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Abstract—With the rapid proliferation of vehicular technology,
location-based services (LBS) have become a crucial component
of Internet of Vehicles (IoV) applications. These applications,
such as map navigation and health tracking, rely on users’
location information to provide services, enabling users to ef-
fectively share their locations, access information about nearby
activities, and engage in real-time communication. However, the
extensive collection and sharing of location data pose serious
challenges to the semantic privacy preservation of user locations.
To address these challenges in IoV, we propose a Semantic
Correlation Trajectory Privacy-preservation mechanism (SCTP).
The SCTP combines Hidden Markov Models(HMM) with dif-
ferential privacy, aiming to protect the semantic privacy of
user trajectory locations while maintaining high-quality location
services and data usability. Our scheme introduces a trajectory
prediction algorithm based on HMM, which dynamically and
accurately predicts user trajectories and generates highly avail-
able semantically correlated trajectory datasets. Additionally, we
design a personalized privacy budget allocation strategy based on
semantic frequency. By assigning privacy weights, we significantly
improve the usability of trajectory data while protecting data
privacy. Theoretical analysis and experimental validation demon-
strate that SCTP rigorously adheres to c-differential privacy
standards while exhibiting significant advantages in safeguarding
the semantic privacy of user locations.

Index Terms—Differential privacy, semantic correlation pre-
serving, privacy budget, trajectory publishing.

I. INTRODUCTION

ITH the rapid proliferation of mobile applications
Wand the rise of the IoV, location-based services have
become an integral part of modern society. These services offer
conveniences such as map navigation and health tracking, sig-
nificantly enhancing the collection of user behavior data within
IoV. Some geographic information providers and third-party
research institutions frequently utilize these trajectory data in
fields like transportation planning and urban management to
predict and address practical issues.

However, user trajectory data reflects more than just users’
geographic locations; it also includes multi-layered informa-
tion such as temporal dimensions and semantic behaviors. In
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other words, the extensive collection and sharing of location
data increasingly threaten the semantic privacy of individuals’
locations. Given the high sensitivity of these data, malicious
use can severely jeopardize personal information, such as
social relationships and points of interest. Although third-
party institutions are often regarded as trustworthy partners,
they may pose potential security threats. This privacy risk
mainly stems from the intrinsic correlations in user behavior,
whereby even indirect data analysis may reveal intricate details
of individuals’ daily lives.

In recent years, trajectory data processing technology has
made significant progress in handling data with rich spatiotem-
poral features, and a wide range of techniques for protecting
location privacy have been proposed. These methods include
but are not limited to, anonymization [1], data generaliza-
tion [2], [3], data obfuscation [4], and data perturbation [5].
In particular, Zhao et al. [6] proposed a privacy-preserving
scheme for trajectory data based on a prefix tree structure,
ingeniously integrating differential privacy technology to sup-
port applications such as location-based services. Inspired by
this, an effective strategy is to employ differential privacy
(DP) to process collected trajectory statistics, thereby releasing
a synthetic trajectory dataset [7]-[9]. The synthetic dataset
generated by this strategy preserves the statistical features
and distribution of the original data, undermines attackers’
ability to infer user information through semantic correlation,
and remains applicable for transportation planning and urban
management while ensuring privacy-preserving.

Although these techniques can protect user privacy by gen-
erating seemingly reasonable user location trajectories [10],
they mainly focus on processing geographic coordinates and
neglect the deeper semantic factors in users’ social mobility.
This approach may lead to synthetic location trajectories
displaying uniform or highly similar anonymized characteris-
tics, inadvertently exposing users’ actual behavioral patterns
and semantic information [11]. The moving semantics of
locations encompass abstract semantic information derived
from user movements [12], revealing the associative behav-
iors between users and specific locations (for example, spe-
cific activities of users at a certain place). Moreover, tradi-
tional privacy-preserving techniques often struggle to balance
privacy-preserving with the retention of data usability. Existing
literature [13]-[15] indicates that research on the semantic
associations between two trajectories remains sparse. This
scarcity is largely due to the complex nature of assessing
correlations between trajectories and the significant challenge
of tuning the privacy budget to maximize data usability within
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the framework of differential privacy techniques.

Protecting privacy through single-trajectory correlation is
risky in vehicular technologies and Telematics because an
attacker can obtain the target user’s trajectory semantics by
analyzing the semantic behaviors of the relevant vehicle users.
To balance in-vehicle location privacy and quality of service
and to address the above challenges, our paper proposes a
semantic correlation trajectory privacy-preserving mechanism
(SCTP) that combines semantic correlation quantification with
personalized privacy budget allocation. The mechanism pro-
tects vehicle users’ location semantic privacy while providing
high-quality location services enhances users’ trust in Telem-
atics applications, and promotes the healthy development of
digital society.

The main contributions of this article are as follows:

o We propose a Semantic Correlation Trajectory Privacy-
preserving mechanism(SCTP). This mechanism aims to
protect the privacy of semantic correlation between user
trajectories while ensuring the secure distribution of lo-
cation data and high-quality query responses. With this
mechanism, user trajectory data can be privacy-protected
while preserving semantic correlation, thus achieving a
balance between security and usability in data publishing
and querying within IoV applications.

o The prediction algorithm within the SCTP mechanism,
based on HMMs, dynamically predicts user trajectories,
thereby constructing a dataset of related trajectories.
Compared to existing prediction methods, this algorithm
effectively reveals and captures the semantic state tran-
sitions within trajectories, enhancing the accuracy and
robustness of trajectory prediction. Moreover, the model
is versatile and adaptable, capable of handling various
types of trajectory data processing tasks, including those
involving incomplete data and significant noise interfer-
ence, by inferring internal state probabilities to improve
predictive performance.

e We propose a personalized privacy budget allocation
strategy, designing a privacy level allocation algorithm
based on semantic frequency and introducing the concept
of privacy weights, aimed at achieving a personalized
and rational distribution of the privacy budget. This
strategy effectively balances the trade-off between noise
injection errors and prediction accuracy, thus enhancing
the usability of trajectory data.

o We demonstrate that the SCTP mechanism strictly sat-
isfies e-differential privacy and analyze its security and
usability. Furthermore, we compare the SCTP mechanism
with other relevant mechanisms. Analysis of experimental
results highlights the superiority of our mechanism.

