the features subsets and need the assistance of
other participants during the training process. In addition,
the local model of the passive party does not have labels and
cannot calculate the loss value of the heterogeneous local
model, which requires the cooperation of the active party.

The training process of one round of EASTER mainly
includes the following steps. Step 1 (line 3 to line 5 of the Al-
gorithm 1) Each participant uses local data feature Dlk and
local heterogeneous embedding network hpθlk , Dlkq to ob-
tain the local blinded embedding rElk s “ hpθlk , Dlkq ` rlk .
Step 2 (line 6) The active party realizes the safe aggregation
of global embedding by Eq. (7) and obtains the local data
characteristics of all participants. Step 3 (lines 8 to 9) The
participants calculate the prediction result Rlk from the
global embedding E and the decision layer ppθlk , Eq of the

heterogeneous network in parallel. Step 4 (lines 11 to 13)
The active party calculates the loss value of participant
lk from the loss function LF pRlk , Y q, the prediction Rlk ,
and local labels. LF pRlk , Y q chooses different loss functions
by the task requirements. For example, the cross-entropy
or the logistic regression loss function can be chosen for
classification tasks. Step 5 (lines 13 to 15) Each participant
updates and optimizes the parameters of the local hetero-
geneous model according to the loss and the optimization
method (e.g., SGD, SGD with momentum, Adagrad, and
Adam). After T training rounds, we will obtain C local
heterogeneous models. Therefore, the EASTER model trains
multi-heterogeneous models and safeguards the passive
side’s local embedding. EASTER enables the generation of
multiple optimized heterogeneous models from a single
training.

4.6 Convergence Analysis

We provide the convergence analysis of EASTER below,
which relies on the fact that the local gradients in the
training process are unbiased. In our analysis, we use fkpθq

to denote the loss function of kth participant. Additionally,
we present a set of assumptions required to perform the con-
vergence analysis, similar to existing general frameworks
[7], [22].

Assumption 1 (L - Lipschitz Continuous). Suppose there
exists a constant L ą 0 and the gradient of the local ob-
jective function is L - Lipschitz Continuous for @ θk, θ

1
k and

k P t0, 1, ...,Ku, there is

›

›▽fkpθkq ´ ▽fkpθ1
kq
›

› ď L
›

›θk ´ θ1
k

›

› (9)

Assumption 2 (Unbiased Gradient and Bounded Variance).
The local gradient gtk “ ▽fkpθt, Eq for each participant is an
unbiased estimator, where k denotes lkth participant. We assume
that the expectation of the local heterogeneous model gradient gtk
satisfies E rgtks “ ∇fk pθtkq “ ∇f t

k,@k P t0, 1, 2, . . . ,Ku.
And the variance of the local gradient gtk is bounded by σ2

k:
E r}gtk ´ ∇fk pθtkq}s ď σ2

k,@k P t0, 1, 2, . . . ,Ku, σ2
k ě 0.

Assumption 3 (Bounded Gradient). We assume that G bounds
the expectation of the local heterogeneous model gradient. We have
E r}gtk}s ď G,@k P t0, 1, 2, . . . ,Ku.

Assumption 4 (u - convex). Suppose the fk is u - convex,
which means that there exists u such that ∇2fkpθq ě u

We aim to produce convergent outcomes for each par-
ticipant’s local heterogeneous model. When minθ is the
smallest, we anticipate that each participant’s objective
function fpθ,Dq converges. Since the proof of convergence
for each participant’s objective function is consistent, the
convergence result of the statement for kth participant is
displayed below.

Theorem 1 (Convergence of EASTER). Under assumptions 1
- 4, we prove that the convergence of EASTER is:

E
“

fk
`

θt`1
k

˘

´ fk pθ˚
k q
‰

ď

`

1 ´ µηkσ
2
k

˘

E
“

fk
`

θtk
˘

´ fk pθ˚
k q
‰

`
1

2
η2kLG

(10)
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7

Where the θtk represents the kth participant’s local model
obtained in the t epoch and θ˚

k denotes the convergent
model. ηk denotes the learning rates in tth epoch. As
the number of epoch t increases, the upper bound of the
distance between the current model parameter θtk and the
convergent model θ˚

k gradually decreases, which shows the
convergence of the EASTER model.

Based on the existing assumptions, we provide complete
proof of the convergence of EASTER.

