Manuscript File Click here to view linked References =

Verifiable Decentralized Identity-based Meta-computing in Industrial
Internet of Things (IloT)

Kai Ding?, Tianxiu Xie?, Keke Gai?, Chennan Guo®, Liangqi Lei, Dongjue Wang®, Jing Yu’,
Liehuang Zhu* and Weizhi Meng®

“School of Cyberspace Science and Technology, Beijing Institute of Technology, China,
bSchool of Information Engineering, Minzu University of China, China
“School of Computing and Communications, Lancaster University, United Kingdom

ARTICLE INFO ABSTRACT

Keywords: Meta-computing in Industrial Internet of Things (IIoT) has triggered a dramatic advance due to the
Decentralized identity gigantic supports of computation power for processing complex IIoT tasks. However, users identities
Verifiable registry are encountering security and verification issues since emerging threats derive from dynamic inter-
Meta-computing operations in the cross-organization context. Even though blockchain-based Decentralized Identity
Trustworthy authentication (DID) is an alternative for offering a strengthened identity governance, current verifiability of DID
Blockchain documents still encounters vulnerabilities due to the involvement of the less trustful third parties

that maintain the storage of binding relationships between DID identifiers and public keys. In this
paper, we propose a novel Verifiable and Searchable Decentralized Identity (VS-DID) model. We
focus on the verifiability of DID documents and propose a verifiable registry scheme that ensures
verifiable binding relationships. In order to enable efficient queries in large-scale users’ identities in
meta-computing IIoT, we develop an on-chain-off-chain query strategy that adopts a slide window
accumulator. The experimental results show that our scheme reduces aggregate proof time and
commitment time by 93.5% and 96.5%, respectively, compared to the Merkle SNARK scheme, while
maintaining reasonable verification time, significantly improving the efficiency of DID registry in
large-scale IIoT environments.

1. Introduction data. In W3C standards [44], for example, the binding
of DID identifiers and public keys are stored in the DID
document after the user registry. A potential risk exist as
DID documents are maintained by a third party but the
binding relations need verification, which causes a con-
flict when covering privacy concerns [15, 32]. As cross-
domain/organization user authentication is a common re-
quirement in meta-computing, unexpected releases of re-
lations threaten the security of users’ identities. Moreover,
computation and maintenance maybe costly, since updating
on-chain data requires re-computing tree roots in the current
Merkle tree-based storage model. The challenge becomes
further greater when encountering large data workloads in
the IIoT context. These issues have been rarely addressed by
previous research.

In order to address challenges above, in this paper we
focus on the issue of verifiable registry of decentralized
identity and propose a novel Verifiable and Searchable
Decentralized ldentity (VS-DID) model in order to realize
the verifiability of DID documents and support efficient
queries in large-scale user identity systems. Fig. 1 illustrates
a high-level architecture of the proposed VS-DID model. In
essence, in our proposed approach, blockchain-based DID
utilizes a network of nodes to store identity information, al-
lowing each individual/object to control and manage identity
data. We highlight the effect of all participants’ accesses
(either physically or virtually) in meta-computing-enabled
IIoT. Specifically, the purpose of employing DID in meta-
computing IIoT is to guarantee the security of identity gov-
ernance while ensuring a proper adaptability, e.g., high effi-
*T. Xie is the corresponding author. ciency and low computing costs. Cross-domain/organization

The emergency of meta-computing has been powering
up computing and service models of contemporary Indus-
trial Internet of Things (IloT) due to the implementation
of multiple technical characteristics, e.g., blockchain native
and open access. It enables distributed computing power via
utilizing the increasing computation and storage capabilities
of Internet of Things (IoT) devices to achieve a higher-
level computing power integration [47, 54, 20]. Considering
a wide access setting in meta-computing-empowered IloT,
one of the challenges is to secure the verification of users’
identities within the multi-system context [21, 25].

An alternative solution is to explore the implementation
of Decentralized Identity (DID), which leverages advanced
data storage diagram techniques to enhance the efficiency
and reliability of data storage [43, 30]. The existing work
in DID has implied a great transformative potential in rev-
olutionizing identity verification practices across diverse
sectors, e.g., in finance, healthcare, and logistics [5]. To
be specific, hashed data are stored on-chain in a Merkle
tree while a complete copy of data is off-chain stored. This
paradigm reduces the amount of data stored in blocks as
only hash values are stored on-chain. Thus, the maintenance
of on-chain data storage is lowered down, which facilitates
a large-scale off-chain data storage and guarantees data
integrity and tamper-resistant.

However, existing schemes lack verifying DID docu-
ments and rise the cost of data maintenance, which causes
trouble in meeting the demands of querying large-scale

Kai Ding et al.: Preprint submitted to Elsevier Page 1 of 14

Blockchain-based Zero-trust Environments for Meta Computing

On-demand Meta Computer

DID document Authentication

= package

Configuration
Off-chain DID Storage On-chain DID Query

E—_V_e_rif_‘iz_ll;l_e_r_e_g_i;{rz_it_i(_n—l _________ i Verifiable |7~~~ TRTTRRET i | Meta Computing Task E
: '| membership i Slide window accumulator i {_ ____Management :
E ,'/. (l) E pIOOf i o storage i Senlement :_______'____________'_'I
i Userregister ~ DID update | : : Oo % i < 5 ! Resource scheduling
; -— 5 I Distributed : TR " :
. | 0 | Ledger ppg s ockS :

Settlement and Incentive

dictionary Transactions Mechanism
ﬁ Consistent states J Resource access
DID-based Available Device Management for Meta Computing
DID for Cloud Server DID for Edge Server DID for IoT Device Meta Computer Function
DID 1 VC.1 DID 2 VC.2 DID 3 VC_3
*+ Cloud server identifier * Edge server identifier * IoT device identifier)
(Unforgeable token) (Unforgeable token) (Unforgeable token) Dynamic management
+ Cloud server Certificate * Edge server Certificate * IoT device Certificate
(Fine-grained access control)| | (Fine-grained access control) | | (Fine-grained access control)
Comupute and storage

ﬁ mapping ﬁ mapping

resources integration

ﬁ mapping

Cloud Server Edge Server

IoT Device

Smart Car Smart City

Distributed data ((‘A’)) Base Station Data @ Q_(? Uniform addressing
Cloud Server collection
upload X \ SRRz > @
ﬁ support .
Performance
O Consortium ﬁ _?. D benchmarking
OO Blockchain

Figure 1: The high-level architecture of the proposed VS-DID model for meta-computing-enabled IloT.

requirements are covered by the proposed model, which
covers both users and hardware/software.

In our approach, both on-chain and off-chain storage
are applied in order to reduce the workload of on-chain
storage, which is one of the key elements influencing the
performance of meta-computing in IIoT. Considering the
verifiability of the third-party owning DID documents, our
approach develops a verifiable registry to ensure the binding
relations between the user key pairs and DID identifiers.
The module mainly consists of three parts, namely, User
Register, DID Update, and DID Document. The binding
relations between DID identifiers and public keys are veri-
fied through membership verification proof. The verifiable
registry is based on a bilinear tree-based commitment to
maintain in-variance proof. DID document is an extension
of the Key-Value Commitment (KVaC) dictionary structure
[3] that binds key-value pairs to a commitment, allowing
proof of their existence and consistency without revealing
the specific key-value content.

To address the high maintenance cost issue discussed
above, we propose a slide-window accumulator-based stor-
age mechanism, in which uses a hierarchical storage setting
so that users only store DID and Verifiable Credentials

(VCs) on the blockchain and leave other data stored off-
chain. That is to say, the proposed accumulator improves the
performance of DID verifier during the query verification
process, whenever a user or DID verifier needs to perform
a query/verification. An algorithm is developed for main-
taining the sliding window accumulator and handling user
queries. The design goals of the proposed approach cover
efficiency of identity query, storage saving, and identity in-
time updates.
The main contribution are as summarized as follows.

e We have proposed a novel verifiable registry scheme
that is specifically tailored for DID documents. Our
verifiable registry is implemented through key-value
commitment technology, so that the integrity and im-
mutability of the identity contents are ensured. The
proposed scheme considers the implementation of a
wide access in IIoT, which is capable of governing
meta-computing identity and authentication within
the multi-system context.

e We have developed a sliding window accumulator for
achieving efficient data queries for both on-chain and
off-chain, covering boolean queries and range queries.

Kai Ding et al.: Preprint submitted to Elsevier

Page 2 of 14

The proposed accumulator can successfully support
not only DID implementations but also complex ap-
plication requirements in IIoT, i.e., meta-computing-
enabled resource integration and large volume data
processing cross distinct systems.

e We have conducted a theoretical analysis in security
and efficiency and implemented experiment evalua-
tions for evaluating the performance of the proposed
accumulator. Our evaluation results have demon-
strated that our approach has an advantage in offering
secure verifiability and high efficiency, comparing to
other existing methods.