The remainder of this paper is structured as follows: Section

II explores the related research covered in this paper. Section
III provides the necessary background knowledge of the tech-
niques utilized in the SCTP scheme. In Section IV, we outline
the problem formulation of the scheme, including the system
model and mechanism architecture. Section V offers a detailed
description of the construction of each module. Sections VI
and VII present the security proof and performance evaluation,
respectively. Finally, Section VIII concludes this paper.
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II. RELATED WORK

Trajectory location data occupy a central role in a variety
of socially and publicly beneficial sectors, such as smart city
development and traffic management [16], with much of this
data derived from mobile devices tracking individual location
behaviors. However, due to the highly sensitive nature of
trajectory data, there is an undeniable risk of privacy breaches
during data-sharing processes [17].

Recent studies have demonstrated that even when trajectory
data is anonymized, privacy-invasive techniques such as trajec-
tory reconstruction, deanonymization attacks, and membership
inference still pose a threat, enabling attackers to reconstruct
actual trajectory information from processed data [18]. Li et
al. [19] empirically analyzes to quantify the extent of location
privacy leakage in MSNs, revealing that even the smallest
amount of shared location information exposes users’ points
of interest (POIs). Xiao et al. [20] considers temporal corre-
lation based on HMM and Bayesian theory. These literatures
rarely consider the impact of location semantic correlation on
trajectory privacy preservation. More and more researchers are
beginning to integrate semantic behaviors into location privacy
preservation.

To address this set of privacy concerns, the method of
trajectory synthesis using differential privacy is seen as a
rather forward-looking solution. Much of the previous work on
differential privacy in the area of trajectory data analysis has
focused on the design of specialized algorithms for specific
application scenarios, such as community mining [21], par-
ticipatory perception [22], and crowdsourcing recommender
systems [23]. In contrast, this paper aims to explore more
general and flexible strategies, focusing on how to construct
and publish a synthetic trajectory dataset that retains similar
properties to the original trajectory dataset while complying
with differential privacy requirements.

Considering the preservation of semantic information of
published trajectories. Chen et al. [24] mapped trajectories
to a prefix tree structure, where each node represents a
location, and released the prefix tree with noise; Yin et al.
[25] constructed prefix trees using semantic nodes, with each
node representing a specific location category; Han et al.
[26] efficiently merged spatial regions using Hilbert curves;
He et al. [27] proposed the DPT scheme that discretizes
trajectories through a hierarchical referencing system and
builds a prefix tree structure, generating synthetic trajectories
that meet differential privacy requirements through random
walks in Markov chains. The recent AdaTrace scheme [19]
trains a first-order Markov chain model and other key features
based on the results of trajectory discretization, generating data
through random walks. Despite improved synthesis efficiency,
it is limited by the insufficient information carried by the first-
order Markov chain model, making it difficult to generate
high-quality trajectory data. Furthermore, Wang et al. [28]
developed the PrivTrace algorithm, which adaptively combines
first-order and second-order Markov models to predict location
trajectories, balancing the usability of trajectory data with
privacy protection. In addition, Ghane et al. [29] modeled
trajectories using a graphical generative model to capture
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the statistical characteristics of moving entities and generate
synthetic trajectories that meet the criteria.

Meanwhile, recognizing the limitations of existing schemes
in maintaining semantic information of trajectories, Zheng et
al. [17] transformed trajectories into prefix tree structures,
combining the semantic context of locations with their fre-
quency of occurrence to assess the sensitivity of trajectory
positions. Furthermore, Du et al. [30] designed a Hierarchical
Graphical Model (HGM), capturing the semantic features of
trajectories to generate sets of trajectories that meet differ-
ential privacy standards. For the maintenance of temporal
correlations within trajectories, Wang et al. [31] explored
the secure release of trajectories in a crowdsourcing envi-
ronment, proposing the RescueDP mechanism, which accu-
rately predicts the location for each time segment based on
the temporal correlations between locations and dynamically
adjusts the privacy budget to maintain temporal consistency of
trajectories. Furthermore, Ou et al. [13] developed a trajectory
release mechanism based on differential privacy, which uses
a hidden Markov model to build candidate sets and measures
the similarity to ensure the protection of correlations among
multiple users’ trajectories.

However, although current research has incorporated user
location and semantic information in the construction of tran-
sition models and generation of predicted trajectories, it has
yet to adequately integrate location transitions and semantic
similarities to optimize trajectory synthesis. In particular, there
is still a need for more extensive research on the privacy
preservation of semantic associations between multiple user
trajectories. Given the potentially severe consequences of deep
privacy breaches, such as those involving social relationships,
enhancing research on such privacy protections is both urgent
and critical.

III. PRELIMINARIES
A. Differential Privacy

Definition 1. (e-differential privacy [31]): Suppose there ex-
ists a randomized algorithm A, given a dataset D and its
neighboring dataset D’, if the ratio of probabilities of the
possible output range R when algorithm A is applied to the
dataset and its neighboring dataset satisfies:

Pr(A(D) € R)

Pr(A(D’) € R)

Then Algorithm A satisfies e-differential privacy, where the
parameter ¢ is the privacy budget of differential privacy, which

is designed to measure the degree of privacy-preserving of
Algorithm A.

< exp(e). 1

Definition 2. (Global sensitivity [31]): Suppose there exists
a set containing multiple query functions. Given adjacent
datasets D and D’, for any query function @, its global
sensitivity A f is defined as the maximum difference between
the results obtained from the adjacent datasets.

Af = max |Q(D) — QDI 2)

where ||||; is referred to as the L;-norm.
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B. Hidden Markov Model

The Hidden Markov Model (HMM) [32] is capable of
internally simulating and quantifying the temporal associations
between unseen hidden states along a trajectory, enhancing the
accuracy of future location predictions without the need for
external manual adjustment of errors. HMM is represented
by the triplet © = (A, B, 7). A denotes the state transition
matrix where a;; = P(X; = z; | X;—1 = x;), indicating
the probability of transitioning from state xz; at time ¢ — 1
to state x; at time t. B represents the emission probability
matrix where b;(k) = P(O; = oy | X; = x;), representing
the probability of state x; producing observable output oy. 7
is the initial state probability vector where m; = P(X; = z;),
representing the probability of starting in state x; at time ¢t = 1.
The HMM possesses several key features:

1) Markov Property: Within the HMM framework, the
probability of a current state occurring is influenced
solely by its immediate predecessor, independent of any
other states.