Proof. We assume that Assumption 1 - 4 hold. We analyze
the convergence of EASTER according to [30].

At step t, we suppose the kth participant optimizes
the model θtk. So the current step’s stochastic gradient is
gtk (denotes g)and learning rate ηk. We have the following
formula:

θt`1
k “ θtk ´ ηkg

`

θtk
˘

(11)

According to the Assumption 1, the following inferences
12 will hold.

fkpθq´

„

fk

´

θ́
¯

` ∇fk

´

θ́
¯T ´

θ ´ θ́
¯

ȷ

ď
1

2
L
›

›

›
θ ´ θ́

›

›

›

2

2
(12)

Eq. (11) can be expressed as follows based on Assump-
tion 1 and Inferences 12.

fk
`

θt`1
k

˘

´ fk
`

θtk
˘

“ ´ηk∇fk
`

θtk
˘T

g
`

θtk
˘

`
1

2
L
›

›g
`

θtk
˘
›

›

2

2

(13)
By taking the expectation of Eq. (13), the following equation
is obtained:

E
“

fk
`

θt`1
k

˘‰

´ fk
`

θtk
˘

ď ´ηk∇fk
`

θtk
˘T E

“

g
`

θtk
˘‰

`
1

2
η2kLE

”

›

›g
`

θtk
˘
›

›

2

2

ı (14)

Based on Assumption 2 and Assumption 3, Eq. (14) can
be represented by the following equation.

A “ ´ηk∇fk
`

θtk
˘T E

“

g
`

θtk
˘‰

ď ´ηkσ
2
k

›

›∇fk
`

θtk
˘
›

›

2

2

B “
1

2
η2kLE

”

›

›g
`

θtk
˘
›

›

2

2

ı

ď
1

2
η2kLpG}∇fk

`

θtk
˘

}2 ` Gq

(15)

According to Eqs. (15) - (14), an equivalent equation is
obtained.

E
`

fk
`

θt`1
k

˘˘

´ fk pθtkq ď ´
`

ηkσ
2
k ´ 1

2η
2
kLG

˘

}∇fk pθtkq}
2

` 1
2η

2
kLG

(16)
The objective function should decrease at each step, which
requires ensuring that the coefficient of }∇fk pθtkq }22 is less
than 0. Therefore we need to assume pηkσ

2
k ´ 1

2η
2
kLGq ą 0.

For convenience, we assume σ2
k ď ηkLG. Upon repeated

iteration, the ensuing equation shall be derived.

E
“

fk
`

θt`1
k

˘‰

´ fk pθtkq ď ´ 1
2ηkσ

2
k }∇fk pθtkq}

2
2 ` 1

2η
2
kLG

(17)
The following formula could be obtained based on Assump-
tion 4.

E
“

fk
`

θt`1
k

˘‰

´fk
`

θtk
˘

ď ´µηkσ
2
k

`

fk
`

θtk
˘

´ f pθ˚q
˘

`
1

2
η2kLG

(18)

The goal of our optimization is to minimize fk pθtkq ´f pθ˚q,
and the Eq. (18) can be derived iteratively as follows.

E
“

fk
`

θt`1
k

˘

´ fk pθ˚
k q
‰

´ E
“

fk
`

θtk
˘

´ fk pθ˚
k q
‰

ď

´ µηkσ
2
kE

“

fk
`

θtk
˘

´ fk pθ˚q
‰

`
1

2
η2kLG

(19)

Eq. (19) can be rewritten as

E
“

fk
`

θt`1
k

˘

´ fk pθ˚
k q
‰

ď
`

1 ´ µηkσ
2
k

˘

E rfk pθtkq ´ fk pθ˚
k qs ` 1

2η
2
kLG

(20)
This completes the proof of Theorem 1.

4.7 Security Analysis

In EASTER, we use a blinding factor to hide the local em-
bedding of passive parties. If the blinding factor is security,
we can ensure that other passive parties cannot infer the
local features of passive parties. Next, we illustrate the
security of the blinding factor.