The remainder of this paper is organized as follows. Sec-
tion 3 shows the work’s background and Section 4 presents
detailed descriptions about the proposed model, covering
operating principles and major modules. We provide exper-
iment evaluations and main findings in Section 5. Related
work has been briefly reviewed in Section 2. Finally, con-
clusions are drawn in Section 6.

2. Related Work

Xiong et al. [50] proposed a blockchain-based decentral-
ized identity management scheme applied to VANET (Ve-
hicular Ad-hoc Network) and other large-scale IoT networks.
Kara et al. [24] introduced a blockchain-based decentralized
network identity authentication mechanism for VoIP (Voice
over Internet Protocol), which addressed identity verification
failure issues in network communication due to single points
of failure and privacy concerns. This mechanism outper-
forms the TLS [27] and SIP [23] protocols in terms of
performance and security. Parameswarat et al. [35] proposed
a user-centric electric vehicle charging authentication proto-
col that utilizes blockchain-based decentralized identifiers.
This approach combines VC with DID to provide zero-
knowledge proofs for users [11], enabling users to maintain
full control over their identities, thus facilitating privacy-
preserving user-centric authentication.

We observed that prior methods mainly focused on ex-
ploring the mechanism of DID in various networking en-
vironments, addressing concerns such as single points of
failure and privacy protection in identity management [11].
Our prior work also explored DID applications and proposed
a cross-chain scheme to ensure the legitimacy of IoT node
identities [48]. In contrast to the prior work, our current
study focuses on addressing security issues in identity reg-
istry and updates within DID systems.

On-chain and Off-chain Data Storage. On-chain and
off-chain data storage is a data management strategy used
in DID systems, where on-chain storage maintains key in-
formation or data hashes on the blockchain, while off-chain
storage is responsible for actual data maintenance [51, 22,
19]. Previous studies have explored various approaches to
governing on-chain and off-chain storage to achieve scal-
able data management [51]. For example, Cai et al. [9]
demonstrated that this transferable approach could achieve a

fine-grained transaction framework with multi-layer storage
designs. Liu et al. [29] combined Trusted Execution En-
vironments (TEE) with an on-chain and off-chain strategy
to enable trustworthy data collection. Our work aims to
leverage the on-chain-off-chain strategy for constructing a
scalable DID implementation in meta-computing environ-
ments.

Sallal et al. [37] employed the Selene voting scheme [4]
and permissioned chains in blockchain voting systems to
ensure election verifiability. The system generates a unique
tracking code for each vote and provides it to the voter. At
this stage, the voting content is associated with the tracking
code, but there is no record of the voter’s identity tied to the
tracking code. Voters can verify their votes without revealing
their identity, thus ensuring transparency and fairness in
the election results. However, this scheme requires com-
plex cryptographic techniques and system design, making
implementation challenging. Voter verification depends on
the tracking code, so voters must safeguard their tracking
codes properly; otherwise, they may not be able to verify
their votes. Deebak et al. [14] proposed a privacy-preserving
seamless authentication mechanism using provable key gen-
eration. Fotiou et al. [17] introduced a novel capabilities-
based access control model for IoT devices using verifiable
credentials. Shen ez al. [39] proposed a privacy-preserving
federated learning scheme based on the BCP cryptosys-
tem, which can verify user identity and data integrity in
a multi-key environment. This scheme uses bilinear aggre-
gate signatures and verifiable secret sharing to verify user
data integrity and identity, effectively excluding erroneous
data from some users. Xie et al. [53] proposed an anti-
disguise authentication system based on the first impression
of avatars in the metaverse.

However, bilinear aggregate signatures and verifiable se-
cret sharing techniques have high computational complexity,
particularly in large-scale, resource-constrained distributed
systems. The public and private keys in bilinear mapping
are relatively long, increasing the overhead for key storage
and transmission. Additionally, participants in verifiable se-
cret sharing may deny their actions or secret shares, which
weakens non-repudiation guarantees. Our scheme utilizes a
sliding window accumulator to achieve verifiable identity
authentication. This approach reduces computational over-
head through incremental updates while ensuring security,
thus improving the efficiency of identity authentication.

Various types of cryptographic accumulators have been
proposed in the literature. Research has shown that ac-
cumulators based on Elliptic Curve Cryptography (ECC)
[1] outperform RSA-based accumulators and Merkle Trees
(MTs). Wang et al. [46] proposed cross-domain dynamic
accumulators through blockchain in IoT systems. Foteini et
al. [6] introduced the concept of oblivious accumulators,
which ensure privacy by concealing both the accumulated
elements and the set size from all parties involved. They
presented a construction based on key-value commitments
and established lower bounds on the communication re-
quired for these and almost-oblivious accumulators. Xin et

Kai Ding et al.: Preprint submitted to Elsevier

Page 3 of 14

al. [49] proposed dynamic proofs of liabilities from zero-
knowledge RSA accumulators. Liu et al. [31] introduced
a fine-grained authentication approach for range queries in
hybrid-storage blockchains, addressing the limitations of
existing coarse-grained solutions. Si et al. [42] presented
compressed zero-knowledge proofs for lattice-based accu-
mulators. ECC-based accumulators offer several benefits,
including smaller membership proofs (witnesses) and more
efficient verification due to fewer required mathematical
operations.

3. Background
3.1. Meta-computing-enabled IIoT

Meta-computing is an emerging technical concept that
aims to integrates multiple technologies to serve those appli-
cation scenarios requiring trustworthy computing resource
sharing, e.g., industrial Internet, metaverse, or Web 3.0,
since the operating principle of this technology supports a
combination of various technical merits, such as zero trust,
computing power sharing, and flexible computing services
[12, 40, 18]. Prior studies have pointed out that both hard-
ware and software are objectives that are shared by imple-
menting arole of “manager” within a middle-ware layer. The
manager is responsible for a group of tasks, such as estimat-
ing and updating states of computing resources, allocating
tasks, and offering trustworthy environment [45, 28]. In
the IIoT context, a meta-computing-enabled IIoT primarily
aims at optimizing the utilization of available computing
infrastructure, from cloud/edge servers to IoT devices, while
considering trustworthiness and security.

Align with the structure illustrated in Fig. 1, we em-
phasize the significance of the identity in meta-computing-
enabled IIoT, on the basis of our understanding on meta-
computing, as the scope of identities cover not only user
identities but also devices’ identities. The implementation
of meta-computing requires inter-connectivities and inter-
activities between various servers and devices, as well as
multiple groups of participants; therefore, cross-domain ac-
cess is one of characteristics of meta-computing, i.e., estab-
lishing a trustworthy mechanism for identity verifications
is a fundamental requirement for achieving functionality of
meta-computing. To be specific, in order to realize a meta-
computing-enabled IIoT, identity verification module is di-
rectly associated with a few representative modules, such
as the resource scheduler, trustworthiness manager, access
control manager, and incentive controller. In our scheme, we
involve identities of users and devices/servers in the scope of
verification and develop a DID scheme in order to meet the
demand of cross-domain/organization.

Existing identity management solutions in IIoT, such as
centralized Public Key Infrastructure (PKI) and federated
identity systems [13, 2], face challenges in scalability and
trustworthiness due to their reliance on centralized author-
ities. Recent decentralized approaches [7, 26], including
blockchain-based identity systems, offer improved security
and transparency but often suffer from high computational

overhead and limited interoperability. Our proposed DID
scheme addresses these limitations by providing a scalable,
interoperable, and trustless identity verification mechanism
tailored for meta-computing-enabled IIoT environments.

3.2. Verifiable Decentralized Identity (DID)

Decentralized Identity. DIDs fundamentally transform
the decentralized identity recognition framework. A DID
uniquely identifies the subject, whether a human or non-
human entity, and comprises three elements, namely, a Uni-
form Resource Identifier (URI), a specific DID method iden-
tifier, and a method-specific DID identifier. Furthermore, a
DID URL extends the basic DID by incorporating additional
URI components. Each DID resolves to a machine-readable
JSON-LD document known as a DID document, which in-
cludes cryptographic public keys, service endpoints, authen-
tication parameters, timestamps, and metadata. By eliminat-
ing the need for identity providers and centralized authority,
DIDs allow entities to prove ownership with a private key
corresponding to the public key in the DID document. Veri-
fication occurs through accessing the public DID document,
shared via a verifiable data registry typically implemented
using Distributed Ledger Technology (DLT) [36]. Verifiable
credentials [38] is another W3C specification that offers
an interoperable data structure for representing encrypted,
verifiable, and tamper-evident claims.

Verifiable Authentication. There has been extensive
research [10] on verifiable authentication. Dushku et al. [16]
propose a protocol that does not use public key encryption
for IoT publish/subscribe communication paradigms. This
protocol uses a one-way key chain allowing multiple veri-
fiers to prove one or more provers without pre-shared key
materials. The one-way key chain generates a series of keys
through a one-way function, enhancing system security and
simplifying key management. However, the length of the key
chain is limited. Once all keys in the key chain are used
up, a new key chain needs to be regenerated, increasing
management complexity. Moreover, in certain application
scenarios, users need to stay synchronized with the system.
If users and verifiers of the key chain are not synchronized,
verification failures may occur.