2) Hidden Markov Chain: The model encompasses an
intrinsic hidden Markov chain, which is responsible for
describing the temporal evolution of these hidden states.

3) Observation Generation Mechanism: The observed
data in the model are generated by the hidden states
according to specific probability distributions. The prob-
ability distribution for generating particular observational
data varies across different hidden states.

4) Parameter Estimation: The parameters of the model are
determined either through maximum likelihood estima-
tion methods or Bayesian approaches.

5) Sequence Prediction and Interpretation: HMM is uti-
lized for predicting future observational sequences and
also for understanding and classifying current observa-
tional sequences.

C. Trajectory Database

A trajectory database D contains numerous trajectories of
moving users, wherein each trajectory 7' represents a data
record of the trajectory database D. The range of position
nodes in the trajectory database D is

., locy } 3)

In the trajectory database D, the position node loc at time ¢
is represented by coordinates, where loc; = (x;,y;), and both
latitude and longitude values are stored as spatial information
in the database.

The location points in the trajectory database are broadly
categorized into two types: stay points and pass-by points. Stay
points are geolocation markers where a mobile entity stays
at a location for a certain period, while pass-by points are
trajectory segments connecting two consecutive stay points.
To fully realize the semantic meaning of stay points, we
adopt a mapping strategy where each stay point corresponds to
multiple specific semantic information. This is mainly because
stay points are more closely related to the actual location of an
individual’s activities, which is crucial for accurately inferring
an individual’s daily life pattern.

T = {locy, locy, . .
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TABLE I
TABLE OF NOTATIONS

Notation  Definition

Dy, The historical trajectory database

D’ The filtered historical trajectory database

D The predicted trajectory database

loc; The location of the user at time point %

Ta Userg’s original trajectory

Ty Usery’s publishing trajectory

Ty A trajectory in the historical trajectory database
S(:Hmp The semantic feature vector at location p.

6, ~ The semantic similarity threshold

Vi The semantic feature vector of user a at point ¢
& User predefined semantic location sensitivity
SLg User’s semantic sensitivity set at location s
PL; The privacy level of location %

PW; The privacy weight of location ¢

D. Location Semantic Information

The semantic implications of a location are closely associ-
ated with the behavior patterns of active users and the specific
category of the location. By comparing users’ trajectory data
with the functional zones on the map, we can infer the users’
behavioral intentions [33]. This characteristic, which describes
the functional division of locations, is referred to as the
semantic information of a location.

Location Semantic Information: The semantic attributes
of a location can be precisely characterized by its spatial
position through latitude and longitude coordinates, a process
analogous to the mapping and positioning mechanism in Geo-
graphic Information Systems (GIS). By conducting a thorough
analysis of an individual’s daily movement trajectories, we can
systematically extract and construct a set of semantic features
for a location. From the constructed foundational attributes, m
key features that a location possesses are selected to form a
semantic feature vector, which serves to represent the semantic
properties of that location.

The spatial position of each node loc; in the trajectory
database is represented by its coordinates loc; = (z;,y;),
which facilitates an accurate portrayal of its geographical
location. For the semantw_cbaracterlzatlon of each location, a
semantic feature vector Sem; is constructed, consisting of m
key semantic features Sem; = {s;1, Si2,. - ., Sym  associated
with the location node loc;. Each semantic feature s;; is a
binary value that reflects the presence (1) or absence (0) of a
particular semantic attribute at the given location. The feature
vectors corresponding to all positional points within a single
trajectory collectively constitute the semantic feature matrix:

S11 S12 Sim
S21 S22 0 Som

S=1. . . 4
Snl Sn2 o Snm

where rows represent positional points and columns represent
semantic attributes.

4

Semantic Frequency: Semantic frequency refers to the
probability that a location of a given semantic type is visited.
This can be calculated by counting the number of visits to loca-
tions of a specific semantic type and then dividing by the total
number of visits. Assume there is a dataset of trajectory data
that includes various types of semantics, such as restaurants,
shops, and parks. By counting the number of times locations of
a particular semantic type are visited in the historical trajectory
data, we can determine the visiting frequency for different
semantic types. The method for calculating the frequency of
semantic information is as follows:

N;
Z \Geosel| N

where N; represents the number of occurrences of semantic
type s;, and |Geoset| denotes the set of geographic locations
within the entire region, the size of which is equivalent to the
number of locations visited in the trajectory dataset for the
region.

Semantic Correlation: We analyze the spatial relationships
and semantic similarities between different locations using the
feature vectors Sem,, and Sem,, corresponding to locations p
and ¢ with coordinates (x,, y,) and (z,,y,) respectively. One
commonly used metric is the Jaccard index, which evaluates
the degree of similarity by comparing the intersection and
union of the feature sets of the two locations. This metric, how-
ever, may oversimplify the relationships by focusing only on
the presence or absence of features without considering their
distribution or diversity. Conversely, cosine similarity provides
a more nuanced assessment by evaluating the orientation
agreement between the two feature vectors. The calculation
method is as follows:

freq; = (5)

— (Sem,, Sem,)
SemSim(Sem,, Sem,) = —>"—=*-
|Semy,||Sem,|

Z? 1 Z;ﬂ 1 5p5q ©

\/Zp 1 p\/Zq 1 q

Based on the relationship between vectors, if two vectors are
in the same direction (i.e., co-directional), the angle between
them is zero, resulting in a cosine value of 1, indicating the
highest degree of similarity between these vectors. Therefore,
the semantic similarity of locations is directly proportional to
the cosine value between their semantic vectors. The larger the
cosine value between the vectors, the stronger their similarity
and the smaller their differences; conversely, the smaller
the cosine value, the lower their similarity and the greater
their differences;l“lpically, semantic similarity is denoted by
SemSim(Sem,, Sem,), with values ranging from 0 to 1. A
higher value indicates greater semantic similarity between two
locations.