In our model, the active party stores the public key PK
of all passive parties and local embedding with blinding
factors submitted by passive parties during the model train-
ing process. The local embedding submitted by each passive
party lk is appended with a blinding factor generated based
on the shared key CKk,j , where j P r1,Ks, j ‰ k. Our
method ensures that the passive party cannot obtain the
shared key between the other passive parties, so the true
local embedding cannot be obtained. The Computational
Diffie–Hellman (CDH) problem ensures that given ga and
gb, the probability of computing the gab is negligible. There-
fore, given access to all public key PKlk “ gslk , the semi-
honest passive party lk is not able to infer the shared key
CKk,j “ Hppgslj qslk q, where @k, j P r1,Ks, j ‰ k ‰ K.
The semi-honest passive party cannot obtain the real local
embedding of the remaining passive parties. The passive
party cannot infer the raw features of the remaining pas-
sive parties. Each passive party only has its private key,
and even in the case of collusion between multiple semi-
honest passive parties, the shared key between the other
honest passive parties cannot be obtained, and the real local
embedding cannot be obtained.

Therefore, the EASTER method ensures that the honest-
but-curious passive party cannot obtain real local embed-
ding with blinding factors from global embedding and
thus cannot infer the raw features. The EASTER method
effectively protects the raw features of the passive parties.

5 PERFORMANCE EVALUATION
5.1 Experimental Setup

To evaluate the performance of the EASTER method, we
chose three classical image datasets for model training and
referenced the training data sets of existing VFL methods
[16], [18]. We selected six typical neural networks and dis-
cussed the tasks utilized to train them.

5.1.1 Datasets
The three datasets are MNIST [32], FashionMNIST (FMNIST)
[33] and CIFAR10 [34]. MNIST was a picture data set
of handwritten digits, including 60,000 training data sets
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TABLE 2
Comparison of VFL methods with baseline methods on three benchmark datasets. ”Homo” refers to homogeneous, and ”heter” refers to

heterogeneous.

Datasets Methods Types Models Testing Accuracy (%)
CNN LeNet MLP ResNet18 ResNet50 ResNet101

MNIST

Local - 23.47 ˘ 2.36 35.57 ˘ 3.14 31.89 ˘ 3.10 95.06 ˘ 0.53 94.72 ˘ 0.69 93.24 ˘ 0.74
Pyvertical [16] Homo 92.68 ˘ 1.14 94.18 ˘ 1.16 91.77 ˘ 0.70 97.01 ˘ 0.24 94.82 ˘ 0.85 95.29 ˘ 0.46
C VFL [18] Homo 89.71 ˘ 1.65 94.72 ˘ 1.74 95.33 ˘ 4.6 97.84 ˘ 0.89 97.27 ˘ 1.49 95.23 ˘ 1.19
Agg VFL [21] Homo 91.72 ˘ 2.08 86.03 ˘ 1.41 95.71 ˘ 2.39 98.28 ˘ 2.39 97.81 ˘ 1.98 97.73 ˘ 0.83
EASTER(our) Heter 97.58 ˘ 1.71 97.87 ˘ 1.47 97.73 ˘ 1.48 98.54 ˘ 1.14 97.84 ˘ 1.37 97.89 ˘ 1.64

FMNIST

Local - 65.55 ˘ 3.41 76.24 ˘ 1.04 70.40 ˘ 2.37 84.47 ˘ 0.49 84.25 ˘ 0.35 82.37 ˘ 1.06
Pyvertical [16] Homo 72.62 ˘ 1.63 76.34 ˘ 2.35 73.86 ˘ 2.12 84.86 ˘ 1.45 84.55 ˘ 0.88 83.79 ˘ 0.85
C VFL [18] Homo 83.92 ˘ 1.68 84.32 ˘ 1.84 84.53 ˘ 1.05 87.50 ˘ 2.51 87.41 ˘ 1.81 87.31 ˘ 1.60
Agg VFL [21] Homo 84.37 ˘ 1.88 84.68 ˘ 1.41 84.37 ˘ 2.08 87.50 ˘ 1.64 86.54 ˘ 1.17 84.37 ˘ 1.73
EASTER(our) Heter 87.78 ˘ 1.07 88.33 ˘ 0.99 88.08 ˘ 1.13 88.01 ˘ 1.20 87.84 ˘ 1.45 87.60 ˘ 1.38