Moreover, current DID-based authentication schemes,
such as EVOKE [34] and CanDID [33], provide robust iden-
tity management but face challenges in security and com-
putational efficiency. For instance, CanDID reliance on the
zero-knowledge proof techniques introduces latency, while
EVOKE’s RSA accumulator compromises data security.
Our proposed scheme addresses these issues by leveraging
a hybrid on-chain-off-chain storage strategy and a sliding
window accumulator, significantly improving scalability and
verification efficiency.

Cryptographic Accumulators. The cryptographic ac-
cumulators [8] are proposed as a way to eliminate reliance
on trusted central authorities. Accumulators are used to
cryptographically create a short, binding commitment to a
set of elements, known as the accumulator value, enabling

Kai Ding et al.: Preprint submitted to Elsevier

Page 4 of 14

the proof of membership within a dataset through compact
proofs.

An accumulator is defined as a family of one-way hash
functions that exhibit a quasi-commutative property. A one-
way hash function A transforms an input value v of arbitrary
length into a fixed-size output called the hash value A(v). The
one-way nature of this function implies that, given A(v), it is
computationally infeasible to recover the original input. The
quasi-commutative property allows for the accumulation
of values in any order, making accumulators effective for
compactly representing a set of elements and for efficiently
verifying membership. To determine whether an element
v; is included in the accumulator value, one must compute
its corresponding witness w;, derived by accumulating all
values except v;. Accumulators that verify the inclusion of
elements using membership witnesses are called positive
accumulators, while those that verify non-inclusion through
non-membership witnesses are known as negative accumu-
lators. Accumulators that support both functionalities are
referred to as universal accumulators.

4. Proposed Model

4.1. Design goals

We aim to achieve the following design goals in VS-DID.

Efficient Identity Query. We consider the requirement
of the frequent and real-time identity verification in meta-
computing IIoT, such that an efficient query function for
rapid system response is needed. User waiting time shall be
shortened for satisfying the requirement of user experience
and satisfactions in multiple implementations in IIoT, e.g.,
financial transactions and remote interactions. The function-
ality of identity query shall support multi-domain applica-
tions within tons of participant IoT devices.

Scalable Secure Storage. We consider the increasing
number of users with identity data a potential burden for
system storage, along with the growth of meta-computing-
enabled IIoT. Due to the distributed setting for both user
identities and meta-computing applications, blockchain-
based solutions require supports from an effective on-chain-
off-chain mechanism in order to meet the demand of large
workloads. A scalable storage is needed to reach a balance
between data security and storage saving.

Verifiable Timely Update. A meta-computing-enabled
IIoT generally consists of multiple subsystems for dealing
with distinct tasks, which leads to dynamic updates for
users’ identities. The attributes used for defining VCs maybe
frequently updated within a certain system context, so that
a secure verification for identity updates is needed. A con-
flict often exist in weighting security and efficiency. Thus,
we aim to achieve a timely update on identity information
while preventing verification errors and other technical risks
caused by outdated information.

4.2. Model Design

In our VS-DID model, identity registry is designed for
matching the requirements of meta-computing in IIoT, in
which supports trustworthy verifications in the cross-domain

context. First, users register their identities through a DID
system by which a DID Verifier verifies the user’s identity
from a registry application. A DID can be issued by a DID
Issuer when the registry request is successfully verified.
We assume that a VC is issued by a trusted party (a DID
Issuer), so that a VC is used to prove the authenticity of
the user’s identity in subsequent operations. For trustwor-
thy verification, a verifiable registry is maintained by the
DID Issuer, which stores encrypted key-value pairs (each
registered user’s DID and public key) and processes digital
signatures.

The verifiable registry applies a key-value commitment-
based authenticated dictionary, in which the key-value pair
of the user’s public key and DID are bound to a commitment.
This commitment can be made public for verifiers to check
the existence and consistency of the data. When a new
user registers, the new key-value pair will be paired with a
commitment to ensure its immutability and integrity. When
a user’s public key changes, the system will calculate a new
DID value and commitment. The user’s public key and DID
are paired with the commitment; then, the key-value pair in
the registry is updated.

In addition, the verifier uses a public key provided by
the user as the key and the user’s DID as the value, when the
DID Verifier checks the user’s key-value pair in the verifiable
registry. The verifier then measures the key-value pair with
the previously published commitment. When the provided
key-value pair matches the content in the commitment, it will
prove that the key-value exists in the the original data and is
bound to the commitment at a certain time. Therefore, the
DID Verifier authenticates the user’s identity.

In this work, we propose a hybrid on-chain and off-chain
storage approach to ensure information integrity verification
while minimizing blockchain storage usage and overall sys-
tem consumption, All users’ DIDs and VCs information are
stored off-chain, while only the computed root hash values
are stored on-chain.

A typical VC contains a large number of keywords re-
lated to user behavior and capabilities. This work extracts the
keywords from VC and aggregates them through data aggre-
gation, forming a data object with the aggregated keyword
set. Storing all data objects on the blockchain would con-
sume significant resources and result in slow query speeds
for traversing all data objects. Therefore, to address these
issues, we propose a sliding window accumulator structure,
in which the hash of all data objects is calculated, with
the result recorded as the root hash of the sliding window
accumulator. Only these root hash values are stored on the
blockchain.

4.3. Trustworthy Verification
4.3.1. DID Registry

During the DID register phase, it is necessary to as-
sociate the user’s identity information with the verifiable
registry. In the VS-DID model, we encode the user’s identity
information as a vector and compute the vector commitment
to establish the binding relationship. Specifically, in the

Kai Ding et al.: Preprint submitted to Elsevier

Page 5 of 14

Table 1
Symbols used in the DID Verifiable Registry
Symbol Description
w Identity vector, W = (wy, wy, ..., w,_,).
w; i-th element of W.
C Commitment to W.
T Proof for w;.
Ty Aggregated proof for subset U.
Cy Aggregated commitment for subset U.
21> & Generators of G, and G,.
e Bilinear pairing, ¢ : G, X G, - G;..

Gr Target group of bilinear pairing.

Trapdoor in commitment scheme.

Selection function in multilinear polynomial.
Security parameter.

pp Public parameters.

SK Secret key.

Public verification key.

U Subset of indices in W.

A Number of positions w; is shifted.
sup; ; Supplementary info for updating proofs.
X Jj-th node in binary tree path for w,.
b Number of identical bits between two paths.

DID register phase, the user generates a commitment C and
corresponding proof z for their identity information vector
W and then submits a registry request. The DID verifier
then validates the proof using the provided commitment.
Upon successful validation, the commitment and proof are
recorded in the verifiable registry. To ensure efficient ag-
gregation and management of commitments, we employ a
binary linear tree structure as the foundational framework
for the commitment scheme. Table 1 shows the symbols
and descriptions usd in DID registry. The proposed vector
commitment scheme includes four phases: generation of
proof, aggregation of proof, verification of proof, and update
of proof.

Generation of proof. We initially adopt the principles
of Hyperproof [41] and polynomial commitments [52] by
representing the original identity information vector W =
(W, Wy, ..y w;_y) € Z! using a multilinear extended poly-
nomial function f. Subsequently, we construct the commit-
ment using a bilinear pairing group, where the group G, and
G, are generated by the respective generators g; and g,, and
the pairing e mapping G; X G, — Gy. Specifically, let us
denote g;j o (j € [0,n]) as the verification key located at
the i-th position of W.

The commitment is shown in Eq. (1).

n—1
A Tl Wi Y a(A) Yien(A)
C=g/W = gr=0 W S T Py, ()

Jj=0
where A denotes a trapdoor, Y, , (k € [0,2")) denotes the
selection function. The trapdoor A is used to generate the
commitment C. It ensures that the commitment is binding
and hiding, meaning that an adversary cannot forge a valid
commitment or extract information about the committed

values without knowing the knowledge of A. To reduce
the proof generation time, we employ a binary linear tree
structure to recursively decompose the multilinear extended
polynomial function. All commitments involved in the path
to root of w; represents the proof z; for w;. Specifically, the
proof generation process consists of the following functions:

e pp, SK, PV K < Gen(4): Inputs the security parame-
ter A. Outputs the public parameters pp, public verifi-
cation key PV K, and secret key SK.

o C «— Com(W): Inputs the identity information vector
W = (wy, wy, ..., w;_;) and outputs the commitment
Cof WezZ,

e 1; <« Open(w;,i): Inputs the the position i and the
element w; at the i-th position in W. The algorithm
outputs the corresponding proof r;.