IV. SYSTEM OVERVIEW
A. System Model

Our scheme proposes a new mechanism called SCTP to deal
with the problem of semantic correlation privacy publishing
of trajectories among users. We describe the design principle
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Fig. 1: System model

and working mechanism of the SCTP mechanism in detail
using the example of users enjoying location-based perceptual
services (such as navigation guidance and social check-in).
As shown in Fig. 1, the system model consists of three
core entities: the Data Users(DU), the Trajectory Management
Center (TMC), and the Geographic Information Server (GIS).
The details are as follows.

1) Data Users (DU): When data users utilize certain social
applications, they upload their trajectory information to trusted
TMC. In practice, trajectory data is continuously uploaded,
with applications automatically collecting and uploading lo-
cation coordinates at predefined time intervals or when users
move a certain distance, resulting in the upload of a complete
trajectory each time. Through these applications, users can
discover nearby amenities such as restaurants, gyms, or hos-
pitals. Furthermore, these location data can also be utilized
for personalized recommendations, route planning, or social
interactions.

2) Trajectory Management Center (TMC): The TMC
serves as a crucial intermediary server situated between users
and the GIS. Its primary goal is to establish a secure and trust-
worthy data exchange environment to safeguard user privacy
against attacks from untrusted third-party servers.

The primary responsibility of the TMC is to collect users’
raw trajectory data and process their query requests, securely
releasing users’ sensitive trajectory information using ad-
vanced privacy-preserving techniques. In doing so, TMC maps
e&cl; geographical location point to a semantic feature vector
Sem;, integrating the semantic information of the location.
This implies that within the trajectory dataset, each location
point is labeled with a set of feature tags that explicitly denote
the semantic category of the place, such as hospital, school,
cinema, and so forth. Furthermore, TMC conducts prepro-
cessing of the collected location trajectory data. Next, for
every trajectory uploaded by users, TMC performs semantic
relevance measurement and synthesizes based on HMM and
differential privacy. If the semantic correlation measurement
value falls within a predefined threshold, TMC will require
reselection to protect the semantic correlation privacy between
different trajectories. Finally, TMC responds to requests from
the GIS by releasing trajectory data that has undergone se-
mantic correlation privacy-preserving processing.

In practical applications, the TMC may be a data center
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Fig. 2: Security model

managed by a professional team or a service institution reg-
ulated by the government or relevant industry associations. It
plays a vital role in protecting user privacy and facilitating the
secure exchange of data, thereby providing users with a safe
and reliable location service environment.

3) Geographic Information Server (GIS): The GIS is a
specialized server dedicated to storing, managing, and dis-
seminating various types of geographic information data. It
plays a crucial role in receiving user query requests, obtaining
query results from the TMC, and responding to user needs.
As a provider of location services, GIS works closely with
TMC to offer accurate and timely location information ser-
vices while ensuring the effective protection of user privacy.
This collaborative working mechanism not only enhances the
security and usability of location services but also provides
users with a safer and more comfortable experience.The pri-
mary responsibilities of GIS include the storage, management,
and publication of various geographic trajectories and related
location semantic information data. GIS is capable of receiving
user requests and retrieving query results from TMC to meet
user demands.

B. Security Model

The objective of the SCTP is to safeguard the privacy of
semantic correlations among different users’ trajectory data
and their location trajectories. In this security model, we
assume that the TMC and DU are honest and trustworthy;
the TMC faithfully executes our data processing scheme,
whereas the GIS is considered honest but curious. Briefly,
being honest yet curious means that participants strictly adhere
to the protocol’s execution, but at the same time, they might
possess curiosity about users’ sensitive information, attempting
to analyze and mine users’ semantic data using the background
knowledge they have or through differential attack techniques
to infer personal sensitive information.

The security model for SCTP is shown in Fig. 2, the GIS is
considered the most potentially threatening adversary, as it has
access to users’ location service requests and the capability
to analyze sensitive semantic information revealed in users’
location trajectories. Consequently, the design of the SCTP
must address how to effectively counteract various privacy in-
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fringements and data mining activities that GIS might initiate,
ensuring that users’ location privacy and personal data security
are adequately protected.

C. Mechanism Architecture

Algorithm 1 SCTP
Input: T, dataset D, threshold 6, privacy budget ¢
Output: T
for T3, in D do
Compute semantic correlation SemSim(7,, T})
if SemSim(T,,T}) > 6 then
for each point i =1 to n in 7;, do
Execute Hidden Markov Model for Trajectory Pre-
diction at point %
6 Obtain predicted trajectory datase D
7: end for
8
9

N e

end if
: end for

10: Filter trajectories with correlation below 6 from the pre-
dicted trajectory dataset D

11: Obtain Semantic Disparity Predicted Trajectory Database
SDPT

12: Construct the predicted trajectory protection set SDPT +
1,

13: Personalized allocation of privacy budget ¢ based on
semantic frequency

14: for each point ¢ in T}, do

15 T, =T, + Lap(b)

16: end for

17: return 7/,

To implement the SCTP mechanism, we designed Algo-
rithm 1 to process the semantic correlation of a new user’s
trajectory before privacy publishing. First, we judge the se-
mantic similarity of trajectories between different users. If
their similarity exceeds a predefined threshold 6, we need to
filter the obtained set D’ for trajectory privacy preservation.
For the trajectories to be protected, the algorithm first utilizes
the Hidden Markov Model for positional trajectory prediction
to get the set of predicted trajectories D. Subsequently, based
on the semantic similarity between the predicted trajectories
and D', the predicted trajectories whose trajectory semantic
similarity is lower than a threshold value of ~ are filtered
out and retained to obtain the set of semantically different
predicted trajectories S D PT. Next, considering the sensitivity
of locations and user preferences, a personalized privacy
budget is assigned to each location based on the semantic
correlates of the area in the trajectory. Finally, we add Laplace
noise to the sequence of trajectory locations to be published
for secure trajectory data publishing.

D. Design Goals

In our scheme, we aim to explore a mechanism for publish-
ing highly usable trajectory data while preserving the semantic
correlation and privacy of multi-user trajectories. The details
are as follows:

6

e Semantic Correlation Preservation: Ensuring the pro-
tection of individual trajectory privacy and the preservation of
semantic correlations between individuals is the fundamental
requirement of our proposed scheme. By handling the seman-
tic relationships among user trajectories based on trajectory
similarity and semantic differences in predicted trajectories,
this requirement is guaranteed through the allocation of per-
sonalized privacy budgets for different locations, achieving e-
differential privacy.

e Enhancing Usability: Our scheme employs the HMM
to capture the intrinsic structures and temporal characteristics
of trajectories, thereby enhancing the usability of individual
trajectories. Furthermore, we filter and construct adjacent
trajectory datasets based on the calculated semantic correlation
coefficients before publishing, ensuring the high usability of
the released trajectory data.