CIFAR10

Local - 37.35 ˘ 0.49 53.04 ˘ 0.65 32.33 ˘ 0.48 59.05 ˘ 0.95 55.16 ˘ 0.93 49.98 ˘ 0.36
Pyvertical [16] Homo 37.95 ˘ 1.71 53.71 ˘ 2.35 33.85 ˘ 1.82 62.94 ˘ 1.96 57.62 ˘ 2.08 52.80 ˘ 1.79
C VFL [18] Homo 48.85 ˘ 3.56 61.42 ˘ 3.51 46.16 ˘ 1.33 63.75 ˘ 2.02 58.24 ˘ 1.22 56.19 ˘ 2.05
Agg VFL [21] Homo 55.04 ˘ 2.82 60.11 ˘ 1.28 42.67 ˘ 1.51 74.93 ˘ 1.25 71.99 ˘ 1.02 64.22 ˘ 1.18
EASTER(our) Heter 62.38 ˘ 2.46 64.72 ˘ 1.77 64.64 ˘ 2.62 71.74 ˘ 2.36 72.81 ˘ 2.18 73.76 ˘ 1.94

and 10,000 test data sets. FMNIST was a frontal image of
commodities covering 70,000 grey levels from 10 categories,
including 60,000 training datasets and 10,000 test data sets.
The CIFAR-10 dataset was a collection of color pictures that
was divided into 10 distinct categories. It included 50,000
images for training and 10,000 images for testing. In our
experimental setup, the training dataset was utilized for
training the performance of EASTER, while the test dataset
was employed to evaluate the accuracy of EASTER.

5.1.2 Models
We considered three neural networks to simulate local het-
erogeneous networks: Multi-Layer Perceptron neural network
(MLP) [35], Convolutional Neural Network (CNN) [36], and
LeNet [37]. Among them, MLP was a three-layer fully con-
nected network. CNN included 2 convolutional layers and
2 fully connected layers. LeNet consisted of three convolu-
tional layers, one pooling layer, and three fully connected
layers. Moreover, we evaluated our method’s performance
in three heterogeneous ResNet networks (e.g. ResNet18,
ResNet50, and ResNet101) to demonstrate the scalability
of our method. During the training process, participants
randomly selected a network based on local resources, and
multiple participants formed heterogeneous models for col-
laborative training.

5.1.3 Training Tasks
Each participant in the scenario learned the task of heteroge-
neous supervised learning using their own set of local fea-
tures. The simulation involved C participants who indepen-
dently selected their local heterogeneous networks based
on their requirements. All C participants collaboratively
trained multiple heterogeneous networks. The active party
worked with K passive parties to calculate the loss value of
the local model. In the end, all C participants complete the
local heterogeneous model learning task.

5.1.4 Baselines
To evaluate the performance of EASTER under heteroge-
neous models, we conducted a comparative analysis with
baseline methodologies. The comparison included local
training, where the active party trains a model separately

using their local features, along with three recent VFL stud-
ies as follows.

‚ Pyvertical [16] implemented basic SplitVFL model
training and divided the entire model into a top
model and a bottom model. The active party owned
the top-level model, and the passive party owned the
bottom-level model. The active party and the passive
party collaboratively trained the global model.

‚ C VFL [18] reduced the communication overhead of
VFL by compressing the amount of transmitted data
based on traditional SplitVFL.

‚ Agg VFL [21] was an AggVFL method used to solve
the imbalanced features of each participant.

Moreover, all methods were under the same experi-
mental configuration. Furthermore, aiming to evaluate the
performance of local embedding aggregation in EASTER,
we conducted a comparative analysis with baseline method-
ologies.

‚ Local involved independent model training by the
active party using their local features.

‚ Heter aggVFL involved collaborative training
among participants with heterogeneous local
models, achieved by aggregating local prediction
results.

‚ Homo aggVFL involved collaborative training
among participants with homogeneous local models
by aggregating local prediction results.

‚ Homo EASTER enabled collaborative training
among participants with heterogeneous local
models, achieved by aggregating local embedding.

The local prediction results of active part aggregation in
the two methods Homo aggVFL and Heter aggVFL, i.e., no
further training was required after active part aggregation.
In the Homo EASTER and EASTER methods, it was neces-
sary to further train the locally embedded data aggregated
by the active party. Finally, we evaluated the performance
of EASTER on local heterogeneous optimizers.

5.1.5 Implementation Details
The EASTER and baseline methods were implemented us-
ing the PyTorch [38] framework. In VFL, four participators
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were employed, with one party assuming an active role
and the remaining three parties adopting passive roles. The
data set comprising all samples was partitioned into four
distinct portions vertically. Each participant possessed a
subset of features that was representative of all the samples.
The active party owns ownership of the labels assigned to
all samples. During the training process, all participants
engaged in collaborative training of local heterogeneous
models while ensuring that the samples used for training
were aligned. Furthermore, in our training process, we set
the batch size to 128, and the learning rate for all networks
to 0.05.