Aggregation of proof. In the VS-DID model, we ag-
gregate the proofs of individual elements w; in the user’s
identity information vector W into a single aggregated proof.
This aggregated proof verifies the integrity and accuracy
of the entire vector W. Inspired by Hyperproof [41], we
apply the Non-interactive Inner Product Arguments (IPA) to
facilitate proof aggregation. We use the IPA to generate an
aggregated proof 7y; and a corresponding aggregated com-
mitment Cy; from all individual proofs and their associated
verification keys. Specifically, the proof aggregation process
consists of the following function:

o 1y, Cy < Aggr(w;, n;,U) (i € U): Inputs the indi-
vidual vector element w; and the corresponding proof
;. The algorithm outputs the aggregated proof 7;; and
aggregated commitment Cy;.

Verification of proof. During the verification phase,
the public verification key is g,, and the user submits the
proof z; = (x; » X; y—15 --- » X; 1), Where x; , is the n-th node
of the i-th path in the binary linear tree. The DID verifier
verifies the validity of the proof by computing e(C/ g?" ,8)

and [,eqo, €(x;- 85 *)- When Eq. (2) holds, the proof is
successfully verified.

i

eC/lgl e =[] etxi8y ™. 2)

J€l0,n]

Specifically, the proof verification process consists of the
following function:

e (0,1) « Verify(C,U, nyy, (W), (PV K})ier): In-
puts the proof z;;, the commitment C and the vector
element w;. The algorithm outputs O or 1.

Update of proof. To enhance the practicality and main-
tainability of VS-DID, we address proof updates when the
positions of elements in the identity information vector are
altered. Suppose the position of element w; in vector W
is shifted by A positions. To achieve the update of the

Kai Ding et al.: Preprint submitted to Elsevier

Page 6 of 14

corresponding commitment and proof, supplementary infor-
mation about element w;, as outlined in Eq. (3), is required.

. Yy (A)
supy = {supl-/,j,j € [0, n]} = {gl /

Jeln}. 3
For any element w;, its proof update after shifting by A
positions is provided in Eq. (4).

Yi’,j—l(A))A.

r A _
X = Xirj e (supy j_)" =xp ;- (g1

“

Furthermore, for both the pre-update proof z; and post-
update proof 7, we consider the same nodes between the
i-th path and the i’-th path in the binary linear tree. Specifi-
cally, if indices i and i’ share b identical bits, it implies that
for any j € [n— b+ 1,n], i; = i’. The proof z; for w; is
updated as demonstrated in Eq. (5).

Y jo1(A)
x,,-’j =Xij- (Supi,j_1)A =Xij" (gl a)A 5
The commitment C is updated as follows:
Yir (A
C'=C-g = C - (supy)" (6)

Specifically, the proof update process consists of the follow-
ing function:

e C', ' « Update(C,i’, A): Inputs the commitment C,
the i’-th position, and the shifted position A. Outputs
the updated commitment C’ and proof z’.

Security of DID Registry. DID Register scheme meets
the correctness and soundness of the classic commitment
scheme. Brief observation are given as follow:

Theorem 4.1. Correctness If an honest prover P follows
the protocol to generate a commitment C and proof ry; for
a subset U C {0,1,...,1 — 1}, then for any i € U, the
verifier V, using the correct input, will always accept the
proof when running Verify(C, U, 7y, (W;);ery>» (PV Kpicrr)-
Formally, Correctness of DID registry can be quantified as
Sollows:

Pr |Verify(C,i,n;,w;, PVK) = 1] = 1. (7a)
Pr |Verify(C,U,y,w;, PVK) = 1] = 1. (7b)

Observation. Given a security parameter 4, the public
parameters pp, a vector W = (wg, wy, ..., w;_1) € Zﬁ}, and
the secret key pair (SK, PV K). P generates a commitment
C to the vector W using C < Com(W). Since P is honest,
the commitment C correctly binds to W. For each position
i € U, P uses the private key SK, which is known
only to the honest prover, to generate a proof z; for w; at
position i by z; < Open(w;, i). P aggregates the individual
proofs into a single proof xy; for the subset U using 7y «
Aggr((w;, m;);err)- The aggregated proof zy; is computed
in such a way that it can be used to verify the correctness
of the values {w;},cy With respect to the commitment C.
The verifier V receives (C, U, nry, (W;) ey, (PV K}y). To

check the validity of the proof, V runs the verification al-
gorithm b < Verify(C,U, ny, (w;);cy, (PV K});cy), Where
b € {0, 1} indicates whether the proof is accepted (b = 1)
or rejected (b = 0).

By the construction of the DID Register, if all steps are
followed correctly by P, then for any i € U, the verification
algorithm must return 1. This is due to the commitment C
and the individual proofs z; being generated in accordance
with the protocol, and the aggregation z;; being consistent
with these individual proofs.

Theorem 4.2. Soundness The probability of finding two
different messages generating the same commitment is neg-
ligible. Formally, for the different vectors V and U and
the Probabilistic Polynomial Time (PPT) adversary A, the
chance of winning the verifier is negligible:

pp, SK, PV K « Gen(4),
(U’ Wi, PVKi’ ”U)ieU,>
) — A(4, :
< V., w, PVK},x,)ey (4, pp)

. C.U,ny,
Pr 1 « Verify wi’PVKi>,-€U A < negl(4).
C.V,n
. Vomy,,
1 « Verify <w’,PVK) . A
J I/ jev
| FelUnV,w, #uw,]
(®)

Observation. It is computationally infeasible for adver-
sary A to find two different vectors W; # W, such that:
C = Com(W;) = Com(W,).

Suppose A can find two different vectors W, and W,
such that (g%, g%, ..., g%-1) = Com(W;) = Com(W,).
This implies that A can find two different sets of expo-
nents (ag, a;, ... ,a;_;) and (a(’), a’l, e a;_l) such that g% =

g“;,Vi € {0,1,...,1 — 1}. Since g is a generator of a cyclic
group of prime order p, only happenif a; = ag (mod p),Vi €
{0,1,...,1 — 1}. It means that the exponents a; and a[’. must
be the same modulo p.

Finding two different sets of exponents that produce the
same commitment would imply that the adversary can break
the q-SDH assumption. Specifically, if A could find two
different sets of exponents that result in the same commit-
ment, they could use this information to compute g!/*+¢) for
some ¢ € Z*, which contradicts the -SDH assumption [41].
Formally, the probability that a polynomial-time adversary
can find such W, and W, is negligible:

Pr[3W,; # W, : C = Com(W,) = Com(W,)] < negl(4).

By leveraging Correctness and Soundness, our model
ensures that DID documents are tamper-evident. The com-
mitment C binds the vector W in DID document to a unique
value, and any change to W would require recomputing C,
which is impossible without the trapdoor A. Specifically,
Correctness ensures that legitimate DID documents are
always verified. Soundness makes it computationally infea-
sible to forge proofs for tampered documents.

Kai Ding et al.: Preprint submitted to Elsevier

Page 7 of 14

4.3.2. Verifiable DID Query Processing

Traditional blockchain query processing suffers from
inefficiency and insufficient performance. In the worst case,
the time required for a query is linearly related to the number
of data objects in the block. Therefore, using inter-block
aggregation queries can help improve query performance.

Whenever a user needs to query a series of behaviors,
they can use aggregated data objects for Boolean range
queries. For example, in three blocks, there are three data
objects 01, 05, 03. 0; contains keywords {A, B}, o, contains
keywords {B, C}, and o5 contains keywords {C, D}. If the
query q={ "C"n"E" }, the three data objects can be aggre-
gated to obtain the set .S = { A, B, C, D}. The user can then
easily prove that the query does not hold because { "C" n {A,
B, C, D} } = @ . However, this traditional method of inter-
block aggregation has significant limitations. If query q = {
"A" n "D"}, following the previous inter-block aggregation
method, query g satisfies the set .S, causing the inter-block
aggregation index not to work properly, thus degrading to
linear query processing.

In the VS-DID model, when a user submits a series of
requests to a verifier, the DID verifier first needs to verify
the correctness of the user’s DID and VC. After obtaining
the user’s DID and VC, the verifier queries the off-chain
stored data information. The verifier extracts keywords from
all query requests within a time range and divides them into
several subqueries. Each subquery corresponds to a sliding
window accumulator with a window size of K. For each
subquery, the sliding window accumulator index is used
to find the corresponding keyword object set. Then, the
intersection operation is performed on the found keyword
object sets to verify whether the query is valid. If the result
of the intersection operation is an empty set, the query is
deemed invalid; otherwise, the system returns the result of
the intersection operation.