V. MODULES DESIGN

’»2 =
Q. —
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~_ Iz ——J  Determination Module —
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Query Analysis
Module

&) &=

—

@ r® Privacy-Preserving
¢ 8 3 _» Module &

y LR —
Trajectory Prediction

Module - Trajectory Publishing
Module
il e

Privacy Level Privacy Budget
Calculation Allocation

Fig. 3: Module Composition

In this section, we introduce an innovative approach for
privacy protection focused on the semantic relevance of loca-
tion data. Initially, we construct a privacy candidate set based
on a single trajectory. Subsequently, utilizing this candidate
set, we transform individual location data to effectively guard
against potential privacy leaks arising from semantic associa-
tions among multiple users. Ultimately, the trajectory release
mechanism we have designed allows for the secure publication
of privacy-protected location information without disclosing
any semantic relevance associated with the trajectories.The
module composition of SCTP is shown in Fig. 3.

A. Preprocessing Module

Calculation of semantic similarity: Each trajectory can be
represented by a semantic sequence based on the transfer
between locations, so the calculation of semantic distance
requires that both trajectories are of equal length and there is
a one-to-one correspondence between the positions. Based on
the semantic feature vectors corresponding to each location
point, we define the semantic correlation coefficient as a
measure of semantic similarity between two trajectories:

Z |Va7, Vln (7)

SemSim(V,, V3) = Vil Vi)
al 7
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The intermediate V,; and V}; respectively represent a posi-
tion in the trajectory points V, and V},. First, it must be ensured
that V,; and V;; can form an n-dimensional semantic feature
vector: Vo = [Sa1, Sa2,- - - San)-

If SemSim(V,,V;) > 6, the semantic association between
the two trajectories is utilized to compute the intensity of
semantic association between each trajectory in the dataset
D;, and the new user U,.,,’s trajectories above and below.
Once this exceeds the threshold 6, the trajectory is filtered out
from the TMC trajectory dataset Dy, and ultimately forms the
effective trajectory dataset D’.

B. Trajectory prediction module

Algorithm 2 Trajectory Prediction Algorithm

Input: historical trajectory dataset D; user trajectory 7,,
threshold 6, privacy budget €

Output: predicted trajectories D

Model initialization:

HMM training on D to estimate parameters A, B, 7
Trajectory decoding:

Decode T to obtain the most probable sequence of hidden
states

5: Trajectory prediction:

6: Initialization

7: for each position /; in T do

8

9

LA

Predict the next position using HMM
. Add the predicted position to T”
10: end for
11: return D

The trajectory prediction algorithm of SCTP is shown in
Algorithm 2. For the trajectories 7' uploaded by users, we
employ a Hidden Markov Model (HMM) to dynamically
predict user trajectories. This model proficiently forecasts the
likely sequence of trajectories by conducting an in-depth anal-
ysis of the historical user trajectory dataset. It accomplishes
this by learning and mastering the transition laws between
hidden states and the corresponding observation probability
distribution characteristics of each state. When dynamically
predicting each specific temporal node on the trajectory, the
system ascertains the most probable next positional state based
on the observed state at the current node and the pre-calculated
model parameters, particularly the state transition matrix. The
Hidden Markov Model’s intrinsic capability to model and
quantify the time-series correlations between hidden states,
which are not observable on the trajectory, significantly en-
hances the accuracy of future position predictions without the
necessity for external manual error adjustment. Practically, the
model iteratively conducts n prediction calculations according
to this mechanism, subsequently generating a set of predicted
trajectories for new user trajectories.

C. Correlation Determination Module

In this phase, we will apply the obtained trajectory predic-
tion set to construct a data subset of neighboring trajectories.
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First, for the predicted trajectory collection and the subset
of trajectories with high semantic similarity to the target
original trajectories that have been rigorously filtered from the
historical trajectory database, we will further implement an in-
depth semantic relatedness assessment aiming at quantifying
and confirming the degree of correlation between the two at
the semantic level.

In this scheme, we define that the absolute value of semantic
similarity less than or equal to v indicates a weak correlation;
greater than ~ indicates a strong correlation. Therefore, we
need to filter out the trajectory dataset with the absolute value
of correlation SemSim < ~ and further process it to protect its
privacy. This threshold can be set freely according to the actual
situation, for example, when v = 0.4, if the absolute value of
semantic similarity between two trajectories is greater than -,
it indicates that there exists a large semantic correlation be-
tween them, and we will carry out the preliminary screening of
them, and then carry out the processing of privacy protection
for trajectories that meet the requirements.

Among the predicted trajectories, the trajectories with se-
mantic correlation SemSim < 7 between the trajectories are
selected for privacy-preserving and constitute the predicted
trajectory privacy-preserving set.

The trajectories in the predicted trajectory dataset D based
on the new user U,., will be measured for semantic rel-
evance with each user U’ in D’, if SemSim < -, the
predicted trajectory of the user will be put into Semantic
Disparity Predicted Trajectory Set, otherwise, the trajectories
with SemSim < « will be continued to be selected from the
predicted trajectories to be judged for semantic relevance, then
the semantic disparity predicted trajectory set of the user Uy,eq,
Semantic Disparity Predicted Trajectory Set (SDPT) can be
represented as:

SDPS,, = {sdps, € (SDPT — SemSim~)} (8)

The trajectory of a new user can be denoted as 7},¢,,, and
the predicted trajectory privacy-preserving set is PT PP, :
PTPP, = SDPT,, + Tyew- Only one trajectory is different
between this trajectory dataset and the set of semantically
differentiated predicted trajectories, and thus PT PP, and
SDPT, can constitute neighboring datasets.

D. Privacy-Preserving Module

We propose a comprehensive allocation scheme for privacy
protection levels concerning location points, which takes into
account various factors. This scheme comprehensively consid-
ers factors such as semantic point frequency information and
semantic location sensitivity, thereby assigning appropriate
privacy protection levels to each location point.