5.2 Performance in Local Heterogeneous Models

We conducted a comparative analysis between EASTER and
the baseline scheme of the standard neural network-based
VFL methods. All approaches were adjusted to similar
configurations. For instance, all methods configured the
same model network to be trained on the same dataset.
To evaluate the effectiveness of EASTER on local heteroge-
neous models, our approach incorporated three small neu-
ral networks and three ResNet networks. Each participant
included in the study randomly gets a local model. All
local models were trained through collaboration among the
four participants. However, the current baseline scheme ex-
clusively facilitated each participant’s cooperative training
of a global model. Therefore, the settings for the baseline
scheme were as follows. Local refers to the active party in-
dependently training the local model using the local partial
features and labels. Pyvertical [16] and C VFL [18] were
two VFLs that belong to the SplitVFL category. Agg VFL
[21] was belong to one of the aggVFL. In both methods, all
participants jointly trained multiple heterogeneous network
models. The experimental findings were presented in Table
2, indicating that EASTER achieves the highest level of
accuracy.

5.2.1 Models Accuracy
We evaluated the accuracy of EASTER on classic data sets
and heterogeneous models, and the experimental results are
shown in Table 2. The baseline method’s training type was
homogenous, meaning that all passive local models were
homogenous. Our EASTER’s training type was heteroge-
neous, which means that the local model of the passive
party was also heterogeneous. From Table 2, we found
that compared with Local method, the model accuracy of
EASTER had been significantly improved. This was because
the Local method only used some of the local features of the
active party to train the model, while EASTER collaborated
with all the features of the four participants to train the
model. Therefore, as the features of the training data set
increased, the training accuracy of the model continued to
improve. Compared with the better method C VFL, the
model accuracy of EASTER was improved by 4% under
the FMNIST dataset and LetNet network. This was because
the intermediate results or prediction results aggregated by
the existing VFL method had more local model information,
while the embedding aggregated by EASTER had less local
model information. Local model information had a certain
negative impact on the training results. Therefore, compared

TABLE 3
Comparison performance in embedding aggregation of EASTER on

three benchmark datasets and three heterogeneous models.

Datasets Methods Models Accuracy (%)
CNN LeNet MLP

MNIST

Local 23.47 35.57 31.89
Heter aggVFL 36.29 45.15 68.78
Homo aggVFL 91.72 86.03 95.71
Homo EASTER 96.05 98.61 96.57
EASTER(our) 97.58 97.87 97.73

FMNIST

Local 65.55 76.24 70.40
Heter aggVFL 45.45 70.04 42.82
Homo aggVFL 84.37 84.68 84.37
Homo EASTER 86.42 90.45 86.57
EASTER(our) 87.78 88.33 88.08

CIFAR10

Local 37.35 53.04 32.33
Heter aggVFL 51.72 60.70 40.65
Homo aggVFL 55.04 60.11 42.67
Homo EASTER 59.55 66.41 61.86
EASTER(our) 62.38 64.72 64.64

with existing methods, the accuracy of the heterogeneous
model trained by EASTER was better. This finding demon-
strated EASTER’s ability to simultaneously train locally
heterogeneous models with improved accuracy.

5.2.2 Communication Rounds
We evaluated the number of communication rounds for
EASTER and the baseline methods. This evaluation was con-
ducted during the training of three heterogeneous networks.
Our approach necessitated four communication rounds be-
tween passive and active participants in each epoch. In spe-
cially, the passive party sent the local embedding with the
blinding factor to the active party in the first communication
round. The active party delivered the global embedding to
the passive party in the second communication round. The
prediction output of the local heterogeneous model was
sent by the passive party to the active party in the third
communication round. The active party communicated with
each passive party of the loss value in the fourth com-
munication round. In comparison, the baseline approach
only required two communication rounds. Therefore, the
number of communication rounds each epoch in our tech-
nique was twice that of the baseline method. The first
round of communication occurred when the passive party
sent local intermediate results to the active party. In the
second communication round, each passive party obtained
the gradient value from the active party. However, EASTER
realized training multiple models simultaneously. When the
number of heterogeneous models trained simultaneously is
greater than or equal to 3, it has been observed that EASTER
provides a significant decrease in the number of communi-
cation rounds required compared to the baseline method.
Additionally, EASTER and the baseline method could con-
verge at the same global epoch. This finding showed that
EASTER could simultaneously train multiple models that
were different in the environment while needing fewer total
communication rounds of training.s