The sliding window accumulator is similar to a Merkle
tree. It hashes several different block data objects to generate
the root of a sliding window accumulator query tree. This
data structure can significantly improve the performance
of the blockchain. The mechanism creates a sliding win-
dow accumulator index for each data object on the most
recent k blocks, where k is also the window size of the
sliding window accumulator. During query processing, we
first search the sliding window accumulator index to ob-
tain the corresponding keyword object sets. Then, we use
intersection operations to verify whether the query holds.
For the previously mentioned example, ¢ = }}Ae N }}De,
we search the sliding window accumulator index and obtain
the object sets where keywords A and D appear, which are
{01} and {05} respectively. Then, we perform an intersection
operation and get an empty set, successfully proving the
query is invalid. The design of the sliding window accumu-
lator solves the issue of query failures caused by traditional
inter-block aggregation. It also effectively improves query
efficiency and optimizes system performance.

Algorithm 1 introduces the implementation of Boolean
queries. Given a query format Q = ([¢,,?,], Y), the system

Algorithm 1 Boolean Query Processing
Require: Query condition Q = ([t,,7,],Y)
Ensure: Query result Ry

1: R « @; gs « DivideQuery(Q)

2: for each ¢ in gs do

3: ([l‘;,t;],Y) «—q

4 Ryje < 0

5: for each keyword win Y do

6: R,, < QuerySWATrie(w, b, .root)
7: Add R, to Ry,

8: end for

9: Ry < BooleanComputation(R;e, Y)
10: end for

11: return Ry

should return all results that satisfy the intersection with
the query keywords. The algorithm can be executed in three
steps: First, the query is divided into a series of subqueries,
each corresponding to a sliding window of size k. Then,
each subquery uses the sliding window accumulator index
to get the results. Finally, all results are merged to generate
the final result. The specific process of using the sliding
window accumulator for Boolean queries can be divided into
the following three phases.

Phase I: Divide Query Range. For a query Q, if the
query’s time window is larger than k, then Q will be divided
into several subqueries with a size of k. If the time window
of the last subquery is smaller than k, the last subquery’s
time window will overlap with the previous subquery. This
may lead to redundant query results but will not affect the
correctness of the final query.

Phase II: Subquery Processing. For each subquery ¢ =
([t,,1,], Y) with a time window of k, we first traverse the
sliding window accumulator tree on block b, to find the
results of this subquery. This subquery result includes all
database objects corresponding to the keywords. Then, we
can perform Boolean expression operations on all database
objects according to the query keyword requirements to get
the result R,.

Phase II1: Subquery Result Aggregation. All subquery
results are aggregated to obtain the final query result and the
Merkle proof path.

Algorithm 2 introduces the implementation of a range
query function. Since the query process in a two-dimensional
time range is almost similar to Algorithm 1 in dividing
the query range, this description will focus on subquery
processing without detailing the process of dividing the
query range under range queries.

Given a subquery ¢ = ([t,.1,]. [a, f]), we first traverse
the sliding window accumulator tree on block b,. For the
root node n of the subtree, if its range [/, u,] is completely
covered by [a, f], the system directly generates the Merkle
proof path. If the range [/,,, u,,] partially intersects with [a, f],
the comparison continues with the child nodes of the root
node #» until the root node’s range is fully covered by [a, f].

Kai Ding et al.: Preprint submitted to Elsevier

Page 8 of 14

Algorithm 2 Range Query Processing
Require: SWA-B Tree root, query condition [«, §]
Ensure: Query result R
1: Initialize an empty queue; queue.enqueue(root)
2: while queue is not empty do
3 n < queue.dequeue()
4 if [/,,u,] C [a, f] then
5: R <R,
6
7
8

elseif [a, p1 N [/,,u,] # @ then
for each child »’ of n do
: queue.enqueue(n’)
9: end for

10: else
11: R0
12: end if

13: end while
14: return R

Algorithm 3 Verifiable Registry Update
Require: New key-value pairs [kj, vj] ; at time i, current
state st; at time i

Ensure: New dictionary summary d,, |, new state st;
1: (AHD,d,, st,) < Init(-)

for each [k;, v;] in the set of key-value pairs do
Add [k;, v;] to AHD

end for

if VerificationLookup(d;, [k;, v;], Z1kyp) == 1 then
Swap ([k;, v;], [k;, v;])

end if

return d; q,st;

A A R o

If the range [/, u,] does not intersect with [a, f] at all, the
search directly returns a path proof failure.

4.3.3. DID Update

In practical IIoT applications, new users continuously
join the system due to the implementation of meta-computing,
which causes user information to change over time. There-
fore, our model needs to consider the situation of user infor-
mation updates. We describe an authenticated dictionary-
based process of verifiable user information updates in the
following.

During the identity issuance phase, the DID issuer pairs
each user’s DID with their public key and stores the gen-
erated key-value pair in a verifiable registry. This verifiable
registry is based on an RSA authenticated dictionary, which
maintains version immutability proof. This authenticated
dictionary is an extension of KVaC authenticated dictio-
nary structure. Key-Value commitment is a cryptographic
technique used to bind key-value pairs to a commitment. It
proves their existence and consistency without exposing the
specific key-value contents. This technique has broad appli-
cations in privacy protection and data verification. It allows
generating a commitment that includes a hash or other form
of summary of the data without revealing the actual data
content. Then, the user can publish this commitment at any

time and, when needed, prove that the commitment contains
specific key-value pairs by providing the corresponding key
and value to verify that these key-value pairs are consistent
with the original data.

In a KVaC-based authenticated dictionary, each key-
value pair is bound to a commitment. This commitment
can be a hash value or another form of summary of the
key-value pair. This commitment can be made public for
verifiers to check the existence and consistency of the data.
When a specific key-value pair needs to be verified, the
verifier can provide the corresponding key and value and
compare them with the previously published commitment.
If the provided key-value pair matches the content in the
commitment, it proves that this key-value pair exists in the
original data and was bound to the commitment at a certain
time. In this paper, the verifiable registry is an extension of
the KVaC authenticated dictionary, combined with the RSA
encryption algorithm. Whenever a new user registers, the
new key-value pair is paired with a commitment, ensuring its
immutability and integrity. This commitment is essentially
a summary. Whenever a user’s DID or public key changes,
the registry updates the key-value pair by first calculating the
new value and summary, then pairing them, and updating the
registry’s version number to maintain version immutability.
No two identical key-value pairs can exist under the same
version number. As an extension of the KVaC authenticated
dictionary, for stronger key-value binding, this paper uses an
append-only version number to track all historical mapping
records. Thus, this paper introduces the new cryptographic
primitive of an authenticated historical dictionary to main-
tain the registry.

Algorithm 3 introduces the key-value update function in
the verifiable registry. Whenever a key-value pair needs to
be updated and replace the old key-value pair, it is necessary
to verify the consistency of the key-value pairs at time i,
the corresponding user proof paths, and the summary in the
initialized authenticated dictionary. This prevents malicious
tampering with the dictionary records. Only when the key-
value pairs, summary, and user information are correct can
the key-value pairs in the registry be updated. After updating
the key-value pairs, it is necessary to regenerate the corre-
sponding summary for the time period to ensure its integrity
and immutability. The design and implementation of this
verifiable registry ensure data integrity, immutability, and
historical traceability in the distributed digital identity sys-
tem by introducing key-value commitments, RSA authenti-
cated dictionaries, and historical authenticated dictionaries.
This design enhances system security and reliability and
provides strong support for applications in other fields.

5. Experiment and the Results

5.1. Experiment Configuration

The experiment of VS-DID is conducted on a hardware
environment consisting of an Intel(R) Core(TM) i5-1035G4
CPU @ 1.10GHz processor, 40GB of storage, and 4GB
of RAM, running the Ubuntu 20.04 operating system. The

Kai Ding et al.: Preprint submitted to Elsevier

Page 9 of 14

Table 2

Single-threaded Experiment Evaluation of DID Registry. Update commitment time and Update all proofs time is the total time
costs for 1024 changes to the vector. For Update all proofs time, dividing the total time by 1024 gives an average time per update

of 0.03ms to 12.50 ms.

Time Costs n =30
w=4 w=8 w=16 w=32 w=64 w=128 w=256 w=512 w=1024 w=2048
Aggregate proofs time (s) 0.04 0.08 0.16 032 064 1.26 2.48 4.93 9.83 19.85
Verify an individual proof time (s) 0.02 0.03 0.06 0.12 024 047 094 1.89 3.77 7.66
Verify an aggregated proof time (s) 0.04 0.07 0.13 0.25 049 095 182 3.15 6.64 12.76
Update commitment time (s) 0.02 0.04 0.07 0.12 024 044 081 1.50 2.73 4.93
Update all proofs time (s) 0.03 0.07 0.14 0.26 050 094 1.84 3.48 6.65 12.79

Table 3
Our Merkle Tree-based Accumulator Scheme

Time n=8 n=16 n=32 n=64
Parameter Generation (s) 0.257 0.305 0.340 0.510
Prover (s) 6.227 7.272 8.077 10.417
Verifier(s) 0.003 0.003 0.003 0.003

objective of the experiment is to evaluate the performance
of DID registry and query mechanisms in VS-DID, focusing
on vector commitment for DID registry and a sliding window
accumulator for DID queries.