For each location, we utilize the frequency of semantic
information appearing in its vicinity as the basis for weighting.
The weight of a location is calculated by weighting the fre-
quency of semantic information surrounding it. For instance,
if sensitive information (such as hospitals or homes) appears
frequently near a location, the weight of that location should
be higher, indicating a need for stronger privacy protection.

Assuming that the semantic location sensitivity, predefined
by users, is initialized to a value between 0 and 1, the set
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representing the semantic location sensitivity of user trajec-
tories can be denoted as SLs; = [£1,&2,...,&m]. We define
the semantic frequency of a location point, denoted as freq;,
as the proportion of this semantic information within the
entire set of semantic information in the trajectory database,
as previously defined in Equation (5).

Assuming that the new user’s trajectory during a period
t is represented as Tyew = {locy,loca,...,loc:}, where the
semantic information for each location can be denoted as
Senew = [s1,82,...,8m], the calculation method for the
privacy level PL(q) possessed by each location ¢(q € [1,%])
in this trajectory is as follows:

PL(q) =) s;-& - freg; ©)

Jj=1

Finally, it is necessary to normalize the privacy level weights
of all the user’s locations to ensure that their sum equals
1. This ensures that the resulting location weights accurately
reflect the relative importance of various semantic information.
Through this method, we can compute the weight of each
location, which can more accurately reflect the prevalence
of semantic information surrounding the location, thereby
assessing the intensity of privacy protection needs for each
location.

However, in traditional privacy budget allocation models,
when the privacy budget ¢ is small, it indicates a higher level
of privacy protection, which is inversely proportional to the
privacy level. That is, in differential privacy, the privacy budget
and the level of privacy protection are negatively correlated.
Thus, the privacy budget allocation formula can be derived as

follows:
__YPLlg
1/305-, PL(q)

Our research framework is built upon the published set
of predictive trajectory privacy protection PTPP,, aiming
to provide semantic relevance protection for user trajectory
data. Thus, the sensitivity of the query function is reflected
in the maximum potential change it may induce in individual
trajectory information. We conduct multiple queries, and the
absolute difference in sensitivity values increases with each
query. For example, when querying for nearby restaurants,
assuming the number of queries is ¢, then the sensitivity of
the queries can be represented as Af = t. Therefore, the
sensitivity of the query function in the SC'T'P mechanism
depends on the variation in semantic information within indi-
vidual trajectory data. This variation influences the maximum
potential change in the query function.

(10)

K2

E. Trajectory Publishing Module

We propose a trajectory release mechanism that allocates
privacy budgets based on the aforementioned computational
results. This mechanism adds noise to trajectory data to se-
curely release the trajectory data while preserving the semantic
relevance of trajectories. The detailed process is shown in
Algorithm 3.

8

Definition 3. (Trajectory Noise Addition Mechanism): We
augment each location, loc;, in the user’s trajectory 7,, with
noise drawn from a Laplace distribution, resulting in trajectory
T/ . Thus, for any function f with a global sensitivity of Af,
algorithm F satisfies e-differential privacy:

F(Tioc,) = f(Tioc; )+ < lap(b1), ...lap(bn) > (11

where loc; represents the user’s actual location, while b is
computed from a global sensitivity of A f and a privacy budget
€, denoted as b = Af/e, with lap(b) following a Laplace
distribution. Its probability density function can be expressed

as: ) l
Pr(z) = —exp(—' Obci‘)

(12)

Algorithm 3 Trajectory Publication Algorithm

Input: Personalized privacy budget ¢, Individual’s true trajec-
tory Ty, Semantic Difference Prediction Set SDPS,,
Output: Individual privacy trajectory 7,

1: if individual trajectories need to be published then
2:  The range of T’s publication is SDPS,,
3:  for Each location i in the trajectory 7/, do

4: Calculate the privacy weight
PW; =PL;/ Y ", PL,
5: Calculate the privacy budget for loc;
6: end for
7: end if

8: return T, = T, + lap(b,).

VI. PRIVACY ANALYSIS
A. Security Analysis

To protect the semantic correlation between trajectories, this
approach requires two aspects of analysis: first, the privacy
protection of individual trajectories, and second, the protection
of semantic correlation between different users’ trajectories.
Firstly, from the perspective of individual trajectories, our
approach employs differential privacy to meet the privacy-
preserving requirements.

Theorem 1. The SCTP mechanism satisfies c-differential
privacy during the noise addition stage.

The fundamental concept of the Laplace mechanism in-
volves the addition of noise that conforms to the Laplace
distribution of the original data. This ensures that the query
results, after noise addition, comply with the constraints of
differential privacy. The proof proceeds as follows:

Assume two adjacent datasets, Dataset SD and Dataset
SD’, differ only by a single trajectory, Tiea. Let A(SD)
denote the initiation of corresponding query requests on these
datasets. Algorithm A, which adds independent noise to the
output of function f, results in query output 7”. The quantity
of noise added at each position is determined by the privacy
budget e, which is derived from the assigned privacy level,
and by the global sensitivity Af. Specifically, in the worst-
case scenario, adding or removing a single trajectory affects
a solitary query function by no more than 1. Therefore,

Page 8 of 14



Page 9 of 14

oNOYTULT D WN =

JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021

the procedure of introducing noise Lap(1/e;) that follows
a Laplace distribution at each position complies with e-
differential privacy.
From the probability density function of the Laplace mech-
anism, we can derive the following:
Pr[A(SD)=1T'] _ Pr[f(SD) + Lap(b) = T"]
Pr[A(SD") =T']  Pr[f(SD’) + Lap(b) = T"]
ko e—e(IT'=f(SD)i|/Af)
- Hl e—e(T'=F(SD:I/AT)

He
<He

(EHf(SD )— f(SD)Hl)
=e Af

E\T'—J(SD) |—elT’ —f(SD"); \)
Af

E\f(SD )1 f(SD); \)

< e

In addition, regarding the semantic correlations among
trajectories of different users, we employed a hidden Markov
model to regenerate the original trajectories and processed
them for semantic correlation. This ensures that the published
trajectories, while similar to the original, have a low semantic
correlation with those of other users, thus protecting user
privacy. The formal analysis is as follows:

Assume that the user’s trajectory is denoted by T, the
trajectory of another user with high semantic similarity is
represented by 7, and the published trajectory is indicated
by T".