5.3 Performance in Embedding Aggregation

Embedding aggregation was a core component of the
EASTER. To assess the efficacy of embedding aggregation,
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(a) MNIST

(b) FMNIST

(c) CIFAR10

Fig. 4. Comparison performance in local heterogeneous optimation of EASTER on three datasets and three models. (a) MNIST datasets; (b)
FMNIST datasets; (c) CIFAR10 datasets.

we conducted a comparative analysis of the performance
of homogenous and heterogeneous embedding aggrega-
tion techniques (Homo EASTER, EASTER) with homoge-
neous and heterogeneous prediction aggregation techniques
(Heter aggVFL, Homo aggVFL). The performance compar-
ison results of each method were presented in Table 3. From
Table 3, it was evident that both homogenous and hetero-
geneous embedding aggregation methods exhibit superior
accuracy compared to the prediction aggregation methods.
The reason for this was that embedding solely encompasses
the local features of the participants, whereas the prediction
results encompass both feature and model information. The
additional model information could potentially influence
the model’s correctness.

We specifically discussed the performance of
Homo EASTER and Homo aggVFL. Even though each
participant had a homogeneous network, homogeneous
network training model parameters were varied. While
Homo aggVFL aggregated local predicted values,
Homo EASTER aggregates local embedding values. Local
predicted values had more model information that harms
model accuracy. However, local embedding contained less
model information which harmed the heterogeneous model

training. Thus, Homo EASTER was more accurate than
Homo aggVFL. Moreover, EASTER attained comparable
levels of accuracy when compared to the Homo EASTER
approach. The findings demonstrated that EASTER was
appropriate for training heterogeneous models as local
embedding has less information.

5.4 Performance in Local Heterogeneous Optimization

Extensive experiments were done to evaluate the effect of
local heterogeneous models and heterogeneous optimizers
on the efficiency of EASTER. We had selected four widely
used optimization algorithms, namely SGD [30], SGD with
Momentum [39], Adagrad and Adam [40], to implement
local heterogeneous optimizers. The heterogeneous opti-
mizer of EASTER was validated using the same model
and datasets including MNIST, FMNIST, and CIFAR10. The
experimental findings were shown in Fig.s 4(a)-4(c). For
example, as shown in Fig. 4(a), it could be found that,
with the same local model and different optimizers, the
local models of the four participants exhibit convergence.
Moreover, Fig.s 4(b),(c) depicted the training accuracy of
the EASTER for the three heterogeneous networks CNN,
MLP, and LeNet on the FMNIST dataset and the CIFAR10
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(a) MNIST (b) FMNIST (c) CIFAR10

Fig. 5. Comparison performance in local heterogeneous optimation of EASTER on three heterogeneous models and four optimization functions.(a)
MNIST datasets; (b) FMNIST datasets; (c) CIFAR10 datasets.

TABLE 4
Comparison test accuracy of EASTER on three benchmark datasets,
three heterogeneous models, and four heterogeneous optimizations.

Datasets Optimization Testing Accuracy (%)
CNN LeNet MLP

MNIST

SGD 91.50 96.48 95.96
SGD Momentum 91.65 96.67 95.92

Adagrad 91.34 96.68 95.93
Adam 91.25 96.67 95.31

FMNIST

SGD 85.86 84.14 86.45
SGD Momentum 85.76 83.88 86.19

Adagrad 85.48 84.23 86.44
Adam 83.91 84.06 86.02

CIFAR10

SGD 51.01 67.03 46.64
SGD Momentum 51.05 64.99 45.09

Adagrad 51.01 63.17 46.94
Adam 48.92 67.95 43.08

dataset, respectively. The results showed that each network
converges under heterogeneous optimizers.

In addition, Fig.s 5(a)-5(c) demonstrated that the four
participants used three heterogeneous local networks and
four optimization algorithms to train their respective local
models using the MNIST, FMNIST, and CIFAR10 datasets.
The results showed that each participant’s local hetero-
geneous model could converge to the convergence value.
Therefore, the EASTER aggregated local knowledge, and
heterogeneous networks and optimizers had little impact
on the performance of EASTER. Each participant could
autonomously train a local heterogeneous network with a
heterogeneous optimizer.