For the DID registry process, the vector commitment
scheme is implemented in Golang using the mcl crypto-
graphic library'. The mcl library is designed for efficient
elliptic curve pairing operations, specifically supporting the
BLS12-381 elliptic curve. It provides optimized operations
for the algebraic groups G, G,, and G5, making it highly
suitable for cryptographic applications that rely on pairing-
based schemes. In this experiment, the mcl library handles
the algebraic operations required for generating and veri-
fying vector commitments. To further improve efficiency,
the IPA-based aggregation scheme from Hyperproof? is used,
enabling the aggregation of multiple commitments and
proofs into a single verification step, reducing computational
overhead. The experimental setup includes different vector
sizes w € {4,8,16,32,64,128,256,512,1024,2048}, and
Merkle tree heights n € {3,4, 5,30}, to examine their effect
on the performance of the registry process.

For the DID query process, the sliding window accu-
mulator scheme is implemented using the Bellman-Bignat
cryptographic library?. This library is specialized for large
integer operations and building SNARK circuits, which are
essential for cryptographic constructs such as Merkle ac-
cumulators. In this experiment, the Merkle accumulator is
constructed using the Bellman-Bignat library’s large integer
operations to enable efficient querying of DID sets. Ad-
ditionally, zero-knowledge proof verification for the accu-
mulator is implemented using the Groth16 proving system,
with SNARK circuits built on the BLS12-381 elliptic curve,

Uhttps://github.com/herumi/mcl. git
Zhttps://github.com/hyperproofs/hyperproofs-go.git
3https://github.com/alex-ozdemir/bellman-bignat

ensuring both cryptographic security and operational effi-
ciency. The performance is evaluated with different vector
sizes w € {16,32,64,128,256,512,1024,2048}.

5.2. Experiment Results

Overall Results. We observe that when n = 30, the size
of the public parameters for the Merkle SNARK scheme
reaches approximately 50GB, and the parameter genera-
tion process requires over 30 hours. Given the significant
time costs associated with the SNARK-based commitment
scheme, we choose to balance between the values of w and
n. For our VS-DID scheme, we maintain the height of the
bilinear tree at n = 30 and assess the time performance
for w € {4,8,16,32,64,128,256,512,1024}. In contrast,
for the Merkle SNARK scheme, we adjust the Merkle tree
height between n = 3 and n = 5 for the vector sizes
w e {8,16,32,64}.

In this experiment, we evaluate the performance of the
vector commitment scheme for DID registry using several
key metrics: Aggregate Proofs Time, Individual Proof Veri-
fication Time, Aggregated Proof Verification Time, Commit-
ment Update Time, and the time to Update All Proofs. These
metrics are chosen to assess the efficiency and scalability of
the system across different vector sizes. Aggregate Proofs
Time and Aggregated Proof Verification Time measure the
efficiency of aggregating and verifying multiple proofs si-
multaneously, which is essential for handling large datasets.
Individual Proof Verification Time reflects the system’s per-
formance when verifying smaller subsets of data, which is
important for real-time applications. Commitment Update
Time captures the system’s responsiveness when updating
the vector commitment due to changes in DID information,
while update all proofs time evaluates the cost of main-
taining proof consistency as vector sizes increase. These
metrics provide insights into the system’s scalability and
efficiency in dynamic environments where frequent updates
and verifications are required, helping us understand its
potential for real-world applications.

The experiment results in Table 2 and Table 3 are ob-
tained through empirical measurements in our experiments.
In Table 2, the Update Commitment Time and Update all
proofs time are calculated by executing 1024 update oper-
ations and recording the total time taken. The total time is
then divided by 1024 to obtain the average time per update.
Similarly, other values such as Aggregate proofs time costs

Kai Ding et al.: Preprint submitted to Elsevier

Page 10 of 14

Table 4
Merkle SNARK scheme versus DID registry.

. w=8 w =16 w =32 w = 64
Time Costs Scheme n=3 n=4 n=5|n=3 n=4 n=5|n=3 n=4 n=>5|n=3 n=4 n=>5
Aggregate proofs time (s) Merkle SNARK 0.32 0.38 0.44 | 063 0.76 0.86| 127 149 173|254 298 344
Ours 0.02 0.02 0.03|0.03 0.03 0.04|0.05 0.06 0.07|0.08 0.10 0.14
Verify time (s) Merkle SNARK 0.003 0.003 0.003|0.003 0.003 0.003|0.003 0.003 0.003{0.003 0.003 0.003
Ours 0.01 0.01 0.01]0.02 0.02 0.02|0.03 0.03 0.04|0.05 0.05 0.06
Commitment time costs (s) Merkle SNARK 11.88 18.32 19.30(22.99 36.39 38.02|44.30 68.59 71.67|82.90 131.32 138.17
Ours 0.65 0.70 0.82 123 124 150|227 243 286 |4.10 459 551
and Verify time costs are measured by recording the total 100 —— — o A
time to generate and verify aggregated proofs, and then aver- p e Bredomen
aging over the number of operations. In Table 3, Parameter T3 7 R /# E, // i
Generation Time is measured by recording the time taken o =
to generate the parameters for the Merkle tree accumulator, . I B

Prover Time is calculated by measuring the time taken to
generate a proof, and Verifier Time is the time taken to
verify the generated proof, with the verification time being
consistent across different values of n. All experiments are
conducted on standard hardware and software configurations
(detailed in Section 5.1), and each experiment is repeated
multiple times to ensure consistency. The values reported in
the tables are the averages of these repeated trials.

The experimental results for DID registry using vector
commitments, as shown in Table 2, illustrate the perfor-
mance for varying vector sizes w with a fixed Merkle tree
height n = 30. As the vector size increases from w = 4
to w = 2048, the time costs for different operations exhibit
a noticeable growth. Specifically, the time for aggregating
proofs rises from 0.04 seconds at w = 4 to 19.85 seconds
at w = 2048, while the time to verify an individual proof
increases from 0.02 seconds to 7.66 seconds across the same
range. Similarly, verifying an aggregated proof takes from
0.04 seconds at w = 4 to 12.76 seconds at w = 2048. The
time required to update the commitment and all proofs also
increases with the vector size, where the update commitment
time ranges from 0.02 to 4.93 seconds, and the update all
proofs time ranges from 0.03 to 12.79 seconds.

Table 3 presents the experimental results for the DID
query process using a Merkle tree-based accumulator scheme.
The results evaluate three key time metrics: parameter gen-
eration time, prover time, and verifier time, across different
Merkle tree heights (n = 8, n = 16, n = 32, and n = 64).
For parameter generation time, as the tree height increases,
the time also grows. It starts at 0.257 seconds for n = 8§,
rising to 0.510 seconds for n = 64, indicating that higher
tree depths lead to increased computational overhead during
the generation of parameters. The prover time similarly
increases with the tree height, starting at 6.227 seconds
for n = 8 and reaching 10.417 seconds for n = 64. This
trend shows that the time required for the prover to generate
proofs becomes longer as the complexity of the Merkle
tree grows. In contrast, the verifier time remains constant
at 0.003 seconds across all tree heights. This demonstrates
that the verification process is highly efficient and unaffected

e

Time costs of parameter generation (s)

=4
o

g 16 . 32 64
Vector Size w

Figure 2: Parameter generation time of different algorithms
under different vector sizes.

1000

186.124

356.36 359.823|@ Sha256
O Pedersen
[Poisedon|
——————————————————— & Ours

39.852

182.324

and proof generation

Time costs o

A

Vector Size w

Figure 3: Commitment and proof generation time of different
algorithms under different vector sizes.

by the increase in Merkle tree height, ensuring fast proof
verification even as the underlying structure becomes more
complex. Overall, the results highlight the scalability of the
scheme, with parameter generation and prover times increas-
ing with tree height, while verification remains constant and
efficient.

In addition, we compared the effects of different vector
size w, Sha256, Pedersen, Poisedon, and our scheme are at
different stages of time. Fig. 2 shows the time costs of param-
eter generation, Fig. 3 shows the time costs of commitment
and proof generation, and Fig. 4 shows the proof verification
time. The experimental results demonstrate the superiority
of our proposed method in terms of efficiency, scalability,

Kai Ding et al.: Preprint submitted to Elsevier

Page 11 of 14

0.025
= @ Sha256
E 002 |=mmmmeoo o> e 0o _ | OPedersen 002
g - 0O Poisedon
3 o ours
= [R e el — el —
2
£
ERR Y. B (SRR — DI — NN — SNSRI
=z
3
2
T 000S e e T aemuenomie T eowososs e T T 000300030503
ZIE HAlE #Z1E @Ml
0 T T T
8 16 32

Vector Size w

Figure 4: Proof verification time of different algorithms under
different vector sizes.

and security. Specifically, our method achieves significantly
lower parameter generation times (Fig. 2), more efficient
commitment and proof generation (Fig. 3), and consistently
low proof verification times (Fig. 4) compared to traditional
approaches. These results indicate that our method not only
reduces computational overhead but also scales effectively
with larger vector sizes, making it highly suitable for DID
verifiable authentication in meta-computing-enabled IIoT
environments. By leveraging advanced cryptographic tech-
niques such as vector commitments and Merkle accumula-
tors, our approach ensures robust security while maintaining
high performance, outperforming existing methods in key
metrics.