—€

Pr(T"|T5,) br(TT) _ Pr(T'[T})
Pr(T"|T},) - Pe(TT,) —  Pr(T'T,)

From the analysis above, it can be concluded that the ad-
versary cannot distinguish T, and T, . Therefore, our scheme

protects the privacy of semantic correlation among different
users’ trajectories.

13)

B. Usability Analysis

To evaluate the effectiveness of the perturbed trajectory, we
use the expected distance between each position in the original
trajectory 7}, and each position in its true released trajectory
T/ as the evaluation metric. It is formally represented as
follows:

Usability = U( Z | Dis(T,, T))|?) (14)

The distance function Dis can be the Euclidean distance or
the Dynamic Time Warping (DTW) distance, among others.
Taking the Euclidean distance as an example, we can further
obtain a value that comprehensively reflects the degree of
deviation between the perturbed trajectory and the real trajec-
tory, thereby effectively evaluating the validity of the perturbed
trajectory.

To explore the influencing factors of data usability, we ana-
lyze two key dimensions: firstly, the spatial distance between
the perturbed position and the original position, an increase in
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this distance will lead to a decrease in data usability; secondly,
the total length of the trajectory data, as the length of the
trajectory increases, the number of semantic points involved
increases, and to maintain a higher level of accuracy, it is
necessary to divide it into more detailed divisions, which will
likewise reduce the availability of the data.

In the SCTP mechanism in this paper, we process contin-
uous geographic data based on differential privacy by con-
trolling the probability ratio e® between any two different
real locations corresponding to the same published location,
which is a flexible balance between privacy-preserving and
data usability. This mechanism has greater advantages for
processing continuous geographic location data, and through
the application of differential privacy, it not only strengthens
the protection of the user’s geographic location, but also
preserves the usability of the trajectory data, which provides
a theoretically reliable and practically effective solution for
semantic correlation privacy preservation of trajectories, and
demonstrates the significant advantages and wide applicability
of our scheme.

VII. EXPERIMENTAL EVALUATION

Environment Setup. To evaluate the performance of the
location privacy-preserving method proposed in this paper, the
algorithm was extensively tested in terms of data usability,
privacy-preserving level, and algorithm runtime. The experi-
ments were implemented using Python 3.9, utilizing the Taxi
dataset [34], Gowalla dataset [35], and Geolife dataset [36].
The experimental environment in our scheme is PyCharm. The
hardware setup consists of a 4.7GHz Core(TM) i7-12700H
processor, 16.0GB of RAM, and a laptop running Windows
11. In this section, we evaluate the performance of our scheme
and compare it with AdaTrace [19], DPT [27], and DPLQ [37].
Given the stochastic nature of all the generators used, to ensure
data reliability, we performed each experiment five times and
averaged the results.

A. Data Usability Analysis

By quantifying the similarity between the output of a query
function () before and after introducing noise, the potential
impact of the privacy protection algorithm on data usability
can be effectively revealed. To facilitate the analysis of the
impact of changes in the privacy budget on the SCTP mech-
anism, we assume that the number of semantic categories for
the user’s position is 10 and the position privacy level (PL) is
0.7. From Fig. 4(a), it can be clearly observed that for the four
different algorithms, the corresponding data usability values
all show a decreasing trend as e increases. The reason for
this is that an increase in € means adding less noise, which
directly leads to an improvement in data usability. Given that
the semantic set covered by the Taxi dataset is richer than that
of the Geolife dataset, this characteristic difference is reflected
in the corresponding metric values shown in Fig. 4(b) as an
increasing trend. Similarly, compared to the Gollawa dataset,
the Geolife dataset contains a wider range of semantics. This
characteristic is consistently demonstrated in the results shown
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in Fig. 4(c), where the corresponding metric values also exhibit
a similar increasing trend.

As the number of trajectory locations increases, the number
of key semantic points to be protected also increases, leading
to a corresponding increase in the required privacy budget.
Therefore, the discussion of the impact of trajectory position
changes on the scheme’s usability is omitted here. We are ded-
icated to analyzing the impact of changes in user privacy levels
(PL) on data usability across different dataset environments,
and we present our experimental results in Fig. 5.

We found that as the user privacy level increases, following
the design principles of the SCTP mechanism, it becomes
necessary to set a lower privacy budget to ensure the privacy
protection of highly sensitive semantic information. This pro-
cess introduces more noise into the original data, potentially
reducing data usability. Fig. 5(a) first shows that as the
privacy level of positions within a user’s trajectory increases,
the overall privacy weight calculated based on the semantic
sensitivity of positions also rises. This implies that to maintain
the same level of privacy protection, more privacy budget
needs to be allocated, while more noise is added to obscure
location information, which in turn affects data usability.

Experiments found that on different trajectory datasets,
due to the varied distribution of semantic points within each
dataset, the privacy weights of individual positions vary. For
example, the Taxi dataset contains relatively more semantic
points, hence the loss of data usability is higher compared to

the Geolife and Gowalla datasets, as reflected in Fig. 5(b).
Similarly, the Geolife dataset has more semantic points than
the Gowalla dataset, and therefore its data usability decreases
more significantly, as shown in Fig. 5(c).

In summary, our scheme successfully constructs a privacy
protection mechanism that can dynamically adjust the allo-
cation of privacy budgets and adapt to the characteristics
of different datasets. The experimental results demonstrate
that the SCTP scheme can effectively reflect and respond
to the changing privacy protection needs of trajectory data,
indicating that this scheme has a certain degree of practicality
and effectiveness when dealing with large-scale trajectory data
privacy protection issues.

B. Degree of Privacy Preserving

When comparing the SCTP method proposed in this paper
with the AdaTrace, DPT, and DPLQ privacy protection algo-
rithms in terms of privacy protection performance, the exper-
imental results are as shown in Fig. 6. The X-axis represents
different values of the privacy budget parameter e, while the
Y-axis quantifies the level of privacy protection provided by
each algorithm, with the results expressed as the probability
ratio between two different real locations corresponding to the
same published location.