The results of the test accuracy of EASTER under the
heterogeneous model and heterogeneous optimizer were
shown in Table 4. Under heterogeneous optimizers, the
same model could achieve convergent test accuracy. This
demonstrated that EASTER could achieve greater model ac-
curacy using the same model but with a different optimizer
for each participant. Moreover, heterogeneous models could
obtain convergence accurately using the same optimizer.
The study’s findings indicated that every participant could
accurately train a local heterogeneous model. Thus, EASTER
enabled the incorporation of both local model heterogeneity
and optimizer heterogeneity within the participants.

6 RELATED WORK

6.1 Heterogeneous Model in Federated Learning
The heterogeneity model in FL refers to varied structures
of participants’ local model and heterogeneity is deemed
to be one of the key challenges in FL [41], [42]. Recent
research mostly can be grouped into two types, including
Knowledge Distillation (KD)-based methods [43]–[46] and
Partial Training (PT)-based methods [47]. A typical KD-
based method extracts knowledge from a teacher model into
student models with varied architectures. FedGKT [46] is
a group knowledge transfer that regularly transfers client
knowledge to the server’s global model through knowl-
edge distillation. However, the current methods [48] for
KD need each client to share a set of basic samples to
make distilled soft predictions. To remedy the data leak-
age caused by clients sharing input samples for KD. The
work [45] proposed a federated distillation framework. The
framework enables data-agnostic knowledge transmission
between servers and clients via distributed Generative Ad-
versarial Networks (GAN). A PT-based method extracts sub-
models from the global server model [49]. FedRolex [47] is
a partial training-based approach that achieves model het-
erogeneity in FL, such that it enables a larger global training
model compared to the local model. We find that current
methods for solving FL heterogeneous models are suitable
for HFL, meaning that each participant owns sample labels
and can independently carry out local model training. How-
ever, the passive party of VFL typically lacks labels and
cannot independently train a local model. These methods
may not always apply to solving the heterogeneous model
problems in VFL.

6.2 Embedding Learning
A typical embedding learning [50], [51] mappings samples
to a feature space and utilizes sample embeddings for
classification or clustering tasks. An embedding represents
a class by computing the average of feature vectors within
each class, which enables effective classification or intra-
cluster compactness by maximizing the distance between
embeddings [52]–[54]. In recent years, embeddings has been
extensively explored in various domains. In classification
tasks [52], [55] and clustering tasks [56], embeddings rep-
resent a class by computing the average of feature vectors
within each class, enabling effective classification or intra-
cluster compactness by maximizing the distance between
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embeddings. In clustering tasks, ProPos [56] aims to en-
hance representation uniformity and intra-cluster compact-
ness by maximizing the distance between embeddings. In
FL embeddings are used to address data heterogeneity
issues. FedNH [57] utilizes uniform and semantic class
embeddings to tackle class imbalance and improve local
models’ personalization and generalization. The work [22]
and [29], [51] adopt embeddings to represent classes and
use average federated embedding aggregation to improve
the efficiency of model training. MPFed [58] uses multiple
embeddings to represent a class and performs model infer-
ence by testing the distance between the target embedding
and multiple embeddings. In our work, we focus on VFL in
which data from all parties are aligned. We use a single-class
embedding to represent each participant’s local knowledge.
By aggregating the local embeddings (e.g., embedding), we
obtain knowledge from all participants that do not include
model-specific details.

7 CONCLUSIONS

This paper proposed a novel method, EASTER, to address
the challenge of poor model performance due to the party-
local model heterogeneity. The key idea of EASTER was
to leverage the aggregation of local embeddings rather
than intermediate results to capture the local knowledge
of all participants. To ensure data privacy, we employed
secure aggregation techniques to obtain global embeddings
while preserving the confidentiality of the participants’
original data. In this paper, we conducted a comprehensive
analysis of the effectiveness of EASTER, considering both
theoretical aspects and extensive experimental evaluations.
The research results demonstrated that EASTER can pro-
vide simultaneous training for multiple local heterogeneous
models that exhibit good performance. In addition, EASTER
assisted participants in improving their local heterogeneous
models by utilizing local heterogeneous optimizers. Our
method’s practical applicability and advantages contribute
to the development and broader adoption of VFL in real-
world scenarios.
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