Compared with Merkle SNARK. The experimental
results presented in Table 4 compare the time performance
of the Merkle SNARK scheme and our DID registry scheme
for various operations across different Merkle tree heights
n and vector size w. The table evaluates three key metrics:
aggregate proofs time, verification time, and commitment
time costs. For aggregate proofs time, the Merkle SNARK
scheme shows increasing time costs as both n and w grow.
For example, at w = 8 and n = 3, it takes 0.32 seconds, and
as n increases to 5, this grows to 0.44 seconds. Similarly, at
w = 64, the time increases from 2.54 seconds (n = 3) to
3.44 seconds (n = 5). In contrast, our scheme demonstrates
much lower aggregate proof times across all configurations,
with times ranging from 0.02 seconds at n = 3 and w = 8§ to
0.14 seconds at n = 5 and w = 64, indicating significantly
better efficiency compared to Merkle SNARK. For verifica-
tion time, the Merkle SNARK scheme maintains a constant
verification time of 0.003 seconds across all configurations
of n and w, showing no performance degradation as the
tree height or window size increases. Our scheme, on the
other hand, shows slightly higher verification times, starting
at 0.01 seconds at » = 3 and w = 8§, and rising to 0.06
seconds at n = 5 and w = 64. While our scheme has higher
verification times, it remains efficient and scales reasonably
with larger parameters. Finally, for commitment time costs,
the Merkle SNARK scheme incurs significantly higher time
costs, especially as n and w increase. For instance, at w = 8
and n = 3, the time is 11.88 seconds, but at w = 64 and n =

5, it jumps to 138.17 seconds. In comparison, our scheme
exhibits much lower commitment times, starting at 0.65
seconds for n = 3 and w = 8§, and increasing to 5.51 seconds
for n = 5 and w = 64, reflecting a substantial improvement
in performance over the Merkle SNARK scheme.

Overall, the results demonstrate that while both schemes
handle verification efficiently, our DID registry scheme sig-
nificantly outperforms the Merkle SNARK in terms of ag-
gregate proofs and commitment time, making it a more
scalable and practical solution for large-scale applications.

In large-scale user and data environments, the DID ver-
ifiable registry is proposed to efficiently handle secure iden-
tity verification requests and potential performance bottle-
necks. Specifically, the parameters used for proof genera-
tion in the DID verifiable registry can be reused, which
significantly reduces computational overhead and supports
efficient identity verification for a large number of users.
As shown in Fig. 4, the proof verification time for DID
registry remains consistently low at 0.003 seconds, ensuring
real-time responsiveness even under large-scale verification
requests. Furthermore, the experimental results in Table 2
and Table 4 demonstrate that our model supports efficient
proof aggregation and updates. Proof aggregation allows
multiple verification requests to be processed in batches,
significantly reducing the overall verification time. This ca-
pability enables VS-DID to handle DID verification requests
efficiently, even as the number of users and data scales up. By
combining reusable parameters, low verification times, and
efficient proof aggregation, our model effectively addresses
the challenges of scalability in large-scale environments.

6. Conclusion

This paper addressed the issue of authentication in
meta-computing-enabled IIoT and proposed a verifiable
computation-based DID scheme for ensuring both secure
scalable storage and authentications. The proposed model
adopted a sliding window accumulator to facilitate boolean
and range queries. We also utilized key-value commitments
in a verifiable registry for trustworthy queries within the au-
thentication mechanism. Our model had been demonstrated
to be effective in guaranteeing data integrity and tampering-
resistant.

For future work, we plan to further explore the scal-
ability of our model in large-scale industrial applications
by integrating it with other emerging technologies such as
edge computing and blockchain. Additionally, we aim to im-
prove the performance of our authentication mechanism by
optimizing the key-value commitment scheme for reduced
overhead in large systems. Finally, we will investigate the
impact of different cryptographic techniques on the overall
security and efficiency of the system, especially in high-
latency or resource-constrained environments.

Acknowledgment
This work is supported by the National Key Research and

Development Program of China (Grant No. 2021 YFB2701300),

Kai Ding et al.: Preprint submitted to Elsevier

Page 12 of 14

National Natural Science Foundation of China (Grant No.s
U24B20146, 62372044), and Beijing Municipal Science and
Technology Commission Project (Z241100009124008).

References

[1] Adeniyi, E.A., Jimoh, R.G., Awotunde, J.B., 2024. A systematic

review on elliptic curve cryptography algorithm for internet of things:

Categorization, application areas, and security. Computers and Elec-

trical Engineering 118, 109330.

Ahmed, M.R., Islam, A.M., Shatabda, S., Islam, S., 2022. Blockchain-

based identity management system and self-sovereign identity ecosys-

tem: A comprehensive survey. IEEE Access 10, 113436-113481.

Alquraan, A., Udayashankar, S., Marathe, V.J., Wong, B., Al-

Kiswany, S., 2024. Lolkv: The logless, linearizable, rdma-based key-

value storage system, in: 21st USENIX Symposium on Networked

Systems Design and Implementation, Santa Clara, CA. pp. 41-54.

Alsadi, M., Casey, M., Dragan, C.C., Dupressoir, F., Riley, L., Sallal,

M., Schneider, S., Treharne, H., Wadsworth, J., Wright, P., 2023.

Towards end-to-end verifiable online voting: Adding verifiability to

established voting systems. IEEE Transactions on Dependable and

Secure Computing 21, 3357-3374.

Ansari, M.N., Razaq, A., Alolaiyan, H., Shuaib, U., Salman, M.A.,

Xin, Q., 2024. Empowering decentralized identity systems for web 3.0

in complex spherical fuzzy knowledge. Scientific Reports 14, 23590.

Baldimtsi, F., Karantaidou, I., Raghuraman, S., 2024. Oblivious

accumulators, in: IACR International Conference on Public-Key

Cryptography, Springer. pp. 99-131.

[7]1 Bao, H., Zhang, X., Wang, G., Tian, R., Duan, J., Zhao, Y., 2023.

Smart-pki: A blockchain-based distributed identity validation scheme

for iot devices, in: ICC 2023-IEEE International Conference on Com-

munications, IEEE. pp. 4749-4754.

Barthoulot, A., Blazy, O., Canard, S., 2024. Cryptographic accumu-

lators: new definitions, enhanced security, and delegatable proofs, in:

International Conference on Cryptology in Africa, Springer, Douala,

Cameroon. pp. 94-119.

[9] Cai, T., Chen, W., Psannis, K.E., Goudos, S.K., Yu, Y., Zheng,
Z., Wan, S., 2022. Scalable on-chain and off-chain blockchain for
sharing economy in large-scale wireless networks. IEEE Wireless
Communications 29, 32-38.

[10] de Castro, L., Lee, K., 2024. Verisimplepir: Verifiability in simplepir
at no online cost for honest servers , 5931-5948.

[11] Chen, B., Waiwitlikhit, S., Stoica, I., Kang, D., 2024. ZKML: an
optimizing system for ML inference in zero-knowledge proofs, in:
Proceedings of the Nineteenth European Conference on Computer
Systems, EuroSys 2024, Athens, Greece. pp. 560-574.

[12] Cheng, X., Xu, M., Pan, R., Yu, D., Wang, C., Xiao, X., Lyu, W.,
2023. Meta computing. IEEE Network 38, 225-231.

[13] Cremonezi, B., Vieira, A.B., Nacif, I, Silva, E.F., Nogueira, M., 2024.
Identity management for internet of things: concepts, challenges and
opportunities. Computer communications PP, 99.

[14] Deebak, B.D., Hwang, S.O., 2024. Privacy preserving based on
seamless authentication with provable key verification using miomt
for b5g-enabled healthcare systems. IEEE Transactions on Services
Computing 17, 1097-1113.

[15] Dib, O., Rababah, B., 2020. Decentralized identity systems: Architec-
ture, challenges, solutions and future directions. Annals of Emerging
Technologies in Computing 4, 19-40.

[16] Dushku, E., Rabbani, M.M., Vliegen, J., Braeken, A., Mentens, N.,
2023. Prove: Provable remote attestation for public verifiability.
Journal of Information Security and Applications 75, 103448.

[17] Fotiou, N., Siris, V.A., Polyzos, G.C., Kortesniemi, Y., Lagutin,
D., 2022. Capabilities-based access control for iot devices using
verifiable credentials, in: 2022 IEEE Security and Privacy Workshops
(SPW), IEEE, San Francisco, CA, USA. pp. 222-228.