As seen in Fig. 6, the privacy protection effectiveness of
the four algorithms exhibits a decreasing trend as the privacy
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budget parameter e increases. This is because € is a key
parameter for measuring the risk of privacy leakage, and the
larger its value, the less perturbation noise is injected into the
location data, which directly weakens the privacy protection
effect.

However, it is noteworthy that the SCTP scheme proposed in
this paper integrates a personalized privacy allocation scheme
based on semantic frequency to enhance the security of
location information. Even under the general rule of a decline
in overall privacy protection with increasing ¢, this scheme still
demonstrates higher privacy protection effectiveness compared
to similar algorithms, thanks to its personalized privacy budget
allocation strategy. In summary, even with larger e values,
the SCTP scheme may still offer a higher level of privacy
protection than other algorithms.

Furthermore, we systematically investigated the effect of
user position privacy level (PL) on various privacy-preserving
schemes across different datasets and visualized the results in
Fig. 7. As shown in Fig. 7(a), the level of privacy protection
decreases as the user position privacy level (PL) increases.

This is because, according to the basic principles of differ-
ential privacy, a higher privacy level requires a larger privacy
budget, which consequently weakens the degree of privacy
protection. It is noteworthy that our scheme demonstrates good
adaptability under this variable change.

It is important to note that among the three datasets, the
semantic region division is the most detailed in the Taxi
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dataset, followed by the Geolife dataset, and the least detailed
in the Gowalla dataset. Therefore, as the level of detail in
the semantic information of the datasets increases, the privacy
protection cost required to achieve the same level of privacy
protection also increases, resulting in a relatively lower level
of privacy protection. This pattern is confirmed in the results
shown in Fig. 7(b) and Fig. 7(c). Even so, our scheme still
demonstrates robust and relatively efficient privacy protection
across the datasets.

C. Runtime Analysis

In terms of algorithm runtime, our scheme specifically
considers the impact of the number of semantic categories in
user trajectory positions and the position privacy level (PL) on
the runtime of the scheme and compares our approach with
other schemes. The results, as shown in Fig. 8(a), indicate
that under the condition of maintaining a constant position
privacy level of 0.7, as the number of position semantic
categories increases, the scale of semantic points that the
scheme needs to traverse also expands, leading to an increase
in time costs. The comparison results reveal that the scheme
employing the SCTP mechanism uses an efficient prediction
and noise addition mechanism, thereby showing more robust
performance in terms of the growth rate of runtime, especially
demonstrating superior time efficiency when handling a large
volume of geographic location data.
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Additionally, this scheme further explores the impact of the
user position privacy level (PL) on the scheme’s runtime across
multiple datasets. As shown in Fig. 9(a), the experimental
results indicate that, with the number of position semantic
categories fixed at 10, increasing the position sensitivity results
in a corresponding increase in the required amount of noise,
which in turn leads to an increase in the time cost of the
scheme. The SCTP mechanism demonstrates stable or better
performance across different datasets, particularly in datasets
with larger semantic sets, where its performance is especially
notable.

For the results shown in Fig. 9(b) and Fig. 9(c), the
trends are similar to those in Fig. 9(a), but their runtime is
shorter because the Taxi dataset has finer-grained divisions.
This indicates that the SCTP mechanism exhibits significant
applicability and efficiency when applied to different datasets.

D. Degree of Semantic Correlation Preserving

To thoroughly evaluate and demonstrate the superior perfor-
mance of our scheme in protecting the semantic correlation
privacy between the trajectories of two different users, we
will conduct a comparative study between our scheme and
the PPSC and TCPP schemes mentioned in [15], [38]. The
study focuses on privacy-preserving level and data usability,
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with simulation testing and in-depth analysis conducted on
both aspects.

When considering the level of semantic correlation of
privacy protection between users’ trajectories, we will focus
on the privacy budget parameter ¢ and comparatively analyze
how the privacy protection capability of our scheme changes
under different privacy budgets compared to the PPSC and
TCPP schemes. Our scheme considers the actual impact of
user-defined privacy budget values on the privacy protection
level across datasets of different sizes, with the experimental
results shown in Fig. 10. According to differential privacy
theory, as the privacy budget increases, the level of privacy
protection decreases. Furthermore, our scheme demonstrates
excellent performance, as it employs a personalized privacy
budget approach that accounts for factors such as trajectory
semantic frequency and position.

In parts (a), (b), and (c) of Fig. 10, although the overall
trend is consistent, there are still differences in the level of
privacy protection. These differences arise because the se-
mantic content richness within the Taxi, Geolife, and Gowalla
datasets decreases sequentially, which influences the specific
manifestation of the privacy protection effect.

Regarding the exploration of the semantic correlation be-
tween the trajectories of two users in terms of data usability,
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we will also examine and analyze the data usability per-
formance of our scheme compared to the PPSC and TCPP
schemes under different privacy budget settings. As shown
in Fig. 11(a), Fig. 11(b), and Fig. 11(c), when the privacy
budget increases, the evaluation metric for data usability also
increases, which means that data usability gradually decreases
with increasing e.

Our scheme precisely adjusts the privacy budget by con-
trolling the relationship between the distance from the actual
position to the perturbed position and their corresponding
probability ratio, effectively reducing the positional deviation
and achieving a personalized privacy budget allocation. Con-
sequently, our scheme significantly maintains efficient data
usability.

VIII. CONCLUSION

In our scheme, we have proposed a Semantic Correlation
Trajectory Privacy-preserving (SCTP) mechanism based on
differential privacy, aiming to address the challenges of lo-
cation services and user semantic privacy-preserving in IoV.
By combining HMM and differential privacy, the SCTP mech-
anism ensures the semantic privacy of user trajectories while
maintaining high-quality location services and data usability.
Our scheme includes a trajectory prediction algorithm, which
can dynamically and accurately predict vehicle trajectories and
generate semantically relevant and highly available trajectory
datasets. Additionally, a semantic frequency-based personal-
ized privacy budget allocation strategy is designed, which
achieves reasonable privacy budget allocation by setting pri-
vacy weights. Theoretical analysis and experimental validation
demonstrate that our mechanism strictly satisfies e-differential
privacy and shows significant advantages in protecting the
semantic privacy of user trajectories. Future research directions
include introducing dynamic adjustment strategies for spa-
tiotemporal attributes and random perturbation elements and
deepening the privacy protection mechanisms for the semantic
correlation of trajectory data.
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