[18] Gai, K., Wu, Y., Zhu, L., Qiu, M., Shen, M., 2019a. Privacy-
preserving energy trading using consortium blockchain in smart grid.
IEEE Trans. on Industrial Informatics 15, 3548-3558.

[2

—

3

[}

[4

finaw}

[5

—

[6

—_

[8

—

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

Gai, K., Wu, Y., Zhu, L., Zhang, Z., Qiu, M., 2019b. Differential
privacy-based blockchain for industrial internet-of-things. IEEE
Trans. on Industrial Informatics 16, 4156—4165.

Gai, K., Zhang, Y., Qiu, M., Thuraisingham, B., 2022. Blockchain-
enabled service optimizations in supply chain digital twin. IEEE
Transactions on Services Computing 16, 1673-1685.

Ge, C., Liu, Z., Susilo, W., Fang, L., Wang, H., 2023. Attribute-based
encryption with reliable outsourced decryption in cloud computing
using smart contract. IEEE Transactions on Dependable and Secure
Computing 21, 937-948.

Hao, J., Huang, C., Tang, W., Zhang, Y., Yuan, S., 2021. Smart
contract-based access control through off-chain signature and on-
chain evaluation. IEEE Transactions on Circuits and Systems II:
Express Briefs 69, 2221-2225.

Jonathan, R., Henning, S., Gonzalo, C., Alan, J., iothers, 2002. SIP:
session initiation protocol. Technical Report.

Kara, M., Merzeh, H.R., Aydin, M.A., Balik, H.H., 2023. VoIPChain:
A decentralized identity authentication in voice over IP using
blockchain. Computer Communications 198, 247-261.

Karaja, M., Chaabani, A., Azzouz, A., Ben Said, L., 2023. Dynamic
bag-of-tasks scheduling problem in a heterogeneous multi-cloud en-
vironment: a taxonomy and a new bi-level multi-follower modeling.
The Journal of Supercomputing 79, 17716-17753.

Khan, A.A., Wagan, A.A., Laghari, A.A., Gilal, AR., Aziz, LA,
Talpur, B.A., 2022. Biomt: A state-of-the-art consortium serverless
network architecture for healthcare system using blockchain smart
contracts. IEEE Access 10, 78887-78898.

Krawczyk, H., Paterson, K.G., Wee, H., 2013. On the security
of the tls protocol: A systematic analysis, in: Annual Cryptology
Conference, Springer, Santa Barbara, CA, USA. pp. 429-448.

Li, Y., Guo, J,, Li, Y., Wang, T., Jia, W., 2023. An online resource
scheduling for maximizing quality-of-experience in meta computing.
arXiv preprint arXiv:2304.13463 .

Liu, C., Guo, H., Xu, M., Wang, S., Yu, D., Yu, J., Cheng, X.,
2022. Extending on-chain trust to off-chain—trustworthy blockchain
data collection using trusted execution environment (tee). IEEE
Transactions on Computers 71, 3268-3280.

Liu, H., Han, D., Cui, M., Li, K.C., Souri, A., Shojafar, M., 2023.
Idenmultisig: Identity-based decentralized multi-signature in internet
of things. IEEE Transactions on Computational Social Systems 10,
1711-1721.

Liu, Q., Peng, Y., Xu, M., Jiang, H., Wu, J., Wang, T., Peng, T.,
Wang, G., 2024. MPV: enabling fine-grained query authentication
in hybrid-storage blockchain. IEEE Transactions on Knowledge and
Data Engineering 36, 3297-3311.

Luecking, M., Fries, C., Lamberti, R., Stork, W., 2020. Decentralized
identity and trust management framework for internet of things, in:
2020 IEEE International Conference on Blockchain and Cryptocur-
rency (ICBC), IEEE. pp. 1-9.

Maram, D., Malvai, H., Zhang, F., Jean-Louis, N., Frolov, A., Kell,
T., Lobban, T., Moy, C., Juels, A., Miller, A., 2021. Candid: Can-do
decentralized identity with legacy compatibility, sybil-resistance, and
accountability, in: 42nd IEEE Symposium on Security and Privacy,
SP 2021, San Francisco, CA, USA. pp. 1348-1366.

Mazzocca, C., Acar, A., Uluagac, S., Montanari, R., 2024. Evoke:
Efficient revocation of verifiable credentials in iot networks, in: 33rd
USENIX Security Symposium (USENIX Security 24), Philadelphia,
PA, USA. pp. 1279-1295.

Parameswarath, R.P., Gope, P., Sikdar, B., 2023. Privacy-preserving
user-centric authentication protocol for iot-enabled vehicular charg-
ing system using decentralized identity. IEEE Internet of Things
Journal 6, 70-75.

S.Ali, 2020. Distributed ledger technology. Internet computing:
Principles of distributed systems and emerging internet-based tech-
nologies pp, 265-299.

Sallal, M., de Fréin, R., Malik, A., 2023. Pvpbc: Privacy and
verifiability preserving e-voting based on permissioned blockchain.
Future Internet 15, 121.

Kai

Ding et al.: Preprint submitted to Elsevier

Page 13 of 14

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

Sedlmeir, J., Smethurst, R., Rieger, A., Fridgen, G., 2021. Digital
identities and verifiable credentials. Business & Information Systems
Engineering 63, 603-613.

Shen, X., Luo, X., Yuan, F., Wang, B., Chen, Y., Tang, D., Gao, L.,
2024. Verifiable privacy-preserving federated learning under multiple
encrypted keys. IEEE Internet of Things Journal 11, 3430-3445.
Smarr, L., Catlett, C.E., 1992. Metacomputing. Communications of
the ACM 35, 44-52.

Srinivasan, S., Chepurnoy, A., Papamanthou, C., Tomescu, A., Zhang,
Y., 2022. Hyperproofs: Aggregating and maintaining proofs in vec-
tor commitments, in: 31st USENIX Security Symposium, USENIX
Security 2022, Boston, MA, USA. pp. 3001-3018.

S.Si, X.Lin, P.Wei, 2024. Compressed zero-knowledge proofs for
lattice-based accumulator. The Computer Journal 67, 694-708.
Szalachowski, P., 2021. Password-authenticated decentralized iden-
tities. IEEE Transactions on Information Forensics and Security 16,
4801-4810.

W3C, 2018. Decentralized Identifiers v0.11: Data Model and Syn-
taxes for Decentralized Identifiers. Technical Report.

Wang, J., Hu, J., Min, G., Zomaya, A.Y., Georgalas, N., 2020. Fast
adaptive task offloading in edge computing based on meta reinforce-
ment learning. IEEE Transactions on Parallel and Distributed Systems
32,242-253.

Wang, L., Tian, Y., Zhang, D., 2021. Toward cross-domain dynamic
accumulator authentication based on blockchain in internet of things.
IEEE Transactions on Industrial Informatics 18, 2858-2867.

Wang, X., Cao, J., Buyya, R., 2022. Adaptive cloud bundle provi-
sioning and multi-workflow scheduling via coalition reinforcement
learning. IEEE Transactions on Computers 72, 1041-1054.

Xie, T., Gai, K., Zhu, L., Guo, Y., Choo, K.K.R., 2023. Cross-chain-
based trustworthy node identity governance in internet of things.
IEEE Internet of Things Journal 10, 21580-21594.

Xin, J., Haghighi, A., Tian, X., Papadopoulos, D., 2024. Notus:
Dynamic proofs of liabilities from zero-knowledge {RSA} accumula-
tors, in: 33rd USENIX Security Symposium (USENIX Security 24),
Philadelphia, PA, USA. pp. 1453-1470.

Xiong, R., Ren, W., Hao, X., He, J., Choo, K.K.R., 2023. Bdim:
A blockchain-based decentralized identity management scheme for
large scale internet of things. IEEE Internet of Things Journal 10,
22581-22590.

Xu, C., Zhang, C., Xu, J., Pei, J., 2021. Slimchain: Scaling blockchain
transactions through off-chain storage and parallel processing. Pro-
ceedings of the VLDB Endowment 14, 2314-2326.

Zhang, L.F., Wang, H., 2022. Multi-server verifiable computation of
low-degree polynomials, in: 2022 IEEE Symposium on Security and
Privacy (SP), IEEE, San Francisco, CA, USA. pp. 596-613.

Zhang, Z., Yang, K., Tian, Y., Ma, J., 2024. An anti-disguise authenti-
cation system using the first impression of avatar in metaverse. IEEE
Transactions on Information Forensics and Security 19, 6393-6408.
Zhuang, T., Qin, Z., Ding, Y., Deng, F., Chen, L., Qin, Z., Choo,
K.K.R., 2023. Temporal refinement graph convolutional network for
skeleton-based action recognition. IEEE Transactions on Artificial
Intelligence 5, 1586-1598.

Kai Ding et al.: Preprint submitted to Elsevier

Page 14 of 14

	Verifiable decentralized identity-based meta-computing in Industrial Internet of Things (IIOT)
	CRediT authorship contribution statement
	Data availability

